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Band-filling and disorder effects in the ordered phase of the Falicov-Kimball model
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We investigate the stability of “magnetic” ordering against band-filling changes and Anderson-like disorder in
the Falicov-Kimball model, within dynamical mean-field theory (DMFT). The one-particle density of states is
obtained by both arithmetic and geometric averages over disorder, allowing us to detect the localization transition.
Varying the Coulomb interaction and disorder strength, we construct phase diagrams where we identify metallic
and insulating regions, with or without magnetic ordering, and determine how these phases are affected by band
filling.
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I. INTRODUCTION

Disorder effects on strongly correlated electron systems
have received much attention for many years [1–3]. The
problem is of great relevance for many real materials, like
high-temperature oxide supercondutors, since doping, which
is necessary to change the band filling, naturally introduces
some amount of disorder in the crystal structure. This disorder
can be viewed as locally affecting one-electron energies in
tight-binding models. In the noninteracting limit, this was the
subject of Anderson’s pioneering work [4] that led to the
concept of Anderson localization. The resulting insulating
state is of a completely different nature with respect to
a Mott insulator [5], which is due to correlation effects
induced by strong Coulomb interaction. The presence of
both mechanisms of metal-insulator transition [6] (MIT) in
narrow-band solids has led many researchers to investigate
the interplay between disorder and electronic correlations
in model systems. The models are essentially based on the
one-band Hubbard Hamiltonian [7], including disorder as a
distribution of on-site energies, as proposed by Anderson [4].

Among a multitude of theoretical approaches, dynamical
mean-field theory (DMFT) [8–10] is already well established
as one of the most powerful methods to treat local correlations
due to strong on-site Coulomb interaction. Information about
disorder effects is obtained by a now standard method asso-
ciated to DMFT in which one evaluates both arithmetic and
geometric averages of the local density of states (DOS) [11].
These two averages give the total single-particle spectrum and
the distribution of extended states, respectively.

DMFT provides an exact self-consistent mapping of the
lattice problem to an effective single-site (or impurity) problem
in the limit of infinite dimensions. However, the latter has no
closed analytic solution in general, so that many approximate
(mostly numerical) impurity solvers have been employed [12].
The only known truly exact solution of a correlated problem
in infinite dimensions [13–17] is for the Falicov-Kimball
(FK) model [18], which consists of two kinds of spinless
fermions, one mobile and one not, that interact locally via
Coulomb repulsion. This is equivalent to a simplified Hubbard
model [19] in which electrons in a given spin state (e.g.,
spin down) are frozen, while the opposite-spin electrons
can hop through the lattice. This amounts to suppressing
spin-flip processes in the dynamics of moving electrons.
The antiferromagnetic (AF) order of the Hubbard model at

half-filling appears in the FK model as a chessboard pattern
of the frozen fermions, which occupy alternating sites on a
bipartite lattice. Then correlation implies that the moving ones
become preferably localized at the sites of the other sublattice.
Here we will freely refer to this state as magnetic order or AF
phase.

It is important to emphasize that we are not studying a
generic FK model, in which case various charge orderings or
charge segregation would be possible [20,21] for fixed values
of the density of nonmoving particles (usually called ions)
and varying concentration of the moving particles (electrons).
In our case, the only difference between these two kinds of
particles is their spin state. Their average numbers will be
kept equal in both the paramagnetic and AF states, since
any difference would imply a non-zero total spin, and hence
ferromagnetism. Our choice to focus on the AF phase is kept
consistent by avoiding large values of the Coulomb interaction,
for which ferromagnetism would be favored near (but not at)
half-filling in the Hubbard model.

Inclusion of Anderson-like on-site energy disorder in the
FK model yields the so-called Anderson-Falicov-Kimball
model. Its electronic properties and phase diagram have
been studied in some detail, mainly for the half-filling case,
with [22] or without [3,23] magnetic order, but also for variable
filling in the nonmagnetic case [24]. In the present paper, we
complement these previous studies, allowing for the presence
of an AF phase, whose stability is self-consistently investigated
both with respect to temperature and the combined effects of
Coulomb interaction, energy disorder, and band filling.

The paper is organized as follows. In Sec. II, we present
the model and the DMFT approach to solve it, including its
formulation for the AF case, and the disorder averages of the
DOS. Section III describes our results for the DOS at various
band fillings, typical values of the Coulomb interaction U , and
a broad range of values of disorder strength �. It also includes
� versus U phase diagrams for different filling fractions. Final
comments and conclusions are presented in Sec. IV.

II. MODEL AND METHOD

The Anderson-Falicov-Kimball model can be represented
by the Hamiltonian

H =
∑

i

εi

(
nc

i + n
f

i

) − t
∑
〈ij〉

c
†
i cj + U

∑
i

nc
i n

f

i , (1)
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where we employ the usual notation of creation, annihilation,
and number operators (in the Wannier representation) for two
kinds of spinless fermions. The c fermions can move with a
nearest-neighbor hopping integral t , and experience Coulomb
repulsion U by the non-moving f fermions. The local energies
εi are random, with a uniform probability distribution of
width �.

The exact solution of the Falicov-Kimball model in infinite
dimensions [13,16,17] is an example of DMFT with an analytic
solution of the impurity problem. It yields a closed form for
the c -particle Green’s function at a finite temperature T ,

Gii(iωn) = 1 − p

iωn − ε̄i − λ(iωn)
+ p

iωn − ε̄i − U − λ(iωn)
,

(2)

where ωn = (2n + 1)πT , for integer n, are Matusbara frequen-
cies, ε̄i ≡ εi − μ is the local energy measured with respect
to the chemical potential, p measures the probability of
finding an f particle at site i, and λ(iωn) are the Fourier
components of the dynamical mean-field connecting this site
to the c -particle reservoir that replaces the lattice. Clearly
p = 〈nf 〉, the average number of f particles per site, and must
be determined self-consistently. Keeping in mind the analogy
of c and f fermions with spin-up and spin-down electrons in
the Hubbard model, the sum 〈nc〉 + 〈nf 〉 must equal the total
number of particles per site, the band-filling fraction n.

A. Paramagnetic solution

It is easier to begin with the nonmagnetic case, for which
the self-consistent solution implies that p = n/2. Then the
only unknown in Eq. (2) is the dynamical mean field λ(iωn),
which can be determined from the self-consistent condition
that the site-diagonal lattice Green’s function must be equal
to the effective single-site solution with the same self-energy
�i(iωn), that is purely local in the limit d → ∞. With disorder,
this only makes sense if the lattice Green’s function is averaged
over the distribution of local energies εi , and we have the
self-consistence condition

Gav
ii (iωn) =

∫
ρ0(ε) dε[

Gav
ii (iωn)

]−1 + λ(iωn) − ε
(3)

complemented by the disorder average of Eq. (2). Here, the ii

subscript does not imply any site dependence, but just indicates
the local (site-diagonal) Green’s function.

Since the averaging is not done directly on the Green’s
function but on the DOS, we perform the analytic continuation
iωn → ω + i0+ to obtain the retarded single-site Green’s
function, Gii(ω), which yields the local spectral density
ρi(ω) = −Im Gii(ω)/π . This is then averaged over disorder
to evaluate the spectral density, or local DOS, ρav(ω), from
which the disorder-averaged local Green’s function is obtained
through its spectral representation

Gav
ii (ω) =

∫
ρav(ε) dε

ω − ε + i0+ · (4)

In practice, we work only with retarded Green’s functions,
and the dynamical mean field is also a function λ(ω) of real
frequencies.

As we mentioned before, we must use two kinds of
averages. Denoting arithmetic average by a line above the site-
dependent quantity being averaged, we have ρa(ω) = ρi(ω)
and ρg(ω) = exp[ln ρi(ω)] as the arithmetic and geometric av-
erages of the DOS, respectively. Self-consistent determination
of the corresponding Ga(ω) or Gg(ω) implies that there exist
different hybridization functions λa(ω) and λg(ω).

To simplify the numerical calculations, we will consider
an uncorrelated DOS corresponding to a Bethe lattice [25]
in the limit of infinite coordination number (z → ∞), ρ0(ε) =

4
πW

√
1 − 4(ε/W )2, where W = 4t∗ is the band width, with the

hopping integral scaled [26] as t = t∗/
√

z. Since no hopping
loops are possible in the Bethe lattice, the only way for an
electron to visit the rest of the lattice is by going out and coming
back through the same nearest-neighbor site (any one of them).
This implies a simple relation for the hybridization function,
λα(ω) = zt2Gα(ω) = W 2Gα(ω)/16, where α = a,g. In the
following, we will choose the band width as our energy unit,
fixing W = 1.

When self-consistency is achieved for λ(ω), we need to
evaluate the average number of c fermions, for which we use
the expression

〈nc〉 =
∫

dω ρa(ω) f (ω) , (5)

where f (ω) is the Fermi function. We then adjust the chemical
potential and restart the self-consistency cycle until the
equality 〈nc〉 = n/2 is verified. To fix the chemical potential,
one must use arithmetic average since all states (not only the
extended ones) contribute to the occupation number.

B. Magnetic order

We now turn to the AF ordered case, in which the lattice is
divided in two sublattices, A and B, related by the condition

〈nf 〉A + 〈nf 〉B = 〈nc〉A + 〈nc〉B = n . (6)

A convenient order parameter is M ≡ 1
2 (〈nf 〉A − 〈nf 〉B),

which saturates at n/2 in the chessboard ground state. We
will refer to this parameter as magnetization.

The local Green’s function for c electrons, Eq. (2), keeps its
form except for the inclusion of A or B subscripts depending
on the sublattice to which the site belongs. The self-consistence
condition, Eq. (3), now reads [9]

Gav
iiγ (iωn) = ξ

ξγ

∫
ρ0(ε)

ξ − ε
dε, (7)

where γ = A,B, and

ξγ ≡ [
Gav

iiγ (iωn)
]−1 + λγ (iωn), ξ ≡

√
ξAξB. (8)

In contrast to the homogeneous case, average occupation
numbers for both fermion species must be evaluated self-
consistently, as they are no longer fixed at n/2. While 〈nc〉
is obtained by Eq. (5), with the appropriate sublattice indices,
evaluation of 〈nf 〉 is more involved since there is no Green’s
function associated to these particles in the FK model. This
would not be the case for the Hubbard model, when both
averages could be treated on equal footing, at the price of
losing the exact solution. Following early works on the FK
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model [13–17], we write down an expression for 〈nf

i 〉 obtained
by the same derivation that yields Eq. (2) from the exact
partition function. It can be expressed [27] as a kind of Fermi
function,

〈
n

f

i

〉 = 1

eβ(Ef

i −μ) + 1
, (9)

where β ≡ 1/T (taking kB = 1), and E
f

i may be viewed as
an effective f -fermion energy, defined by

E
f

i ≡ εi + εf + T
∑

n

[ln (iωn − εi − λn)

− ln (iωn − εi − U − λn)]ei ωn0+, (10)

where we used the short-hand notation λn ≡ λ(iωn). The new
energy εf appearing in Eq. (10) has to be introduced as an
adjustable parameter to compensate for the lack of band width
(kinetic energy) of f fermions, which in our case are just
electrons from the same band but with opposite spin. It is
adjusted by imposing the condition (6).

We see now that the global p = 〈nf 〉 of Eq. (2) appears here
as a local quantity, so that it must be averaged over disorder. We
do this as a simple (arithmetic) average, since this quantity is
not tied to extended states. It has to be done for each sublattice,
yielding pA and pB .

In order to continue to work with real frequencies, we use
a standard procedure to convert Matsubara sums to integrals
over the real axis on the complex-frequency plane. The relevant
relation is [17]

T
∑

n

[ln (iωn − ε − λn)]ei ωn0+

= − 1

π
Im

∫ ∞

−∞
dω f (ω) ln (ω − ε − λ(ω)), (11)

which applies to both terms in Eq. (10), with ε = εi or ε =
εi + U .

III. DOS, MAGNETIZATION, AND PHASE DIAGRAMS

Having presented the model and the approach to be
employed, we begin to discuss our results, obtained via

numerical implementation of the outlined algorithm to obtain
densities of states and occupations numbers.

We begin with a well-behaved DOS for the half-filled
system in the clean limit, at T = 0, shown in Fig. 1, where
we can see the spin polarization characteristic of a magnetic
solution. The denominations “up” and “down” are arbitrary.
Since this DOS refers to c-fermions, and since the down
sublattice is occupied (below the Fermi level, ω = 0), we
are viewing the f -fermions as spin-up electrons. Notice that
the two plots in Fig. 1 correspond to values of the Coulomb
interaction U below and above the critical value Uc = 0.5
for the Mott transition in the paramagnetic case. This is seen
on the PM DOS (also shown), but no qualitative changes are
observable for the AF DOS. It is interesting to notice that for
U < Uc the insulating state is a consequence of the magnetic
order, which changes the periodicity and opens a gap at the
Fermi level. In contrast, for U > Uc a Mott gap exists even in
the PM state, so that one can interpret the magnetism in terms
of a usual exchange mechanism for localized spins.

Significant changes occur when one moves away from half-
filling and adds disorder. This can be seen in Fig. 2. Even for
a large U , causing a reasonably large charge gap, the Fermi
level falls inside the lower Hubbard sub-band for any n <

1. Thus the system is metallic, but remains magnetic. The
effect of disorder is seen, in part, as the expected widening of
the arithmetically averaged DOS, which is accompanied by a
reduction of the correlation gap. In addition, we also observe
a fast shrinking geometrically averaged DOS. On the second
plot of Fig. 2 we no longer have extended states at the Fermi
level (ω = 0), so that from one plot to the other we observe a
transition from a metal to an Anderson-localized insulator.

We want to emphasize that the densities of states shown
here are for zero temperature, since we are mainly interested in
viewing the effects of disorder and band filling on the ground-
state properties. Previous investigations of temperature effects
on the DOS at half-filling for the ordered phase [28–30] have
shown that metallic behavior might be induced at T 	= 0.

The effect of disorder on the magnetism can be better
viewed through magnetization versus temperature curves, as
shown in Fig. 3 (top panel) for n = 1. Band-filling effect is
exemplified in the bottom panel of the same figure. From these
plots it is clear that both doping (departure from half-filling)
and disorder tend to suppress the magnetic phase. It is
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FIG. 1. (Color online) DOS in the magnetic state at half-filling, for two values of the Coulomb interaction U , and at T = 0. The paramagnetic
DOS is also plotted for comparison.
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FIG. 2. (Color online) DOS in the magnetic state slightly below half-filling, at T = 0, for a relatively large U and two values of the disorder
strength �. We show both arithmetic and geometric averages of the DOS, as well as spin polarization. The Fermi level is indicated by a vertical
line at ω = 0, which falls inside the first Hubbard subband when n < 1. A finite value of the geometrically averaged DOS at the Fermi level
indicates that the system is still metallic for � = 0.5, but extended states no longer exist at the Fermi level for � = 0.8, for which the system
is in the Anderson-localization regime and remains magnetic.

worth mentioning that the M(T ) curves are not always “well
behaved” as those shown in Fig. 3, but anomalous behavior
has been described for the half-filled case in the small-U
limit [31,32]. Our aim here is to show the reduction of the
Néel temperature TN with disorder and doping.

On the other hand, one expects the Coulomb interaction
to favor a magnetic state. Figure 4 shows the behavior of TN
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FIG. 3. (Color online) Magnetization as a function of tempera-
ture: at half-filling, for different values of � (top) and for three
different fillings, in the absence of disorder (bottom). These plots
show that TN is reduced by both disorder and doping.

as a function of U , illustrating combined effects of Coulomb
correlations with disorder (top panel) or with doping (bottom
panel). At half-filling and no disorder, we can see that the
weak-coupling magnetic state observed in Fig. 1 is stable for
any nonzero U . Both disorder and doping yield finite critical
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FIG. 4. (Color online) Behavior of the Néel temperature with
Coulomb interaction, for different disorder strengths (top) and for
different band fillings in the absence of disorder (bottom). We see
that magnetic order sets in above a finite critical value of U , except
at half-filling in the clean limit. For low filling, the magnetic state is
also unstable at large U .

085108-4



BAND-FILLING AND DISORDER EFFECTS IN THE . . . PHYSICAL REVIEW B 90, 085108 (2014)

0.00

0.01

0.02

0.03

0.7 0.8 0.9 1.0

TN

n

U = 0.5

Δ = 0.0
0.1
0.3

FIG. 5. (Color online) Néel temperature as a function of band
filling for some values of the interaction strength �, showing that
disorder enhances the doping tendency to suppress AF ordering.

values of Coulomb interaction to stabilize a magnetic phase,
since the Fermi surface departs from any possible nesting
condition that would favor a spin-density-wave state. However,
doping also introduces a second critical coupling above which
TN → 0, so that the stability region of AF ordering shrinks
fast with doping, as shown in the bottom panel of Fig. 4. The
reduction of TN at large U for n = 1 can be understood as a
Heisenberg limit of the Hubbard model (Ising limit in the case
of Falicov-Kimball), since the effective exchange interaction

between localized electrons in the Mott phase behaves as
J ∼ t2/U . We can then understand why disorder becomes
irrelevant for large U at half-filling (top panel of Fig. 4), since
we have localized spins whose exchange interaction is not
affected by the kind of disorder considered in the model. This
regime does not exist away from half-filling, where the system
is metallic.

To show the combined effects of disorder and doping, we
plot in Fig. 5 the Néel temperature as a function of band filling
for some values of �. It can be seen that disorder enhances
the reduction of TN by doping, contributing to suppress the
AF state.

Collecting the information obtained so far, we build up
representative zero-temperature phase-diagrams that show the
interplay between correlations and disorder in different doping
regimes. These phase diagrams are presented in Fig. 6. One
can observe that there is a rich variety of phases at half-filling.
It is worth mentioning that the lines separating Anderson
and metallic regions, or the Anderson and Mott regions at
half-filling, are the same that are obtained by imposing a
paramagnetic solution [22,24], even though parts of these
regions are magnetic here. One of the interesting aspects of
the phase diagrams of Fig. 6 is the shape of the metallic
region, from which one sees that both correlations and disorder
counteract each other’s effects to stabilize a metal where either
one or the other would favor an insulator.

Another interesting region in Fig. 6 is at the “reentrance” of
the Anderson-localization (AL) regime around � � 1.0, U �
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FIG. 6. (Color online) Phase diagrams showing the interplay between disorder and Coulomb interaction for representative band fillings, at
T = 0. We identify the various phases by their magnetic state, PM or AF, followed by a third letter indicating the metallic (M) or insulating (I)
nature of the phase, with further identification of Mott and Anderson-localization (AL) regimes.
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FIG. 7. (Color online) Néel temperature (left y axis) and density
of extended states at the Fermi level (right y axis) as functions of
doping (δn = 1 − n) for the indicated values of U and �. In the
white regions the system is a paramagnetic AL insulator.

1.2. At n = 0.95 this point, which was in the Mott insulating
state at n = 1, corresponds to a disorder-induced insulator with
AF magnetic ordering (AFI-AL). At n = 0.90, the AF solution
is no longer stable in that region, and we have a PM Anderson
insulator (PMI-AL). When we reach n = 0.80, the reference
point has entered a PM metallic phase (PMM). When further
increasing the doping (not shown in Fig. 6) the boundary line
between PMI-AL and PMM straightens up and comes down
again [24], so that we find the point once more in the PMI-AL
state. Its passage through the metallic phase can be monitored
by looking at the geometrically averaged DOS at the Fermi
level, ρg(0). This is shown in Fig. 7, where we also show
the suppression of magnetic order by plotting the variation
of TN with doping. The whole picture looks very similar to
famous phase diagrams of high-temperature superconductors
and other strongly correlated compounds. However, we want
to stress that the relative scales of the two quantities plotted in
Fig. 7 are arbitrary, and that the dome-shaped line is not the
superconducting critical temperature, but a plot the density of
extended states at zero temperature.

IV. CONCLUSIONS

We have investigated in detail the combined effects of
on-site disorder and band filling changes (doping) in the
Falicov-Kimball model. Our main focus has been on the
chessboard ordered phase of the model. We refer to it as an

antiferromagnetic phase in view of the identification of the
FK model with a simplified version of the Hubbard model,
with the two fermion flavors of the former being associated to
the two spin states of conduction electrons in a single correlated
band.

Due to the exact solution of the DMFT effective single-site
problem in the FK model, we were able to evaluate densities
of states directly from real-frequency Green’s functions at
any temperature. This allowed us to study the stability of
the magnetic state against temperature, disorder and doping.
In addition to that, the DOS geometrically averaged over
disorder, which gives the distribution of extended states,
yielded information about the insulating or metallic nature
of the states. We could, then, build up phase diagrams in the
U–� plane for representative values of band filling. These
phase diagrams show a variety of regimes: paramagnetic or
antiferromagnetic, metallic or insulating, with the insulating
state being induced by correlations or by Anderson localization
due to disorder.

Our main observations are that the AF phase is quickly
suppressed away from half-filling, this effect being enhanced
by increasing disorder. This is better viewed through the
variation of the Néel temperature (TN ), which has a maximum
at half-filling (zero doping) and falls to zero at a critical
doping that depends on the amount of disorder. Moreover,
in the filling range where the AF phase is no longer stable
(high doping) there is a limited range of electron densities for
which a metallic phase exists, characterized by a dome-shaped
variation of the density of extended states at the Fermi level
as a function of doping. When we combine this information
(TN and DOS) in the same plot (Fig. 7), the result is strongly
reminiscent of the phase diagram of oxide superconductors,
heavy fermions, and similar materials showing competition
between magnetism and superconductivity. Even though we
do not investigate here the occurrence of superconductivity, it
is obviously inside the metallic phase, indicated by the DOS
dome, that a superconducting state can exist. On the other
hand, the doping range between these two regimes, which in
real systems presents a highly complex scenario, appears here
as just an Anderson insulator, which is probably related to
the fact that the FK model describes a non-Fermi liquid by
construction.
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