

Evento	XXI FEIRA DE INICIAÇÃO À INOVAÇÃO E AO DESENVOLVIMENTO TECNOLÓGICO – FINOVA/2012
Ano	2012
Local	Porto Alegre - RS
Título	Produção de cloro por eletrólise para desinfecção de água em locais atingidos por desastres naturais ou não servidos por sistema de água potável
Autores	WILLIAM BERGOLD MARTINS Marcus Martinello Wollenschläger
Orientador	ANTONIO DOMINGUES BENETTI

O abastecimento de água potável é um dos grandes desafios da humanidade no século 21. De acordo com a UNICEF e a Organização Mundial da Saúde, 800 milhões de pessoas não têm acesso à água potável, estando expostas as diversas doenças transmitidas por bactérias, vírus e protozoários patogênicos presentes em águas contaminadas (UNICEF e WHO, 2012). Na estiagem de 2012, mais de dois terços dos municípios gaúchos decretaram situação de emergência devido a falta de água; no nordeste do Brasil, a população atingida chega a 22 milhões de pessoas. Nestas ocasiões, a população chega a usar água contaminada para bebida porque não existem outras opções. Este projeto foi desenvolvido dentro deste contexto. Que tipo de tratamento simplificado pode ser usado a nível domiciliar ou comunitário para destruir microrganismos patogênicos da água?

O hipoclorito de sódio é um conhecido agente desinfetante utilizado no tratamento de água para consumo humano. Sua geração *in loco* através da eletrólise, um processo de oxirredução no qual substâncias podem ser decompostas ou sintetizadas através da passagem de eletricidade, é considerada uma boa alternativa para tratamento em ponto-de-uso para comunidades não abastecidas com rede de distribuição de água tratada ou submetidas a desastres ambientais que comprometam a qualidade da mesma. Esta pesquisa tem como objetivo avaliar a produção de hipoclorito de sódio pelo processo de eletrólise a partir de uma solução de sal de cozinha (NaCl) e seu potencial de desinfecção através da remoção de agentes patogênicos.

Para a geração do hipoclorito de sódio, primeiramente foi preparada uma solução de 30g/L de sal de cozinha. Na solução, o sal se dissocia integralmente no cátion (Na⁺) e no ânion (Cl⁻). A seguir é inserida uma célula eletrolítica ligada a uma fonte de corrente contínua, iniciando o processo de eletrólise. As seguintes reações ocorrem no ânodo e no cátodo:

Ânodo: $2Cl^{-}$ → $Cl_2 + 2e^{-}$

Cátodo: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Na solução ocorre a reação do gás cloro (Cl₂) com íons hidroxila (OH⁻) gerando o íon hipoclorito (OCl⁻). A reação global de geração do íon hipoclorito é expressa a seguir:

Reação global: NaCl+ $H_2O \rightarrow Na^+ + OCl^- + H_2$

As condições limitantes do processo de geração de hipoclorito são a corrente elétrica, a temperatura, o pH, o tempo de reação, as dimensões, o material e a distância entre os eletrodos, assim como as concentrações iniciais do sal e de cloretos. Para estes ensaios foram utilizados como células duas placas de titânio recobertos com RuO₂ de 15,4cm², separadas por uma distância de 0,5cm. A concentração inicial de NaCl foi de 30 gL¹. O pH não foi modificado e a temperatura ambiente foi mantida. Até o momento foram utilizados, como fonte de energia, um carregador de bateria de celular comum (corrente de 0,8A e tensão elétrica entre 4~12V) e uma fonte de corrente contínua ajustável, de 0~30V e 0~5A (Dazheng DC Power Supply PS-305D). A concentração de cloro ao final da reação foi medida através do método analítico titrimétrico DPD (N,N-dietil-p-fenilenodiamina) com titulação com sulfato ferroso amoniacal (FAS) (APHA, 2005).

Na Tabela 1 são apresentadas as concentrações de Cl₂ produzidas com o carregador de bateria de celular para diferentes tempos de reação.

Tabela 1: Concentrações de Cl₂ em função do tempo usando carregador de celular

Tempo (min)	Concentração (mgL ⁻¹)
60	1600
120	2150
240	4300

Com a fonte de corrente contínua, os testes foram feitos utilizando duas correntes

elétricas, 1,5A e 5,0A. A Tabela 2 apresenta as concentrações de cloro medidas para cada corrente em função do tempo. A concentração inicial de NaCl (30g/L) e a configuração das células foram iguais para os dois experimentos.

Tomno (min)	Concentração (mgL ⁻¹)		
Tempo (min)	I = 1,5A	I = 5,0A	
0	0	0	
10	540	950	
20	810	7000	
30	960	8000	
40	2000	12000	
50	2000	12000	
60	2000	12000	

Em outro teste com a fonte de corrente contínua, sob as mesmas configurações da célula e utilizando uma corrente elétrica de 3,0A chegou-se, após duas horas de reação, a produção de 10200mg/L de Cl₂.

O cloro assim produzido foi testado para desinfetar água constituída em 5% por sobrenadante do tanque de lodos ativados da estação de tratamento de esgotos do Campus do Vale da UFRGS. Outros 95% eram formados por água destilada. Foram testadas concentrações variáveis de Cl₂ entre 2,0 e 10,0 mgL⁻¹. As amostras de água e cloro foram misturadas e deixadas reagir por 30 min. Ao final deste tempo, tiosulfato de sódio foi adicionado para cessar a reação do cloro. As concentrações de coliformes totais e *Escherichia coli* (bactéria presente nas fezes humanas) foram medidas com o método enzimático Colilert®. As concentrações iniciais de coliformes e *Escherichia* nas amostras contaminadas eram de 9,2x10⁴ NMP/100 mL e 2,7x10⁴ NMP/100 mL, respectivamente. (NMP significa Número Mais Provável). Após 30 minutos de contato entre o cloro e a água contaminada, não foram detectados coliformes e *Escherichia*.

O método pode ser aperfeiçoado com o uso de células fotovoltaicas como fonte de energia para a eletrólise. Neste caso, a geração de cloro poderia ser feita mesmo na ausência de energia elétrica, o que ocorre com freqüência durante desastres produzidos por enchentes e tempestades, com quedas da rede de distribuição elétrica.

REFERÊNCIAS

AMERICAN PUBLIC HEALTH ASSOCIATION (APHA); AMERICAN WATER WORKS ASSOCIATION (AWWA); WATER ENVIRONMENT FEDERATION (WEF). **Standard methods for the examination of water and wastewater.** 21st ed. New York: APHA, 2005.

UNICEF; WORLD HEALTH ORGANIZATION. **Progress in drinking water and sanitation.** 2012 update. New York: UNICEF, 2012.

AGRADECIMENTOS

Este projeto foi desenvolvido com recursos do Programa de Pesquisa para o Sistema Único de Saúde (PPSUS), Edital FAPERGS/MS/CNPq/SESRS 002/2009 Pesquisa para o SUS: Gestão Compartilhada em Saúde PPSUS – 2008/2009.