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ABSTRACT

This work presents a technique for interactive shape deformation of unstructured 3D
models, based on 2D sketches and interactive curve manipulation in 3D. A set of lines
sketched on the image plane over the projection of the model can be combined to create
a skeleton composed by parametric curves, which can be interactively manipulated, thus
deforming the associated surfaces.

Free-form deformations are performed by interactively moving around the curves’
control points. Some other interesting effects, such as twisting and scaling, are obtained
by operating directly over a frame field defined on the curve. An algorithm for mesh local
self-intersection avoidance during model deformation is also presented. This algorithm is
executed at interactive rates as is the whole technique presented in this work.

The presented technique naturally handles both translations and large rotations, as
well as non-orientable and non-manifold surfaces, and meshes comprised of multiple
components. In all cases, the deformation preserves local features.

The use of skeleton curves allows the technique to be implemented using a very intu-
itive interface, and giving the user fine control over the deformation. Skeleton constraints
and local self-intersection avoidance are easily achieved. High-quality results on twist-
ing and bending meshes are also demonstrated, and the results show that the presented
technique is considerably faster than previous approaches for achieving similar results.
Given its relatively low computational cost, this approach can handle meshes composed
by hundreds of thousand vertices at interactive rates.

Keywords: Object deformation, interaction techniques, curves and surfaces, object mod-
eling, non-structured objects.





RESUMO

Uma Técnica para Deformação Interativa de Objetos Não Estruturados

Este trabalho apresenta uma técnica para deformação interativa de objetos 3D não
estruturados que combina o uso de sketches em 2D e manipulação interativa de curvas.
Através de sketches no plano de imagem, o usuário cria curvas paramétricas a serem usa-
das como manipulares para modificar a malha do objeto. Um conjunto de linhas desenha-
das sobre a projeção do modelo pode ser combinado para criar um esqueleto composto de
curvas paramétricas, as quais podem ser interativamente manipuladas, deformando assim
a superfície associada a elas.

Deformações livres são feitas movendo-se interativamente os pontos de controle das
curvas. Alguns outros efeitos interessantes, como torção e escalamento, são obtidos
operando-se diretamente sobre o campo de sistemas de coordenadas criado ao longo da
curva. Um algoritmo para evitar inter-penetrações na malha durante uma sessão de mode-
lagem com a técnica proposta também é apresentado. Esse algoritmo é executado a taxas
interativas assim como toda a técnica apresentada neste trabalho.

A técnica proposta lida naturalmente com translações e grandes rotações, assim como
superfícies não orientáveis, não variedades e malhas compostas de múltiplos componen-
tes. Em todos os casos, a deformação preserva os detalhes locais consistentemente.

O uso de curvas esqueleto permite implementar a técnica utilizando uma interface
bem intuitiva, e provê ao usuário um controle preciso sobre a deformação. Restrições
sobre o esqueleto e deformações sem inter-penetrações são facilmente conseguidos. É
demonstrada grande qualidade em torções e dobras nas malhas e os resultados mostram
que a técnica apresentada é consideravelmente mais rápida que as abordagens anteriores,
obtendo resultados similares. Dado seu relativo baixo custo computacional, esta abor-
dagem pode lidar com malhas compostas por centenas de milhares de vértices a taxas
interativas.

Palavras-chave: deformação de objetos, técnicas de interação, curvas e superfícies, mo-
delagem de objetos, objetos não estruturados.
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1 INTRODUCTION

The realism of computer-generated images depends heavily on the ability to accu-
rately represent geometric details of the objects in the scene. Modeling, however, is a
labor-intensive task that can be significantly accelerated with the use of 3D scanners.
Although 3D scanners provide a fast solution for the problem of sampling geometri-
cally complex shapes, algorithms for surface reconstruction from point clouds tend to
produce non-structured models consisting of a single polygonal mesh. Surface recon-
struction from point clouds has received a lot of attention in the recent years (LAGA;
TAKAHASHI; NAKAJIMA, 2003; OHTAKE et al., 2003; CARR et al., 2001; OHTAKE;
BELYAEV; SEIDEL, 2004a; HOPPE et al., 1992; TOBOR; REUTER; SCHLICK, 2003,
2004; CARR et al., 2003; XIE; MCDONNELL; QIN, 2004; ZHAO; OSHER; FEDKIW,
2001; OHTAKE; BELYAEV; SEIDEL, 2004a; YU, 1999; TERZOPOULOS; METAXAS,
1991; SCLAROFF; PENTLAND, 1991; AMENTA; BERN; KAMVYSSELIS, 1998; DEY;
GIESEN, 2001; DEY; GOSWAMI, 2004; WANG; OLIVEIRA; KAUFMAN, 2005; WANG
et al., 2005; BíSCARO, 2005) and 3D representations of geometrically complex objects
are becoming widely available. However, providing the user the means for changing pose
and animating the resulting representations is key for using these models in applications
such as computer movies and games. The challenge is to provide an intuitive interface and
interactive feedback, while preserving surface details and accommodating user-defined
constraints.

In the recent years, there has been a growing interest in approaches to facilitate the ma-
nipulation of 3D objects in intuitive ways, while assuring interactive rates. A large num-
ber of techniques for performing mesh deformation have been proposed (ALEXA, 2003;
BOTSCH; KOBBELT, 2004; GUSKOV; SWELDENS; SCHRÖDER, 1999; HUANG
et al., 2006; KOBBELT et al., 1998; LIPMAN et al., 2004, 2005; SORKINE et al.,
2004; YU et al., 2004; ZAYER et al., 2005; ZHOU et al., 2005; ZORIN; SCHRÖDER;
SWELDENS, 1997). However, most of these techniques are based on complex formula-
tions, requiring the solution of large linear systems, which becomes prohibitive for large
meshes. In general, these linear systems must be solved for each deformation, which
introduces undesirable delays in interactive modeling sessions. These techniques are ca-
pable of producing very nice results, but none of them seem to simultaneously satisfy
the requirements of interactiveness and interactivity for meshes containing a few hundred
thousand vertices or more.

Recently, Kho and Garland (KHO; GARLAND, 2005) presented a technique for mesh
deformation based on 2D sketches, in which the user specifies a deformation by sketching
two curves on the image plane. The interface is very intuitive and easy to use. However,
if the user does not like the resulting deformation, there is no provision to perform fine
adjustments. Also, noisy sketched curves tend to cause local jaggedness on the model that
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must be smoothed by solving a linear system.
Interaction techniques based on 2D sketches are commonly used to create easy inter-

faces for user input, especially for creation and manipulation of 3D objects (IGARASHI;
MATSUOKA; TANAKA, 1999; IGARASHI; HUGHES, 2001; CHERLIN et al., 2005;
KHO; GARLAND, 2005). Objects acquired with 3D scanners tend to be rich in local
details and global smooth deformations are often useful for this kind of objects because,
in general, the user is not interested in modifying local details when performing a global
deformation.

Global smooth deformations must preserve the local details of the objects in a consis-
tent orientation during user manipulation. Ideally, the technique must achieve interactive
rates and the artist must be capable of experimenting with different object poses during a
modeling session. Based on these observations, some characteristics must be prioritized
when developing a technique for 3D object editing, as listed below:

• Interactivity: The technique must be able to perform at interactive rates, providing
immediate visual feedback;

• Robustness: Given the growing geometric complexity of the 3D objects used in
computer graphics, the ability to deal with such models is essential;

• Locality: Deformations applied to a specific region of the object mesh must be kept
local, not affecting “distant” parts of the mesh;

• Smoothness: Global deformations should be smooth;

• Feature preservation: Object’ local details must be preserved during a global
transformation. The features must be transformed in an intuitive way.

Figure 1.1: Dancing Armadillo. A set of dancing poses created using our model-
deformation technique. The original pose is shown on the left.

In this work, a new interactive technique for geometric shape deformation of non-
structured 3D objects based on the use of 2D sketches is presented. It was inspired by
Kho and Garland’s oversketching metaphor (KHO; GARLAND, 2005), but this new ap-
proach is significantly different from theirs. Parametric curves created from 2D sketches
are used to deform, twist and scale the associated mesh. The resulting deformations are
visually pleasing, provide local control and feature preservation under global deforma-
tions. Our approach also supports some user-defined constraints, such as the specifica-
tion of rigid segments for deforming articulated figures. Moreover, it handles arbitrary
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meshes, including multiple connected component ones, non-orientable and non-manifold
surfaces, and can be implemented around a simple and intuitive user interface. Figure 1.1
shows the Armadillo model in some dancing poses obtained using our technique. Note
the high-frequency details properly preserved on the deformed models.

1.1 Technique overview

Figure 1.2: Technique overview step one. The user oversketches the parts of the model
he/she would like to deform and is able to change camera’s viewpoint (left and center).
Each sketched line becomes a parametric curve in 3D that will be used as a handle for
deforming the model (right). The small white balls represent the curves’ control points.

A modeling session based on the technique presented in this work consists of three
main steps:

• Sketching 2D curves over the 3D model representation (Figure 1.2) to produce a set
of parametric curves in 3D that will be used as handles for deforming the model.
Thus, by interactively modifying a curve, the deformation is automatically trans-
ferred to the parts of the model linked to it. A curve is modified by moving its
control points, which are represented in Figure 1.2 (right) as small white balls;

• Connecting individual curves to form skeletons, as shown in Figure 1.3. Note that
there is no need to have a single skeleton per object. In fact, the user may even want
to keep all curves separate (disconnected) from each other;

• Deforming the model by selecting individual control points and moving them in 3D.
Figure 1.4 illustrates this with two different deformations. The two characters on
the left show the before and after states of a twist on the neck of the Dino model.
The pair of images on the right provides a similar illustration for a deformation
applied to the object’s tail.

Similar to the technique described in (KHO; GARLAND, 2005), the user defines a
deformation by sketching 2D curves on the image plane. Unlike their technique, however,
we filter the user’s noisy 2D sketches by creating a parametric curve in 3D. The creation
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Figure 1.3: Technique overview step two. The user is able to combine parametric curves
in order to create complex skeletons.

of parametric curves allows the user to specify skeletons for the objects and perform
deformation while changing the camera’s viewpoint.

Figure 1.4: Technique overview step three. The user modifies a 3D curve and the tech-
nique deforms the mesh. Different viewpoints can be used.

1.2 Contributions

The main contribution of this work is a new technique for 3D model deformation that
produces visually pleasing results at interactive rates while preserving the surface’s local
features (Chapter 7). The inherent smoothness of parametric curves is transferred to the
induced global deformations, while a set of frames along the curves guarantees that the
local features, expressed with respect to these frames, are preserved under global trans-
formations. As such, the presented approach is related to recent mesh deformation tech-
niques based on multiresolution (BOTSCH; KOBBELT, 2004; KOBBELT et al., 1998),
Laplacian coordinates (ALEXA, 2003; LIPMAN et al., 2004, 2005; SORKINE et al.,
2004) and gradient domain (HUANG et al., 2006; YU et al., 2004; ZAYER et al., 2005;
ZHOU et al., 2005). It will be demonstrated that, despite its conceptual simplicity, the
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proposed approach is quite general, not suffering from some limitations found in most
previous techniques, outperforming them in terms of speed.

1.3 Structure of the thesis

Chapter 2 reviews some related work and dicusses their main characteristics and limi-
tations. Chapter 3 introduces the technique proposed by this work and the steps needed for
perfoming mesh deformation using it are detailed in Chapters 3 to 5. Chapter 6 explores
the use of suggestive contours (DECARLO et al., 2003) as handles for mesh deforma-
tion. Chapter 7 presents the results, with extensive examples of mesh deformation using
the presented technique. Finally, Chapter 8 discusses the conclusions and presents some
ideas for future work.
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2 RELATED WORK

There has been a considerable amount of work on model deformation in recent years.
Free-Form Deformation (FFD) and its variations perform object deformation indirectly by
manipulating a set of control points (handles) that deform the space containing the object.
Such handles can be defined as 3D lattices (SEDERBERG; PARRY, 1986; COQUIL-
LART, 1990; MACCRACKEN; JOY, 1996), a set of curves (CHANG; ROCKWOOD,
1994; SINGH; FIUME, 1998), or points (HSU; HUGHES; KAUFMAN, 1992). By per-
forming the deformation indirectly, FFD techniques lack precise control over the defor-
mation and tend to be somehow unintuitive.

Multiresolution techniques (ZORIN; SCHRÖDER; SWELDENS, 1997; KOBBELT
et al., 1998; GUSKOV; SWELDENS; SCHRÖDER, 1999; BOTSCH; KOBBELT, 2004)
decompose the surface into a smooth base representation (low frequency) and the surface
details (high frequencies). Mesh deformation is applied directly to the base representa-
tion. The resulting mesh is then obtained by adding back the details (as displacement
vectors) to the deformed base representation. Since the details are preserved uniformly
over the entire surface, artifacts tend to become apparent in highly-deformed regions (LIP-
MAN et al., 2005).

Some techniques avoid factoring the base surface representation by directly applying
the deformation to the original mesh. These techniques try to preserve some differential
properties of the mesh, such as discrete Laplacian coordinates (ALEXA, 2003; SORKINE
et al., 2004; LIPMAN et al., 2004, 2005) or gradient functions over the mesh (YU et al.,
2004; ZAYER et al., 2005; ZHOU et al., 2005). All these techniques treat mesh defor-
mation as a minimization problem, where the energy function to be minimized contains
both a detail preservation term and some position constraints (HUANG et al., 2006). The
detail preservation term is nonlinear as it also depends on the position constraints (i.e.,
the mesh coordinates and local frames are defined with respect to a global coordinate
system and the deformation may cause a rotation in these local frames used as reference
for computing the differential properties). For efficiency reasons, the non-linear term
has often been approximated by a linear one using various strategies, such as local lin-
earization (SORKINE et al., 2004), heuristic approximations for the local rotations (LIP-
MAN et al., 2004), propagation of user-defined transformations (YU et al., 2004), and
interpolation from handles (ZAYER et al., 2005; ZHOU et al., 2005). The use of these
approximations, however, introduces artifacts in the orientation of the reconstructed sur-
face details. For instance, the technique described in (SORKINE et al., 2004) has trouble
handling large rotations (LIPMAN et al., 2005). Although gradient-based methods tend
to handle rotations well, they face difficulties when adding translations to a given defor-
mation, as translations preserve the gradient (BOTSCH et al., 2006). As pointed out by
Botsch et al. (BOTSCH et al., 2006), a similar translation insensitivity can be observed
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in the rotation-invariant technique described by Lipman et al. (LIPMAN et al., 2005). A
nice and illustrated characterization of the limitations of these algorithms can be found
in (BOTSCH et al., 2006).

Botsch et al. (BOTSCH et al., 2006) presented a physically-plausible approach for
mesh deformation that uses regions of the mesh as manipulation handles. While the in-
teraction metaphor is very intuitive and the method produces physically plausible defor-
mations, it is also time consuming and, therefore, not suitable for interactive modeling
sessions.

The approach presented in this work avoids the need of performing a non-linear mini-
mization by using a simple, although very effective, solution: the coordinates of the mesh
vertices in the regions of interest are represented in terms of a set of frames associated
with some parametric curve used to control the deformation. Since such frames are in-
stantly updated as the curves are deformed, so are the coordinates of the mesh. This
solution naturally handles both rotations and translations and is computationally efficient.
By using external, as opposed to local frames, our approach provides very general frame-
work for mesh deformation. For instance, it naturally handles surfaces that should pose
some difficulties to differential methods, such as non-orientable surfaces, non-manifolds,
and surfaces composed by multiple connected components.

The use of handle manipulators has been exploited by some researchers (SORKINE
et al., 2004; BOTSCH; KOBBELT, 2004, 2005) as a way to specify mesh deformations.
This kind of modeling metaphor requires simple user interactions and provides a good
interface for producing pleasant results with smooth deformations. However, the use of
handles limits the amount of fine control over the deformation. Although complex defor-
mations can be split into a sequence of simpler ones (SORKINE et al., 2004; BOTSCH;
KOBBELT, 2005), the time required to setup each deformation makes this approach pro-
hibitive for large meshes.

Nealen et al. (2005) proposed a sketch-based interface where the user defines a sketch
curve which is transformed in a suggestive contour line. The deformation is carried on
by adding new constraints to the work of (SORKINE et al., 2004) and thus this technique
is not able to preserve mesh details when large rotations occur. Moreover, the work of
Nealen et al. (NEALEN et al., 2005) focused on mesh local details; the technique pre-
sented in this work, in contrast, deals with both local and global deformations, which are
not possible to perform using the technique proposed in (NEALEN et al., 2005).

In (ZHOU et al., 2005), Zhou et al. propose the creation of a volumetric graph ex-
tended from inside to outside of the mesh and perform the deformation using the Lapla-
cian framework on this graph. This approach is able to preserve the volume of the mesh
and avoid self-intersections. A WIRE (SINGH; FIUME, 1998) is used to deform a se-
quence of vertices that are used as constraints in the Laplacian system. However, as the
graph has more vertices than the mesh, it compromises the overall performance of the
system.

Skeletons are often used for performing mesh deformation (BLOOMENTHAL, 2002;
DU; QIN, 2004; LIEN; KEYSER; AMATO, 2006; YAN; HU; MARTIN, 2006; YOSHIZAWA;
BELYAEV; SEIDEL, 2003; BLOOMENTHAL; LIM, 1999). However, traditional skeleton-
based methods require a labor-intensive task of weight selection to obtain satisfactory
results (YAN; HU; MARTIN, 2006). To avoid this task, one can use the medial axis
of an object mesh, which greatly simplifies the process of mesh deformation. Since the
mesh can be represented with respect to the medial axis by using some distance field, one
can perform the deformation on the medial axis and then reconstruct a deformed shape
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using the distance field (YOSHIZAWA; BELYAEV; SEIDEL, 2003; BLOOMENTHAL;
LIM, 1999; BLOOMENTHAL, 2002; DU; QIN, 2004). Unfortunately, medial axis ex-
traction is a computationally expensive task (LIEN; KEYSER; AMATO, 2006; DU; QIN,
2004; YOSHIZAWA; BELYAEV; SEIDEL, 2003) and its use has not been applied to large
meshes. One way of dealing with this limitation is to use multi-resolution techniques, as
in the work of Yoshizawa et al. (YOSHIZAWA; BELYAEV; SEIDEL, 2003) but this may
lead to a poor representation of details.

Recent work on geometric modeling has focused on ways to perform mesh deforma-
tion while maintaining some specific characteristics of the mesh, like volume preserva-
tion (FUNCK; THEISEL; SEIDEL, 2006; ZHOU et al., 2005; HUANG et al., 2006). The
technique presented in this thesis does not handle volume preservation which is beyond
the scope of this work. Some aspects of these techniques, however, will be discussed and
used for comparison with the presented approach in Chapter 7.
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3 DEFORMING NON-STRUCTURED 3D MODELS

This chapter introduces the main steps required for the deformation technique pre-
sented in this work, which is based on 2D user sketches and curve manipulation in 3D.
User sketches are used to define curves and associate regions of the mesh to them so that
these regions can be deformed as the user interacts with the curves. The user can also
define skeletons by linking individual curves. Such skeletons give the user more con-
trol over a deformation and provides information about the global structure of the object.
Twisting and scaling operations can be performed by operating directly on a frame field
defined on the curves. In order to deform non-structured models at interactive rates, all
the operations required by the technique must be performed as efficiently as possible.

The presented technique is composed by three main steps:

• Segment the mesh into regions. This step is responsible for recognizing the parts
of the mesh under the user sketches, which constitute the regions of interest (ROI)
to be deformed. This step is detailed in Section 3.1;

• Construct parametric curves and skeletons to be used as handles. Parametric
curves are created from the user sketches, and used as handles for mesh deforma-
tion. Several parametric curves can be combined to form skeletons for the objects.
This step is explained in Chapter 4;

• Transfer the deformation from curves to meshes. When the user manipulates the
handles, the deformation performed on parametric curves are directly transferred to
the mesh. This step is detailed in Chapter 5.

The rest of this chapter explains the region segmentation step.

3.1 Region Segmentation

This Section explains how the region segmentation is performed in order to assure
interactive response even with meshes in the order of hundreds of thousands vertices.
As this segmentation step is performed each time the user sketches on the screen (to
create a new handle curve), it must be done efficiently to assure interactive response to
the whole system. The use of 2D sketches is often adopted to create intuitive interfaces
(IGARASHI; MATSUOKA; TANAKA, 1999; IGARASHI; HUGHES, 2001; CHERLIN
et al., 2005; KHO; GARLAND, 2005). The technique presented in this work make use of
this approach in a similar way as done by Kho and Garland (KHO; GARLAND, 2005).

Firstly, each sketched curve is filtered in order to remove the noise from the user input
(Section 3.1.1). Points from the filtered sketch are then projected into the object surface
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and a region growing algorithm is applied to find the region of the mesh under the user
sketch (Section 3.1.2). The remainder of the mesh is also identified by a region-growing
algorithm (Section 3.1.3).

Mesh vertices in the region under the user sketch will be directly transformed by a
parametric curve (Chapter 5 explains how the deformation is done). In order to guarantee
the continuity between the regions as the user interacts with a curve, two approaches
can be considered. First, if the curve is not connected to any other curve, the regions
associated to the extremities of the curve are rigidly transformed. Alternatively, the user
can link several curves in order to create a skeleton to the object (Section 4.3). In this
case, a blending function is used to smoothly stop the deformation between each curve
(see Section 5.4 too see how this is done).

3.1.1 Pre-filtering the Sketch

A typical user sketch is defined by a set of connected points on the 2D image plane,
captured from mouse movements (Figure 3.1 left). The noise present in a sketch usually
results from lack of precision from the input device or user abilities. So, a filtering al-
gorithm is executed on the set of input points in order remove the undesired noise. This
situation is illustrated in Figure 3.1.

Figure 3.1: Smooth 2D sketch. Left: A typical user sketch, composed by a set of con-
nected points. Center: The same sketch after the filtering algorithm. Right: Cutting planes
created at the start and at the end of the sketch.

This filtering process is the same done in the work of Kho and Garland (KHO; GAR-
LAND, 2005): the idea is to just take into account the segments of the sketch that rep-
resents a minimum movement δ of the mouse. Note that this process is done on the 2D
space, so δ is measured in pixels. A pseudo-code for the algorithm used to filter the sketch
is presented in Algorithm 1.
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Algorithm 1 Filtering of 2D user sketch
Require: points {List of points that define the sketch}
Require: δ {Minimum length of a sketch segment}

1:
2: p0← points[0]
3: newPoints.add(p0) {Add point 0 as the start of the filtered sketch}
4:
5: for each point p from points, starting at points[1] do
6: added← 1
7: pointSum← p
8:
9: p1← p

10: sz← distance(p0,p1)
11:
12: for each point p from points not already visited do
13: if sz >= δ then
14: break
15: end if
16: added ++
17: pointSum← pointSum+ p
18: p1← pointSum/added
19: sz← distance(p0,p1)
20: end for
21:
22: newPoints.add(p1)
23: p0← p1
24:
25: end for

Using this approach, only segments with a minimum length δ are considered. A
smooth version of the noisy user sketch in the left image of Figure 3.1 is shown at the
center image of the same figure.

3.1.2 Region Affected by Sketch

Using the filtered sketch (center image of Figure 3.1), the first and the last points of
the sketch (i.e. p0 and p5) are projected onto the object mesh, and two cutting planes are
defined in the 3D space, as shown in the right image of Figure 3.1.

Let d be the camera view direction and let p0 be the position of the mouse where the
sketch started. A 3D ray is created by using p0 and d and the first intersection point of this
ray with the mesh is calculated using the approach described in (MOLLER; TRUMBORE,
1997). In the example of Figure 3.2, the intersection is shown as a small yellow triangular
region on the left image. This procedure is also used to find the point on the mesh where
the sketch has finished (i.e. p5 on Figure 3.1). This leads to two intersection points on the
mesh, which we call i0 and i1.

The intersection points and the directions of the first and the last sketch segment, used
as normals, define two cutting planes for limiting the region of interest of the deformation.
In Figure 3.1, plane plane0 is defined at origin i0 and has normal p1− p0; plane plane1’s
origin is at i1 and has normal p4− p5. In the example of Figure 3.2, the two cutting planes
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Figure 3.2: Mesh segmentation based on user sketch. Left: User sketch over the 3D
model. Center: Two cutting planes (indicated by the blue lines) are created at the start
and at the end of the sketch by calculating its intersection points from camera’s viewpoint
on the mesh and using the direction of the sketch segments as orientation. Right: Mesh
segmentation. The colors represent the parameterization of the mesh according to the
curve. Red and blue regions represent the start and the end of the curve while the in-
between region is associated to the curve.

are shown as blue lines in the center image.
To find the vertices between plane0 and plane1, one has to evaluate the planes’ im-

plicit equations using the coordinates of the mesh vertices. If the signs of both evaluations
are greater than zero the vertex is classified as being in the ROI (the region under the user
sketch). In the example of Figure 3.2, these vertices are shown in yellow on the center
image. A curve will be created using the user sketch (see Chapter 4), and these vertices
will be directly transformed by this curve as the user interacts with it. The control points
of the curve for the example of Figure 3.2 are shown on the right image as white spheres.

Figure 3.3: Mesh segmentation when two parts of the object project to the same portion
of the image plane. Left: Two legs of the Horse model project to the same portion of the
image plane. Center: The mesh segmentation algorithm can deal with such cases. Right:
The same scene seen from a different viewpoint after region segmentation. Note that just
the leg that was nearest to the view plane has been selected and used to create the curve.

Note that, by performing region segmentation based only on the cutting planes, parts
of the object that project to the same portion of the image plane could be selected, even if
they are disconnected within the region of interest. This case can be seen in the left image
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of Figure 3.3, where the two legs of the horse model would be merged into a single region.
To avoid this problem, a region-growing algorithm guided by the mesh topology is used.
Since the legs of the horse are not topologically connected inside the region defined by
the two cutting planes, only the leg closer to the camera is selected (as shown on the right
image of Figure 3.3).

Algorithm 2 Region-growing algorithm to find the vertices affected by the user sketch
Require: t0 {Triangle where i0 lie}
Require: t1 {Triangle where i1 lie}
Require: plane0 {First plane created from the user sketch}
Require: plane1 {Last plane created from the user sketch}

1: {Create a stack trianglesToExaminate to store the triangles where the test of planes’
equations will be done}

2:
3: trianglesToExaminate.push(t0) {Push t0 into the stack}
4: trianglesToExaminate.push(t1) {Push t1 into the stack}
5:
6: while trianglesToExaminate.size() > 0 do
7: currentTriangle← trianglesToExaminate.pop()
8:
9: for each vertex v of the currentTriangle do

10: if plane0(v) >= 0 and plane1(v) >= 0 then
11: Classify v as affected by the curve
12:
13: for each triangle t that uses vertex v do
14: if t not in trianglesToExaminate and t not already tested then
15: trianglesToExaminate.push(t)
16: end if
17: end for
18:
19: end if
20: end for
21: {Identify boundaries to be returned}
22: if there is a vertex from currentTriangle classified and at least one not classified

then
23: for each unclassified vertex v do
24: if plane0(v) < 0 then
25: Add vertex v as associated to plane0 to the list of boundary vertices
26: else
27: Add vertex v as associated to plane1 to the list of boundary vertices
28: end if
29: end for
30: end if
31:
32: end while
33: return List of boundary vertices and associated planes

Instead of testing all the vertices of the mesh against the planes’ equations, only those
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that are connected within the region of interest are tested. Consider plane0 and plane1 the
cutting planes created at points i0 and i1, respectively, as depicted in Figure 3.1. Algorithm
2 finds the vertices of the mesh within the region defined by plane0 and plane1 avoiding
the problem of classifying different parts of the object that project to the same portion of
the image plane as shown in Figure 3.3. Note, however, that when dealing with meshes
composed by multiple connected components, all vertices must be tested since although
they may not be connected by the mesh topology within the region of interest they must
be deformed as a single region.

3.1.3 Regions Not Affected by Sketch

The set of vertices around a tight neighborhood of the two cutting planes define the
boundaries of the region of interest. Algorithm 2 identifies the vertices that will be directly
affected by the parametric curve, i.e. the vertices of the mesh that were under the user
sketch. The remaining vertices must be classified in order to associate them to the start or
to the end of the curve. This classification is needed to keep continuity of the mesh during
the deformations.

Figure 3.4: The effect of not providing a smooth transition between the regions affected
by the curve and regions not affected by the curve. Left: Unmodified model. Right:
The user interacts with the curve and only the vertices associated to it are transformed,
introducing some discontinuity artifacts.

As the user interacts with the curve, the vertices of the segmented region of mesh
are transformed. In order to avoid the occurrence of some discontinuity artifacts, the
remainder of the mesh must also be transformed. Figure 3.4 illustrates this problem. To
avoid this, a blending function should be used to smooth the transition between the regions
(Section 5.4 presents details of the blending function used for this work).

The vertices that define a boundary and their respective cutting planes, are returned
by Algorithm 2. Starting from them, another region-growing algorithm is performed to
associate the remaining vertices to the start or to the end of the curve. We follow the mesh
topology adding the vertices not in the ROI to the region created by each cutting plane.
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The region-growing algorithm used in this step is simpler since it just needs to propagate
the association of planes along the mesh. A pseudo-code for it is shown in Algorithm 3.

Algorithm 3 Region-growing algorithm to classify the remaining vertices
Require: boundaries {List of boundary vertices and associated planes}

1: {Create a stack trianglesToExaminate to store the triangles to examinate}
2: {Create a stack associatedPlanes to store the planes associated to

trianglesToExaminate}
3:
4: {Push into trianglesToExaminate the triangles that share any of the vertices in

boundaries}
5: associatedPlanes.push(boundaries.planes) {Push associated planes into the stack}
6:
7: while trianglesToExaminate.size() > 0 do
8: currentTriangle← trianglesToExaminate.pop()
9: currentPlane← associatedPlanes.pop()

10:
11: for each vertex v of the currentTriangle do
12: if v is not already classified then
13: Associate v to currentPlane
14:
15: for each triangle t that uses vertex v do
16: if t not in trianglesToExaminate and t not already tested then
17: trianglesToExaminate.push(t)
18: associatedPlanes.push(currentPlane)
19: end if
20: end for
21:
22: end if
23: end for
24:
25: end while

In Figure 3.2, the first region-growing algorithm (Algorithm 2) is responsible for find-
ing the vertices drawn using a predominant green color scale, which stops at the cutting
planes. The second region-growing procedure (Algorithm 3) is responsible for creating
the blue and red regions. This is done by following the mesh topology and adding any
unclassified vertex to the region defined by the vertices on the outer sides of the cutting
planes.

The above strategy will segment the object mesh in one region affected by the curve
and two other regions, each one associated to one of the cutting planes (Figure 3.2). This
association is used to define which parts of the mesh are to be modified by the parametric
curve and which parts are to be rigidly modified by the orientation of the start or the end
of the curve. This can be seen in Figure 3.2 where three regions were segmented: the
upper part of the Horse leg (shown in red), the region of the mesh actually affected by the
curve (color scale with predominant green) and the remainder of the leg (shown in blue).

Note that a rigid transformation is done only when the curve is not connected to other
curves. As skeletons can be created by linking individual curves (see Section 4.3), a
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blending function (explained in Section 5.4) is used to smooth the transition between
regions controlled by different curves.

3.2 Digest

This chapter introduced the steps of the non-structured object deformation technique
presented in this work and detailed the region segmentation step. When the user sketches
over the image plane, a filtering algorithm is executed to reduce the noise that may be
present in the user input. Using the filtered sketch, the mesh is segmented in three regions,
one of them defining the region of interest (ROI) for deformation. Two region-growing
algorithms, guided by the mesh topology, allow this segmentation to be performed effi-
ciently.

The filtered sketch will be used to create parametric curves and skeletons in the next
chapter. The segmented mesh regions will be deformed as the user interacts with these
parametric curves.
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4 CONSTRUCTING PARAMETRIC CURVES AND SKELE-
TONS FROM SKETCHES

In this work, object deformation can be performed using two types of curves: surface
curves and skeleton curves, that differ from each other based on the place where they
are instantiated. Surface curves (Section 4.1) are positioned on the object surface. They
are useful for deforming thick regions of an object because they can stay visible during
deformations. Skeleton curves (Section 4.2) are placed inside the mesh and are useful to
represent global structures for objects. This chapter explains how these curves are created
from 2D user sketches and discusses the differences between them.

Individual curves can also be linked in order to create skeletons for the models (Sec-
tion 4.3). The use of skeletons provides an alternative way of guaranteeing the continuity
of the mesh during deformations. Instead of rigidly transforming the regions of the mesh
not in the ROI, a blending function is used to transition the deformation of each curve
restricted to its ROI.

4.1 Surface Curve

When the user draws a sketch on the image plane the following steps are performed
to produce a curve on the object’s surface:

• Filter the 2D sketch to smooth the noisy user input (Section 3.1.1);

• Get equally-spaced points in the sketched curve and project them on the mesh;

• Use the projected points as control points for creating a parametric curve.

Firstly, the sketch is filtered as described in Section 3.1.1. A parameterization is used
to get equally-spaced points from the filtered sketch. This parameterization is based on
the length of each segment and a pseudo-code for it is given by Algorithm 4.
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Algorithm 4 Parameterizing 2D sketches
Require: points {List of points from the pre-filtered sketch}

1:
2: distances[0]← 0
3: totalDistance← 0
4: for i← 1 to points.size() do
5: distances[i]← distance(points[i−1].position,points[i].position)
6: totalDistance← totalDistance+distances[i]
7: end for
8:
9: accumulatedDistance← 0

10: for i← 0 to points.size() do
11: accumulatedDistance← accumulatedDistance+distances[i]
12: points[i].t← accumulatedDistance/totalDistance
13: end for

Let n be the number of points the user wants to use to approximate the sketch. To
retrieve n equally-spaced points from the sketch, one has to linearly discretize the inter-
val [0-1] with n values and use the Algorithm 5, which returns the desired points. Each
equally-spaced point is projected onto the mesh using the method described in (MOLLER;
TRUMBORE, 1997). The resulting points on the mesh are used to create an interpolating
parametric curve. Note that the first and the last points of the sketch can be used with-
out this sketch parameterization step because their projected positions on the mesh were
already calculated, as described in Section 3.1.2.

Algorithm 5 Getting equally-spaced points from the sketch
Require: points {List of points from the pre-filtered sketch}
Require: t {Parameter t at which to return a point}

1:
2: for i← 0 to points.size()−1 do
3:
4: if t >= points[i].t and t <= points[i+1].t then
5:
6: localt← (t− points[i].t)/(points[i+1].t− points[i].t)
7:
8: return points[i].position∗ (1− localt)+ points[i+1].position∗ localt)
9: end if

10:
11: end for
12:

The proposed approach to parameterize the sketch works well in practice, leading to
an effective way to approximate the user sketch with few control points in the paramet-
ric curve. Figure 4.1 shows a few examples of user sketched curves and the respective
approximating parametric curves. Note that the control points are equally-spaced in the
parameter space and the resulting splines approximate well the user sketches.
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Figure 4.1: Sketch discretization. Left: examples of typical user sketched curves. Right:
Parametric curves generated from the corresponding user sketches. Note that the control
points are equally-spaced in parameter space and the resulting splines approximate well
the 2D sketched curves.

4.2 Skeleton Curve

Skeleton curves can represent the structure of an object and be used to globally deform
it. To create a skeleton curve, a surface curve is first created as described in Section 4.1.
Thus, let k be the number of control points of a surface curve C. A skeleton curve S is
obtained from C using the following steps:

1. Create k− 1 planes perpendicular to C, each one halfway two consecutive control
points. The planes are obtained by evaluating C and its first derivative at corre-
sponding parameter values;

2. For each of the k subspaces delimited by the k−1 planes, compute the centroid of
the vertices of the region of interest falling in that subspace;

3. Use these centroids as the control points for a Catmull-Rom skeleton curve.

Note that the test needed to find the vertices between each pair of planes is very effi-
cient because one just needs to evaluate the vertex position in the equations of the planes,
which reduces to two dot products. Note that only the vertices previously segmented (see
Section 3.1) are tested. This is to prevent the centroid calculation to take into account
separate regions of the object that project to the same portion of the image plane and also
helps to improve the overall performance of the technique. Figure 4.2 shows a surface
curve (left) and the distribution of mesh vertices for the planes created between each pair
of control points (right). The light blue regions are not taken into account because they
were not under the original user sketch.

Figure 4.3 shows the skeleton curve created using the surface curve showed in Figure
4.2. Note that the control points are inside the object mesh and the curve is a reasonable
approximation for the skeleton of that region of the mesh (Figure 4.3 right). The control
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Figure 4.2: Skeleton curve creation step one. Left: Surface curve. Right: Planes are
created between each pair of control points in order to create a skeleton curve. The color
scale shows the distribution of the mesh vertices between each pair of planes.

Figure 4.3: Skeleton curve creation step two. Left: Control points are created by calculat-
ing the centroid of the vertices between each pair of planes. Right: The created skeleton
curve viewed using wireframe rendering. Note that the curve is inside the object mesh.

points were calculated as the centroid of their respective colored subspaces. Note that
the first and last subspaces are half the size of the in-between subspaces. This occurs
because they comprise just one half, while other subspaces comprises two halves of the
space between each control point of the surface curve.

4.3 Creating a Structured Skeleton

Several parametric curves can be linked by simply clicking on their control points.
Curves can also be merged using the same interaction approach. This leads to a sim-
ple but effective interface for skeleton creation. The skeleton of Figure 4.4 was created
in a few seconds using this technique. The creation of skeletons is useful because they
represent the global “structure” of an object. For this reason they are often used to inter-
polate between different poses in an animating system. Moreover, it provides the user the
possibility to edit only the skeleton without even visualizing the object mesh.
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Figure 4.4: Skeleton creation. Left: Original model. Right: A skeleton created using
the technique presented in this work. Several parametric curves are created from 2D user
sketches and then linked by simply clicking on control points.

When creating a skeleton, the user is free to mix surface curves and skeleton curves,
choosing the one he or she judges more appropriate for each part of the mesh. The curves’
effect remain local to the region where the original sketch was done and a blending func-
tion is used to keep the mesh continuity along parts of the mesh controlled by different
curves (see Section 5.4).

The use of skeletons helps an artist to concentrate on the deformations he or she wants
to perform. After the creation of the skeleton, the mesh can be interactively modified.
This explains why skeletons are often used for other applications such as deformation or
animation retargeting.

In this work, the use of skeletons introduces a new treatment for the vertices not in the
ROI. Using the mesh topology, a blending function is used to keep the mesh continuity
by smoothly transitioning the deformation from inside the ROI to outside it.

4.4 Digest

This chapter has explained how to create parametric curves from 2D sketches. The
process of creating surface curves and skeleton curves was detailed. Surface curves are
created by projecting equally-spaced points from the filtered sketch and using their pro-
jections as curves’ control points. Skeleton curves are created from surface curves by
computing the centroids of the vertices falling between each pair of surface curves’ con-
trol points.

Skeletons are created by linking individual curves and provide good representations
for the global structures of objects. By creating skeletons, a user can modify the object
while treating its parts individually.

Next chapter explains how the curves and skeletons created in this chapter can be used
as handles to perform mesh deformation.
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5 MESH DEFORMATION

The use of parametric curves as manipulation handles provide an intuitive interface
for specifying deformations. A lot of information about a deformation can be given in
simple ways, either by moving the curve control points or by specifying parameters on
them (see Section 5.3). Moreover, the use of a 3D curve instead of another 2D sketch, like
was done by Kho and Garland (KHO; GARLAND, 2005), allows the user to make fine
adjustments to the deformations and adds the possibility to change the camera’s viewpoint
during an editing session.

This chapter explains how the deformation of the curve can be transferred into mesh
deformations in an easy and efficient way. Briefly, local frames are created along the
curve and the coordinates of the mesh vertices are represented with respect to these lo-
cal frames. As the user modifies the curve, the local frames are modified causing the
associated surfaces to be deformed.

The simplicity of the formulation adopted by the presented technique allows the con-
struction of an efficient algorithm to avoid local self-intersections of the mesh during
deformations.

5.1 Defining Local Frames

In order to transfer the deformation of a parametric curve to the mesh, the curve is
instrumented with a set of local frames, whose orientation must be kept consistent with
the other frames along the curve all the time. This consistency is important because the set
of local frames define the mesh of the object and any lack of consistency on them would be
directly transferred to the mesh. Frenet frames (CARMO, 1976) are quite intuitive and can
be computed analytically. Unfortunately, Frenet frames are not defined at inflection points
or along straight segments. Moreover, at inflection points, Frenet frames can undergo
some violent twists (BLOOMENTHAL, 1990).

In order to avoid these problems, local frames are propagated along the curve using
the following strategy: Let ~u0 be the curve’s unit tangent vector at parameter value t = 0
(point p0). The second vector (~v0) of the frame at t = 0 is obtained by projecting ~u0 onto
the world XZ plane and then normalizing and rotating the projection ~u0p by 90 degrees
(Figure 5.1). The third vector, ~w0, is obtained as the cross product ~u0×~v0. If ~u0 coincides
with the vector (0,1,0) in the world coordinate system, this procedure would fail because
the projection ~u0p is null. To avoid this problem, the components of ~u0 are inspected
and the projection is performed on a world plane that would not lead to a null vector, by
appropriately choosing one of the planes XY or XZ. This strategy is shown in Algorithm
6. Note that there is no need to use the YZ plane because there is no case in the 3D space
where a vector has null projection on both XY and XZ planes.
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Figure 5.1: The creation of a local frame at t = 0. The vector ~u0 is the curve’s unit tangent
vector at t = 0. ~v0 is obtained by normalizing and rotating by 90 degrees the projection
~u0p of ~u0 onto the XZ plane. ~w0 = ~u0×~v0.

Algorithm 6 Finding which world plane is to be used for projection
Require: y {y vector of the local frame to be created}

1: xc← x component of y
2: yc← y component of y
3:
4: if |xc| ≥ |yc| then
5: return world XZ plane
6: else
7: return world XY plane
8: end if

Once a frame has been created at t = 0, one can vary t in the interval [0,1] to define
new local frames along the curve. The curve position pi and unit tangent vector ~ui at t = ti
define an implicit plane at pi. We then project the vector ~vi−1 (from the previous frame)
onto this new plane, obtaining ~vi, after the projection has been normalized. ~wi is again
obtained as ~wi = ~ui×~vi. An additional operation consists in switching the sign of ~wi in
case the angle between ~wi and ~wi−1 is bigger than 90 degrees.

This approach leads to a set of local frames along the curve that minimizes the oc-
currence of undesirable twists. Figure 5.2 compares the results obtained by analytically
computing a Frenet frame field along the parametric curve (top) with the results produced
by the presented approach (bottom). Note that the results obtained by the propagation
algorithm are much smoother, avoiding discontinuities in the field as a result of torsion.
Let dc and ddc be the first and second derivatives of the spline curve, respectively. The
Frenet frames shown in Figure 5.2 were computed using Equations (5.1)-(5.3), where ×
is the cross product operator.

x(t) =
ddc(t)
|ddc(t)|

(5.1)

y(t) =
dc(t)
|dc(t)|

(5.2)
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Figure 5.2: The creation of a frame field along the curve. Top: Frenet frame. Bottom: The
approach presented in this work. Note that the frames do not suffer from sudden rotations
as in the case of Frenet frames.

z(t) =
x× y
|x× y|

(5.3)

5.2 Associating a Curve to a Mesh

Let v be a mesh vertex. Given the set of planes along the reference curve, one can
associate each mesh vertex v to the pair of planes delimiting the space region where v lies.
The color scale of the mesh in Figure 3.2 represents the plane association distribution.
The identification of these regions can be performed very efficiently since one needs to
test only the vertices of the mesh that were previously classified as being affected by the
curve (Section 3.1.2).

Figure 5.3: Plane parameterization. Left: The vertex vm is associated to planes πk−1 and
πk. During deformations, the position of vertex vm is maintained in the same relative po-
sition along ~uk−1 with respect to its projections vmp and vmn on πk−1 and πk, respectively.
Right: The same configuration in an orthographic view.
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Given the set of frames along a reference curve C, one can represent the coordinates
of each vertex in the region of interest of C in terms of its frames. Thus, let πk−1 and
πk be the planes spanned by the pairs of frame vectors (~vk−1, ~wk−1) and (~vk, ~wk), respec-
tively (Figure 5.3). All vertices v j delimited by πk−1 and πk will have their coordinates
expressed with respect to the frame Fk−1 = (~uk−1,~vk−1, ~wk−1).

Let (αm,βm,γm) be the coordinates of vertex vm expressed in terms of frame Fk−1
(i.e., vm = pk−1 + αm~uk−1 + βm~vk−1 + γm~wk−1). Also let vmp and vmn be the projections
of vm onto the planes πk−1 and πk, respectively. Such projections are obtained as the
intersections of the line defined by vm and the vector ~uk−1 with the planes πk−1 and πk,
respectively. We then associate to vm the ratio rm as defined by Equation 5.4, computed
based on the undeformed curve (Figure 5.3 right). dist is the Euclidean distance between
two points in 3D. This ratio will be preserved during deformations.

rm = dist(vm,vmp)/dist(vmn,vmp) (5.4)

Figure 5.4: Creation of the modified set of local frames. Left: a parametric curve C with
the initial local frame defined as axes ~u0,~v0 and ~w0. Center: The user interaction defines
a modified curve C′, and a new initial local frame defined by axes ~u′0, ~v′0 and ~w′0 must be
computed. Right: ~u′0 is created from the spline first derivative. The ~v′0 and ~w′0 axes are
created by rotating ~v0 and ~w0 by ω degrees around the r axis defined by a cross product
of ~u0 and ~u′0.

When the user modifies a parametric curve C, its set of frames are recomputed for the
same values of the parameter t. Let C′ be such a deformed curve. The first frame of C′

cannot be created using the same approach used for C, because C′’s tangent vector at t = 0
could require a different world plane for projection, (see Section 5.1), causing the sets of
frames from C and C′ to completely diverge. Thus, let (~u0,~v0,~w0) be the coordinate frame
of C at t = 0 and let ~u′0 be the unit tangent vector of C′ at t = 0. Also, let ω be the angle
between the vectors ~u0 and ~u′0 and let ~r = ~u0×~u′0. Thus, the vectors ~v′0 and ~w′0 are
obtained from ~v0 and ~w0, respectively, by simply rotating them around ~r by ω degrees.
Once the first frame of C′ has been defined, its remaining frames are obtained using the
same procedure defined for the subsequent frames of the original curve.

Note that, as the curve differs from the initial curve, the planes and coordinate systems
will also differ. Using this updated set of coordinate systems, modified positions for the
vertices can be retrieved by positioning them in the same relative position on the new
coordinate system. Given the set of frames of curve C′, the new 3D coordinates of vm
after deformation could be computed simply as v′m = p′k−1 +αm~u′k−1 +βm~v′k−1 +γm~wk−1,
where p′k−1 is the point on C′ for which t = tk−1. This, however, would not take into
account possible stretching applied to the curve when control points are moved apart. In
order to transfer the stretching to the mesh, we scale v′m’s component along the u′0 direction
according the current distance between π ′k−1 and π ′k times the ratio rm (Equation 5.4).
Thus, let v′mp and v′mn be the projections of the deformed vertex onto the planes π ′k−1 and
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π ′k, respectively. v′mp is given by Equation 5.5. v′mn is found by calculating the intersection
of the line defined by v′mp and ~u′k−1 with π ′k (Figure 5.1). The new 3D coordinates of
vm are then recomputed as v′m, given by Equation 5.6. This scaling factor also plays
an important role in the self-intersection avoidance algorithm that will be presented in
Section 5.5.

v′mp = p′k−1 +βm~v′k−1 + γm~wk−1 (5.5)

v′m = v′mp +αm(rm)dist(v′mp,v
′
mn)~u′k−1 (5.6)

Figure 5.5: Mesh artifacts due to discretization. Left: Mesh artifacts created by using
few (20) frames along the curve. Center: A similar deformation using the same number
of frames but keeping the same distance ratio. The use of the scaling factor results in
a smoother deformation. Right: The use of several planes (200) and the scaling factor
results in a very smooth deformation while still achieving interactive rates.

The number of local coordinate systems used along the curve is very important to
guarantee the smoothness of the deformation. If very few planes are used, the curve be-
havior may not transfer well to the deformed mesh. The scaling factor is helpful to avoid
the creation of discontinuity features along the mesh deformation due to discretization.
However, as the operations described above can be computed efficiently, several local
frames can be used while still achieving interactive rates. Figure 5.5 shows the effect of
using few local frames (left), the smoother version achieved by using the same number of
local frames but using the scaling factor (center) and the smooth deformation achieved by
using more coordinate systems.

In fact, the number of coordinate systems could be calculated taking into account the
size of the triangles in the region of interest. Note that the curve is discretized by a set of
frames. The vertices falling between each pair of frames are deformed according to one
frame and the relation to the other one is maintained by using the scaling factor. Opti-
mally, each vertex should lie in a plane spanned by a local frame. This would guarantee
all the vertices to be transformed by using only the curve, and thus avoid possible arti-
facts due to the discretization used. However, in all examples shown in this work (except
for the left and center images of Figure 5.5), 200 coordinate systems were used for each
curve, which provides very smooth deformations even for the very small triangles found
in large meshes.

5.3 Twisting and Scaling

Some interesting effects, such as twisting and scaling, are obtained by operating di-
rectly over the frame field of the curve. For instance, by interpolating, along a segment
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of C, a local rotation of the frames vectors ~vi and ~wi around ~ui produces some twisting
effect. Non-uniform and localized scaling effects can be achieved by independently scal-
ing the vectors that form the frames. All these operations can be combined to create more
complex deformations.

The user can interactively specify rotation angles for the local coordinate systems at
each curve control point. The angle specified at a control point is linearly distributed
along the curve to the neighbors control points. The user can also select more neighbors
control points to specify an area of influence for the rotation. The rotation angle is then
linearly interpolated along the curve to the selected neighbors control points, resulting in
a twist effect. Scale factors can also be specified by the same interaction approach.

(a) (b) (c) (d)

Figure 5.6: Twisting and bending operations performed with our technique. A reference
block (a). Twisted block obtained by interpolating a rotation along the curve’s frame
field (b). (c) Bent block obtained by moving the curve’s control points (shown over). (d)
Twisted and bent block combining the transformations (b) and (c).

As the rotation is always performed around the~ui axis of the local coordinate system,
this operation results in a twisting deformation. By scaling the axes of the local frames,
the effect of inflating or deflating the mesh is achieved. Figure 5.6 illustrates the results
produced by twisting and bending operations. Figure 5.6 (a) shows a block as the original
mesh. A twisted version of the block is shown in (b) and was obtained simply by inter-
polating a rotation along the frame field of the handle curve, which is shown to its right.
Figure 5.6 (c) shows the result of bending the block, obtained by moving the curve’s con-
trol points (shown over). In (d) one sees the combined result of twisting and bending the
block. Note the smooth results.

The Figure 5.7 shows a deformation of the Bunny model where twisting and scaling
were applied to the right ear. Note that these operations are simple but can produce very
pleasingly results yet operating at interactive rates.

5.4 Blending Between Curves

To avoid discontinuity along mesh regions affected by different curves, a blending
function is used to transition among the deformations defined by each parametric curve.
The skeleton connectivity is used to define such a function, where a zero-mean Gaussian
function (b(x) = e−x2/(2σ2)) is associated to each control point linked to another curve
(note that each control point can be linked to more than one curve). The standard deviation
σ of the Gaussian controls the width of the function. Let p be a control point where a
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Figure 5.7: Twisting and scaling operation on the Bunny model. Left: Original model.
Right: The left ear was modified and twisting and scaling operations were applied to the
right ear.

Gaussian function is to be defined. Let L be the set of control points linked to p and let
a be the average position of L. In the left image of Figure 5.8, one can think of p as the
red control point and L as a set containing the white control points linked to the red one.
In our experiments, we found that a Gaussian standard deviation σ =

√
dist(p,a) works

fine, where dist is the Euclidean distance function. The reason for this setting is to provide
a smooth transition from the deformation defined by an interaction with the control point
p to the regions of the mesh affected by other curves.

Figure 5.8: Blending curves. Left: The skeleton. Note that the region inside the yellow
circle is not controlled by any curve. Right: The blending function centered at the red
point of the highlighted curve shown on left. The color scale represents the smooth pa-
rameter obtained with the Gaussian function, where 1 is mapped to blue and 0 is mapped
to red. Note the smooth transition from 1 to 0 between the highlighted curve (yellow and
red points on the left) and the other curves (white control points).

Let vm be a vertex outside the ROI of curve C. In order to guarantee a smooth transition
between the deformed and non-deformed regions of the mesh, we compute the influence
of p over vm as the weight wm = b(dist(vm, p)). Thus, during the deformation induced
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by C, the new coordinates of vm are given by Equation 5.7, where vrm are the coordi-
nates of vm if it had been rigidly transformed according to the transformation applied to
plane π j (defined by the frame vectors ~v j and ~w j at p j). Since the function b(dist(vm, p))
quickly approaches zero as the distance between vm and p increases, we achieve a smooth
transition between the two regions.

vm = (1−wm)vm +wmvrm (5.7)

Figure 5.9: A smooth deformation achieved by using the blending function. Left: The
original model. The region inside the red ellipse is not controlled by any curve. Right:
The model is deformed by modifying the highlighted curve shown on Figure 5.8. Note
that the deformation defined by the curve smoothly decreases for the vertices far from it.
The region inside the red ellipse, despite of not being controlled by any curve, is deformed
to keep the mesh continuity by using the blending function.

The smoothing parameter is calculated when the user links a control point to another
curve so that when the user performs a deformation, the smoothing effect can be achieved
by a simple linear interpolation avoiding the need to evaluate a Gaussian function for each
frame.

The color scale shown on the right part of Figure 5.8 illustrates the smoothing param-
eter obtained by the Gaussian blending function for the curve shown with red and yellow
control points on Figure 5.8 (left). Figure 5.9 shows a deformation on the Dino model
where the smoothing parameter plays an important role. The curve controlling its torso
was modified and the mesh between the torso and the legs (inside the yellow circle on
Figure 5.8) was smoothly modified to keep the mesh continuity.

5.5 Avoiding Local Self-Intersections

Self-intersection is a common problem in mesh deformation and several approaches
for trying to avoid it have been proposed, especially in the context of character skin-
ning (MOHR; TOKHEIM; GLEICHER, 2003). We take advantage of the curve’s frame
field to devise a simple but effective way of avoiding local self-intersections. Let Vk be
the set of vertices in the ROI of curve C that are represented in the coordinate system
of C’s frame (~uk,~vk, ~wk). The projection of Vk onto πk defines a circle of influence for
Vk (Figure 5.10). By guaranteeing that the circles of influence of all such planes do not
intersect, self-intersections on the deformed mesh are avoided.

Let πk−1 and πk be two such planes with origins at pk−1 and pk created along the curve
at parametric values tk−1 and tk, respectively. Let l be the intersection line between them.
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(a) (b) (c) (d)

Figure 5.10: Avoiding local self-intersections. (a) The projection of the vertices asso-
ciated to a plane πk−1 defines a circle of influence with radii rk−1. (b) l is the line of
intersection of πk−1 and πk. pkc is the point on l closest to pk−1, the point on C evaluated
at t = tk−1. pko is a point outside the circle of influence of πk−1. (c) The plane πk is rotated
by ω degrees around the line parallel to l passing through pk. (d) After rotation, where
self-intersections no longer occur.

Also, let rk−1 and rk be the radii of the circles of influence at πk−1 and πk, respectively.
If dist(l,pk−1) < rk−1 and dist(l,pk) < rk then an intersection is assumed. To avoid self-
intersections, we rotate the plane πk so that the circles of influence in πk−1 and in πk do not
self-intersect anymore. Thus, let pkc be the point on l that is closest to the pk−1. Also, let
pko be another point along the segment connecting pk−1 and l passing through pkc, such
that pko is the closest point to pk−1 outside the circle of influence of πk−1 (Figure 5.10
b). Note that the norm of the vector pkc− pk−1 is the dist(l,pk−1). If this vector is scaled
so that its norm equals rk−1, a valid point pko, which is outside the circle of influence of
πk−1 is found. This is done analytically by Equation 5.8.

pko = pk−1 +(pkc− pk−1)∗
rk−1

|pkc− pk−1|
(5.8)

Let ω be the angle between the vectors ~ac and ~ao, defined as ~ac = (pkc− pk) and
~ao = (pko− pk). Self-intersection is avoided by rotating the frame of πk by ω degrees
around the direction of line l passing through pk (Figures 5.10 c and d). Note that in order
to avoid self-intersection, we have forced the vector ~uk of the local frame not to coincide
with the curve’s tangent direction at t = tk.

In order to guarantee that local self-intersections do not occur in the mesh regions
attached to a curve, all coordinate systems must be tested. So, for a plane πk, the test must
be done ∀π j, j < k.

Note that in order to avoid self-intersections, we have forced the vector~uk of the local
frame not to coincide with the curve’s tangent direction at t = tk. This may become a
problem when large rotations on the frames are needed to avoid self-intersections, which
would cause the mesh to be unintuitively deformed. However, if the curve is edited again
to a position where self intersections do not occur anymore, ~u will match the curve’s
tangent again.

Figure 5.11 shows two similar deformations. The deformation on the left does not
use the presented algorithm to avoid local self-intersections, while the deformation on
the right shows the benefits of using it. The details (center) show that the deformation
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Figure 5.11: Self-intersection avoidance. Left: A deformation on a plane performed
without local self-intersection avoidance. Center: Details of critical parts of the meshes,
for comparing the occurrence of self-intersections. Right: A similar deformation using
the presented algorithm, where local self-intersections are successfully avoided.

produced with the use of the presented algorithm indeed avoid local self intersections.
Note that the presented algorithm for local self-intersection avoidance runs at interactive
rates as the whole technique presented in this work.

5.6 Digest

This chapter presented a strategy for transferring curve deformations to meshes. A
consistent frame field is created along each curve and the mesh is parameterized with
respect to these frame fields. When the user interacts with the curve, the frame field
changes and the mesh is deformed accordingly. Free-form deformation is achieved by
interactively moving the curves’ control points. Interesting effects, such as twisting and
scaling, are easily achieved by operating directly on the frame field.

A blending function is used in order to keep the mesh continuity while a skeleton is
deformed. Blending functions are responsible for smoothly transitioning the deformation
among the vertices controlled by the different curves.

An interactive algorithm to avoid local self-intersection is proposed. The algorithm
works by rotating some frames along the curve. The next chapter describes the use of
the presented framework to deform meshes guided by suggestive contours automatically
extracted from the meshes.
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6 SUGGESTIVE CONTOURS EDITING

Contours and suggestive contours are lines on the surface of an object that convey
important information about its shape. For this reason, giving the user the ability to edit
objects by changing these lines seems quite intuitive. This chapter extends the technique
described in the previous chapters to transfer deformations applied to contours and sug-
gestive contours into actual mesh deformations.

Parametric curves are created from the lines extracted based on contours and sugges-
tive contours, in the same way as done with user sketches in Chapter 4. The deformation
of curves are thus transferred to mesh deformations as described in Chapter 5. However,
a blending function based on an approximation of geodesic distances is proposed in order
to achieve better results when editing local details.

6.1 Motivation

3D objects can be represented using a relatively small number of lines. In fact, in
(OHTAKE; BELYAEV; SEIDEL, 2004b) Ohtake et al. show that is possible to reconstruct
the entire shape of an object by using just ridge and valley lines extracted from the original
surface.

Contour lines (KOENDERINK, 1984) were defined to retrieve the most important
information from an object, based on human perception. Let p be a point on the surface S
of an object equipped with normal vector n(p). When viewed from a perspective camera
positioned at point c, let v(p) = p− c. Contour lines are defined as the points on the
surface where~n ·~v = 0.

Suggestive contours (DECARLO et al., 2003) give a lot of information about the shape
of an object. They are defined as points on the surface that are not contours but would
become contours with a slightly change in the camera’s view position. Informally, this is
equivalently to locations at which~n ·~v is a positive local minimum rather than zero.

Together, contours and suggestive contours convey the shape of an object quite well
and that explains why these lines are often used in non-photorealistic rendering. Figure
6.1 shows a rendered image of the Homer model (left) its contours lines (center) and
the contours combined with suggestive contours (right). In the rest of this work, both
suggestive contours and contours will be referred as suggestive contours for the sake of
simplicity.

As these lines are simpler than the mesh itself but still represent the major details
of the object, it follows that they provide a good interface for an artist to express his
ideas when modifying a 3D object. Allowing the user to edit suggestive contours, thus
modifying the associated mesh, seems to be a promising approach for deforming complex
objects because the user can abstract some parts of the mesh concentrating on features that
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Figure 6.1: Contours and suggestive contours. Left: original model. Center: The contours
as seen from the same viewpoint. Right: Suggestive contours and contours. Note that
contours and suggestive contours combined conveys the shape of the object quite well.

convey more information. In fact, sketching a shape or editing suggestive contours can be
seen as inverse non-photorealistic rendering, as already pointed out in (NEALEN et al.,
2005). However, the only work that makes use of suggestive contours to perform mesh
deformation we are aware is that of Nealen et al. (NEALEN et al., 2005).

In that work, the user selects a suggestive contour line and sketches a destination line
to where the suggestive contour should appear. The constraints defined by the new sketch
are used in a Laplacian system (SORKINE et al., 2004) to perform the deformation. The
technique presented in this chapter makes use of parametric curves in the 3D space, which
provides fine control over the deformation, and directly transfer the curve deformation to
the mesh, as discussed in the previous chapters.

6.2 Technique Overview

Suggestive contours can be efficiently computed for objects represented by 3D meshes.
The extracted lines can then be used to create parametric curves which are associated to
the object mesh as described in Chapter 5. So, a typical modeling session using the tech-
nique presented here consists of two main steps:

• Choosing a viewpoint where the rendering of suggestive contours shows a line rep-
resenting a feature of interest to be edited;

• Modifying the feature by moving the control points of the parametric curve fitted
to the parametric contour.

Figure 6.2 shows an example of this technique. Given a mesh (a), its suggestive
contours are automatically calculated for each viewpoint (b). To modify the mesh at the
current viewpoint, we fit parametric curves to the suggestive contour lines and use them
as handles (c). By moving the control points of these handles, the mesh is appropriately
deformed (d). This technique seems particularly interesting for editing mesh details, like
the eyebrows of the homer model.
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(a) (b) (c) (d)

Figure 6.2: Mesh deformation using suggestive contours. Parametric curves (c) are fitted
to the suggestive contour lines shown in (b). By moving the parametric curves’ control
points, the user can deform the object (d). The mouth was opened and the eyebrows were
lifted up. The original model is shown in (a) for comparison.

The way the curves are attached to the mesh are exactly the same as described in
Section 3.1. However, the blending function is calculated using an approximation of the
geodesic distance to the suggestive contour lines.

6.3 Line Identification

To efficiently calculate suggestive contours for a 3D mesh, each triangle must be pro-
cessed independently. This approach facilitates the implementation of a rendering system
for lines defined on meshes, since one just has to test if a line segment is to appear in each
triangle and draw it, avoiding any storage. A suggestive contour line will be defined as
a set of line segments crossing individual triangles. However, to fit a parametric curve
to a suggestive contour line, the entire suggestive contour line is needed instead of its
individual segments.

Algorithm 7 groups individual segments into a single structure. This algorithm fol-
lows the path of a suggestive contour starting from a line segment and following the mesh
topology until the line ends. By using the mesh topology, this approach works very effi-
ciently.

After the execution of Algorithm 7, each line can be treated as a sketch and thus the
region segmentation step is identical to previously discussed (see Section 3.1). However,
in order to emphasize big mesh features while helping to ensure more efficiency, only
lines with a minimum length l are considered. In fact, significant details, which would
worth editing, cannot be well represented by lines too small and are often identified as
long lines in the set of suggestive contour lines retrieved. Empirically, l is set as 1/4 of
the radius of the bounding sphere of the object, but this can be manually adjusted by the
user.

6.4 Blending Function

Let vi be a vertex of the mesh and let gdistance(vi,C) be the geodesic distance of vi

to a curve C. A zero-mean Gaussian function (b(x) = e−x2/(2σ2)) is associated to each
curve. The standard deviation σ of the Gaussian controls the width of the function and
is set empirically to σ =

√
gdistance(vi,C). This yields the weighting values to be used
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in the same way as described in Section 5.4. Figure 6.3 d shows the calculated weighting
values for a curve on the horse model using a color scale, where 1 is mapped to blue and
0 is mapped to red. Note that there is a smooth transition as the vertices are geodesically
far from the curve.

The geodesic distance approximation described in the next section is calculated very
efficiently and works well especially for meshes with regular-sized triangles.

6.4.1 Geodesic Distance Approximation

In order to ensure interactive rates to the technique, geodesic distances are not exactly
calculated. Instead, a rough approximation is obtained using a simple region-growing
algorithm.

Since a suggestive contour line is identified as segments in each individual triangle, a
list of triangles where the line passes is already available (shown in dark blue in Figure
6.3 a). The vertices of these triangles are assumed to be at distance 0 from the suggestive
contour line. The next ring of triangles neighboring the triangles in dark blue is assumed
to be at distance 1 from the suggestive contour line (shown in yellow on the top image of
Figure 6.3 b) and so on. The maximum number of rings is defined by the user. However,
when a ring touches a neighboring suggestive line the algorithm stops. This approach
makes the region of interest of a given curve to be defined automatically, based only on
the suggestive contours of the mesh at a given viewpoint. The motivation for this strategy
is that suggestive lines represent surface details and a curve must control only the details of
the mesh under its region of influence. For this reason, the user is able to delete suggestive
contour lines that do not represent details he or she wants to edit, thus enlarging the area
of interest to be deformed.

(a) (b) (c) (d)

Figure 6.3: Region of influence of a suggestive contour line. Starting from a suggestive
contour line (a), a region-growing algorithm is executed and a set of rings on the mesh
is identified. In each step of the region-growing algorithm, the rings become one unit
further from the seed (i.e. the suggestive contour line) (b). The region-growing algorithm
stops after user-defined number of steps (c). A Gaussian function is then evaluated using
the approximations of geodesic distance to the curve at each ring, resulting in smooth
weighting values for a blending function (d).
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Algorithm 7 Algorithm to group line segments of suggestive contours
Require: segments {List of suggestive contours segments}

1: {Organize a lookup table}
2: for each segment s from segments do
3: for each vertex v of the triangle where segment s lies do
4: lookup[v]← s
5: end for
6: end for
7: done← 0 {Number of segments tested}
8: totalDone← segments.size() {Number of segments to test}
9:

10: while done != totaldone do
11: currentSegment← nextsegmentnotalreadytested
12: { Group all segments which triangles are neighbors in the mesh topology}
13: neighborsSegments.pushBack(currentSegment)
14: neighborsToAdd.pushBack(currentSegment)
15: while neighborsToAdd.size() > 0 do
16: currentNeighbor← neighborsToAdd.pop()
17: for each vertex v of the triangle where segment currentNeighbor lies do
18: for each entry e of v on the lookup table do
19: if e not already added as a neighbor then
20: neighborsToAdd.pushBack(e)
21: neighborSegments.pushBack(e)
22: end if
23: end for
24: end for
25: end while
26: {Connect all segments of the line starting from currentSegment}
27: line.pushBack(currentSegment.point[0]) { Push the geometric positions of the line

segment}
28: line.pushBack(currentSegment.point[1])
29: done++
30: while TRUE do
31: sz← line.size()
32: for each segment s of neighborSegments do
33: if geometric position of a defining point of line segment s coincides with last

point added to line then
34: line.pushBack(s)
35: done++
36: else if geometric position of a defining point of line segment s coincides with

the point in the first position of line then
37: line.pushFront(s)
38: done++
39: end if
40: end for
41: if sz != line.size() then
42: BREAK
43: end if
44: end while

{Add line to the list of suggestive contours }
45: end while
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6.5 Digest

This chapter introduced an extension to the mesh deformation technique presented in
this thesis, where suggestive contours are used as handles for editing details of geomet-
rically complex meshes. A geodesic distance approximation was used in order to ensure
interactive rates to the technique. The use of suggestive contour lines to perform mesh
deformation seems an attractive area for further exploration.
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7 RESULTS

This chapter presents the results obtained with the mesh deformation technique pre-
sented in this thesis. Several examples are shown, discussing key points related to other
techniques.

The algorithms described in this thesis were implemented using C++, with OpenGL
used for visualization. We have applied our technique to deform several models. The
performance measurements were carried on an AMD Athlon 64 3700+ processor running
a 32-bit version of Microsoft Windows XP with 2GB of RAM memory.

Figure 7.1: Deformations of the Buddha model. Left: original model and the original
control curve. Right: Curve bent to the right and the corresponding deformed model.

The examples shown in this work stress the capabilities of the presented approach
and compare it to current techniques. Figure 1.1 shows the Armadillo model in several
poses and demonstrate the approach’s ability to perform large deformations using a simple
interface, while preserving local features. The legs and arms were modified by translating
some control points. In the second example of Figure 1.1 the Armadillo’s body was scaled
and bent.

Figure 5.6 shows a block twisted and bent using a handle curve with 3 control points.
Note the smoothness of the twisting and the bending. As has been demonstrated by Zhou
et al. (ZHOU et al., 2005), Poisson meshes (YU et al., 2004) and Laplacian surfaces (LIP-
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MAN et al., 2004, 2005; SORKINE et al., 2004) fail to produce such large twist and
bend deformations. Also, as observed by (BOTSCH et al., 2006), the techniques de-
scribed in (BOTSCH; KOBBELT, 2004) and (BOTSCH; KOBBELT, 2005) cannot per-
form smooth bendings, like the ones shown in Figure 5.6, on single large step rotations.

The Buddha model was bent to the right in Figure 7.1 using a single handle curve,
which is shown to its right. Note that the smooth properties of the curve are directly
transferred to the deformation. A similar kind of deformation is shown on Figure 7.2,
where a cactus model (left) has been deformed using a single curve sketched over its
trunk (center). Note how the branches nicely follow the deformation. As pointed out by
Lipman et al. (LIPMAN et al., 2005), this kind of deformation cannot be performed using
a single handle by Poisson Editing (YU et al., 2004), as the strength of the gradient field
gets weaker with geodesic distance. Figure 7.2 (right) illustrates the versatility of our
technique, which also allows the branches to be deformed independently, using a skeleton
that mimics the structure of the cactus. This capability gives animators freedom to express
themselves artistically.

Figure 7.2: The cactus model (left) was deformed using a single handle curve sketched
over its trunk (center). Independent deformations can be applied to the individual
branches by building a skeleton and deforming the curves associated to the branches
(right).

Figure 7.3 (center) shows a large and smooth deformation of one tentacle of the oc-
topus model (left). This kind of result cannot be achieved using the technique describe
in (SORKINE et al., 2004) as shown by the authors in their subsequent paper (LIPMAN
et al., 2005). Figure 7.3 (right) shows a close-up view of the deformed tentacle seen from
the back to illustrate that the surface’s original features were preserved by the transforma-
tion.

Figure 7.4 illustrates the use of deformation with skeleton constraints (i.e., preserving
the rigidity of limb segments in articulated figures). While Huang et al. (HUANG et al.,
2006) enforce such constraints via non-linear least-squares optimization and require that
each articulated segment be a closed mesh, our approach imposes no restriction on the
mesh topology. We implement skeleton constraints by simply treating each segment be-
tween two adjacent control points as a Hermite curve (MORTENSON, 1997) with small
tangent vectors. This produces straight articulated segments with slightly bent endings,
as desired. Figure 7.4 (left) shows a horse leg in its original position with a handle curve
superimposed. The resulting deformed leg is shown on the right. Huang et al. (HUANG
et al., 2006) report that their system takes about 20 minutes to perform the deformation
of the four legs of the horse model. In our system, the user can deform each leg at a time
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Figure 7.3: Deformation including large rotations. One of the tentacles of the original
octopus model (left) was deformed (center). A close-up view of the deformed tentacle,
seen from the back, shows its smooth profile and reveals its nicely preserved features
(right).

in real time.

(a) (b) (c)

Figure 7.4: Deforming a horse leg (left) using skeleton constraints. Each segment between
two adjacent control points in the handle is a Hermite curve with small tangent vectors.
The resulting deformation (right) preserves the rigidity of the limb segments.

Figure 7.5 shows the dragon model with its mouth opened in two different ways.
The original model is shown on the left for comparison and the handle curves are shown
on top. Our approach produces visually pleasing global deformations while consistently
preserving local features. As pointed by Botsch et al. (BOTSCH et al., 2006), local fea-
ture preservation is a challenge not met by most recent mesh deformation techniques
(BOTSCH; KOBBELT, 2004, 2005; LIPMAN et al., 2004, 2005; SORKINE et al., 2004;
YU et al., 2004; ZAYER et al., 2005). Figure 7.6 illustrates again the effectiveness of our
technique to preserve local features. The result shown on the right was obtained with a
one-step translation of a single control point of a handle curve associated to the model on
the left.

Multiple-component meshes, non-manifold and non-orientable surfaces pose some
challenge to differential-based approaches, which require computing and/or propagating
a discrete frame field based on the mesh local properties. As the frames used in our
approach live on the handle curve, all these configurations are treated in a natural and
uniform way. Huang et al. (HUANG et al., 2006) handle non-manifold meshes by "ignor-
ing the non-manifold vertices in the surface detail energy term" (HUANG et al., 2006).
It is not clear, however, what the effects of such procedure on the feature details of the
deformed mesh are.
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Figure 7.5: Deformations of the dragon model. Left: original model. Center and right:
dragon mouth deformed in different ways. Handle curves shown on top.

Figure 7.6: Local feature preservation. Original model (left). A deformation performed
using our technique by translating a single control point (right). Note how the local fea-
tures are correctly re-oriented on the resulting surface.

Figure 7.7 (left) shows a horse model after a ring of polygons have been removed to
create two disconnected components. A handle curve with four control points has been
attached to the back of the horse. On the right, the deformed model. Note that, although
disconnected, the two parts align nicely after the deformation.

Figure 7.8 demonstrates the power of our metaphor by performing a deformation on
non-orientable and non-manifold surfaces. On the left, one sees a Moebius strip (top) and
a non-manifold surface. The images on the center and on the right show the deformed
models after moving some control points in each of their corresponding handles.

Table 7.1 shows the performance of our technique. The setup time corresponds to
the time required for region segmentation (Section 3.1), which is performed only when
a new curve is created. For these measurements, we have transformed all vertices of the
mesh every time the user modified the curve. So, the last column of Table 7.1 shows the
worst case for any deformations made by our technique on these models. These numbers
indicate that it can operate at interactive rates, even with meshes composed by hundreds
of thousand vertices. Depending on the size of the ROI, our approach can handle meshes
containing millions of polygons in real time. These numbers compare favorably to all
previously known mesh deformation techniques supporting local feature preservation. For
instance, in a recent work, Huang et al. (HUANG et al., 2006) report that their technique
cannot handle the full Armadillo model (172,974 vertices) at interactive rates. By using a
simplified version of the model (30k vertices) and using some multiresolution techniques
described in (GUSKOV; SWELDENS; SCHRÖDER, 1999), the authors report achieving
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Figure 7.7: Deformation of a mesh with multiple components. Horse model with a ring
of polygons removed (left). Deformed model obtained by moving some control points.
Note how the parts still align nicely after the deformation.

Figure 7.8: Deforming non-orientable (center) and non-manifold (right) surfaces.

9.1 fps. We should point that the approach by (HUANG et al., 2006) can preserve volume,
which ours cannot.

Another technique supporting volume preservation under deformation was presented
by Zhou et al. (ZHOU et al., 2005). The authors report that, for the example of the full Ar-
madillo model, their technique would require solving a system containing approximately
1,020,000 variables, which currently cannot be done interactively.

The technique developed by Botsch et al. (BOTSCH et al., 2006) produces physically
plausible deformations, which the current version of our technique does not do. Accord-
ing to the authors, their system can deform a model with 180k triangles at 1 fps on a 3.4
GHz P4 processor.

Table 7.2 compares various mesh deformations techniques according to three criteria:
(i) does the technique preserve local features under translation (Transl)?, (ii) does the
technique support large rotations as a single step deformation (Large Rot.)? and (iii)
does it support skeleton constraints (Skel.)? Since the technique described in (HUANG
et al., 2006) is based on Laplacian coordinates, detail preservation should be insensitive
to translation, as are other techniques based on differential coordinates.

The technique presented in this work can handle both large rotations and translations
as the frames are created on a curve rather than on the surface of the models. Botsch et
al. (BOTSCH et al., 2006) has achieved this by enclosing the mesh with a set of rigid
prisms with physical behavior, which has introduced a computational expensive physical
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Table 7.1: Times obtained using our technique for deforming several models. The right
column shows the performance of the deformation (in fps) when deforming all vertices of
the model.

Model Vertices Triangles Setup (s) Deform. (fps)
Horse 19,851 39,698 0.0545 59.52
Dino 56,194 112,384 0.1550 34.60
Bunny 76,000 151,996 0.1339 29.85
Armadillo 172,974 345,944 0.2914 14.94
Dragon 437,645 871,414 1.0697 7.12
Buddha 543,652 1,087,716 3.4130 4.50

Table 7.2: Comparison among the various mesh deformation techniques according to
the following criteria: (i) preserve local features under translation (Transl), (ii) support
large rotations as a single step deformation (Large Rot.), (iii) support skeleton constraints
(Skel.). 1Rotations are approximated heuristically.

Method Transl. Large Rot. Skel.
Laplacian Editing (SORKINE et al., 2004) no no no
Differential Coordinates (LIPMAN et al., 2004) no yes1 no
Rotation Invariant (LIPMAN et al., 2005) no yes no
Poisson-based (YU et al., 2004) no yes no
Harmonic Guidance (ZAYER et al., 2005) no yes no
Intuitive Framework (BOTSCH; KOBBELT, 2004) yes no no
RBF (BOTSCH; KOBBELT, 2005) yes no no
Volumetric Laplacian (ZHOU et al., 2005) yes yes no
PriMo (BOTSCH et al., 2006) yes yes no
Gradient Domain (HUANG et al., 2006) no yes yes
Our approach yes yes yes

simulation step. Zhou et al. (ZHOU et al., 2005) can also handle with both large rotations
and translation, achieved by creating a graph which is more complex than the mesh itself.
While this leads to a deformation technique that can preserve the volume of the models
and the work of Botsch et al. (BOTSCH et al., 2006) produces visually plausible physical
deformations, none of them can outperform the technique presented in this work in terms
of speed. Moreover, they do not allow the creation of skeleton constraints, which can be
done using the presented approach. As Table 7.2 shows, no other technique can handle
both large rotations and translation while providing support for skeleton constraints.

7.1 Digest

This chapter has shown the results obtained with the deformation technique presented
in this thesis. The examples and comparison tables show that it can indeed be used to
interactively deform geometrically complex non-structured objects, preserving the small
details commonly found in these models in a consistent way.



63

8 CONCLUSIONS AND FUTURE WORK

3D models used in computer graphics applications are constantly evolving in terms
of geometric complexity and the process of modeling them is becoming increasingly
complex. This has motivated the popularization of the use of 3D scanners to reduce the
amount of time an artist has to spend to create such models. However, for movies, games
and computer graphics applications, artists must be able to change the poses, deform and
animate the digitized models, which is done by manipulating control structures on the
models. Models reconstructed from point clouds do not have such structures and artists
must construct them manually, which is a labor-intensive task.

A technique for deforming non-structured objects that combines high quality mesh
deformation with an intuitive interface was presented in this work. The approach is based
on the metaphor of transferring smooth deformations from parametric curves to complex
3D models, which does not require solving large linear systems as most of recent works
do. Fast solvers have been proposed to reduce the time needed for solving these linear
systems (SHI et al., 2006). However, a delay is created because this solving step must
be done for each deformation region the user selects, and this is not desired in interactive
systems. The technique presented in this thesis minimizes this delay by avoiding the
solving step. A small delay, however, is still present due to the steps required by the
presented approach.

The use of parametric curves allows the technique to be implemented using very intu-
itive user interfaces. As opposed to other techniques (SEDERBERG; PARRY, 1986; CO-
QUILLART, 1990; SORKINE et al., 2004; LIPMAN et al., 2005; BOTSCH; KOBBELT,
2005; ZAYER et al., 2005; BOTSCH; KOBBELT, 2004), the presented approach provides
local control over the deformation through the use of skeletons and individual curves. The
simple formulation also avoids local self-intersections and preserves local features under
global deformation, an important but hard to achieve goal, at interactive rates.

8.1 Pros

This Section discusses the results of this work by analyzing the characteristics pre-
sented in Chapter 1 and the avoidance of local self-intersection obtained by the presented
technique, which is also an important goal.

8.1.1 Interactivity and Robustness

The ability to work with models composed by hundreds of thousand polygons (robust-
ness), is essential to model deformation systems due to the increasingly complexity of the
models used in computer graphics. Interactive feedback about the deformation is also
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crucial for an effective technique because the user must be able to perform experiments
with the object during and editing session. As shown in Chapter 7, the technique remains
interactive for objects composed by a million polygons.

8.1.2 Locality

When the user is editing a restricted region of the object, other parts of the mesh
must not be deformed. The technique presented provides such characteristic by using a
blending function (Section 5.4) to guarantee the continuity of the mesh while keeping the
deformation restricted to a specific area. The locality of the deformations allows the user
to concentrate on the region he or she is deforming.

8.1.3 Smoothness

The quality of the mesh deformation is achieved implicitly by the smooth properties of
the parametric curves used in the presented technique, as the properties of the curves are
directly transferred to the mesh deformation. Despite its simplicity, this strategy works
very well in practice, avoiding the need for pre computation steps and the time consuming
process of solving large linear systems commonly found in recent works.

8.1.4 Local Feature Preservation

Local feature preservation is achieved by the inherent rotation of the local frames
created along the curve. As the surface is entirely encoded with respect to these local
frames, the problems of other variational minimization techniques do not occur.

8.1.5 Avoidance of Local Self-intersections

The avoidance of local self-intersections is also an important characteristic of the pre-
sented technique. Given the whole formulation of this work, a simple algorithm to avoid
local self-intersections (see Section 5.5) could be incorporated to it while still allowing
for interactive performance.

8.2 Discussion

Despite the visually pleasing results presented in Chapter 7 and the pros discussed in
Section 8.1, some considerations must be made about the use of the presented technique.

The use of curves provides local control over the deformation so that the user can
perform fine adjusts as shown in the example of Figure 7.5. However, this freedom is
not always wanted. Sometimes the user may want a more abstract way of specifying the
deformations as just changing the position or orientation of some parts of the mesh. In
these cases, a click & drag metaphor as proposed in (BOTSCH et al., 2006) would be
more efficient.

Because vertices close to each other in Euclidean space may be far when considering
geodesic distances (which accounts for paths on the shape of the object), it is easy to note
that a blending function based on the geodesic distance, as proposed in Chapter 6, would
result in a more intuitive deformation. The choice to use a blending function based on
Euclidean distance was made in order to minimize the computation time and thus provide
interactive rates to the technique.

The local self-intersection avoidance algorithm (Section 5.5) may produce unintuitive
results when large rotations of the frames are needed. If a frame is exaggeratedly rotated,
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the associated mesh may become undesirably thin. Moreover, the more the frames are
rotated, the more they move from the frame field of the curve. This causes the deformation
to be somewhat unrelated to the curve and thus unintuitive. However, the recognition of
self-intersections is still good and efficient in these cases and, instead of rotating the frame
field, one could block user interactions that would cause intersections.

8.3 Future Work

The use of other types of parametric curves seems a promising area for future explo-
ration, as the properties of the curve are directly transferred to the mesh. One can explore
the use of the presented approach to create physically plausible deformations at interac-
tive rates using splines for physical simulation as described in (LENOIR et al., 2005).
Moreover, the use of Finite Element Method (CELNIKER; GOSSARD, 1991) allows the
specification of different properties along the curve. This characteristic is very interesting
in the context of mesh deformation as it provides a mean to simulate inverse kinematics
at interactive rates.

The presented technique is also suitable for a GPU implementation, since each vertex
is deformed independently from the others. After the creation of the frame field, all
deformation could be done in parallel using the GPU, which would increase the overall
performance of the technique.

By using motion capture data to animate the skeletons produced with our technique,
animations with realistic movements could be achieved. Using 3D scanners and motion
capture data, the time needed to create animations could be significantly reduced.
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APPENDIX A CATMULL-ROM SPLINE

Let p0 and p1 be points to be interpolated by a Catmull-Rom spline (CATMULL;
ROM, 1974). The interpolating curve must have derivatives r0 and r1 at p0 and p1, respec-
tively. Let p(t) be the point in the interpolating curve at position t. Since a Catmull-Rom
spline is a cubic interpolatory curve:

p(t) = at3 +bt2 + ct +d (A.1)

For a Catmull-Rom spline, the coefficients a, b, c and d are given by:

a =−d0 +3p0−3p1 +d1 (A.2)

b = 2d0−5p0 +4p1−d1 (A.3)

c =−d0 + p1 (A.4)

d = 2p0 (A.5)

As noted, derivatives at first and last points are needed in order to construct a Catmull-
Rom curve. One could let the user explicitly defines vectors d0 and d1 but defining such
vectors can be somewhat cumbersome. Since their direction and magnitude must be con-
trolled, this could lead to a more complicated interface. Instead, by duplicating the first
and last control point, the curve interpolates all of the user control points and there is no
need to explicitly control the tangents.

To allow the use of more than four control points, a piecewise curve must constructed.
So, for the i-th segment, a direct application of Equations A.6 to A.9 yields the desired
curve.

a =−pi−1 +3pi−3pi+1 + pi+2 (A.6)

b = 2pi−1−5pi +4pi+1− pi+2 (A.7)

c =−pi−1 + pi+1 (A.8)

d = 2pi (A.9)

By varying t from 0 to 1 in the Equation A.1, using coefficients calculated by Equa-
tions A.6 to A.9, a Catmull-Rom spline is obtained between the i-th segment of the curve.
However, to use a global parameter t that varies from 0 to 1 along the whole curve, a map
scheme is required. This map scheme is often referred to as curve parameterization.

Let t be the global parameter that varies from 0 to 1 along the whole curve. Let n be
the total number of points to be interpolated by the curve. A map scheme must return a
local segment at which the global t value must be located and the local value to be used
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in the Equation A.1. Let s be the segment index and let t ′ be the local parameter. The
segment index s is used to find the proper coefficients, as calculated by Equations A.6 to
A.9, to be used. Equation A.11 returns the local t ′ value and Equation A.10 returns the
segment index s. This map scheme gives a uniform interval of t values along the curve
segments, i.e. the global t is uniformly distributed for each curve segment.

s = min(b(n−1)tc ,n−1) (A.10)

t ′ = (n−1) t−b(n−1) tc (A.11)

This type of reparameterization is known as uniform parameterization, which is a fast
approximation to linear parameterization. In order to have equally-spaced points along
the curve’s path, an arc-length parameterization should be used. However, this type of
parameterization requires a pre-integration step, which is more expensive. Moreover, as
the curve will be discretized with very small steps, this parameterization would not bring
any visible advantage to the technique.

The first derivative of the Catmull-Rom spline is needed to create local frames along
the curves (see Section 5.1) and is given by Equation A.12, using the coefficients calcu-
lated by Equations A.6 to A.8.

p′(t) = 3at2 +2bt + c (A.12)
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APPENDIX B UMA TÉCNICA PARA DEFORMAÇÃO IN-
TERATIVA DE OBJETOS NÃO ESTRUTURADOS

Resumo da Dissertação em Português

O realismo das imagens geradas por computador é altamente dependente da habilidade
de representar com fidelidade os detalhes geométricos dos objetos em cena. A modelagem
destes objetos, entretanto, é uma tarefa que exige trabalho intensivo e que pode ser signi-
ficativamente acelerada com o uso de scanners 3D. Apesar destes equipamentos se apre-
sentarem como uma solução rápida para o problema de amostrar formas geometricamente
complexas, algoritmos de reconstrução de superfícies a partir de nuvens de pontos tendem
a produzir modelos não estruturados constituídos de uma única malha poligonal. A área
de reconstrução de superfícies a partir de nuvens de pontos tem recebido bastante atenção
recentemente (LAGA; TAKAHASHI; NAKAJIMA, 2003; OHTAKE et al., 2003; CARR
et al., 2001; OHTAKE; BELYAEV; SEIDEL, 2004a; HOPPE et al., 1992; TOBOR; REU-
TER; SCHLICK, 2003, 2004; CARR et al., 2003; XIE; MCDONNELL; QIN, 2004;
ZHAO; OSHER; FEDKIW, 2001; OHTAKE; BELYAEV; SEIDEL, 2004a; YU, 1999;
TERZOPOULOS; METAXAS, 1991; SCLAROFF; PENTLAND, 1991; AMENTA; BERN;
KAMVYSSELIS, 1998; DEY; GIESEN, 2001; DEY; GOSWAMI, 2004; WANG; OLI-
VEIRA; KAUFMAN, 2005; WANG et al., 2005; BíSCARO, 2005) e representações 3D
de objetos geometricamente complexos estão se tornando amplamente difundidas. En-
tretanto, possibilitar ao usuário maneiras de modificar a pose e animar as representações
resultantes é um ponto chave para utilizar estes modelos em aplicações como filmes e jo-
gos de computador. O desafio é prover uma interface intuitiva, resposta interativa às ações
do usuário e, ao mesmo tempo, preservar os detalhes de superfície e satisfazer restrições
definidas pelo usuário.

B.1 Deformação de objetos 3D não estruturados

Neste trabalho, uma nova técnica interativa para deformação geométrica de objetos
3D não estruturados baseada no uso de rabiscos (sketches) 2D é apresentada. Ela foi
inspirada pela metáfora de oversketching de Kho e Garland (KHO; GARLAND, 2005),
mas esta nova abordagem é significativamente diferente. Curvas paramétricas criadas a
partir de rabiscos 2D são usadas para deformar, torcer e escalar a malha associada. As
deformações resultantes são visualmente agradáveis, provêem controle local e preservam
os detalhes da malha em deformações globais. Esta nova abordagem também suporta al-
gumas condições definidas pelo usuário, como a especificação de segmentos rígidos para
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deformar figuras articuladas. Além disso, ela lida com malhas arbitrárias, incluindo ma-
lhas de múltiplos componentes conectados, superfícies não orientáveis e não-variedades,
e pode ser implementada sob uma interface simples e intuitiva.

Figura B.1: Passo um da técnica. O usuário rabisca sobre as partes do modelo que ele
gostaria de deformar e tem a possibilidade de mudar o ponto de vista da câmera (esquerda
e centro). Cada linha rabiscada se torna uma curva paramétrica em 3D que será usada
como um manipulador para deformar o modelo (direita). As pequenas esferas brancas
representam os pontos de controle das curvas.

Uma sessão de modelagem baseada na técnica apresentada neste trabalho consiste em
três passos principais:

• Rabiscar curvas 2D sobre a representação tridimensional do modelo (Figura B.1)
para produzir um conjunto de curvas em 3D que serão usadas como manipuladores
para deformar o modelo. A partir daí, modificando interativamente uma curva,
a deformação é automaticamente transferida para as partes do modelo que estão
ligadas a ela. A curva é modificada ao mover seus pontos de controle, que são
representados na Figura B.1 (direita) como pequenas esferas brancas;

• Conectar diferentes curvas para formar esqueletos como mostrado na Figura B.2.
Note que não há necessidade de ter apenas um esqueleto por objeto. De fato, o
usuário pode até mesmo optar por deixar todas as curvas separadas (desconectadas)
umas das outras;

• Deformar o modelo selecionando pontos de controle da curva e movendo-os em 3D.
A Figura B.3 ilustra isso com duas diferentes deformações. Os dois personagens à
esquerda mostram o antes e depois de uma torção no pescoço do modelo Dino. O
par de imagens à direita provê uma ilustração similar para uma deformação aplicada
à cauda do personagem.

Para que a deformação de modelos não estruturados geometricamente complexos seja
feita a taxas interativas, todas as operações requeridas pela técnica devem ser feitas o
mais eficientemente possível. Este critério foi prioritariamente levado em consideração
na formulação das soluções apresentadas neste trabalho.
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Figura B.2: Passo dois da técnica. O usuário tem a possibilidade de combinar curvas
paramétricas para criar esqueletos complexos.

Inicialmente, a curva rabiscada pelo usuário é filtrada para remover o ruído decorrente
da possível imprecisão contida na entrada do usuário. Pontos do rabisco filtrado são então
projetados na superfície do objeto e um algoritmo de crescimento de regiões é aplicado
para encontrar a região da malha que está sob o sketch do usuário. O restante da malha
é também identificado por um algoritmo de crescimento de regiões. O rabisco também
é utilizado para criar o manipulador usado pelo usuário nas deformações, ajustando uma
curva paramétrica aos pontos do rabisco projetados na superfície do objeto.

As deformações impostas à curva são transferidas para a malha através de um con-
junto de sistemas de coordenadas criado ao longo da curva. A abordagem para a criação
deste conjunto de sistemas de coordenadas foi elaborada para respeitar certas condições
que não estão presentes no Frenet frame (CARMO, 1976). Os vértices da malha são re-
presentados com respeito a este conjunto de sistemas de coordenadas e, quando o usuário
interage com a curva, um novo conjunto de sistemas de coordenadas pode ser obtido na
curva deformada. Assim, é possível reconstruir a malha utilizando o novo conjunto o que
resultará em uma malha deformada de acordo com a deformação que o usuário impôs à
curva.

Os vértices encontrados na região sob o rabisco serão transformados diretamente por
uma curva paramétrica. A fim de garantir a continuidade entre as regiões enquanto o
usuário interage com a curva, duas abordagens podem ser consideradas. Primeiro, se a
curva não está conectada a nenhuma outra curva, as regiões associadas às extremidades
da curva são rigidamente transformadas. Alternativamente, se o usuário conectou várias
curvas a fim de construir um esqueleto para o objeto, uma função de mistura é usada para
suavemente parar a deformação entre cada curva.

Como os vértices da curva estão representados com respeito ao conjunto de sistemas
de coordenadas criados ao longo da curva, efeitos interessantes como torção e escala-
mento podem ser obtidos com operações simples diretamente sobre os eixos destes sis-
temas de coordenadas. A Figura B.4 mostra uma torção sendo realizada no modelo de
um bloco e os sistemas de coordenadas como foram rotacionados para obter o efeito de
torção.

Um algoritmo para evitar que a malha deformada sofra de interpenetrações também
foi desenvolvido com operações simples sobre os eixos dos sistemas de coordenadas. Este
algoritmo pode também ser executado a taxas interativas mesmo para modelos geometri-
camente complexos, assim como toda a técnica apresentada neste trabalho.
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Figura B.3: Passo três da técnica. O usuário modifica uma curva 3D e a técnica deforma
a malha. Pontos de vista diferentes podem ser usados.

(a) (b)

Figura B.4: Operação de torção obtida com a técnica apresentada. Um bloco de referên-
cia (a). Bloco torcido (b) obtido interpolando-se uma rotação ao longo do conjunto de
sistemas de coordenadas da curva.

B.2 Contornos e contornos sugestivos

Contornos e contornos sugestivos são linhas na superfície de um objeto que carregam
importantes informações sobre a sua forma. Por essa razão, dar ao usuário a possibilidade
de editar objetos modificando estas linhas parece bem intuitivo. Por essa razão, a técnica
descrita neste trabalho foi estendida para transferir deformações aplicadas aos contornos
e contornos sugestivos em deformações de malha.

Curvas paramétricas são criadas a partir de linhas extraídas com base em contornos
e contornos sugestivos, da mesma forma que é feito com os rabiscos criados pelo usuá-
rio. A deformação das curvas é então transferida para deformação de malhas da mesma
forma que feito anteriormente. Entretanto, uma função de suavização baseada em uma
aproximação de distâncias geodésicas é proposta de forma a obter resultados melhores ao
se editar detalhes locais.

Como essas linhas geralmente são mais simples do que a malha mas ainda representam
bem os detalhes do objeto, é fácil perceber que elas podem se tornar uma boa interface
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para um artista expressar suas idéias quando modifica um modelo 3D. Dar ao usuário a
possibilidade de editar contornos sugestivos, e dessa forma modificar a malha associada,
parece uma abordagem promissora para deformar objetos complexos porque o usuário
pode abstrair algumas partes da malha concentrando-se nos detalhes que carregam mais
informação. De fato, rabiscar uma forma ou editar contornos sugestivos pode ser viso
como o inverso do rendering não foto-realístico, como já foi apontado por Nealen et al.
(NEALEN et al., 2005). Entretanto, o único trabalho conhecido que faz uso de contornos
sugestivos para realizar deformação de malhas é o de Nealen et al. (NEALEN et al.,
2005).

Contornos sugestivos podem ser eficientemente computados para objetos representa-
dos por malhas 3D. As linhas extraídas podem então ser usadas para criar curvas para-
métricas que são associadas à malha do objeto como descrito anteriormente. Assim, uma
sessão de modelagem típica usando a técnica apresentada nesta seção consiste em dois
passos principais:

• Escolher um ponto de vista onde os contornos sugestivos mostrem uma linha repre-
sentando um detalhe de interesse a ser modificado;

• Modificar este detalhe movendo os pontos de controle da curva paramétrica ajustada
ao contorno sugestivo.

A Figura B.5 mostra um exemplo desta técnica. Dada uma malha (a), seus contornos
sugestivos são automaticamente calculados para cada ponto de vista (b). Para modificar a
malha no ponto de vista corrente, curvas paramétricas são ajustadas às linhas de contor-
nos sugestivos e usadas como manipuladores (c). Movendo os pontos de controle destes
manipuladores, a malha é apropriadamente deformada (d). Essa técnica mostrou-se par-
ticularmente interessante para editar detalhes da malha, como as sobrancelhas do modelo
do Homer.

(a) (b) (c) (d)

Figura B.5: Deformação de malha usando contornos sugestivos. Curvas paramétricas (c)
são ajustadas às linhas dos contornos sugestivos mostrados em (b). Movendo os pontos de
controle das curvas paramétricas, o usuário pode deformar o objeto (d). A boca foi aberta
e as sobrancelhas levantadas. O modelo original é mostrado em (a) para comparação.

A forma como as curvas são associadas à malha é exatamente a mesma usada para o
caso dos rabiscos. Entretanto, a função de suavização é calculada usando uma aproxima-
ção da função de distância geodésica das linhas de contorno sugestivo.
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B.3 Discussão

A principal contribuição deste trabalho é uma nova técnica para deformação de mode-
los 3D que produz resultados visualmente interessantes a taxas interativas preservando os
detalhes locais de suas superfícies. A suavidade inerente às curvas paramétricas é trans-
ferida às deformações globais, enquanto que um conjunto de sistemas de coordenadas
ao longo das curvas garante que os detalhes locais, representados com respeito a estes
sistemas de coordenadas, são preservados sob transformações globais. Dessa forma, a
abordagem apresentada é relacionada às recentes técnicas de deformação de malhas base-
adas em modelos multi-resolução (BOTSCH; KOBBELT, 2004; KOBBELT et al., 1998),
coordenadas Laplacianas (ALEXA, 2003; LIPMAN et al., 2004, 2005; SORKINE et al.,
2004) e no domínio gradiente (HUANG et al., 2006; YU et al., 2004; ZAYER et al., 2005;
ZHOU et al., 2005). É demonstrado que, apesar de sua simplicidade conceitual, a aborda-
gem proposta é bem geral, e não sofre de algumas limitações encontradas na maioria das
técnicas anteriores, superando-as em termos de velocidade como mostra a Tabela B.1.

Tabela B.1: Tempos obtidos usando a técnica apresentada neste trabalho para deformar
diversos modelos. A coluna “Curva” refere-se ao tempo de segmentação da malha em
regiões e criação de uma curva paramétrica. A coluna da direita mostra a performance da
deformação (em fps) ao deformar todos os vértices do modelo.

Modelo Vértices Triângulos Curva (s) Deform. (fps)
Horse 19,851 39,698 0.0545 59.52
Dino 56,194 112,384 0.1550 34.60
Bunny 76,000 151,996 0.1339 29.85
Armadillo 172,974 345,944 0.2914 14.94
Dragon 437,645 871,414 1.0697 7.12
Buddha 543,652 1,087,716 3.4130 4.50


