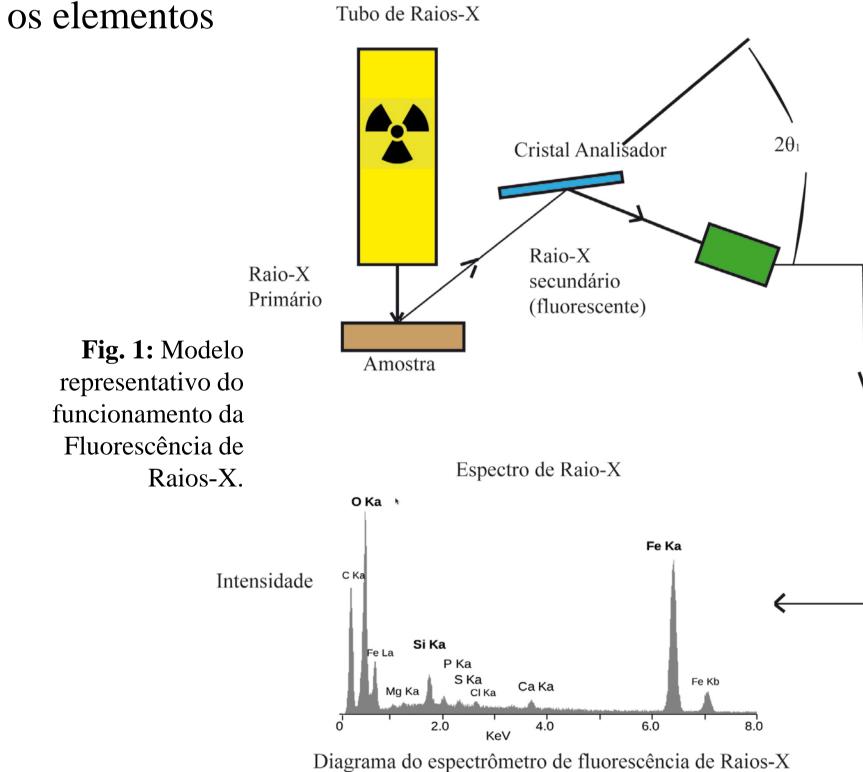
O Emprego Da Fluorescência de Raios-X Na Determinação Da Composição Química De Rochas Fosfáticas

HENRIQUE DE MAMAN ANZOLIN¹, NORBERTO DANI ²

1 Autor, Geologia, Universidade Federal do Rio Grande do Sul 2 Orientador

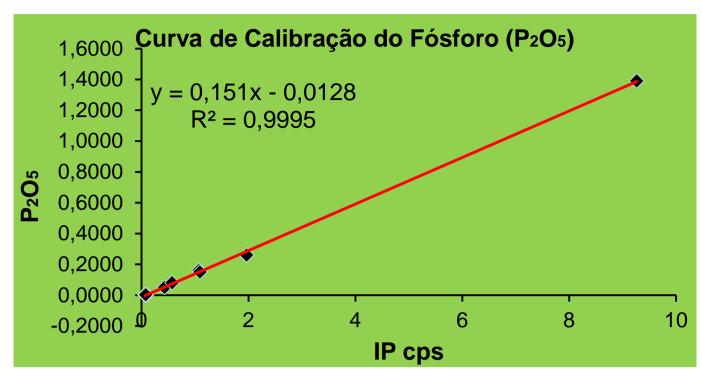


1. Introdução

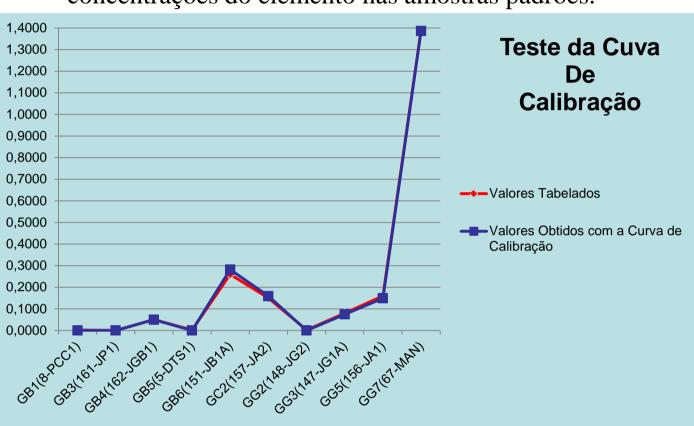
Rochas fosfáticas possuem um importante caráter econômico devido a necessidade de fosfato para produção de fertilizantes. Com o aumento da demanda necessária para suprir as necessidades da agricultura, a procura por depósitos de fosfatos se tornou uma necessidade nacional. O uso da fluorescência de Raios X (XRF) permite analisar quimicamente materiais rochosos identificando e quantificando a presença de fosfatos que possam caracterizar uma jazida.

2. Sobre O Equipamento

Na Fluorescência de Raios-X, a amostra é bombardeada por um tubo de raios-X, o que faz com que os elementos presentes nas amostras emitam radiação fluorescente, que passa por um cristal analisador onde é difratada e posteriormente identificada (WDS). Como cada elemento possui um conjunto característico de linhas no espectro dos raios-X fluorescentes, é possível identificar quais estão presentes e, pela intensidade do pico, quantificar



2. Objetivos


Construir curvas de calibração que possibilitem analises precisas utilizando técnicas com aplicação da XRF, analisar amostras de um perfil de alteração de uma área onde ocorrem rochas fosfáticas.

3. Metodologia

Para construir as curvas de calibração, foram utilizadas 10 padrões de rocha cujas composições eram previamente conhecidas. Estas foram analisadas utilizando a XRF e os valores obtidos foram equacionados junto com as proporções de cada elemento presente em cada amostra, criando uma curva de calibração para cada elemento a ser analisado.

Fig. 2: Curva de calibração construída a partir de amostras padrões. Os resultados obtidos com a análise no método XRF utilizando o cristal GE, feito de germânio, na forma de intensidade dos picos P-kα característicos do elemento no espectro de Raios-X fluorescentes (IP cps) são equacionados junto com as concentrações do elemento nas amostras padrões.

Fig. 3: Teste da curva de calibração obtida. Os mesmos padrões foram analisados utilizando a curva acima e os valores obtidos comparados as concentrações tabeladas. O teste mostra uma boa precisão do método, com os valores praticamente se sobrepondo.

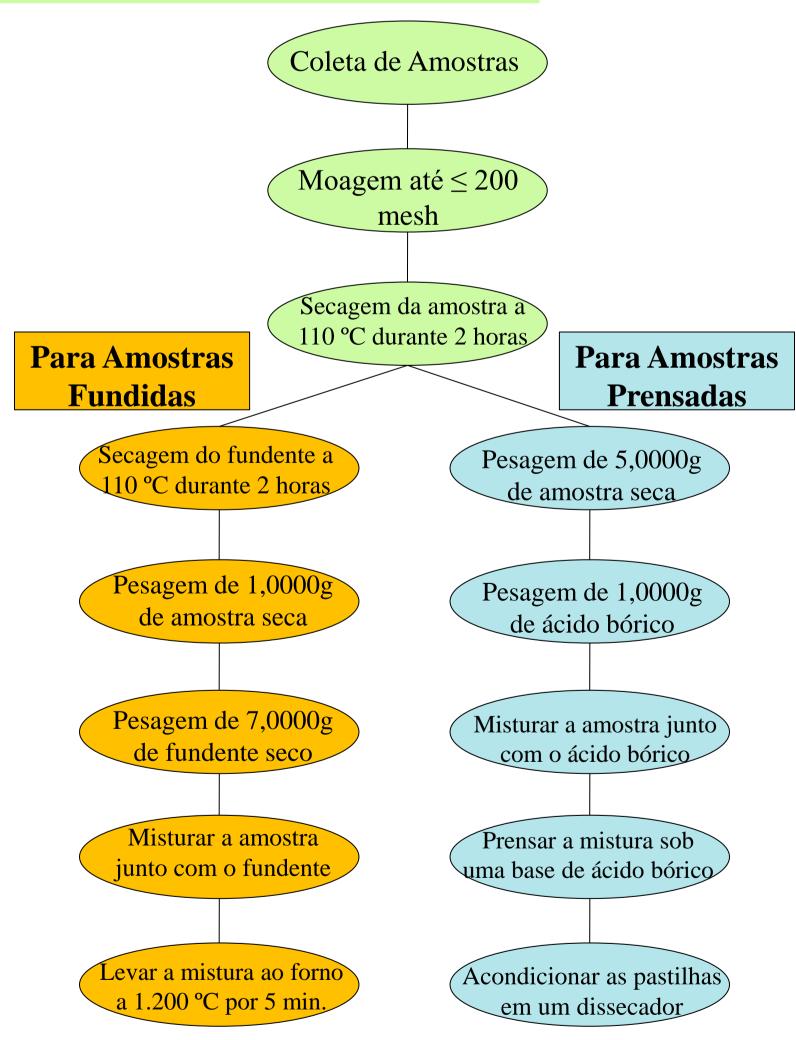

	PICO (Kcps)	
AMOSTRA	P_2O_5	P ₂ O ₅ pastilha
GB1(8-PCC1)	0,0952	0,0020
GB3 (161-JP1)	0,0871	0,0000
GB4(162-JGB1)	0,4328	0,0500
GB5 (5-DTS1)	0,0623	0,0020
GB6(151-JB1A)	1,9671	0,2600
GG2 (148-JG-2)	0,0777	0,0020
GG3(147-JG1A)	0,5721	0,0800
GG5(156-JA1)	1,0753	0,1600
GC2(157-JA2)	1,0928	0,1500
GG7(67-MAN)	9,2626	1,3900

Tabela 1: Tabela com amostras padrões utilizadas na construção das curvas de calibração e valores utilizados na construção do gráfico da Figura 2.

	Valores	Valores Obtidos com a
Amostras	Tabelados (%)	Curva de Calibração (%)
GB1(8-PCC1)	0,0020	0,000
GB3 (161-JP1)	0,0000	0,000
GB4(162-JGB1)	0,0500	0,050
GB5(5-DTS1)	0,0020	0,000
GB6(151-JB1A)	0,2600	0,282
GC2(157-JA2)	0,1500	0,159
GG2(148-JG2)	0,0020	0,000
GG3(147-JG1A)	0,0800	0,075
GG5 (156-JA1)	0,1600	0,149
GG7(67-MAN)	1,3900	1,386

Tabela 2: Valores utilizados na construção do gráfico ao lado. Note uma pequena variação entre os valores tabelados para cada amostra padrão e os valores obtidos analisando estas mesmas amostras com a curva de calibração acima.

4. Fluxograma das atividades empregadas para a preparação de amostras para análise com XRF

Fig. 4: Diagrama Passo-a-passo de preparação de amostras para análise no método XRF. As amostras podem ser preparadas tanto pelo método de amostras fundidas, onde aumenta a precisão do método, quanto pelo método de amostras prensadas, o que permite a análise de elementos menores.

Referências

FORMOSO, M.L.L et al. (1984) **Técnicas Analíticas Instrumentais Aplicadas À Geologia**. São Paulo, Secretaria do Estado da Industria e do Comércio, Ciência e Tecnologia.

CASTRO, Liliana N., MELGAR, Ricardo J. Fosfatos, **Minerales para la Agricultura en Latinoamérica.** Argentina, 2005. pag. 37-237.

Normas de preparação e análise de amostras do Laboratório de Geoquímica do Instituto de Geociências da Universidade Federal do Rio Grande Do Sul