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populations mimicking the extent of linkage
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Abstract

Background: The success of genomic selection depends mainly on the extent of linkage disequilibrium (LD)
between markers and quantitative trait loci (QTL), the number of animals in the training set (TS) and the heritability
(h2) of the trait. The extent of LD depends on the genetic structure of the population and the density of markers.
The aim of this study was to calculate accuracy of direct genomic estimated breeding values (DGEBV) using best
linear unbiased genomic prediction (GBLUP) for different marker densities, heritabilities and sizes of the TS in
simulated populations that mimicked previously reported extent and pattern of LD in beef cattle.

Results: The accuracy of DGEBV increased significantly (p < 0.05) with the increase in the number of bulls in the
TS (480, 960 or 1920), trait h2 (0.10, 0.25 or 0.40) and marker densities (40 k or 800 k). Increasing the number of
animals in the TS by 4-fold and using their phenotypes to estimate marker effects was not sufficient to maintain or
increase the accuracy of DGEBV obtained using estimated breeding values (EBVs) when the trait h2 was lower than
0.40 for both marker densities. Comparing to expected accuracies of parent average (PA), the gains by using
DGEBV would be of 27%, 13% and 10% for trait h2 equal to 0.10, 0.25 and 0.40, respectively, considering the
scenario with 40 k markers and 1920 bulls in TS.

Conclusions: As reported in dairy cattle, the size of the TS and the extent of LD have major impact on the
accuracy of DGEBV. Based on the findings of this simulation study, large TS, as well as dense marker panels, aiming
to increase the level of LD between markers and QTL, will likely be needed in beef cattle for successful
implementation of genomic selection.

Background
Genomic selection is a method of marker-assisted selec-
tion based on LD that potentially explores all QTL in
the genome [1]. The breeding value (BV) is estimated by
the sum of the effects of marker alleles or haplotypes
covering the entire genome and its accuracy could be as
high as 0.85 [1].
The BV calculated from the estimated effects of mar-

kers is often called DGEBV and the blended value
between DGEBV and traditional EBV is often called
Genomic Estimated Breeding Value (GEBV). The accu-
racy of DGEBV and GEBV depends on: 1) the level of
LD between markers and QTL; 2) the number of

animals in the TS; 3) the heritability of the trait and 4)
the distribution of QTL effects [2].
Since 2009, national evaluations of Holstein bulls are

being performed in the USA and Canada based on
GEBV. Before that, a comprehensive study evaluating
the reliability of GEBV of many economic traits in thou-
sands of Holstein bulls genotyped with the Illumina
BovineSNP50 Genotyping BeadChip (Illumina, Inc.,San
Diego, California, USA) demonstrated that genomic PA
of young animals were substantially higher than the
reliability of traditional PA [3,4].
In beef cattle, the situation is quite different with

respect to feasibility of genomic selection. There are sev-
eral reasons for this, which include the genetic structure
of herds, which involve a greater number of breeds with
different origin and history of selection, resulting in sig-
nificant differences in genetic parameters, such as LD
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and effective population size (Ne), which influence the
accuracy of genomic selection [5-7]. Furthermore, much
of the impetus for using genomics in beef cattle is to
allow selection for traits that are not routinely recorded.
Simulation studies are still more frequent than studies
with real beef cattle data, despite the availability of data-
bases, mainly in bos taurus breeds [e.g., [8]]. However,
there still exists a lack of data available for several beef
cattle breeds, especially for indicine (zebu) breeds. The
aim of this study was to evaluate the potential accuracy
of DGEBV for two marker densities, different heritability
levels and different sizes of TS in simulated populations
that mimicked previously reported extent and pattern of
LD in beef cattle.

Methods
Simulation
Population structure
Using the QMSim software [9], populations were simu-
lated based on forward-in-time process [10] with either
40 k or 800 k single nucleotide polymorphism (SNP)
markers, and 750 QTL across the 29 bos taurus auto-
somes (BTAs). In the first simulation step, 1000 genera-
tions with a constant size of 1000 were simulated,
followed by 1020 generations with a gradual decrease in
population size from 1000 to 200 in order to create
initial LD and establish mutation-drift equilibrium in
historical generations. The number of individuals of
each sex remained the same in this step and the mating
system was based on random union of gametes, ran-
domly sampled from both the male and female gamete
pools. Therefore only two evolutionary forces were con-
sidered in this step: mutation and drift. In the second
step, an expansion of the population was created by
initially randomly selecting 100 founder males and 100
founder females from the last generation of the histori-
cal population. In order to enlarge the population, eight
generations were simulated with five offspring per dam
and an exponential growth of the number of dams. The
mating was again based on the random union of
gametes and no selection was also considered in this
step. In the case of simulating 800 k SNP markers, the
expansion of the population was carried over six genera-
tions, instead of eight, due to computer time and mem-
ory requirements which resulted in a smaller population
size.
In the next simulation step, two recent generation sets

were simulated by selecting 640 males and 32000
females (POP1) or 160 males and 8000 females (POP2)
from the last generation of the two expanded popula-
tions with 40 k or 800 k SNP markers, respectively.
Then ten generations were simulated. Generations three
to eight were used as TS and EBVs for this group were
estimated by excluding information for generations nine

and ten. The prediction set for both POP1 and POP2
included only animals born in generation ten.
The parameters used in the recent generations

mimicked more closely to a real production system with
one progeny per dam per year, 50% of male progeny,
selection for high values of EBV and culling for low
values of EBV with a replacement rate of 60% for sires
and 20% for dams. Sires and dams were randomly
mated.
The breeding values were estimated by BLUP, using

Henderson’s mixed linear equations [11] for an indivi-
dual animal model, considering the true additive genetic
variance. The rate of missing sire and dam information
was 5%. A single trait with heritability of 0.10, 0.25 or
0.40 and phenotypic variance of 1.0 was simulated. The
true breeding value of an individual was equal to the
sum of the QTL additive effects and the phenotypes
were generated by adding random residuals to the true
breeding values. The whole simulation process was
repeated 10 times. The parameters of simulation process
are summarized in Table 1, while Figure 1 depicts the
simulation steps.
The targeted extent and pattern of LD in the simula-

tion was the average of the values reported by [[12] and
[13]] for different beef cattle breeds. Detailed informa-
tion on the extent and pattern of LD were kindly pro-
vided by those authors.
Genome
The simulated genome consisted of 29 pairs of auto-
somes with length identical to the real bovine genome
based on Btau_3.1 assembling [14] totaling 2333 cM. In
most reported simulation studies, just one chromosome
was simulated, due to the computing time and memory
requirements. The advantage of simulating the real
number of autosomes with length identical to the bovine
genome is to create a more realistic scenario with
respect to the number of physically unlinked marker
and QTL loci. The SNP markers were evenly distributed
and the initial number of markers was chosen such that
it would generate two densities of segregating bi-allelic
loci with minor allele frequency (MAF)>0.1: 40 k or 800
k. The markers were neutral in their effect on the trait.
A number of QTL was simulated to generate 750 segre-
gating loci with two, three or four alleles and MAF>0.1,
whose positions were randomly distributed. Additive
allelic effects were randomly sampled from gamma dis-
tribution with shape parameter equal to 0.4. The rate of
missing marker genotypes was 0.01 and the rate of mar-
ker genotyping error was 0.005. A recurrent mutation
rate of 10-5 for both markers and QTLs was considered
to establish mutation-drift equilibrium in historical gen-
erations. The same mutation rate was also applied in all
subsequent generations after the historical ones. The
parameters used for simulating the genome are given in
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Table 1 and a summary of the number of simulated
SNP markers for each autosome is given in Table 2.

Training and prediction sets
The training set was composed of bulls from genera-
tions three to eight for both POP1 and POP2. The rea-
son for excluding the first two generations was to use
data from a population undergoing selection, which
would be mostly the case in beef cattle. In order to

estimate the effects of the 40 k segregating markers, all
the bulls (n = 1920) that had more than 50 offspring
(average progeny size = 73) were selected from POP1
for the three levels of heritability (0.10, 0.25 or 0.40).
Of these, 960 and 480 bulls were randomly sampled so
that the average accuracy of EBVs was kept the same
across the TS sizes within each level of heritability.
Therefore, the average progeny size was approximately
the same (73) for the three TSs with an average

Table 1 Parameters of the simulation process

Population structure POP1/POP2

Step 1: Historical generations (HG)

Number of generations(size) - phase 1 1000(1000)

Number of generations(size) - phase 2 1020(200)

Step 2: Expanded generations (EG)

Number of founder males from HG 100

Number of founder females from HG 100

Number of generations 8/6

Number of offspring per dam 5

Step 3: Recent generations

Number of founder males from EG 640/160

Number of founder females from EG 32000/8000

Number of generations 10

Number of offspring per dam 1

Ratio of male 50%

Mating system Random

Replacement ratio for males 60%

Replacement ratio for females 20%

Selection/culling EBV

BV estimation method BLUP animal model

Ratio of missing sire and dam 5%

Heritability of the trait 10%, 25%, or 40%

Phenotypic variance 1.0

Genome

Number of chromosomes 29

Total length 2333 cM

Number of markers 40000/800000

Marker distribution Evenly spaced

Number of QTL 750

QTL distribution Random

MAF for markers 0.1

MAF for QTL 0.1

Additive allelic effects for markers Neutral

Additive allelic effects for QTL Gamma distribution (shape = 0.40)

Rate of missing marker genotypes 0.01

Rate of marker genotyping error 0.005

Rate of recurrent mutation 0.0001

POP1: population 1; POP2: population 2; EBV: estimated breeding value; BV: breeding value; QTL: quantitative trait loci; MAF: minor allele frequency.

The whole simulation process was repeated 10 times.
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accuracy of EBVs equal to 0.79, 0.90 or 0.94 for herit-
ability of 0.10, 0.25 or 0.40, respectively. For the pur-
pose of estimating the effects of 800 k markers in
POP2, only 480 bulls had more than 50 offspring
(average progeny size = 73) because of the smaller
population size and, therefore, these were selected
from POP2 for the three levels of heritabilities (0.10,
0.25 or 0.40). However, considering that this number
of bulls with highly accurate EBV (n = 480) is realistic
for most beef cattle breeding programs, this scenario
would be useful for assessing the accuracy of genomic
selection using a high density marker panel.
Two other additional TS were created by randomly

selecting 7680 and 1920 animals from POP1 and POP2,
respectively. In this case, the phenotypes were used to
estimate the marker effects, what represented a 4-fold
increase in the TS. Figure 2 depicts these simulated sce-
narios with respect to the TS sizes.
The prediction sets were composed of 8000 and 2000

individuals randomly chosen from the 10th generation of
POP1 and POP2, respectively.

Genetic evaluations
The EBVs of animals were calculated by the standard
animal model:

y = 1μ + Za + e

where y is the vector of trait phenotypes, μ is the
overall mean, Z is an incidence matrix and a is the vec-
tor of animals’ additive genetic effects and e is a vector
of random errors. The variance of y was assumed to be
ZAZ’σ2

a + Iσ2
e where A is the additive genetic relation-

ship matrix and σ 2
e is the residual variance.

A ridge regression model was used to estimate SNP
effects for using in computing DGEBV.

Generation Populations

Step 1: Historical generations(HG)

N = 1000 (Ne= 1000)

N = 1000 (Ne= 1000)

N = 200 (Ne=200)

Step 2: Expanded generations (EG)

N = 200 (Ne=200)

N = 127700 

Step 3: Recent generations

N = 640 males
32000 females

N = 352640 (Ne=272)

0

1000

E_8

E_0

2020

R_0

R_10

N = 160 males 
8000 females

N =   31700 E_6

N = 88160 (Ne=118)

For POP1 (40k): For POP2 (800k):

Equal number of
males and females

Random union of gametes

Random union of gametes
Equal number of
males and females

Constant size

Gradual decrease in size:
Creating initial LD
Mutation-drift equilibrium

Random union of gametes

Random mating
Selection by EBV
Culling by EBV
Replacement:
60% males
20% dams

Figure 1 Schematic representation of the simulation steps.

Table 2 Average Linkage Disequilibrium (r2) between
adjacent SNP markers.

POP1 (40 k) POP2 (800 k)

BTA Length
(Mb)

Number
of
SNP

Average r2

(SD)
Number

of
SNP

Average r2

(SD)

1 146 2712 0.25(0.25) 47539 0.33(0.30)

2 126 2205 0.25(0.25) 38629 0.33(0.30)

3 116 2060 0.24(0.25) 38824 0.31(0.29)

4 111 2011 0.23(0.24) 37889 0.30(0.28)

5 119 1749 0.24(0.24) 32230 0.32(0.30)

6 112 1962 0.26(0.26) 38405 0.32(0.29)

7 101 1687 0.25(0.26) 33209 0.31(0.29)

8 104 1748 0.24(0.25) 33833 0.32(0.30)

9 95 1369 0.26(0.26) 30472 0.31(0.29)

10 96 1413 0.27(0.26) 30513 0.32(0.29)

11 102 1551 0.25(0.25) 33513 0.30(0.28)

12 78 1070 0.24(0.26) 23437 0.31(0.29)

13 83 1249 0.25(0.25) 27385 0.32(0.30)

14 82 1290 0.25(0.25) 27452 0.33(0.30)

15 75 1081 0.27(0.27) 22531 0.33(0.30)

16 73 1150 0.24(0.25) 22891 0.33(0.30)

17 70 1195 0.27(0.26) 23281 0.31(0.29)

18 63 987 0.23(0.23) 19391 0.32(0.29)

19 63 966 0.25(0.26) 20719 0.31(0.29)

20 68 1133 0.24(0.24) 21775 0.35(0.31)

21 63 1032 0.25(0.26) 19720 0.32(0.30)

22 60 946 0.26(0.26) 19212 0.31(0.29)

23 49 772 0.25(0.26) 15958 0.31(0.29)

24 60 901 0.24(0.24) 18087 0.32(0.30)

25 42 749 0.25(0.25) 14861 0.31(0.29)

26 48 840 0.25(0.26) 15999 0.30(0.30)

27 43 670 0.26(0.26) 13563 0.32(0.30)

28 40 704 0.25(0.26) 13407 0.32(0.30)

29 45 806 0.26(0.26) 14420 0.33(0.30)

Overall 2333 38008 0.25(0.26) 749145 0.32(0.30)

The results are for each of the 29 autosomes in the recent generations for
moderate heritability (0.25) and POP1 (40 k) and POP2 (800 k) over 10
replicates. SD: Standard Deviation.
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The model can be written as

y = 1μ + X’β + e

where y is the vector of either trait phenotypes or
EBVs calculated from trait phenotypes and pedigree
data by BLUP, μ is the overall mean, X is the matrix of
marker genotypes for each animal and b is the vector of
marker effects, and e is a vector of random errors.
The marker genotypes of an individual were re-coded

as the number of copies of one of the SNP alleles, i.e., 0,
1 or 2. The ridge regression factor used assuming a
common variance for the marker effects, i.e
σ 2

a /
∑n

i=1 2piqi where n is the number of markers. This
is equivalent to GBLUP method proposed by VanRaden
[15].
The DGEBV was computed for the animals in the pre-

diction set as

â = X’̂β

where X is the matrix of marker genotypes for each
animal in the prediction set and β̂ is the vector of esti-
mated marker effects.
The gebv software [16] was used to estimate marker

effects and DGEBV.
The accuracy of DGEBV was calculated as the correla-

tion between the DGEBV and the true breeding value
and standard errors were computed as the standard
deviation of the accuracies across the 10 replicates,
divided by

√
10 .

The differences between the average accuracies of
DGEBV across scenarios were tested by t-test.

The accuracies of DGEBV were regressed on number
of animals in the TS, using a quadratic regression, to
assess the effect of increasing the TS size.

Linkage Disequilibrium
Linkage Disequilibrium was measured by r2, which is
the squared correlation of the alleles at 2 loci [17]:

r2 =
D2

f(A)f(a)f(B)f(b)

where D = f(AB)-f(A)f(B), and f(AB), f(A), f(a), f(B), f
(b) are observed frequencies of haplotypes AB and of
alleles A, a, B, b, respectively.
It was demonstrated that r2 is a more suitable mea-

sure to estimate LD for biallelic markers, such as SNPs,
because r2 is less sensitive to allelic frequency and sam-
ple size than D’ [18-20].
Due to the computing time required to calculate all

possible pair-wise LD, the LD statistics for all pair-wise
LD were calculated only for BTA 1 and for one repli-
cate. However, the statistics should illustrate well the
decay of simulated LD for the entire genome. The statis-
tics for LD between all adjacent SNP were calculated,
however, for all 29 BTA.

Results and Discussion
Linkage disequilibrium
The average levels of LD between adjacent SNP in the
recent generations of POP1 and POP2 are given in
Table 2. Table 3 presents the average LD for different
distances between all closely located SNP pairs (<1 Mb)
in bins of 0.1 Mb for BTA1.
The overall r2 between adjacent SNP across all auto-

somes for moderate heritability (0.25) in the recent gen-
erations was 0.25 and 0.32 for POP1 (40 k) and POP2
(800 k), respectively (Table 2). This average r2 between
adjacent SNPs for POP1 is similar to the value reported
by [21] for Gyr cattle in Brazil (r2= 0.21), using bulls
genotyped with the Illumina BovineSNP50 chip and
similar to the r2 reported by [12] for a multi-breed herd
genotyped with the Illumina BovineSNP50 chip in
Canada (r2 = 0.21 between markers 30-35 kb apart).
Table 3 shows the average r2 between all SNP pairs

for different distance ranges up to 1 Mb for BTA1. The
highest average estimated r2 was in the range of 0.22-
0.24 for a distance of 0-0.10 Mb. The r2 values
decreased with increasing distance between SNP, but
not as sharply as the decrease reported for Holstein cat-
tle [22]. The trend of decay of LD with the increase in
physical distance was, as expected, exponential for both
POP1 and POP2 (Table 3) in agreement with other pub-
lished studies [21-23].

POP2 (800k SNP)

n_TS with EBV*
used as response to 
estimate the markers
effects

POP1 (40k SNP)

480 960 1920 480

19207680

4fold 4fold

n_TS with phenotype
used as response to 
estimate the markers
effects

Figure 2 Schematic representation of the simulated scenarios.
n_TS: number of bulls in the training set. Accuracies of EBV for all
n_TS were 0.79, 0.90 or 0.94 for heritability = 0.10, 0.25 or 0.40,
respectively. The average progeny size was 73 for all n_TS and
heritability levels.

Brito et al. BMC Genetics 2011, 12:80
http://www.biomedcentral.com/1471-2156/12/80

Page 5 of 10



In the current simulation study, for moderate herit-
ability (0.25) and POP1 (40 k), the % of r2 > 0.30 for
ranges 0-0.1 Mb, 0-0.2 Mb, 0-0.5 Mb and 0-1 Mb was
28%, 25%, 15% and 9%, respectively. These results are
similar to findings of [21] for Gyr cattle, who reported a
% of r2 > 0.30 of 23%, 20%, 14% and 10% for the same
ranges, respectively.
Using the Illumina BovineSNP50 chip, [13] reported r2

of 0.31, 0.22 and 0.15 for Angus and crossbred cattle for
distance ranges between 0-0.03 Mb, 0.03-0.06 Mb and
0.06-0.10 Mb, respectively. The simulated results in the
present study for the distance range 0-0.10 Mb seem in
line with those results reported by [13].

Mckay et al. [24] reported the r2 for eight breeds of cat-
tle varying from 0.15 to 0.20 for a distance range from 0-
0.1 Mb, which is similar to the r2 observed in the simu-
lated data for the same distance range (Table 3).
Table 4 shows the average LD (r2) between adjacent

SNPs and distribution of SNP pairs across different LD
ranges on chromosome 1 in the recent generations for
three heritability levels and POP1 and POP2. The % of
SNP pairs with r2 > 0.30 did not differ across the herit-
abilities, probably because the number of generations
under selection was small (10).
When comparing the marker density, 43% of SNP

pairs showed high LD (r2 > 0.30) in POP2 (800 k) while

Table 3 Average Linkage Disequilibrium (r2) for different distances between closely located SNP pairs.

POP1 (40 k) POP2 (800 k)

h2 Distance
range (Mb)

Pairs r2 (SD) Frequency
r2 > 0.30 (%)

Pairs r2 (SD) Frequency
r2 > 0.30 (%)

0.00-0.10 5049 0.23 (0.24) 1512 (29.95) 4275 0.24 (0.25) 1272 (29.75)

0.10-0.20 5074 0.17 (0.19) 1063 (20.95) 4474 0.18 (0.20) 919 (20.54)

0.20-0.30 6265 0.14 (0.16) 885 (14.13) 4290 0.14 (0.16) 644 (15.01)

0.30-0.40 4938 0.12 (0.14) 510 (10.33) 4358 0.12 (0.14) 493 (11.31)

0.40-0.50 5042 0.10 (0.13) 425 (8.43) 4280 0.10 (0.13) 359 (8.39)

0.10 0.50-0.60 6199 0.09 (0.11) 370 (5.97) 4196 0.09 (0.12) 279 (6.65)

0.60-0.70 4994 0.08 (0.10) 228 (4.57) 4208 0.09 (0.11) 242 (5.75)

0.70-0.80 5975 0.07 (0.09) 187 (3.69) 4268 0.08 (0.10) 190 (4.45)

0.80-0.90 6183 0.07 (0.09) 167 (2.70) 4334 0.07 (0.10) 170 (3.92)

0.90-1.00 4917 0.06 (0.08) 128 (2.60) 4163 0.07 (0.09) 149 (3.58)

Overall 3932610 0.008 (0.03) 6151 (0.16) 3126250 0.01 (0.03) 6062 (0.19)

0.00-0.10 5248 0.22 (0.24) 1495 (28.49) 4494 0.24 (0.25) 1375 (30.60)

0.10-0.20 5224 0.17 (0.19) 1077 (20.62) 4740 0.18 (0.20) 1006 (21.22)

0.20-0.30 6528 0.13 (0.16) 855 (13.10) 4630 0.14 (0.17) 724 (15.64)

0.30-0.40 5147 0.11 (0.14) 461 (8.96) 4560 0.12 (0.14) 488 (10.70)

0.40-0.50 5112 0.09 (0.12) 315 (6.16) 4596 0.11 (0.13) 406 (8.83)

0.25 0.50-0.60 6466 0.08 (0.11) 343 (5.31) 4469 0.10 (0.12) 333 (7.45)

0.60-0.70 5146 0.07 (0.09) 186 (3.61) 4418 0.09 (0.11) 250 (5.66)

0.70-0.80 5227 0.07 (0.09) 139 (2.66) 4502 0.08 (0.10) 226 (5.02)

0.80-0.90 6431 0.06 (0.08) 178 (2.77) 4359 0.08 (0.10) 207 (4.75)

0.90-1.00 5129 0.06 (0.08) 95 (1.85) 4416 0.07 (0.09) 154 (3.49)

Overall 4096952 0.006 (0.03) 5689 (0.14) 3283438 0.011 (0.03) 6543 (0.20)

0.00-0.10 5439 0.22 (0.24) 1517 (27.89) 4191 0.24 (0.24) 1265 (30.18)

0.10-0.20 5468 0.17 (0.19) 1070 (19.57) 4225 0.17 (0.20) 865 (20.47)

0.20-0.30 6801 0.13 (0.16) 886 (13.03) 4263 0.14 (0.16) 621 (14.57)

0.30-0.40 5435 0.11 (0.14) 543 (9.99) 4251 0.12 (0.14) 457 (10.75)

0.40-0.50 5444 0.09 (0.12) 361 (6.63) 4286 0.10 (0.12) 333 (7.77)

0.40 0.50-0.60 6782 0.08 (0.10) 293 (4.32) 4284 0.09 (0.11) 270 (6.30)

0.60-0.70 5377 0.07 (0.09) 176 (3.27) 4103 0.09 (0.11) 232 (5.65)

0.70-0.80 5374 0.07 (0.09) 150 (2.79) 4260 0.08 (0.10) 205 (4.81)

0.80-0.90 6733 0.06 (0.08) 155 (2.30) 4285 0.07 (0.09) 136 (3.17)

0.90-1.00 5342 0.06 (0.07) 75 (1.40) 4199 0.06 (0.08) 104 (2.48)

Overall 4290985 0.006 (0.03) 5710 (0.13) 3072154 0.010 (0.03) 5305 (0.17)

The results are for chromosome 1 in the recent generations for three heritability levels and POP1 (40 k) and POP2 (800 k) for one replicate. For POP2 (800 k), 40
k markers were randomly sampled to represent the 800 k panel.
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33% of the SNP pairs showed high LD in POP1 (40 k)
for moderate heritability (0.25). This difference of ten
points seems not very high, but when it is translated to
number of SNP pairs in high LD in each marker density,
it becomes quite significant and has an impact on the
accuracy of genomic selection, as shown later in the
results.

Accuracy of DGEBV
Overall, the accuracy of DGEBV increased significantly
(p < 0.05) with the increase in the number of bulls in
the TS, heritability of the trait and density of markers
(Table 5). When the EBV was used to estimate the mar-
ker effects in POP1 (40 k), the number of bulls in the
TS, which varied from 480 to 1920, increased the accu-
racy of DGEBV for all three heritability levels.
The DGEBV accuracies were regressed on the number

of bulls in the TS, using a quadratic regression. The
estimated regressions were y = 0.256 + 0.00026x - 5.2e-
8x2 (p < 0.0001; R2 = 0.91), y = 0.220 + 0.00036x - 8.2e-
8x2 (p < 0.0001; R2 = 0.96) and y = 0.228 + 0.00037x -

8.3e-8x2 (p < 0.0001; R2 = 0.97) for heritability = 0.10,
0.25 and 0.40, respectively. Figure 3 depicts the esti-
mated regressions for each heritability level. It is
expected that the accuracy of DGEBV would increase
0.15, 0.20 and 0.21 points for an increase from 480 to
1480 bulls in the TS, and 0.11, 0.12 and 0.14 points
from 920 to 1920 bulls in the TS, for heritability of 0.10,
0.25 and 0.40 respectively. These results do not fully
agree with those from [3], who used Holstein bulls gen-
otyped for the Illumina BovineSNP50 chip and reported
that gains from genomic data increased almost linearly
with number of bulls in the TS. Although it not possible
to extrapolate out of the range of number of bulls in the
TS, the current results suggest that it will be necessary
genotyping a large number of bulls to obtain large gains
with genomic selection, and a plateau might be
expected, limiting the possible gain in accuracy of
DGEBV for the density of markers considered (40 k)
and the extent of LD simulated.
The highest accuracy (0.64) was observed for heritabil-

ity of 0.40 and 1920 bulls in the TS (Table 5). This
value implies that 41% of genetic variance of the trait
was explained by marker effects. These results are simi-
lar to those reported by [8], using data from 2000
Angus bulls. The author reported correlations from 0.5
to 0.7 between conventional EBV and genomic predic-
tions. The author, however, did not report the accuracy
of conventional EBV used to calculate the correlations.
The effect of heritability was not as evident for 480

bulls in the TS, as it was for 960 and 1920 bulls (Table
5), reflecting the fact that the sample size became a
more limiting factor than the heritability level in the TS
of 480 bulls.

Table 4 Average Linkage Disequilibrium (r2) between
adjacent SNPs pairs and distribution across different r2

ranges.

Number of SNP Pairs and (%)

LD (r2) range 0.10 0.25 0.40

POP1 (40 K) 0.00-0.10 975 (36.97) 1040 (38.35) 1060 (37.80)

0.10-0.20 463 (17.56) 468 (17.26) 501 (17.87)

0.20-0.30 305 (11.57) 316 (11.65) 331 (11.80)

0.30-0.40 232 (8.80) 232 (8.55) 248 (8.84)

0.40-0.50 192 (7.28) 195 (7.19) 182 (6.49)

0.50-0.60 126 (4.78) 142 (5.24) 136 (4.85)

0.60-0.70 110 (4.17) 98 (3.61) 107 (3.82)

0.70-0.80 83 (3.15) 78 (2.88) 81 (2.89)

0.80-0.90 62 (2.35) 66 (2.43) 79 (2.82)

0.90-1.00 89 (3.38) 77 (2.84) 79 (2.82)

Average LD
(r2)

0.26 0.25 0.25

POP2 (800
K)

0.00-0.10 13980
(29.54)

14124
(29.71)

14939
(31.03)

0.10-0.20 8034 (16.98) 7443 (15.66) 8072 (16.77)

0.20-0.30 5388 (11.38) 5442 (11.45) 5571 (11.57)

0.30-0.40 4149 (8.77) 4240 (8.92) 4156 (8.63)

0.40-0.50 3250 (6.87) 3418 (7.19) 3321 (6.90)

0.50-0.60 2859 (6.04) 2837 (5.97) 2665 (5.54)

0.60-0.70 2359 (4.98) 2479 (5.21) 2274 (4.72)

0.70-0.80 1928 (4.07) 2162 (4.55) 2121 (4.41)

0.80-0.90 1929 (4.08) 2032 (4.27) 1924 (4.00)

0.90-1.00 3451 (7.29) 3362 (7.07) 3095 (6.43)

Average LD
(r2)

0.33 0.33 0.32

The results are for chromosome 1 in the recent generations for three
heritability levels and POP1 (40 k) and POP2 (800 k) over 10 replicates.

Table 5 Accuracy of direct genomic estimated breeding
value.

POP1(40 k) POP2(800 k)

h2 480 960 1920 7680 480 1920

0.10 - - - 0.44a,a - 0.30b,a

PHE 0.25 - - - 0.56a,b - 0.41b,b

0.40 - - - 0.65a,c - 0.50b,c

0.10 0.37a,a 0.45b,a 0.56c,a - 0.43b,a -

EBV 0.25 0.37a,a 0.49b,b 0.60c,b - 0.46d,ab -

0.40 0.39a,b 0.51b,c 0.64c,c - 0.48d,b -

The accuracies of Direct Genomic Estimated Breeding Value (DGEBV) are for
animals in the prediction set, considering two levels of marker densities,
different numbers of bulls in the training set (TS), three heritability levels, and
two alternate response variables used for calculating the marker effects -
phenotype (PHE) or Estimated Breeding Value (EBV). The accuracy of EBV used
for calculating the marker effects was 0.79, 0.90 or 0.94 for the heritability
0.10, 0.25 or 0.40, respectively, regardless the population and number of bulls
in the TS. The average progeny size was 73 for all TS sizes, except for those
were the phenotypic record was used to estimate the marker effects. The
results are presented as the average over 10 replicates. Different letters
indicate significant differences (p < 0.05) by t-test (the first letter indicates
differences within rows, while the second letter indicates differences within
columns).
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The response variable used for calculating the marker
effects also affected the accuracy of DGEBV. Table 5
shows that when the phenotypes were used as response
variable to estimate marker effects in POP1 (40 k), but
with a 4-fold TS size (n = 7680), the accuracy of
DGEBV was higher than that from using EBVs from
480 bulls for all heritability levels (p < 0.05). However,
when EBVs from 1920 bulls instead of own phenotypes
from 7680 bulls were used to estimate the marker
effects, the accuracy of DGEBV was higher for heritabil-
ities of 0.10 and 0.25 (p < 0.05). Therefore, in this study,
genotyping 4-fold more animals (7680 vs. 1920) and
using own phenotypes instead of EBVs to estimate the
marker effects was not sufficient to increase the accu-
racy of DGEBV for moderate to low heritability traits.
Table 5 also presents the DGEBV accuracy for the 800

k markers scenario. Because of the computing time and
memory requirements, it was possible to simulate only
480 bulls with accurate EBV in the TS. The estimated
accuracies of DGEBV were 0.43, 0.46 and 0.48 for herit-
ability 0.10, 0.25 and 0.40, respectively. The accuracies
of DGEBV in this scenario were higher (p < 0.05) than
those from 40 k SNP markers and 480 bulls in the TS
and similar to those with 40 k SNP markers and 960
bulls in the TS. These results indicate that the higher
level of LD between the 800 k SNP markers would
require 2 times less animals in the TS. Muir [25], using
simulated data, reported that increasing number of mar-
kers had contradictory effects on accuracy of GEBV,
because of co-linearity between the effects of markers.
Then it might be expected that the 800 k SNP scenario

would benefit more from an increase in the TS size and
differences with respect to the accuracy of DGEBV from
the 40 k SNP scenario would increase.
When the number of bulls genotyped with 800 k SNP

markers was 1920 and their phenotypes were used for
estimating marker effects, the accuracy of DGEBV
increased only for heritability 0.40 (p < 0.10), while for
the other two levels of heritability the accuracy
decreased (p < 0.05) compared to accuracies from 480
bulls in the TS and using EBV for estimating marker
effects.
One of the main advantages of using genomic infor-

mation is for traits difficult or expensive to measure for
which traditional evaluations are not usually available or
to obtain accurate EBV early in the animal’s life, when
the own phenotypic information has not been measured
yet. For the latter situation, if we consider that the aver-
age EBV of the parents is the only available information
early in the animal’s life, one could compare the accura-
cies provided by PA and the accuracies of DGEBV.
Since the reliability of PA is a quarter of the sum of reli-
abilities of the EBV of parents, considering the average
reliability of EBV of bulls in the TS reported in this
study and the average reliability of the EBVs of the
dams in the simulated data, the expected accuracies for
PA would be 0.44, 0.53 and 0.58 for heritability = 0.10,
0.25 and 0.40, respectively. These accuracies are smaller
than those accuracies of DGEBV considering 1920 bulls
in the TS for POP1 (40 k) for all heritability levels.
Therefore, the gains in accuracy by using DGEBV would
be of 27%, 13% and 10% compared to accuracy of PA

0.10:  acc=0.256 + 0.00025625*n - 5.2e-8*n2 (R2=91%)
0.25:  acc=0.220 + 0.00035521*n - 8.2e-8*n2 (R2=96%)
0.40:  acc=0.228 + 0.00037188*n - 8.3e-8*n2 (R2=97%)

Figure 3 Accuracy of Direct Genomic Estimated Breeding Value (DGEBV) for 40 k Scenario. DGEBV as a function of number of animals in
the training set, considering three levels of heritability and 40 k markers. The results are presented as the average of 10 replicates.
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for these conditions. If PA is unavailable, then the use of
DGEBV could potentially be even more valuable.
Schenkel et al. [4] reported results from a large geno-

mic prediction validation study in Canada for 44 traits
of dairy cattle, using 6403 bulls in the TS genotyped for
the Illumina BovineSNP50 chip. The genomic predic-
tions showed an increase of reliability for 42 of the 44
traits. For production traits the average gain in reliability
was of 41%, using domestic proofs only and 74%, using
both domestic and MACE proofs. Therefore, as
expected, the gains reported in the current study that
tried to mimic the LD structure that one might expect
in a beef cattle population were lower than those
reported in dairy cattle.
The main issue that has been discussed in most stu-

dies involving genomic selection is whether it will bring
additional benefits, considering the cost of genotyping.
An alternative to reduce the cost of genotyping and,
thus, increase the number of genotyped animals, is the
imputation of genotypes, which would allow genotyped
animals with a less dense SNP panels (e.g., 3 k) to be
imputed to a denser SNP panels (e.g., 50 k), using a
reference population genotyped with the denser SNP
panel [26]. This alternative should be considered pri-
mordial in the projects that involve genomic selection,
mainly in countries where the number of available bulls
with accurate EBV for genotyping is much smaller than
those considered in this study. In this way, with the use
of imputation, more bulls, even those with less accurate
EBV, could be incorporated to the TS. Collaboration
among institutions involved in genomic selection
research and application in beef cattle through the shar-
ing genotypes could also increase the TS sizes, which
would make more feasible the incorporation of genomic
information in breeding programs.

Conclusions
As reported in dairy cattle, the size of the training set
and the extent of linkage disequilibrium have major
impact on the accuracy of direct genomic EBV. Based
on the findings of this simulation study, large training
sets, as well as dense marker panels, aiming to increase
the level of linkage disequilibrium between markers and
QTL, will likely be needed in beef cattle for successful
implementation of genomic selection.
Gains in accuracy by using direct genomic EBV and,

therefore, before the animal having an accurate EBV,
showed more advantage for traits with a moderate to
low heritability.
Increasing the number of animals in the TS by 4-fold

and using their phenotypes to estimate marker effects
was not sufficient to maintain or increase the accuracy
of direct genomic EBV obtained using estimated

breeding values when the trait heritability was lower
than 40% for both marker densities, i.e. 40 k and 800 k
SNPs.
This investigation provides preliminary insights on

expected gains in accuracy by using direct genomic EBV
in beef cattle. Additional simulation studies are
warranted.
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