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ABSTRACT

Virtualization allows one or more virtual networks to share physical infrastructures. The

Virtual Network Embedding problem (VNEP) is one of the main challenges in the

virtualization of physical networks. This problem consists in mapping a virtual network into a

physical network while respecting capacity constraints. This work shows that finding a feasible

solution for this problem is NP-Hard. However, many instances can be solved up to optimality

in practice by exploiting the problem structure. We present a Branch & Price algorithm applied

to instances of different topologies and sizes. The experimental results suggest that the

proposed algorithm is superior to the Integer Linear Programming model solved by CPLEX.

Keywords: Branch & Price. Virtual Network Embedding. Network Virtualization. Exact

Algorithms.



Branch & Price para o Problema de Mapeamento de Redes Virtuais

RESUMO

Virtualização permite o compartilhamento de uma rede física entre uma ou mais redes virtuais.

O Problema de Mapeamento de Redes Virtuais é um dos principais desafios na virtualização

de redes. Esse problema consiste em mapear uma rede virtual em uma rede física, respeitando

restrições de capacidade. O presente trabalho mostra que encontrar uma solução factível para

esse problema é NP-Difícil. Mesmo assim, muitas instâncias podem ser pode ser resolvidas na

prática através da exploração de sua estrutura. Nós apresentamos um algoritmo de Branch &

Price aplicado a instâncias de diferentes topologias e tamanhos. Os experimentos realizados

sugerem que o algoritmo proposto é superior ao modelo de programação linear resolvido com

CPLEX.

Palavras-chave: Problema de Mapeamento de Redes Virtuais. Programação Linear Inteira.

Geração de Colunas. Algoritmos Exatos.
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1 INTRODUCTION

The current Internet architecture supports a large array of applications and technologies.

However due to its decentralized and heterogeneous nature, it has become difficult to address

new requirements. Any architectural change in the Internet has to be agreed upon by Internet

Service Providers, and hardware and software vendors. This problem has been called the

“ossification of the Internet.”

Network Virtualization has been seen as the solution for the problem of ossification of the

Internet, a way to facilitate the evolution of Internet protocols (ANDERSON et al., 2005). By

creating a new layer of abstraction over the physical networks, multiple networks can

simultaneously use the same physical structure in a transparent way. In this way, new protocols

can be tested on heterogeneous experimental architectures (ANDERSON; REITER, 2006).

Likewise, Service Providers can take advantage of Network Virtualization to offer

customized services, like customized protocols or co-location from expanded network

presence, by leasing resources from infrastructures providers (FEAMSTER; GAO;

REXFORD, 2007).

Virtualization is already being used in practice for supporting experimental facilities, such

as GENI (ANDERSON; REITER, 2006) and the Planet Lab architecture (CHUN et al., 2003).

It has being seen as an enabler of Cloud Computing and Software Defined Networks (SDN)

(GUERZONI et al., 2014).

Several technical problems arise in the implementation of virtual network environments.

Among the main operational challenges are resource discovery, resource allocation and resource

configuration (CHOWDHURY; BOUTABA, 2010). The current work focusses on resource

allocation in network virtualization.

The Virtual Network Embedding Problem (VNEP) — also known as Network Testbed

Mapping (RICCI; ALFELD; LEPREAU, 2003), Virtual Network Assignment (ZHU;

AMMAR, 2006), and Virtual Network Mapping (BELBEKKOUCHE; HASAN;

KARMOUCH, 2012) — is central to achieve virtualization. It consists in allocating physical

resources to virtual networks. Virtual nodes are mapped into physical nodes; and virtual links

into physical paths that link the physical nodes that host their endpoints. Those physical

resources have processing limitations that need to be taken into account. Additionally,

applications usually need to select the best mapping according to some metric, such as cost,

revenue, or power usage.

As network virtualization is not yet a mature field, problems are still being defined and
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classified. Different classifications and more information about different constraints of

virtualization problems are found in (FISCHER et al., 2011; CHOWDHURY; BOUTABA,

2010; FISCHER et al., 2013). There are several variations of the problem such as mapping

multiple networks simultaneously (HOUIDI et al., 2011), instead of a single one at a

time (CHOWDHURY; BOUTABA, 2010). Some works map virtual networks in an online

fashion (requests arrive dynamically, lasting for a period of time), using and releasing physical

resources dynamically (YU et al., 2008). Physical nodes and links can be restricted to host a

limited number of virtual nodes and links or certain virtual links can have a location

restriction. Some applications have security restrictions, that limit the subset of physical nodes

and links that can be used for mapping (BAYS et al., 2012). Additional constraints can also be

present such as delay (INFüHR; RAIDL, 2011), efficient use of energy (BOTERO et al.,

2012), and redundancy (SHAMSI; BROCKMEYER, 2008). This work captures the core of

those constraints into a VNEP definition that is both hard and generic.

Due to the difficulty of solving the VNEP, few exact algorithms are proposed in the

literature. For most practical purposes, heuristic algorithms can provide good suboptimal

solutions for the problem. Still, exact algorithms serve as a comparison or baseline to evaluate

heuristic algorithms. Moreover, they can be practical for specific cases, such as for small

virtual virtual networks or physical networks with a large amount of resources.

Only recently exact algorithms for the VNEP have been explored. This work proposes

a Branch & Price algorithm for the VNEP that is able to solve optimally larger instances than

those that were previously solved through other exact algorithms presented in the literature. This

algorithm is compared experimentally with randomly generated instances with four different

types of topologies, ranging from twenty to two hundred nodes.

This work contributions are the following:

• a concise VNEP version is presented. That problem is both generic and hard to solve,

preserving the main components of all VNEP definitions;

• the problem is further classified by providing a complexity proof;

• a new extensive model is presented for the Single-Path VNEP;

• this model is solved with a column generation algorithm;

• an efficient algorithm for solving the pricing problem of column generation algorithm is

provided;

• the column generation algorithm is extended to a Branch & Price algorithm to provide

optimal integer solutions for the problem;
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An overview of related works with a focus on exact solutions for the VNEP is presented

in Chapter 2. Chapter 3 describes the Virtual Network Embedding problem, presents available

models and an analysis of its complexity. Chapter 4 presents the Column Generation algorithm.

The Branch & Price algorithm is detailed in Chapter 5. Experimental results are presented and

analysed in Chapter 6. Finally, this work is concluded in Chapter 7 with a summary of this

study and future research directions.
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2 RELATED WORK

Network virtualization is still a recent field, problems are still being defined and classified.

Different classifications and more information about different constraints of virtualization

problems are found in (FISCHER et al., 2011; CHOWDHURY; BOUTABA, 2010; FISCHER

et al., 2013).

This chapter gives an overview of related works with a focus on exact algorithms. It is

divided in four sections. Section 2.1 presents a historical background and overview of some

of the most important works on the VNEP. Related problems are presented in Section 2.2.

Section 2.3 summarizes related works, mainly those that contain exact algorithms for the VNEP.

Section 2.4 refers to important publications related to Branch & Price and Column Generation.

2.1 Overview

Virtual Network Embedding is the main problem involved in network virtualization. Due

to the difficulty of finding optimal solutions for large instances of the VNEP, early works, such

as (ZHU; AMMAR, 2006), solve VNEP using heuristic algorithms. Others relax constraints,

such as node and link capacity constraints (FAN; AMMAR, 2006). Many works, starting with

(YU et al., 2008), propose the splitting of virtual links into multiple paths in the physical

network. Although those relaxations can be more easily solved, they cannot be always applied

in practice. Moreover, heuristic algorithms are not guaranteed to find feasible solutions.

The first exact algorithm proposed for VNE was a backtrack algorithm presented

in (LISCHKA; KARL, 2009). Another algorithm based on an integer linear model was

proposed in (CHOWDHURY; RAHMAN; BOUTABA, 2012). However, both works use

heuristic versions of their algorithms in their evaluation, as exact algorithms are deemed too

expensive to be used in practice.

The first article to propose and test an exact algorithm based on an Integer Linear Program

for VNE was (HOUIDI et al., 2011). Since then, more authors are proposing exact algorithms

for the problem

A diverse set of constraints is modeled with Integer models, such as optical virtual

networks (PAGES et al., 2012), security constraints (BAYS et al., 2012), virtual networks

sharing physical links availability (TRINH; ESAKI; ASWAKUL, 2011), and optimizing

energy usage (BOTERO et al., 2012).

Two column generation models were presented in the literature for the VNEP. In (JARRAY;

KARMOUCH, 2012), column generation is used to deal with multiple requests and in (HU;
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WANG; CAO, 2013), individual requests are mapped with a path-based formulation.

2.2 Related Problems

Virtual private networks (VPNs) are virtual “sub-networks” in larger physical networks

(GUPTA et al., 2001). A group of nodes of the physical networks reserves a part of the

bandwidth capacity of physical links in order to communicate with each other. The VPN

Design problem consists in providing a routing between the nodes that support their

communication. As the resources are limited, the reservation of links has a cost. The total cost

of the final design ought to be minimized. Moreover, some applications desire that the final

sub-network has a simple structure like a tree to ease routing and communication.

The VNEP is considerably harder than the VPN Design Problem (ZHU; AMMAR, 2006).

Virtual nodes are not fixed in physical nodes, increasing the solution space. Moreover, in the

VNEP, links cannot generally share bandwidth, hence demanding more coordination between

the routing of virtual links and node mapping.

Some works, such as (CHOWDHURY; RAHMAN; BOUTABA, 2012), reduce VNEP to

another known problem, the minimum-cost multicommodity flow problem (MMFP). This

problem consists in finding a flow that ships multiple commodities through a single network

without violating the capacity constraints of the edges and has a minimum cost (GOLDBERG

et al., 1998). Given an undirected graph G = (V,E) with capacity ce for each edge e ∈ E, and

a set of terminal pairs T , and a demand ρi for each terminal pair i, the objective of this

problem is to find a flow through G that fulfils the demand without violating the constraints.

For networks that allow path splitting, each mapping of virtual nodes in an instance of the

VNEP yields an instance of the multicommodity flow problem.

Since this work focus on the Single-Path VNEP, another important problem to consider is

the Unsplittable Flow Problem (UFP). It consists in finding a set of valid paths P such that the

demand ρi of each terminal pair flows through the paths in P without violating the capacities ce.

VNEP is related to a problem identified by Kleinberg (1996): the problem of finding a subset

of terminals that maximizes the total demand fulfilled. Each possible combination of a possible

mapping of the VNEP gives rise to an instance of the Unsplittable Flow Problem.
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2.3 Virtual Network Embedding Problem

This section summarizes some of the most relevant papers related to the exact solution of

the Virtual Network Embedding Problem. Table 2.1 summarizes a selected list of related works.

Columns Exact and Heuristic show whether the work contains an exact or heuristic algorithm.

Column SP, if the work presents a single-path version of the VNEP and, MP, a multiple-path

version. Works that support the embedding of multiple requests simultaneously are marked

in Column MR . Finally, column Objective shows what feature is optimized in the presented

algorithm.

Table 2.1: Overview of selected related works

Reference Exact Heuristic SP MP MR Objective
Yu et al. (2008) x x Revenue and Cost
Lischka and Karl (2009) x x x Cost
Houidi et al. (2011) x x x Cost
Trinh, Esaki and Aswakul (2011) x x Cost
Inführ and Raidl (2011) x x Cost
Chowdhury, Rahman and Boutaba (2012) x x x Cost and load balancing
Bays et al. (2012) x x Resources Utilization
Pages et al. (2012) x x x Requests served
Botero et al. (2012) x x Inactive resources
Jarray and Karmouch (2012) x x Revenue
Alkmim, Batista and Fonseca (2013) x x x Resources Utilization
Hu, Wang and Cao (2013) x x Cost
Guerzoni et al. (2014) x x x Total revenue

Source: from author (2015).

Table 2.2 summarizes the main characteristics of benchmark instances used in related works.

Due to the heterogeneity of units of measure presented in the literature, values are presented in

absolute units. Columns |S| and |V | show the number of nodes of the physical and virtual

graphs, respectively. Column Vcap shows the range or average of the capacity of nodes, and

Column Vdem shows the range or average of virtual node demands. Column Ecap shows the

bandwidth capacities of physical nodes while Column Edem, the bandwidth demands of virtual

links.

The contribution of Yu et al. (2008) is twofold: It proposes a virtual network embedding

algorithm that allows one virtual edge to be mapped to multiple substrate paths (path splitting)

and migration of these paths to optimize the physical substrate usage. Additionally it proposes

specialized virtual network embedding algorithms for special classes of virtual network

requests. The objective function treated is multi-objective, a maximization of the revenue and
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Table 2.2: Benchmark characteristics of selected related works

Reference |S| |V | Vcap Vdem Ecap Edem

Lischka and Karl (2009) 100 [10, 40] [0, 100] [0, 90] [0, 100] [0, 90]
Houidi et al. (2011) 50 [2, 10] [50, 100] [0, 20] [50, 100] [0, 50]
Inführ and Raidl (2011) [20, 100] [2, 20] [25, 100] [1, 5] [25, 100] [1, 7]
Chowdhury, Rahman and Boutaba (2012) 50 [2, 10] [50, 100] [0, 20] [50, 100] [0, 50]
Bays et al. (2012) [50, 100] [17, 66] 100 [1, 50] [1, 10] [0.1, 5]
Alkmim, Batista and Fonseca (2011) [5, 25] [5, 10] 256 128 [1, 10] [0.1, 0.4]
Hu, Wang and Cao (2013) [10, 50] [2, 10] [1, 50] [1, 20] [1, 50] [1, 20]
Guerzoni et al. (2014) [50, 250] [2, 5] [50, 100] [1, 10] [50, 100] [1, 25]

Source: from author (2015).

a minimization of the total cost.

In the proposed approach, the virtual network requests are put in priority queue. Each virtual

network request has a lifetime that can range from a few minutes to several days. Periodically,

requests in the queue are processed in order of decreasing revenue. If the heuristic algorithm

fails to find a valid mapping, the network request is rejected. The mapping algorithm works in

two sequential phases: The node mapping and the link mapping.

Two algorithms are used for node mapping: a specialized version for hub-and-spoke

topologies and a general algorithm. The general algorithm maps the nodes greedily using

information of the substrate node resources and the available bandwidth of the adjacent

physical links. Hub-and-spoke are hierarchical topologies, commonly found in centralized

databases/servers. The specialized algorithm maps greedily the hubs and uses a shortest-path

algorithm to map the spoke nodes to the closest substrate nodes.

After the virtual nodes are mapped, virtual links need to be mapped to physical paths

between the endpoints of those virtual links. If path splitting is not allowed, those paths are

calculated using k-shortest paths algorithm iteratively. For networks that allow path splitting, a

multicommodity flow algorithm is used. If after the flow is calculated, there is a substrate edge

that is congested, i.e. an edge that holds more flow than its capacity, the endpoint of this edge

is mapped to another substrate node and another multicommodity flow algorithm is run. The

process is repeated until either a valid mapping is found or a limit number of iterations is

reached.

Results show that the use of specialized algorithms of node mapping for some topologies

has a clear benefit in the cost and revenue. Path splitting is shown to better use the physical

resources, specially when resources are more limited in relation to the demands.

Lischka and Karl (2009) presents a one-stage method for the VNEP based on vnmFlib, a
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backtrack algorithm for subgraph isomorphism. Nodes and links are mapped simultaneously,

allowing unfeasible node mappings to be detected early. Moreover, a short NP-Completeness

proof of the VNEP is presented.

The proposed algorithm works as follows: Suppose one part of the virtual network is already

mapped, the next virtual node u to be mapped is selected. All substrate nodes that do not host

virtual nodes in the current solution are candidates to host v. The first node in this list is selected.

Then, all virtual links that join u and another nodes already mapped are mapped. If no path is

found, the algorithm backtracks to the last valid solution and maps u to another substrate node.

When all nodes and links of the virtual network are mapped or there are no more candidates,

the algorithm stops.

As the objective of this work is to find valid mappings of multiple virtual networks in a

window of time, some steps are taken to limit the search space. The first is to limit the maximum

size of a path in the substrate graph to a parameter ε, what can improve the running time of

the algorithm, but can fail to find a valid solution in instances where a valid mapping exist.

Likewise, the number of mappings (nodes in the backtrack tree) is limited by a parameter ω.

Experiments show that the proposed algorithm results in better mappings and is faster than

the traditional two stage approach taken in (YU et al., 2008) for requests with large demands.

Houidi et al. (2011) treats two problems related to virtualization: Splitting virtual network

requests across multiple physical infrastructure providers and embedding those requests on the

available physical resources. An exact algorithm based on an Integer Linear Program is

presented for the Virtual Network Embedding problem. This program is solved with a branch

and bound algorithm. The presented model supports the mapping of multiple virtual network

requests simultaneously. This work is the first to use an exact algorithm to solve VNEP as

previous works deemed the problem intractable.

In its evaluation section, it is shown that exact embedding is useful for small scale virtual

networks. It is also shown that the proposed algorithm makes a better use of physical resources,

accepting more virtual network requests and resulting in lower embedding costs overall.

Trinh, Esaki and Aswakul (2011) presents a nonlinear model for the VNEP. In certain

applications — such as e-mail, fax, SMS —, the allocated resources do not need to be

exclusive, but can be offered within a certain guaranteed level of quality. Substrate link

resources are divided between the allocated virtual networks. The model is solved with

MATLAB. The authors claim that the sharing of resources brings forth an economy of roughly

26%. However, the experimental results are limited to only one physical substrate network.

Inführ and Raidl (2011) introduces new constraints of delay, routing and location. Each
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physical link used by a virtual link adds delay to communication. Virtual links have a limit

on the total delay of their route. Physical nodes have a capacity on the amount of bandwidth

they can route. Virtual nodes have a limited set of physical nodes they can be mapped to.

Those constraints are modeled with an ILP and solved with CPLEX. Multigraphs are used to

model physical networks because substrate nodes can be connected with an heterogeneous set

of physical links.

That work presents a hybrid algorithm for generating realistic instances for the VNEP.

Substrate networks are generated by modifying real Internet topologies available online. The

tool nem-0.9.6 was used to randomly remove nodes in order to reduce those topologies to

proper sizes while maintaining their original properties. Capacities of nodes and links are

assigned according node connectivity: heavily connected nodes have more capacity, likewise

for their adjacent links. Virtual network requests were constructed from prototypical graphs

called slices. Each slice has special requirements of delay and bandwidth based on their

characteristics. Four kinds of slices were used: Web Slices, Stream Slices, P2P Slices, and

VoIP Slices. Those slices are assembled randomly to generate graphs with 50% to 90% of the

size of the substrate graph. An initial slice is solved with CPLEX, if it is able to solve the

generated instance, more slices are aggregated to the network request. This process is repeated

until CPLEX fails to find an integer solution for the instance in less than 300 seconds in five

tries.

Instances are solved optimally in more than 74% of instances in less than an hour. According

to the authors, the main factor predicting the hardness of instances was the chosen topology and

not the size of the instance.

Chowdhury, Rahman and Boutaba (2012) presents a different approach for the VNEP.

Instead of mapping nodes and links separately, both mappings are done simultaneously by

transforming the problem into a variation of the multicommodity problem. On top of the

substrate graph, one meta node is added to each virtual node. Each of the meta nodes is linked

with substrate nodes with enough capacity to hold them. Each virtual link is then converted in

a commodity with terminals in the meta nodes of its endpoints. To assure that each virtual

node is mapped to a single substrate node, all virtual links adjacent to a virtual node must pass

through a single meta edge.

This transformed problem is modeled as a Mixed Integer Programming (MIP) model. As

solving MIP models is computationally expensive, two heuristic algorithms are presented.

Those algorithms use the decision variables values obtained from the linear relaxation of the

MIP model to produce a rounded solution. Each virtual node v is associated with a set of
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binary decision variables x relative to each substrate node s. The value of xv,s is one if and

only if the virtual node v is mapped to s. Two rounding schemes are presented in order to

obtain integer solutions from solutions of the linear relaxation of the MIP model: In the

deterministic version, for each virtual node v, the variable with the largest value xv,s is set to

one, and all others to zero. In the randomized version, the variables are selected randomly with

probability corresponding to their values. After virtual nodes are mapped, virtual links are

mapped with the multicommodity flow algorithm.

Results show that the proposed methods result in a better acceptance ratio and larger revenue

than greedy algorithms. In terms of execution times, the proposed algorithms perform worse

than the greedy algorithm due to the use of the multicommodity flow algorithm two consecutive

times. However, the overhead in computation can lead to more revenue and better resource

utilization.

Bays et al. (2012) proposes an integer linear program to solve optimally the VNEP with

security requirements, such as data isolation and encryption. The presented model encompasses

location constraints, and three levels of security. In the first level, data is encrypted with end-

to-end cryptography. The second level provides header protection in order to secure routing

information. A third level security protects information by not allowing physical node sharing

between specific virtual networks. In most of the experiments, the optimal solution is found in

less than three hours, but some instances take more than 24 hours to solve. Reported results

show that after 20 minutes the optimality gap was 10.72%. Authors suggest that suboptimal

solutions could be used by infrastructure providers by using a gap or time threshold.

Pages et al. (2012) proposes both an integer linear programming model and a metaheuristic

for the Virtual Optical Network Allocation (VONA) problem. Optical networks differ from

normal networks in the sense that each physical edge has a limited number of wavelengths, and

the substrate nodes cannot change the wavelength of the virtual link passing through it, so each

virtual link has to be mapped to a path in the physical network were all edges use the same

wavelength. The objective is to find any valid solution, with no restrictions on its quality.

Two variations of the VONA problem are presented: The transparent VONA, that requires

the exact set of wavelengths for every virtual link, and the opaque VONA, in which there is no

need to allocated the same wavelengths for each virtual link.

The article presents two ILP models, one for the transparent case and one for the opaque

VONA. Since solving an ILP model is computationally expensive, a heuristic algorithm is

presented based on the metaheuristic GRASP.

The algorithms presented are tested in a real network topology with 16 nodes. The virtual



21

optical network requests are randomly generated. The running times of the GRASP algorithm

are better than the exact algorithm with at most one more blocked request. The behavior of the

algorithms in larger graphs is not tested.

Botero et al. (2012) proposes an algorithm to reduce energy expenditure. Low average

link utilization in backbones of large ISPs yield unnecessary energy consumption. In order to

achieve an efficient energy consumption, the number of active nodes and links is minimized. By

doing so, parts of the physical networks can be switched off in periods of low traffic demands.

Results show that under low traffic loads, the proposed model can save up to 35% of nodes

and 25% of links used in the physical network with no serious decrease in the acceptance ratio.

Jarray and Karmouch (2012) develops a column generation algorithm for the single-path

VNEP with multiple requests. The objective function is the maximization of the total revenue.

This paper is an extension of a previous ILP Formulation called Join Node-Link Embedding.

The authors propose a column generation model based on Independent Embedding

Configurations (IEC) to improve the scalability of the previous formulation. Each IEC is a

mapping of one virtual network request. The master problem selects at most n IECs to be

served, while the pricing problem generates IECs. The model is solved with a Branch & Price

algorithm that uses the commercial solver CPLEX in the relaxed master problem as well as in

the integer pricing problem. The set of all paths has to be generated prior to the execution of

the algorithm, this can be an issue if larger physical substrate graphs are used. No details were

given as how columns are selected and branched in the Branch & Price algorithm.

The proposed algorithm is compared with two greedy algorithms, the tests were run on a

physical substrate graph extracted from the US metro backbone with 30 edges. The virtual

networks were generated with a randomly selected size ranging from 2 to 20. The results

evaluated revenue, amount of requests blocked, and resource utilization of the served requests.

The proposed column generation performed the best in those three criteria for the selected set

of instances.

That work differs from the current work in that it uses column generation to address the

mapping of multiple requests and it uses CPLEX to solve the pricing problem.

Alkmim, Batista and Fonseca (2013) presented a formulation that takes into account the

transportation and installation of software images necessary to the virtual routers. To solve this

issue, the problem is broken in two parts: The VNEP and the routing of the images through the

network. Six algorithms are proposed to solve the former, one exact and five heuristic

algorithms. The optimal algorithm solves two ILP models optimally by applying

Branch & Cut through CPLEX. The root algorithm uses the linear relaxation of the model. In
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the iterative rounding scheme the relaxed decision variable with the largest value is set to one,

and all others to zero. In the random scheme, values of the relaxed decision variables are used

as the probability of that variable being rounded to one. The heuristic algorithms can be either

iterative or not. Iterative algorithms fix fractional variable one by one, solving a new relaxed

problem each time a variable is fixed. Non-iterative algorithms fix variables all in one step.

Hu, Wang and Cao (2013) formulates a path-based integer linear programming model for

the VNE Problem and solves it using column generation. Each possible path is represented by

a binary variable in the model, since the number of paths in an arbitrary graph grows

exponentially, there is a large number of variables. To circumvent this problem, the column

generation algorithm is used. In this technique, the linear relaxation of the problem with a few

initial columns is solved. New columns are generated the pricing problem. When no new

columns are generated, the relaxation is optimal.

The pricing problem is the generation of new paths and the master problem is the selection

of paths. The relaxed version of the master problem is solved and Branch & Bound is used to

obtain an integer solution.

Although the authors claim that their algorithm has a better running time than the one

presented in (CHOWDHURY; RAHMAN; BOUTABA, 2009), no data is presented to support

it. Only a comparison of the solution quality of heuristic variations of the presented algorithm

is presented.

Guerzoni et al. (2014) presents a MIP formulation called Edge-wise Node mapping

(EdWiN) to optimally map several networks simultaneously. This formulation is more flexible

and is capable of embedding more networks simultaneously than previous ILP Models. It is

flexible because it allows network administrators to embed VN requests to be mapped

according to predefined policies. It is more efficient in mapping multiple requests because it

allows partial embeddings. In the model presented in (HOUIDI et al., 2011), a number of

requests has to be mapped completely, whereas in EdWiN, only part of the virtual networks

can be embedded. The model embed a predefined number of requests simultaneously. Those

requests are broken into subgraphs with 2 nodes. Nodes can be limited to specific physical

locations or specific “colors” of physical nodes. The colors represent characteristics of

physical nodes, such as which Operating Systems can be installed on the node. The presented

model is compared with the exact method presented in (HOUIDI et al., 2011) and the greedy

method presented in (YU et al., 2008). Although both algorithms support multiple paths, a

single-path version of those algorithm is used for comparison. The proposed algorithm has

shown a better resource utilisation, a larger embedding rate and better running time
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performance. The improved performance over previous formulation is explained by the model

having fewer variables.

2.4 Branch & Price

Branch & Price (B&P) is type of Branch & Bound (B&B) algorithm where a column

generation algorithm is used at each node. Column generation (CG) is a mathematical

programming technique proposed by Dantzig and Wolfe (DANTZIG; WOLFE, 1960) which

solves a relaxation of a model. CG is used to solve models with a large number of variables in

comparison to the number of constraints. These models are generally impossible to solve with

the Simplex Algorithm due to memory constraints. However, since most variables in these

models have a value zero, they can be treated implicitly.

One of the advantages of modeling a problem with a large number of variables is that these

models often have relaxations that yield better lower bounds than that of compact models

(BARNHART et al., 1998).

These techniques have a number of implementations issues that have a direct impact on

the performance of the algorithm, starting by the way the problem is modeled in its extensive

form, the way in which variables are decomposed, which constraints are delegated to the pricing

problem, how generated columns are managed, how to select variables to be branched and how

to branch on variables, wow branched variables affect pricing, which cuts can be added to

improve relaxations, whether the pricing problem should be always solved to optimality and

how to deal with the tailing off effect, and how to select nodes in the BP tree. These, among

other issues, were widely studied in the literature in the last fifty years.

Barnhart et al. (1998) presents a general methodology for B&P. Two example applications

are given to illustrate general concepts. Computational issues are considered such as that of

obtaining an initial solution through the introduction of artificial variables. These variables

are not removed during BP execution because an initial solution is necessary at each node of

the BP tree. The pricing problem does not need to be solved to optimality and approximation

algorithms can be used. Additionally, more than one column can be generated at each iteration

of CG. Trade-offs are discussed such as that of having expensive, tighter lower bounds and

smaller search trees or loose lower bounds with larger trees. Algorithms for solving the master

problem and the generation of rows is also discussed.

Lubbecke and Desrosiers (2005) surveys recent contributions and explores the dual point

of view of CG. That paper begins by showing a list of applications solved through CG and
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presents Dantzig-Wolfe decomposition. Algorithms for solving the restricted master problem

are discussed, as well as alternative pricing rules. The tailing off effect is also discussed: in

Simple-based CG, near optimal solutions are obtained quickly, but convergence to the optimal

is slow. Authors recommend dual and primal stabilization strategies to attenuate such effect. As

for branching decisions, this work suggest the introduction of meaningful cuts, i.e., cuts based

on the compact model.

Barnhart, Hane and Vance (2000) uses a Branch & Price & Cut to solve a related problem,

the origin-destination integer multicommodity flow problem. In this problem, similarly to the

UFP, only one path can be used for each commodity. In this paper, lifted cover inequalities are

used to strengthen linear relaxations of the linear program and to overcome symmetry problems.

Additionally, a branching rule is introduced that do not destroy the structure of the problem.

This branching rule is inspired on the compact model: instead of fixing paths, arcs are forbidden

to server certain commodities. Such rule is easily enforced in the pricing problem by increasing

the cost of forbidden arcs to a large value.
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3 VIRTUAL NETWORK EMBEDDING PROBLEM

As seem in Chapter 2, several variation of VNEP are presented in the literature. This work

captures the essential components of the problem that make the problem hard to solve.

Virtual nodes consume resources from physical nodes. Generally CPU processing capacity

and memory space are considered. To simplify the modeling, just CPU processing is considered

in this work. Due to load balancing considerations (HOUIDI et al., 2011), each virtual node has

to be mapped to a different physical node.

Some applications have geographical restrictions due to the demand of connecting different

geographical locations or security reasons (BAYS et al., 2012). Hence some formulations allow

virtual nodes to be restricted to a subset of physical nodes. As the formulation adopted in this

work aims to be generic, no location constraints are considered.

Virtual links have to be mapped into physical paths between physical nodes that host their

endpoints. Multiple virtual links can share the same physical link. A part of the limited

bandwidth capacity of physical edges is reserved for each virtual link.

Finding a feasible link mapping is NP-Hard even if node mapping is fixed. In order to

render the problem easier to solve, Yu et al. (2008) proposes a relaxation of the constraint that

each virtual link has to be mapped into a single physical path. By allowing virtual links to be

mapped to multiple paths in the physical network, link mapping can be done in polynomial time.

Several works in the literature have taken this approach. However, some applications, such as

teleconferencing, do not allow the splitting of data (BARNHART; HANE; VANCE, 2000) and

current network technology do not generally support path splitting (GUERZONI et al., 2014).

Therefore in this work path splitting is not allowed.

Other link mapping constraints found in the literature include routing capacities, delay

limits, and limits on the sizes of paths (INFüHR; RAIDL, 2011).

All variations of VNEP aim for feasible mappings of virtual network nodes and links into

physical resources. But different objective functions are considered such as minimizing the total

cost of the mapping in networks where physical nodes and links have heterogeneous associated

costs. Others try to maximize the total profit when virtual networks have different revenues.

In this work, the objective function minimizes the amount of resources used by the obtained

mapping. Since all virtual nodes have to be mapped, a solution is evaluated by the used amount

of bandwidth capacity of physical links. Thus, for example, if a path with four links is used

instead of one with two, the amount of bandwidth used is doubled.

Subsection 3.1 presents a formal definition of the problem. It is followed by a presentation
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of the Integer Linear Models for VNEP in Subsection 3.2. The chapter ends with an analysis of

the complexity of the problem in Subsection 3.3.

3.1 Problem Definition

A VNEP instance has as input a virtual network and physical substrate network. The

physical substrate is represented by an undirected graph GS = (V S, ES) with a CPU capacity

of Cs for each physical node s ∈ V S and a bandwidth capacity Be for each edge e ∈ ES . The

virtual network is represented by a undirected graph GV = (V V , EV ) along with a demand Cv

for each virtual node v ∈ V V , and a bandwidth demand of Bk for each virtual link k ∈ EV .

The objective of the proposed problem is to find a feasible mapping of the virtual nodes and

links onto the physical network with minimal cost. A feasible mapping is a pair of functions

(fv, fe): A mapping of nodes fv : V V → V S and a mapping of links fe=(w,u) : E
V → P , where

P is the set of paths in the substrate graph with endpoints fv(w) and fv(u). Each virtual node

has to be mapped into a single substrate node with enough CPU capacity to host it. A substrate

node can host at most one virtual node. Each virtual link (w, u) ∈ EV has to be mapped to a

path in the physical graph between the nodes fv(w) and fv(u). An edge can host several virtual

links, but the sum of their demands could not surpass the capacity of the edge. The cost of a

mapping is the amount of bandwidth used in the physical network by the mapping.

Figure 3.1 presents an instance of the problem composed of a physical network with four

nodes and a virtual network with three nodes. Edges and nodes are labelled with their capacities

or demands. The optimal mapping is shown in Figure 3.2. The optimal solution is to map node

a to C, b to A, and c to B; the virtual link (a, b) is mapped to C − B − A, and the virtual link

(b, c) is mapped to A−B. The cost of this solution is 50.

3.2 Models

Most exact algorithms in the literature for the VNEP are based on ILP models. The

following ILP model is based on (ALKMIM; BATISTA; FONSECA, 2013). It is adapted to

the set of constraints presented in this work: let the decision variables xv,s = 1 iff the substrate

node s hosts the virtual node v. And let yv,w,s,j = 1 iff the physical link (s, j) hosts the virtual

link (v, w).
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Figure 3.1: An input instance for the VNEP.

(a) Physical Network
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(b) Virtual Network
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Source: from author (2015).

Figure 3.2: Optimal solution for instance of Figure 3.1.
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Source: from author (2015).

min
∑

(s,j)∈ES

∑
(v,w)∈EV

Bv,wyv,w,s,j (3.1)

s.t.
∑
v∈V V

Cvxv,s ≤ Cs ∀s ∈ V S (3.2)

∑
s∈V S

xv,s = 1 ∀v ∈ V V (3.3)

∑
v∈V V

xv,s ≤ 1 ∀s ∈ V S (3.4)

∑
j∈V S

yv,w,s,j −
∑
j∈V S

yv,w,j,s = xv,s − xw,s ∀(v, w) ∈ EV , s ∈ V S (3.5)

∑
(v,w)∈EV

Bv,wyv,w,s,j ≤ Bs,j ∀(s, j) ∈ ES (3.6)

xv,s ∈ {0, 1} ∀v ∈ V V , s ∈ V S (3.7)

yk,l,m,n ∈ {0, 1} ∀(k, l) ∈ EV , (m,n) ∈ ES (3.8)
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The objective function (3.1) minimizes the amount of bandwidth used by the virtual

network. Constraints (3.2) ensure that the capacities of substrate nodes are not surpassed.

Constraints (3.3) and (3.4) enforce, respectively, that every virtual node is mapped to a

different substrate node and every substrate node hosts at most one virtual node.

Constraints (3.5) are path constraints, they ensure that every virtual link is mapped to a path in

the substrate graph. Finally, Equations (3.6) guarantee that the bandwidth capacities of

physical edges are not violated.

Let us call this model Compact Model in contrast with the large model that will be

presented later in this section. As the VNEP is NP-Complete (a proof is given in Section 3.3),

solving this ILP model is NP-Complete. Branch & Bound algorithms use linear relaxations to

obtain bounds on optimal integer solutions. The first problem with using the linear relaxation

of the Compact Model is that there is no efficient algorithm to obtain integer solutions from

that relaxation (proof in Section 3.3). The second problem is that this relaxation provides a

poor lower bound for the optimal solution, what has a negative impact on the performance of a

Branch & Bound algorithm. It is always possible to obtain a solution with cost zero for the

relaxation of this model.

Proposition 1. There is always a solution with cost zero to the compact model.

Proof. If every xvs is set to 1/|V S|, all constraints are respected and the left hand side of

Constraints (3.5) is zero. Therefore all variables yvwsj can be set to zero. Hence, the cost of the

optimal solution for the relaxed problem is always zero, resulting in a trivial lower bound.

In order to improve the lower bound given by the linear relaxation of the compact model,

VNEP can be modeled in terms of paths in the auxiliary graph. Two sets of decision variables

are used. For each v ∈ V V and s ∈ V S , the variable xvs ∈ {0, 1} is set to one iff the substrate

node s hosts the virtual node v. Likewise, for each path p in the set of all paths P , the variable

zp ∈ {0, 1} is set to one if the path is used in the VNEP. For each path p, the input data

δe,p is one if the physical edge e is in the path p, and zero otherwise. For each virtual link

k = (v, w) ∈ V V , P k is the set of all simple paths in the substrate graph whose endpoints

have enough CPU capacity to host v and w, and whose links have enough capacity to host

k. The set of Constraints (3.2) of the compact model can be omitted because only paths that

attend this constraint are part of the model. The objective function is the minimization of the

total bandwidth used by the virtual network. If a path p serves a virtual link k, the cost of this

path cp is defined as the number of physical edges in the path. The Flow-based Model for the

single-path VNEP is presented below:
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min
∑
k∈EV

∑
p∈Pk

cpBkzp (3.9)

∑
s∈V S

xv,s = 1 ∀v ∈ V V (3.10)

∑
v∈V V

xv,s ≤ 1 ∀s ∈ V S (3.11)

∑
k∈EV

∑
p∈Pk

δe,pBkzp ≤ Be ∀e ∈ ES (3.12)

∑
k∈EV

∑
p∈Pk:(v,s)∈p

zp ≤Mxv,s ∀v ∈ V V , s ∈ V S (3.13)

∑
p∈Pk

zp = 1 ∀k ∈ EV (3.14)

xv,s ∈ {0, 1} ∀v ∈ V V , s ∈ V S

zp ∈ {0, 1} ∀p ∈ P

Constraints (3.10) ensure that all virtual nodes are mapped. Each substrate node can host at

most one virtual node (3.11). Constraints (3.14) state that all virtual links have to be mapped

to a single path in the substrate graph. Constraints (3.12) ensure that the bandwidth constraints

are not violated. Finally, let M be the greatest degree of the virtual network, Constraints (3.13)

enforce that only one auxiliary edge is used for each virtual node.

Solving the problem using decomposition introduces a large number of new variables.

However, the relaxation of the flow-based Model provides better lower bounds and, since it

uses the structure of the problem directly, we can obtain more information about the problem

with relaxed solutions.

3.3 Complexity

We show in this section that the VNEP problem is NP-Hard by a reduction from the Bin

Packing Problem (BPP), which is a classical NP-Complete problem. The VNEP was previously

shown to be NP-Hard by a reduction from the Unsplittable Flow Problem (YU et al., 2008), but

by the reduction from the BPP we further show it does not exist an algorithm that is guaranteed

to generate a feasible solution unless P=NP, and then VNEP cannot be approximated.

The Bin Packing Problem has as input a set N of items and a bin size of capacity B. Each

item i has a weight wi ≤ B. The goal is to fit all items using the minimum number of bins,
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respecting their capacities. The decision version asks if it is possible to fit all items in at most k

bins.

Any instance I of the BPP can be transformed into an instance of the VNEP through the

procedure φ, which generates a virtual and physical graphs as described next.

Virtual Network: For each item i ∈ N , two nodes are created: one with demand three

and another with demand two. Those nodes are linked with virtual links with bandwidth wi.

Moreover, nodes corresponding to items i and i + 1 for every i < |N | are linked to assure the

connectivity of the network. Their demand is not important and are set to zero.

Physical Substrate Network: For each item i ∈ N two nodes are created, one with capacity

three and another with capacity two. Furthermore, 2k nodes are created with capacity one. For

convenience, let us call nodes with capacity three the upper nodes, nodes with capacity two

the lower nodes, and nodes with capacity one the middle nodes, in the physical and virtual

networks. Each upper node is linked with k middle nodes, the rest of the k middle nodes is

linked with all lower nodes. Each of the k middle nodes linked with the upper nodes are linked

with one single middle node which is linked to the lower nodes. Capacities of all edges are set

to B, the bin size.

An example of this transformation is show in Figures 3.3 and 3.4. The original BPP consists

of three items of weights three, four, and eight, and B = 8. The value of k in the decision

version is set to two. A solution is given by mapping the virtual links with weights three and

four on physical edges on the left-central, and the other virtual link of weight eight into the edge

on the right-central.

Figure 3.3: Virtual Graph resulted from transformation φ.

au (3) bu (3) cu (3)

al (2) bl (2) cl (2)

3 4 8

0 0

Source: from author (2015).

Lemma 3.3.1. Any Bin Packing instance can be reduced to an instance of the Virtual Network

Embedding Problem through procedure φ.

Proof. There are n virtual nodes with demand three and n physical nodes with capacity three,

therefore any feasible solution would map all virtual upper nodes to physical upper nodes.
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Figure 3.4: Substrate Graph resulted from transformation φ.

Au (3) Bu (3) Cu (3)

U1 (1) U2 (1)

L1 (1) L2 (1)

Al (2) Bl (2) Cl (2)
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8 8
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Source: from author (2015).

Likewise for physical and virtual nodes with capacity and demand two. Hence, in the

instance φ(I) there is always a feasible mapping of the nodes. Moreover, each of the n edges

has to be mapped to a single path in the substrate graph between the upper nodes and the lower

nodes. Additionally, every path has to contain at least one edge between the middle nodes.

Those edges represent bins. Mapping virtual links to those edges is tantamount to fit items in a

bin.

Lemma 3.3.2. The transformation φ(I) is polynomial in |N |.

Proof. The transformation φ creates two graphs, one with 2|N |+2k nodes and 2|N |k+k edges

and another with 2|N | nodes and 2n−1 edges. As k < |N |, and every item fits into a single bin,

the size of the VNEP instance is limited polynomially by |N |, the number of items of I .

Lemma 3.3.3. If there exists a polynomial time algorithm that finds a feasible solution for φ(I),

there is a polynomial time algorithm that finds a feasible solution for I .

Proof. All virtual nodes with demand three have to be mapped to substrate nodes with capacity

three. If one of the nodes of demand two is mapped to a substrate node of capacity three,

there will be an unmapped virtual node of capacity three. Likewise, for nodes of capacity two.

Therefore there is always a feasible node mapping for φ(I). Note that the mapping order is not

important: any virtual node with demand x can be mapped to any physical node with capacity

x.

If there is a feasible mapping for the virtual network of φ(I), the answer to I is YES: Given

a feasible mapping M , all virtual edges are mapped to a path in the substrate graph. Let pi be

the path for which the virtual link i, corresponding to the item i, was mapped to. Let j be the



32

first substrate edge in pi that links the middle nodes. The edge j corresponds to the bin j. Thus

a solution for I can be constructed if item i is allocated into bin j. Since the capacity of all

edges are not surpassed, the k bins can hold the |N | items.

If the answer for I is YES, there is a feasible mapping for φ(I): Suppose that there is a

configuration of the items into k bins. A solution for φ(I) can be constructed from a solution

for I . Suppose any feasible mappingM of nodes for the virtual network (as it was shown before,

there always exists a feasible mapping of nodes). Let fM(u) be the substrate node for which the

virtual node u is mapped. Every virtual link (u, v) corresponding to the item i is mapped to the

path (fM(u), x), (x, y), (y, fM(v)), where (x, y) is the substrate edge corresponding to the bin

j for which the item j was allocated in the solution for I . Since the sum of the items in a bin j

does not exceed the capacity B, every virtual link can be mapped in the physical graph.

Lemma 3.3.4. VNEP is an NP problem

Proof. A solution for a VNEP instance I can be verified in polynomial time in the size of the

instance. For every virtual node u it suffices to check if the physical node fv(u) has enough

capacity to host it, for every virtual link (u,w) it suffices to check the path p = fe(u,w) is

indeed a path (every adjacent edge shares one endpoint), and for every physical edge e, if all

the links that are mapped in e do not surpass its capacity.

Theorem 3.3.1. VNEP is an NP-Complete problem.

Proof. The hardness of the VNEP problem follows from Lemmas 3.3.1-3.3.4.

Corollary 1. There is no polynomial time algorithm that finds a feasible solution for VNEP,

unless P = NP .

Proof. Suppose there is a polynomial time algorithm that finds a feasible solution (not

necessarily optimal) for VNEP. From 3.3.3, it follow that there is a polynomial algorithm for

solving BPP. But this is only possible if P = NP .

Corollary 1 implies that there is probably no time efficient approximation algorithm for

VNEP, since such an algorithm would provide a polynomial time algorithm to solve BPP.
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4 COLUMN GENERATION

Column generation is a mathematical programming technique proposed by Dantzig and

Wolfe (DANTZIG; WOLFE, 1960) to solve models with a large number of variables. These

“large” models usually provide better bounds on the optimal integer solutions than compact

models, and this is the case for the VNEP.

Although the number of variables in a large model grows exponentially with the size of

the instance, the number of nonzero variables in a solution is small. The column generation

algorithm takes advantage of that. A Restricted Master Problem (RMP) comprised of a limited

set of columns is solved. More columns are generated and added to the RMP by solving a

subproblem (pricing), until no more columns improving the solution.

The proposed column generation algorithm is summarized in Algorithm 17. Initially, in

Line 2, artificial variables are added to the RMP so that there is always a feasible solution. That

process is explained in Section 4.1. The RMP is solved in Line 4. The pricing problem is solved

in lines 5 through 11, and it is further explained in Section 4.2 The pricing problem generates

columns to be added to the RMP, and when no more columns are generated, the algorithm stops.

Algorithm 1: Column Generation Algorithm for VNEP.

1 P ′ = ∅;
2 Add artificial variables to the model such that model is feasible;
3 repeat
4 Solve model with limited set of columns P ′;
5 foreach Virtual link (u, v) ∈ EV do
6 Construct auxiliary graph A using dual variables;
7 Find minimum cost u-v-path p in A with reduced cost rp;
8 if rp < 0 then
9 Add path to P ′;

10 end
11 end
12 until No paths were added to P ′;
13 if All artificial variables are equal to zero then
14 The problem is solved optimally;
15 else
16 The problem is infeasible;
17 end

This algorithm is based on a column generation algorithm introduced in (HU; WANG; CAO,

2013). However, that approach allows virtual links to be mapped to multiple paths. Next we

describe how to adapt those approach to the single-path VNEP.
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4.1 Obtaining an initial set of columns

With no columns, the RMP is initially infeasible. An approach similar to the simplex two-

phase method is used to add columns comprised of a set X0 of artificial decision variables to

have a feasible RMP. Variables X0 are added to Constraints (3.14) and (3.12) of the flow-model

presented in Section 3.2, and impose a high penalty to the objective function. Any feasible

solution to the original RMP have a better objective value than a solution that uses any variable

of X0. When the column generation algorithm stops, if some X0 variable has a value different

than zero, the original RMP is infeasible. Otherwise X0 variables are discarded.

4.2 The Pricing Problem

At each iteration, new columns are generated implicitly and added to the RMP. Columns

are obtained solving a pricing problem that consists in finding the column with the minimum

reduced cost. If the column with the minimum reduced cost has a negative value, the column is

added to the RMP. Otherwise, no column can improve the current solution, and thus the current

solution is optimal.

Let λ ≥ 0, η ≥ 0, and π unrestrict be the dual variables associated to constraints (3.14),

(3.12), and (3.13), respectively. The reduced cost rp of each variable zp that covers the virtual

link k is:

rp = cpBk − λk −
∑

e∈p:e∈ES

Bkηe −
∑

(v,s)∈p:(v,s)/∈ES

πv,s

Since cp is the number of edges on the path p, the equation above is equivalent to:

rp =
∑

e∈p:e∈ES

Bk(1− ηe)−
∑

e∈p:e/∈ES

πe − λk

Thus, the minimum reduced cost for the VNEP is obtained by solving the following

problem:

min
∀k∈EV ,∀p∈Pk

∑
e∈p:e∈ES

Bk(1− ηe)−
∑

e∈p:e/∈ES

πe − λk
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If we construct an auxiliary graph in which the cost of each path corresponds to its reduced

cost, the pricing problem consists in finding a path with the minimum cost, which can be solved

polynomially. To this end, the dual variables obtained from the RMP optimal dictionary are

used to construct an auxiliary graph. For each virtual link k = (u, v) ∈ EV , we construct

an auxiliary graph in which auxiliary edges (v, s) have a cost of −πv,s and substrate edges

e ∈ ES have a cost of Bk(1 − ηe). That way each path p in that auxiliary graph between two

auxiliary nodes u and v has a cost exactly equal to its reduced cost rp. Thus to obtain the path

with smallest reduced cost, we can use a polynomial algorithm to find the shortest path in the

constructed auxiliary graph.

The auxiliary graph is constructed in the following way: On top of the physical substrate

graph, for each virtual node v ∈ |V V | an auxiliary node is added. Those auxiliary nodes are

connected through auxiliary edges with all physical nodes that have enough capacity to host

them.

An auxiliary graph built based on the instance from Figure 3.1 is shown in Figure 4.1.

Auxiliary nodes a, b and c are presented in gray. The node a is linked to all nodes but node D,

which does not have enough capacity to host it. Two commodities are created: (a, b), with

demand 20, and (b, c), with demand 10.

Figure 4.1: Auxiliary graph for the input instance of Figure 3.1.

b(10)

A (11)

B (16) D (7)

C (11)

a(10)c(15)

Source: from author (2015).

Paths in the auxiliary graph yield a valid column to the RMP if they respect some constraints.

Suppose we have to find a path to map the virtual link (u, v). First, the path has to contain

exactly two auxiliary edges, that are the ones with endpoints in u and v. This is easily enforced

by setting a cost∞ to all auxiliary edges that connect auxiliary nodes other than u or v. Second,

a path in the auxiliary graph has to contain at least one substrate edge, and the node adjacent to

the source has to differ from the node adjacent to the target node. If one of these two conditions

are not satisfied it means that both auxiliary nodes are mapped to the same substrate node, which
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is a restriction of the problem. Hence, Dijkstra’s algorithm cannot be directly applied to solve

the pricing problem. Figure 4.2 shows an example of a pricing problem. Auxiliary nodes are

filled with gray and auxiliary edges are dotted.

Figure 4.2: Subproblem graph

B Dv
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Cw

u
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4
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3

3 1

1
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Source: from author (2015).

Suppose that we want to find a path between u and v in the auxiliary graph. The minimum-

cost path in the graph u − B − v does not contain any substrate edge and then is invalid. The

path u − B − D − C − B − v is also invalid, because both u and v are mapped to the same

substrate node B. The path u − C − w − B − v is invalid because it uses auxiliary edges not

connected to u or v. Therefore the minimum-cost valid path in the graph is u − A − B − v,

where node u is mapped to A and v to B, and virtual link (u, v) is mapped to (A,B). Note that

the edge (w,B) has a cost of∞, so no path could use this auxiliary edge.

4.3 Proposed Modified Dijkstra Algorithm

We propose a modified Dijkstra’s algorithm (Algorithm 2) to find a valid path with the

minimum reduced cost. It works as multiple Dijkstra’s algorithms running in parallel. Each

node to be visited is associated with an origin, i.e. the first physical node in the path. Initially

all neighbors of the source node s are added to the priority queue Q, with an origin equal to

itself. At each iteration the node in the queue with the minimum distance is selected to be

visited. When the node v with origin w is visited, its neighbors are added to the queue with an

origin w if it the cost of reaching the neighbor through v is smaller than its current distance.

Hence the same node can be added multiple times if it is reached from different origins. But

the algorithm is still polynomial since the number of times each node will be visited is bound

by the degree of s. The target t can only be added when the path contains at least one physical

edge, this is detected by checking if the origin of the node is equal to itself. The algorithm stops
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when the target node t is visited.

Algorithm 2: Modified Dijkstra’s Algorithm
Input: Let s be the source node, and GA = (V A, EA) be the auxiliary graph, and c(u, v)

the cost of the edge (u, v).
Output: d[v, w] is the cost of the minimum cost path from s to v with origin w.

1 initialize every d as∞;
2 foreach edge (s, v) ∈ EA do
3 d[v, v] := c(s, v);
4 Q := Q ∪ {(v, v)};
5 end
6 while Q is not empty do
7 (u, origin) := extract_min(Q);
8 if u = t then
9 return best path with cost d[u, origin];

10 end
11 foreach edge (u, v) ∈ EA do
12 if v = t and u = origin then
13 continue;
14 end
15 if d[v, origin] < d[u, origin] + c(u, v) then
16 d[v, origin] := d[u, origin] + c(u, v);
17 if (v, origin) ∈ Q then
18 decrease cost of (v, origin) in Q;
19 else
20 Q := Q ∪ {(v, origin)};
21 end
22 end
23 end
24 end

Proposition 2. The Modified Dijkstra’s Algorithm finds a valid path to the problem with the

smallest cost in the auxiliary graph in polynomial time.

Proof. At each moment the set of nodes that were already visited have the shortest distance

from the source node. A node is not visited more than its indegree, i.e., the number of arcs

incoming that node. Suppose a node u with cost d that was already visited is adjacent to a node

v being visited with cost d′ < d. This is an impossible situation because if u has distance d′ < d

it would be visited before u. So once a node is visited it has the smallest possible distance from

the source. Thus once the target node t is visited it has the smallest possible distance from the

source.

Moreover, the algorithm has to find the shortest distance taking into account the

aforementioned constraints. With this aim, the target node t can only be added to the queue if
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its predecessor is not equal to its origin. In that way the path obtained by this algorithm always

contains at least one physical edge. Additionally, since there are no edges with negative costs,

the path obtained does not contain a loop. This algorithm is polynomial and corresponds to run

a Dijkstra algorithm for each node adjacent to the source node of s. Theoretically, this

algorithm has a time complexity of O(|ES||V S| + |V S|2log|V S|) with Fibonacci heaps, and

O(|V S||ES|log|V S|) with binary heaps.
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5 BRANCH & PRICE

The column generation (CG) algorithm solves only the linear relaxation of the problem. To

obtain integer solutions for the VNEP, CG is embedded in a Branch & Bound algorithm (B&B).

A B&B algorithm where each node is solved through a column generation is called Branch &

Price (B&P).

We implemented a classic B&P procedure which is summarized in Algorithm 13. Initially,

the relaxation of the problem is solved. If the optimal solution is not integral, the problem is

split into two subproblems. This process is called branching (Section 5.1). These subproblems

are inserted in a priority queue with the key set to their relaxation value. At each iteration, a

subproblem is selected (Section 5.2) from the queue and solved through a CG algorithm. To

speed up the algorithm by improving upper bounds, a constructive solution is build at each

iteration (Section 5.3) aiming to obtain an integral solution. In case the incumbent integral

solution has a better objective value than a subproblem relaxation, that branch is not expanded

anymore since the relaxation of the problem is a lower bound on the integral solution.

The problems are branched with the introduction of cuts. Those cuts can turn the problem

infeasible. New columns have to be inserted in order to make the problem feasible again. The

two-phase approach explained in Chapter 4 is used to overcome this problem.

Next we describe decisions taken by the B&B for the VNEP we have implemented.

5.1 Branching

When expanding a node of the B&B tree, if the solution is fractional, a variable is selected to

be branched (Section 5.1.1). The model solved at each node has two sets of decision variables:

node mapping variables xv,s and path mapping variables zp. The former has a fixed size, while

the latter grows during B&P execution. Therefore each one is treated differently.

5.1.1 Variable Selection

Variables xv,s are intregralized first starting with variable with values closest to 0.5. Once

all variables x are integral, path variables zp are verified in order of the origin node label. Paths

with the same origin are verified in the order they were generated.
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Algorithm 3: Branch & Price Algorithm

1 Q = relaxation of IP
2 while Q is not empty do
3 subproblem = select_node(Q);
4 x∗ = solve subproblem using column generation;
5 if feasible(x∗) and φ(x∗) < UB then
6 if x∗ is integral then
7 UB = φ(x∗);
8 else
9 build heuristic solution;

10 split subproblem into subproblems and add them to Q;
11 end
12 end
13 end

5.1.2 Node mapping branching

We tested two methods of branching for variables xv,s. In the first, two subproblems are

created, one for which the substrate node s is forbidden of hosting v (xv,s ≤ 0) and another for

which the node s is forced to host v (vv,s ≥ 1). The second is called Generalized Upper Bound

(GUB): since
∑

s′∈V S

xv,s′ = 1, one can cut more than one variable at a time. Two problems are

created, one of which half the variables xv are forbidden by adding the cut
∑

s<|V S |/2
xv,s ≤ 0, and

another for which the other half of variables are forbidden. In both methods, the addition of cuts

affect the pricing problem. The auxiliary edge (v, s) is either forbidden or fixed accordingly.

5.1.3 Path branching

Branching of path variables is not as straightforward as branching node variables.

Individually branching on path variables would yield a large number of nodes to explore, since

the number of paths grows exponentially with the size of the instance. To avoid this problem,

paths are branched by introducing constraints that simulate restrictions on variables y from the

compact model. Suppose that for a given node, there exists one path variable zp that has a

fractional value. Then there must be at least another variable zp′ that is also fractional, since

the sum of the variables that cover a virtual link is 1. The paths p and p′ associated to variables

zp and zp′ must have at least two different substrate edges e ∈ p, e /∈ p′ and f ∈ p′, f /∈ p,

otherwise they would be the same path. Then, two branches are generated, one with e

forbidden to belong to the path, and another for which f is forbidden. Edges are not fixed,
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because it is easier to find a path that does not use multiple edges (it suffices to set their

weights to a large value) than it is to fix edges. An edge e is forbidden to be used to cover the

virtual link k by adding the cut c(k, e) =
∑
p∈Pk

δe,pzp ≤ 0.

Adding these cuts affects the pricing problem. For each k ∈ EV and e ∈ ES a dual variable

ψk,e associated with the cut c(k, e) is created. The values of these variables are added to the cost

of each edge in the auxiliary graph. So each physical edge in the auxiliary graph has the cost

Bk(1− ye − ψk,e).

5.2 Node Selection

The order in which active nodes are visited affects the performance of the algorithm. A

balance has to be found between finding good upper bounds and visiting promising nodes. We

tested three approaches: Depth First Search (DFS), Best First Search (BFS), and Best Projection

(BPJ). DFS visits nodes in the order they are created. BFS visits first the most promising nodes,

i.e., nodes with the lowest dual bound. BPJ visits nodes with fewer fractional variables first,

since they are possibly closer to an integral solution.

5.3 Heuristic Solution

It was seen in Section 3.3, that to obtain a feasible solution for the VNEP is NP-Hard.

Nevertheless, a greedy algorithm can be applied and in many situations is able to find a feasible

solution. Moreover, if part of the solution is already fixed, only the remaining part has to be

constructed. This happens when a greedy solution is applied on a subproblem, which uses all

variables set on that branch of the B&B tree since the root node. Constructed feasible solutions

can improve upper bounds allowing to prune entire branches of the B&P search tree.

A solution obtained by the column generation may contain several fractional variables. The

values of those variables contain valuable information about the problem. Each virtual node v

is mapped to the free physical node s for which the value of xv,s is the largest. After all nodes

are mapped, a breadth first search is used to map virtual links to paths in the physical substrate

graph. The mapping of edges can fail if no path with enough bandwidth is found.

This algorithm is applied at each node of the B&B tree. If a feasible solution is successfully

built by the constructive heuristic algorithm, and the obtained solution is better than the current

upper bound, the incumbent solution is updated.
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6 EXPERIMENTAL RESULTS

This section presents an experimental evaluation of the proposed B&P algorithm. Results

from B&B are compared with results from the compact model presented in Section 3.2 solved

with CPLEX. Four aspects of the algorithm are tested: the time spent to find the first integral

solution, the running time, the number of instances solved, and the quality of solutions that were

not proved to be optimal due to a time limit constraint. All tests were performed on a processor

Intel Core i7 930 with 12 Gb of memory using a single thread. The commercial solver CPLEX

12.5 was used to solve the relaxed and integer models. All running times are in seconds, and a

time limit of one hour was used in all runs.

6.1 Datasets

As virtualization is a fairly recent field, there is no established set of benchmark instances

available for the VNEP. The properties of physical substrate networks and virtual network

embedding requests are not well understood (CHOWDHURY; RAHMAN; BOUTABA, 2012).

Hence most works use synthetic networks (FISCHER et al., 2013). Following this approach, all

instances used in this experimental evaluation are generated with the GTI-ITM tool (ZEGURA;

CALVERT; BHATTACHARJEE, 1996). This tool is capable of generating graphs with three

different topologies: random, hierarchical and transit-stub. Figure 6.1 presents an illustrative

example of each topology.

Random instances are generated by spreading the nodes randomly in a 100 by 100 plane.

These nodes are randomly linked using Waxman model (ZEGURA; CALVERT;

BHATTACHARJEE, 1996). In this model, the probability of connecting two edges is

αe−d/(100β), where d is the Euclidean distance between the nodes, and α and β are parameters.

Thus, a larger α means a denser graph, and a larger β means longer edges in the graph. Two

types of random instances are generated: Dense Random, using α = 0.8 and Sparse

Random, using α = 0.5. Both sets use β = 0.2.

Hierarchical instances are generated recursively. Initially, a random graph is created in a

100 by 100 plane. Then each node is replaced by a random graph with an average of five nodes.

To generate those graphs the parameters α = 0.5 and β = 0.2 were used.

Transit-stub is an hierarchical topology that best model the Internet (ZEGURA;

CALVERT; BHATTACHARJEE, 1996). Each node in a randomly generated graph is replaced

by a subgraph called transit domain with an average of four nodes. To these domains are

attached an average of three stub domains. Each stub domain has an average of two nodes. The
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Figure 6.1: Topology examples
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transit domains as well as the stub domains are connected randomly with a probability

α = 0.5.

Each instance is composed of one physical substrate graph of one of the four topologies

(Dense Random, Sparse Random, Hierarchical, Transit-stub) and one Sparse Random virtual

network. Virtual networks were generated with connectivity 50% as in (CHOWDHURY;

RAHMAN; BOUTABA, 2012). Capacities of physical nodes and edges are randomly

generated integers in the interval [1, 100]. Considering the demands of virtual networks, two

sets of instances were generated: one with low demand with demands in the interval [1, 25],

and another with high demand with demands in the interval [25, 100].

As one of the purposes of this study is to test the limits of exact algorithms, large physical

networks were generated. Instances were generated from 20 to 200 nodes for random sparse

and random dense topologies (6 sizes of substrate networks each). For hierarchical instances,

from 125 to 250 nodes (6 sizes of substrate networks). For Transit-stub, graphs from 90 to 270

nodes (5 sizes of substrate networks). Virtual networks are in general small, and were generated

from 2 to 18 nodes considering all even sizes in this interval. Input data for the problem was

build considering all combinations of substrate and virtual networks, and for each combination
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two instances are build considering a low and high demands of the substrate network. Thus, in

overall 414 instances were tested.

In Section 6.2 we describe the parameter setting, while that in Section 6.3 we present the

B&P results, and compare against the ones found by the compact model solved with CPLEX.

The amount of time spent by each component of column generation is analysed in Section 6.4

6.2 Parameter Testing

As explained in the previous section, the node selection and branching methods influence

the overall performance of the algorithm. The use of the heuristic constructive method can also

influence the performance of Branch & Price. The following experiments compare different

options for these components considering one instance for each size in a total of 414 instances.

The main metric used is the running time to obtain the optimal solution and the number of

instances solved optimally in the available time limit. Initially we tested the performance of

the B&B algorithm selecting nodes using DFS, BFS, and BPJ and results are summarized

in Table 6.1. The table shows for each of the four sets of instances, the number of tested

instances in column #inst, and for each node selection method, the number of optimal

solutions found within the time limit in column #opt, and the average running time in seconds

in column time(s).

Table 6.1: Node Selection Results

DFS BFS BPJ
set #inst #opt time(s) #opt time(s) #opt time(s) DFS ∼ BFS BPJ ∼ BFS
Random-Sparse 108 76 1086.20 85 851.90 83 863.66 < 10−3 0.991
Random-Dense 108 78 961.50 88 792.10 87 691.44 < 10−3 0.994
Hierarchical 108 62 1503.62 64 1375.61 59 1542.29 < 10−3 0.035
Transit-stub 90 59 1393.76 66 1138.92 62 1294.34 < 10−3 0.003

Source: from author (2015).

By comparing the number of optimal solutions and running time, BFS is clearly the best

method. Using Wilcox Signed-rank test with a confidence interval of 95%, our results show that

BFS has a better running time performance than DFS for all instances. With the same test,

BFS is significantly better for Hierarchical and Transit-stub instances. Results for the Wilcox

Signed-rank test performed are shown in Table 6.1.

Further tests were performed to compare normal branching of variables and GUB.

Branching on variables is also significantly better than GUB with a confidence interval of 95%.
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A final test was made to evaluate the use of the constructive heuristic method at each node of

the Branch & Price search tree. No conclusions could be draw from these tests with a confidence

interval of 95%. However, the average time with B&P with a constructive heuristic method

was 6 seconds better than the average time of the algorithm without this method.

6.3 Branch & Price Evaluation

Results for the proposed B&P algorithm with normal branching of variables, BFS strategy

for selecting nodes, and using the constructive method at each node are presented in this

section. Moreover, we present results for the compact ILP Model from Section 3.2 for the sake

of comparison.

For each instance size, three substrate networks and three virtual networks were randomly

generated and combined to form nine different VNEP instances. The values in the results are

the mean for the nine instances. In total 3726 instances compose the dataset.

All results are shown in Tables 6.2-6.5. For summarizing results, each line corresponds to

the mean values obtained by all instances run with the virtual network size |V |. We grouped

instances in this fashion since time changes considerable with the size of virtual networks, and

not much with the size of substrate networks. Column #NF is the mean number of instances that

did not finish withing the time limit, i.e., either they did not prove solution optimality, or they

did not prove solution infeasibility in less than an hour. Column time_int shows the average

time to obtain the first integer solution, when one was found. Columns time(s) and cost show

the average running time and solution cost, respectively.

Full results are in Tables A.1-A.8 of the Appendix. Each line in those tables is the average

of nine instances of the same size, generated as explained in Section 6.1.

Figures 6.2, 6.3, 6.4, and 6.5 demonstrate the behavior of the algorithms for all instances. All

graphs compare the results for ILP solved with CPLEX in dashed lines, and B&P with a solid

line. Each figure contains four different graphs, one for each topology. Graphs show results for

instances sorted alongside the x-axis first by the size of virtual nodes and second by the number

of physical nodes. So for example the point corresponding to a random sparse instance with 4

virtual nodes and 20 physical nodes is right to left of the result of the instance with 4 virtual

nodes and 40 physical substrate nodes. In that way it can be seen that the number of virtual

nodes is a better predictor of the time complexity of each instance. Hence even instances with

a large number of physical nodes can be easily solved by B&P when there is at most 8 virtual

nodes.
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Table 6.2: Results for sparse random instances.

Low Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost
2 0.00 0.04 0.04 16.33 0.00 0.06 0.13 16.33
4 0.00 0.17 3.05 25.04 0.00 1.27 41.57 25.04
6 0.00 0.43 54.79 63.17 3.00 14.94 1580.90 63.17
8 0.00 0.98 136.27 77.86 6.50 123.32 2733.78 77.91
10 0.50 1.00 842.67 124.43 7.50 362.98 3071.16 132.59
12 0.83 1.84 694.94 129.28 7.83 713.39 3163.46 154.21
14 1.83 2.53 1468.01 154.61 7.67 1063.17 3123.54 175.57
16 4.33 15.09 2211.49 234.78 7.67 1152.81 3117.38 298.26
18 4.17 73.52 2212.18 246.19 7.50 1378.41 3012.03 326.40

High Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost #NF time_int time(s) cost
2 0.00 0.03 0.03 19.61 0.00 0.06 0.13 19.61
4 0.00 0.11 4.00 59.45 0.00 1.12 17.54 59.45
6 0.00 0.20 159.68 137.92 2.17 10.61 1210.49 137.92
8 0.00 0.42 44.15 170.51 4.50 62.90 2031.45 170.51
10 0.00 0.58 167.44 203.39 6.00 349.79 2473.09 219.81
12 2.50 0.74 1478.81 284.16 6.33 826.02 2596.43 374.19
14 2.83 1.68 1557.97 426.72 6.50 1062.09 2719.31 536.23
16 5.67 1.96 2501.02 585.75 6.83 1570.38 2852.49 788.15
18 5.50 3.01 2490.59 639.29 7.33 1930.45 2963.74 973.25

Source: from author (2015).

Figure 6.2 compares average running times. B&P had a better running time for 80 of the 90

instance sizes of the Transit-stub set, 97 out of 108 for the hierarchical set, and for all but 3 and 4

instances for the dense and sparse sets, respectively. Even though solving the large model is in

general more expensive than solving the linear relaxation of the compact model, its better lower

bounds and the better exploitation of the problem structure compensate for its longer running

times.

Figure 6.3 shows the average cost obtained considering the best solution value of instances

in which the algorithm was able to find at least one feasible solution within the time limit. Those

graphs show the cost of the best obtained solution on the time limit. These graphs show some

discontinuities since in some cases algorithms were not able to find any feasible solution, or to

prove infeasibility.

The number of instances solved can be seen in Figure 6.4. It shows the number of instances

out of 9 that were either proved optimal or infeasible.
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Figure 6.2: Average time in seconds.
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Source: from author (2015).
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Figure 6.3: Average cost of feasible solutions.
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Figure 6.4: Number of instances solved.
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Table 6.3: Results for dense random instances.

Low Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost
2 0.00 0.08 0.08 16.33 0.00 0.07 0.14 16.33
4 0.00 0.33 4.17 25.00 0.00 1.34 96.69 25.00
6 0.00 0.70 77.48 63.06 3.67 14.75 1790.96 63.06
8 0.00 1.14 204.96 77.50 7.00 142.51 2872.77 77.50
10 0.67 3.81 752.48 122.58 7.33 463.34 3064.37 127.93
12 0.67 2.85 841.00 129.69 8.00 739.44 3293.93 143.25
14 2.00 12.13 1350.52 153.78 8.00 1096.43 3246.88 166.88
16 3.67 8.14 2029.86 227.89 7.83 1155.70 3292.66 253.93
18 3.17 21.96 2020.03 237.44 8.50 893.13 3400.04 292.07

High Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost #NF time_int time(s) cost
2 0.00 0.04 0.04 19.82 0.00 0.06 0.14 19.82
4 0.00 0.17 5.18 56.87 0.00 1.23 23.55 56.87
6 0.00 0.33 121.04 141.74 2.33 9.44 1372.85 141.74
8 0.00 0.68 84.33 163.81 5.17 54.82 2313.42 163.81
10 0.00 0.79 198.03 200.56 6.33 429.71 2859.08 205.82
12 1.50 1.19 1184.64 284.49 7.33 850.40 3001.72 371.76
14 2.17 4.95 1477.19 430.88 7.33 1041.58 3006.72 552.10
16 5.00 28.19 2383.60 573.33 7.50 906.56 3005.92 709.45
18 5.67 5.27 2401.59 566.95 7.50 1650.41 3000.13 682.96

Source: from author (2015).

Figure 6.5 shows the time to obtain the first integer solution. In those graphs it is clear

that B&P is able to find initial integer solutions quicker than CPLEX due to the constructive

heuristic used in each node.

B&P runs in significantly less time than CPLEX for most instances.Than, it is able to solve

larger instances than CPLEX. For some hierarchical instances CPLEX consume all memory

space and was not able to successfully find any solution.

The difference in performance is specially noticeable for larger instances. For example, for

a substrate graph with a dense random topology and composed of 200 nodes, CPLEX was only

able to solve instances with up to 4 virtual nodes, while B&P could solve all instances with up

to 10 nodes optimally in less than 10 minutes on average. Moreover, it was able to solve some

of the larger instances in less than an hour.

CPLEX has a better performance for sets of instances with high demands, which contain

more infeasible instances. However, both algorithms have a harder time proving infeasibility.
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Figure 6.5: Time to obtain the first integer solution.
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Table 6.4: Results for hierarchical instances.

Low Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost
2 0.00 0.01 0.01 16.33 0.00 0.11 0.26 16.33
4 0.00 0.05 0.95 25.00 0.00 3.78 30.41 25.00
6 0.00 0.33 12.43 62.67 1.00 32.77 1149.86 62.67
8 0.00 0.67 65.63 76.67 8.17 249.94 3499.51 80.00
10 4.33 4.69 2156.26 131.79 9.00 770.83 3600.00 167.09
12 3.50 15.29 1712.39 138.04 9.00 1221.98 3600.00 214.18
14 7.17 43.64 2963.53 217.70 8.67 1943.51 3600.00 276.11
16 9.00 164.24 3600.00 391.06 8.00 2360.40 3600.00 442.60
18 9.00 196.71 3600.00 532.74 8.67 3201.44 3600.00 573.00

High Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost #NF time_int time(s) cost
2 0.00 0.01 0.01 19.67 0.00 0.11 0.25 19.67
4 0.00 0.07 0.99 56.33 0.00 3.08 15.72 56.33
6 2.33 14.97 952.28 167.03 0.50 34.73 567.71 164.50
8 0.00 1.45 36.06 163.09 4.17 234.69 2321.97 164.91
10 2.17 4.36 1406.51 217.52 8.33 905.15 3393.83 270.13
12 9.00 64.83 3600.00 405.57 8.33 1863.78 3393.66 614.59
14 7.33 193.54 3104.03 500.35 8.00 2048.64 3355.05 668.70
16 8.67 528.56 3471.32 818.49 8.50 1162.94 3448.68 759.00
18 8.17 223.88 3279.01 829.86 7.17 2148.84 3391.17 682.50

Source: from author (2015).

Hence further study ought to be made investigating methods to detect infeasibility with the

Branch & Price algorithm.

6.4 Running time of column generation components

At each node of the B&P tree, a column generation model is solved. This section analyse

the amount of time spent by each component of the column generation algorithm.

Tables 6.6, 6.7, 6.8, and 6.9 show the percentage of the total running time (including B&P)

spent on each part of the algorithm. Each line is the mean of nine instances of the same size,

Column master is the time to solve the restricted master problem with CPLEX, Column add

is the time to add columns to the model, Column pricing is the modified Dijkstra’s algorithm

time, and aux is the time to construct the auxiliary graph used in the pricing problem. In the

last line, the mean of all tests is shown. Due to measuring inaccuracies, results with small
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Table 6.5: Results for transit-stub instances.

Low Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost
2 0.00 0.01 0.01 16.33 0.00 0.11 0.26 16.33
4 0.00 0.06 0.30 25.00 0.00 3.75 30.41 25.00
6 0.00 0.38 5.86 62.67 0.20 38.56 951.26 62.67
8 0.00 0.72 40.04 76.67 8.20 253.12 3492.03 82.36
10 1.40 3.75 925.04 123.62 9.00 845.33 3600.00 166.20
12 3.40 7.11 1616.76 134.35 9.00 1355.77 3600.00 198.94
14 6.40 17.38 2655.33 169.02 9.00 1774.96 3600.00 253.97
16 8.20 86.86 3401.50 263.98 9.00 1766.10 3600.00 390.89
18 7.20 68.49 3163.51 290.49 9.00 2519.80 3600.00 413.33

High Demand
Branch & Price CPLEX

|V | #NF time_int time(s) cost #NF time_int time(s) cost
2 0.00 0.01 0.01 19.67 0.00 0.11 0.24 19.67
4 0.00 0.14 0.55 56.33 0.00 3.30 16.54 56.33
6 1.80 2.16 836.59 161.99 0.40 40.81 445.63 162.17
8 0.00 1.28 9.82 162.31 3.20 330.52 1894.55 164.71
10 0.60 3.40 648.30 208.78 6.80 1001.89 2957.12 267.28
12 8.00 48.45 3409.63 347.29 7.60 1553.02 3208.40 394.55
14 5.40 215.75 2516.70 453.62 6.60 1499.95 2861.61 561.64
16 6.40 525.69 2871.73 633.02 6.60 1936.91 3146.33 801.06
18 8.20 500.51 3362.14 641.82 8.00 1163.51 3254.62 666.50

Source: from author (2015).

instances are omitted. Times in those columns do not sum up to 100% because they do not

subsume the time to construct the model and to select nodes of the Branch & Price.

The majority of the B&P running time is spent solving the pricing problem (constructing

the auxiliary graph and finding the path with the minimum reduced cost). In Dense Random

Instances, the pricing problem takes up most of the running time. Dijkstra’s modified algorithm

occupies more time in those instances because of the large number of links in dense graphs.

These results suggest that the algorithm bottleneck is the pricing problem. Two strategies

could be taken to improve the performance of B&P: a single column could be generated at

each iteration of CG. Thus reducing the number of independent pricing problems solved.

Another strategy would be to use a dynamic algorithm for searching minimum cost paths, such

algorithms use information of previously found paths to find new paths instead of recalculating

them from scratch.
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Table 6.6: Column Generation Components Running Time - Sparse Instances

Low Demand High Demand
|S| |V | master(%) add(%) pricing(%) aux(%) master(%) add(%) pricing(%) aux(%)
40 4 0.00 0.00 0.00 14.00 0.00 0.00 0.00 18.20
40 6 0.00 0.00 0.00 53.20 0.82 0.00 0.00 41.00
40 8 2.72 0.00 0.78 56.30 5.73 0.00 14.30 39.60
40 10 50.20 0.00 19.20 26.00 4.18 0.00 0.00 51.90
40 12 6.02 0.00 0.49 71.50 45.10 0.00 4.19 38.20
40 14 5.40 0.00 1.02 71.40 68.20 0.00 5.99 22.30
40 16 39.90 0.00 21.70 35.20 50.60 0.00 10.50 32.90
40 18 35.40 0.00 3.29 53.80 66.90 0.00 5.84 25.10
80 4 0.89 0.00 66.10 15.20 3.45 0.00 0.00 58.60
80 6 1.08 0.00 64.90 17.90 2.12 0.00 55.80 22.40
80 8 8.26 0.00 56.80 27.40 14.50 0.00 31.00 44.40
80 10 24.40 0.00 60.50 12.20 11.00 0.00 33.10 45.00
80 12 4.86 0.00 67.40 21.90 15.90 0.00 50.60 28.90
80 14 6.71 0.00 62.60 26.20 29.10 0.00 43.40 25.20
80 16 20.70 0.00 63.20 14.30 29.00 0.00 40.40 27.60
80 18 9.15 0.00 68.30 19.80 29.10 0.00 49.60 19.40
120 4 7.50 0.00 74.20 7.74 10.60 0.00 69.20 10.60
120 6 5.43 0.00 81.90 7.78 6.31 0.00 73.80 12.50
120 8 5.62 0.00 80.50 9.72 8.89 0.00 75.20 11.20
120 10 10.90 0.03 79.60 7.37 7.66 0.00 73.70 13.60
120 12 4.63 0.00 85.60 7.58 7.57 0.00 81.70 8.76
120 14 5.17 0.00 83.60 8.83 14.50 0.00 76.00 8.19
120 16 6.56 0.00 85.00 7.09 10.80 0.00 75.30 11.70
120 18 4.98 0.14 86.20 7.43 13.50 0.04 77.00 8.25
160 4 6.65 3.40 80.90 5.39 5.95 0.00 77.90 7.86
160 6 4.63 1.61 86.40 4.73 5.73 0.00 83.20 6.28
160 8 5.18 0.51 85.80 5.78 8.82 0.00 78.80 8.83
160 10 5.59 0.53 88.40 4.27 7.07 0.00 82.30 7.62
160 12 3.56 0.32 90.50 4.40 5.64 0.01 85.80 6.62
160 14 3.72 0.43 90.40 4.31 6.39 0.13 87.40 5.23
160 16 4.64 0.13 91.00 3.72 8.65 0.00 82.80 6.99
160 18 3.64 0.20 91.60 3.97 9.80 0.20 83.00 6.23
200 4 3.24 3.42 89.10 2.14 8.15 0.00 81.60 4.49
200 6 3.36 2.25 90.30 2.63 5.27 0.40 88.40 3.96
200 8 4.01 1.54 90.00 3.14 7.31 0.00 84.80 5.27
200 10 3.07 0.74 93.30 2.45 6.73 0.75 85.90 4.92
200 12 2.64 0.58 93.90 2.25 4.14 0.12 91.80 3.20
200 14 2.68 0.87 93.80 2.27 5.44 0.15 90.10 3.77
200 16 2.35 0.26 95.00 2.08 5.33 0.11 89.90 3.97
200 18 2.59 0.34 94.60 2.21 6.41 0.30 88.80 3.95

mean 6.07 0.32 49.22 12.14 10.41 0.04 42.76 13.23

Source: from author (2015).
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Table 6.7: Column Generation Components Running Time - Dense Instances

Low Demand High Demand
|S| |V | master(%) add(%) pricing(%) aux(%) master(%) add(%) pricing(%) aux(%)
40 4 0.00 0.00 0.00 57.10 0.00 0.00 0.00 0.00
40 6 0.25 0.00 0.38 67.70 0.60 0.00 0.20 61.40
40 8 1.78 0.00 0.32 69.90 2.06 0.00 0.26 52.30
40 10 16.50 0.00 3.50 68.90 12.70 0.00 0.64 56.40
40 12 3.45 0.00 0.58 79.60 20.40 0.00 10.30 59.10
40 14 8.02 0.00 0.35 79.50 52.90 0.00 10.40 33.10
40 16 23.10 0.00 8.65 63.50 44.10 0.00 11.40 38.60
40 18 12.00 0.00 4.18 77.10 58.00 0.00 9.43 30.00
80 4 0.94 0.00 77.80 11.30 0.99 0.00 40.60 27.70
80 6 5.47 0.00 75.80 12.60 8.66 0.00 69.30 15.40
80 8 4.33 0.00 75.90 14.50 9.90 0.00 57.50 22.00
80 10 7.41 0.00 77.00 12.60 9.44 0.00 63.60 19.90
80 12 4.96 0.00 80.00 12.20 8.91 0.00 66.30 20.80
80 14 4.89 0.00 79.50 12.80 20.80 0.00 64.80 12.60
80 16 11.50 0.00 77.10 9.88 13.20 0.00 62.80 20.90
80 18 6.08 0.00 79.50 12.50 22.20 0.00 62.10 13.80
120 4 3.95 0.00 82.90 5.76 6.25 0.00 74.00 8.88
120 6 4.40 0.09 86.80 5.20 5.40 0.00 83.90 7.11
120 8 5.25 0.00 84.90 6.39 6.90 0.00 77.20 10.90
120 10 5.92 0.33 87.10 5.28 6.63 0.00 81.20 8.73
120 12 4.08 0.00 89.30 4.98 6.37 0.00 85.20 6.64
120 14 3.88 0.05 89.60 4.95 7.05 0.01 85.40 6.29
120 16 4.36 0.16 89.70 4.81 6.75 0.00 84.00 7.61
120 18 4.25 0.10 90.00 4.74 8.70 0.07 83.60 6.85
160 4 2.67 1.29 91.80 1.82 7.75 0.00 83.30 4.60
160 6 2.87 0.43 93.00 2.22 5.12 0.13 88.90 3.48
160 8 3.39 0.70 91.80 2.75 6.98 0.00 85.50 4.91
160 10 3.92 0.49 92.60 2.46 4.99 0.49 89.40 3.78
160 12 2.89 0.30 93.80 2.30 4.89 0.01 90.50 3.76
160 14 3.16 0.51 93.50 2.44 5.33 0.15 90.20 3.65
160 16 2.92 0.23 94.20 2.31 5.33 0.03 89.70 4.16
160 18 2.95 0.19 94.20 2.26 6.33 0.26 88.90 3.97
200 4 2.39 1.68 93.00 1.42 6.97 0.00 86.20 3.31
200 6 3.59 1.58 91.60 2.08 3.60 0.51 92.40 2.28
200 8 2.48 1.10 94.00 1.69 5.71 0.38 89.00 3.41
200 10 2.68 0.62 94.60 1.81 4.72 0.84 90.80 3.01
200 12 2.32 0.57 95.30 1.50 3.63 0.17 93.40 2.22
200 14 2.29 0.67 95.20 1.54 3.73 0.20 93.30 2.43
200 16 2.14 0.27 95.90 1.51 4.26 0.13 92.50 2.62
200 18 2.36 0.09 95.80 1.55 4.83 0.37 91.60 2.79

mean 3.55 0.21 52.61 13.62 7.83 0.07 48.51 11.14

Source: from author (2015).
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Table 6.8: Column Generation Components Running Time - Hierarchical Instances

Low Demand High Demand
|S| |V | master(%) add(%) pricing(%) aux(%) master(%) add(%) pricing(%) aux(%)
125 4 0.00 0.00 1.28 32.10 1.55 0.00 17.10 30.20
125 6 3.08 0.00 46.90 28.00 3.49 0.00 16.30 39.10
125 8 24.10 0.00 18.90 38.40 15.90 0.00 35.70 30.70
125 10 46.90 0.00 39.70 11.50 25.70 0.00 28.90 31.40
125 12 23.40 0.00 25.40 42.80 20.70 0.00 61.30 15.20
125 14 25.20 0.00 61.20 11.80 26.80 0.00 37.80 30.40
125 16 24.30 0.00 56.70 17.40 47.80 0.00 30.80 19.00
125 18 38.50 0.00 42.30 17.40 31.50 0.00 14.10 43.60
150 4 0.69 0.00 0.00 43.20 3.78 0.00 27.00 31.60
150 6 8.74 0.00 29.20 40.90 23.10 0.00 8.28 39.00
150 8 18.90 0.00 16.60 50.30 22.70 0.00 37.10 30.20
150 10 56.50 0.01 28.70 12.90 22.20 0.00 7.27 52.00
150 12 12.60 0.00 16.00 60.50 18.00 0.00 67.20 12.70
150 14 36.40 0.01 38.00 22.70 32.70 0.00 50.60 15.00
150 16 41.40 0.00 34.30 22.50 28.00 0.00 56.60 13.50
150 18 39.60 0.02 39.20 19.50 40.70 0.00 26.80 28.80
175 4 0.97 0.00 0.00 52.40 1.56 0.00 60.30 21.40
175 6 15.30 0.00 23.30 46.50 12.40 0.00 21.40 44.60
175 8 15.10 0.00 8.26 63.60 19.60 0.00 28.90 36.20
175 10 58.70 0.00 24.70 14.50 32.50 0.00 11.00 43.90
175 12 18.30 0.00 44.60 31.50 12.70 0.00 73.30 12.30
175 14 20.30 0.03 25.20 48.10 24.00 0.00 59.80 14.70
175 16 16.30 0.01 65.80 16.70 20.70 0.00 66.80 11.10
175 18 30.70 0.01 52.70 15.00 36.30 0.00 46.80 15.30
200 4 1.33 0.00 13.40 41.70 2.02 0.00 48.00 27.00
200 6 18.20 0.00 16.90 49.80 15.20 0.00 35.00 36.90
200 8 7.62 0.00 54.00 31.00 16.80 0.00 53.60 23.40
200 10 51.20 0.02 33.30 13.50 26.90 0.00 30.20 34.30
200 12 19.50 0.00 44.70 30.40 14.70 0.00 71.40 12.10
200 14 17.20 0.01 40.30 37.20 24.60 0.00 58.80 15.20
200 16 31.10 0.02 48.00 19.20 25.00 0.07 60.40 13.00
200 18 47.50 0.01 35.80 15.00 23.60 0.00 38.20 34.20
225 4 0.81 0.00 11.40 56.90 3.81 0.00 39.40 28.80
225 6 18.00 0.00 37.90 30.60 9.28 0.00 59.30 23.70
225 8 10.70 0.00 47.10 32.30 12.30 0.00 62.50 19.00
225 10 51.80 0.03 36.00 10.20 18.80 0.15 27.10 44.90
225 12 19.00 0.00 54.90 21.50 13.00 0.00 73.10 12.30
225 14 22.80 0.00 53.10 20.10 25.60 0.00 56.10 16.90
225 16 14.50 0.00 74.90 9.37 20.60 0.08 66.30 11.60
225 18 31.90 0.04 54.70 11.80 24.80 0.00 58.30 15.50
250 4 9.83 0.00 33.40 29.40 2.56 0.00 0.00 62.40
250 6 12.80 0.00 48.90 27.70 11.00 0.00 46.30 32.70
250 8 14.10 0.00 40.20 36.90 14.20 0.00 48.70 29.90
250 10 41.80 0.00 43.20 13.10 18.80 0.00 28.90 43.10
250 12 10.70 0.00 61.10 24.60 7.18 0.00 83.40 8.27
250 14 11.20 0.02 78.80 8.66 24.70 0.00 58.30 15.60
250 16 28.00 0.00 50.00 20.30 22.40 0.05 62.70 13.40
250 18 32.00 0.02 48.60 17.70 22.00 0.00 61.80 14.90

mean 20.36 0.00 33.32 25.35 17.12 0.01 39.24 23.17

Source: from author (2015).
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Table 6.9: Column Generation Components Running Time - Transit-stub Instances

Low Demand High Demand
|S| |V | master(%) add(%) pricing(%) aux(%) master(%) add(%) pricing(%) aux(%)
90 4 0.00 0.00 0.00 38.40 0.53 0.00 38.50 27.30
90 6 2.64 0.00 30.70 37.40 0.92 0.00 20.60 39.60
90 8 1.81 0.00 6.60 59.50 6.49 0.00 18.20 41.70
90 10 41.70 0.00 27.30 26.20 7.57 0.00 13.60 47.50
90 12 7.06 0.00 6.97 66.20 22.30 0.00 50.10 23.80
90 14 17.10 0.00 35.90 39.50 48.10 0.00 25.50 22.90
90 16 26.90 0.00 49.20 21.80 28.50 0.00 41.70 26.00
90 18 37.50 0.00 35.90 23.90 48.40 0.00 27.80 21.60
135 4 6.25 0.00 12.50 37.50 0.56 0.00 57.90 19.10
135 6 1.91 0.00 22.10 48.50 2.10 0.00 1.20 49.40
135 8 15.00 0.00 40.70 33.00 10.70 0.00 47.50 29.00
135 10 31.50 0.00 52.20 14.30 18.10 0.00 24.80 42.40
135 12 12.80 0.00 41.70 39.30 16.80 0.00 65.20 15.60
135 14 19.50 0.09 39.60 35.90 34.70 0.00 40.60 22.10
135 16 23.10 0.00 53.80 21.40 21.80 0.00 55.80 19.80
135 18 25.40 0.00 50.60 22.00 37.50 0.00 40.30 20.40
180 4 5.41 0.00 10.80 48.60 1.82 0.00 41.00 29.60
180 6 8.24 0.00 4.42 64.30 3.56 0.00 36.20 40.80
180 8 10.90 0.00 38.30 41.00 18.70 0.00 26.50 39.80
180 10 19.00 0.00 24.20 50.40 16.20 0.00 10.40 58.10
180 12 9.83 0.00 39.00 42.30 11.60 0.00 71.50 15.10
180 14 25.50 0.00 44.30 25.90 23.90 0.00 54.10 20.00
180 16 30.10 0.03 47.20 20.90 17.70 0.00 67.60 13.20
180 18 16.40 0.00 34.80 44.60 25.50 0.00 58.20 14.90
225 4 4.88 0.00 58.50 19.50 3.12 0.00 0.00 62.50
225 6 9.43 0.00 42.50 36.80 14.90 0.00 6.38 68.10
225 8 11.40 0.00 45.30 31.80 13.60 0.00 25.40 48.00
225 10 11.60 0.00 53.40 28.50 17.80 0.00 15.00 54.70
225 12 10.50 0.00 50.60 32.30 9.10 0.00 77.20 12.20
225 14 12.60 0.00 55.60 26.80 25.20 0.00 49.70 23.20
225 16 22.90 0.04 61.20 14.30 18.70 0.09 61.30 18.00
225 18 11.70 0.02 62.40 22.70 23.60 0.00 59.70 15.40
270 4 8.82 0.00 47.10 29.40 3.00 0.00 71.20 13.90
270 6 11.80 0.00 42.00 35.00 13.20 0.00 28.50 45.90
270 8 10.20 0.00 38.10 40.90 6.21 0.00 71.50 17.10
270 10 31.70 0.00 54.90 11.70 15.60 0.00 34.60 41.10
270 12 8.27 0.00 59.40 28.50 6.84 0.00 82.70 9.30
270 14 31.00 0.00 53.30 13.90 16.30 0.00 65.80 16.50
270 16 10.00 0.15 75.30 13.50 12.60 0.06 74.90 11.40
270 18 12.50 0.03 68.40 17.60 14.90 0.00 72.10 11.80

mean 13.66 0.01 35.93 29.02 14.19 0.00 38.46 25.97

Source: from author (2015).
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7 CONCLUDING REMARKS

This work presented a new Branch & Price algorithm for the Single-Path Virtual Network

Embedding Problem. It characterized the complexity of this problem by showing that finding

a feasible solution for the VNEP is NP-Hard. The master and pricing problem of a column

generation algorithm were described in details and an algorithm to solve the pricing problem

was thoroughly presented. Implementation details were presented with alternative algorithms

for node selection and branching. Different implementations of B&P were tested and the best

version was compared with a compact model solved with CPLEX. Algorithms were extensively

tested by using four different topologies of different sizes, each with two settings of demands.

Results have shown that B&P has a better performance and is able to solve larger instances

than the standard model solved with CPLEX. The presented B&P is able to find optimal

solutions for most instances with virtual networks of up to 8 nodes. For example, for dense

random instances with high demands, B&P is able to solve six of the nine instances of 14

virtual nodes and 200 physical nodes, while CPLEX is able to solve only one instance of this

size. B&P can also find integer solutions faster than CPLEX when one exists. Thus the

presented algorithm can be used in practice for small instances, can obtain good solutions for

large instances, and can be used to evaluate heuristic algorithms since it is able to solve large

instances in a reasonable time.

By exploiting the problem structure, B&P is able to obtain good heuristic solutions quickly.

Those integer solutions provide high quality upper bounds that can prune large portions of the

search tree, improving running time and reducing memory usage. However, there is still room

for improvement in the B&P implementation. The algorithm can be extended to a Branch

& Price & Cut by adapting cover inequalities presented in (BARNHART; HANE; VANCE,

2000) for the Multicommodity Flow Problem. Such cuts could reduce the number of nodes

to explore, improving both the performance of the algorithm and the size of instances that

the algorithm is able to solve. Additionally, an adaption of the model to map multiple virtual

networks simultaneously could improve resource utilization or other metrics such as revenue.

To implement this, a possible approach is that of (GUERZONI et al., 2014) of mapping virtual

networks arriving in a window of time and allowing partial solutions to these networks.
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AppendixA FULL RESULTS

Table A.1: Sparse Random Instance - Low demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
20 2 0 0.00 0.00 16.33 0 0.01 0.01 16.33
20 4 0 0.01 0.02 25.22 0 0.06 0.29 25.22
20 6 0 0.02 0.13 65.67 0 0.20 1.99 65.67
20 8 0 0.04 0.82 83.78 0 0.43 9.42 83.78
20 10 0 0.11 6.13 140.78 1 3.94 565.91 140.78
20 12 0 0.42 32.24 142.00 2 6.06 980.77 142.33
20 14 0 2.70 197.09 176.33 1 16.83 741.24 177.11
20 16 3 69.37 1465.91 303.00 1 22.56 704.30 304.88
20 18 3 397.88 1200.07 298 0 67.416 72.19 290
40 2 0 0.01 0.01 16.33 0 0.02 0.04 16.33
40 4 0 0.01 0.06 25.00 0 0.20 0.70 25.00
40 6 0 0.02 0.39 62.67 0 0.85 15.87 62.67
40 8 0 0.05 1.47 76.67 3 2.37 1993.26 76.67
40 10 0 0.06 198.00 121.11 8 4.61 3461.04 122.78
40 12 0 0.20 78.63 126.00 9 6.79 3600.00 127.67
40 14 1 0.11 701.76 146.56 9 11.39 3600.00 153.44
40 16 4 0.16 1837.95 215.22 9 417.85 3600.00 227.56
40 18 1 0.18 1120.02 221.11 9 371.33 3600.00 283.89
80 2 0 0.01 0.01 16.33 0 0.03 0.07 16.33
80 4 0 0.04 0.39 25.00 0 0.57 4.69 25.00
80 6 0 0.09 4.20 62.67 0 4.97 288.35 62.67
80 8 0 0.12 11.64 76.67 9 15.43 3600.00 76.67
80 10 0 0.28 255.95 120.67 9 32.48 3600.00 126.22
80 12 1 0.60 442.74 126.56 9 91.15 3600.00 134.56
80 14 0 0.53 1015.49 146.00 9 920.69 3600.00 185.00
80 16 4 0.40 1990.83 212.11 9 1182.38 3600.00 304.22
80 18 4 2.53 2092.46 223.67 9 943.55 3600.00 309.50
120 2 0 0.03 0.03 16.33 0 0.05 0.12 16.33
120 4 0 0.12 1.97 25.00 0 1.19 16.48 25.00
120 6 0 0.21 27.30 62.67 0 9.85 1979.18 62.67
120 8 0 0.36 55.61 76.67 9 49.50 3600.00 76.67
120 10 0 0.61 696.93 120.67 9 259.51 3600.00 127.33
120 12 0 1.49 372.39 126.00 9 739.56 3600.00 141.56
120 14 2 1.91 1735.27 148.33 9 784.18 3600.00 170.62
120 16 2 3.10 1706.44 212.44 9 1553.34 3600.00 320.14
120 18 2 4.27 2026.57 222.11 9 2180.70 3600.00 290.62
160 2 0 0.07 0.07 16.33 0 0.09 0.20 16.33
160 4 0 0.26 8.99 25.00 0 2.16 71.25 25.00
160 6 0 0.45 78.36 62.67 9 24.79 3600.00 62.67
160 8 0 0.79 191.68 76.67 9 116.07 3600.00 76.67
160 10 1 1.39 1527.90 121.56 9 811.94 3600.00 134.56
160 12 1 2.53 891.74 126.56 9 1431.75 3600.00 194.78
160 14 1 3.04 1841.81 148.00 9 1655.31 3600.00 177.75
160 16 5 5.17 2724.22 229.44 9 2587.91 3600.00 334.50
160 18 6 27.26 3233.96 239.78 9 3329.04 3600.00 458
200 2 0 0.15 0.15 16.33 0 0.15 0.32 16.33
200 4 0 0.56 6.88 25.00 0 3.43 156.03 25.00
200 6 0 1.77 218.34 62.67 9 48.95 3600.00 62.67
200 8 0 4.53 556.39 76.67 9 556.12 3600.00 77.00
200 10 2 3.55 2371.14 121.78 9 1065.41 3600.00 143.89
200 12 3 5.79 2351.89 128.56 9 2005.06 3600.00 184.38
200 14 7 6.91 3316.64 162.44 9 2990.62 3600.00 189.50
200 16 8 12.35 3543.59 236.44 9 - 3600.00 -
200 18 9 8.99 3600.00 272.44 9 - 3600.00 -

Source: from author (2015).
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Table A.2: Sparse Random Instances - High Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
20 2 0 0.00 0.00 19.89 0 0.01 0.01 19.89
20 4 0 0.01 0.01 74.11 0 0.05 0.23 74.11
20 6 0 0.01 0.06 154.17 0 0.14 0.57 154.17
20 8 0 0.02 0.11 224.50 0 0.52 0.75 224.50
20 10 0 0.06 0.57 250.20 0 1.68 2.19 250.20
20 12 0 0.38 1.88 298.50 0 2.86 1.56 298.50
20 14 0 2.045 2.86 461 0 11.604 1.69 461
20 16 0 - 0.04 - 0 - 0.37 -
20 18 0 - 0.04 - 0 - 0.49 -
40 2 0 0.01 0.01 19.67 0 0.01 0.03 19.67
40 4 0 0.01 0.07 57.67 0 0.18 0.50 57.67
40 6 0 0.01 7.06 153.67 0 0.58 45.72 153.67
40 8 0 0.02 0.75 160.56 0 0.97 53.59 160.56
40 10 0 0.04 12.66 203.22 0 5.18 436.33 203.22
40 12 0 0.05 508.49 287.67 2 9.25 1177.05 289.67
40 14 3 0.27 1245.66 453.00 3 34.96 1914.15 446.56
40 16 5 0.42 2259.53 596.33 5 70.18 2714.59 620.44
40 18 6 3.90 3123.82 680.22 8 87.59 3381.96 661.89
80 2 0 0.01 0.01 19.67 0 0.03 0.08 19.67
80 4 0 0.05 0.34 56.33 0 0.46 2.42 56.33
80 6 0 0.05 124.12 134.22 0 2.91 98.17 134.22
80 8 0 0.07 3.79 159.67 0 8.02 1334.36 159.67
80 10 0 0.16 19.63 191.00 9 21.66 3600.00 194.22
80 12 3 0.25 1393.46 280.78 9 28.56 3600.00 305.89
80 14 3 0.28 1485.60 419.11 9 425.16 3600.00 594.22
80 16 6 0.40 2840.44 566.11 9 1312.95 3600.00 944.44
80 18 6 0.68 2537.17 609.67 9 1878.77 3600.00 1053.78
120 2 0 0.02 0.02 19.67 0 0.05 0.12 19.67
120 4 0 0.07 1.89 56.33 0 1.15 10.75 56.33
120 6 0 0.13 141.60 130.67 0 7.55 596.01 130.67
120 8 0 0.19 18.34 159.67 9 29.01 3600.00 159.67
120 10 0 0.33 118.74 191.00 9 79.92 3600.00 204.89
120 12 4 0.51 2124.60 278.00 9 1035.93 3600.00 356.67
120 14 3 0.64 1738.19 404.67 9 1616.20 3600.00 598.50
120 16 7 0.75 3014.10 578.11 9 1541.42 3600.00 932.57
120 18 6 1.59 2689.84 613.22 9 2838.64 3600.00 1475.67
160 2 0 0.04 0.04 19.67 0 0.09 0.21 19.67
160 4 0 0.17 6.49 56.33 0 1.99 28.45 56.33
160 6 0 0.36 292.52 130.67 4 17.57 2922.97 130.67
160 8 0 1.33 94.32 159.67 9 122.95 3600.00 159.67
160 10 0 1.60 242.19 191.00 9 716.96 3600.00 211.11
160 12 3 0.98 2180.04 277.11 9 1478.29 3600.00 443.50
160 14 3 2.18 1983.75 404.22 9 1535.28 3600.00 558.50
160 16 8 1.92 3371.85 587.89 9 1942.46 3600.00 698.80
160 18 7 3.78 3038.77 641.67 9 2916.82 3600.00 701.67
200 2 0 0.07 0.07 19.09 0 0.16 0.35 19.09
200 4 0 0.32 15.20 55.90 0 2.92 62.91 55.90
200 6 0 0.63 392.74 124.10 9 34.91 3599.52 124.10
200 8 0 0.87 147.57 159.00 9 215.92 3600.00 159.00
200 10 0 1.30 610.86 193.90 9 1273.32 3600.00 255.20
200 12 5 2.28 2664.41 282.90 9 2401.21 3600.00 550.90
200 14 5 4.64 2891.79 418.30 9 2749.34 3600.00 558.60
200 16 8 6.32 3520.17 600.33 9 2984.89 3600.00 744.50
200 18 8 5.12 3553.89 651.67 9 - 3600.00 -

Source: from author (2015).
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Table A.3: Dense Random Instances - Low Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
20 2 0 0.01 0.01 16.33 0 0.01 0.02 16.33
20 4 0 0.01 0.02 25.00 0 0.06 0.31 25.00
20 6 0 0.01 0.17 65.00 0 0.21 1.71 65.00
20 8 0 0.01 0.79 81.67 0 0.32 55.90 81.67
20 10 0 0.03 5.04 130.56 0 0.74 565.44 130.56
20 12 0 0.04 44.13 141.00 3 2.08 1763.58 141.33
20 14 0 0.04 110.10 164.22 3 3.55 1481.26 166.11
20 16 2 0.11 1112.67 253.33 2 12.04 1755.99 253.22
20 18 2 0.26 1323.39 242.00 6 5.61 2400.26 258.50
40 2 0 0.01 0.01 16.33 0 0.03 0.05 16.33
40 4 0 0.02 0.06 25.00 0 0.18 0.90 25.00
40 6 0 0.03 0.41 62.67 0 0.90 21.43 62.67
40 8 0 0.11 1.81 76.67 6 2.36 2780.74 76.67
40 10 0 0.10 18.07 120.67 8 5.88 3420.77 121.78
40 12 0 0.10 109.11 126.00 9 6.79 3600.00 126.33
40 14 0 0.20 47.50 146.00 9 32.44 3600.00 151.33
40 16 2 0.21 1178.12 211.78 9 93.98 3600.00 229.56
40 18 0 0.33 675.74 219.33 9 307.87 3600.00 272.11
80 2 0 0.02 0.02 16.33 0 0.03 0.06 16.33
80 4 0 0.09 0.67 25.00 0 0.50 8.83 25.00
80 6 0 0.15 7.34 62.67 0 5.13 508.01 62.67
80 8 0 0.27 21.62 76.67 9 16.14 3600.00 76.67
80 10 0 0.53 238.55 120.67 9 33.05 3600.00 121.56
80 12 0 0.56 93.00 126.00 9 195.71 3600.00 130.78
80 14 0 3.03 208.06 146.00 9 769.71 3600.00 170.22
80 16 2 1.76 1115.46 210.22 9 832.80 3600.00 253.56
80 18 0 1.15 1110.37 219.33 9 1114.13 3600.00 309.67
120 2 0 0.06 0.06 16.33 0 0.06 0.13 16.33
120 4 0 0.26 2.31 25.00 0 1.19 61.13 25.00
120 6 0 0.66 30.42 62.67 4 12.72 3014.61 62.67
120 8 0 1.07 83.87 76.67 9 53.40 3600.00 76.67
120 10 0 5.56 465.39 120.67 9 271.11 3600.00 124.67
120 12 0 2.64 463.21 126.00 9 791.47 3600.00 129.78
120 14 0 4.82 1429.16 146.00 9 759.32 3600.00 167.11
120 16 2 4.88 1840.23 213.44 9 1994.69 3600.00 286.00
120 18 1 4.20 1947.06 221.11 9 2144.90 3600.00 328.00
160 2 0 0.13 0.13 16.33 0 0.10 0.22 16.33
160 4 0 0.58 8.86 25.00 0 2.33 110.77 25.00
160 6 0 1.08 103.41 62.67 9 23.64 3600.00 62.67
160 8 0 2.30 300.78 76.67 9 213.32 3600.00 76.67
160 10 1 5.17 1648.07 120.89 9 1001.60 3600.00 131.22
160 12 0 4.13 1595.81 126.00 9 1489.38 3600.00 165.00
160 14 5 15.68 2824.43 152.33 9 2050.57 3600.00 187.75
160 16 5 14.08 3332.66 225.56 9 2844.99 3600.00 247.33
160 18 7 11.54 3463.64 237.33 9 - 3600.00 -
200 2 0 0.23 0.23 16.33 0 0.17 0.35 16.33
200 4 0 1.02 13.08 25.00 0 3.76 398.17 25.00
200 6 0 2.25 323.10 62.67 9 45.90 3600.00 62.67
200 8 0 3.07 820.89 76.67 9 569.53 3600.00 76.67
200 10 3 11.50 2139.78 122.00 9 1467.65 3600.00 137.78
200 12 4 9.65 2740.72 133.11 9 1951.19 3600.00 166.25
200 14 7 48.99 3483.86 168.11 9 2963.01 3600.00 158.75
200 16 9 27.83 3600.00 253.00 9 - 3600.00 -
200 18 9 114.26 3600.00 285.56 9 - 3600.00 -

Source: from author (2015).
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Table A.4: Dense Random Instances - High Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
20 2 0 0.00 0.00 19.67 0 0.01 0.02 19.67
20 4 0 0.01 0.02 59.00 0 0.09 0.28 59.00
20 6 0 0.02 0.23 184.11 0 0.13 0.99 184.11
20 8 0 0.01 0.38 183.67 0 0.25 2.34 183.67
20 10 0 0.03 2.38 252.00 0 1.11 6.26 252.00
20 12 0 0.09 12.53 348.14 0 2.03 10.32 348.14
20 14 1 17.49 506.43 581.00 0 13.07 40.35 573.00
20 16 1 147.92 827.49 719.40 0 20.92 35.50 719.40
20 18 0 - 0.10 - 0 - 0.79 -
40 2 0 0.01 0.01 19.67 0 0.01 0.04 19.67
40 4 0 0.01 0.11 56.33 0 0.21 0.61 56.33
40 6 0 0.02 7.15 135.44 0 0.57 13.48 135.44
40 8 0 0.03 1.59 159.67 1 1.21 508.28 159.67
40 10 0 0.03 8.47 191.00 3 2.79 2748.24 191.00
40 12 1 0.09 776.44 272.44 9 3.49 3600.00 287.00
40 14 3 0.13 1301.14 418.89 9 16.68 3600.00 435.22
40 16 6 0.26 2472.04 546.56 9 33.87 3600.00 603.78
40 18 6 0.25 2440.22 599.44 9 93.90 3600.00 667.44
80 2 0 0.01 0.01 19.67 0 0.03 0.07 19.67
80 4 0 0.05 0.42 56.33 0 0.42 3.79 56.33
80 6 0 0.09 8.74 130.67 0 3.01 193.01 130.67
80 8 0 0.12 7.50 159.67 6 9.88 2818.23 159.67
80 10 0 0.23 26.20 191.00 9 13.04 3600.00 191.00
80 12 1 0.25 649.88 269.56 9 78.74 3600.00 280.78
80 14 3 0.43 1516.65 387.00 9 752.22 3600.00 496.56
80 16 5 0.68 2298.35 517.22 9 950.62 3600.00 703.67
80 18 6 0.87 2458.66 523.33 9 2107.12 3600.00 837.38
120 2 0 0.03 0.03 19.67 0 0.06 0.13 19.67
120 4 0 0.12 1.97 56.33 0 1.08 13.03 56.33
120 6 0 0.20 94.95 130.67 0 7.97 1135.29 130.67
120 8 0 0.54 31.71 159.67 7 31.22 3351.69 159.67
120 10 0 0.74 86.37 191.00 9 87.64 3600.00 195.56
120 12 2 0.83 1221.87 269.56 9 930.39 3600.00 316.56
120 14 0 1.58 1190.82 377.00 9 1681.89 3600.00 547.56
120 16 3 1.34 2118.18 501.56 9 1731.38 3600.00 799.38
120 18 6 1.87 2781.59 532.22 9 987.24 3600.00 748
160 2 0 0.06 0.06 19.67 0 0.10 0.23 19.67
160 4 0 0.29 9.51 56.33 0 1.82 38.95 56.33
160 6 0 0.63 162.56 130.67 6 17.34 3294.34 130.67
160 8 0 0.92 118.15 159.67 9 70.71 3600.00 159.67
160 10 0 1.35 328.35 191.00 9 606.78 3600.00 198.22
160 12 2 1.92 1539.68 272.00 9 1373.49 3600.00 405.50
160 14 3 2.72 1949.36 388.78 9 1472.87 3600.00 551.00
160 16 6 3.50 2985.52 552.44 9 1796.00 3600.00 721.00
160 18 7 13.63 3128.94 554.44 9 3413.39 3600.00 479
200 2 0 0.10 0.10 20.57 0 0.17 0.37 20.57
200 4 0 0.52 19.08 56.88 0 3.74 84.64 56.88
200 6 0 1.00 452.59 138.88 8 27.60 3600.00 138.88
200 8 0 2.44 346.62 160.50 8 215.63 3600.00 160.50
200 10 0 2.38 736.39 187.38 8 1866.90 3600.00 207.12
200 12 3 3.98 2907.43 275.25 8 2714.27 3600.00 592.60
200 14 3 7.33 2398.76 432.62 8 2312.73 3600.00 709.25
200 16 9 15.42 3600.00 602.78 9 - 3600.00 -
200 18 9 9.73 3600.00 625.33 9 - 3600.00 -

Source: from author (2015).
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Table A.5: Hierarchical Instances - Low Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
125 2 0 0.01 0.01 16.33 0 0.06 0.13 16.33
125 4 0 0.11 0.29 25.00 0 2.27 9.18 25.00
125 6 0 0.36 4.87 62.67 0 17.30 167.21 62.67
125 8 0 1.15 29.32 76.67 5 75.18 3056.65 78.22
125 10 4 13.63 1929.54 135.22 9 270.71 3600.00 151.78
125 12 3 65.85 1389.12 144.89 9 629.59 3600.00 169.33
125 14 9 182.92 3600.00 264.00 9 1538.64 3600.00 217.00
125 16 9 857.62 3600.00 488.50 9 3142.99 3600.00 406.33
125 18 9 916.42 3600.00 601.33 9 - 3600.00 -
150 2 0 0.01 0.01 16.33 0 0.06 0.15 16.33
150 4 0 0.03 0.28 25.00 0 2.06 10.77 25.00
150 6 0 0.35 6.15 62.67 0 13.70 260.67 62.67
150 8 0 0.64 33.88 76.67 8 68.72 3540.39 77.11
150 10 4 2.25 1888.93 131.89 9 218.09 3600.00 155.33
150 12 4 2.95 1998.31 135.44 9 922.26 3600.00 185.56
150 14 7 12.57 2961.95 215.89 9 951.29 3600.00 263.50
150 16 9 26.20 3600.00 410.33 9 855.97 3600.00 419.33
150 18 9 155.34 3600.00 448.11 9 - 3600.00 -
175 2 0 0.01 0.01 16.33 0 0.09 0.20 16.33
175 4 0 0.03 0.84 25.00 0 2.57 19.25 25.00
175 6 0 0.05 6.64 62.67 0 22.57 646.73 62.67
175 8 0 0.36 32.48 76.67 9 108.28 3600.00 77.67
175 10 4 2.23 1782.50 128.78 9 519.80 3600.00 166.00
175 12 4 5.99 1722.29 136.89 9 873.28 3600.00 233.33
175 14 7 13.50 2826.14 201.44 9 1429.26 3600.00 305.78
175 16 9 25.24 3600.00 335.00 8 2425.69 3600.00 514.00
175 18 9 19.76 3600.00 439.67 8 3201.44 3600.00 573.00
200 2 0 0.01 0.01 16.33 0 0.11 0.25 16.33
200 4 0 0.03 2.18 25.00 0 3.87 31.70 25.00
200 6 0 0.06 19.37 62.67 1 28.18 1236.67 62.67
200 8 0 0.25 83.65 76.67 9 161.43 3600.00 79.00
200 10 4 2.69 2088.51 128.44 9 1038.06 3600.00 166.22
200 12 2 3.44 1461.63 132.67 9 1293.03 3600.00 212.88
200 14 6 19.43 2565.80 199.89 7 1875.52 3600.00 283.33
200 16 9 26.12 3600.00 394.11 7 3016.97 3600.00 430.75
200 18 9 28.82 3600.00 595.67 8 - 3600.00 -
225 2 0 0.02 0.02 16.33 0 0.19 0.43 16.33
225 4 0 0.04 1.26 25.00 0 5.72 47.53 25.00
225 6 0 0.82 15.46 62.67 1 56.71 1890.65 62.67
225 8 0 0.47 71.10 76.67 9 499.16 3600.00 86.22
225 10 6 1.63 2466.65 136.00 9 1434.67 3600.00 180.00
225 12 5 9.57 2070.26 144.44 9 1578.52 3600.00 273.33
225 14 6 13.49 2598.64 228.11 9 2677.50 3600.00 291.29
225 16 9 33.93 3600.00 369.00 9 - 3600.00 -
225 18 9 53.11 3600.00 603.78 - - - -
250 2 0 0.02 0.02 16.33 0 0.18 0.41 16.33
250 4 0 0.05 0.82 25.00 0 6.17 64.05 25.00
250 6 0 0.31 22.09 62.67 4 58.16 2697.23 62.67
250 8 0 1.18 143.34 76.67 9 586.85 3600.00 81.78
250 10 4 5.73 2781.41 130.44 9 1143.66 3600.00 183.22
250 12 3 3.96 1632.76 133.89 9 2035.18 3600.00 210.67
250 14 8 19.96 3228.64 196.89 9 3188.84 3600.00 295.75
250 16 9 16.32 3600.00 349.44 6 - 3600.00 -
250 18 9 6.83 3600.00 507.89 - - - -

Source: from author (2015).
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Table A.6: Hierarchical Instances - High Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
125 2 0 0.01 0.01 19.67 0 0.05 0.11 19.67
125 4 0 0.05 0.22 56.33 0 1.72 4.52 56.33
125 6 1 70.59 439.99 180.89 0 17.85 58.07 180.89
125 8 0 1.08 9.08 164.67 0 50.23 458.09 164.67
125 10 1 8.93 799.98 229.67 6 204.63 2701.86 237.33
125 12 9 57.62 3600.00 369.29 7 629.25 2889.93 389.00
125 14 4 350.70 1866.99 499.67 4 636.09 2227.06 445.83
125 16 7 1560.21 2827.93 672.33 6 1214.45 2692.10 726.00
125 18 7 126.055 2801.42 783 6 1549.83 2774.42 569.00
150 2 0 0.01 0.01 19.67 0 0.06 0.15 19.67
150 4 0 0.04 0.41 56.33 0 2.28 6.84 56.33
150 6 2 4.23 830.02 161.88 0 19.39 77.69 161.88
150 8 0 1.09 26.19 171.11 0 70.36 1479.70 171.11
150 10 1 2.58 1007.59 240.89 8 409.67 3261.10 266.33
150 12 9 76.04 3600.00 438.50 7 597.23 3072.05 468.75
150 14 7 197.97 3032.94 473.17 8 1262.33 3503.23 591.17
150 16 9 287.46 3600.00 660.67 9 1111.43 3600.00 792.00
150 18 7 129.69 2854.57 659.67 8 2747.84 3381.41 796
175 2 0 0.01 0.01 19.67 0 0.09 0.20 19.67
175 4 0 0.08 0.65 56.33 0 2.40 10.69 56.33
175 6 2 3.03 819.05 170.00 1 22.56 703.68 167.00
175 8 0 0.81 19.08 159.67 5 119.17 2675.24 161.22
175 10 1 2.42 868.06 202.78 9 509.45 3600.00 259.44
175 12 9 18.90 3600.00 425.00 9 1813.97 3600.00 493.17
175 14 7 57.18 3181.59 396.67 9 2819.76 3600.00 806.50
175 16 9 287.10 3600.00 986.75 9 - 3600.00 -
175 18 9 70.71 3600.00 954.75 9 - 3600.00 -
200 2 0 0.01 0.01 19.67 0 0.11 0.26 19.67
200 4 0 0.04 1.67 56.33 0 3.25 15.48 56.33
200 6 3 6.99 1205.31 149.38 1 17.34 659.21 148.25
200 8 0 3.33 38.29 162.56 6 197.57 2769.50 162.56
200 10 1 5.22 1554.55 204.33 9 821.48 3600.00 277.56
200 12 9 126.25 3600.00 360.62 9 2250.90 3600.00 554.86
200 14 8 103.62 3342.64 398.33 9 2324.11 3600.00 634
200 16 9 188.44 3600.00 578.50 9 - 3600.00 -
200 18 8 865.91 3218.07 1042.25 9 - 3600.00 -
225 2 0 0.01 0.01 19.67 0 0.15 0.34 19.67
225 4 0 0.15 1.40 56.33 0 3.52 23.51 56.33
225 6 3 3.18 1212.33 163.11 0 69.38 697.81 159.11
225 8 0 1.64 81.44 160.44 7 359.11 3273.55 162.56
225 10 4 2.54 2080.56 222.33 9 1689.94 3600.00 284.44
225 12 9 13.98 3600.00 439.78 9 2448.91 3600.00 951.75
225 14 9 79.15 3600.00 459.00 9 - 3600.00 -
225 16 9 333.86 3600.00 737.67 9 - 3600.00 -
225 18 9 39.84 3600.00 598.67 2 - 3600.00 -
250 2 0 0.01 0.01 19.67 0 0.19 0.42 19.67
250 4 0 0.09 1.58 56.33 0 5.34 33.30 56.33
250 6 3 1.80 1207.01 176.89 1 61.85 1209.78 169.89
250 8 0 0.77 42.30 160.11 7 611.69 3275.76 167.33
250 10 5 4.44 2128.35 205.11 9 1795.74 3600.00 295.71
250 12 9 96.17 3600.00 400.22 9 3442.45 3600.00 830.00
250 14 9 372.61 3600.00 775.25 9 3200.92 3600.00 866
250 16 9 514.31 3600.00 1275.00 9 - 3600.00 -
250 18 9 111.09 3600.00 940.80 - - - -

Source: from author (2015).
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Table A.7: Transit-Stub Instances - Low Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
90 2 0 0.01 0.01 16.33 0 0.04 0.08 16.33
90 4 0 0.02 0.10 25.00 0 1.43 3.92 25.00
90 6 0 0.15 1.10 62.67 0 6.16 80.43 62.67
90 8 0 0.71 11.62 76.67 5 14.09 3060.16 76.67
90 10 0 0.90 562.50 126.11 9 56.14 3600.00 135.44
90 12 4 0.90 1936.71 137.44 9 420.97 3600.00 158.44
90 14 6 4.25 2529.66 168.89 9 1295.66 3600.00 242.62
90 16 9 7.64 3600.00 261.00 9 1668.90 3600.00 347.17
90 18 8 54.70 3545.14 277.00 9 1630.65 3600.00 381.50
135 2 0 0.01 0.01 16.33 0 0.05 0.12 16.33
135 4 0 0.03 0.37 25.00 0 1.88 8.17 25.00
135 6 0 0.73 4.26 62.67 0 16.24 207.81 62.67
135 8 0 0.95 15.40 76.67 9 24.20 3600.00 78.11
135 10 1 4.86 1008.53 125.56 9 119.30 3600.00 145.11
135 12 4 11.38 1698.08 136.11 9 1072.44 3600.00 179.25
135 14 6 18.96 2527.99 171.33 9 2063.45 3600.00 259.67
135 16 8 28.05 3366.60 274.00 9 919.61 3600.00 405
135 18 7 106.01 3324.57 300.44 9 3232.04 3600.00 369
180 2 0 0.01 0.01 16.33 0 0.09 0.22 16.33
180 4 0 0.07 0.13 25.00 0 2.90 20.02 25.00
180 6 0 0.13 5.92 62.67 0 29.46 714.93 62.67
180 8 0 0.21 128.66 76.67 9 103.33 3600.00 80.11
180 10 1 3.48 489.77 121.56 9 798.14 3600.00 162.00
180 12 3 3.34 1558.32 131.67 9 1268.69 3600.00 184.56
180 14 6 19.92 2489.55 161.89 9 1271.54 3600.00 240.60
180 16 7 55.83 3160.88 257.44 9 2709.80 3600.00 420.50
180 18 7 33.59 2867.82 286.11 9 2696.72 3600.00 489.50
225 2 0 0.02 0.02 16.33 0 0.16 0.35 16.33
225 4 0 0.12 0.42 25.00 0 5.05 42.98 25.00
225 6 0 0.79 7.96 62.67 0 33.44 1389.65 62.67
225 8 0 1.37 18.82 76.67 9 421.83 3600.00 82.00
225 10 2 6.37 1248.10 121.78 9 1336.48 3600.00 172.22
225 12 3 15.60 1480.03 136.11 9 1700.60 3600.00 262.67
225 14 7 21.94 2835.99 172.33 9 2469.18 3600.00 273.00
225 16 8 272.49 3280.00 266.44 9 - 3600.00 -
225 18 7 84.19 2977.65 301.67 9 - 3600.00 -
270 2 0 0.02 0.02 16.33 0 0.23 0.52 16.33
270 4 0 0.04 0.47 25.00 0 7.51 76.94 25.00
270 6 0 0.08 10.08 62.67 1 107.51 2363.50 62.67
270 8 0 0.38 25.72 76.67 9 702.13 3600.00 94.89
270 10 3 3.13 1316.29 123.11 9 1916.61 3600.00 216.25
270 12 3 4.34 1410.66 130.44 9 2316.13 3600.00 209.80
270 14 7 21.83 2893.45 170.67 9 - 3600.00 -
270 16 9 70.29 3600.00 261.00 9 - 3600.00 -
270 18 7 63.97 3102.35 287.22 9 - 3600.00 -

Source: from author (2015).
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Table A.8: Transit-Stub Instances - High Demands

Branch & Price CPLEX
|S| |V | #NF time_int time(s) cost #NF time_int time(s) cost
90 2 0 0.01 0.01 19.67 0 0.03 0.07 19.67
90 4 0 0.05 0.14 56.33 0 1.02 2.06 56.33
90 6 1 2.36 468.98 158.50 0 5.92 16.36 158.50
90 8 0 0.30 4.46 166.89 0 26.13 196.38 166.89
90 10 0 1.06 403.26 227.44 1 68.70 893.57 227.44
90 12 8 123.75 3417.56 394.22 4 241.60 2223.44 384.33
90 14 3 24.73 1714.26 384.33 1 350.68 953.60 455.00
90 16 5 98.56 2224.50 570.00 0 330.64 1714.93 618.00
90 18 7 16.41 2803.70 471.67 5 671.74 2163.21 547.00
135 2 0 0.01 0.01 19.67 0 0.05 0.12 19.67
135 4 0 0.12 0.40 56.33 0 2.17 5.80 56.33
135 6 0 2.00 402.40 179.56 0 14.80 135.11 179.56
135 8 0 0.90 4.15 165.22 0 62.51 658.16 165.22
135 10 0 2.38 336.54 216.33 6 263.55 3092.05 223.78
135 12 7 82.43 3291.35 334.78 7 505.15 3018.57 371.11
135 14 5 258.30 2385.65 458.29 5 800.86 2554.44 531.75
135 16 6 452.72 2684.76 582.80 6 1044.08 3216.73 713.75
135 18 8 522.89 3211.46 687.50 8 1655.28 3309.91 786.00
180 2 0 0.01 0.01 19.67 0 0.09 0.20 19.67
180 4 0 0.02 0.37 56.33 0 2.80 10.97 56.33
180 6 2 0.36 905.50 157.00 0 12.39 221.59 156.22
180 8 0 0.16 6.39 159.67 3 160.48 2381.46 159.67
180 10 0 1.28 556.60 200.67 9 712.76 3600.00 247.33
180 12 8 8.81 3393.55 335.44 9 1837.74 3600.00 400.29
180 14 6 192.28 2758.45 425.00 9 2549.79 3600.00 749.80
180 16 7 136.65 3064.30 629.80 9 3139.49 3600.00 1045.00
180 18 9 519.74 3600.00 559.00 9 - 3600.00 -
225 2 0 0.01 0.01 19.67 0 0.15 0.33 19.67
225 4 0 0.34 1.18 56.33 0 4.27 22.11 56.33
225 6 3 3.09 1203.99 158.11 0 86.50 481.99 157.44
225 8 0 1.72 19.86 160.11 6 231.23 2885.80 164.22
225 10 2 3.47 896.60 203.67 9 1331.91 3600.00 275.11
225 12 9 6.32 3600.00 337.00 9 2254.52 3600.00 495.00
225 14 6 170.09 2860.92 490.38 9 2298.47 3600.00 510.00
225 16 7 808.61 3092.19 612.50 9 3233.45 3600.00 827.50
225 18 8 767.36 3595.54 581.75 9 - 3600.00 -
270 2 0 0.02 0.02 19.67 0 0.22 0.48 19.67
270 4 0 0.16 0.65 56.33 0 6.24 41.78 56.33
270 6 3 2.97 1202.06 156.78 2 84.45 1373.08 159.11
270 8 0 3.33 14.23 159.67 7 1172.24 3350.94 167.56
270 10 1 8.81 1048.52 195.78 9 2632.52 3600.00 362.75
270 12 8 20.95 3345.70 335.00 9 2926.11 3600.00 322
270 14 7 433.33 2864.21 510.12 9 - 3600.00 -
270 16 7 1131.90 3292.89 770.00 9 - 3600.00 -
270 18 9 676.16 3600.00 909.17 9 - 3600.00 -

Source: from author (2015).
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