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The Langevin dynamics of a system with a scalar-order parameter exhibiting a fluctuation-induced first-
order phase transition is solved within the self-consistent Hartree approximation. Competition between inter-
actions on short and long length scales gives rise to spatial modulations in the order parameter, such as stripes
in 2d and lamellae in 3d. We show that when the time scale of observation is small compared with the time
needed for the formation of modulated structures, the dynamics is dominated by a standard ferromagnetic
contribution plus a correction term. However, once these structures are formed, the long-time dynamics is no
longer purely ferromagnetic. After a quench from a disordered state to low temperatures, the system develops
growing domains of stripes �lamellae�. Due to the character of the transition, the paramagnetic phase is
metastable at all finite temperatures, and the correlation length diverges only at T=0. Consequently, the
temperature is a relevant variable: for T�0 the system ends up forming domains of stripes with a finite
correlation length while for T=0 a scaling behavior in space and time, characteristic of smectic order, is
obtained.

DOI: 10.1103/PhysRevB.75.064108 PACS number�s�: 64.60.Ht, 68.18.Jk, 75.40.Gb

I. INTRODUCTION

Type-II superconductors,1 doped Mott insulators,2 quan-
tum Hall systems,8 ultrathin magnetic films,3–5 lipid
monolayers,6 and Raleigh-Benard convection,7 are systems
that under appropriate conditions present stable phases char-
acterized by the presence of modulated structures. The exis-
tence of these modulated structures is well understood on the
basis of the fluctuation-induced first-order phase-transition
theory �FIFOT�, first developed by Brazovskii.9 This sce-
nario predicts that systems in which the spectrum of fluctua-
tions has a minimum in a shell in reciprocal space at a non-
zero wave vector, undergo a first-order phase transition
driven by fluctuations, in contrast to the second-order transi-
tion predicted by mean-field theory. Moreover, the strong
degeneracy in the space of fluctuations induces the existence
of many metastable structures at low temperatures, and since
the experimentally observed structures are in general meta-
stable, dynamical effects become very important. Unfortu-
nately, the dynamical behavior of these systems is far from
being understood.

The existence and stability of metastable structures and
the nature of the nucleation processes in the context of the
Brazovskii scenario were first studied by Hohenberg and
Swift.7 They obtained the free-energy barriers to nucleation
and the shape and size of critical droplets in the weak-
coupling limit. Gross et al.10 compared the predictions of the
self-consistent Hartree approximation with direct simulations
of the Langevin dynamics, confirming the validity of the
approximation.

A classic example where the Brazovskii scenario has got-
ten strong support, both theoretically and experimentally, is
in diblock copolymers.11–13 These systems have interesting
technological applications as self-assembling patterning me-
dia. Another well-known example of this kind of system is

the three-dimensional Coulomb-frustrated ferromagnet.
Wolynes et al.14 have shown, using a replica dynamical
mean-field theory, that below a characteristic temperature, an
exponential number of metastable states appears in the sys-
tem preventing long-range order. Furthermore, through
Monte Carlo simulations15 and also using a mode-coupling
analysis for the equilibrium Langevin dynamics of the
Coulomb-frustrated ferromagnet, Grousson et al.16 have
found an ergodicity-breaking scenario in agreement with the
predictions of Wolynes et al. These results resemble the be-
havior of many glass-former systems, and two theoretical
scenarios have been depicted in order to account for its
phenomenology.17,18 The relevance of the mode-coupling
predictions to the dynamics of the system have nevertheless
been questioned by Geissler et al.19

The experimental and theoretical study of thin-film mag-
netic materials have led to similar questions.20–22 Thin films
and quasi-two-dimensional magnetic materials have many
important technological applications, for example, in data
storage and magnetic sensors.23 In metallic uniaxial ferro-
magnetic films grown on a metallic substrate, such as CoCu
or FeCu, the system develops spontaneous stripe domains
upon cooling below the Curie point. This is due to the com-
petition between the exchange ferromagnetic short-range in-
teraction and the antiferromagnetic dipolar one, which is
long range.4 In the strong anisotropy or Ising limit, a self-
consistent Hartree approximation predicts the presence of a
FIFOT for any value of the ratio between the ferromagnetic
and antiferromagnetic coupling constants.21 Nevertheless,
the results from Monte Carlo simulations are far from con-
clusive, suggesting the presence of first-order transitions
only for a restricted range of the ratio of the coupling
constants.24,25 The dynamics of these systems is also far from
clear. Early work from Roland and Desai,26 who did simula-
tions of the Langevin dynamics, concentrated on the early-
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time regime, where modulation in the magnetization sets in.
Later work with Monte Carlo simulations concentrated in
some aspects of the out-of-equilibrium aging dynamics27,28

and the growing of stripe domains after a quench.29 These
works reveal a very rich phenomenology, with the appear-
ance of complex phases reminiscent of liquid crystals, and
strong metastability of the dynamics. All these facts point to
the necessity of a more systematic study of dynamical as-
pects of FIFOT.

In this work we solve the Langevin dynamics of a generic
model with a scalar-order parameter undergoing a first-order
phase transition driven by fluctuations. To characterize the
long-time dynamics of the system, we study the fluctuation
spectrum close to the wave vector k0 representative of the
modulated phases. We solve the dynamical equations in the
Hartree approximation and show that, already within this ap-
proximation, the dynamics of the system is very rich and
departs from the usual ferromagnetic case. We neglect quan-
tum fluctuations at low temperatures, and consequently the
Hartree approximation used amounts only to a self-consistent
treatment of thermal fluctuations. A key observation is that,
as we show in the next section, the spinodal of the high-
temperature disordered phase shifts to zero temperature in
this approximation, and this has a strong influence on the
dynamics after a quench. In agreement with the equilibrium
results, we show that the instability of the disordered phase
appears only at T=0, where the dynamics changes qualita-
tively. Nevertheless, the relaxation at finite temperature is far
from trivial, showing the emergence of domains of stripes,
which form a kind of mosaic state on top of the striped
equilibrium phase.

The rest of the paper is organized as follows. In Sec. II we
present the model and show that, in the static self-consistent
approximation, it undergoes a FIFOT. In Sec. III we intro-
duce the Langevin dynamics. In Sec. IV we present the gen-
eral procedure to calculate the dynamical properties of the
system in the Hartree approximation. Sections V and VI are
the core of the paper, where the results on correlations and
responses are presented. In Section VII we compare our re-
sults with previous ones from the literature and discuss its
implications and limitations. Some conclusions are presented
in Sec. VIII. In two appendices we explain some technical
details of the calculations.

II. A MODEL WITH A FLUCTUATION-INDUCED
FIRST-ORDER TRANSITION

A classical model that undergoes a FIFOT may be defined
by an attractive �ferromagnetic� short-range interaction plus
a competing, long-range repulsive �antiferromagnetic� inter-
action. In the simplest case of a scalar field, one can define
an effective Landau-Ginzburg Hamiltonian of the form

H��� =� ddx�1

2
„���x��…2 +

r

2
�2�x�� +

u

4
�4�x���

+
1

2�
� ddxddx���x��J�x�,x�� ���x��� , �1�

where r�0 and u�0. J�x� ,x�� �=J��x� −x�� � � represents a repul-

sive, isotropic, long-range interaction and � measures the
relative intensity between the attractive and repulsive parts
of the Hamiltonian. In the limit �→� one recovers the fer-
romagnetic O�N� model �for N=1�.30–32

The �u /4��4 term introduces a nonlinearity that makes an
exact solution of the model an impossible task. To deal with
this nonlinearity, one must consider the introduction of some
kind of perturbative analysis. The simplest resummation
scheme is the self-consistent Hartree approximation, or large
N limit. It consists of replacing one factor �2 in the �4 term
in the Hamiltonian by its average 	�2
, to be determined
self-consistently. There are six ways of choosing the two
factors of � to be paired in 	�2
, so the Hamiltonian in the
Hartree approximation takes the Gaussian form

H��� =
1

2
� ddx�„���x��…2 + r�2�x�� + g�2�x��	�2�x��
�

+
1

2�
� ddxddx���x��J��x� − x�� ����x�� � , �2�

where g=3u. Introducing the Fourier transform

��x�� =� ddk

�2��deik�·x��̂�k�� , �3�

�̂�k�� =� ddxe−ik�·x���x�� , �4�

the Hamiltonian takes the form

H��� =
1

2
� ddk

�2��dA�k��̂�k���̂�− k��

+
g

2
� ddk1

�2��d � ddk2

�2��d � ddk3

�2��d �̂�k�1��̂�k�2�C�k�3,− k�1

− k�2 − k�3� �5�

=
1

2
� ddk1

�2��d � ddk2

�2��d �̂�k�1��A�k1��k�1,−k�2

+ g� ddk

�2��dC�k�,− k� − k�1 − k�2���̂�k�2� �6�

=
1

2
� ddk1

�2��d � ddk2

�2��d �̂�k�1�A�k�1,k�2��̂�k�2� , �7�

with

A�k�1,k�2� = A�k1��k�1,−k�2
+ g� ddk

�2��dC�k�,− k� − k�1 − k�2� .

�8�

In the previous expression A�k�=r+k2+ Ĵ�k� /� and

C�k� ,k���= 	�̂�k���̂�k���
. Using that A�k�1 ,k�2�=A�−k�1 ,−k�2� and

that C�k� ,k���=Cc�k� ,k���+mk�mk��, where mk� = 	�̂�k��
 and
Cc�k� ,k��� is the connected correlation function, we get finally
the self-consistent Hartree equation for the connected cor-
relator
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A�k�1,k�2� = �−1Cc
−1�k�1,k�2� = A�k1��k�1,−k�2

+ g� ddk

�2��d �mk�mk�1+k�2−k� + Cc�k�,k�1 + k�2 − k��� ,

�9�

where �=1/kBT. In the paramagnetic phase, at high tempera-
tures, all the order parameters mk� =0 and the correlation ma-
trix is diagonal, i.e., Cc�k� ,k���=Sc�k���k�,−k�, with Sc�k�� being
the static structure factor. From Eq. �9� we have

�−1Sc
−1�k�� = A�k� + g� ddk

�2��dSc�k�� = r + k2 +
J�k�

�

+ g� ddk

�2��dSc�k�� . �10�

Introducing the “renormalized mass”

� = r + g� ddk

�2��dSc�k�� , �11�

the structure factor becomes

Sc�k�� =
T

� + k2 +
J�k�

�

, �12�

where we have set kB=1, and the renormalized mass has to
be determined self-consistently from

� = r + gT� ddk

�2��d

1

� + k2 +
J�k�

�

. �13�

An instability in this equation may appear when �=�c=
−�k0

2+J�k0� /��, where k0 is the wave vector, which mini-
mizes A�k�. Hence, the spinodal temperature T* is deter-
mined by the equation

�*�r* − �c� = − gKd�
0

	 kd−1

�c + k2 +
J�k�

�

dk , �14�

where Kd is the surface of a d-dimensional sphere. The inte-
grand in the right-hand side is always positive and has a
singularity at k=k0. Thus, the instability will be determined
by the leading behavior of that integral, which can be esti-
mated by expanding the denominator of the integrand around
k0,

�
0

	 kd−1

�c + k2 +
J�k�

�

dk � �
k0−


k0+
 kd−1

c�k − k0�2dk

= �
−



 �k + k0�d−1

k2 dk

= � .

Therefore, the spinodal temperature always is depressed to
zero, that is, �*r*→−�. The fact that the isotropic phase is

metastable at any finite temperature, a characteristic of the
self-consistent nature of the fluctuations included in the
model, will have important consequences on the dynamics
after a quench at low temperatures, as we will show in the
next sections. Nevertheless, it can be shown that below a
melting temperature, the true equilibrium phase is a modu-
lated one with characteristic wave vector k0. A first-order
phase transition driven by fluctuations takes place.9

III. LANGEVIN DYNAMICS

As usual, the Langevin dynamics for the scalar field
��x� , t� is defined by

���x�,t�
�t

= −
�H���

���x�,t�
+ ��x�,t� , �15�

with, in addition, the following conditions for the thermal
noise:

	��x�,t�
=0,

	��x�,t���x�� ,t��
 = 2T��x� − x�����t − t�� . �16�

In this work, we consider uncorrelated initial conditions

	��x�,0���x�� ,0�
 = ���x − x�� . �17�

If �→�, the last term in Eq. �1� may be neglected and we
keep only the short-range part of the potential. At low tem-
peratures this potential has two symmetric minima, ��x��
= ±�− r

u , where r�0. The dynamics of this model is well
understood,30,31 and is determined, below Tc, by the fixed
point T=0. At variance with the complete model, in the pure
ferromagnetic case there is a continuous phase transition at a
critical temperature Tc which, in the Hartree approximation,
is different from the mean-field critical temperature, with a
lower critical dimension dl=2. In this case, the dynamics
after a subcritical quench corresponds to the well-known do-
main growth with a growth law L�t�
 t1/2, as in standard
dynamical models with nonconserved order parameter.

IV. SELF-CONSISTENT HARTREE APPROXIMATION

A. General solution

In our case of interest the dynamical equation reads

���x�,t�
�t

= �2��x�,t� − r��x�,t� − u�3�x,t�

−
1

2�
� ddx�J�x�,x�����x��,t� + ��x�,t� . �18�

We will extend the previous results for the equilibrium
properties to study the dynamics of the system, using the
same resummation scheme. In this approximation, the non-
linear term �3 is substituted by 3	�2�x� , t�
��x� , t� where the
average is performed over the initial conditions and noise
realizations. In such a way we obtain a linear equation in �
at the price of introducing a new parameter 	�2
 to be deter-
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mined self-consistently. To proceed, it is useful to go to Fou-
rier space, in which we can write

��̂�k�,t�
�t

= − �A�k� + I�t���̂�k�,t� + �̂�k�,t� , �19�

where

	�̂�k�,t�
=0,

	�̂�k�,t��̂�k��,t��
 = 2T��k� + k�����t − t�� , �20�

I�t� = r + g	�2�x�,t�
 , �21�

A�k�� = k2 +
1

�
Ĵ�k�� , �22�

with initial conditions

	�0
ˆ �k��
 = 0,

	�̂0�k���̂0�k���
 = �2��d���k� + k��� . �23�

From Eq. �19� it is easy to see that the general solution of
the model may be written,

�̂�k�,t� = �̂�k�,0�R�k�,t,0� + �
0

t

R�k�,t,t���̂�k�,t��dt�, �24�

where

R�k�,t,t�� =
Y�t��
Y�t�

e−A�k���t−t��, �25�

and Y�t�=e
0
t dt�I�t��.

Our main task is now to find a solution for Y�t�, a function
that encloses the unknown parameter introduced in the ap-
proximation. Following standard procedures30,31 it is easy to
show that

dK�t�
dt

= 2rK�t� + 2g�f�t� + 4gT�
0

t

dt�f�t − t��K�t�� ,

�26�

where K�t�=Y2�t� and

f�t� =� ddk

�2��de−2A�k��t. �27�

Equation �26� may be solved by Laplace transformation

methods. If K̃�p� and f̃�p� are the Laplace transforms of K�t�
and f�t� respectively, then Eq. �26� reduces to

K̃�p� =
2g� f̃�p� + K�0�

p − 2r − 4gTf̃�p�
. �28�

Technically, the problem has been reduced to the calcula-

tion of f̃�p�, to substitute it in Eq. �28� and to calculate the
corresponding Bromwich integral for K�t�. Once K�t� is
known, all the dynamical quantities of the system may be
easily calculated from integral relations.

V. CALCULATION OF K„t…

In this rather technical section, we go through a series of
approximations and assumptions, which allow us to compute
the function K�t� in the long time limit. We start the section
presenting the approximation used to manage A�k��. It keeps
the necessary ingredients to model a fluctuation-induced
first-order phase transition in a completely isotropic system,
in the sense that the spectrum of fluctuations depends only
on the modulus of the wave vector k and presents a degen-
eracy on a spherical shell in k space around a radius k0. We
then proceed to the calculation of f�t� and finally K�t�, in the
long-time regime. We show that the cases T�0 and T=0
give rise to different physics, in agreement with the static
calculations.

A. Approximation for A„k…

Unfortunately, the analytical calculation of f̃�p� for gen-
eral A�k�� is a hopeless task. We will simplify it, considering
only cases in which A�k�� depends on the modulus of k�,
A�k��=A�k� �isotropic interactions�. Since we are interested in
the long-time dynamics of the model, and we know that the
equilibrium phases are characterized by the existence of a
nontrivial wave vector k0�0, at which the spectrum of fluc-
tuations has a maximum, it is then natural to develop A�k�
close to k0,

A�k� = A0 +
A2

2
�k − k0�2 + O��k − k0�3� , �29�

where

A0 = A�k0� , �30�

A2 = �d2A

dk2 �
k=k0

, �31�

with A2�0.
Note that, if t is large enough, this approximation is valid

not only for models with long-range interactions, but in gen-
eral is a good starting point to study other systems whose
spectrum of fluctuations have an isotropic minimum at a
nonzero wave vector. Therefore, the reader must keep in
mind that the results of the next sections are valid in a con-
text more general than the one represented by the Hamil-
tonian �1�.

From a technical point of view, one may note that A0 is
irrelevant to the dynamical behavior of the system. In fact,
from Eq. �19�, one can easily see that it is equivalent to a
rescaling of r, and therefore to a shift in the critical tempera-
ture of the system. Therefore, from now on it will be ne-
glected in our calculations.

B. Results for f̃„p…

With the previous assumptions for A�k�, we may write
f�t� as
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f�t� =� ddk

�2��de−A2t�k − k0�2
, �32�

whose Laplace transform becomes

f̃�p� =� ddk

�2��d

1

p + A2�k − k0�2 . �33�

Next we analyze the behavior of this integral when p
�0. Adding a cutoff factor in the integrals in order to regu-
larize the behavior for large wave vectors,

f̃�p� =� ddk

�2��d

e−�k − k0�2/	2

p + A2�k − k0�2

=
2�d/2

�2��d��d/2��0

�

dk
kd−1e−�k − k0�2/	2

p + A2�k − k0�2 . �34�

Then, after simple algebra Eq. �34� becomes

f̃�p� =
2�d/2

�2��d��d/2�
1

�pA2�1/2�
−�A2/p�1/2�k0�

� dke−pk2/A2	2

1 + k2 �k0

+ � p

A2
�1/2

k�d−1

. �35�

Expanding the binomial inside the integral we obtain the
following expression for general dimensions:

f̃�p� =
2�d/2

�2��d��d/2�
1

A2
�A2

p
�1/2

�
j=0

d−1 �d − 1

j
�

�� p

A2
� j/2

k0
d−1−j�

−�A2/p�1/2�k0�

� dke−pk2/A2	2

1 + k2 kj , �36�

with d�Z.
At this point two limit cases are possible and will be

treated separately below. If �A2 / p�1/2�k0�→0 the time scale of
observation is such that the stripes are not completely
formed, 1

p �
1
k0

2
1

A2
. In this limit we recover the dynamic prop-

erties of the pure ferromagnet for k0�0. On the other hand,
if �A2 / p�1/2�k0�→� the stripes are already formed and the
interaction among them will be responsible for the dynami-
cal properties of the system. Once this more interesting limit
is taken, it is impossible to recover the pure ferromagnetic
behavior.

1. Stripes in formation

Defining

Fj�k0,p� = � p

A2
� j/2

k0
d−1−j�

−�A2/p�1/2�k0�

� dke−pk2/A2	2

1 + k2 kj ,

�37�

and writing it as a Taylor series expansion, for k0�0:
Fj�k0 , p�=Fj�0, p�+Fj��0, p�k0+O�k0

2�, we get

Fj�0,p� = �� p

A2
��d−1�/2�

0

�

dk
kd−1

1 + k2e−�p/A2��k2/	2� if j = d − 1

0 otherwise,
�

�38�

and

Fj��0,p� = �� p

A2
��d−2�/2�

0

�

dk
kd−1

1 + k2e−�p/A2��k2/	2� if j = d − 2

0 otherwise.
�

�39�

Therefore, up to first order in k0, F�k0 , p� becomes

Fj�k0,p� = � p

A2
��d−1�/2�

0

�

dk
kd−1

1 + k2e−�p/A2��k2/	2�

+ k0� p

A2
��d−1�/2�

0

�

dk
kd−1

1 + k2e−�p/A2��k2/	2�,

�40�

and f̃�p� may be written as

f̃�p� = p�d/2�−1�a + b�A2

p
�1/2

k0� , �41�

with a= 1
�4��d/2A2

and b=− 1
�4��d/2A2

3/2

� sec��d/2�

��d/2� .

From Eq. �41� it comes out that the presence of modulated

phases appears in the dynamics as a correction in f̃�p� to the
usual ferromagnetic case.30 One must remember, however,
that this is true provided the second term within the brackets
is small, i.e., during the formation of the modulated struc-
tures.

2. Stripes formed

On the other hand, for the limit � A2

p
�1/2

�k0�→�, stripes of
sizes 1 / �k0� are already formed, and the dynamical properties
of the system are defined by their interactions. The Taylor
expansion, for finite k0 and p→0, is written as Fj�k0 , p�
=Fj�k0 ,0�+Fj��k0 ,0�p+O�p2�. Then,

Fj�k0,0� = �k0
d−1�

−�

� dk

1 + k2 = �k0
d−1 if j = 0

0 otherwise,
� �42�

and developing as before the first-order derivative with re-

spect to p, and taking the limit p→0, f̃�p� becomes

f̃�p� =
2�d/2

�2��d��d/2�
1

A2
�A2

p
�1/2��k0

d−1

+ A2k0
d−3�

−�

�

dk
k2

1 + k2e−�p/A2��k2/	2� −
k0

d−2

2
� p

A2
� .

�43�

From the last expression it can be shown that for small p,

f̃�p�=a+bp−1/2 with a�0, independently of the system di-
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mension. This limit was also explicitly calculated for d=1, 2,
and 3, confirming the series analysis. The calculations are
shown in Appendix A.

Summarizing this subsection, f̃�p� was calculated in two
limiting cases. In the first case, the system is still evolving
and the stripes are not formed. The dynamical properties
resemble the ones of the pure ferromagnet plus a correction
term. Once the stripes are formed, the dynamics changes

qualitatively, and one gets that f̃�p�=a+bp−1/2, indepen-
dently of the dimensionality. From now on, we will use this
expression in future calculations, and only when necessary
we will give explicit values for a and b.

C. Function K„t…

By definition,

K�t� =
1

2�i
�

�−i�

�+i�

dpeptK̃�p� , �44�

with K̃�p� defined by Eq. �28�, where the regularization fac-

tors in f̃�p� can be disregarded in the long time limit. Then

K̃�p� =
2g�a + 2g�bp−1/2 + 1

p − 2A0 − 2r − 4gTa − 4gTbp−1/2 . �45�

Because f̃�p�=a+bp−1/2, K̃�p� has a branch point at p=0,
and the denominator varies in the domain �−� ,��.

Simplifying the notation we can write

K̃�p� =
A + Bp−1/2

p − C − Dp−1/2 =
Ap1/2 + B

p3/2 − Cp1/2 − D
, �46�

with A=1+2g�a, B=2g�b, C=2r+4gTa, and D=4gTb.
The denominator of Eq. �46� has three poles. Through a

careful analysis it is possible to show that one pole is real
and positive for all temperatures. The other two are complex
conjugate with negative real part. We have to solve

K�t� =
1

2�i
�

c−i�

c+i�

dpept Ap1/2 + B

p3/2 − Cp1/2 − D

=
1

2�i
�

c−i�

c+i�

dpept Ap1/2 + B

�p1/2 − x��p1/2 − z��p1/2 − z*�
,

�47�

where x2�R, z2�C, and �z2�* is the complex conjugate of
z2. After a lengthy computation �see Appendix B�, we get

K�t� =
2x�Ax + B�

�x − z��x − z*�
ex2t +

2z�Az + B�
�z − x��z − z*�

ez2t

+
2z*�Az* + B�

�z* − x��z* − z�
e�z2�*t

−
1

�
�

0

�

dre−rtBr3/2 + �BC − AD�r1/2

D2 + �r3/2 + Cr1/2�2 . �48�

Now, one must distinguish carefully the cases T�0 and
T=0. Note, for example, that the real parts of the complex

poles are negative even for T→0, while the real pole is
always positive, going to zero at T=0, where the physics
changes qualitatively.

1. T�0

In this case one may neglect the contributions from the
complex conjugate poles, because their real parts include de-
caying exponential functions. On the other hand, the last
integral in Eq. �48� may be easily estimated noting that
�r3/2+Cr1/2�2=r3+2Cr2+C2r, and that for long times �t
→��, the dominant contributions will come from r�1. We
end with

BC − AD

D2 �
0

�

dre−rtr1/2 =
BC − AD

D2

��

2t3/2 . �49�

Therefore,

K�t� �
2x�Ax + B�

�x − z��x − z*�
ex2t −

BC − AD

2��D2

1

t3/2 , �50�

where the last term goes to zero for t→�.

2. T=0

In this case one must note that x�T�→T, therefore the
contribution from the real pole disappears. At the same time,
the complex poles converge to a single real pole that gives
rise to a decaying exponential function.

Moreover, the expansion used to calculate the last integral
in Eq. �48� is not longer valid. Being D=0 one finds that, for
large t,

B�
0

�

dr
e−rt

r3/2 + Cr1/2 �
B

��Ct1/2
, �51�

and

K�t� = AeCt −
B

C�

��1/2�
�t

, �52�

with C�0. The first term is consistent with the limit T→0
of the two complex poles and is obviously subdominant in
this analysis.

Already with these results at hand one must note two
important differences with the usual ferromagnetic coarsen-
ing. The first one is that here the temperature is a relevant
variable, while for T�0 the relaxation is dominated by ex-
ponential �paramagnetic� contributions, for T=0 the relax-
ation is power-like. The second one is that, excluding
irrelevant prefactors, the long-time dynamics, for all tem-
peratures, is independent of the system dimensionality.

VI. RESPONSE AND CORRELATION FUNCTIONS

In this section we present the main physical results of the
paper, regarding the behavior of correlation and response
functions.

As seen in Sec. �4�, the two-times response function in
Fourier space is given by

ROBERTO MULET AND DANIEL A. STARIOLO PHYSICAL REVIEW B 75, 064108 �2007�

064108-6



R�k,t,t�� =
Y�t��
Y�t�

e−A�k��t−t��, �53�

with Y�t�=�K�t�. Defining the two-times structure factor,

	��k�,t���k�,t��
 = �2��d��k� + k��C�k�,t,t�� , �54�

and using Eqs. �20�, �21�, and �24�, one can show that

C�k�,t,t�� = �R�k�,t,0�R�k�,t�,0� + 2T�
0

t�
R�k�,t,s�R�k�,t�,s�ds .

�55�

As the physics at finite temperature is different from that
at T=0, we will analyze both cases separately. Also, note that
for T�0, the leading contribution to K�t� is exponential, and
consequently, to leading order, correlations and responses
will be stationary, consistent with a paramagnetic phase.
Nevertheless, the algebraic subdominant contribution pre-
cludes the presence of a transient nonstationary dynamics,
with time scales that can be large for low enough tempera-
tures. Consequently, we will keep the subleading contribu-
tion also and analyze its effect on the dynamics, showing that
it leads to interrupted aging in correlations and responses.

A. T�0

From Eq. �50� we find

Y�t� =� 2x�Ax + B�
�x − z��x − z*�

ex2t −
BC − AD

2��D2

1

t3/2 , �56�

and defining C2=
2x�Ax+B�

�x−z��x−z*� and C1=− BC−AD
2��D2 to simplify the

notation, one gets for large t,

Y�t� = C1
1/2e�1/2�x2t�1 +

C2

2C1

e−x2t

t3/2 � . �57�

Then, the response function for T�0 is

R�k,t,t�� = e−�1/2��x2+A2�k − k0�2��t−t���1 +
C2

2C1

e−x2t�

t�3/2 � .

�58�

The two-time correlation function is given by Eq. �55�.
Then, using Eq. �58� and defining B�k�=x2+A2�k−k0�2 we
get

C�k,t,t�� = �e−�1/2�B�k��t+t��

+ 2Te−�1/2�B�k��t+t��

��
0

t�
dse�1/2�B�k�s�1 +

C2

2C1

e−x2s

s3/2 �2

. �59�

Performing the integration in Eq. �59� and setting �= t− t�
one gets

C�k,�,t�� = e−�1/2�B�k��� 2T

B�k�
+ �� −

2T

B�k�
�e−B�k�t�

−
C2

C1

e−�1/2�x2t�

�t�
� . �60�

The dominant term in this expression is stationary, i.e.,
depends only on the difference between the longest and the
shortest times t− t�. The exponential decay is typical of re-
laxation in a disordered or paramagnetic phase. The second
term within brackets decays exponentially to zero, while the
�t� in the third term reflects the presence of interrupted aging
in the system. As a subleading contribution, it can be said
that the system ages in a restricted time window, namely, for
times t��x−2. As will be shown below, x−2 is proportional to
the correlation length and, consequently, it is this length
scale which interrupts the aging, restoring a time-translation
invariant, equilibrium dynamics.

On the other hand, keeping the stationary part and for t
= t�, we obtain the static structure factor

C�k�� = lim
t→�

C�k�,t� =
2T

B�k�
=

2T

x2 + A2�k − k0�2 , �61�

which, as expected, shows a characteristic peak at k=k0.
The correlation function in real space is given by

C�x�� = �
−�

� ddk

�2��dC�k��eik�·x� . �62�

In d dimensions,

C�r� =
1

�2��d/2�
0

� � 1

kr
��d−2�/2

J�d−2�/2�kr�
kd−1dk

x2 + A2�k − k0�2 ,

�63�

where J��x� is a Bessel function of the first kind. In the limit
kr→�,

C�r� �
1

�2��d/2�
0

� � 1

kr
��d−2�/2� 2

�kr
cos�kr

−
�d − 1��

4
� kd−1dk

x2 + A2�k − k0�2 . �64�

This integral can be solved using the theorem of residues in
the complex plane. The final result is

C�r� 
 cos�k0r − ��
e−r/�

r�d−1�/2 . �65�

where �= ��d−1��� /4−tan−1���d−1�x� / �2k0
�A2��. We see

the presence of a correlation length and a modulation length.
The correlation length is given by

��T� =�A2

x2 . �66�

It can be shown that, at low temperatures, x�T�
T, and con-
sequently, the correlation length diverges at T=0 as ��T�

1/T.
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From these results one can see that after a quench from
the disordered phase to a very low temperature the system
breaks into regions inside which there is modulated order, or
stripes. No long-range order is observed. A transition is ap-
proached at T=0, where the correlation length diverges and
stripe order sets in. An interesting result concerns the behav-
ior in different dimensions. Note that, as �→�, true long-
range order is established in d=1. But in d=2 and d=3 only
quasi-long-range order exists, with correlations decaying al-
gebraically as 1/r1/2 in d=2 and as 1/r in d=3. In the next
subsection we analyze in more detail the approach to equi-
librium and the final equilibrium states at T=0.

B. T=0

For T=0 we may neglect the decaying exponential in Eq.
�52� and get

R�k,t,t�� = � t

t�
�1/4

e−�1/2��x2+A2�k − k0�2��t−t��. �67�

Substituting Eq. �67� in Eq. �55� it is easy to prove that

C�k,t,t�� = �R�k,t,0�R�k,t�,0� = ��tt��1/4e−�A2/2��k − k0�2�t+t��,

�68�

and making t= t� we obtain

C�k,t� =
�

W
t1/2e−A2�k − k0�2t �69�

with W= �B��1/2�� / ���C��. This result implies that the dy-
namic structure factor shows space-time scaling in the form

C�k,t� = tah��k − k0�ta� , �70�

with a=1/2 a dynamic growth exponent and h�x� a scaling
function. This exponent has been obtained also in an ap-
proximate treatment of the Swift-Hohenberg model by Elder
et al.,33 but as already discussed in that paper, it was difficult
to see it in numerical simulations. It is necessary to attain
time scales of the order of millions of iterations.

The behavior in real space depends strongly on dimen-
sionality. For d=1 the spatial correlation function has the
form

C�r,t� =
1

��A2

�

W
cos�k0r�e−r2/4t. �71�

This result is consistent, for large t, with the appearance of
modulated and long-ranged positional order. The situation is
different in the more studied case of two dimensions. The
correlations behave as

C�r,t� =� k0

�A2

�

W

cos�k0r − �/4�
r1/2 �1 +

1

8A2k0t
� . �72�

We observe in this case a power-law approach to a state with
quasi-long-range order �QLRO�, with correlations decaying
algebraically in space as r1/2.

As a final example of physical interest, the case d=3
gives:

C�r,t� =
1

��A2

�

W

k0

2�

cos�k0r − �/2�
r

e−r2/4A2t. �73�

In this case the system also shows QLRO but with a different
exponent, with correlations decaying as 1/r. In the next sec-
tion we discuss the implications of these results and compare
them with existing ones.

VII. DISCUSSION

The results of the previous section imply very different
relaxation dynamics at T�0 and at T=0. After a quench
from an uncorrelated state at high temperature to a low but
finite temperature, the asymptotic dynamics is stationary,
similar to the relaxation in a paramagnetic or disordered
state. Nonstationary effects, like aging, are subdominant, and
decay in a finite time scale. This time scale corresponds to
the time at which the correlations extend up to a finite cor-
relation length, as shown above. The existence of a finite,
temperature-dependent correlation length, together with the
isotropy of the interactions, gives rise to a scenario similar to
a mosaic of domains. Inside the domains, short-range stripe
order sets in, but the orientation of the stripes changes from
domain to domain due to the overall isotropy. The stability of
the paramagnetic phase until T=0 is obtained also in a purely
static calculation of the phase diagram in the self-consistent
�Hartree� approximation. Nevertheless, the same calculation
shows that the disordered phase is only metastable, the stripe
phase has a lower free energy below a finite critical tempera-
ture, and is thus the true thermodynamic equilibrium of the
system at low temperatures. Our calculations show that the
Langevin dynamics within the Hartree approximation repro-
duces this scenario. A quench from a disordered phase to T
�0 gives rise to a paramagnetic-like dynamics reflecting the
metastability of this phase. One may ask why the ultimate
stripe phase with long-range order is not attained in our dy-
namic calculations. This is probably due to the fact that ori-
entational order is not broken at all. The model is completely
isotropic, and also the initial conditions are completely un-
correlated. The emergence of a long-range stripe phase at
finite temperatures may be obtained by applying a small
symmetry-breaking field or by studying a quench from cor-
related initial conditions. We are currently studying this last
case. Certainly, within the context of the present calculation,
different initial conditions can be studied, and different and
interesting physics is expected to emerge in each case. An-
other interesting possibility is to study a completely saturated
initial condition, where the field ��x� ,0� is fixed in a large
constant value. This case has been analyzed in computer
simulations of a uniaxial magnetic film,34 and shows very
interesting memory effects due to the difficulty of the dy-
namics in overcoming the initial saturated state.

The dynamics, within the present conditions, becomes
more interesting at T=0, where the disordered state becomes
unstable and consequently a striped phase can develop. Our
results show the presence of dynamic scaling in the structure
factor, Eq. �69�, with an exponent a=1/2. In computer simu-
lations an exponent 1 /4 has been reported more frequently.
However, Elder et al.33 found an exponent 1 /2 in an analyti-
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cal approximation and also in simulations of the Swift-
Hohenberg model, in agreement with our results. Further-
more, in their simulations they observe a first regime with a
1/4 exponent, followed by a crossover to an asymptotic 1 /2
regime. The time scale of the asymptotic regime turned out
to be of the order of 107 iterations of the dynamical equa-
tions, and was difficult to attain at the time of that work. At
present, this regime should be accessible to a computer simu-
lation. In fact, recent results on the coarsening dynamics of a
uniaxial ferromagnet with competing interactions by Gleiser
et al.29 show clearly a crossover from a preasymptotic loga-
rithmic growth to a final power law with exponent 1 /2.

The results of the dynamical correlations in real space are
dependent on dimensionality. In d=1, the system relaxes to a
state with long-range positional order. The order parameter is
sinusoidally modulated. This final state is expected in d=1
because the domain walls can easily accommodate to a long-
range sinusoidal pattern. A different situation is expected in
higher dimensions, where topological defects induce large
energy barriers in the ordering process. In fact, the results
show that only quasi-long-range order is present in dimen-
sions two and three, with different exponents characterizing
the algebraic decay of correlations, a 1 /2 exponent in d=2
and an exponent equal to 1 in d=3.

In the literature on systems with liquid crystal-like phases
one can find many different values for the exponents, and
even the very existence of some phases at low temperatures
is a matter of debate. It is important to realize that minimal
changes in the energy function, like the introduction of a
slight anisotropy in one particular direction, can change the
symmetry of the Hamiltonian and the universality class of
the system. Our results, besides being obtained in a specific
approximation on the dynamical equations, correspond to a
system with the minimal ingredients to show a fluctuation-
induced first-order phase transition. The interaction is strictly
isotropic. This, together with the fact that the initial condi-
tions are uncorrelated in space, reflects in the isotropic nature
of the final expressions for correlations and responses. This
may cause problems, for example, when comparing our re-
sults with computer simulations on small lattices, where the
very presence of the lattice induces an effective anisotropy in
the system behavior. Also, our calculation is limited to a
scalar-order parameter with nonconserved dynamics. The in-
teresting case of conserved-order parameter, which applies,
for example, in the study of diblock copolymers, can be pur-
sued in the same lines of our present analysis, but quantita-
tive results may be different, specially the value of expo-
nents, as is the case in the well-known pure models �without
competition�. We think that, already within the self-
consistent Hartree approximation, it would be interesting to
extend our present analysis to more complex situations, with
anisotropies in the interactions or in the initial conditions,
and also to systems with vector-order parameters. Detailed
computer simulations, although abundant in the literature,
have not been systematic in exploring these different possi-
bilities.

VIII. CONCLUSIONS

In this work we have calculated within the Hartree ap-
proximation the exact long-time dynamics of a model system

exhibiting a fluctuation-induced first-order phase transition.
We motivate our work starting with a Hamiltonian with
short-range ferromagnetic interaction and long-range antifer-
romagnetic interactions, but our results are valid in general
for the long-time dynamics of any system exhibiting
fluctuation-induced first-order phase transitions, provided
that the spectrum of the fluctuations is isotropic. We present
explicit expressions for the time-dependent correlation and
response functions and show that the dynamics converges to
known static results in the Hartree approximation. Our re-
sults show that the dynamics of the system may be decom-
posed in two stages, first the modulated phases form, and
during this stage the dynamics follows the usual coarsening
scenario for a ferromagnetic system. The dynamics is domi-
nated by the zero-temperature fixed point and depends on the
dimensionality of the system. Then, once the modulated
structures are formed, the dynamics changes qualitatively. It
then becomes independent of the system dimension and the
temperature becomes a relevant variable. For T�0 the sys-
tem exhibits interrupted aging and a standard paramagnetic
relaxation for large times, dominated by the presence of a
�meta�stable paramagnetic state. At low temperatures do-
mains of stripes are formed. At T=0 the correlation length
diverges and stripe order sets in.

In this work we have explored only the presence of posi-
tional order, through the calculation of the correlations of the
field ��x� , t�. It would be interesting to compute also orienta-
tional observables, which are known to be relevant for this
kind of system, and give rise to nematic-like order.25 Other
interesting questions that can be addressed starting from the
present calculations are the possible nucleation of stripe
phases in the paramagnetic state, which eventually should
lead to the first-order transition predicted within the static
Hartree approximation. Also, the possible presence of freez-
ing in the low-temperature dynamics could be addressed
within a refined approximation, such as mode coupling or the
self-consistent screening approximation. We are currently
working on some of these interesting possibilities.
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APPENDIX A

Here we show the explicit calculation of f̃�p� in the limit
p→0 for d=1, d=2, and d=3. We begin from Eq. �36� in
each case, and develop the sums and integrals.

1. d=1

In this case Eq. �36� reduces to

f̃�p� =
1

��pA2�1/2�
−�A2/p�1/2�k0�

� dk

1 + k2e−pk2/A2	2
. �A1�

Now,
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�
−�A2/p�1/2�k0�

� dk

1 + k2e−pk2/A2	2
= �

−�

� dk

1 + k2 − �
−�

−�A2/p�1/2�k0� dk

1 + k2e−pk2/A2	2
= � − �

�A2/p�1/2�k0�

� dk

1 + k2e−pk2/A2	2
. �A2�

The last equality is due to the integrand being an even
function. For p→0 the last integral gives

�
�A2/p�1/2�k0�

� dk

1 + k2e−pk2/A2	2
= � p

A2
�1/2e−�k0�2/	2

�k0�
+ O�p3/2� .

�A3�

Then,

f̃�p� =
1

��pA2�1/2�� − � p

A2
�1/2e−�k0�2/	2

�k0�
+ O�p3/2��

=
1

A2
1/2 p−1/2 −

e−�k0�2/	2

�A2�k0
+ O�p� . �A4�

2. d=2

In this case Eq. �36� reduces to

f̃�p� =
k0

2��pA2�1/2�
−�A2/p�1/2�k0�

� dk

1 + k2e−pk2/A2	2�1

+ � p

A2
�1/2 k

k0
� . �A5�

Here we have to solve two integrals. The first one was al-
ready solved for the case d=1,

�
−�A2/p�1/2�k0�

� dk

1 + k2e−pk2/A2	2
= � − � p

A2
�1/2e−�k0�2/	2

�k0�

+ O�p3/2� . �A6�

The second integral is

�
−�A2/p�1/2�k0�

� dkk

1 + k2e−pk2/A2	2
= �

−�

�

− �
−�

−�A2/p�1/2�k0�

= �
�A2/p�1/2�k0�

� dkk

1 + k2e−pk2/A2	2
,

�A7�

because the integrand is an odd function. The last integral
can be approximated as

�
�A2/p�1/2�k0�

� dkk

1 + k2e−pk2/A2	2
= �

�A2/p�1/2�k0�

� dk

k
e−pk2/A2	2�1 −

1

k2

+ O�k−4�� . �A8�

Now

�
�A2/p�1/2�k0�

� dk

k
e−pk2/A2	2

=
1

2
��0,

�k0�2

	2 � = −
�

2
−

1

2
ln� �k0�2

	2 �
+ O� �k0�2

	2 � , �A9�

where � is the Euler constant. The other integral

�
�A2/p�1/2�k0�

� dk

k3 e−pk2/A2	2
=

1

2
� pe−�k0�2/	2

A2�k0�2
−

p��0,
�k0�2

	2 �
A2	2 �

=
p

2A2
� e−�k0�2/	2

�k0�2
+

�

	2

+
1

	2 ln� �k0�2

	2 �� . �A10�

Then,

�
−�A2/p�1/2�k0�

� dkk

1 + k2e−pk2/A2	2
= −

�

2
−

1

2
ln� �k0�2

	2 �
−

p

2A2

e−�k0�2/	2

�k0�2
+ O�	−2� .

�A11�

Finally,

f̃�p� =
k0

2�A2
1/2��p−1/2 −

1

A2
1/2

e−�k0�2/	2

�k0�
+

1

k0A2
1/2�−

�

2

−
1

2
ln� �k0�2

	2 � + O�p��� =
k0

2A2
1/2 p−1/2 −

e−�k0�2/	2

2�A2

−
�

4�A2
− O�ln 	−2� . �A12�

3. d=3

In this case,

f̃�p� =
2�3/2k0

2

�2��3��3/2��pA2�1/2�
−�A2/p�1/2�k0�

� dk

1 + k2

�e−pk2/A2	2�1 + � p

A2
�1/2 k

k0
+ � p

A2
� k2

k0
2�

=
2�3/2k0

2

�2��3��3/2��pA2�1/2�� − � p

A2
�1/2e−�k0�2/	2

�k0�

+
1

k0
� p

A2
�1/2�−

�

2
−

1

2
ln� �k0�2

	2 ��
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+
1

k0
2� p

A2
��

−�A2/p�1/2�k0�

� dkk2

1 + k2e−pk2/A2	2� . �A13�

Again, the contribution of the dominant term is of order
p−1/2, proving that, in agreement with the series expansion in

the text, the behavior of f̃�p� is independent of dimensional-
ity.

APPENDIX B

For f̃�p�=a+bp−1/2 we have

K�t� =
1

2�i
�

c−i�

c+i�

dpept Ap1/2 + B

p3/2 − Cp1/2 − D

=
1

2�i
�

c−i�

c+i�

dpept Ap1/2 + B

�p1/2 − x��p1/2 − z��p1/2 − z*�
,

�B1�

where x2�R, z2�C, and �z*�2 is the complex conjugate of
z2. The three poles x2, z2, and �z*�2 are simple and the resi-
dues are

lim
p→x2

�p − x2�eptK̃�p� =
�Ax + B�ex2t2x

�x − z��x − z*�
,

lim
p→z2

�p − z2�eptK̃�p� =
�Az + B�ez2t2z

�z − x��z − z*�
,

lim
p→�z*�2

�p − �z*�2�eptK̃�p� =
�Az* + B�e�z*�2t2z*

�z* − x��z* − z�
. �B2�

In order to perform the integral, consider the contour in Fig.
1. We choose the branch cut to be the negative real axis
�−� ,0�. From Eq. �B1� we conclude that the paths BC, DEF,
and GA do not contribute. Then

�
A

B

+ �
C

D

+ �
F

G

= 2�i � Res. �B3�

Define p=rei�,

�
C

D

dpept Ap1/2 + B

p3/2 − Cp1/2 − D
= �

�

0

d�rei��erei�t Ar1/2ei�/2 + B

r3/2e3i�/2 − Cr1/2ei�/2 − D
= − �

�

0

dre−rt B + iAr1/2

− ir3/2 − iCr1/2 − D
, �B4�

�
F

G

dpept Ap1/2 + B

p3/2 − Cp1/2 − D
= �

F

G

d�re−i��ere−i�t Ar1/2e−i�/2 + B

r3/2e−3i�/2 − Cr1/2e−i�/2 − D
= − �

0

�

dre−rt B − iAr1/2

ir3/2 + iCr1/2 − D
. �B5�

Then,

�
C

D

+ �
F

G

= �
0

�

dre−rt� − B + iAr1/2

i�r3/2 + Cr1/2� − D
−

B + iAr1/2

i�r3/2 + Cr1/2� + D
� = �

0

�

dre−rt� B − iAr1/2

D − i�r3/2 + Cr1/2�
−

B + iAr1/2

D + i�r3/2 + Cr1/2��
= �

0

�

dre−rt �D + i�r3/2 + Cr1/2���B − iAr1/2� − �D − i�r3/2 + Cr1/2���B + iAr1/2�
D2 + �r3/2 + Cr1/2�2 . �B6�

The numerator has the form

xy* − x*y = �Rx + iIx��Ry − iIy� − �Rx − iIx��Ry + iIy� = RxRy − iRxIy + iRyIx + IxIy − iRxIy + iRyIx − RxRy

− IxIy = − 2iRxIy + 2iRyIx . �B7�

Then,

FIG. 1. Path of integration for the inverse Laplace transform.
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�
D

C

+ �
F

G

= 2i�
0

�

dre−rt �B�r3/2 + Cr1/2� − ADr1/2�
D2 + �r3/2 + Cr1/2�2 = 2i�

0

�

dre−rtBr3/2 + �BC − AD�r1/2

D2 + �r3/2 + Cr1/2�2 , �B8�

and

K�t� = � Res −
1

2�i��D

C

+ �
F

G � . �B9�
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