

Evento	Salão UFRGS 2014: SIC - XXVI SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2014
Local	Porto Alegre
Título	Avaliação de uma metodologia alternativa para incorporação de MMT- Na em borracha natural
Autor	MONICA STEDILLE DE LEMOS
Orientador	MARLY ANTONIA MALDANER JACOBI

Borrachas para terem aplicação tecnológica, além da sua necessidade de reticulação necessitam de cargas de reforço para alcançarem propriedades como resistência mecânica, resistência ao desgaste e dureza, entre outras. O reforço alcançado depende da interação carga-borracha dependendo da natureza da carga (presença ou não de grupos funcionais) e da área superficial da carga, portanto do tamanho e da forma da partícula de carga. A incorporação da carga em borrachas é um processo que exige energia e deve ser adaptado à natureza da carga. No atual estágio de desenvolvimento tecnológico se exige processos eficientes de incorporação de cargas, do ponto de vista de menores custos e de menor agressão ao meio ambiente. A exemplo do que vem ocorrendo com os termoplásticos, a argila montmorilonita sódica (MMT-Na) e as correspondentes modificadas quimicamente, surgem alternativas na formação de nanocompósito. Nanocargas caracterizam-se por como apresentarem uma das suas dimensões em escala nano e, como consequência, desta dimensão nana, já um baixo teor de carga, resulta em alto grau de reforço. A MMT se destaca por apresentar estrutura em camadas lamelares com espessuras manométricas e larguras de 30nm a vários microns, unidas entre si por interações intermoleculares. É uma carga de baixo custo que possui ainda boa capacidade de delaminação quando imersa em água. O grau de reforço alcançado com a MMT depende do seu grau de esfoliação alcançado durante o processo de incorporação na matriz polimérica. Estudos descritos na literatura e a experiência do laboratório mostram que os processos tradicionais aplicados às cargas convencionais são pouco eficientes quando aplicados à MMT.

Neste trabalho foi avaliado um novo processo de incorporação da argila MMT-Na em NR. Consiste na adição da mesma em emulsão aquosa, a 5% em massa, fazendo-se uso da grande capacidade que a argila tem de absorver água e formar uma emulsão, relativamente, estável. O processo consiste na adição da emulsão, contendo o teor de MMT desejado, diretamente, na câmara de mistura acoplado à um reômetro Haake, com os rotores em movimento (110 rpm), a 120°C. Nestas condições a água evapora e a argila é incorporada na borracha. Os compostos preparados são submetidos ao processo de secagem, em estufa á vácuo, até peso constante. As amostras retornam à câmara de mistura para receberem o sistema de reticulação: óxido de zinco (2,5phr), estearina (1phr); enxofre, S(1,66 phr) e CBS(2,5phr). O composto é vulcanizado em prensa elétrica, sob pressão de 5 bar, a 150°C, por um tempo determinado por reometria, obtendo-se placas 2 mm de espessura. A resistência à tração é determinado a partir de corpos de prova cunhadas destas placas, no formato segundo a norma ASTM D. As medidas foram realizadas em máquinas de ensaio EMIC. Além disso, as amostras foram caracterizadas pelo seu comportamento frente ao solvente (grau de inchamento) e a morfologia da argila nos compostos elastoméricos foi avaliado por espectroscopia de difração de raios X.

Nos difratogramas observa-se a presença de dois picos o que é uma indicação de que a argila não está totalmente esfoliada. As propriedades mecânicas das amostras contendo 1,2,4 e 5 phr de MMT são similares, observando-se valores um pouco maiores para a amostra contendo 10phr de MMT. O grau de inchamento ficou muito próximo também indicando que o grau de reticulação para todas as amostras é similar.

Os resultados até aqui alcançados indicam que o processo, sob avaliação, não é eficiente, e que precisa ainda ser otimizado. Indica que, mesmo a argila estar expandida e/ou parcialmente esfoliada em solução aquosa, esta estrutura não é mantida na matriz polimérica, ou por se reagregar durante a incorporação, ou durante o processo de vulcanização. Os resultados corroboram com o descrito na literatura de que é muito difícil alcançar estruturas esfoliadas de argila não modificada em matriz de NR. O processo para ter uma aplicabilidade precisa ainda ser muito aprimorado. (UFRGS).