

Seminário do Programa de Pós-Graduação em Engenharia Química

VI-Oktober Fórum – PPGEQ

23, 24 e 25 de outubro de 2007

OBTENÇÃO DE OLEFINAS LEVES A PARTIR DO METANO.

Joice Oliveira¹, Oscar W. Perez Lopez¹, Nilson R. Macilio

Laboratório de Processos Catalíticos
 Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul (UFRGS)
 R. Eng. Luis Englert, s/n. Campus Central. CEP: 90040-040 - Porto Alegre - RS - BRASIL
 E-MAIL: perez@enq.ufrgs.br

Palavras Chaves: gás natural, acoplamento oxidativo, catalisadores óxidos, perovskitas.

Resumo: Neste trabalho foi estudado o acoplamento oxidativo de metano sobre catalisadores tipo óxidos mistos e óxidos com estrutura tipo perovskita. Para os catalisadores tipo óxidos mistos, baseados em Mg, La e Li como promotores, avaliou-se o efeito dos parâmetros de preparação (composição do catalisador, álcali do agente precipitante e a influência da lavagem) e a influência da atmosfera oxidante (ar e mistura ar/CO₂). Sobre a preparação do catalisador, verificou-se que: a amostra preparada com o cátion K^+ apresenta melhores resultados de atividade e que a lavagem influencia nos resultados de área superficial (S_{BET}) e conversão de CH_4 . Nos catalisadores tipo perovskitas foi estudada a influência da substituição de La por Ca e Al por Li ou Mg, A substituição parcial de La por Ca promove aumento na S_{BET} e diminuição na atividade. Por outro lado, quando se substitui Al por Li aumenta a atividade e a cristalinidade da amostra. A reação foi realizada em um reator tubular de leito fixo com análise cromatográfica em linha no intervalo de temperatura de 600 a 800°C.

1 Introdução

A utilização do gás natural para a obtenção de produtos com maior valor agregado tem sido estudado desde a década de 80 [1].

As duas reações envolvidas no acoplamento oxidativo do CH₄ são as seguintes:

$$2CH_4 + \frac{1}{2}O_2 \rightarrow C_2H_6 + H_2O$$
 (1)

$$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$$
 (2)

O eteno e propeno são produzidos industrialmente por pirólise da nafta, utilizando assim uma fração derivada do petróleo. Neste processo utiliza-se também como carga etano, quando o objetivo é somente a produção de eteno. A produção de olefinas leves por acoplamento oxidativo tem sido considerada uma das rotas mais promissoras [2,3].

Trabalhos realizados por nosso grupo [4] mostram que catalisadores preparados por coprecipitação à base de lantânio são ativos para a reação de acoplamento oxidativo de metano. Para amostras preparadas por mistura mecânica, semelhantes resultados são apresentados por Choudary et al. [5]. Na literatura, são encontrados principalmente trabalhos sobre catalisadores suportados, os principais são sílica, promovidos por

metais alcalinos como potássio, sódio, lítio e lantânio [6-9].

Por outro lado, estudos recentes mostram que os materiais do tipo perovskita apresentam propriedades interessantes como catalisadores [10-13].

O objetivo deste trabalho é o estudo da obtenção de olefinas leves por acoplamento oxidativo do metano utilizando dois tipos de catalisadores: a) óxidos mistos e b) perovskitas.

2 Metodologia / Materiais e Métodos

a) Preparação dos catalisadores

Os catalisadores tipo óxidos mistos foram preparados por co-precipitação de nitratos de metais com Na₂CO₃ e NaOH como agente precipitante. Para a avaliação do cátion precipitante, as amostras foram preparadas substituindo Na⁺ por K⁺ ou Ca⁺⁺ na precipitação. A co-precipitação foi feita a 60°C e pH = 10. O material precipitado foi lavado com água deionizada, filtrado a vácuo e seco em estufa por 12h. Os óxidos foram obtidos por tratamento térmico com ar sintético a 600°C ou 800°C por um período de 6h.

Seminário do Programa de Pós-Graduação em Engenharia Química

VI-Oktober Fórum – PPGEQ

23, 24 e 25 de outubro de 2007

catalisadores tipo perovskita foram preparados utilizando nitratos dos metais, ácido cítrico e etileno glicol. Sob agitação constante, a solução dos nitratos dos metais (0,1M) foi adicionada à solução de ácido cítrico (0,1M). Então, foi dissolvido o etileno glicol no complexo metalcitrato. A solução resultante foi aquecida a 80°C sob agitação para remover o excesso de solvente e promover a polimerização obtendo-se, finalmente, uma solução muito viscosa. O material foi seco em estufa a 150°C por 12 horas. O tratamento térmico foi realizado com ar sintético, a 800°C, por um período de 6 horas.

b) Caracterização dos catalisadores

Os catalisadores foram caracterizados por TG/DTA, difração de raio-X e área superficial (S_{BET}). A análise termogravimétrica (TG/DTA) foi realizada em uma termobalança TA modelo SDT600, com uma taxa de aquecimento de 10° C/min e vazão de 100 ml/min de ar sintético. A difração de raio-X foi realizada pelo método do pó em um difratômetro modelo Siemens, com radiação Cu K α utilizando-se monocromador de grafite e filtro de níquel. A determinação da área superficial para a amostra calcinada foi realizada pelo método BET de isoterma de adsorção de N_2 .

c) Ensaios de atividade catalítica

Os ensaios de atividade catalítica foram realizados em um reator tubular de quartzo (1/2 polegada de diâmetro nominal). A vazão dos gases alimentados foi ajustada através de controladores de fluxo mássico (Bronkhorst). Os ensaios foram realizados no intervalo de temperatura de 600°C a 800°C. A análise dos produtos foi realizada em linha em um cromatógrafo Varian 3600cx com detectores de condutividade térmica (TCD) e ionização de chama (FID), utilizando nitrogênio como gás de arraste.

3. Resultados

3.1 Catalisadores tipo óxidos mistos

A Tabela 1 mostra a composição nominal dos catalisadores baseados em magnésio, com lítio ou lantânio como promotor, e o respectivo cátion do agente precipitante.

Os valores de área superficial (S_{BET}) obtidos foram entre 30-173 m²/g. Para as amostras contendo lantânio, a S_{BET} diminui com o aumento do teor de lantânio. Por outro lado, a amostra que contém lantânio e lítio combinados (La5Li10) exibe alta S_{BET} .

A Figura 1 mostra os padrões de DR-X das amostras após calcinação. Os picos nos valores 20=36.8, 42.9 e 62.3 podem ser atribuídos ao MgO.

A amostra Li10 exibe reflexões mais intensas de MgO denotando alta cristalinidade e está relacionado a diferença na massa molar entre o lítio e o lantânio, tendo como resultado um maior percentual em massa de MgO nas amostras com lítio. Os picos em 28.8 e 50.7°, correspondente ao La₂O₃ com baixa cristalinidade, são exibidos somente pela amostra com maior quantidade de lantânio.

Tab.1) Amostras de catalisadores tipo óxidos mistos.

	Cátion precipitante	Composição molar (%)		S _{BET} (m ² /g)	
Amostra	proorprounce	` ` `		Mg	(111, 8)
La15	Na ⁺	-	15	85	30,1
La10	Na ⁺	-	10	90	62,1
La5	Na ⁺	-	5	95	80,1
La5Li5	Na ⁺	5	5	90	92,1
La5Li10	Na ⁺	10	5	85	173,0
Li10	Na ⁺	10	ı	90	70,0
La10_K	K^{+}	-	10	90	71,9
La10_Ca	Ca ⁺⁺	-	10	90	28,5
La10_Na	Na ⁺	-	10	90	62,1

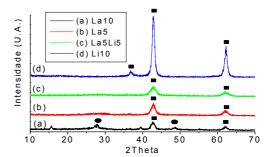


Fig.1) DR-X das amostras calcinadas a T=600°C com diferentes composições molares: (\blacksquare)MgO e (\bullet)La₂O₃.

Ensaios de atividade catalítica

a) Composição do catalisador

A Tabela 2 mostra os resultados de conversão de CH₄ obtidos utilizando amostras com diferentes composições.

Tab.2) Conversão de CH₄ para amostras testadas

Temperatura (°C)	600	650	700	750	800
Amostra	XCH ₄ (%)				
La15	3,8	4,7	7,7	12,8	16,4
La10	4,3	9,3	12,7	14,4	14,5
La5	5,8	8,6	11,5	13,5	13,9
La5Li5	7,0	11,3	14,4	15,7	15,9
La5Li10	0,3	3,6	9,8	16,6	19,5
Li10	0	4,2	10,4	14,6	16,3

Seminário do Programa de Pós-Graduação em Engenharia Química

VI-Oktober Fórum – PPGEQ

23, 24 e 25 de outubro de 2007

Observa-se que a amostra Li10 com alta cristalinidade apresenta baixa conversão de CH₄, principalmente em baixas temperaturas. As outras amostras apresentam um comportamento similar em todo o intervalo de temperatura, com exceção da amostra La5Li10 que apresenta maior conversão em temperaturas altas. A baixa atividade da amostra La15 em temperaturas menores que 750°C pode estar relacionada com sua baixa área superficial e cristalinidade,

A Figura 2 mostra a seletividade para eteno de alguns catalisadores testados. Nota-se que, com o aumento da temperatura de reação ocorre um aumento na seletividade para C₂H₄. Esse comportamento é devido ao fato de que acima de 750°C a contribuição da desidrogenação de etano para eteno pela equação (3) é mais intensa, haja vista que a reação é endotérmica [14].

$$C_2H_6 \rightarrow C_2H_4 + H_2$$
 (3)

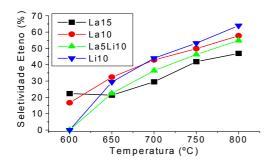


Fig.2) Seletividade para C₂H₄ para as amostras: La15, La10, La5Li10 e Li10.

Para a amostra de Li10 esse aumento é mais acentuado para temperaturas maiores, evidenciando o papel do lítio nas propriedades do catalisador. Por outro lado, a amostra La15 mostra uma baixa seletividade para eteno, indicando que a maior quantidade de lantânio inibe a formação de eteno.

b) Cátion do precipitante

A influência do precipitante contendo diferentes álcalis de metais foi avaliada para a amostra La10. Estas amostras foram denominadas de acordo com o cátion (Na⁺, K⁺ ou Ca⁺⁺) usado na precipitação.

Comparando a conversão de CH₄ para essas amostras (Fig.3), nota-se que a amostra La10_K apresenta maior atividade em todo o intervalo de temperatura. A atividade da amostra La10_Na é menor, no entanto, com o aumento da temperatura seu comportamento é similar à amostra La10_K, diferentemente da amostra La10 Ca que exibe forte

aumento da conversão com o aumento da temperatura. A seletividade para eteno foi maior para a amostra La_Ca, na região entre 750 e 800°C, coincidindo com o aumento da conversão., Isso pode ser explicado pelos resultados mostrados na Fig.4 de TG/DTA que mostra um intenso evento térmico acompanhado de perda de massa próximo a 750°C, que está relacionado com a transformação estrutural do La10_Ca que ocorre durante a reação, ocorrendo a decomposição do CaCO₃ residual com o aumento da temperatura de reação.

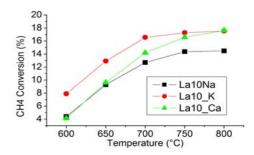


Fig.3) Conversão de CH₄ para as amostras La10_Na, La10 K e La10 Ca.

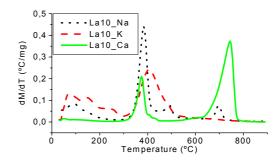


Fig.4) Análise TG/DTA para a amostra La10 preparada com diferentes cátions precipitantes.

c) Influência da lavagem

Para avaliar a influência da lavagem nas propriedades catalíticas, a amostra La10_K foi submetida a dois níveis de lavagem: padrão (La10_K_LP) e exaustiva (La_K_LE) e outra amostra que foi apenas filtrada, isto é, não submetida a lavagem (La10_K_F). Na lavagem padrão, a amostra foi lavada com 2 litros de água deionizada, enquanto que na lavagem exaustiva, a amostra foi lavada até a condutividade constante (aproximadamente 10 litros de água deionizada).

A área superficial medida para as amostras lavadas, mostram um aumento da S_{BET} de 71,9 m^2/g da $La10_K_LP$ para $82,4m^2/g$ da amostra

Seminário do Programa de Pós-Graduação em Engenharia Química

VI-Oktober Fórum – PPGEQ

23. 24 e 25 de outubro de 2007

La10_K_LE, sendo que ambas apresentam maior S_{BET} que a amostra apenas filtrada. Por outro lado, os resultados de TGA/DTA indicam um aumento da estabilidade térmica para a amostra La10_K_LE, sendo que na amostra La10_K_F ocorre decomposição de carbonatos para temperaturas elevadas (maiores que 600°C). Observa-se, através dos resultados mostrados na Tabela 3, que a amostra filtrada (La10_10_F) apresenta menor atividade e seletividade para C_2H_4 , que pode estar relacionado com sua baixa S_{BET_2}

Tab.3) Conversão de CH₄ e seletividade para eteno para temperatura de reação de 700°C das amostras submetidas

a differences lavagens.						
Amostra	Conversão	Seletividade				
	CH ₄ (%)	Eteno (%)				
La10_K_F	3,4	21,8				
La10_K_LP	11,2	43,1				
La10_K_LE	16,6	43,0				

d) Influência do tratamento térmico

A influência da temperatura de calcinação na atividade catalítica foi estudada para a amostra La10_Ca e La10_K, sendo que estas foram submetidas a temperatura de calcinação de 600°C (La_Ca600 e La_K600) e 800°C (La_Ca800 e La_K800). Verifica-se nos resultados de conversão de CH₄ mostrados na Tab.4 que para a amostra La10_Ca a conversão foi maior quando a temperatura de calcinação foi de 800°C, diferentemente da amostra La10_K, além disso, na amostra a S_{BET} aumentou com o aumento da temperatura de calcinação de 28,5 para 35,6m²/g, enquanto que na amostra La10_K ocorre comportamento oposto (71,9 para 54 m²/g),

Tab.4) Conversão de CH₄ para amostras testadas

Temperatura (°C)	600	650	700	750	800
Amostra	XCH ₄ (%)				
La10_Ca600	4,1	9,6	14,2	16,6	17,6
La10_Ca800	5,9	12,0	15,8	16,1	18,6
La10_K600	7,9	12,9	16,6	17,3	17,5
La10_K800	8,9	12,9	15,2	16,4	16,6

3.2 Catalisadores óxidos tipos perovskitas

A Tabela 5 apresenta as amostras preparadas e a denominação utilizada. Para a avaliação da influência da substituição parcial dos metais La e Al nos catalisadores, no Grupo I variou-se a concentração de La e Ca mantendo constante a concentração de Al, no Grupo II variou-se a concentração de Al, substituindo-o por Li ou Mg, mantendo constante a concentração de La.

Caracterização de catalisadores tipo perovskita

A Tabela 5 apresenta os resultados de área superficial específica (S_{BET}) das amostras. No Grupo I nota-se que a substituição de La por Ca resulta em um aumento da área S_{BET} das amostras. Por outro lado, para as amostras do Grupo II, observa-se que a substituição de Al por Mg aumenta a S_{BET} , enquanto que a substituição de Al por Li diminui drasticamente a área superficial.

Tab.5) Amostras de catalisadores tipo perovskitas

	Amostra	Nomenclatura	S _{BET} (m ² /g)
	LaAlO ₃	LaAl	9,9
Crupo I	$La_{2/3}Ca_{1/3}AlO_3$	LaCa ¹ / ₃	11,2
Grupo I	$La_{1/3}Ca_{2/3}AlO_3$	LaCa ² / ₃	11,7
	CaAlO ₃	CaAl	14,3
	$LaAl_{1/3}Mg_{2/3}O_3$	AlMg ² / ₃	12,3
	$LaAl_{2/3}Mg_{1/3}O_3$	AlMg ¹ / ₃	10,1
Grupo II	LaAl _{1/3} Li _{2/3} O ₃	AlLi ² / ₃	1,5
	LaAl _{2/3} Li _{1/3} O ₃	AlLi ¹ / ₃	2,4
	$LaAl_{3/4}Li_{1/4}O_3$	AlLi _{1/4}	2,5
	LaAl _{4/5} Li _{1/5} O ₃	AlLi _{1/5}	1,4

Considerando as altas temperaturas utilizadas no tratamento térmico, as áreas superficiais relativamente altas encontradas para este tipo de material (≈10m²/g), podem estar associadas ao método usado para a preparação das amostras. Estudos comprovam que o método de polimerização utilizando ácido cítrico e etileno glicol permite a formação de compostos com área superficial relativamente alta comparado com outros métodos, além disso, produz um material de alta qualidade, com menor tamanho de cristais e menor quantidade de carbonatos residuais [15-17].

A Figura 5 mostra os difratogramas de Raio-X para as amostras calcinadas a 800°C. Os picos relacionados com a estrutura perovskita ocorrem em aproximadamente $2\theta = 23.4$; 33,5; 41,2; 48,0; 54,1 e 59,7. Para as amostras do Grupo I, observase que a amostra LaAl pura ou estequiométrica apresenta estrutura tipo perovskita, com as bandas correspondentes bem definidas. A substituição do lantânio por cálcio na amostra diminui a intensidade destes picos, sendo que a amostra CaAl, onde o lantânio foi completamente substituído por cálcio, apresenta um difratograma característico de um composto amorfo. Por outro lado, para as amostras do Grupo II, nas quais o alumínio foi parcialmente substituído, percebe-se que a amostra em que o Al foi substituído por Mg apresenta menor cristalinidade do que a amostra substituída

Seminário do Programa de Pós-Graduação em Engenharia Química

VI-Oktober Fórum – PPGEQ

23, 24 e 25 de outubro de 2007

pelo Li. Na amostra AlLi 1 3, os picos em 31,7° e 44,2° correspondem à formação de Li $_{2}$ La $_{4}$ O $_{7}$ e o pico em 24,6° é devido ao composto LiAl, caracterizando a formação de uma estrutura cristalina diferente das outras amostras. Já para a amostra contendo magnésio, observa-se a formação de LaMg $_{2}$ em 24,6°. Para as amostras AlMg 1 3, LaCa 2 3 e LaCa 1 4 a presença do composto LaAl é evidenciado pelos picos que ocorrem em 30,9° e 27,9° [18].

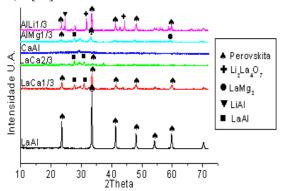


Fig. 5) DR-X das amostras calcinadas a T=800°C.

Ensaios de atividade catalítica

Observa-se nos resultados de conversão mostrados na Tabela 6, que a conversão das amostras aumenta significativamente com a temperatura. A seletividade para C_2H_4 em função da temperatura de reação para alguns catalisadores do Grupo I e Grupo II é mostrada na Figura 6.

Tab.6) Conversão de CH₄ dos catalisadores testados

Temperatura (°C)		600	650	700	750	800	
Amostra		XCH ₄ (%)					
Grupo I	LaAl	4,5	10,7	14,0	15,5	15,9	
	LaCa ¹ / ₃	1,8	4,8	8,9	12,5	14,2	
	LaCa ² / ₃	0,1	1,6	5,6	9,6	12,9	
	CaAl	0	0,1	0,5	2,6	5,6	
Grupo II	AlMg ² / ₃	1,5	4,8	8,9	12,2	13,9	
	AlMg ¹ / ₃	0,4	2,9	7,3	10,8	12,3	
	AlLi ² / ₃	0	0,4	2,8	7,7	15,2	
	AlLi⅓	0,1	1,4	7,2	17,1	19,9	
	AlLi _{1/4}	0,1	2,5	14,0	20,3	20,2	
	AlLi _{1/5}	0,2	3,0	15,2	23,9	21,9	

Das amostras do Grupo I, verifica-se que a amostra LaAl apresenta melhores resultados de conversão de CH_4 . Nota-se que a atividade diminui com o aumento da quantidade de cálcio nas amostras. O mesmo ocorre com a seletividade para eteno apresentada na Fig.6. Verifica-se, portanto, que o aumento da S_{BET} obtido para as amostras com

maior teor de cálcio (Tab.5) não implica em um aumento de conversão. Os resultados de DR-X mostraram que aumentando o teor de Ca na amostra, a estrutura do catalisador tende a se tornar amorfa, então, pode-se relacionar a atividade com a cristalinidade da fase perovskita na amostra.

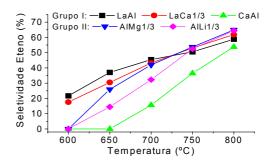


Fig.6) Seletividade para Eteno para catalisadores testados do Grupo I e Grupo II.

Os resultados de conversão de CH₄ relacionados às amostras do Grupo II revelam comportamentos diferentes quando se substitui alumínio por magnésio ou lítio. Nota-se que a substituição de alumínio por magnésio resulta em diminuição da conversão. Por outro lado, a substituição parcial de alumínio por lítio apresenta melhores resultados de atividade para a amostra AlLi_{1/5}. Os resultados mostram que a atividade independe da área superficial e está relacionada com a estrutura do catalisador e a natureza dos sítios presentes. O aumento da seletividade para C₂H₄ (Fig.6) com a temperatura para todas as amostras deve-se ao fato de que em temperaturas elevadas (maiores que 750°C) tem-se uma significativa contribuição da desidrogenação do etano para eteno, uma vez que esta reação é endotérmica.

Teste de estabilidade

A Figura 7 mostra os resultados do teste realizado para avaliar a estabilidade do catalisador LaAlO₃.

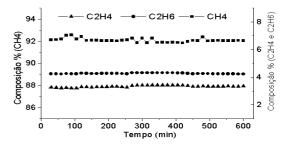


Fig. 7) Composição de hidrocarbonetos em função do tempo de reação com LaAlO₃ a T=700°C.

Seminário do Programa de Pós-Graduação em Engenharia Química

VI-Oktober Fórum – PPGEQ

23, 24 e 25 de outubro de 2007

Este teste foi realizado na temperatura de 700°C com razão molar de CH₄/O₂ igual a 2. Os resultados mostram que o catalisador mantém atividade praticamente constante durante todo o intervalo de tempo do teste. A conversão média nesse período foi de 8%.

3.3. Influência da atmosfera reacional

Sabe-se que o acoplamento oxidativo produz óxidos de carbonos como sub-produtos indesejáveis. Portanto, o objetivo foi avaliar o comportamento catalítico utilizando como agente oxidante misturas de ar/CO₂ com diferentes proporções. A quantidade de CO₂ na mistura foi limitada em 50mol%. Os resultados mostram que a substituição parcial de ar por CO₂ diminui a conversão de CH₄ e, por outro lado, inibe a formação de CO₂ e CO como se observa na Figura 8 que mostra a razão de C₂/CO_x.

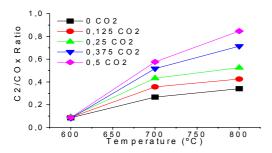


Fig.8) C_2/CO_x para diferentes proporções de alimentação de CO_2 .

4. Conclusão

Catalisadores tipo óxidos mistos

Os resultados obtidos com catalisadores de diferentes composições mostram que melhores propriedades catalíticas são obtidas quando a amostra baseadas em Mg que contem ambos os promotores (La e Li). A amostra contendo apenas Li como promotor resulta em um catalisador com alta cristalinidade e baixa atividade.

Sobre a influência da preparação:

- O cátion K⁺ usado como precipitante, melhora a atividade e seletividade para C₂ (eteno e etano).
- ullet O nível de lavagem modifica a S_{BET} e influi na atividade e seletividade
- O tratamento térmico a temperatura maior (800°C) apresenta melhores resultados de atividade catalítica para a amostra La10_Ca.

Catalisadores óxidos tipo perovskita

A substituição parcial de La por Ca na perovskita LaAl promove aumento na S_{BET} ,

diminuição na atividade e na cristalinidade. Por outro lado, quando se substitui Al por Mg aumenta a S_{BET} diminui a cristalinidade. A substituição de Al por Li resultou em um composto mais cristalino e com superfície fortemente alcalina, porém com menor S_{BET}, sendo que a amostra AlLi_{1/5} apresentou melhores resultados de atividade. O aumento na conversão de CH₄ para as amostras contendo Li é devido à cristalinidade e superfície básica da amostra. Verificou-se que a amostra LaAl manteve-se estável durante o período de 10 horas no teste de estabilidade.

A substituição de ar por Co2 como agente oxidante na reação apresenta aumento na razão C_2/Co_x com aumento de CO_2 na alimentação

5. Bibliografia

- 1. G.F. Keller; M. Bhasin; J. Catal., 1982, 79, 9.
- 2. J. H. Lunsford; Catal. Today, 2000, 63,165.
- 3. O. V. Krylov; Catal. Today, 1993, 18, 209.
- O. W. P. Lopez, T.M. Farias, C.P. Correa, N.R. Marcilio, XIV Cong. Arg. Catálisis, 2005.
- V. R. Choudhary; V. H. Rane; S. T. Chaudari, Fuel 2000, 79, 1487.
- Ahmed, S., Moffat, J.B.; Ap. Catal.,1989,54, 241.
- Matsuura, I., Utsumi, Y., Yoshida, T.D., Applied Catalysis, 1989, 47, 299.
- 8. Park, S., Chang J.; Ap. Catalysis, 1992, 85, 117.
- 9. Wang D. J., Rosynek M. P., Lunsford J. H, J. Catalysis, 1995, 155, 390.
- 10. L. Viciu, O. V. Golub, J. B. Wiley, J. Solid State Chem., 2003, 175, 88.
- 11. A. L. Sauvet, J. Fouletier, F. Gaillard, M.Primet, J. Catal., 2002, 209, 25.
- 12. R. Auer, M. Alifanti, B. Delmonb, F. C. Thyrion, Appl. Catal. B, 2003, 41, 71.
- 13. P. Dinka, A. S. Mukasyan, J. Power Sources, 2007, 167, 472.
- 14. Perez Lopez, O. W., Farias, T. M., Correa, C. P., in 2nd Mercosur Congress on Chemical Engineering, 4th Mercosur Congress on Process Systems Engineering, Rio de Janeiro (2005)
- M. A. Pena, J. L. Fierro, Chem. Rev., 2001, 101, 1981.
- 16. M. Kakihana, M. Arima, M. Yoshimura, N. Ikeda, Y. Sugitani, J. All. Comp., 1999, 102.
- 17. A. Majid, J. Tunney, S. Argue, D. Wang, M. Post, J. Margeson; J. of Alloys and Comp.; 2005, 398, 48.
- 18. Crystmet –The metals database (acesso: www.portaldapesquisa.com.br/databases/sites)