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aperfeiçoamento deste trabalho.

Expresso a minha gratidão aos professores do PPGE-UFRGS pela dedicação e empenho nas
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RESUMO

O presente trabalho foi motivado pela forte demanda por modelos de dependência mais pre-
cisos e realistas para aplicações a dados financeiros multivariados. A recente crise financeira
de 2007-2009 deixou claro quão importante é uma modelagem precisa da dependência para
a avaliação correta do risco financeiro: percepções equivocadas sobre dependências extremas
entre diferentes ativos foram um elemento importante da crise do subprime. O famoso teo-
rema de Sklar (1959) introduziu as cópulas como uma ferramenta para se modelar padrões de
dependência mais sofisticados. Ele estabelece que qualquer função de distribuição conjunta n-
dimensional pode ser decomposta em suas n distribuições marginais e uma cópula, sendo que
a última caracteriza completamente a dependência entre as variáveis. Enquanto existe uma
variedade de famı́lias de cópulas bivariadas que podem descrever um amplo conjunto de de-
pendências complexas, o conjunto de cópulas com dimensão mais elevada era bastante restrito
até recentemente. Joe (1996) propôs uma construção de distribuições multivariadas baseada em
pair-copulas (cópulas bivariadas), chamada pair-copula construction ou modelo de vine cópula,
que reverteu esse problema. Nesta tese, desenvolvemos três ensaios que exploram a teoria de
cópulas para obter modelos de dependência multivariados muito flex́ıveis para aplicações a dados
financeiros. Patton (2006) estendeu o teorema de Sklar para o caso de distribuições condicionais
e tornou o parâmetro de dependência da cópula variante no tempo. No primeiro ensaio, intro-
duzimos um novo enfoque para modelar a dependência entre retornos financeiros internacionais
ao longo do tempo, combinando cópulas tempo-variantes e o modelo de mudança Markoviana.
Aplicamos esses modelos de cópula e também os modelos propostos por Patton (2006), Jondeau e
Rockinger (2006) e Silva Filho et al. (2012a) aos retornos dos ı́ndices FTSE 100, CAC 40 e DAX.
Comparamos essas metodologias em termos das dinâmicas de dependência resultantes e das ha-
bilidades dos modelos em prever Valor em Risco (VaR). Interessantemente, todos os modelos
identificam um longo peŕıodo de alta dependência entre os retornos começando em 2007, quando
a crise do subprime teve ińıcio oficialmente. Surpreendentemente, as cópulas eĺıpticas mostram
melhor desempenho na previsão dos quantis extremos dos retornos dos portfólios. No segundo
ensaio, estendemos nosso estudo para o caso de n > 2 variáveis, usando o modelo de vine cópula
para investigar a estrutura de dependência dos ı́ndices CAC 40, DAX, FTSE 100, S&P 500 e
IBOVESPA, e, particularmente, checar a hipótese de dependência assimétrica nesse caso. Com
base em nossos resultados emṕıricos, entretanto, essa hipótese não pode ser verificada. Talvez
a dependência assimétrica com caudas inferiores mais fortes ocorra apenas temporariamente, o
que sugere que a incorporação de variação temporal ao modelo de vine cópula pode melhorá-lo
como ferramenta para modelar dados financeiros internacionais multivariados. Desta forma, no
terceiro ensaio, introduzimos dinâmica no modelo de vine cópula permitindo que os parâmetros
de dependência das pair-copulas em uma decomposição D-vine sejam potencialmente variantes
no tempo, seguindo um processo ARMA(1,m) restrito como em Patton (2006). O modelo pro-
posto é avaliado em simulações e também com respeito à acurácia das previsões de Valor em
Risco (VaR) em peŕıodos de crise. Os experimentos de Monte Carlo são bastante favoráveis
à cópula D-vine dinâmica em comparação a uma cópula D-vine estática. Adicionalmente, a
cópula D-vine dinâmica supera a cópula D-vine estática em termos de acurácia preditiva para
os nossos conjuntos de dados.

Palavras-chave: Dependência assimétrica. Modelo de pair-copulas. Vine regular. Cópula
tempo-variante. Cópula-GARCH. Modelo de mudança Markoviana. Valor em Risco.



ABSTRACT

This work was motivated by the strong demand for more precise and realistic dependence mod-
els for applications to multivariate financial data. The recent financial crisis of 2007-2009 has
made it clear how important is a precise modeling of dependence for the accurate assessment
of financial risk: misperceptions about extreme dependencies between different financial assets
were an important element of the subprime crisis. The famous theorem by Sklar (1959) intro-
duced the copulas as a tool to model more intricate patterns of dependence. It states that any
n-dimensional joint distribution function can be decomposed into its n marginal distributions
and a copula, where the latter completely characterizes the dependence among the variables.
While there is a variety of bivariate copula families, which can match a wide range of complex de-
pendencies, the set of higher-dimensional copulas was quite restricted until recently. Joe (1996)
proposed a construction of multivariate distributions based on pair-copulas (bivariate copulas),
called pair-copula construction or vine copula model, that has overcome this issue. In this
thesis, we develop three papers that explore the copula theory in order to obtain very flexi-
ble multivariate dependence models for applications to financial data. Patton (2006) extended
Sklar’s theorem to the conditional case and rendered the dependence parameter of the copula
time-varying. In the first paper, we introduce a new approach to modeling dependence be-
tween international financial returns over time, combining time-varying copulas and the Markov
switching model. We apply these copula models and also those proposed by Patton (2006),
Jondeau and Rockinger (2006) and Silva Filho et al. (2012a) to the return data of FTSE 100,
CAC 40 and DAX indexes. We compare these methodologies in terms of the resulting dynamics
of dependence and the models’ abilities to forecast Value-at-Risk (VaR). Interestingly, all the
models identify a long period of high dependence between the returns beginning in 2007, when
the subprime crisis was evolving. Surprisingly, the elliptical copulas perform best in forecasting
the extreme quantiles of the portfolios returns. In the second paper, we extend our study to
the case of n > 2 variables, using the vine copula model to investigate the dependence structure
of the broad stock market indexes CAC 40, DAX, FTSE 100, S&P 500 and IBOVESPA, and,
particularly, check the asymmetric dependence hypothesis in this case. Based on our empiri-
cal results, however, this hypothesis cannot be verified. Perhaps, asymmetric dependence with
stronger lower tails occurs only temporarily, what suggests that incorporating time variation
into the vine copula model can improve it as a tool to model multivariate international financial
data. So, in the third paper, we introduce dynamics into the vine copula model by allowing the
dependence parameters of the pair-copulas in a D-vine decomposition to be potentially time-
varying, following a nonlinear restricted ARMA(1,m) process as in Patton (2006). The proposed
model is evaluated in simulations and further assessed with respect to the accuracy of Value-at-
Risk (VaR) forecasts in crisis periods. The Monte Carlo experiments are quite favorable to the
dynamic D-vine copula in comparison with a static D-vine copula. Moreover, the dynamic D-
vine copula outperforms the static D-vine copula in terms of predictive accuracy for our data sets.

Keywords: Asymmetric dependence. Pair-copula constructions. Regular vine. Time-varying
copula. Copula-GARCH. Markov switching model. Value-at-Risk.
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1 Introdução

Em teoria de portfólio, em geral, assume-se que os retornos financeiros têm uma distribuição

Normal multivariada e o coeficiente de correlação linear é amplamente utilizado em Finanças

como uma medida de dependência. Entretanto, é bem sabido que os retornos financeiros exibem

assimetria e excesso de curtose nas distribuições univariadas. Existem também fatos estilizados

observados na estrutura de dependência de dados financeiros multivariados que não são cap-

turados por distribuições eĺıpticas. Uma caracteŕıstica peculiar é a dependência caudal, que diz

respeito à dependência em valores extremos. Além disso, estudos em Finanças emṕıricas têm

encontrado evidências de que os retornos financeiros internacionais tendem a exibir dependência

assimétrica, no sentido de que retornos negativos são mais dependentes entre si do que retornos

positivos (veja, por exemplo, Longin e Solnik (2001), Ang e Bekaert (2002), Ang e Chen (2002),

Hong et al. (2007)). Dois tipos de dependência assimétrica têm sido reportados: um é de-

pendência mais forte entre retornos de diferentes ativos durante peŕıodos de crise e de alta

volatilidade nos mercados financeiros do que em outros momentos, como, por exemplo, em Ang

e Bekaert (2002); e o segundo tipo é dependência caudal mais forte na cauda inferior (perdas)

em comparação à cauda superior (ganhos) para pares de ativos, como em Hong et al. (2007).

Desta forma, resultados baseados em normalidade podem não ser apropriados para a constru-

ção de portfólios ótimos e gerenciamento de risco (SANCETTA; SATCHELL, 2001). A recente

crise financeira de 2007-2009 deixou isso claro: a avaliação incorreta do risco financeiro na

ocorrência de eventos extremos nos mercados foi um elemento importante da crise do subprime.

Portanto, há uma forte demanda por procedimentos mais precisos e realistas para a modelagem

de distribuições multivariadas de retornos de ativos e para a mensuração da dependência entre

os mesmos.

O teorema de Sklar (1959) introduziu as funções cópulas. De acordo com esse teorema,

é posśıvel decompor qualquer função de distribuição conjunta n-dimensional em suas n dis-

tribuições marginais e uma cópula, sendo que a última descreve completamente a dependência

entre as variáveis. Essa decomposição permite uma maior flexibilidade na construção de dis-

tribuições multivariadas, o que explica o papel de destaque que as cópulas têm desempenhado
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em modelagem multivariada ultimamente.

Como as cópulas representam a estrutura de dependência entre variáveis aleatórias, elas

fornecem uma forma natural de se estudar e medir a dependência entre essas variáveis. As

medidas de dependência baseadas em cópulas têm a propriedade desejável de invariância sob

transformações estritamente crescentes (NELSEN, 2006).

Enquanto existe uma variedade enorme de famı́lias de cópulas bivariadas capazes de capturar

os mais diversos padrões de dependência, o conjunto de cópulas com dimensão mais elevada era

bastante restrito até recentemente. A chamada pair-copula construction (PCC) ou modelo de

cópula vine regular reverteu esse problema. Joe (1996) propôs uma construção probabiĺıstica de

distribuições multivariadas baseada em pair-copulas (cópulas bivariadas), mais tarde estendida

e organizada sistematicamente por Bedford e Cooke (2001, 2002) por meio da especificação de

um modelo gráfico chamado vine regular. O modelo de vine cópula consiste em decompor uma

densidade multivariada em uma cascata de (densidades de) pair-copulas, além das densidades

marginais. É um método mais flex́ıvel de se modelar distribuições multivariadas, uma vez que as

cópulas bivariadas podem pertencer a qualquer famı́lia e várias famı́lias podem ser combinadas

em uma vine cópula, capturando toda estrutura de dependência posśıvel. Aas et al. (2009) in-

troduziram a inferência para dois casos especiais de cópulas vine regulares, as chamadas cópulas

C-vine e D-vine.

Nesta tese, nós exploramos a teoria de cópulas para obter modelos de dependência suficien-

temente flex́ıveis para aplicações a dados financeiros multivariados. O trabalho é composto por

três ensaios, descritos brevemente a seguir.

Patton (2006) estendeu o teorema de Sklar (1959) para o caso de distribuições condicionais,

permitindo tornar a estrutura de dependência variante no tempo. No primeiro ensaio, Caṕıtulo 2

desta tese, nós introduzimos um novo enfoque para modelar a dependência entre retornos finan-

ceiros internacionais ao longo do tempo, combinando a metodologia proposta por Patton (2006) e

o modelo de mudança Markoviana. Como já mencionado anteriormente, vários estudos recentes

têm encontrado evidências de dependência assimétrica nos mercados financeiros internacionais

que sugerem a existência de dois regimes nesses mercados: um regime de alta dependência, com

retornos baixos e voláteis, e um regime de baixa dependência, com retornos elevados e estáveis.



14

Nós assumimos que não apenas o grau de dependência entre os retornos varia de acordo com

os regimes, como também o tipo de dependência. Mais especificamente, assumimos que os

regimes dos mercados financeiros são caracterizados por funções cópulas com diferentes com-

portamentos caudais, com a cópula Normal caracterizando um regime e uma cópula assimétrica

o outro. Adicionalmente, permitimos que os parâmetros de dependência das cópulas variem

deterministicamente ao longo do tempo, seguindo um processo ARMA(1,10) restrito como em

Patton (2006).

Nós aplicamos o modelo proposto e também os modelos de cópulas tempo-variantes propostos

por Patton (2006), Jondeau e Rockinger (2006) e Silva Filho et al. (2012a) aos dados de

retornos dos ı́ndices europeus FTSE 100 (Reino Unido), CAC 40 (França) e DAX (Alemanha),

de 04 de janeiro de 1999 a 28 de abril de 2011. Nosso interesse é comparar essas metodologias

em termos das dinâmicas de dependência resultantes e das habilidades dos modelos em prever

posśıveis perdas de capital. Como os riscos relacionados à ocorrência de eventos extremos são

importantes para o gerenciamento de risco, escolhemos comparar e selecionar os modelos com

base em previsões de Valor em Risco (VaR).

Interessantemente, todos os modelos identificam um longo peŕıodo de alta dependência en-

tre os retornos dos ı́ndices FTSE e CAC e entre FTSE e DAX começando em 2007, quando

a crise do subprime teve ińıcio oficialmente. Inesperadamente, os modelos com mudança de

regime também indicam peŕıodos de alta dependência entre os anos de 2003 e 2006, quando

as condições nos mercados financeiros eram favoráveis. Na previsão dos quantis extremos dos

retornos dos portfólios igualmente ponderados dos ı́ndices FTSE e CAC e dos ı́ndices FTSE

e DAX, as cópulas eĺıpticas mostram melhor desempenho. Isso contrasta com as evidências

que esperávamos encontrar para dados de retornos financeiros e também com as evidências en-

contradas na literatura de cópulas estáticas, em que, geralmente, as cópulas que apresentam

dependência caudal e assimetria têm melhores ajustes às caudas das distribuições conjuntas.

Parece que parte da assimetria pode ser gerada por parâmetros tempo-variantes. A falta de

dependência caudal também pode ser parcialmente compensada pela possibilidade de uma forte

dependência mais geral, o que explicaria por que a cópula Gaussiana ajusta-se tão bem aos

dados.
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No segundo ensaio, Caṕıtulo 3, estendemos nosso estudo para o caso de n > 2 variáveis,

usando o modelo de vine cópula para investigar a estrutura de dependência dos ı́ndices de

mercados de ações amplos da Alemanha (DAX), França (CAC 40), Reino Unido (FTSE 100),

Estados Unidos (S&P 500) e Brasil (IBOVESPA), e, particularmente, checar a hipótese de

dependência assimétrica entre os mesmos. Com base em descobertas de Joe et al. (2010) a

respeito da dependência caudal em vine cópulas, ajustamos ao nosso conjunto de dados cópulas

C-vine com linking cópulas bivariadas de dois parâmetros que podem ter dependência caudal

inferior diferente da superior (BB1, BB7 e Symmetrized Joe-Clayton), o que nos fornece um

meio de checar se há alguma assimetria nas caudas conjuntas da distribuição dos retornos dos

ı́ndices financeiros. Adicionalmente, para levar em conta a possibilidade de dependência caudal

simétrica, ajustamos uma cópula C-vine com todas as pair-copulas t-Student.

Com base em nossos resultados emṕıricos, não podemos verificar a hipótese de dependência

assimétrica, uma vez que a decomposição C-vine com todas as pair-copulas t-Student tem o

melhor ajuste aos dados, segundo o critério de verossimilhança. Nikoloulopoulos et al. (2010)

consideram que, talvez, a dependência assimétrica com cauda inferior mais forte ocorra apenas

temporariamente, por alguns peŕıodos de tempo, o que sugere que a incorporação de dinâmica ao

modelo de vine cópula pode melhorá-lo como instrumento para modelagem de dados financeiros

internacionais multivariados. Isso serve como motivação adicional para o desenvolvimento do

terceiro ensaio.

A pesquisa em modelagem de dependência de dados financeiros usando vine cópulas está

concentrada principalmente no caso de estruturas de dependência estáticas. Entretanto, isso vai

contra evidências encontradas na literatura de que a dependência entre retornos financeiros não

é constante no tempo. Heinen e Valdesogo (2009, 2011) foram os primeiros e os únicos até então

a introduzir variação temporal no contexto de vine cópula por meio da especificação de uma lei

de movimento para os parâmetros das pair-copulas, baseada nas equações DCC. Outra direção

de pesquisa combina o modelo de cópula vine regular com o modelo de mudança Markoviana

para permitir que a estrutura de dependência como um todo, representada pela cópula, varie

de acordo com os regimes que caracterizam os mercados financeiros internacionais (veja, por

exemplo, Chollete et al. (2009), Garcia e Tsafak (2011), Stöber e Czado (2012)).
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No terceiro ensaio, Caṕıtulo 4, nós incorporamos dinâmica ao modelo de vine cópula especi-

ficando uma equação de evolução diretamente para os parâmetros das pair-copulas, para obter

um modelo de dependência bastante flex́ıvel para aplicações a dados de retornos financeiros mul-

tivariados. Nós permitimos que os parâmetros de dependência das pair-copulas em uma decom-

posição D-vine sejam potencialmente variantes no tempo, seguindo um processo ARMA(1,m)

restrito como em Patton (2006). Chamamos o modelo de cópula D-vine dinâmica ou tempo-

variante. O ganho em termos de flexibilidade com essa extensão do modelo de vine cópula não

tem como contrapartida a perda de tratabilidade do modelo, que é estimado utilizando-se um

procedimento sequencial muito rápido e ainda assintoticamente eficiente.

A dinâmica especificada nesse ensaio evita certas limitações inerentes à dinâmica do modelo

de cópula vine dinâmica de Heinen e Valdesogo (2009, 2011). Como a última, baseada nas

equações DCC, envolve obter o coeficiente de correlação em cada peŕıodo t, convertê-lo para

o tau de Kendall e transformá-lo no parâmetro da pair-copula, pelo menos duas dificuldades

surgem. Primeiro, como a transformação não-linear do tau de Kendall para o parâmetro da

cópula não pode ser feita de forma fechada para todas as cópulas, a estimação torna-se uma tarefa

dif́ıcil quando os parâmetros precisam ser obtidos numericamente. Segundo, só é posśıvel adotar

famı́lias de cópulas de um parâmetro como building blocks na construção da vine e, de acordo

com Joe (2011), é importante ter cópulas com dependências caudais inferior e superior flex́ıveis,

como as cópulas de dois parâmetros BB1 e BB7, para fazer inferência sobre as probabilidades

caudais conjuntas, que podem representar riscos conjuntos.

O modelo proposto é primeiramente avaliado em um estudo de simulação. Os experimentos

de Monte Carlo são bastante favoráveis à cópula D-vine dinâmica em comparação a uma cópula

D-vine estática. Quando o processo gerador dos dados (PGD) é a cópula D-vine dinâmica, a

cópula D-vine estática tende a viesar as estimativas dos parâmetros das pair-copulas e o viés

não parece diminuir conforme o número de observações nas amostras aumenta. As estimativas

feitas a partir da cópula D-vine dinâmica, nesse caso, são muito superiores às estimativas do

modelo estático tanto em termos dos erros médios como em termos da raiz quadrada dos erros

quadráticos médios. Quando as amostras são retiradas da cópula D-vine estática, ambos os

modelos têm desempenho similar em termos dos erros médios, com estimativas não viesadas.
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O modelo dinâmico falha apenas em termos da raiz quadrada dos erros quadráticos médios,

quando o PGD é estático, o que sugere que suas estimativas apresentam uma variabilidade mais

elevada do que as estimativas do modelo estático nesse caso.

A cópula D-vine dinâmica também é avaliada em um estudo emṕırico com relação à acurácia

das previsões de VaR em peŕıodos de crise. Modelamos a dependência entre os retornos dos

ı́ndices DAX, CAC 40, FTSE 100, S&P 500 e IBOVESPA, empregando tanto a cópula D-vine

dinâmica como uma cópula D-vine estática. Consideramos dois peŕıodos distintos, de 03 de

janeiro de 2003 a 28 de dezembro de 2007, bem como de 02 de janeiro de 2008 a 04 de maio

de 2012, que denominamos “peŕıodo de não-crise” e “peŕıodo de crise”, respectivamente. Além

de permitir investigar os padrões de dependência que caracterizam tais peŕıodos, os modelos

estimados no peŕıodo de 03 de janeiro de 2003 a 28 de dezembro de 2007 são usados para prever

o VaR diário para um portfólio igualmente ponderado dos ı́ndices mencionados acima no peŕıodo

de 02 de janeiro de 2008 a 19 de agosto de 2008 (150 dias), e os modelos estimados no peŕıodo

de 02 de janeiro de 2008 a 04 de maio de 2012 são usados para previsão de VaR no peŕıodo

de 08 de maio de 2012 a 06 de setembro de 2012 (79 dias). A cópula D-vine dinâmica mostra

bom desempenho fora da amostra, em peŕıodos de crise, geralmente superando a cópula D-vine

estática, mesmo na situação adversa em que nós utilizamos o modelo de cópula estimado no

peŕıodo de não-crise para fazer previsões no contexto de crise.
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2.1 Introduction

In portfolio theory, multivariate financial returns are often assumed to be normally distributed

in order to draw simple results, but, in practice, this assumption does not hold (Sancetta and

Satchell, 2001). Financial returns are found to be leptokurtic and they also show skewness in

univariate distributions. Additionally, a number of recent studies have also reported asymmetry

in the dependence amongst international financial returns, in the sense that they exhibit greater

dependence during market downturns than during market upturns (see, for example, Longin

and Solnik, 2001, Ang and Bekaert, 2002, Ang and Chen, 2002). Therefore, it is necessary to

find a different approach to modeling multivariate distributions of asset returns and measuring

their dependence to reach optimum portfolio construction. Modern risk management requires

an understanding of dependence that goes beyond simple linear correlation (Embrechts et al.,

2002), since it is no longer sufficient to describe the dependence among the variables of interest

when their joint distribution is not elliptical.

A theorem due to Sklar (1959) introduced the copula functions. According to this theorem,

it is possible to decompose any n-dimensional joint distribution function into its n marginal

distributions and a copula, where the latter completely describes the dependence amongst the

variables. This decomposition allows for more flexibility in the construction of multivariate

distributions, which explains the major role that copulas have played in multivariate modeling

lately.

Since copulas represent the dependence structure amongst random variables, they provide a

natural way of studying and measuring the dependence amongst these variables. In addition,

copula-based measures of dependence have the desirable property of invariance under strictly

increasing transformations (Nelsen, 2006). In particular, the tail dependence, a copula-based

measure which indicates the dependence in extreme values, should be of interest to risk man-

agement practitioners.

Patton (2006) extended Sklar’s theorem to the conditional case, defining the conditional

copula, and rendered the dependence parameter conditional and time varying. Allowing for

time variation in the conditional dependence among economic time series seems natural, since

time variation in the conditional mean and variance of such series has been widely reported
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(Patton, 2006).

As already mentioned above, several recent studies investigated the asymmetry in dependence

structures in international equity markets, observing that dependence tends to be high in both

highly volatile markets and bear markets. These findings suggest the existence of two regimes

in international equity markets: a high dependence regime, with low and volatile returns, and a

low dependence one, with high and stable returns.

Following this conjecture, a modest literature combines the theory of conditional copulas and

the Markov switching model, resulting in a sufficiently flexible framework which enables one to

introduce further asymmetries in a very natural way. Jondeau and Rockinger (2006) and Silva

Filho et al. (2012) adopt copulas with Markov switching dependence parameters. The latter

allows the dependence parameter to vary according to a restricted ARMA(1,10) process, as in

Patton (2006), plus an intercept term that follows a first order Markov chain with two regimes.

The former accepts that the dependence parameter assumes only two different values according

to the regime. Okimoto (2008) considers more general models with Markov switching copulas,

i.e., different copula functions in each regime. It is assumed therein that the copulas dependence

parameters are static.

One of the aims of this paper is to introduce an approach to modeling dependence be-

tween international financial returns over time, combining the conditional copula theory and

the Markov switching model in a way that, to our knowledge, has not been explored yet. We

assume different copula functions across the two regimes characterizing international equity

markets, with observation driven time-varying dependence parameters. We employ these copula

models and also those proposed by Patton (2006), Jondeau and Rockinger (2006) and Silva Filho

et al. (2012) to model the dependence structures between the FTSE returns and the CAC-40

and DAX returns, respectively. We are particularly interested in comparing these methodologies

in terms of the resulting dynamics of dependence and the models’ abilities to forecast possible

capital losses. Because risks related to extreme events are important for portfolio construction

and risk management, we compare and select the best model based on VaR forecasts for equally-

weighted portfolios composed by the returns of the CAC-40 and DAX indexes in pairs with the

FTSE returns.
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The remainder of the paper is as follows. In the next section, we briefly introduce the

conditional copula theory by Patton (2006) and present the competing methodologies under

consideration in this study. Because we are interested in comparing the different dynamics

of dependence resulting from the fitted models, we focus on scalar measures of dependence

based on copulas, described on Section 2.3. Following, in Section 2.4, we describe the estimation

procedure in copula modeling in general as well as the particularities of the inferential procedures

of each methodology we adopt. In Section 2.5, we describe the goodness-of-fit tests based on

VaR forecasts. In Section 2.6, we first analyze the univariate return data, then, we present the

estimation results and investigate the dynamics of the dependence structures, finishing with the

presentation of the goodness-of-fit tests and the selection of the best models. We bring some

concluding remarks in Section 2.7.

2.2 Methodology: Conditional Copulas

As observed by Patton (2006), the case of random variables of interest conditioned on some

pre-determined variables is important in economic time series analysis. Particularly, the dy-

namics of financial time series and their dependence structures may be captured by conditional

distributions given past observations. For this reason, the extension of Sklar’s theorem to the

conditional case has proved to be very useful. Patton extended the Sklar’s theorem as follows:

Theorem 1 (Sklar’s Theorem - two-dimensional conditional case) Let F1 be the conditional

distribution of X1|W , F2 be the conditional distribution of X2|W , and H be the joint conditional

distribution of (X1, X2)|W , where W is the conditioning variable with support Ω. For exposition

purposes, it is assumed that W has dimension 1. Then there exists a conditional copula C such

that, for any (x1, x2) ∈ R̄2 and each w ∈ Ω,

H(x1, x2|w) = C(F1(x1|w), F2(x2|w)|w). (2.2.1)

If F1 and F2 are continuous, then C is unique; otherwise, it is uniquely determined on RanF1×

RanF2.Conversely, if we let F1 be the conditional distribution of X1|W , F2 be the conditional

distribution of X2|W , and C be a conditional copula, then the function H as defined above is a

conditional bivariate distribution function with conditional marginal distributions F1 and F2.
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It is clear from the theorem above that copulas are functions that bind the multivariate

distributions to their marginal distributions. They contain all information from the joint dis-

tribution that is not contained in the marginal distributions, which means that they contain all

the information on the dependence among the variables. It is for this reason that copulas are

alternatively called “dependence functions”.

According to Patton, it is the converse of the Sklar’s theorem that is most interesting for

multivariate modeling, since it implies that we may link together any univariate distributions

with any copula and a valid multivariate distribution will be defined.

The conditional density function corresponding to the distribution function in equation (2.2.1)

can be easily recovered, provided that F1 and F2 are differentiable and H and C are twice dif-

ferentiable:

h(x1, x2|w) ≡ ∂2H(x1, x2|w)
∂x1∂x2

=
∂F1(x1|w)

∂x1
· ∂F2(x2|w)

∂x2
· ∂

2C(F1(x1|w), F2(x2|w)|w)
∂u1∂u2

= f1(x1|w) · f2(x2|w) · c(u1, u2|w), (2.2.2)

where u1 = F1(x1|w) and u2 = F2(x2|w). This result is useful for maximum likelihood analysis,

as we will see later on Section 2.4.

In this paper, we analyze and compare four distinct methodologies based on the conditional

copula theory and applied to multivariate financial data. They are described in the next two

subsections.

2.2.1 Observation Driven Time-Varying Copulas

The first methodology we adopt is due to Patton (2006). He allows for time-variation in the con-

ditional copula by assuming that the dependence parameter, θc, evolves through time according

to an equation that follows a kind of restricted ARMA(1,10) process, with an autoregressive

component, to capture any persistence in the dependence parameter, and a forcing variable, to

capture any variation in dependence. The evolution equation of the dependence parameter may

be written as

θct = Λ(ω + βθct−1 + αψt), (2.2.3)
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where Λ is a logistic transformation used to keep the parameter in its interval at all times

and ψt is the forcing variable, defined by Patton as the mean absolute difference between the

transformed marginals u1t and u2t over the past ten observations1. The idea is to use this

measure as an indication of how far the data were from comonotonicity: if X1 and X2 are

comonotonic, |u1,t − u2,t| is close to zero.

We use the following copulas to analyze the dependence between the indexes considered:

the elliptical copulas Normal and Student-t, and a few Archimedean copulas, namely Gumbel,

Rotated-Gumbel, Clayton, Symmetrized Joe-Clayton and BB12. The Normal and Student-t

are the copulas most frequently used in financial literature, probably because the dependence

structure associated with them, the linear correlation coefficient, is very easy to be computed

and some basic theories in finance are based on linear correlation between different financial

instruments. The Student-t copula has shown to be generally superior to the Normal copula

and the reason is that it has tail dependence. A drawback regarding these copulas, however,

is that they describe only symmetric dependence, and it has been widely reported in literature

that asymmetries are expected in financial returns, meaning that dependence in lower tail can

be larger than dependence in upper tail and vice-versa. For this reason, it is also important

to adopt asymmetric copulas, such as the Symmetrized Joe-Clayton and the BB1 (with lower

tail dependence different from upper tail dependence), the Gumbel copula (with only upper tail

dependence), and the Rotated-Gumbel and Clayton copulas (with only lower tail dependence).

2.2.2 Copulas with Markov Switching

We also adopt other three methodologies, which combine copula theory with regime switching.

In Markov switching models, introduced into econometrics by Hamilton (1989), the evolution

of a time series is influenced by the different states of the world or the economy. Recently,

numerous empirical studies have found evidences that financial returns tend to exhibit different

patterns of dependence according to the different states characterizing the international equity

1This is the definition for non-elliptical copulas. For the elliptical ones, the forcing variable is defined as the
mean of the product Φ−1(u1,t−j)·Φ−1(u2,t−j), for the Gaussian copula, and the mean of T−1

ν (u1,t−j)·T−1
ν (u2,t−j),

for the Student-t, over the previous 10 lags, where Φ−1 is the inverse of the standard Normal c.d.f. and T−1
ν is

the inverse of the Student-t c.d.f. with ν degrees of freedom. If data is positively dependent, the inverse of the
marginal transforms of both variables will have the same sign, thus, α is expected to be positive.

2Their functional forms as well as the evolution equations of their dependence parameters following Patton
(2006) are described in Appendix A.
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markets. More precisely, such returns tend to be more dependent during crisis periods and

periods of high volatility in international equity markets than otherwise. This behavior may be

described by the specification of a copula model with switching regimes.

It is possible to assume that the dependence structure of international financial returns is

influenced by a hidden Markov chain with two states. For simplicity, it is assumed that this

Markov chain is homogeneous and of first order such that it can be completely characterized by

its transition matrix Pr(St = i|St−1 = j) = Pij , with i, j = 0, 1, where St denotes the unobserved

regime at time t. Jondeau and Rockinger (2006) consider that the parameter θc pertaining to

the dependence structure, i.e., to the copula, is driven by the following equation:

θct = θ0(1− St) + θ1St, (2.2.4)

where θ0 is the value assumed by the dependence parameter during a low-volatility/low-depen-

dence regime and θ1 is the value assumed during a high-volatility/high-dependence regime and

St is as defined above.

Besides the stochastic influence on the dependence parameter, it may also be conditioned on

past observations as in Silva Filho et al. (2012). The authors allow the dependence parameter to

follow an ARMA(1,10) process, with the intercept term changing according to a Markov chain

of first order and with two regimes, as described following:

θct = Λ((ω0(1− St) + ω1St) + βθct−1 + αψt), (2.2.5)

where St is the regime at time t and ψt is the forcing variable according to Patton (2006).

We now introduce a more general approach combining time-varying copulas and regime

switching. We assume here that not only the degree of dependence changes according to the

regimes characterizing international equity markets, as the type of dependence also changes,

which is not the case for the two aforementioned methodologies. It means that we assume

different copula functions across the two regimes. Additionally, we allow for time-variation in

the dependence parameter following Patton (2006), which differentiates our methodology from

the one proposed by Okimoto (2008), for example, where the copula is only state dependent.

The Markov switching copula model, in this case, is specified as follows:

CSt,t(u1t, u2t|St, θcSt,t) =
1∑

k=0

1{St=k} · Ckt(u1t, u2t|θckt), (2.2.6)
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with

θckt = Λ(ωk + βkθckt−1 + αkψt). (2.2.7)

Ckt(·) is the copula function characterizing regime k, with time-varying dependence parameter

θckt, k = 0, 1.

Because dependence in tails is one of the properties that discriminates between the different

copulas and is relevant for both the phenomenon of asymmetric dependence and risk manage-

ment, we assume copulas with different tail behaviors in each regime. Particularly, we assume

that the Normal copula, which has no tail dependence, characterizes one regime, whereas an

asymmetric copula prevails in the other one.

2.3 Dependence Measures

Because one of our interests is to analyze and compare the evolutions of the dependence between

the indexes captured by each model studied, it is interesting to focus on a scalar measure of

dependence. Widely known concordance measures such as Kendall’s tau, τ , and Spearman’s rho,

ρS , as well as tail dependence, λ, are copula-based measures of dependence and have the useful

property of being invariant under strictly increasing transformations of the random variables.

Tail dependence measures the dependence in extreme values, i.e., it measures the dependence

in the upper or lower tail of a bivariate distribution. For this reason, it is an important measure

for risk management and we explore it in our study. Its formal definition is given below3:

Definition 1 If the limit lim
ε→0

Pr [U1 ≤ ε|U2 ≤ ε] = lim
ε→0

Pr [U2 ≤ ε|U1 ≤ ε] = lim
ε→0

C(ε, ε)/ε = λL

exists, then the copula C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence if

λL = 0. If the limit lim
δ→1

Pr [U1 > δ|U2 > δ] = lim
δ→1

Pr [U2 > δ|U1 > δ] = lim
δ→1

(1− 2δ + C(δ, δ)) /(1−

δ) = λU exists, then the copula C has upper tail dependence if λU ∈ (0, 1] and no upper tail

dependence if λU = 0.

In other words, the lower (upper) tail dependence is the probability that one variable takes an

extremely large negative (positive) value, given that the other variable took an extremely large

negative (positive) value.

3For more details on tail dependence and other copula-based measures of dependence, see Chapter 2 of
Joe (1997) and Chapter 5 of Nelsen (2006).
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While this measure exists for some copulas, there are families that do not allow tail depen-

dence. The Normal copula, for example, has λL = λU = 0. Hence, for comparison purposes, we

also adopt a dependence measure that can be calculated based on every copula. Besides that,

it is interesting to study dependence from alternative aspects.

The Kendall’s tau and the Spearman’s rho measure a particular dependence known as con-

cordance. They are reasonable alternatives to the linear correlation as measures of dependence

for non-elliptical distributions. Because both of them can be computed for all the parametric

families of copulas, we adopt one of them to measure dependence from another perspective

than the dependence in the tails. We choose the Kendall’s tau arbitrarily. It is defined as the

difference of the probability of two random concordant pairs and the probability of two ran-

dom discordant pairs for two iid random vectors (X1, Y1) and (X2, Y2) of continuous random

variables. Formally:

Definition 2 Let X and Y be continuous random variables whose copula is C. Then the pop-

ulation version of Kendall’s tau for X and Y is given by

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]

= 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

For some copulas, the Kendall’s tau has a closed form, for others, it has to be computed numer-

ically (see the Appendix for the cases of the copulas adopted in this paper).

2.4 Estimation Procedure: The Copula-GARCH Model

In a time series context, we can rewrite the joint density function given in equation (2.2.2), in

Section 2.2, as

ht(x1t, x2t|w; θ) = f1t(x1t|w; θ1) · f2t(x2t|w; θ2) · ct(u1t, u2t|w; θc), (2.4.1)

where uit = Fit(xit|w; θi), i = 1, 2, and θ = [θ′1, θ
′
2, θ

′
c] is the vector of all parameters of both the

marginals and the copula.

The decomposition in equation (2.4.1) suggests that, in general, the modeling of the joint

density function h(·) can proceed in two steps: (i) identify the univariate marginal distributions

for X1 and X2, and (ii) define the appropriate copula function.
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The expression for the log-likelihood function is as follows:

T∑
t=1

log ht(x1t, x2t|w; θ) =
T∑
t=1

log f1t(x1t|w; θ1) +
T∑
t=1

log f2t(x2t|w; θ2) +
T∑
t=1

log ct(u1t, u2t|w; θc)

ℓ(θ) = ℓf1(θ1) + ℓf2(θ2) + ℓc(θc), (2.4.2)

with the maximum likelihood estimator defined as θ̂MLE = max
θ∈Θ

ℓ(θ).

Maximum likelihood of the joint log-likelihood function ℓ(θ) is possible, but this is computa-

tionally very intensive and time-consuming, especially when introducing dynamics and stochastic

dependency in the model. If we look at the joint log-likelihood function, we will note that it can

be decomposed into two parts, one part involving the marginals and their parameters, and the

other one involving the copula density, its parameters and also the parameters of the marginals.

When the dependence is not too strong, the Inference Function for Margins (IFM) method (Joe

and Xu, 1996) can efficiently estimate the model parameters. Joe (1997) proves that, under

regular conditions, the IFM estimator verifies the property of asymptotic normality

√
T
(
θ̂ − θ0

)
→ N

(
0,G−1(θ0)

)
,

with G(θ0) the Godambe information matrix, G(θ0) = D−1V (D−1)′, where D = E [∂s(θ)/∂θ],

V = E [s(θ)s(θ)′] and s(θ) is the score function of the maximization problem. This method

consists of a two-step approach: in a first step, the parameters of the marginals are estimated,

and, in a second step, the copula log-likelihood is maximized over the copula parameter, taking

the parameters of the marginals as fixed at the estimated values from the first step. This

approach disseminated the so called copula-GARCH model in copula modeling.

Following, we describe in details the two steps of the copula-GARCH model. This is the

estimation procedure adopted by the authors of the competing methodologies studied here, with

some particularities that will be emphasized.

2.4.1 The Models for the Marginal Distributions

The estimation procedure in copula modeling begins with the identification of the marginal

distributions and the estimation of their parameters via maximum likelihood. For financial

return data, a univariate ARMA(p,q)-GARCH(m,n)4 specification is usually chosen to model

4Extensions of the GARCH model, such as EGARCH, TARCH, among others, are also fitted to data in order
to find out the best model for the marginals.
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the marginal distributions. It can be described by the following equations:

xt = ϕ0 +

p∑
i=1

ϕixt−i + at −
q∑

j=1

θjat−j = µt + at (2.4.3)

at = h
1/2
t εt, (2.4.4)

ht = α0 +

m∑
i=1

αia
2
t−i +

n∑
j=1

βjht−j , (2.4.5)

where µt and ht are the conditional mean and variance given past information, respectively. εt

is the innovation process and, in this paper, we assume that it may have a standard Normal

distribution, εt ∼ Normal(0, 1), a Student-t distribution, εt ∼ Student − t(ν), or a Skewed-t

distribution proposed by Hansen (1994), εt ∼ Skewed− t(ν, λ).

If, for example, εt ∼ Skewed − t(ν, λ), then the conditional distribution function of Xt is

given by Ft(xt|µt, ht) = Skewed − tν,λ((xt − µt)h
−1/2
t ). Thus, if the marginal distribution is

well specified, the probability integral transform (PIT) of the standardized residuals will have a

uniform distribution in [0,1]. This is a necessary result to identify the conditional copula in the

second step, since it is a conditional joint distribution function defined over Fit(xit|µit, hit) =

uit, i = 1, 2, with uit uniform in [0,1]. To test whether the PIT of the standardized residuals has

distribution U [0, 1], we use the Kolmogorov-Smirnov test of goodness-of-fit.

Summing up, in the first step of the estimation, the ARMA-GARCH filter is applied to the

return data to obtain the univariate parameter estimates and the transformed data, i.e., the

uniforms.

2.4.2 Establishing a Functional Form for the Copula and Estimating the De-
pendence Parameter

In the second step of the estimation procedure, the joint log-likelihood function, ℓ(θ), can be

reduced to the copula log-likelihood, ℓc(θc), since the log-likelihoods related to the marginal

distributions, ℓf1(θ1) and ℓf2(θ2), are fixed. The problem now is to maximize the copula log-

likelihood over the copula parameter, taking the parameters of the marginals as fixed at the

estimated values from the first step, that is:

max
θc

ℓc(θc) =

T∑
t=1

log ct(u1t, u2t|θ̂1, θ̂2; θc),

with θ̂1 and θ̂2, the estimates of the parameters from step one.
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The methodologies under analysis in this paper differ in terms of their hypotheses about

the dependence structure between the financial returns, therefore, they have distinct copula

log-likelihoods. For the time-varying copulas in Patton (2006), ℓc may be written as

ℓc(θct) =
T∑
t=1

logct(u1t, u2t|θ̂1, θ̂2; θct), (2.4.6)

where θct is as defined in equation (2.2.3), and the log-likelihood function can be maximized

directly over the dependence parameter.

For the copulas with Markov switching parameters in Jondeau and Rockinger (2006) and

Silva Filho et al. (2012), the copula log-likelihoods have the forms

ℓc(θcSt) =

T∑
t=1

logct(u1t, u2t|θ̂1, θ̂2; θcSt) (2.4.7)

ℓc(θct,St) =

T∑
t=1

logct(u1t, u2t|θ̂1, θ̂2; θct,St), (2.4.8)

respectively, being θcSt as defined in equation (2.2.4) and θct,St as in equation (2.2.5).

Finally, the Markov switching copula model that we propose in this work has the following

form for the copula log-likelihood:

ℓc(θcSt,t) =

T∑
t=1

logcSt,t(u1t, u2t|θ̂1, θ̂2;St, θcSt,t), (2.4.9)

where it is the functional form of the copula density function itself that depends directly on St.

The log-likelihoods in (2.4.7), (2.4.8) and (2.4.9) cannot be maximized directly over θc. In

order to draw inference for copula models with Markov switching, we need to overcome the

challenge of having unobserved latent variables. To do so, we decompose the copula density of

u1t, u2t and the unobserved variable St into the product of conditional and marginal densities:

ct(u1t, u2t, St|ωt−1) = ct(u1t, u2t|St, ωt−1) · Pr(St|ωt−1),

where ωt−1 is all information available up to time t-1. And, then, integrate the St variable out

of the joint density by summing over all possible values of St:

ct(u1t, u2t|ωt−1) =
1∑

St=0

ct(u1t, u2t, St|ωt−1)

=
1∑

St=0

ct(u1t, u2t|St, ωt−1) · Pr(St|ωt−1).
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Thus, the copula log-likelihoods can be rewritten as5

ℓc =

T∑
t=1

log

(
1∑

St=0

ct(u1t, u2t|St, wt−1) · Pr(St|wt−1)

)
. (2.4.10)

To compute the conditional probabilities Pr(St|wt−1), St = 0, 1, we apply Kim’s filter, de-

scribed in Kim and Nelson (1999). Being able to calculate these probabilities, we can evaluate

and maximize the copula log-likelihood, obtaining the estimates of the copula parameters.

2.5 Goodness-of-Fit Based on VaR Forecasts

Information criteria, such as AIC and BIC, suggest which copula model may be a good choice.

However, they do not bring much information about how good is the model fit to data. For

this purpose, formal goodness-of-fit tests may be used (see Fermanian (2005) and Dobrié and

Schmid (2007) for implementation of some of these tests in copula literature).

Because risks associated with rare (or extraordinary) events are important for the composi-

tion of portfolios, we instead choose to compare and select the best model based on VaR (Value

at Risk) forecasts. The VaR over the time horizon h with probability α, 0 < α < 1, can be

defined as VaRα,h = inf
x
{x : Fh(x) ≥ α}, where Fh is the cumulative distribution function of the

portfolio returns and VaRα,h is the 100α-th quantile of Fh
6. In other words, the VaR is the

maximal loss associated with the portfolio, during a certain time period (in our case, we choose

a one-day period), for a given significance level α. Although Fh can be theoretically computed

from the marginal conditional distributions, it is not easy to reach a closed analytical form for the

joint distribution. For this reason, we obtain the parametric distributions of equally-weighted

portfolio returns of the form XPt = 0.5X1t + 0.5X2t via Monte Carlo simulations and find the

extreme quantiles, using the following algorithm:

For each point in time, t = 1, ..., T :

1. Simulate K samples of uniforms from the fitted copula model, (u
(k)
1t , u

(k)
2t ), k = 1, ...,K. To

simulate random vectors from copulas, use the conditional sampling method as follows7:

5Just to keep the notation in accordance with the one used up to this point, note that, in the case that the
functional form of the copula density changes according to the regime, the copula density function should be
denoted by cSt,t(·).

6Since the VaR is calculated here from the distribution of the portfolio daily log-returns, it is expressed in
percentage.

7We suppress the subscript t here to simplify the notation.
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Let the conditional distribution of U2 given U1 be

FU2|U1
(u2|u1) = P (U2 ≤ u2|U1 = u1) =

∂

∂u1
C(u1, u2) = cu1(u2)

where cu1(u2) is the partial derivative of the copula function in relation to u1.

It allows us to generate K pairs (u1, u2) in the following manner:

(a) Generate k = 1, ...,K realizations of independent Uniform(0,1) random variables, u1

and v;

(b) Note that as cu1(v
(k)) = FU2|U1

(v(k)|u(k)1 ) and v(k) is an observation of a standard

uniform random variable, u
(k)
2 = c

(−1)
u1 (v(k)), with c

(−1)
u1 the generalized inverse of

cu1 , is an observation of the random variable U2|U1 = u1. Hence we have that the

pair (u
(k)
1 , u

(k)
2 ) is an observation of the random vector (U1, U2) which has the joint

distribution C.

2. For k = 1, ...,K, convert u
(k)
it to ε

(k)
it , i = 1, 2, using the inverse of the marginal distribution

Fit with the estimated parameters from the first step of the IFM method, ε
(k)
it = F−1

it (u
(k)
it ).

3. For k = 1, ...,K, convert ε
(k)
it to the log-return x

(k)
it = µ̂it+

√
hit ·ε(k)it , where µ̂it and hit are

the conditional mean and variance values, as obtained in the first step of the IFM method.

4. For k = 1, ...,K, compute the portfolio return as x
(k)
Pt = 0.5x

(k)
1t + 0.5x

(k)
2t .

5. Calculate the one-day 100α-th percentile of x
(k)
Pt , k = 1, ...,K, which corresponds to

V̂ aRα,1. If the observed value of XPt for day t is less than V̂ aRα,1, then we say that

a violation (or exceedance) occurs.

To evaluate the VaR forecasts (and their underlying models), we initially use the likeli-

hood ratio tests proposed by Kupiec (1995) and Christoffersen (1998). Based on the previous

algorithm, it is possible to construct an indicator sequence of violations It, t = 1, ..., T . The

unconditional coverage test, introduced by Kupiec, is a test of the null hypothesis that the

indicator function It, which is assumed to follow an i.i.d. Bernoulli process, has a constant

“success” probability equal to the significance level of the VaRα, where success corresponds to

the portfolio losing more than the VaR. The test statistic is a likelihood ratio statistic given by
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LRuc = −2 ln

(
πn1
exp(1− πexp)

n0

πn1
obs(1− πobs)n0

)
∼H0 χ

2
1, (2.5.1)

where πexp is the expected proportion of violations, πexp = α, πobs is the observed proportion

of violations, n1 is the observed number of violations and n0 = T − n1 is the number of returns

with indicator 0, called “good returns”. Note that πobs = n1/T .

It may happen that the VaR violations come in clusters, which suggests that the VaR model

is not sufficiently responsive to changes in the market circumstances. In this case, a model

may pass the unconditional coverage test, i.e., the observed number of violations is close to the

expected number, but we can still reject the VaR model if the violations are not independent.

Christoffersen (1998) proposed a combined test for both unconditional coverage and indepen-

dence, with H0 being serial independence and a violation rate of α. The test statistic is the

conditional coverage statistic given by

LRcc = −2 ln

(
πn1
exp(1− πexp)

n0

πn01
01 (1− π01)n00πn11

11 (1− π11)n10

)
∼H0 χ

2
2, (2.5.2)

where nij is the number of returns with indicator i followed by returns with indicator j, with

i, j = 0, 1, and πij = Pr(It = j|It−1 = i) =
(
nij/

∑
j nij

)
. Under H0, π01 = π11 = α, meaning

that, if the exceedances are independent, the probability of observing a new violation of the VaR

at t is the same, no matter if a violation occurred or not in the earlier instant.

According to Lopez (1999), the statistical tests proposed by Kupiec and Christoffersen to

evaluate the accuracy of VaR models can have relatively low power against inaccurate VaR

models, which means that the chances of misclassifying inaccurate models as accurate, in this

case, can be high. For this reason, he proposed an alternative methodology based not on

a statistical testing framework, but instead on standard forecast evaluation techniques: the

accuracy of the VaR forecasts is determined by how well they minimize a certain regulatory

loss function. Simulation results indicated that this methodology is less susceptible to model

misclassification and there is also the advantage of specifying the loss function according to

particular interests. In light of these facts, we implement this additional procedure proposed by

Lopez and we apply a test for superior predictive ability (SPA) proposed by Hansen (2005) to

determine which model significantly minimizes the expected loss function.
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The Basel II Accord, still in process of implementation by several countries, proposed that

the capital requirements for bank’s credit risk exposure were determined according to its daily

VaR estimates with a 1% significance level. The capital requirement loss function (CR) is based

on the larger out of the current VaR estimate and a multiple of the average estimate over the

past 60 days as follows8:

CRt = max

[
(3 + δ)

60

59∑
i=0

V aRα,t−i, V aRα,t

]
, δ =



0, if ζ ≤ 4;

0.3 + 0.1(ζ − 4), if 5 ≤ ζ ≤ 6;

0.65, if ζ = 7;

0.65 + 0.1(ζ − 7), if 8 ≤ ζ ≤ 9;

1, if ζ ≥ 10.

(2.5.3)

where δ is a multiplicative factor that depends on the number of violations of the VaR in the

previous 250 trading days (ζ). We adopt this regulatory loss function to evaluate the VaR

forecasts.

To compare the models performances in minimizing the CR loss function, we use the SPA

test statistic proposed by Hansen. A superior predictive ability test is applied whenever the

interest is to test whether a particular forecasting procedure is outperformed by alternative

forecasts. We are interested to know whether any of the models, k = 1, ...,m, are better than a

benchmark, bch, in terms of minimizing the expected loss function. So we test the null hypothesis

that the best model is not better than the benchmark. The relative performance of a model to

the benchmark may be defined as dk,t = CRbch,t − CRk,t. Provided that E(dk,t) = µk,t is well

defined, we can formulate the null hypothesis of interest as

H0 : max
k=1,...,m

µk ≤ 0,

whereas the alternative hypothesis is that the best model is superior to the benchmark. A k

model is better than the benchmark if and only if E(dk,t) > 0. The test statistic is given by

TSPA ≡ max

[
max

k=1,...,m

T 1/2d̄k
ω̂k

, 0

]
,

where d̄k ≡ T−1
∑T

t=1 dk,t and ω̂
2
k is some consistent estimator of ω2

k ≡ var(T 1/2d̄k). The test is

implemented via stationary bootstrap of Politis and Romano (1994).

8Note that, since the VaR is a negative value, to compute the loss function, it will be calculated here as minus
the (100α-th percentile) of the c.d.f. of the returns.
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2.6 Data Description, Estimations and Forecasts

In this section, we model the dependence between the returns of the FTSE index and the returns

of the CAC-40 and DAX indexes, respectively, according to the methodologies presented in

Section 2.2, analyze the dependence time dynamics and verify the goodness-of-fit on the basis of

the accuracy of the VaR forecasts. We begin with the description of our data set and its main

features. Then, we proceed to the implementation of the first step of the IFM method, i.e., we

model the marginal distributions of the returns, and, following, we advance to the estimation

and analysis of the dependence over time. Finally, the estimated copula models are used for the

forecasting of extreme quantiles of the portfolios constructed, and these forecasts are evaluated

in order to determine which copula model has the best fit to the data when it comes to inference

involving tails.

2.6.1 Return Data and Descriptive Statistics

To perform our comparative study, we use 3017 observations of daily log-returns of the stock

indexes FTSE, CAC-40 and DAX from January 04, 1999, to April 28, 2011. We use close-

to-close returns, meaning that the daily returns are those observed for trading days occurring

simultaneously in all the three stock markets considered. The rationale for using only European

indexes is to guarantee that the trading times overlap the most possible in order to obtain a

synchronism of the returns.

The period covered by our data sample comprises two main stock market crashes worthy to

be mentioned: the one of 2000 till 2002, which was a ramification of the “dot-com bubble”, that

burst on March 2000, and the subprime crisis, from Fall 2007 to June 2009. These are periods

when the markets were in a downturn trend, so we expect that the copula models capture greater

dependence then. The period 2003 to 2006 is considered a period when the markets performed

well.

A few descriptive statistics of the returns are provided in Table 2.1. We can notice that data

usually shows negative asymmetry, except for CAC log-returns, suggesting that the presence of

negative extreme values is more common, i.e., the left tail of the distribution is heavier. Data

also presents excess kurtosis, especially the FTSE log-returns. Also, according to the Jarque-
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Bera test statistics, it is possible to reject the null hypothesis of normality of the returns for all

indexes. All these statistics are in accordance with what is reported in the financial literature.

2.6.2 Modeling the Marginal Distributions

Here we parameterize the marginal distributions of the returns according to the ARMA-GARCH

model, as described in Subsection 2.4.1. Since the return data has signs of asymmetry and excess

kurtosis, we assume that the errors may have a Student-t or a Skewed-t distribution, although

we also consider a Normal distribution. To capture the leverage effect, present in financial time

series, we also consider asymmetric GARCH specifications, such as the TARCH, EGARCH and

GJR models.

Taking into account the information criteria AIC and BIC, the diagnostic (autocorrelation)

tests of the residuals and the goodness-of-fit test that the PIT of the residuals are uniforms, we

choose as the best specifications for the marginals the following models: AR(3)-GARCH(1,1)

with Skewed-t errors for the FTSE and CAC-40 returns, and AR(4)-GARCH(1,1) with Skewed-t

errors for the DAX returns, where the Skewed-t density is given by:

g(z|ν, λ) =


bc

(
1 + 1

ν−2

(
bz+a
1−λ

)2)−(ν+1)/2

z < −a/b

bc

(
1 + 1

ν−2

(
bz+a
1+λ

)2)−(ν+1)/2

z ≥ −a/b

with the constants a, b and c defined as

a = 4λc

(
ν − 2

ν − 1

)
, b2 = 1 + 3λ2 − a2, c =

Γ
(
ν+1
2

)√
π(ν − 2)Γ

(
ν
2

)
and the parameters ν and λ representing the degrees of freedom and asymmetry, respectively.

The estimates from the ARMA-GARCH fits9, the diagnostic checks and the results of the

goodness-of-fit test are presented in Table 2.2. If the ARMA-GARCH specifications are success-

ful at modeling the serial correlation in the conditional mean and variance, there should be no

autocorrelation left in the standardized residuals and squared standardized residuals. Table 2.2

provides the p-values of the Ljung-Box test of autocorrelation in the standardized and squared

standardized residuals with 15 lags, Q(15) and Q2(15), respectively. For all series, the null

hypothesis of no autocorrelation left cannot be rejected at the 5% level. Additionally, if the

marginal distributions are well specified, the probability integral transforms of the standardized

9All marginals were estimated using the Oxford MFE Toolbox by Kevin Shepard.
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residuals should be U [0, 1]. The p-values of the Kolmogorov-Smirnov test, reported in Table 2.2,

suggest that the PIT of the standardized residuals have the correct distribution.

2.6.3 Modeling the Dependence Structure and Analyzing its Dynamics

Having estimated the marginal distributions, the next step is the modeling of the dependence

structures between the FTSE returns and the returns of CAC-40 and DAX. The estimations10

are performed in pairs between FTSE and each one of the other two indexes. In this subsection,

we present the copulas estimates and we are interested in investigating the dynamics of the

dependence structures. For this purpose, we analyze the estimates of the dependence parameters

and make an initial selection of the copula model that may be a good choice to represent the

dependence structure of each pair of indexes based on the maximum log-likelihood (LogL)11,

checking the statistical significance of the estimated coefficients of the models. Additionally,

we compare the different evolutions of the dependence measured by the Kendall’s tau and the

tail dependence, computed based on the different copulas, to provide further insight on the

dependence dynamics through time.

We begin analyzing the estimates of the observation driven time-varying copulas of Pat-

ton (2006) in Table 2.3. For the pair FTSE-CAC, the Student-t copula is the best one out

of these copulas based on the LogL and taking into account the fact that the BB1 copula

does not have all estimated coefficients considered statistically significant. The estimate of β1T ,

4.8885, indicates a high persistence in the linear correlation between FTSE and CAC. Notice

that the LogLs of the Student-t and the Rotated-Gumbel copulas are very close, 2059.6 and

2058.8, respectively, so we should not just discard the Rotated-Gumbel copula. Analyzing the

estimates for FTSE-DAX, we choose the Rotated-Gumbel as the best copula, according to the

same criterion of highest log-likelihood amongst the models with all coefficients considered sta-

tistically significant. The Normal copula, in this case, also captures a significant persistence in

the estimate of the correlation coefficient, with the estimated βN equal to 3.5251.

10The copula models were estimated using the Copula Toolbox provided by Andrew Patton and some functions
written by the authors for the Matlab 7r software. The standard errors were computed numerically using
the functions “hessian 2sided” and “MyFuncScores” from Dynamic Copula Toolbox 3.0 provided by Manthos
Vogiatzoglou.

11Since our data sample is quite long, the information criteria AIC and BIC choose the same model as the
LogL. For lack of space, these information criteria are not presented here, but they are available from the authors
upon request.
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To observe the dependence time dynamics captured by these copulas, we focus on the evolu-

tions of the Kendall’s tau and the tail dependence. The evolution of the dependence measured

by the Kendall’s tau for the pair FTSE-CAC is shown in Figure 2.1. We have the time path

of the dependence obtained from the Student-t copula in panel (a), and we also show the time

paths obtained from the other copulas with all coefficients statistically significant. It is possi-

ble to notice that, from both the Student-t and the Normal copulas, the Kendall’s tau evolves

through time following a path that oscillates around the constant values estimated from the

static versions of such copulas (0.6557 and 0.6496, respectively) all along the sample. From the

Rotated-Gumbel, in panel (b), the Kendall’s tau remains under the estimated constant value,

0.6376, till the end of 2001, when it reaches another level and begins oscillating around this

value, and, finally, it rises above this baseline from 2007 till the second semester of 2010. We

expected to observe this increase in dependence after 2007 because of the subprime crisis. The

subtle increase in dependence by the end of 2001 may be associated with the market crash due

to the “dot-com bubble”, but notice that its influence on dependence is much weaker than the

effect of the subprime crisis. The evolution of the tail dependence for this same pair of indexes

can be observed in Figure 2.2. The tail dependence path calculated based on the Student-t cop-

ula (panel (a)) is quite erratic and not very informative, remaining a little under the constant

value, 0.4763, most of the time, with abrupt jumps in 2008 and 2010 associated with sudden

disturbances in the estimated degrees of freedom. The lower tail dependence measured based

on the Rotated-Gumbel copula, in panel (b), is greater than the one measured by the Student-t,

probably because of the symmetry imposed by the elliptical functional forms, and it increases

after 2007, corroborating again the expectations of greater dependence during crisis periods.

The Kendall’s tau paths computed based on all statistically significant copulas for the pair

FTSE-DAX are presented in Figure 2.3. From the Rotated-Gumbel copula, in panel (a), the

Kendall’s tau remains under the estimated constant value, 0.5744, almost all the time from 1999

to the end of 2003, oscillates around this value in the period 2004 to 2006, and, from 2007 to the

end of 2010, it rises above it. The same behavior is captured by the Symmetrized Joe-Clayton

copula (panel (b)). In panel (c), the time path of Kendall’s tau captured by the Normal copula is

always oscillating around the constant value, 0.5891. The time evolution of the tail dependence
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in Figure 2.4 is rather similar to the Kendall’s tau evolution in the sense that it begins lower than

its constant value, oscillates around it in the period 2004 to 2006 and finally rises above it from

2007 on. The lower tail dependence computed based on the Rotated-Gumbel is quite the same

as if computed from the SJC, as can be seen from their time evolutions in panels (a) and (b),

respectively. About the dependence in the upper tail computed based on the SJC, its constant

value is 0.5747, lower than the constant value for the lower tail dependence, as expected due to

the typical behavior of higher dependence in lower tails than upper tails in financial markets.

However, the evolution of the upper tail dependence, in panel (c), is more volatile.

From the estimation of the observation driven time-varying copulas of Patton (2006), we

find strong evidences of dependence between extreme values (tail dependence) for the pairs

FTSE-CAC and FTSE-DAX, since the Normal copula has the lowest value for the log-likelihood

amongst all copulas. These models also capture an increase in dependence beginning in 2007,

when the subprime crisis was evolving, and it reaches the highest level during this period.

Table 2.4 reports the estimates of the Markov switching dependence parameters following

Jondeau and Rockinger (2006). We denote the probabilities Pr(St = 1|St−1 = 1) by p and

Pr(St = 0|St−1 = 0) by q. Examining the table, we select the Normal copula as the best model

for the pair FTSE-CAC, noting that, though the Student-t has a higher LogL, the estimate of

the degrees of freedom in regime 1 is not significant. The increase in the estimated correlation

coefficient from 0.7659 in regime 0 to 0.9253 in regime 1 is strongly significant. It is also

possible to conclude that the regimes are rather balanced, with very close expected durations,

of (1 − p̂)−1 = 98 days for the high dependence regime and (1 − q̂)−1 = 83 days for the

low dependence regime, suggesting that both of them are relevant to capture the dynamics

in the dependence structure between FTSE and CAC. In fact, all the estimated copulas with

significant coefficients present this same persistence in the regimes and strong significance of the

dependence parameters. For the pair FTSE-DAX, we choose the Student-t copula as the best

model, although with some reservations, since p̂ and q̂ are significant only at the 10% level. The

estimated linear correlation increases from 0.7093 to 0.8818, and the degrees of freedom do not

change much, they go from 13.4763 to 14.5128. The regimes here are very persistent, regime 1

lasts about 270 days, whereas regime 0 lasts 244.
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We analyze now the evolutions of the dependence measures τ and λ through time to pro-

vide further insight on the dynamics of the dependence captured by these copulas with regime

dependent parameters. As in Jondeau and Rockinger (2006), the paths are calculated based on

the ex-ante probabilities and defined as τt = τ0p0t + τ1(1 − p0t) and λt = λ0p0t + λ1(1 − p0t),

where p0t = Pr(St = 0|wt−1). In Figure 2.5, we plot τ̂t for FTSE-CAC and it reveals that the

dependence between these indexes is characterized essentially by three subperiods. The first one,

that goes from 1999 to the first semester of 2001, is mainly associated with the low dependence

regime, with two short-lasting increases in dependence in 1999 and 2001. In the second period,

beginning by the end of 2001 and going till 2006, the two regimes are intercalated. From the

second semester of 2001 to the end of 2002, the higher dependence can be explained by the

market crash due to the “dot-com bubble”, besides of the terrorist attack to the Twin Towers

on September, 11, 2001. Unexpectedly, these copulas capture increases in dependence during

the period 2003 to 2006. This is a surprise because it is a period when the international financial

markets performed well. Finally, the third period, from 2007 on, is associated with the high

dependence regime, when the two markets are strongly dependent. This period of high depen-

dence coincides with the subprime crisis till the first semester of 2009 and goes beyond it till the

end of 2010, and then the dependence decreases in the beginning of 2011. During this period,

there is a short-lasting decrease in dependence in the first semester of 2008, probably associated

with an increase in the economic activity of the US identified by the Business Cycle Dating

Committee of the National Bureau of Economic Research. Figure 2.6 displays the evolution of

the tail dependence, whose pattern is similar to the one described above for the Kendall’s tau.

From the BB1 copula, in panel (a), λ̂L is lower than λ̂U during regime 0, and higher than this

during regime 1. This behavior is reverted when the tail dependence is computed based on the

Symmetrized Joe-Clayton copula (panel (c)).

In Figure 2.7, we have the Kendall’s tau evolution for the pair FTSE-DAX. There we can

identify two long subperiods characterizing the dependence between these two indexes. From

1999 to January, 2004, the dependence is mainly low, with a significant increase by the end of

2002 and beginning of 2003. The second subperiod, from 2004 on, is essentially associated with

the high dependence regime. During this period, an important decrease in dependence occurs in
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the second semester of 2005 and it rises again from 2006 to the end of 2010. Just as it happened

for FTSE-CAC, the dependence between FTSE and DAX increased during the crises of 2002

and 2007-2009. Tail dependence through time is displayed in Figure 2.8. The lower and upper

tail dependence parameters calculated based on the Student-t copula (panel (a)), assume the

value 0.1389 in regime 0 and 0.3367 in regime 1, suggesting that both the dependence between

extreme negative values and the dependence between extreme positive values increase during

turbulent periods such as 2002 and 2007 to 2009. The asymmetric copulas indicate much higher

extreme dependence, ranging from 0.4 to 0.55 in regime 0 and 0.6 to 0.75 in regime 1. Based on

the BB1 copula (panel (b)), λ̂L is lower than λ̂U in regime 0, and higher than this in regime 1.

Based on the Symmetrized Joe-Clayton (panel (d)), λ̂L is higher than λ̂U all along their paths.

The estimated dependence parameters following Silva Filho et al. (2012) are provided in

Table 2.5. According to the log-likelihood criterion, we choose the Student-t copula as the best

model for both the pairs FTSE-CAC and FTSE-DAX. Note that, differently from the other

copulas with two parameters, we assume, in the case of the Student-t, that the degrees of

freedom are only regime dependent, they do not follow an ARMA(1,10) process. The reason is

that the estimation of the Student-t copula is very time-consuming and, with this assumption,

we intend to make this task a little easier. The estimates of the correlation coefficient for both

pairs are very persistent, with the estimated β1T equal to 3.3971 and 2.3508 for FTSE-CAC and

FTSE-DAX, respectively. The intercept term of the estimated correlation coefficient and the

estimated degrees of freedom increase significantly from regime 0 to regime 1 for both pairs of

indexes. The regimes are balanced and very persistent: regime 1 lasts 128 days and regime 0

lasts 122, for FTSE-CAC, whereas the expected durations are 555 and 500 days for regimes 1

and 0, respectively, for FTSE-DAX.

To scrutinize the dynamics of the dependence structure between FTSE and CAC captured

by these models, we look at Figure 2.9. Interestingly, we notice that the Kendall’s tau path

estimated based on the Student-t copula (panel (a)) displays a rather similar pattern to the

Kendall’s tau path computed based on the Normal copula following Jondeau and Rockinger

(Figure 2.5, panel (a)). This corroborates the close values of the LogLs obtained for the two

models (2147.4 and 2128.8, respectively). The Student-t copula does not indicate some short-
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lasting increases in dependence in 1999, beginning of 2001 and second semester of 2003, as the

Normal copula does, but the models do coincide in determining the regimes for the rest of the

sample. Still examining Figure 2.9, τ̂t in panel (c), related to the Symmetrized Joe-Clayton

copula, behaves similarly to the τ̂t in panel (a), related to the Student-t, but the evolution of the

dependence measured based on the Rotated-Gumbel, in panel (b), suggests more unbalanced

regimes. The patterns of evolution of the tail dependence parameters from the copulas Student-

t, Rotated-Gumbel and SJC in Figure 2.10 mimic their counterparts in Figure 2.9. Once again,

the tail dependence captured by the asymmetric copulas is higher than that captured by the

Student-t, and λ̂L is higher than λ̂U in the regime of high dependence, based on the SJC copula.

For FTSE and DAX, the evolution of the Kendall’s tau computed based on the Student-

t copula, in Figure 2.11, panel (a), suggests that the dependence between these indexes is

characterized by two subperiods, one of low dependence, from 1999 to January, 2004, and another

of high dependence, from 2004 on, just as the Student-t copula with only regime dependent

parameters, in Figure 2.7, panel (a), indicates. Although, this time, the regimes are even more

persistent: the current copula does not indicate a significant increase in dependence by the end

of 2002 and beginning of 2003, besides of other short-lasting increases during the period 1999

to 2004, and it does not capture a decrease in dependence in the first semester of 2005, as the

other model does. This behavior of the dependence confirms the close values of the LogLs of the

two models, 1683.8 for the Student-t as in Silva Filho et al. (2012), and 1671.1 for the Student-t

copula following Jondeau and Rockinger (2006). Differently from the results obtained from the

elliptical copulas, the asymmetric copulas BB1 and Rotated-Gumbel in Figure 2.11 suggest that

regime 0 is more persistent than regime 1. The tail dependence computed based on the current

Student-t copula, Figure 2.12, panel (a), does not differ substantially from that based on the

Student-t copula with only regime dependent parameters: on average, it measures 0.1490 in

regime 0 and 0.3285 in regime 1. Curiously, the tail dependence parameters based on the BB1

copula, panel (b), are more volatile in the low dependence regime than in the high dependence

one.

The estimation results of the copulas with regime switching dependence parameters indicate,

for both pairs of indexes, the prevalence of a long period of high dependence beginning in 2007,
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for FTSE-CAC, and 2006, for FTSE-DAX, till the end of 2010. This period coincides with or

slightly precedes the beginning of the subprime crisis and goes beyond it. For FTSE and CAC,

these copulas also capture significant increases in dependence by the end of 2001 and 2002,

whereas for FTSE and DAX, not all copulas following Silva Filho et al. (2012) capture increases

in dependence during the crash of 2000 to 2002. Surprisingly, these copulas also suggest increases

in dependence during the period 2003 to 2006, when the conditions in the international financial

markets were favorable. In addition, we can notice that, for these models, the elliptical copulas

have a better fit to the data. The tail dependence, when it exists, is probably symmetrical,

given the better fit of the Student-t copula.

Finally, Table 2.6 presents the estimates of the Markov switching copulas combining the

time-varying Normal copula in one regime with an asymmetric time-varying copula in the other

one. For the pair FTSE-CAC, the only model with all coefficients statistically significant is the

combination Normal and Clayton. In the estimation of the combinations with the SJC, Rotated-

Gumbel and Gumbel copulas, all coefficients related to the asymmetric copulas are statistically

not significant, except for the estimate of wRG. For the model Normal and BB1, the estimates

of β2bb1 and α1bb1 are not significant, indicating lack of autocorrelation in the parameter κ̂t and

no influence of the combined movement of the marginal probability transforms in the path of γ̂t.

For the pair FTSE-DAX, none of the combinations has all coefficients statistically significant:

for the Normal-Clayton and the Normal-SJC, coefficients related to the Normal copula are

not significant, whereas for Normal and Gumbel and Normal and Rotated-Gumbel, coefficients

related to the asymmetric copula have no statistical significance. The Normal-BB1 combination

has almost all coefficients statistically not significant.

Figure 2.13 displays, in panel (a), the evolution of the Kendall’s tau for the pair FTSE-

CAC, computed based on the Normal-Clayton Markov switching copula, and the smoothed

probabilities of the high and low dependence regimes, in panels (b) and (c), respectively. As

before, we can identify here three subperiods characterizing the dependence between FTSE and

CAC. Till the first semester of 2001, we have mainly low dependence between the indexes.

From the end of 2001 to the second semester of 2006, the regimes are intercalated, however,

now, the low dependence periods are much shorter than before. The low dependence regime
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has expected duration of 20 days, in contrast with the expected duration of 98 days of the

high dependence regime. From 2007 onwards, high dependence prevails. Notice that the two

regimes are characterized by different tail behaviors, with no tail dependence at all in the high

dependence regime, and lower tail dependence in the low dependence one, which is, actually,

opposite to what we expected to find.

2.6.4 Forecasting VaR for Goodness-of-Fit Check and Model Selection

We proceed now to the evaluation of the VaR forecasts based on the estimated copula models.

For the VaR computation, we simulate 1000 replications of the portfolio returns for each point

in time from the estimated copulas with all coefficients statistically significant. We first evaluate

the forecasts by applying the likelihood ratio tests proposed by Kupiec and Christoffersen. Then,

we compute the (capital requirement) losses based on the 1% daily VaR forecasts from those

models that passed the first tests, and apply the SPA test to determine which model has a

superior predictive ability. To facilitate the analysis, we evaluate the forecasts based on the

copula models within each methodology separately, in a first moment. After that, the SPA test

is applied to the best models chosen in this first trial, to finally find the one that has the best

fit to the data in the lower tail of the joint distribution of the returns.

In Table 2.7, the results of the Kupiec and Christoffersen tests for the daily VaR forecasts

based on the observation driven time-varying copulas of Patton (2006) are presented. One can

see from this table that, for both pairs of indexes, these copulas have good performances in

terms of forecasting, since their 1% and 5% VaR forecasts pass both likelihood ratio tests of

unconditional coverage and combination of coverage and independence. Notice that the VaR

forecasts at the 1% significance level are aggressive, meaning that the forecasted quantile is more

extreme than the theoretical VaR, and, at the 5% level, they are more conservative, except for

the Rotated-Gumbel forecasts for the pair FTSE-CAC. The average losses computed based on

the 1% daily VaR forecasts and the results of the SPA test12 for the observation driven time-

varying copulas are presented in Table 2.8. We implement the SPA test considering each copula

at a time as the benchmark and the remaining ones as the competing alternatives. For both

12For the stationary block bootstrap, we use 10000 re-samples and select the optimum block length in accordance
with Politis and White (2004). We use the Matlab code “opt block length REV dec07”compiled by Andrew
Patton to implement the automatic block length selection.
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pairs of indexes, it is not possible to reject the null hypothesis that the best competing copula

cannot outperform the Normal copula.

Table 2.9 reports the results of the likelihood ratio tests for the VaR forecasts from the

copulas with Markov switching dependence parameters following Jondeau and Rockinger (2006).

With the exception of the BB1 copula, with too aggressive 1% daily VaR forecasts, the other

copulas pass the Kupiec and Christoffersen tests of the VaR forecasts accuracy. Also for these

models, the 1% VaR forecasts are more aggressive than the 5% VaR forecasts, considered quite

conservative, except for the Rotated-Gumbel forecasts. In terms of minimizing the regulatory

loss function, the results in Table 2.10 suggest that no alternative copula can outperform the

Normal copula for both the FTSE-CAC and FTSE-DAX pairs.

The results of the likelihood ratio tests for the forecasts based on the copulas with regime

switching parameters following Silva Filho et al. (2012) are presented in Table 2.11, from which

is possible to state that the BB1 copula is the only one that cannot appropriately approximate

the joint distribution of the FTSE and DAX returns, at least, not in its tails. The results of

the SPA test, provided in Table 2.12, indicate that the Student-t performs best in terms of

forecasting for the pair FTSE-CAC, whereas the Normal copula is the best choice for FTSE and

DAX.

Having selected, for both pairs of indexes, the models with the best performances in forecast-

ing out of each methodology, we now apply the SPA test to them. In the case of FTSE-CAC,

we also consider the Normal-Clayton Markov switching copula, since it is the only model re-

maining from this methodology and it passes the Kupiec and Christoffersen tests, with p-values

0.6048 and 0.5848, respectively, for the VaR forecasts at the 1% level, and 0.3483 and 0.5506,

for the 5% VaR forecasts. Table 2.13 displays the results of the SPA test. It is not possible to

reject the null hypothesis that the best alternative model cannot outperform the Normal copula

with only regime dependent correlation coefficient in the forecasting of the first percentile of the

FTSE-CAC portfolio returns. At the same time, one should notice that, at a lower significance

level, of 1%, it is not possible to reject the null that the best alternative model is not better

than the time-varying Normal copula of Patton(2006), when this one is assumed as the bench-

mark. In this case, we could assert that both models provide statistically similar predictions
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of the extreme (negative) quantiles of the FTSE-CAC portfolio. However, the last result is

not robust to alternative choices of the block length for the bootstrap. So, we conclude that

the Normal copula with regime switching parameter following Jondeau and Rockinger (2006)

provides the best VaR forecasts for the portfolio composed by FTSE and CAC, noticing that,

amongst the best forecasts, these are the most aggressive ones. For the portfolio formed by

FTSE and DAX, the SPA test indicates that no alternative model has a better performance

in terms of forecasting the extreme quantiles than the observation driven time-varying Normal

copula. Although, at the 1% significance level, we could accept that the Normal copula with the

correlation coefficient following an ARMA(1,10) process and intercept changing according to a

two-regime Markov chain provides similar forecasts. Nevertheless, this result changes when we

assume different block lengths. Hence, according to our results, the time-varying Normal copula

of Patton (2006) performs best in forecasting the VaR for the portfolio composed by FTSE and

DAX, with less aggressive predictions.

2.7 Concluding Remarks

In this paper, we introduce a new approach to modeling dependence between financial return

data over time, combining time-varying copulas and the Markov switching model, and we employ

this methodology and also those proposed by Patton (2006), Jondeau and Rockinger (2006) and

Silva Filho et al. (2012) to model the dependence structures between the FTSE returns and the

returns of the indexes CAC-40 and DAX, respectively, over the period 1999 to April 2011. We

also use the copula estimates to carry out tail inferences and find out the copula model with the

best performance in forecasting the extreme quantiles for each portfolio composed by the pairs

of indexes aforementioned.

Based on the log-likelihood criterion, we find strong evidences of tail dependence for the

pairs FTSE-CAC and FTSE-DAX from the estimation of the observation driven time-varying

copulas, since the Normal copula has the lowest value for the log-likelihood amongst all copulas.

For FTSE and DAX, the tail dependence is asymmetric, with stronger lower tail. On the other

hand, analyzing the estimation results of the copula models with regime switching dependence

parameters, the elliptical copulas have a better fit to the data according to the same criterion,
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suggesting that, the tail dependence, when it exists, is probably symmetrical, given the better

fit of the Student-t copula. We barely can find empirical evidences of time-varying copulas with

distinct tail behaviors characterizing the dependence between the returns according to the inter-

national equity markets regimes. The combination of a high dependence regime characterized by

the time-varying Normal copula and a low dependence regime associated with the time-varying

Clayton copula for FTSE and CAC, though statistically significant, does not show a good fit to

the data.

Both the observation driven time-varying copulas and the copula models with Markov switch-

ing identify a long period of high dependence from 2007 to the end of 2010, for both the pairs

FTSE-CAC and FTSE-DAX. This period coincides with or slightly precedes the beginning of

the subprime crisis and goes beyond it. The copula models with regime switching also capture

significant increases in dependence during the period 2001 to 2002, especially between FTSE and

CAC, which can be explained by the market crash due to the “dot-com bubble”, besides of the

so called September 11 effect. Unexpectedly, these models also indicate increases in dependence

during the period 2003 to 2006, when the financial markets did well.

Because in risk management the main concern has to do with tail risks, we compare and

select the copula models based on VaR forecasts. To evaluate the accuracy of these predictions,

we apply the traditional Kupiec and Christoffersen tests, besides of an alternative methodol-

ogy based on standard forecast evaluation techniques, i.e, the accuracy of the VaR forecasts is

determined by how well they minimize a certain regulatory function. We also apply the SPA

test by Hansen (2005) to determine which copula model significantly minimizes the expected

loss function. Based on the results of the SPA test, we cannot reject the null hypothesis that

the best alternative model cannot outperform the Normal copula with only regime dependent

correlation coefficient in the forecasting of the extreme (negative) quantiles of the FTSE-CAC

portfolio returns. This result suggests that the high persistence in the linear correlation coeffi-

cient between FTSE and CAC captured by the observation driven time-varying Student-t and

Normal copulas is inappropriate, and the long-memory feature of this dependence parameter

is, in fact, a consequence of a model with large but infrequent breaks, as the Markov switching

model. Also according to the results of the SPA test, no alternative copula model can outper-
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form the time-varying Normal copula of Patton (2006) in the forecasting of the VaR losses for

the portfolio composed by FTSE and DAX returns. Surprisingly, the Normal copula has the

best fit to the tails of the joint distributions of the returns, which is in contrast to the evidences

we expected to find for financial return data and also to the evidences found in the literature of

static copulas, where usually copulas that feature tail dependence and asymmetry show better

fits. It seems that part of the asymmetry may be generated by time-varying parameters. Also,

the lack of tail dependence may be partially compensated by the possibility of large overall

dependence, which would explain why the Gaussian copula fits the data so well.
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2.9 Appendix A: Copula Functions

Normal copula: the Normal copula, extracted from the bivariate Normal distribution, is

defined as follows:

CN (u1, u2|ρ) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

(1− ρ2)
exp

{
−(r2 − 2ρrs+ s2)

2(1− ρ2)

}
drds, ρ ∈ (−1, 1),

where the dependence parameter, ρ, is the linear correlation coefficient. Its dynamic equation

may be written as13

ρt = Λ

ωN + βNρt−1 + αN · 1

10

10∑
j=1

Φ−1(u1,t−j) · Φ−1(u2,t−j)

 .

The Normal copula is symmetric and has no tail dependence, that is, λL = λU = 0. The

Kendall’s tau may be computed based on the correlation coefficient as τ = (2/π) arcsin ρ.

Student-t copula: it is associated with the bivariate Student-t distribution and has the fol-

lowing functional form:

CT (u1, u2|ρ, ν) =
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√
1− ρ2

(
1 +

r2 − 2ρrs+ s2

ν(1− ρ2)

)− ν+2
2

drds,

where the parameters ρ and ν are the linear correlation coefficient and the degrees of freedom,

respectively. In addition, their evolution equations are given by

ρt = Λ

ω1T + β1Tρt−1 + α1T · 1

10

10∑
j=1

T−1
ν (u1,t−j) · T−1

ν (u2,t−j)


and

νt = Λ̃

ω2T + β2T νt−1 + α2T · 1

10

10∑
j=1

T−1
ν (u1,t−j) · T−1

ν (u2,t−j)

 .

The Student-t copula has symmetrical tail dependence, with λL = λU = 2Tν+1(−
√

(ν+1)(1−ρ)
1+ρ ),

where Tν+1 is the Student-t c.d.f. with (ν + 1) degrees of freedom. The Kendall’s tau is given

by τ = (2/π) arcsin ρ.

Gumbel copula: it has the form of

CG(u1, u2|θ) = exp

(
−
(
(− log u1)

θ + (− log u2)
θ
)1/θ)

, θ ∈ [1,∞).

The dynamics is given by the following equation governing the dependence parameter evolution:

θt = Λ

ωG + βGθt−1 + αG · 1

10

10∑
j=1

|u1,t−j−u2,t−j |

 .

13Λ(·) andΛ̃(·), which appear hereafter, are logistic transformations to keep the parameters in their intervals.
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The Gumbel copula exhibits only upper tail dependence, with λU = 2 − 21/θ. It can be shown

that the Kendall’s tau is given by τ = 1− θ−1.

Rotated-Gumbel copula: or Survival Gumbel copula, which is the complement (“Probability

of survival”) of the Gumbel copula. It has the following form:

CRG(u1, u2|θ) = u1 + u2 − 1 + CG(1− u1, 1− u2|θ),

where CG corresponds to the Gumbel copula. The dependence parameter, θ, follows the process

θt = Λ

ωRG + βRGθt−1 + αRG · 1

10

10∑
j=1

|u1,t−j−u2,t−j |

 .

The Rotated-Gumbel copula has only lower tail dependence, given by λL = 2 − 21/θ, and the

Kendall’s tau may be computed as τ = 1− θ−1.

Clayton copula: or Kimeldorf-Sampson copula, has the following distribution function:

CC(u1, u2|δ) = (u−δ
1 + u−δ

2 − 1)−1/δ, δ ∈ (0,∞).

The evolution equation of the dependence parameter is

δt = Λ

ωC + βCδt−1 + αC · 1

10

10∑
j=1

|u1,t−j−u2,t−j |

 .

This copula exhibits only lower tail dependence, λL = 2−1/δ. The Kendall’s tau has the form

τ = δ/(δ + 2).

Symmetrized Joe-Clayton copula: this copula was defined by Patton (2006) and takes the

form of

CSJC(u1, u2|λU , λL) = 0.5 · (CJC (u1, u2|λU , λL) + CJC (1− u1, 1− u2|λU , λL) + u1 + u2 − 1) ,

where CJC is the Joe-Clayton copula, also called BB7 copula (Joe, 1997), given by

CJC (u1, u2|λU , λL) = 1−
(
1−

{
[1− (1− u1)

κ]−γ + [1− (1− u2)
κ]−γ − 1

}−1/γ
)−1/κ

,

with κ = 1/ log2 (2− λU ) , γ = −1/ log2 (λL) and λU , λL ∈ (0, 1).

The SJC copula has upper and lower tail dependence and its dependence parameters are the

upper and lower tail dependence parameters, λU and λL, respectively. Furthermore, λU and λL

range freely and are not dependent on each other. Since this copula nests symmetry as a special
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case, it is a more interesting specification than the BB7 copula. The evolution equations for the

parameters λU and λL are

λUt = Λ

ωU + βUλUt−1 + αU · 1

10

10∑
j=1

|u1,t−j − u2,t−j |


and

λLt = Λ

ωL + βLλLt−1 + αL · 1

10

10∑
j=1

|u1,t−j − u2,t−j |

 .

The Kendall’s tau, in this case, has no closed form, so we compute it numerically.

BB1 copula (Joe, 1997): it has the following functional form:

Cbb1(u1, u2, κ, γ) = {1 + [(u−κ
1 − 1)γ + (u−κ

2 − 1)γ ]1/γ}−1/κ, κ ∈ (0,∞), γ ∈ [1,∞).

The dynamic equations of the dependence parameters are

κt = Λ

ω1bb1 + β1bb1κt−1 + α1bb1 ·
1

10

10∑
j=1

|u1,t−j−u2,t−j |



γt = Λ̃

ω2bb1 + β2bb1γt−1 + α2bb1 ·
1

10

10∑
j=1

|u1,t−j−u2,t−j |

 .

The BB1 copula has upper and lower tail dependence given by λU = 2− 21/γ and λL = 2−1/γκ,

respectively. The Kendall’s tau may be calculated based on κ and γ as τ = 1− (2/(γ(κ+ 2))).
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2.10 Appendix B: Tables

Table 2.1: Summary statistics of the FTSE, CAC-40 and DAX daily log-returns.

FTSE CAC-40 DAX

Mean 1.1098E-05 1.2715E-05 1.3427E-04
Median 3.3649E-04 2.3667E-04 8.7989E-04
Maximum 0.0938 0.1059 0.1080
Minimum -0.0926 -0.0947 -0.0958
Std. Deviation 0.0131 0.0157 0.0164
Asymmetry -0.0675 0.0509 -0.0048
Kurtosis 8.6249 7.9411 7.4391

Jarque-Bera 3968.9 (0.000) 3061.8 (0.000) 2470.1 (0.000)

Note: Jarque-Bera corresponds to Jarque-Bera test statistics with p-values in parentheses.

Table 2.2: Estimates from the univariate ARMA-GARCH models.

Conditional Mean Equation
Parameter FTSE CAC-40 DAX

ϕ1 -0.0577 -0.0369 . . .
(0.0002) (0.0013) . . .

ϕ2 -0.0637 -0.0440 . . .
(0.0005) (0.0002) . . .

ϕ3 -0.0731 -0.0626 . . .
(0.0006) (0.0021) . . .

ϕ4 . . . . . . 0.0444
. . . . . . (0.0024)

Conditional Variance Equation
Parameter FTSE CAC-40 DAX

α0 1.1588E-06 1.5820E-06 1.7875E-06
(0.0000) (0.0000) (0.0000)

α1 0.0933 0.0761 0.0821
(0.0117) (0.0101) (0.0114)

β1 0.9012 0.9181 0.9127
(0.0119) (0.0102) (0.0112)

ν 21.6701 13.2143 10.9277
(7.5025) (3.0347) (2.2477)

λ -0.1430 -0.1229 -0.1112
(0.0247) (0.0258) (0.0225)

Q(15) 0.5504 0.5880 0.5372
Q2(15) 0.2378 0.5044 0.4330
K-S Test 0.8464 0.9835 0.2673

Note: Standard errors in parentheses. Q(15), Q2(15) and K-S Test are p-values.
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Table 2.7: Results of the Kupiec and Christoffersen tests for the daily VaR forecasts from the time-
varying copulas of Patton (2006).

FTSE-CAC
Copula α n1/T Kupiec Christoffersen

Student-t 1% 0.0096 0.8351 0.7310
5% 0.0531 0.4389 0.5157

Rotated-Gumbel 1% 0.0080 0.2446 0.4157
5% 0.0475 0.5191 0.7318

Normal 1% 0.0093 0.6931 0.7047
5% 0.0501 0.9767 0.9891

FTSE-DAX
Copula α n1/T Kupiec Christoffersen

Rotated-Gumbel 1% 0.0083 0.3332 0.2887
5% 0.0504 0.9103 0.9881

Symmetrized Joe-Clayton 1% 0.0090 0.5596 0.6548
5% 0.0521 0.5980 0.8229

Normal 1% 0.0093 0.6931 0.7047
5% 0.0524 0.5420 0.8240

Note: Kupiec and Christoffersen correspond to the p-values of the respective tests.

Table 2.8: Average losses computed based on the 1% daily VaR forecasts from the time-varying copulas
of Patton (2006) and the results of the SPA test.

FTSE-CAC FTSE-DAX

Benchmark Average Loss (%) Benchmark Average Loss (%)

Student-t 9.9677 Rotated-Gumbel 10.2728
(0.0000) (0.0000)

Rotated-Gumbel 10.0320 Symmetrized Joe-Clayton 10.2461
(0.0000) (0.0000)

Normal 9.7856 Normal 9.9492
(1.0000) (1.0000)

Note: In parentheses, we have the p-value of the SPA test.



58

Table 2.9: Results of the Kupiec and Christoffersen tests for the daily VaR forecasts from the copulas
with regime switching dependence parameters following Jondeau and Rockinger (2006).

FTSE-CAC
Copula α n1/T Kupiec Christoffersen

Normal 1% 0.0086 0.4387 0.5857
5% 0.0514 0.7174 0.8280

BB1 1% 0.0056 0.0088 0.0293
5% 0.0451 0.2134 0.3892

Rotated-Gumbel 1% 0.0090 0.5596 0.6548
5% 0.0498 0.9566 0.9297

Symmetrized Joe-Clayton 1% 0.0083 0.3332 0.5037
5% 0.0531 0.4389 0.6097

FTSE-DAX
Copula α n1/T Kupiec Christoffersen

Student-t 1% 0.0076 0.1731 0.3287
5% 0.0528 0.4889 0.4923

Normal 1% 0.0090 0.5596 0.4225
5% 0.0518 0.6565 0.6772

BB1 1% 0.0043 0.0004 0.0018
5% 0.0465 0.3679 0.5328

Rotated-Gumbel 1% 0.0086 0.4387 0.3497
5% 0.0498 0.9566 0.8054

Symmetrized Joe-Clayton 1% 0.0093 0.6931 0.4899
5% 0.0511 0.7802 0.8893

Note: Kupiec and Christoffersen correspond to the p-values of the respective tests.

Table 2.10: Average losses computed based on the 1% daily VaR forecasts from the copulas with regime
switching dependence parameters following Jondeau and Rockinger (2006) and the results of the SPA
test.

FTSE-CAC FTSE-DAX

Benchmark Average Loss (%) Benchmark Average Loss (%)

Normal 9.7691 Student-t 9.9250
(1.0000) (0.0002)

Rotated-Gumbel 9.9397 Normal 9.7691
(0.0000) (1.0000)

Symmetrized Joe-Clayton 9.9931 Rotated-Gumbel 10.1896
(0.0000) (0.0000)

· · · · · · Symmetrized Joe-Clayton 10.3284
· · · (0.0000)

Note: In parentheses, we have the p-value of the SPA test.
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Table 2.11: Results of the Kupiec and Christoffersen tests for the daily VaR forecasts from the copulas
with regime switching dependence parameters following Silva Filho et al. (2012).

FTSE-CAC
Copula α n1/T Kupiec Christoffersen

Student-t 1% 0.0090 0.5596 0.4225
5% 0.0561 0.1321 0.2991

Rotated-Gumbel 1% 0.0080 0.2446 0.4157
5% 0.0485 0.6961 0.4849

Symmetrized Joe-Clayton 1% 0.0083 0.3332 0.5037
5% 0.0538 0.3483 0.5506

FTSE-DAX
Copula α n1/T Kupiec Christoffersen

Student-t 1% 0.0103 0.8740 0.6067
5% 0.0524 0.5420 0.7824

Normal 1% 0.0086 0.4387 0.3497
5% 0.0508 0.8446 0.8400

BB1 1% 0.0043 0.0004 0.0018
5% 0.0455 0.2469 0.4643

Rotated-Gumbel 1% 0.0083 0.3332 0.2774
5% 0.0495 0.8901 0.7806

Note: Kupiec and Christoffersen correspond to the p-values of the respective tests.

Table 2.12: Average losses computed based on the 1% daily VaR forecasts from the copulas with regime
switching dependence parameters following Silva Filho et al. (2012) and the results of the SPA test.

FTSE-CAC FTSE-DAX

Benchmark Average Loss (%) Benchmark Average Loss (%)

Student-t 9.8933 Student-t 10.0754
(1.0000) (0.0010)

Rotated-Gumbel 9.9747 Normal 9.9681
(0.0001) (1.0000)

Symmetrized Joe-Clayton 9.9952 Rotated-Gumbel 10.2184
(0.0012) (0.0000)

Note: In parentheses, we have the p-value of the SPA test.

Table 2.13: Average losses computed based on the 1% daily VaR forecasts and the results of the SPA
test for the best models out of each methodology for the pairs FTSE-CAC and FTSE-DAX.

FTSE-CAC FTSE-DAX

Benchmark Average Loss (%) Benchmark Average Loss (%)

Normal (Patton (2006)) 9.7856 Normal (Patton(2006)) 9.9493
(0.0339) (1.0000)

Normal (J&R(2006)) 9.7691 Normal (J&R(2006)) 9.9814
(1.0000) (0.0000)

Student-t (SFZ&D(2012)) 9.8933 Normal (SFZ&D(2012)) 9.9681
(0.0000) (0.0338)

Normal-Clayton (MS copula) 9.9922 · · · · · ·
(0.0000) · · ·

Note: In parentheses, we have the p-value of the SPA test.
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2.11 Appendix C: Figures
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Figure 2.1: The evolution of the Kendall’s tau following Patton (2006), for the FTSE-CAC pair.
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Figure 2.2: The evolutions of the tail dependence parameters following Patton (2006), for the FTSE-
CAC pair.
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Figure 2.3: The evolution of the Kendall’s tau following Patton (2006), for the FTSE-DAX pair.
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Figure 2.4: The evolutions of the tail dependence parameters following Patton (2006), for the FTSE-
DAX pair.
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Figure 2.5: The evolution of the Kendall’s tau following Jondeau and Rockinger (2006), for the FTSE-
CAC pair.
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Figure 2.6: The evolutions of the tail dependence parameters following Jondeau and Rockinger (2006),
for the FTSE-CAC pair.
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Figure 2.7: The evolution of the Kendall’s tau following Jondeau and Rockinger (2006), for the FTSE-
DAX pair.
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Figure 2.8: The evolutions of the tail dependence parameters following Jondeau and Rockinger (2006),
for the FTSE-DAX pair.
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Figure 2.9: The evolution of the Kendall’s tau following Silva Filho et al. (2012), for the FTSE-CAC
pair.
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Figure 2.10: The evolutions of the tail dependence parameters following Silva Filho et al. (2012), for
the FTSE-CAC pair.
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Figure 2.11: The evolution of the Kendall’s tau following Silva Filho et al. (2012), for the FTSE-DAX
pair.
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Figure 2.12: The evolutions of the tail dependence parameters following Silva Filho et al. (2012), for
the FTSE-DAX pair.
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Figure 2.13: The evolution of the Kendall’s tau computed based on the Normal-Clayton Markov
switching copula and the smoothed probabilities of the high and low dependence regimes, for the FTSE-
CAC pair.
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3.1 Introduction

It is well known that financial data has some peculiar features, called stylized facts, such as (i)

heavy tails in the unconditional distribution of asset returns, (ii) volatility clustering, i.e., the

clustering of large and small moves in asset prices time series, (iii) asymmetry, the tendency for

changes in stock prices to be differently correlated with changes in stock volatility depending

whether prices are increasing or decreasing, amongst other particular characteristics. Besides

that, a number of recent studies have found evidence that international financial returns tend to

exhibit asymmetric dependence (see, e.g., Longin and Solnik (2001), Ang and Bekaert (2002),

Ang and Chen (2002), Hong et al. (2007)), which means that negative returns tend to be more

dependent between themselves than positive returns.

Despite these facts, it is a common practice to assume multivariate normality when it comes

to portfolio analysis, and the linear correlation coefficient is widely used as a measure of depen-

dence in the finance world. It is widely known though that the Gaussian distribution is not able

to capture the stylized facts and to reproduce the extreme events of financial markets. More-

over, the linear correlation in this context is not a suitable measure of dependence (Embrechts

et al., 2002). Hence, results based on normality may not be appropriate for optimum portfolio

construction and management (Sancetta and Satchell, 2001).

Recently, the copula functions have emerged as an important tool for flexible and more

realistic modeling of multivariate distributions of asset returns and their dependence. Copula

theory goes back to the work of Sklar (1959), who showed that an n-dimensional joint distri-

bution function can be decomposed into its n marginal distributions and a copula, which fully

characterizes the dependence among the variables. Examples of copula applications in finance

can be found at Mendes and Moretti (2002), Hurlimann (2004), Dias and Embrechts (2004),

Rodriguez (2007), Silva Filho et al. (2012), to name a few.

Although the number of bivariate copulas is rather large, the range of higher-dimensional

copulas was somehow limited until recently. The classes of elliptical and Archimedean copu-

las have attracted particular interest, however, they are very restrictive. If one n-dimensional

Archimedean copula is assumed to represent the dependence amongst some variables, the de-

pendence structures between all possible pairs of variables are expressed by the same specified
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copula. For example, if one n-dimensional Clayton copula with parameter θ = 1 is fitted to

a data set, all pairs of random variables will have their dependence expressed by a bivariate

Clayton copula with parameter θ = 1. This problem occurs to any Archimedean copula. With

regard to the multivariate Gaussian and Student-t copulas, they can only capture symmetric

dependencies.

The so-called vine copula model or pair-copula construction (PCC) overcomes this issue.

Joe (1996) proposed a probabilistic construction of multivariate distributions based on simple

building blocks called pair-copulas, later extended and systematically organized by Bedford and

Cooke (2001, 2002) through the specification of a graphical model called regular vine. The

vine copula model consists in decomposing a multivariate density into a cascade of pair-copulas

(bivariate copulas) and the marginal densities. It is a more flexible method to model multivariate

distributions, since the pair-copulas do not have to be the same neither have to belong to the

same family.

The goal of this paper is to use the vine copula model to analyze the dependence struc-

ture amongst broad stock market indexes from Germany (DAX), France (CAC 40), Britain

(FTSE 100), the United States (S&P 500) and Brazil (IBOVESPA), and check the asymmetric

dependence hypothesis in this case. Two types of asymmetric dependence have been reported:

one is stronger dependence in returns of different assets during bear markets than bull markets,

as in e.g. Ang and Bekaert (2002); and the second one is stronger tail dependence in the lower tail

(losses) in comparison with the upper tail (gains) for pairs of assets, see, e.g., Hong et al. (2007).

We will investigate the presence of the second type of asymmetry in our data set. Such asym-

metries imply that investors might lose the benefits of portfolio diversification when they are

most valuable.

The remainder of the paper is structured as follows. We present a brief introduction to

the vine copula model and summarize the inferential procedure in Section 3.2, and define tail

dependence in Section 3.3. In Section 3.4, we describe the data, the statistical models for the

marginal distributions, the vine copulas considered. We also report the parameters estimates.

Lastly, in Section 3.5, we bring some final remarks.
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3.2 Vine Copulas

Sklar’s Theorem (Sklar, 1959) states that every multivariate cumulative probability distribution

function F with marginals F1, . . . , Fn may be written as

F (x1, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), (3.2.1)

for some appropriate n-dimensional copula C. In terms of the joint probability density function

f , for an absolutely continuous F with strictly increasing continuous marginals F1, . . . , Fn, we

have

f(x1, . . . , xn) = c12...n(F1(x1), . . . , Fn(xn)) · f1(x1) . . . fn(xn). (3.2.2)

Consider now, for example, a trivariate random vector X = (X1, X2, X3). Its density can be

factorized as

f(x1, x2, x3) = f(x3) · f(x2|x3) · f(x1|x2, x3). (3.2.3)

According to equation (3.2.2), we can write

f(x2|x3) = c23(F2(x2), F3(x3)) · f2(x2). (3.2.4)

Similarly, it is possible to decompose the conditional density of X1 given X2 and X3 as

f(x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2)) · f(x1|x2). (3.2.5)

Now, decomposing f(x1|x2) in (3.2.5) further, we have

f(x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2)) · c12(F1(x1), F2(x2)) · f1(x1). (3.2.6)

Finally, from equations (3.2.4) and (3.2.6), the joint density function for the trivariate case can

be written as

f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c12(F1(x1), F2(x2))·

· c23(F2(x2), F3(x3)) · c13|2(F1|2(x1|x2), F3|2(x3|x2)). (3.2.7)

That is, the trivariate density can be factorized as a product of the marginals, two bivariate

copulas, c12 and c23, and a third copula c13|2 named conditional, whose arguments are conditional

distributions.
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The previous results for the trivariate case can be generalized for an n-dimensional vector,

using the following formula:

f(x|υ) = cxυj |υ−j
(F (x|υ−j), F (υj |υ−j)) · f(x|υ−j), (3.2.8)

for a vector υ with dimension d. Here υj is an arbitrarily chosen component of υ and υ−j

corresponds to the vector υ excluding this component. It follows that the multivariate density

function with dimension n can be decomposed into its marginal densities and a set of iteratively

conditioned bivariate copulas.

The pair-copula decomposition of a multivariate density involves marginal conditional dis-

tributions of the form F (x|υ), computed using a formula of Joe (1996):

F (x|υ) =
∂Cx,υj |υ−j

(F (x|υ−j), F (υj |υ−j))

∂F (υj |υ−j)
. (3.2.9)

As the number of variables grows, the different possibilities of decomposition in pair-copulas

also increase. To organize these possibilities, Bedford and Cooke (2001, 2002) introduced a

graphical model called regular vine, with two special cases, the drawable vine (D-vine) and the

canonical vine (C-vine). Each of these graphical models provides a specific way of decomposing

the density f(x1, . . . , xn). The n-dimensional density f() associated with a C-vine may be

written as

n∏
k=1

f(xk)

n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1(F (xj |x1, . . . , xj−1), F (xj+i|x1, . . . , xj−1)). (3.2.10)

In a C-vine, there are n − 1 hierarchical trees with increasing conditional sets and a key

variable located at the root of the tree, and there are n(n − 1)/2 bivariate copulas. For a

detailed description, see Aas et al. (2009). Figure 3.1 shows a C-vine decomposition for n = 5.

It consists of 4 nested trees, where tree Tj has 6 − j nodes and 5 − j edges corresponding to a

pair-copula.

In a time series context, the parameters of the canonical vine density can be estimated by

maximum likelihood. The log-likelihood associated with a C-vine may be written as

ℓ(α,θ;x) =

T∑
t=1

n∑
k=1

log(f(xk,t;αk))

+
T∑
t=1

n−1∑
j=1

n−j∑
i=1

log(c(F (xj,t|x1,t, . . . , xj−1,t), F (xj+i,t|x1,t, . . . , xj−1,t));θj,j+i|1,...,j−1)

= ℓM (α;x) + ℓC(α,θ;x), (3.2.11)
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where α and θ denote the parameters of the marginal distributions and the C-vine copula,

respectively. The Inference Function for Margins (IFM) method (Joe and Xu, 1996) can effi-

ciently estimate the model parameters, so estimation can proceed in two steps. In a first step,

an ARMA-GARCH model is applied to the return data and the estimates of the parameters of

the marginal distributions are derived. In a second step, the vine copula log-likelihood, ℓC , is

maximized over the copula parameters, taking the parameters of the marginals as fixed at the

estimated values from the first step. Likelihood evaluation for the C-vine copula is performed

using the algorithm in Aas et al. (2009).

3.3 Tail Dependence

In order to investigate tail asymmetry, we first define tail dependence. Loosely speaking, it is

a copula-based dependence measure and refers to the degree of dependence in extreme values.

Formally, if the limit

lim
ε→0

Pr [U1 ≤ ε|U2 ≤ ε] = lim
ε→0

Pr [U2 ≤ ε|U1 ≤ ε] = lim
ε→0

C(ε, ε)/ε = λL

exists, the copula C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence if

λL = 0. Similarly, if the limit

lim
δ→1

Pr [U1 > δ|U2 > δ] = lim
δ→1

Pr [U2 > δ|U1 > δ] = lim
δ→1

(1− 2δ + C(δ, δ)) /(1− δ) = λU

exists, the copula C has upper tail dependence if λU ∈ (0, 1] and no upper tail dependence

if λU = 0. In other words, the lower (upper) tail dependence is the probability that one

variable takes an extremely large negative (positive) value, given that the other variable took

an extremely large negative (positive) value.

Joe et al. (2010) proved that if all the pair-copulas in a vine are reflection symmetric1, then

the resulting vine copula is reflection symmetric. In this case, whenever reflection symmetric

bivariate copulas, such as the Student-t copula, are used throughout the construction of the vine,

each bivariate margin (j, k) has both upper and lower tail dependence and λjk,L = λjk,U for any

j < k. So, in order to obtain a multivariate copula with asymmetric upper and lower tails for

each bivariate margin, one can use reflection asymmetric pair-copulas in the vine construction.

1Let c1...m be the copula density, then reflection symmetry implies c(u1, . . . , um) = c(1− u1, . . . , 1− um).
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In particular, they have shown that vine copulas can have asymmetric tail dependence when

asymmetric bivariate copulas with different upper/lower tail dependence are used in level 1 of

the vine.

3.4 Empirical Application

The aim here is to model the dependence amongst CAC 40, DAX, FTSE 100, S&P 500 and

IBOVESPA indexes using the vine copula model. We begin describing our data set and analyzing

its main features. Then, in the first stage of the modeling process, we estimate the marginal

distributions of the five indexes returns, considering both their conditional mean and variance.

Finally, in the second stage, we study which vine copula is the most appropriate to characterize

the dependence structure.

3.4.1 Data Description

Data was collected from Bloomberg and the daily log-returns were used for the period from

January 07, 1999 to November 23, 2010, with a total of 2735 return observations. Figure 3.2

shows the log-returns of the five indexes in the period considered.

Table 3.1 shows some descriptive statistics of the log-returns. We can notice that data

usually shows signs of both negative asymmetry and excess kurtosis, except for IBOVESPA and

CAC 40 log-returns, which show positive asymmetry. Also there is evidence that the log-returns

are not normally distributed according to the Jarque-Bera test statistics. These statistics are in

line with what is described in the literature on financial data.

3.4.2 Modeling the Marginal Distributions

We studied various models for the marginals2 and, comparing the optimum values of the log-

likelihood functions and the information criteria AIC and BIC, we chose an AR(1)-GARCH(1,1)

with Skewed-t3 errors as the most appropriate model for CAC 40, DAX, FTSE 100 and IBOVESPA

returns. For S&P 500, an AR(1)-EGARCH(2,1) with Skewed-t errors was necessary to model

the serial correlation in the conditional mean and variance. The rationale for having included

a skew in the marginal distributions was to ensure that any asymmetry we found in the depen-

2All marginals were estimated using the Oxford MFE Toolbox provided by Kevin Shepard.
3The Skewed-t GARCH model was defined by Hansen (1994).
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dence structure truly reflected dependence and could not be attributed to poor modeling of the

marginals.

Let ri,t denote the log-return of the i-th index at time t, the model AR(1)-GARCH(1,1) with

Skewed-t errors can be described as

ri,t = c0i + c1iri,t−1 + h
1/2
i,t εi,t,

hi,t = ωi + β1ihi,t−1 + α1iε
2
i,t−1,

εi,t ∼ Skewed− t(νi, λi), (3.4.1)

where hi,t is the conditional variance of ri,t, whereas ν and λ are, respectively, the degrees of

freedom and the asymmetry of the the Skewed-t distribution. The conditional variance of an

EGARCH(2,1) process can be modeled as

ln(hi,t) = ωi +

2∑
k=1

αki(|εi,t−k| − E|εi,t−k|) + γ1iεi,t−1 + β1i ln(hi,t−1). (3.4.2)

The results of the estimation of the marginal models are presented in Table 3.2. Because

the estimated parameter λi is significantly negative for all series analyzed, it is possible to

assert that all marginals are asymmetric. Additionally, the estimation output suggests that the

marginal distributions are adequately specified: the p-values of the Ljung-Box test indicate that

there is no autocorrelation left in the standardized residuals nor in the squared standardized

residuals of the marginal models. Moreover, the models passed the Kolmogorov-Smirnov test of

goodness-of-fit. If the marginal distribution is well specified, the probability integral transform

(PIT) of the standardized residuals will have uniform distribution in the interval [0, 1]. This is

a necessary condition for copula modeling. Hence, to test whether the PIT of the residuals had

such distribution, the Kolmogorov-Smirnov test was applied.

3.4.3 Copula Modeling

A canonical vine copula was fitted to the probability integral transform (PIT) of the ARMA-

GARCH residuals. We followed Aas et al. (2009) for the specification of the copula. Using

the sample Kendall’s taus, reported in Table 3.3, we first ordered the variables by decreasing

dependencies, choosing the one with the largest dependence as the first variable to condition on.

This led us to place CAC 40 Index returns at the root of the tree, followed by DAX, FTSE 100,
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S&P 500 and IBOVESPA indexes returns. By doing so, we intended that most of the dependence

structure in the copula would be captured in the first stages of the canonical vine.

As we expected to observe mainly lower tail dependence, we started estimating a model with

all bivariate Clayton copulas4, since the Clayton copula exhibits only lower tail dependence. We

also estimated C-vines built on the very flexible BB1, BB7 and SJC (Symmetrized Joe-Clayton)

copulas, with lower tail dependence different from upper tail dependence, to check the hypothesis

of asymmetric dependence. The estimates of the pair-copulas parameters and the C-vine copulas

log-likelihoods are provided in Table 3.45. Based on the likelihood criterion, the C-vine with

all Clayton copulas is outperformed by those models composed by two-parameter pair-copulas,

suggesting that the dependence structure of the investigated indexes is characterized by both

lower and upper tail dependence. Additionally, to account for the possibility of symmetrical tail

dependence, we fitted a canonical vine copula with all bivariate Student-t copulas, which feature

same upper and lower tail dependence. The latter construction is the best model based on log-

likelihood. Table 3.5 presents the model-based tail dependence parameters and Kendall’s taus.

One can notice that the copula models have the strongest dependence in the baseline copulas

and weak conditional dependence. Moreover, the tail dependencies of the bivariate margins

measured by the Student-t pair-copulas are lower than the tail dependencies measured by the

other two-parameter pair-copulas, probably because of the symmetry imposed by the elliptical

copulas.

So, based on our empirical results, it is not possible to conclude for an asymmetry in the de-

pendence amongst the stock markets considered, since a canonical vine copula with all Student-t

pair-copulas seems to characterize their dependence structure properly, which means that the

international financial returns analyzed possibly exhibit a symmetrical dependence.

Since the n-dimensional Student-t copula has been widely used in finance to model mul-

tivariate return data, it is worth comparing the results obtained from the estimation of the

vine copula model with all Student-t pair-copulas with the results from the estimation of a

5-dimensional Student-t copula. In order to estimate the latter, a method similar to that in

4In order to facilitate coding, we used pair-copulas of the same family throughout the vine.
5The estimation of the pair-copulas parameters was performed using some functions from the Dynamic Copula

Toolbox 3.0 provided by Manthos Vogiatzoglou as well as some functions written by the authors for the Matlab 7r

software.
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Mashal and Zeevi (2002) was employed, according to which the estimated correlation matrix

of the Student-t copula is taken to be equal to the sample correlation of the transformed stan-

dardized residuals, Σ̂ = sin(πτ̂/2), where τ̂ is the Kendall’s tau estimator, and only the degree

of freedom parameter is estimated. We obtained an estimate of 8.81 degrees of freedom in this

case. There is only one parameter for modeling tail dependence, so we believe that, if the tail

dependencies of distinct pairs of variables are very different, the pair-copula decomposition will

describe the dependence structure better. The computed AIC criterion for the vine copula model

is -11035, whereas, for the 5-dimensional Student-t copula, it is -11002. Therefore, based on the

AIC criterion, the vine copula structure is more appropriate than the 5-dimensional copula.

To illustrate the difference between these two structures in terms of tail dependence, we com-

puted the the tail dependence parameters for the four bivariate margins CAC40-DAX, CAC40-

FTSE100, CAC40-S&P500 and CAC40-IBOVESPA, based on both structures. For the Student-t

copula, the tail dependence parameter is given by (Embrechts et al., 2002):

λL(X,Y ) = λU (X,Y ) = 2tν+1(−
√
ν + 1

√
(1− ρ)/(1 + ρ)), (3.4.3)

where tν+1 is the cumulative distribution function of a univariate Student-t with ν + 1 degrees

of freedom. Table 3.6 presents the tail dependence coefficients for the four margins and both

structures. We can observe that the values for the vine copula model are higher than the corre-

sponding ones for the Student-t copula, except for the last margin. The practical implication of

this difference in tail dependence is that the probability of observing a large loss in a portfolio

of each of these pairs of indexes is much higher if based on the pair-copula decomposition than

on the 5-dimensional copula.

3.5 Final Remarks

In the present work, we used the vine copula model to study the dependence structure amongst

the log-returns of some important stock market indexes, especially the pattern of dependence

in the tails of their joint distribution, to verify the asymmetric dependence hypothesis.

We could not conclude for an asymmetry in the dependence amongst such markets based on

our empirical study, since we found that a C-vine with all Student-t pair-copulas describes their

dependence structure properly. Nikoloulopoulos et al. (2010) consider that, perhaps, asymmetric



77

tail dependence with stronger lower tails occurs only temporarily, for some periods of time, what

suggests that incorporating time variation into the vine copula model could improve it as a tool

to model multivariate international financial data.

If we look at the graphics of the log-returns in Figure 3.2, we can identify at least two clusters

of greater volatility in all the series: one during the year of 2002, when there were ramifications

of the “dot-com bubble”, which had its climax on March 10, 2000; and another one during 2008,

when the subprime crisis was still occurring. When new clusters of volatility emerge in two or

more time series at the same time, especially with greater volatility, the dependence amongst the

series probably increases, and this further suggests that dynamic copulas should be considered.
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3.7 Appendix A: Tables

Table 3.1: Descriptive statistics of the log-returns of DAX, CAC 40, FTSE 100, S&P 500 and IBOVESPA
indexes.

DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

Mean 8.9170E-05 -4.4007E-05 -2.3894E-05 -1.9315E-05 8.2530E-04
Median 0.00085 0.00019 0.00039 0.00045 0.00121
Maximum 0.1080 0.1059 0.0938 0.1096 0.2882
Minimum -0.0979 -0.0947 -0.0927 -0.0947 -0.1228
Std. Deviation 0.0171 0.0163 0.0137 0.0142 0.0217
Asymmetry -0.0170 0.0271 -0.0807 -0.1151 0.7467
Kurtosis 7.0876 7.6107 8.2476 9.5857 17.2255
Jarque-Bera 1898 2415.3 3131.6 4934.5 23257

Table 3.2: Estimated parameters of the marginal models.

Coefficients DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

c0 . . . . . . . . . . . . 8.193E-04
. . . . . . . . . . . . (0.0000)

c1 -0.0268 -0.0361 -0.0585 -0.0917 0.0173
(0.0001) (0.0002) (0.0004) (0.0028) (0.0019)

ω 1.872E-06 1.861E-06 1.386E-06 -0.1408 9.529E-06
(0.0000) (0.0000) (0.0000) (0.0291) (0.0000)

α1 0.0816 0.0855 0.1018 -0.1414 0.0697
(0.0111) (0.0116) (0.0131) (0.0431) (0.0108)

α2 . . . . . . . . . 0.2588 . . .
. . . . . . . . . (0.0460) . . .

γ1 . . . . . . . . . -0.1206 . . .
. . . . . . . . . (0.0117) . . .

β1 0.9132 0.9085 0.8922 0.9840 0.9056
(0.0107) (0.0113) (0.0130) (0.0033) (0.0148)

ν 10.7752 14.5104 23.0364 10.0372 9.4347
(2.3307) (3.7768) (10.0162) (1.8751) (1.6389)

λ -0.1185 -0.0949 -0.1124 -0.1283 -0.0845
(0.0229) (0.0277) (0.0263) (0.0235 ) (0.0277)

Q(20) 0.3132 0.3506 0.2553 0.2928 0.4923
Q2(20) 0.8951 0.5702 0.7764 0.3152 0.9927
K-S Test 0.2395 0.9798 0.9395 0.5611 0.8934

Note: Standard errors are in parenthesis. Q(20) and Q2(20) correspond to the
p-values of the Ljung-Box test for the autocorrelation in the residuals and in the
squared residuals, respectively. K-S Test is the Kolmogorov-Smirnov test p-value.
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Table 3.3: Matrix of the sample Kendall’s taus computed based on the PIT of the ARMA-GARCH
residuals.

CAC 40 DAX FTSE 100 S&P 500 IBOVESPA

CAC 40 1.0000
DAX 0.7196 1.0000
FTSE 100 0.6633 0.6047 1.0000
S&P 500 0.3862 0.4044 0.3658 1.0000
IBOVESPA 0.2767 0.2887 0.2821 0.4223 1.0000

Table 3.4: Estimated C-Vine copula parameters and log-likelihood.

Block LogL Estimated C-vine copula parameters
Level 1 Level 2 Level 3 Level 4
c12 c13 c14 c15 c23|1 c24|1 c25|1 c34|12 c35|12 c45|123

Clayton 4395.1 θ̂’s 3.25 2.47 0.80 0.52 0.15 0.17 0.12 0.09 0.09 0.61
(0.11) (0.08) (0.04) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.04)

BB1 5462.2 κ̂’s 0.76 0.63 0.34 0.34 0.12 0.11 0.09 0.06 0.07 0.26
(0.07) (0.06) (0.04) (0.04) (0.02) (0.03) (0.02) (0.02) (0.03) (0.04)

δ̂’s 2.44 2.15 1.38 1.18 1.05 1.08 1.04 1.03 1.03 1.27
(0.08) (0.06) (0.03) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.03)

BB7 5243.9 κ̂’s 2.82 2.44 1.48 1.24 1.06 1.10 1.04 1.03 1.02 1.32
(0.08) (0.06) (0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.02) (0.03)

δ̂’s 2.48 1.85 0.62 0.46 0.16 0.17 0.12 0.07 0.09 0.45
(0.09) (0.08) (0.04) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03)

SJC 5263.5 λ̂U ’s 0.71 0.66 0.37 0.18 0.03 0.08 0.02 0.00 0.00 0.27
(0.00) (0.01) (0.03) (0.05) (0.00) (0.04) (0.00) (0.00) (0.00) (0.03)

λ̂L’s 0.76 0.69 0.37 0.28 0.06 0.04 0.02 0.00 0.00 0.26
(0.00) (0.01) (0.03) (0.04) (0.02) (0.01) (0.01) (0.00) (0.00) (0.04)

t 5537.5 ρ’s 0.90 0.86 0.57 0.43 0.16 0.22 0.14 0.10 0.12 0.48
(0.00) (0.00) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01)

ν’s 5.04 6.12 8.10 9.65 9.13 19.14 25.54 59.63 42.61 10.30
(0.50) (0.81) (1.44) (2.14) (1.66) (7.20) (11.87) (19.02) (12.94) (2.17)

Note: The estimated C-Vine copulas are built on all Clayton, BB1, BB7, SJC and Student-t pair-copulas (blocks). For
Clayton, θ > 0; for BB1, κ > 0 and δ ≥ 1; for BB7, κ ≥ 1 and δ > 0; for SJC, 0 < λU , λL < 1. Variable 1 = CAC 40,
2 = DAX, 3 = FTSE 100, 4 = S&P 500, 5 = IBOVESPA.
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Table 3.5: Estimated tail dependence parameters and Kendall’s taus.

Block Estimated C-vine copula parameters
Level 1 Level 2 Level 3 Level 4

c12 c13 c14 c15 c23|1 c24|1 c25|1 c34|12 c35|12 c45|123
Clayton τ̂ ’s 0.62 0.55 0.28 0.21 0.07 0.08 0.06 0.04 0.04 0.23

λ̂L’s 0.81 0.76 0.42 0.26 0.01 0.02 0.00 0.00 0.00 0.32
BB1 τ̂ ’s 0.70 0.65 0.38 0.28 0.10 0.13 0.08 0.05 0.06 0.30

λ̂U ’s 0.67 0.62 0.35 0.21 0.07 0.11 0.06 0.04 0.03 0.27

λ̂L’s 0.69 0.60 0.22 0.18 0.00 0.00 0.00 0.00 0.00 0.13
BB7 τ̂ ’s 0.66 0.61 0.36 0.26 0.10 0.13 0.08 0.05 0.05 0.29

λ̂U ’s 0.72 0.67 0.40 0.25 0.08 0.12 0.06 0.04 0.03 0.31

λ̂L’s 0.76 0.69 0.32 0.22 0.01 0.02 0.00 0.00 0.00 0.22
SJC τ̂ ’s 0.66 0.61 0.36 0.26 0.11 0.13 0.08 0.05 0.06 0.28

λ̂U ’s 0.71 0.66 0.37 0.18 0.03 0.08 0.02 0.00 0.00 0.27

λ̂L’s 0.76 0.69 0.37 0.28 0.06 0.04 0.02 0.00 0.00 0.26
t τ̂ ’s 0.71 0.66 0.39 0.28 0.10 0.14 0.09 0.06 0.07 0.32

λ̂’s 0.59 0.49 0.15 0.06 0.02 0.00 0.00 0.00 0.00 0.07

Note: τ̂ ’s corresponds to the estimated Kendall’s taus, whereas λ̂U ’s and λ̂L’s refer to the
estimated upper and lower tail dependence parameters, respectively. Variable 1 = CAC 40,
2 = DAX, 3 = FTSE 100, 4 = S&P 500, 5 = IBOVESPA.

Table 3.6: Tail dependence parameters computed based on the C-Vine with all Student-t pair-copulas
and on the 5-dimensional Student-t copula.

Margins Vine Copula Model 5-dimensional Student-t

CAC 40, DAX 0.5946 0.4996
CAC 40, FTSE 100 0.4875 0.4164
CAC 40, S&P 500 0.1509 0.1328
CAC 40, IBOVESPA 0.0647 0.0740
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3.8 Appendix B: Figures

Figure 3.1: A C-vine with 5 variables, 4 trees and 10 edges. Each edge is associated with a pair-copula
density.
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Figure 3.2: Daily log-returns of CAC 40, DAX, FTSE 100, S&P 500 and IBOVESPA indexes for the
period from January, 1999 to November, 2010.
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4.1 Introduction

A realistic modeling of the dependence structure of multivariate financial return data is funda-

mental in finance for the accurate computation of Value-at-Risk, the construction of optimal

portfolios, the pricing of financial products with multiple underlying assets, amongst other appli-

cations. In particular, it is essential for the correct assessment of financial risk, and the subprime

crisis has made it clear.

The linear correlation coefficient has long time been adopted as a measure of dependence in

finance. However, it is a suitable measure of dependence only in the elliptical context, in other

situations, it may be misleading (Embrechts et al., 2002). It is widely documented that finan-

cial returns are characterized by asymmetry and excess kurtosis. There are also stylized facts

observed in the dependence structure of multivariate financial returns which are not captured

by elliptical distributions. One such feature is asymmetric dependence, meaning that negative

returns tend to be more dependent between themselves than positive returns. Another one

is tail dependence, which refers to the dependence in extreme values. Also tail dependencies

exhibit asymmetries, i.e. lower tail dependence can be larger than upper tail dependence and

vice versa. Some authors have found that there is stronger tail dependence in the joint lower

tail than upper tail, which means that different stocks are more likely to crash than to thrive

together (see, for instance, Jondeau et al. (2007)).

The famous theorem by Sklar (1959) introduced the copulas as a tool to model more intri-

cate patterns of dependence. It states that any n-dimensional joint distribution function can be

decomposed into its n marginal distributions and a copula, where the latter completely charac-

terizes the dependence among the variables. While there is a variety of bivariate copula families,

which can match a wide range of complex dependencies, the set of higher-dimensional copulas

was quite restricted until recently.

Latter developments in the construction of high dimensional copulas tend towards hierar-

chical structures. Joe (1996) proposed a probabilistic construction of multivariate distributions

based on simple building blocks called pair-copulas, later extended and systematically organized

by Bedford and Cooke (2001, 2002) through the specification of a graphical model called regu-

lar vine. The regular vine copula model (R-vine copula), also called pair-copula constructions
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(PCC), is hierarchical in nature and consists in decomposing a multivariate density into a cas-

cade of pair-copulas (bivariate copulas) and the marginal densities. It is a more flexible method

to model multivariate distributions, since the bivariate copulas may belong to any family and

several families may be mixed in a vine copula, matching any possible dependence structure. In-

ference of two special cases of regular vine copulas, the canonical vine (C-vine) and the drawable

vine (D-vine) copulas, was introduced by Aas et al. (2009).

Research in multivariate dependence modeling using copulas is focused mostly on the case

of time-homogeneous dependence structures, however promising approaches for allowing time

variation in dependence have been put forth (see Manner and Reznikova (2012) for a recent

survey of time-varying copula models with focus on the bivariate case). The dependence among

variables can be rendered time-varying by allowing either the dependence parameter or the

copula function to vary over time. The first line of research includes fully parametric models, as

the one proposed by Patton (2006), who allows the dependence parameters of bivariate copulas

to follow a kind of restricted ARMA(1,10) process. There are also semi-parametric models

(Hafner and Reznikova, 2010) and adaptive approaches (Giacomini et al., 2009), both applied

to the bivariate case. The copulas parameters can also be influenced by a Markov chain, as in

Jondeau and Rockinger (2006) and Silva Filho et al. (2012). To our knowledge, Heinen and

Valdesogo (2009, 2011) were the first ones (and the only ones so far) to introduce time variation

in the vine copula context by specifying a law of motion for the pair-copulas parameters, based

on the DCC equations. The other direction of research combines copula models with regime

switching to allow for changes in the whole dependence structure, represented by the copula

function, according to the regimes characterizing the international financial markets. Chollete et

al. (2009), Garcia and Tsafak (2011) and Stöber and Czado (2012) are examples of publications

combining the regular vine copula model with the Markov switching model.

In this paper, we propose to introduce dynamics into the vine copula model according to the

first approach above-mentioned, specifying an evolution equation directly for the pair-copulas

parameters, in order to obtain a very flexible dependence model for applications to multivariate

financial return data. We allow the dependence parameters of the pair-copulas in a D-vine de-

composition to be potentially time-varying, following a nonlinear restricted ARMA(1,m) process
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as in Patton (2006)1. Hereafter we will call this time-varying or dynamic D-vine copula model.

The dynamics specified here circumvents certain limitations inherent in the dynamic vine

copula model of Heinen and Valdesogo (2009, 2011). Because their specification, based on the

DCC equations, involves obtaining the correlation coefficient at each period t, converting it

to the Kendall’s tau and transforming it into the parameter of the pair-copula, at least two

difficulties arise. First, since the non-linear transformation from the Kendall’s tau to the copula

parameter cannot be done in closed form for all copulas, estimation becomes a difficult task

when the parameters have to be obtained by solving numerically for the solution. Second, it is

only possible to adopt one-parameter copula families as building blocks in the vine construction,

and, according to Joe (2011), it is important to have copulas with flexible lower and upper tail

dependencies, such as the two-parameter copulas BB1 and BB7 (see Joe (1997)), for making

inferences on joint tail probabilities, which might represent joint risks.

We first evaluate the performance of the proposed model in a simulation study. The overall

findings of the Monte Carlo experiments are quite favorable to the dynamic D-vine copula model

in comparison with a static D-vine copula. When the data generating process is the dynamic D-

vine copula, the dependence parameters estimates from this same model are far superior to those

from the static model in terms of both the mean errors and the root mean squared errors. When

the samples are drawn from the static D-vine copula, both models have similar performance in

terms of the mean errors, nonetheless the dynamic D-vine copula performs worse in terms of

the root mean squared errors.

We also investigate both the static and the dynamic D-vine copula models in an empirical

study, using two data sets of daily log-returns of the broad stock market indexes from Ger-

many (DAX), France (CAC 40), Britain (FTSE 100), the United States (S&P 500) and Brazil

(IBOVESPA), one comprising the period from January 03, 2003 to December 28, 2007 and an-

other one from January 02, 2008 to May 04, 2012, which we denominate “non-crisis period” and

“crisis period”, respectively. Besides of analyzing the different patterns of dependence charac-

terizing these periods, the intention is to further evaluate the dynamic D-vine copula model

1Abbara (2009) uses a trivariate vine decomposition, with time-varying dependence parameters following
Patton (2006), in a contagion analysis. He is only interested in investigating the dependence between two Latin
American or European index returns, given information on the North American market. He does not explore this
dynamic vine decomposition more closely, as it is done in this paper.
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with respect to Value-at-Risk (VaR) forecasting accuracy in crisis periods. In an out-of-sample

exercise, the estimated models are used to forecast one-day VaR for an equally weighted portfo-

lio of the aforementioned indexes in the period from January 02, 2008 to August 19, 2008 (150

days) and also from May 08, 2012 to September 06, 2012 (79 days). Based on the results of

the superior predictive ability (SPA) test of Hansen (2005), the dynamic D-vine copula model

outperforms the static D-vine copula in terms of predictive accuracy, especially in the second

testing period.

The remainder of this paper is organized as follows. In the next section, we introduce the

dynamic D-vine copula model by first providing necessary background on regular vine copulas

in Section 4.2.1 and then specifying the dynamic structure of dependence in Section 4.2.2.

In Section 4.3, we focus on inference of the dynamic D-vine copula, describing the sequential

estimation procedure. The proposed model is first evaluated in a simulation study in Section 4.4

before we turn to the empirical application in Section 4.5, where the dependence structure of the

above-mentioned indexes is investigated both in the non-crisis and in the crisis period and the

dynamic D-vine copula is validated out-of-sample based on VaR forecasting accuracy. Section 4.6

provides some concluding remarks and an outlook to future research.

4.2 The Dynamic D-Vine Copula Model

In this section, we present the dynamic D-vine copula model. We first provide a brief account

of the regular vine copula theory and, then, we give details on the specification of the dynamic

structure of dependence.

4.2.1 Regular Vine Copulas

Sklar’s Theorem (Sklar, 1959) states that every multivariate cumulative probability distribution

function F with marginals F1, . . . , Fn may be written as

F (x1, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), (4.2.1)

for some appropriate n-dimensional copula C. In terms of the joint probability density function

f , for an absolutely continuous F with strictly increasing continuous marginals F1, . . . , Fn, we

have

f(x1, . . . , xn) = c12...n(F1(x1), . . . , Fn(xn)) · f1(x1) . . . fn(xn). (4.2.2)
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Consider now, for example, a trivariate random vector X = (X1, X2, X3). Its density can be

factorized as

f(x1, x2, x3) = f(x3) · f(x2|x3) · f(x1|x2, x3). (4.2.3)

According to equation (4.2.2), we can write

f(x2|x3) = c23(F2(x2), F3(x3)) · f2(x2). (4.2.4)

Similarly, it is possible to decompose the conditional density of X1 given X2 and X3 as

f(x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2)) · f(x1|x2). (4.2.5)

Now, decomposing f(x1|x2) in (4.2.5) further, we have

f(x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2)) · c12(F1(x1), F2(x2)) · f1(x1). (4.2.6)

Finally, from equations (4.2.4) and (4.2.6), the joint density function for the trivariate case can

be written as

f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c12(F1(x1), F2(x2))·

· c23(F2(x2), F3(x3)) · c13|2(F1|2(x1|x2), F3|2(x3|x2)). (4.2.7)

That is, the trivariate density can be factorized as a product of the marginals, two bivariate

copulas, c12 and c23, and a third copula c13|2 named conditional, whose arguments are conditional

distributions.

The previous results for the trivariate case can be generalized for an n-dimensional vector,

using the following formula:

f(x|υ) = cxυj |υ−j
(F (x|υ−j), F (υj |υ−j)) · f(x|υ−j), (4.2.8)

for a vector υ with dimension d. Here υj is an arbitrarily chosen component of υ and υ−j

corresponds to the vector υ excluding this component. It follows that the multivariate density

function with dimension n can be decomposed into its marginal densities and a set of iteratively

conditioned bivariate copulas.

The pair-copula decomposition of a multivariate density involves marginal conditional dis-

tributions of the form F (x|υ), computed using a formula of Joe (1996):

F (x|υ) =
∂Cx,υj |υ−j

(F (x|υ−j), F (υj |υ−j))

∂F (υj |υ−j)
. (4.2.9)
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As the number of variables grows, the different possibilities of decomposition in pair-copulas

also increase. To organize these possibilities, Bedford and Cooke (2001, 2002) introduced a

graphical model called regular vine (R-vine). The R-vines are a sequence of nested trees that

facilitate the identification of the needed pairs of variables and their corresponding set of con-

ditioning variables (we refer the reader to Bedford and Cooke (2001, 2002) for more details on

general R-vines and to Dißmann et al. (2013) for inference of R-vines). Two boundary cases,

popularized by Aas et al. (2009), are the canonical vine (C-vine) and the drawable vine (D-

vine). Canonical vines resemble factor models, with a particular variable playing the role of

pivot (factor) in every tree. Because we are not interested in exploring any factor structure of

financial data sets here, we will focus our attention on the D-vine.

An n-dimensional D-vine consists of n− 1 hierarchical trees (or levels), with path structures

in their sequences and increasing conditional sets, and n(n − 1)/2 edges corresponding to a

pair-copula (for a more detailed description, see Aas et al. (2009)). Define the index sets

υij = {i + 1, . . . , i + j − 1}, with υi1 = ∅, and wij = {i, υij , i + j}, for 1 ≤ i ≤ n − j, 1 ≤

j ≤ n− 1. Let α and θ denote the parameters of the marginals and the n-dimensional copula,

respectively, and θi,i+j|υij be the parameters of the copula density ci,i+j|υij . Finally, define

θi→i+j = {θs,s+t|υst : (s, s+ t) ∈ wij}, with θi→i = ∅, and θj = {θs,s+t|υst : |υst| = j− 1}, where

| · | denotes the cardinality, i.e. θj gathers all parameters at level j of the structure. The density

f(x1, . . . , xn;α,θ) associated with a D-vine may be written as2

f(x1, . . . , xn;α,θ) =
n∏

k=1

f(xk;αk)

·
n−1∏
j=1

n−j∏
i=1

ci,i+j|υij (Fi|υij (xi|xυij ;αwi,j−1 ,θi→i+j−1),

Fi+j|υij (xi+j |xυij ;αwi+1,j−1 ,θi+1→i+j);θi,i+j|υij ), (4.2.10)

where index j identifies the trees, whereas i runs over the edges in each tree. The whole

decomposition is given by the n(n−1)/2 pair-copulas and the marginal densities of each variable.

Figure 4.1 depicts a five-dimensional D-vine. The density f(x1, x2, x3, x4, x5;α,θ) is decom-

posed in a simple manner by multiplying the edges of the nested set of trees and the marginal

2Here we use the notation of Haff (2010).
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densities f(·), as indicated below

f1(x1;α1) · f2(x2;α2) · f3(x3;α3) · f4(x4;α4) · f5(x5;α5)

· c12(F1(x1;α1), F2(x2;α2);θ12) · c23(F2(x2;α2), F3(x3;α3);θ23)

· c34(F3(x3;α3), F4(x4;α4);θ34) · c45(F4(x4;α4), F5(x5;α5);θ45)

· c13|2(F1|2(x1|x2;α1,α2,θ12), F3|2(x3|x2;α2,α3,θ23);θ13|2)

· c24|3(F2|3(x2|x3;α2,α3,θ23), F4|3(x4|x3;α3,α4,θ34);θ24|3)

· c35|4(F3|4(x3|x4;α3,α4,θ34), F5|4(x5|x4;α4,α5,θ45);θ35|4)

· c14|23(F1|23(x1|x2, x3;α1,α2,α3,θ12,θ23,θ13|2),

F4|23(x4|x2, x3;α2,α3,α4,θ23,θ34,θ24|3);θ14|23)

· c25|34(F2|34(x2|x3, x4;α2,α3,α4,θ23,θ34,θ24|3),

F5|34(x5|x3, x4;α3,α4,α5,θ34,θ45,θ35|4);θ25|34)

· c15|234(F1|234(x1|x2, x3, x4;α1,α2,α3,α4,θ12,θ23,θ34,θ13|2,θ24|3,θ14|23),

F5|234(x5|x2, x3, x4;α2,α3,α4,α5,θ23,θ34,θ45,θ24|3,θ35|4,θ25|34);θ15|234). (4.2.11)

Copula-based Dependence Measures and Tail Dependence in Regular Vine Copulas

Because copulas describe the dependence structure among random variables, it is natural to

think of dependence measures expressible in terms of the copula function. The Kendall’s tau

and the tail dependence3 are useful copula-based dependence measures.

The Kendall’s tau relies on the notion of concordance. Informally, a pair of random variables

are concordant whenever large values of one tend to be associated with large values of the

other and small values of one with small values of the other. Let (x1, y1) and (x2, y2) be two

observations from a vector (X,Y ) of continuous random variables, then we say that the pairs

are concordant whenever (x1−x2)(y1−y2) > 0, and discordant whenever (x1−x2)(y1−y2) < 0.

The population version of Kendall’s tau for X and Y is given by

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]

= 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1,

3For more details on these and other copula-based measures of dependence, see Chapter 2 of Joe (1997) and
Chapter 5 of Nelsen (2006).
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where C is the copula of X and Y .

Tail dependence measures the dependence in extreme values, for this reason it is an important

measure for risk management. If the limit

lim
ε→0

Pr [U1 ≤ ε|U2 ≤ ε] = lim
ε→0

Pr [U2 ≤ ε|U1 ≤ ε] = lim
ε→0

C(ε, ε)/ε = λL

exists, then the copula C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence

if λL = 0. Similarly, if the limit

lim
δ→1

Pr [U1 > δ|U2 > δ] = lim
δ→1

Pr [U2 > δ|U1 > δ] = lim
δ→1

(1− 2δ + C(δ, δ)) /(1− δ) = λU

exists, then the copula C has upper tail dependence if λU ∈ (0, 1] and no upper tail dependence

if λU = 0. In other words, the lower (upper) tail dependence is the probability that one

variable takes an extremely large negative (positive) value, given that the other variable took

an extremely large negative (positive) value.

Recently, Joe et al. (2010) have found interesting results concerning tail dependence in vine

copulas. They have a main theorem which states that if the supports of the pair-copulas in a

vine are the entire (0, 1)2 and all the pair-copulas in level 1 have lower (upper) tail dependence,

then the vine copula C has lower (upper) tail dependence. If a copula C has multivariate

lower (upper) tail dependence, then all bivariate and lower-dimensional margins have lower

(upper) tail dependence. Another important finding is concerned with tail asymmetry of the

vine copulas. They show that vine copulas can have different upper and lower tail dependence

for each bivariate margin when asymmetric bivariate copulas with upper/lower tail dependence

are used in level 1 of the vine.

4.2.2 Introducing Dynamics into the Vine Copula

Most of the works on vine copulas applied to financial data are focused on time-homogeneous

models, however it goes against evidence found in the literature that dependence among returns

is not constant over time (see, e.g., Longin and Solnik (2001), Ang and Bekaert (2002), Ang and

Chen (2002)). Therefore we propose to introduce dynamics into the D-vine copula model, by

allowing the dependence parameters of the pair-copulas to be potentially time-varying, evolving

through time according to an equation that follows a nonlinear restricted ARMA(1,m) process
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as in Patton (2006). The evolution equation of the dependence parameter θi,i+j|υij of the pair-

copula ci,i+j|υij , with υij = {i+ 1, . . . , i+ j − 1} and υi1 = ∅, for 1 ≤ i ≤ n− j, 1 ≤ j ≤ n− 1,

may be written as

θi,i+j|υij ,t = Λ(ω + βθi,i+j|υij ,t−1 + αψt), (4.2.12)

where Λ is a logistic transformation used to keep the parameter in its interval at all times and ψt is

a forcing variable. The latter is defined as the mean absolute difference between the transformed

data ui|υij ,t = Fi|υij (xi,t|xυij ,t) and ui+j|υij ,t = Fi+j|υij (xi+j,t|xυij ,t) over the past m observations,

1
m

∑m
k=1 |ui|υij ,t−k − ui+j|υij ,t−k|. The idea is to use this measure as an indication of how far the

data was from comonotonicity: if Xi|Xυij and Xi+j |Xυij are comonotonic, |ui|υij ,t − ui+j|υij ,t| is

close to zero. For the Normal copula, the cross-product 1
m

∑m
k=1Φ

−1(ui|υij ,t−k) · Φ−1(ui+j|υij ,t−k),

where Φ−1 is the inverse of the standard Normal c.d.f., is used as the forcing variable. For the

Student-t, the forcing variable is 1
m

∑m
k=1 T

−1
ν (ui|υij ,t−k) · T−1

ν (ui+j|υij ,t−k), where T
−1
ν is the in-

verse of the Student-t c.d.f. with ν degrees of freedom. If data is positively dependent, the

inverse of the transforms of both variables will have the same sign, thus, α is expected to be

positive. Patton restrictedm to be equal to 10, but here we do allow for different window lengths

for the forcing variable. We assume m = 5, 10 or 15 in order to investigate the comovements

over three different periods, which correspond to the last 1, 2 and 3 weeks, respectively, for daily

returns.

4.3 Inference Procedure: Sequential Estimation

According to equation (4.2.10), the log-likelihood function corresponding to a D-vine is given by

ℓ(α,θ;x) =

T∑
t=1

log(f(x1,t, . . . , xn,t;α,θ))

=
T∑
t=1

n∑
k=1

log(fk(xk,t;αk))

+

T∑
t=1

n−1∑
j=1

n−j∑
i=1

log(ci,i+j|υij (Fi|υij (xi,t|xυij ,t;αwi,j−1 ,θi→i+j−1),

Fi+j|υij (xi+j,t|xυij ,t;αwi+1,j−1 ,θi+1→i+j);θi,i+j|υij ))

= ℓM (α;x) + ℓC(α,θ;x). (4.3.1)
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In particular, for the five-dimensional case, based on the density (4.2.11), we have

T∑
t=1

(
log f1(x1,t;α1) + log f2(x2,t;α2) + log f3(x3,t;α3) + log f4(x4,t;α4) + log f5(x5,t;α5)

)

+

T∑
t=1

(
log(c12(F1(x1,t;α1), F2(x2,t;α2);θ12)) + log(c23(F2(x2,t;α2), F3(x3,t;α3);θ23))

+ log(c34(F3(x3,t;α3), F4(x4,t;α4);θ34)) + log(c45(F4(x4,t;α4), F5(x5,t;α5);θ45))

)
+

T∑
t=1

(
log(c13|2(F1|2(x1,t|x2,t;α1,α2,θ12), F3|2(x3,t|x2,t;α2,α3,θ23);θ13|2))

+ log(c24|3(F2|3(x2,t|x3,t;α2,α3,θ23), F4|3(x4,t|x3,t;α3,α4,θ34);θ24|3))

+ log(c35|4(F3|4(x3,t|x4,t;α3,α4,θ34), F5|4(x5,t|x4,t;α4,α5,θ45);θ35|4))

)
+

T∑
t=1

(
log(c14|23(F1|23(x1,t|x2,t, x3,t;α1,α2,α3,θ12,θ23,θ13|2),

F4|23(x4,t|x2,t, x3,t;α2,α3,α4,θ23,θ34,θ24|3);θ14|23))

+ log(c25|34(F2|34(x2,t|x3,t, x4,t;α2,α3,α4,θ23,θ34,θ24|3),

F5|34(x5,t|x3,t, x4,t;α3,α4,α5,θ34,θ45,θ35|4);θ25|34))

)
+

T∑
t=1

(
log(c15|234(F1|234(x1,t|x2,t, x3,t, x4,t;α1,α2,α3,α4,θ12,θ23,θ34,θ13|2,θ24|3,θ14|23),

F5|234(x5,t|x2,t, x3,t, x4,t;α2,α3,α4,α5,θ23,θ34,θ45,θ24|3,θ35|4,θ25|34);θ15|234))

)
. (4.3.2)

The hierarchical structure of the vine copula allows us to adopt a very fast yet asymptotically

efficient sequential estimation procedure (Haff, 2010). It is clear from the decomposition (4.3.2)

above that the joint log-likelihood function of a five-dimensional D-vine can be separated in,

at least, five parts: the one corresponding to the log-likelihoods of the marginal distributions,

and those corresponding to the log-likelihoods associated with the different levels of the vine,

i.e. with the pair-copulas with increasing conditioning sets. In this case, estimation can proceed

in five steps, and, at each step, it is carried out conditionally on the parameters estimated in

earlier steps. In the first step, the parameters of the marginal distributions are estimated via

maximum likelihood and the log-returns are transformed into uniforms, which become inputs

for the pair-copulas in the first level of the D-vine. In the second step, the parameters of the

pair-copulas in the first tree are estimated via maximum likelihood, taking the parameters of

the marginals as fixed at the estimated values from the first step. Additionally, the transformed
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data (i.e. conditional distributions) necessary for tree 2 are computed using (4.2.9). In the

sequel, the parameters of the pair-copulas in level 2 are estimated, given the estimates of the

parameters in the previous levels. We proceed like this till we have the parameters estimates for

all trees. It means that the whole procedure can be decomposed into a series of optimizations

for the marginals and for iteratively conditioned bivariate copulas. The levelwise estimation

improves significantly the computational efficiency, which is very important because the number

of parameters to be estimated increases rapidly with the number of variables. Following, we

give details on the model specification.

4.3.1 GARCH Models for the Univariate Distributions

A univariate ARMA(p,q)-GARCH(m,n)4 specification is usually chosen to model the marginal

distributions of return data. It can be described by the following equations:

xt = ϕ0 +

p∑
i=1

ϕixt−i + at −
q∑

j=1

θjat−j = µt + at (4.3.3)

at = h
1/2
t εt, (4.3.4)

ht = α0 +

m∑
i=1

αia
2
t−i +

n∑
j=1

βjht−j , (4.3.5)

where µt and ht are the conditional mean and variance given past information, respectively. εt

is the innovation process and, in this paper, we assume that it may have a standard Normal

distribution, εt ∼ Normal(0, 1), a Student-t distribution, εt ∼ Student − t(ν), or a Skewed-t

distribution proposed by Hansen (1994), εt ∼ Skewed− t(ν, λ).

If, for example, εt ∼ Skewed − t(ν, λ), then the conditional distribution function of Xt

is given by F (xt|µt, ht) = Skewed − tν,λ((xt − µt)h
−1/2
t ). Thus, if the marginal distribution

is well specified, the probability integral transform (PIT) of the standardized residuals will

have a uniform distribution in [0,1]. This is a necessary result to identify the copulas in the

second step of the estimation procedure, since they are joint distribution functions defined over

ui,t = Fi(xi,t|µi,t, hi,t) and ui+1,t = Fi+1(xi+1,t|µi+1,t, hi+1,t), i = 1, . . . , n− 1, with ui,t and ui+1,t

uniforms in [0,1]. To test whether the PIT of the standardized residuals has distribution U [0, 1],

we use the Kolmogorov-Smirnov test of goodness-of-fit.

4Extensions of the GARCH model, such as EGARCH, TARCH, among others, are also fitted to data in order
to find out the best model for the marginals.
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In summary, in the first step of the sequential estimation procedure, the ARMA-GARCH

filter is applied to the return data to obtain the univariate parameters estimates and the trans-

formed data (uniforms) necessary for the first level of the D-vine.

4.3.2 Building Blocks: Bivariate Copulas

For fitting multivariate financial data with flexible lower/upper tail dependence, possibly with

stronger tail dependence in the joint lower tail than upper tail, we consider copula families with

different strengths of tail behavior in the estimation of the D-vine copula:

1. BB1, BB7 and Symmetrized Joe-Clayton (SJC) copulas, which have different upper and

lower tail dependence.

2. Gumbel copula, with only upper tail dependence.

3. Rotated-Gumbel and Clayton copulas, with only lower tail dependence.

4. Student-t copula, with reflection symmetric5 upper and lower tail dependence.

5. Normal copula, also reflection symmetric, but with no tail dependence at all.

For each pair of transformed data, we estimate both a static and a dynamic version of such

copulas6 and we use the AIC to choose the best of all of them. In addition, to verify whether the

dependence structure between the data was appropriately modeled, we apply the Kolmogorov-

Smirnov and the Anderson-Darling goodness-of-fit tests.

4.4 Simulation Study

In this section, we carry out a simulation study in order to evaluate the performance of the

proposed model. We consider two data generating processes (DGPs) in the Monte Carlo study:

(i) the dynamic D-vine copula model and (ii) a static D-vine copula. In both cases, we choose

a decomposition with all Rotated-Gumbel pair-copulas to account for the evidence of asymmet-

ric tail dependence in financial data. Using the simulation algorithm for a D-vine in Aas et

5Let c1...m be the copula density, then reflection symmetry implies c(u1, . . . , um) = c(1− u1, . . . , 1− um).
6Their functional forms as well as the evolution equations of their dependence parameters following Pat-

ton (2006) are described in Appendix A.
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al. (2009)7, we replicate 1000 four-dimensional time series, with T = 1000, T = 2000 and T =

5000 observations.

The dependence dynamics of the time-varying D-vine copula model is as set below, with the

following evolution equations for the pair-copulas dependence parameters:

θ12, t = Λ

(
0.9539 + 0.2217 θ12, t−1 − 1.9303 · 1

10

10∑
k=1

|u1, t−k−u2, t−k|
)

θ23, t = Λ

(
2.2046− 0.0290 θ23, t−1 − 5.0000 · 1

10

10∑
k=1

|u2, t−k−u3, t−k|
)

θ34, t = Λ

(
1.1043 + 0.1831 θ34, t−1 − 2.1552 · 1

10

10∑
k=1

|u3, t−k−u4, t−k|
)

θ13|2, t = Λ

(
0.2185 + 0.2399 θ13|2, t−1 − 0.6637 · 1

10

10∑
k=1

|u1|2, t−k−u3|2, t−k|
)

θ24|3, t = Λ

(
−0.5610 + 0.9133 θ24|3, t−1 − 0.5804 · 1

10

10∑
k=1

|u2|3, t−k−u4|3, t−k|
)

θ14|23, t = Λ

(
0.2515 + 0.2122 θ14|23, t−1 − 0.5546 · 1

10

10∑
k=1

|u1|23, t−k−u4|23, t−k|
)

where θi,i+j|υij , t corresponds to the parameter of the copula density ci,i+j|υij in t, with υij = {i+

1, . . . , i+j−1} and υi1 = ∅, for 1 ≤ i ≤ 4−j, 1 ≤ j ≤ 3. Additionally, ui|υij , t = Fi|υij (xi, t|xυij , t)

and ui+j|υij , t = Fi+j|υij (xi+j, t|xυij , t) are the arguments of ci,i+j|υij (·). This dynamic structure

comprises better defined time paths for the dependence parameters of the pair-copulas in the first

level of the vine and noisier time paths in higher levels. Furthermore, the degree of dependence

is higher in the first tree than in the second and third ones. These characteristics are intended

to reproduce evidences found for real data.

For the parameters of the static D-vine copula, we fix the following values: θ12 = 3.0581,

θ23 = 3.7837, θ34 = 3.1028, θ13|2 = 1.21, θ24|3 = 1.17 and θ14|23 = 1.1. Again, in this case, we

have greater dependence in the first level of the vine.

Having simulated the data sets, for each time series replicated from both DGPs, we estimate

models (i) and (ii)8 above-mentioned. To simplify the exercise, in the identification we model the

7The algorithm uses the conditional inversion method described in e.g. Embrechts et al. (2003). Given the
D-vine structure, all the conditional distribution functions involved are of the form (4.2.9), so, in order to be
computed, only the first partial derivative of a bivariate copula is required. A numerical inversion is necessary for
the Rotated-Gumbel copula.

8To obtain the estimates of the vine copula parameters in the former case, we adopt the sequential estimation
procedure. For the second model, as it is usual in the literature of static vine copulas, we first estimate the
parameters of the D-vine copula using the sequential estimation procedure and, then, we maximize the copula
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correct pair-copula function, i.e. we estimate the models with all Rotated-Gumbel pair-copulas

as in the source models. We then compute the mean errors (ME) and root mean squared errors

(RMSE) based on the difference between the estimates and the true values of the pair-copulas

dependence parameters over time. TheMEi and RMSEi, i = 1, . . . , 1000, corresponding to the

estimates from models (i) and (ii) for the pair-copulas dependence parameters are displayed in

box plots, in Figures 4.2 to 4.13. Additionally, a few statistics of the Monte Carlo experiments

are presented in Tables 4.1 to 4.4.

Figures 4.2 to 4.7 show the box plots of the mean errors. One can easily notice that, when

the DGP is the dynamic D-vine copula (Figures 4.2, 4.3 and 4.4), the static D-vine copula tends

to underestimate the dependence parameters. It can be inferred from the negative medians of

the mean errors associated with the estimates from the static model. Though the negative bias

is greater in the estimates of the pair-copulas parameters in the first tree (Figure 4.2 and first

row of Figure 4.3), which is expected, given that the dynamics is better defined at this level

in the source model, it also occurs in the estimates of the pair-copulas parameters in higher

levels (Figure 4.3, second row, and Figure 4.4). Moreover, for all pair-copulas parameters, the

mean errors median barely changes given increases in the sample size, although the variability

of the mean errors decreases, which means that the bias does not diminish as the number

of observations in the sample increases. On the other hand, when the samples drawn from the

dynamic D-vine model are estimated with the same model, for the parameters of all pair-copulas,

the mean errors have median closer to zero and their variability decreases as the sample size

increases. All these evidences are also found in Table 4.1, which reports the mean, median and

standard deviation of the mean errors when the data is simulated from the dynamic D-vine

model. Considering, now, that the static D-vine copula is the DGP (Figures 4.5, 4.6 and 4.7),

we can observe from the box plots that, for either the dynamic or the static model estimates, the

mean errors have medians close to zero, which means that the estimates from both models are

unbiased, and their variabilities tend to decrease as the sample size increases. This information

is also summarized in Table 4.2. So, the previous results suggest that the dynamic D-vine copula

model outperforms the static D-vine copula in terms of the mean errors, or bias.

log-likelihood over all dependence parameters, using as starting values the parameters obtained from the stepwise
procedure.
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The box plots of the root mean squared errors are displayed in Figures 4.8 to 4.13. When

the underlying data generating model is the dynamic D-vine copula, regarding the parameters

of the pair-copulas in the first level of the vine, note, in Figure 4.8 and in the first row of

Figure 4.9, that the medians of the errors associated with the static D-vine copula estimates are

far much higher than those related to the errors of the dynamic D-vine copula. Furthermore,

they do not seem to decrease as the number of observations in the samples increases, although

the errors variabilities diminish. It suggests that, even though the estimates from the static

model show less variability as the sample size increases, the bias, previously analyzed, does not

allow for precise estimates. Contrary to what happens to the static model, both the median

and dispersion of the errors from the dynamic model decrease as the number of observations

in the samples increases, which indicates that the estimates become more precise. Concerning

the parameters of the pair-copulas in the second and third levels of the vine (Figure 4.9, second

row, and Figure 4.10), both models display smaller values for the errors medians and these

are closer to each other, if compared with the first level. Despite that, the errors medians of

the static model still remain above those of the dynamic model, and they barely change with

the different sample sizes, which may be explained by the persistent bias. On the other hand,

the errors from the static model show less dispersion than those from the dynamic model, for

all sample sizes. Table 4.3 presents summary statistics of the root mean squared errors from

both estimated models, considering the dynamic D-vine copula as the DGP, which confirm the

aforesaid. When the samples are drawn from the static D-vine copula (Figures 4.11, 4.12 and

4.13), both the median and the variability of the errors from the dynamic D-vine are higher

than those of the static model, for all pair-copulas parameters. Consequently, although the

dynamic D-vine copula provides unbiased estimates when the DGP is static, the variability of

its estimates is higher than that of the static D-vine estimates. One should take note, though,

that both the median and the variability of the errors from the dynamic model decrease as the

sample size increases. Table 4.4 gathers the statistics related to the root mean squared errors,

regarding the static D-vine copula as the DGP. In summary, in terms of the root mean squared

errors, the dynamic D-vine copula is far superior to the static D-vine when the data comes

from the dynamic model, especially with regard to the pair-copulas parameters in the first tree.
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Nevertheless, the dynamic D-vine is not able to outperform the static D-vine when the latter is

the DGP, given the higher variability of the former’s estimates in this case.

Overall, the findings of the Monte Carlo experiments are quite favorable to the dynamic

D-vine copula. Notedly, when the DGP is the time-varying model, the static model tends to

underestimate the pair-copulas dependence parameters. Furthermore, the negative bias does not

seem to diminish as the number of observations in the samples increases. The estimates from

the dynamic D-vine copula, in this case, are far superior to the estimates from the static D-vine,

both in terms of the mean errors and the root mean squared errors. When the data comes from

the static D-vine copula, both models have similar performance in terms of the mean errors,

with unbiased estimates. However, the dynamic D-vine copula performs worse in terms of the

root mean squared errors, what suggests that its estimates display higher variability, though it

diminishes as the sample size increases.

4.5 Empirical Application: Dependence Modeling and VaR Back-
testing

In this section, we model the dependence among the returns of DAX, CAC 40, FTSE 100,

S&P 500 and IBOVESPA indexes, using both the dynamic D-vine copula model and a static

D-vine copula. We consider two distinct periods, one from January 03, 2003 to December 28,

2007 and another one from January 02, 2008 to May 04, 2012, which we denominate “non-

crisis period” and “crisis period”, respectively. Besides of investigating the different patterns of

dependence characterizing these periods, the intention here is to further evaluate the proposed

model concerning the accuracy of the VaR forecasts in crisis periods.

4.5.1 Return Data

In our empirical study, we use two data sets of daily log-returns of the indexes DAX, CAC 40,

FTSE 100, S&P 500 and IBOVESPA: one comprising the period from January 03, 2003 to

December 28, 2007, which we call “non-crisis period” because the financial markets were in an

upturn trend till September, 2007, with a total of 1178 observations; and another one spanning

the period from January 02, 2008 to May 04, 2012, considered a “crisis period” because it

coincides with the subprime crisis till June, 2009, and with the European sovereign debt crisis
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from early 2010 and thereafter, with 1029 observations. We use close-to-close returns, meaning

that the daily returns are those observed for trading days occurring simultaneously in all five

stock markets considered.

Table 4.5 provides a few descriptive statistics of our data sets. We can see from the table

that the average returns of all indexes become negative in the crisis period and the standard

deviations increase. It is also possible to notice that both data sets present signs of non-normality.

All returns series have kurtosis above 3, and the excess kurtosis is higher in the crisis period.

FTSE 100 and S&P 500 returns display negative skewness in both periods, whereas DAX,

CAC 40 and IBOVESPA returns change from negative to positive skewness. Also, according

to the Jarque-Bera test statistics, it is possible to reject the null hypothesis of normality for all

indexes returns in both periods.

4.5.2 Marginal Models

We first proceed to the modeling of the marginal distributions using the ARMA-GARCH spec-

ification. To account for the leverage effect, present in financial time series, we also consider

asymmetric GARCH specifications, such as the EGARCH, TGARCH and GJR models9.

We choose the best specifications for the marginals based on the information criteria AIC

and BIC. In the non-crisis period, we choose an AR(1)-EGARCH(1,1) for S&P 500, an AR(1)-

GARCH(1,1) for FTSE 100, a GARCH(1,1) for both CAC 40 and IBOVESPA, and, finally, an

EGARCH(1,1) for DAX. In the crisis period, we choose an AR(1)-EGARCH(2,1) for S&P 500,

an AR(3)-EGARCH(1,1) for IBOVESPA, and a GARCH(1,1) for FTSE 100, CAC 40 and DAX,

with conditional means modeled by an AR(2) in the first two cases. Because our data sets dis-

play clear signs of asymmetry and excess kurtosis, we assume Skewed − t(ν, λ) distributed iid

innovations10. The estimates from the ARMA-GARCH fits11 are presented in Tables 4.6 and

4.7. We can observe that the estimated asymmetry coefficient, λ̂, is negative and statistically

9The conditional variance, ht, of an EGARCH(m,o,n) process can be modeled as follows:

ln(ht) = α0 +
m∑
i=1

αi(|εt−i| − E|εt−i|) +
o∑

k=1

γkεt−k +
n∑

j=1

βj ln(ht−j).

For lack of space, we do not present here the other asymmetric specifications. For a survey on GARCH models,
see Bollerslev (2008).

10Although not before also testing for the symmetric Student-t and Normal distributions.
11All marginals were estimated using the Oxford MFE Toolbox by Kevin Shepard.
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significant for all series in both periods, suggesting a heavy tail to the left for the marginal dis-

tributions, i.e., large negative returns are more likely than large positive returns. The estimated

degrees of freedom, ν̂, range from 11.5421 for S&P 500 to 18.8979 for FTSE 100 in the non-

crisis period, and from 8.7683 for DAX to 14.3925 for FTSE 100 in the crisis period, suggesting

heavier tails in the second period, which is in accordance with the descriptive statistics of the

unconditional distributions of the returns series. Regarding the conditional variances, in some

cases, we choose the EGARCH model as the best specification, suggesting the presence of some

sort of leverage effect. This is the case, for example, of the S&P 500 returns, which display

an asymmetric effect over the volatility, with greater impact induced by big negative returns,

captured by the estimates of γ1, -0.0820 in the non-crisis period and -0.1642 in the crisis period.

Note that the leverage effect is intensified in the crisis period. We also find evidence of leverage

effect for IBOVESPA returns in the crisis period, with γ̂1 = −0.0963, and for DAX returns in

the non-crisis period, with γ̂1 = −0.1127. Tables 4.6 and 4.7 also provide the p-values of the

Ljung-Box test of autocorrelation in the standardized and squared standardized residuals with

15 lags, Q(15) and Q2(15), respectively. For all series, the null hypothesis of no autocorrelation

left cannot be rejected at the 5% level, indicating that the ARMA-GARCH specifications are

successful at modeling the serial correlation in the conditional mean and variance. Additionally,

these tables report the p-values of the Kolmogorov-Smirnov test of uniformity of the PIT of the

standardized residuals. For all series, there is no evidence against uniformity, so all marginal

distributions seem to be well specified, which is very important, since, otherwise, the copula

estimation would be affected.

4.5.3 Copula Structure

Having chosen the D-vine decomposition of the multivariate copula, we still have to match the

indexes returns to the labels 1, . . . , 5, since there are 5!/2 possible distinct permutations. A

rule for selecting the best permutation for D-vines, according to Nikoloulopoulos et al. (2010),

consists of choosing and connecting the most dependent pairs in the first tree. Using the sam-

ple Kendall’s taus computed based on the PIT of the ARMA-GARCH residuals, reported in

Tables 4.8 and 4.9, we choose as the best permutation for the first level of the D-vines of both

periods under analysis (1, 2, 3, 4, 5) = (FTSE 100, CAC 40, DAX, S&P 500, IBOVESPA), since
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it comprises the largest possible dependencies.

Tables 4.10 and 4.11 report the estimates of the pair-copulas chosen to compose the dynamic

D-vine copula in the non-crisis period and in the crisis period, respectively12. We can observe

that time-varying pair-copulas are selected only in the first tree13. The dependence between

FTSE and CAC during the non-crisis period is characterized by the BB1 copula, with the

estimated parameter γ̂t following an ARMA(1,10), whereas κ̂ remains constant, equal to 0.7813.

The same copula characterizes their dependence during the crisis period too, however, in this

case, both estimated parameters γ̂t and κ̂t evolve through time according to an ARMA(1,5).

We also choose a BB1 copula for the pair CAC-DAX: in the non-crisis period, γ̂t follows a

MA(10) and κ̂ is constant, equal to 0.7252, whereas in the crisis period, γ̂t evolves according to

an ARMA(1,10) and κ̂ remains constant, equal to 0.9915. The reflection symmetric Student-t

copula is selected for both pairs DAX-S&P500 and S&P500-IBOVESPA in both periods. With

regard to the dynamics, for the pair DAX-S&P500, during the non-crisis period, there is evidence

of time variation for the correlation coefficient, with ρ̂t following an ARMA(1,10), whereas the

estimated degrees of freedom remain constant, equal to 8.7969; in the crisis period, we find no

dynamics at all for both estimated parameters, ρ̂ = 0.7088 and ν̂ = 18.8746. For S&P500-

IBOVESPA, ρ̂t follows an ARMA(1,10) and ν̂ = 6.9966, in the non-crisis period, whereas ρ̂t

follows an ARMA(1,15) and ν̂ = 9.5523, in the crisis period.

The dynamics of the dependencies in the first level of the estimated D-vines can be observed

in Figures 4.14 to 4.17, which display the evolutions of the Kendall’s tau and the tail dependence

parameters computed based on the pair-copulas of the first tree. In Figure 4.14, panel (a), the

dependence between FTSE and CAC measured by the Kendall’s tau oscillates around 0.6372

from January 03, 2003 to December 28, 2007, when it increases and begins to oscillate around

0.7359 from January 02, 2008 to May 04, 2012. Note that the Kendall’s tau path is a bit noisier

during the crisis period. Also the tail dependence parameters, in panel (b), increase from the

non-crisis period to the crisis period. Interestingly, the lower tail dependence steadily fluctuates

12Remind that, for each pair of transformed data, we fit both a static and a dynamic version of the copulas
listed in Section 4.3.2, whose functional forms as well as the evolution equations of their dependence parameters
following Patton (2006) are described in Appendix A. Using the AIC, we choose the best of all of them. Regarding
the dynamics, for two-parameter copulas, it may happen that only one of the estimated parameters displays
time variation. It may also happen that not all estimated coefficients of the evolution equation are statistically
significant. In this case, the copula is re-estimated omitting the non-significant coefficient.

13Heinen and Valdesogo (2009, 2011) also find evidence of time variation especially in level 1.
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above the path of the upper tail dependence all over the non-crisis period, becoming quite volatile

during the crisis period. For the pair CAC-DAX, in Figure 4.15, panel (a), the Kendall’s tau

follows a path that fluctuates around 0.7031 till the end of 2007, when it reaches a higher level and

begins oscillating closely to 0.7743 during the crisis period. In panel (b), the lower and upper tail

dependence parameters evolve near each other during the non-crisis period, fluctuating around

0.6785, and move apart from 2008 on, with the upper tail dependence oscillating around 0.7382,

whereas the lower tail dependence oscillates around a higher level, 0.7873. Figure 4.16 presents

the evolution of the dependence between DAX and S&P500. In panel (a), the Kendall’s tau

varies over time along the first period, moving around 0.3609, but changes to a constant path

in the crisis period, assuming the value 0.5015, estimated from the static Student-t copula. In

panel (b), the tail dependence oscillates around 0.1180 till the end of 2007, when it, surprisingly,

experiences a decrease, assuming a constant value of 0.0807 during the crisis period. Finally, the

dependence between S&P500 and IBOVESPA, when measured by the Kendall’s tau, in panel

(a) of Figure 4.17, experiences an increase from the non-crisis to the crisis period: it oscillates

around 0.4328 over the first period, whereas, in the second one, it fluctuates around 0.5207. On

the other hand, although the tail dependence parameters, in panel (b), experience a meaningful

increase during the end of 2008 and 2009, on average, they do not reach much higher a baseline

during the crisis period in comparison with the previous period. From 2003 to 2007, the tail

dependence oscillates close to 0.2134, and, from 2008 on, it oscillates around 0.2387, under the

estimated value from the static Student-t, 0.3038.

Looking at Tables 4.10 and 4.11 once more, for higher levels of the D-vine, we choose mainly

symmetric copulas in the non-crisis period, and asymmetric copulas in the crisis period. For

example, the conditional copula of FTSE, DAX|CAC changes from the Student-t in the non-

crisis period to the Rotated-Gumbel in the crisis period, with an implied increase in the lower

tail dependence from 0.0083 to 0.1345. Also the type of dependence between the French and the

North American markets, given information on the German market, captured by the conditional

copula of CAC, S&P500|DAX, changes from symmetrical and with no tail dependence at all, in

the non-crisis period, to asymmetrical featuring upper tail dependence of 0.0579 and lower tail

dependence equal to 0.0204, in the crisis period.
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Important features of the joint dependence among the indexes can be inferred from the

preceding estimation results, based on the findings of Joe et al. (2010). Because the pair-

copulas in the first level of the estimated D-vines have upper and lower tail dependence, both

multivariate copulas also have upper and lower tail dependence. Moreover, since two of these

pair-copulas are tail asymmetric, the range of upper/lower tail dependence for the bivariate

(and lower-dimensional) margins is quite flexible. These characteristics are in accordance with

empirical evidence found in the literature that financial data tends to exhibit tail dependence

and asymmetries. The previous findings suggest that the overall dependence structure of the

indexes does not change dramatically from the non-crisis to the crisis period, although the

predominance of asymmetric pair-copulas in higher levels of the estimated D-vine for the crisis

period may create a little more asymmetric dependence structure.

Notedly, the estimated dynamic D-vines differ in terms of the dependence strength that they

describe, with stronger overall as well as tail dependencies captured by the estimated D-vine for

the crisis period.

For the purpose of comparison, we also estimate a static D-vine copula for the two investi-

gated data sets. To obtain the estimates of the pair-copulas parameters in this case, as it is usual

in the literature of static vine copulas, we first estimate the parameters using the sequential esti-

mation procedure14 and, then, we maximize the D-vine copula log-likelihood over all dependence

parameters, using as starting values the parameters obtained from the stepwise procedure. It

corresponds to applying the two-step estimation procedure of Joe and Xu (1996), the Inference

Function for Margins (IFM) method. The estimates of the pair-copulas composing the static

D-vine copula in the non-crisis period and in the crisis period are presented in Tables 4.12 and

4.13, respectively. These tables also report the estimated Kendall’s tau and tail dependence

parameters, computed based on the estimated pair-copulas. The estimation results suggest that

both D-vines display lower and upper tail dependence, since the pair-copulas in the first tree

of both constructions are all Student-t. Furthermore, the dependence structure characterizing

the crisis period is more asymmetric than the one of the non-crisis period, given the prevalence

of asymmetric pair-copulas in the second level of the estimated D-vine. Concerning the degree

14For each pair of transformed data, we estimate a static version of the copulas listed in Section 4.3.2 and
choose the best of them based on the AIC criterion.
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of dependence described by the estimated D-vines, it is clear from the dependence measures

reported in the tables that the estimated D-vine for the crisis period captures a stronger de-

pendence among the indexes. In comparison with the estimated dynamic D-vines, the range of

upper/lower tail dependencies of the margins, in this case, is less flexible, since only symmetric

copulas are selected in the first level of the D-vines.

4.5.4 VaR Backtesting

We are interested in comparing the static and the dynamic D-vine copula models’ abilities to

forecast capital losses in the occurrence of extreme events, more specifically, crisis. For this

purpose, we compare their performance in an out-of-sample exercise. The estimated models for

the period from January 03, 2003 to December 28, 2007 are used to forecast one-day VaR at

the 1%, 5% and 10% significance levels for an equally weighted portfolio of the indexes DAX,

CAC 40, FTSE 100, S&P 500 and IBOVESPA in the period from January 02, 2008 to August

19, 2008 (150 days). Additionally, the estimated models for the period from January 02, 2008

to May 04, 2012 are used for VaR forecasting from May 08, 2012 to September 06, 2012 (79

days). Notice that both testing periods belong to the crisis period. In the former case, there

is an additional motivation regarding the models’ abilities to forecast extremal losses in bear

markets, given that the copulas parameters were estimated in a different context, of bull markets.

Given the estimation set of {1, . . . , T} daily observations for the copula model and the testing

set {T + 1, . . . , T + h}, the exercise is done as follows:

1. For k = 1, . . . , 1000:

(a) From the fitted copula model, we simulate a sample u
(k)
1,t , . . . , u

(k)
5,t , t = 1, . . . , h.

(b) For j = 1, . . . , 5, we convert u
(k)
j,t to ε̂

(k)
j,t , t = 1, . . . , h, using the inverse Skewed-t cdf’s,

i.e., ε̂
(k)
j,t = F−1

j (u
(k)
j,t ).

(c) For j = 1, . . . , 5, we convert ε̂
(k)
j,t to the return forecasts as

x̂
(k)
j,T+t = µ̂j,T+t +

√
ĥj,T+t · ε̂(k)j,t , t = 1, . . . , h,

where µ̂j,T+t and ĥj,T+t correspond to the one-step ahead forecasts of the conditional

mean and variance, respectively15.

15We re-estimate the parameters of the ARMA-GARCH specifications in a recursive scheme, using an expanding
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(d) Then we compute the portfolio return forecasts as x̂
(k)
P,T+t =

∑5
j=1 x̂

(k)
j,T+t/5, t =

1, . . . , h.

2. For significance levels α ∈ {0.01, 0.05, 0.1}, we compute the one-day VaRα,1 forecast for

the day T + t as the 100αth-percentile of x̂
(k)
P,T+t, k = 1, . . . , 1000. If the observed value

of the portfolio return for the day T + t, xP,T+t, is less than V̂ aRα,1, then a violation (or

exceedance) is said to occur.

To evaluate the VaR forecasts, we initially use the likelihood ratio tests proposed by Kupiec

(1995) and Christoffersen (1998). Based on the previous procedure, it is possible to construct an

indicator sequence of violations It, t = 1, ..., h, called hits. If the forecasts are accurate, the hit

sequence should exhibit two properties. First, the proportion of violations should approximately

equal the VaR significance level α. The unconditional coverage test of Kupiec is a test of the

null hypothesis that the expected violation rate is equal to the theoretical rate α of the VaR

and the test statistic is defined as

LRuc = −2 ln[αn(1− α)h−n] + 2 ln[(n/h)n(1− n/h)h−n] ∼H0 χ
2
1,

where n is the number of VaR violations, h is the size of the testing sample and n/h is the

observed proportion of violations. Second, the exceedances should occur independently, i.e., not

in clusters. Christoffersen (1998) proposed a combined test for both unconditional coverage and

serial independence. He considers a binary first-order Markov chain for the hits, with transition

probability matrix πij = Pr(It = j|It−1 = i), with i, j = 0, 1 (“0” means no VaR violation and

“1” means VaR violation), π̂ij =
(
nij/

∑
j nij

)
, where nij is the number of hits with indicator i

followed by hits with indicator j. Under H0 : π01 = π11 = α, the test statistic is the conditional

coverage statistic given by

LRcc = −2 ln[αn(1− α)h−n] + 2 ln[π̂n01
01 (1− π̂01)

n00 π̂n11
11 (1− π̂11)

n10 ] ∼H0 χ
2
2.

According to Lopez (1999), the statistical tests proposed by Kupiec and Christoffersen to

evaluate the accuracy of VaR models can have relatively low power against inaccurate VaR

models. For this reason, he proposed an alternative methodology based not on a statistical

window up to T + t− 1, and use these estimates to obtain one-step ahead forecasts of the conditional mean and
variance in T + t.
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testing framework, but instead on standard forecast evaluation techniques: the accuracy of the

VaR forecasts is determined by how well they minimize a certain regulatory loss function. We

implement this additional procedure proposed by Lopez, adopting the capital requirement loss

function (CR) defined at the Basel II Accord16:

CRt = max

[
(3 + δ)

60

59∑
i=0

V aRα,t−i, V aRα,t

]
, δ =



0, if ζ ≤ 4;

0.3 + 0.1(ζ − 4), if 5 ≤ ζ ≤ 6;

0.65, if ζ = 7;

0.65 + 0.1(ζ − 7), if 8 ≤ ζ ≤ 9;

1, if ζ ≥ 10.

where δ is a multiplicative factor that depends on the number of violations of the VaR in the

previous 250 trading days (ζ).

To compare the VaR models performance by using the CR loss function, we apply the

superior predictive ability (SPA) test statistic proposed by Hansen (2005). Testing for SPA

is to test whether a particular forecasting procedure is outperformed by alternative forecasts.

The relevant question is whether an observed excess performance by an alternative model is

significant or not. In Hansen’s framework, the interest is to know whether any of the alternative

models, k = 1, ...,m, are better than the benchmark, bch, in terms of expected loss L. So he

tests the null hypothesis that the best alternative model is not better than the benchmark. The

performance of model k relative to the benchmark at time t may be defined as dk,t = Lbch,t−Lk,t.

Provided that E(dk,t) = µk,t is well defined, the null hypothesis of interest can be formulated as

H0 : max
k=1,...,m

µk ≤ 0,

whereas the alternative hypothesis is that the best alternative model is superior to the bench-

mark. A k model is better than the benchmark if and only if E(dk,t) > 0. The test statistic is

given by

TSPA ≡ max

[
max

k=1,...,m

T 1/2d̄k
ω̂k

, 0

]
,

where d̄k ≡ T−1
∑T

t=1 dk,t and ω̂
2
k is some consistent estimator of ω2

k ≡ var(T 1/2d̄k). The test is

implemented via stationary bootstrap of Politis and Romano (1994).

The actual portfolio returns and the VaR forecasts from the static and dynamic D-vine

copulas for both testing periods are displayed in Figures 4.18 and 4.19. Apparently, the VaR

16Note that, since the VaR is a negative value, to compute the loss function, it will be calculated here as minus
the (100α-th percentile) of the c.d.f. of the returns.
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forecasts from both models are quite similar, however, we would like to evaluate them using the

above tests.

For the testing period from January 02, 2008 to August 19, 2008 (150 days), the results of

the Kupiec and Christoffersen tests are reported in Table 4.14. For a testing period of 150 days

and significance levels of 10%, 5% and 1%, we expect 15, 7.5 and 1.5 exceedances, respectively.

Both estimated copula models produced the same hit sequences. For the 1% and 5% significance

levels, there is a (non-significant) lack of coverage, since the numbers of exceedances are slightly

increased in comparison with the expected ones. For the 10% significance level, the VaR forecasts

are too conservative, and the null hypotheses of the Kupiec and Christoffersen tests are rejected

using a 5% level for the LRuc and LRcc statistics. To some extent, the increased number of

violations was expected, since we used the estimated models for the non-crisis period, with

lower degree of dependence and less asymmetric dependence structure, to forecast VaR into

the crisis period, with higher degree of dependence and more asymmetric dependence structure.

Table 4.16 reports the average (capital requirement) losses computed based on the VaR forecasts

and the results of the SPA test17. The latter is implemented considering each copula model at

a time as the benchmark. According to the test results, based on the 1%-VaR forecasts, both

models display similar performance in terms of predictive accuracy, however, with regard to the

5%-VaR, the static D-vine copula model performs worse than the dynamic D-vine copula.

The results of the VaR backtests for the period from May 08, 2012 to September 06, 2012 (79

days) are provided in Table 4.15. For a testing period of 79 days and significance levels of 10%,

5% and 1%, we expect 7.9, 3.95 and 0.79 exceedances, respectively. The tests results suggest that

the forecasts of all three quantiles from both models are accurate, since the null hypotheses of

unconditional and conditional coverage cannot be rejected. Nevertheless, it is worthy noticing

that the observed numbers of exceedances of the 5%-VaR and 10%-VaR forecasts from the

dynamic D-vine copula are closer to the expected numbers. Further, the results of the SPA test

in Table 4.17 indicate that the forecasting performance of the static D-vine copula is inferior to

the dynamic D-vine copula performance for all three quantiles.

17To compute Hansen’s consistent p-value, we use the “bsds” function from the Oxford MFE Toolbox by Kevin
Shepard, along with the Matlab code “opt block length REV dec07” compiled by Andrew Patton to implement
the automatic optimum block length selection in accordance with Politis and White (2004). For the stationary
block bootstrap, we use 10000 re-samples.
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Overall, the dynamic D-vine copula seems to work very well out-of-sample, in crisis periods,

usually outperforming the static D-vine copula, with more accurate VaR forecasts. It is true

even in the adverse situation when we use the estimated copula corresponding to the non-crisis

period to forecast VaR in a crisis context.

4.6 Concluding Remarks and Outlook

In this paper, we introduce dynamics into the state-of-the-art model for multivariate dependen-

cies, the vine copula model. We allow the dependence parameters of the pair-copulas in a D-vine

decomposition to be potentially time-varying, evolving through time according to an equation

that follows a nonlinear restricted ARMA(1,m) process as in Patton (2006). Our contribution

is towards providing a very flexible dependence model for applications to multivariate finan-

cial return data, which accounts for possible time variation in the dependence structure. The

proposed model has proved to be superior to the time-homogeneous D-vine copula, both in a

simulation and in an empirical study.

The overall findings of the Monte Carlo study are quite favorable to the dynamic D-vine

copula. When the data generating process is the time-varying model, the static model tends

to underestimate the pair-copulas dependence parameters. Furthermore, the negative bias does

not seem to diminish as the number of observations in the samples increases. The estimates

from the dynamic D-vine copula, in this case, are far superior to the estimates from the static

D-vine, both in terms of the mean errors and the root mean squared errors. When the samples

are drawn from the static D-vine copula, both models have similar performance in terms of the

mean errors, with unbiased estimates. The dynamic D-vine copula fails only in terms of the

root mean squared errors, when the data comes from the static model, what suggests that its

estimates display higher variability in this case.

In the empirical study, we model the dependence among the returns of DAX, CAC 40,

FTSE 100, S&P 500 and IBOVESPA indexes, using both the dynamic D-vine copula model and

a static D-vine copula. We consider two distinct periods, one from January 03, 2003 to December

28, 2007 and another one from January 02, 2008 to May 04, 2012, which we call non-crisis and

crisis period, respectively. Our findings illustrate that time variation is present in the dependence



111

structure of multivariate financial returns. In particular, time-varying pair-copulas are selected

in the first level of the estimated dynamic D-vine copulas. They provide accurate description

of variations in the unconditional dependencies all over the non-crisis and crisis periods, as well

as from one period to the other. Overall, both estimated static and dynamic D-vine copulas

capture stronger dependence during the crisis period. The estimated dynamic D-vine copulas

give insightful information about the joint dependence among the above-mentioned indexes:

there is evidence of joint upper and lower tail dependence, with some degree of flexibility, in

both periods. The estimated static D-vines, on the other hand, suggest that the range of upper

and lower tail dependencies of the margins is less flexible. In an out-of-sample exercise, the

estimated models are used to forecast one-day VaR for an equally weighted portfolio of the

investigated indexes in the period from January 02, 2008 to August 19, 2008 (150 days) and

also from May 08, 2012 to September 06, 2012 (79 days). Both testing periods belong to the

crisis period. Based on the results of the superior predictive ability (SPA) test of Hansen (2005),

the dynamic D-vine copula model outperforms the static D-vine copula in terms of predictive

accuracy, especially in the second testing period.

Further research is to be done on improving the dynamic D-vine copula model by extending it

to the general case of regular vine copulas and investigating it more closely in higher-dimensional

applications. Additionally, in future, we can assume that the pair-copulas dependence param-

eters not only follow an ARMA(1,m) process, but they are also influenced by a Markov chain,

since we found evidence of change in the degree of dependence among the returns from the

non-crisis to the crisis period.

4.7 References

1. Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. (2009). Pair-copula constructions of multiple
dependence. Insurance: Mathematics & Economics, 44:182–198.

2. Abbara, O. M. F. (2009). Modelagem de Dependência em Séries Financeiras Multivariadas.
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4.8 Appendix A: Copula Functions

Normal copula: the Normal copula, extracted from the bivariate Normal distribution, is

defined as follows:

CN (u1, u2|ρ) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

(1− ρ2)
exp

{
−(r2 − 2ρrs+ s2)

2(1− ρ2)

}
drds, ρ ∈ (−1, 1),

where the dependence parameter, ρ, is the linear correlation coefficient. Its dynamic equation

may be written as18

ρt = Λ

ωN + βNρt−1 + αN · 1

m

m∑
j=1

Φ−1(u1,t−j) · Φ−1(u2,t−j)

 .

The Normal copula is symmetric and has no tail dependence, that is, λL = λU = 0. The

Kendall’s tau may be computed based on the correlation coefficient as τ = (2/π) arcsin ρ.

Student-t copula: it is associated with the bivariate Student-t distribution and has the fol-

lowing functional form:

CT (u1, u2|ρ, ν) =
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√
1− ρ2

(
1 +

r2 − 2ρrs+ s2

ν(1− ρ2)

)− ν+2
2

drds,

where the parameters ρ and ν are the linear correlation coefficient and the degrees of freedom,

respectively. In addition, their evolution equations are given by

ρt = Λ

ω1T + β1Tρt−1 + α1T · 1

m

m∑
j=1

T−1
ν (u1,t−j) · T−1

ν (u2,t−j)


and

νt = Λ̃

ω2T + β2T νt−1 + α2T · 1

m

m∑
j=1

T−1
ν (u1,t−j) · T−1

ν (u2,t−j)

 .

The Student-t copula has symmetrical tail dependence, with λL = λU = 2Tν+1(−
√

(ν+1)(1−ρ)
1+ρ ),

where Tν+1 is the Student-t c.d.f. with (ν + 1) degrees of freedom. The Kendall’s tau is given

by τ = (2/π) arcsin ρ.

Gumbel copula: it has the form of

CG(u1, u2|θ) = exp

(
−
(
(− log u1)

θ + (− log u2)
θ
)1/θ)

, θ ∈ [1,∞).

The dynamics is given by the following equation governing the dependence parameter evolution:

θt = Λ

ωG + βGθt−1 + αG · 1

m

m∑
j=1

|u1,t−j−u2,t−j |

 .

18Λ(·) and Λ̃(·), which appear hereafter, are logistic transformations to keep the parameters in their intervals.



115

The Gumbel copula exhibits only upper tail dependence, with λU = 2 − 21/θ. It can be shown

that the Kendall’s tau is given by τ = 1− θ−1.

Rotated-Gumbel copula: or Survival Gumbel copula, which is the complement (“Probability

of survival”) of the Gumbel copula. It has the following form:

CRG(u1, u2|θ) = u1 + u2 − 1 + CG(1− u1, 1− u2|θ),

where CG corresponds to the Gumbel copula. The dependence parameter, θ, follows the process

θt = Λ

ωRG + βRGθt−1 + αRG · 1

m

m∑
j=1

|u1,t−j−u2,t−j |

 .

The Rotated-Gumbel copula has only lower tail dependence, given by λL = 2 − 21/θ, and the

Kendall’s tau may be computed as τ = 1− θ−1.

Clayton copula: or Kimeldorf-Sampson copula, has the following distribution function:

CC(u1, u2|δ) = (u−δ
1 + u−δ

2 − 1)−1/δ, δ ∈ (0,∞).

The evolution equation of the dependence parameter is

δt = Λ

ωC + βCδt−1 + αC · 1

m

m∑
j=1

|u1,t−j−u2,t−j |

 .

This copula exhibits only lower tail dependence, λL = 2−1/δ. The Kendall’s tau has the form

τ = δ/(δ + 2).

Symmetrized Joe-Clayton copula: this copula was defined by Patton (2006) and takes the

form of

CSJC(u1, u2|λU , λL) = 0.5 · (CJC (u1, u2|λU , λL) + CJC (1− u1, 1− u2|λU , λL) + u1 + u2 − 1) ,

where CJC is the Joe-Clayton copula, also called BB7 copula (Joe, 1997), given by

CJC (u1, u2|λU , λL) = 1−
(
1−

{
[1− (1− u1)

κ]−γ + [1− (1− u2)
κ]−γ − 1

}−1/γ
)−1/κ

,

with κ = 1/ log2 (2− λU ) , γ = −1/ log2 (λL) and λU , λL ∈ (0, 1).

The SJC copula has upper and lower tail dependence and its dependence parameters are the

upper and lower tail dependence parameters, λU and λL, respectively. Furthermore, λU and λL

range freely and are not dependent on each other. Since this copula nests symmetry as a special
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case, it is a more interesting specification than the BB7 copula. The evolution equations for the

parameters λU and λL are

λUt = Λ

ωU + βUλUt−1 + αU · 1

m

m∑
j=1

|u1,t−j − u2,t−j |


and

λLt = Λ

ωL + βLλLt−1 + αL · 1

m

m∑
j=1

|u1,t−j − u2,t−j |

 .

The Kendall’s tau, in this case, has no closed form, so it has to be computed numerically.

BB1 copula (Joe, 1997): it has the following functional form:

Cbb1(u1, u2|κ, γ) = {1 + [(u−κ
1 − 1)γ + (u−κ

2 − 1)γ ]1/γ}−1/κ, κ ∈ (0,∞), γ ∈ [1,∞).

The dynamic equations of the dependence parameters are

κt = Λ

ω1bb1 + β1bb1κt−1 + α1bb1 ·
1

m

m∑
j=1

|u1,t−j−u2,t−j |



γt = Λ̃

ω2bb1 + β2bb1γt−1 + α2bb1 ·
1

m

m∑
j=1

|u1,t−j−u2,t−j |

 .

The BB1 copula has upper and lower tail dependence given by λU = 2− 21/γ and λL = 2−1/γκ,

respectively. The Kendall’s tau may be calculated based on κ and γ as τ = 1− (2/(γ(κ+ 2))).
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4.9 Appendix B: Tables

Table 4.1: Statistics of the mean errors of the Monte Carlo study - DGP dynamic D-vine copula.

T = 1000 T = 2000 T = 5000
M Md SD M Md SD M Md SD

Tree 1

ME12,s -0.1321 -0.1338 0.0905 -0.1372 -0.1392 0.0633 -0.1408 -0.1423 0.0400
ME12,d 0.0025 -0.0013 0.0761 0.0031 0.0048 0.0542 0.0016 -0.0004 0.0346
ME23,s -0.1043 -0.0942 0.1281 -0.1173 -0.1161 0.0877 -0.1165 -0.1153 0.0557
ME23,d 0.0106 0.0126 0.1002 -0.0006 -0.0016 0.0656 0.0016 0.0013 0.0430
ME34,s -0.1029 -0.1047 0.0872 -0.1050 -0.1030 0.0656 -0.1096 -0.1103 0.0408
ME34,d 0.0043 -0.0012 0.0771 0.0037 0.0028 0.0562 -0.0004 -0.0018 0.0358

Tree 2

ME13|2,s -0.0073 -0.0079 0.0225 -0.0075 -0.0078 0.0152 -0.0086 -0.0089 0.0098
ME13|2,d 0.0026 0.0021 0.0221 0.0013 0.0011 0.0153 5.86E-05 -4.0E-06 0.0096
ME24|3,s -0.0055 -0.0057 0.0201 -0.0066 -0.0069 0.0144 -0.0065 -0.0069 0.0090
ME24|3,d 0.0042 0.0029 0.0193 0.0015 0.0009 0.0140 0.0007 0.0004 0.0091

Tree 3

ME14|23,s -0.0092 -0.0100 0.0237 -0.0103 -0.0104 0.0164 -0.0111 -0.0111 0.0103
ME14|23,d 0.0022 0.0014 0.0235 0.0010 0.0007 0.0167 -3.3E-05 -0.0001 0.0104

Note: MEi, i + j|υij , d and MEi, i + j|υij , s refer to the mean errors corresponding to the estimates
from the (i) dynamic D-vine copula and (ii) static D-vine copula, respectively, for the parameter of the
pair-copula ci,i+j|υij

. M, Md and SD denote the mean, median and standard deviation of the mean
errors, respectively.

Table 4.2: Statistics of the mean errors of the Monte Carlo study - DGP static D-vine copula.

T = 1000 T = 2000 T = 5000
M Md SD M Md SD M Md SD

Tree 1

ME12,s -0.0009 -0.0007 0.0809 0.0016 0.0045 0.0571 0.0006 -0.0011 0.0365
ME12,d 0.0054 0.0043 0.0821 0.0046 0.0070 0.0573 0.0018 -6.4E-05 0.0368
ME23,s 0.0079 0.0107 0.1041 -0.0007 0.0008 0.0673 0.0016 0.0014 0.0442
ME23,d 0.0153 0.0191 0.1047 0.0031 0.0041 0.0686 0.0030 0.0027 0.0444
ME34,s 0.0014 -0.0025 0.0799 0.0027 0.0017 0.0588 -0.0014 -0.0025 0.0360
ME34,d 0.0080 0.0031 0.0822 0.0052 0.0036 0.0590 -1.4E-05 -0.0013 0.0366

Tree 2

ME13|2,s 0.0013 0.0002 0.0288 0.0004 0.0001 0.0203 -0.0003 -0.0001 0.0127
ME13|2,d 0.0030 0.0015 0.0297 0.0012 0.0007 0.0206 0.0001 0.0002 0.0128
ME24|3,s 0.0003 -0.0001 0.0262 -0.0001 -0.0007 0.0192 0.0004 0.0003 0.0124
ME24|3,d 0.0020 0.0013 0.0268 0.0007 0.0001 0.0193 0.0009 0.0007 0.0124

Tree 3

ME14|23,s 0.0011 0.0012 0.0233 8.34E-05 -0.0004 0.0162 -0.0002 -0.0002 0.0103
ME14|23,d 0.0021 0.0013 0.0238 0.0007 -2.2E-05 0.0167 -2.6E-05 -0.0002 0.0104

Note: MEi, i+ j|υij , d and MEi, i+ j|υij , s refer to the mean errors corresponding to the estimates from
the (i) dynamic D-vine copula and (ii) static D-vine copula, respectively, for the parameter of the pair-
copula ci,i+j|υij

. M, Md and SD denote the mean, median and standard deviation of the mean errors,
respectively.
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Table 4.3: Statistics of the root mean squared errors of the Monte Carlo study - DGP
dynamic D-vine copula.

T = 1000 T = 2000 T = 5000
M Md SD M Md SD M Md SD

Tree 1

RMSE12,s 0.6008 0.5977 0.0645 0.6070 0.6055 0.0449 0.6079 0.6071 0.0277
RMSE12,d 0.1281 0.1237 0.0579 0.0900 0.0835 0.0448 0.0570 0.0528 0.0276
RMSE23,s 0.5779 0.5595 0.0865 0.5783 0.5700 0.0626 0.5757 0.5731 0.0388
RMSE23,d 0.1399 0.1327 0.0716 0.0953 0.0906 0.0478 0.0587 0.0547 0.0288
RMSE34,s 0.5299 0.5218 0.0540 0.5312 0.5272 0.0408 0.5311 0.5301 0.0255
RMSE34,d 0.1252 0.1193 0.0554 0.0900 0.0861 0.0398 0.0552 0.0512 0.0254

Tree 2

RMSE13|2,s 0.0380 0.0352 0.0084 0.0349 0.0334 0.0050 0.0333 0.0323 0.0030
RMSE13|2,d 0.0356 0.0322 0.0193 0.0247 0.0223 0.0130 0.0156 0.0147 0.0069
RMSE24|3,s 0.0400 0.0388 0.0073 0.0375 0.0364 0.0050 0.0357 0.0353 0.0027
RMSE24|3,d 0.0358 0.0318 0.0187 0.0255 0.0227 0.0136 0.0159 0.0148 0.0074

Tree 3

RMSE14|23,s 0.0379 0.0344 0.0098 0.0350 0.0330 0.0061 0.0331 0.0321 0.0037
RMSE14|23,d 0.0373 0.0330 0.0205 0.0253 0.0230 0.0129 0.0162 0.0153 0.0073

Note: RMSEi, i+j|υij , d and RMSEi, i+j|υij , s refer to the root mean squared errors corresponding
to the estimates from the (i) dynamic D-vine copula and (ii) static D-vine copula, respectively, for
the parameter of the pair-copula ci,i+j|υij

. M, Md and SD denote the mean, median and standard
deviation of the root mean squared errors, respectively.

Table 4.4: Statistics of the root mean squared errors of the Monte Carlo study - DGP static
D-vine copula.

T = 1000 T = 2000 T = 5000
M Md SD M Md SD M Md SD

Tree 1

RMSE12,s 0.0646 0.0540 0.0488 0.0460 0.0398 0.0338 0.0288 0.0244 0.0224
RMSE12,d 0.1297 0.1252 0.0597 0.0889 0.0859 0.0414 0.0559 0.0533 0.0254
RMSE23,s 0.0831 0.0699 0.0631 0.0535 0.0443 0.0407 0.0352 0.0303 0.0268
RMSE23,d 0.1600 0.1489 0.0800 0.1107 0.1049 0.0513 0.0693 0.0661 0.0314
RMSE34,s 0.0631 0.0524 0.0490 0.0475 0.0403 0.0347 0.0284 0.0238 0.0222
RMSE34,d 0.1298 0.1251 0.0631 0.0911 0.0879 0.0430 0.0561 0.0526 0.0270

Tree 2

RMSE13|2,s 0.0229 0.0192 0.0176 0.0162 0.0134 0.0122 0.0102 0.0086 0.0076
RMSE13|2,d 0.0446 0.0422 0.0225 0.0309 0.0289 0.0148 0.0194 0.0183 0.0091
RMSE24|3,s 0.0209 0.0174 0.0159 0.0150 0.0123 0.0119 0.0100 0.0088 0.0074
RMSE24|3,d 0.0432 0.0404 0.0225 0.0305 0.0286 0.0178 0.0185 0.0178 0.0082

Tree 3

RMSE14|23,s 0.0181 0.0149 0.0147 0.0130 0.0116 0.0095 0.0082 0.0069 0.0063
RMSE14|23,d 0.0386 0.0350 0.0207 0.0260 0.0237 0.0135 0.0158 0.0149 0.0076

Note: RMSEi, i+j|υij , d and RMSEi, i+j|υij , s refer to the root mean squared errors corresponding
to the estimates from the (i) dynamic D-vine copula and (ii) static D-vine copula, respectively, for
the parameter of the pair-copula ci,i+j|υij

. M, Md and SD denote the mean, median and standard
deviation of the root mean squared errors, respectively.
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Table 4.5: Summary statistics of DAX, CAC 40, FTSE 100, S&P 500 and IBOVESPA log-returns.

DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

Non-Crisis Period
Mean 8.1810E-04 4.8050E-04 4.0711E-04 4.1290E-04 0.0014
Median 0.0013 9.0553E-04 7.8933E-04 8.4515E-04 0.0020
Maximum 0.0661 0.0700 0.0590 0.0348 0.0516
Minimum -0.0579 -0.0583 -0.0492 -0.0359 -0.0686
Std. Deviation 0.0123 0.0112 0.0093 0.0085 0.0168
Asymmetry -0.2246 -0.1134 -0.1191 -0.2174 -0.3382
Kurtosis 5.8964 6.4352 6.7222 4.6685 3.6245
Jarque-Bera 418.1 (0.0000) 577.1 (0.0000) 677.5 (0.0000) 144.3 (0.0000) 41.1 (0.0000)

Crisis Period
Mean -2.0078E-04 -5.6018E-04 -1.3186E-04 -7.4701E-05 -4.7780E-05
Median 4.1623E-04 -2.6411E-04 -4.8268E-05 9.4609E-04 7.1406E-04
Maximum 0.1080 0.1059 0.0938 0.1096 0.1368
Minimum -0.0774 -0.0947 -0.0926 -0.0947 -0.1210
Std. Deviation 0.0187 0.0195 0.0163 0.0177 0.0215
Asymmetry 0.1161 0.1458 -0.0381 -0.2247 0.0723
Kurtosis 7.3303 7.0833 8.2463 8.9963 9.1444
Jarque-Bera 799.4 (0.0000) 712.3 (0.0000) 1170.8 (0.0000) 1538.3 (0.0000) 1607.1 (0.0000)

Note: Jarque-Bera corresponds to the Jarque-Bera test statistics, with p-values in parentheses.

Table 4.6: Estimates from the univariate ARMA-GARCH models for the non-crisis period.

Conditional Mean Equation
Parameter DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

ϕ0 0.0008 0.0005 . . . 0.0005 0.0014
(0.0003) (0.0002) . . . (0.0002) (0.0005)

ϕ1 . . . . . . -0.1162 -0.1039 . . .
. . . . . . (0.0230) (0.0005) . . .

Conditional Variance Equation
Parameter DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

α0 -0.1586 2.3943E-06 1.9933E-06 -0.1036 8.5316E-06
(0.0520) (0.0000) (0.0000) (0.0668) (0.0000)

α1 0.1182 0.0797 0.1052 0.0702 0.0437
(0.0201) (0.0165) (0.0225) (0.0207) (0.0106)

γ1 -0.1127 . . . . . . -0.0820 . . .
(0.0243) . . . . . . (0.0175) . . .

β1 0.9825 0.8978 0.8705 0.9893 0.9258
(0.0057) (0.0206) (0.0265) (0.0069) (0.0173)

ν 11.8568 14.8531 18.8979 11.5421 16.3456
(4.3112) (5.4413) (8.5510) (4.4127) (6.8297)

λ -0.1736 -0.1421 -0.1907 -0.1485 -0.1670
(0.0352) (0.0403) (0.0384) (0.0301) (0.0439)

Q(15) 0.5760 0.5948 0.5433 0.1916 0.9503
Q2(15) 0.8239 0.9945 0.6798 0.1666 0.8767
K-S Test 0.4648 0.9996 0.2570 0.3906 0.8364

Note: Standard errors in parentheses. Q(15), Q2(15) and K-S Test are p-values.
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Table 4.7: Estimates from the univariate ARMA-GARCH models for the crisis period.

Conditional Mean Equation
Parameter DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

ϕ1 . . . . . . . . . -0.1336 . . .
. . . . . . . . . (0.0249) . . .

ϕ2 . . . -0.0763 -0.0933 . . . . . .
. . . (0.0038) (0.0020) . . . . . .

ϕ3 . . . . . . . . . . . . -0.0667
. . . . . . . . . . . . (0.0025)

Conditional Variance Equation
Parameter DAX CAC 40 FTSE 100 S&P 500 IBOVESPA

α0 3.8372E-06 5.5846E-06 3.1461E-06 -0.2446 -0.1092
(0.0000) (0.0000) (0.0000) (0.0650) (0.0742)

α1 0.0872 0.0945 0.0971 -0.1913 0.1565
(0.0192) (0.0237) (0.0222) (0.0680) (0.0471)

α2 . . . . . . . . . 0.3375 . . .
. . . . . . . . . (0.0730) . . .

γ1 . . . . . . . . . -0.1642 -0.0963
. . . . . . . . . (0.0235) (0.0285)

β1 0.9020 0.8900 0.8901 0.9709 0.9861
(0.0193) (0.0240) (0.0227) (0.0076) (0.0093)

ν 8.7683 11.1004 14.3925 8.9613 10.4290
(2.4751) (3.6827) (6.5502) (2.4611) (3.0912)

λ -0.0730 -0.0914 -0.1111 -0.2012 -0.0975
(0.0329) (0.0394) (0.0361) (0.0337) (0.0377)

Q(15) 0.9581 0.9914 0.7119 0.6389 0.9749
Q2(15) 0.4818 0.3397 0.4298 0.1873 0.8453
K-S Test 0.3417 0.2214 0.7452 0.4970 0.7881

Note: Standard errors in parentheses. Q(15), Q2(15) and K-S Test are p-values.

Table 4.8: Matrix of the sample Kendall’s taus computed based on the PIT of the residuals for the
non-crisis period.

CAC 40 DAX FTSE 100 S&P 500 IBOVESPA

CAC 40 1.0000
DAX 0.7322 1.0000
FTSE 100 0.6591 0.5955 1.0000
S&P 500 0.3444 0.3597 0.3249 1.0000
IBOVESPA 0.2604 0.2587 0.2673 0.4349 1.0000

Table 4.9: Matrix of the sample Kendall’s taus computed based on the PIT of the residuals for the
crisis period.

CAC 40 DAX FTSE 100 S&P 500 IBOVESPA

CAC 40 1.0000
DAX 0.7858 1.0000
FTSE 100 0.7501 0.7053 1.0000
S&P 500 0.5074 0.5030 0.4905 1.0000
IBOVESPA 0.3833 0.3629 0.3871 0.5140 1.0000
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Table 4.12: Estimation results of the static D-vine copula for the non-crisis period.

Bivariate Copula θ1 θ2 τ λL λU

Tree 1

FTSE, CAC Student-t 0.8562 14.8356 0.6544 0.2846 0.2846
(0.0066) (6.3513)

CAC, DAX Student-t 0.9035 8.9643 0.7180 0.4935 0.4935
(0.0049) (2.1594)

DAX, S&P500 Student-t 0.5370 8.7557 0.3609 0.1180 0.1180
(0.0204) (2.2666)

S&P500, IBOVESPA Student-t 0.6287 7.0128 0.4328 0.2134 0.2134
(0.0177) (1.6477)

Tree 2

FTSE, DAX|CAC Student-t 0.0669 9.5239 0.0426 0.0119 0.0119
(0.0317) (2.4388)

CAC, S&P500|DAX Normal 0.0819 0.0522
(0.0294)

DAX, IBOVESPA|S&P500 Rotated-Gumbel 1.0580 0.0548 0.0746
(0.0187)

Tree 3

FTSE, S&P500|CAC, DAX Normal 0.1053 0.0672
(0.0288)

CAC, IBOVESPA|DAX, S&P500 Normal 0.0630 0.0402
(0.0292)

Tree 4

FTSE, IBOVESPA|CAC, DAX, S&P500 Normal 0.0854 0.0544
(0.0305)

Note: Estimates obtained using the IFM method. Standard errors in parentheses. In the second column,
we have the pair-copula selected based on the AIC criterion. The columns labeled θi, i = 1, 2 (considering
two-parameter copulas), present the estimates of the copula parameters. τ corresponds to the estimate of the
Kendall’s tau, whereas λL and λU refer to the estimates of the lower and upper tail dependence parameters,
respectively.
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Table 4.13: Estimation results of the static D-vine copula for the crisis period.

Bivariate Copula θ1 θ2 τ λL λU

Tree 1

FTSE, CAC Student-t 0.9231 13.9509 0.7487 0.4515 0.4515
(0.0038) (5.5628)

CAC, DAX Student-t 0.9434 5.4932 0.7848 0.6777 0.6777
(0.0035) (1.4046)

DAX, S&P500 Student-t 0.7088 18.8746* 0.5015 0.0807 0.0807
(0.0137) (10.5248)

S&P500, IBOVESPA Student-t 0.7297 6.7582 0.5207 0.3038 0.3038
(0.0143) (1.6322)

Tree 2

FTSE, DAX|CAC BB1 0.1156 1.0494 0.0990 0.0033 0.0642
(0.0440) (0.0223)

CAC, S&P500|DAX BB1 0.1983 1.0354 0.1213 0.0342 0.0468
(0.0481) (0.0211)

DAX, IBOVESPA|S&P500 Gumbel 1.0763 0.0709 0.0959
(0.0215)

Tree 3

FTSE, S&P500|CAC, DAX Normal 0.1239 0.0791
(0.0306)

CAC, IBOVESPA|DAX, S&P500 Normal 0.1146 0.0731
(0.0302)

Tree 4

FTSE, IBOVESPA|CAC, DAX, S&P500 Student-t 0.1140 17.8143* 0.0728 0.0011 0.0011
(0.0323) (10.0107)

Note: Estimates obtained using the IFM method. Standard errors in parentheses. (*) stands for significant
only at the 10% level. In the second column, we have the pair-copula selected based on the AIC criterion.
The columns labeled θi, i = 1, 2 (considering two-parameter copulas), present the estimates of the copula
parameters. τ corresponds to the estimate of the Kendall’s tau, whereas λL and λU refer to the estimates of
the lower and upper tail dependence parameters, respectively.
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Table 4.14: Results of the VaR backtests for the testing period from January 02, 2008 to August 19,
2008 (150 days).

Dynamic D-Vine Copula

α 1% 5% 10%
n 2 9 23
n/h 0.0133 0.0600 0.1533

Kupiec 0.6962 0.5854 0.0417
Christoffersen 0.8897 0.4539 0.0144

Static D-Vine Copula

α 1% 5% 10%
n 2 9 23
n/h 0.0133 0.0600 0.1533

Kupiec 0.6962 0.5854 0.0417
Christoffersen 0.8897 0.4539 0.0144

Note: Kupiec and Christoffersen correspond to the p-values of the respective tests.

Table 4.15: Results of the VaR backtests for the testing period from May 08, 2012 to September 06,
2012 (79 days).

Dynamic D-Vine Copula

α 1% 5% 10%
n 0 3 7
n/h 0.0000 0.0380 0.0886

Kupiec 0.2076 0.6092 0.7312
Christoffersen 0.4520 0.7485 0.8822

Static D-Vine Copula

α 1% 5% 10%
n 0 2 6
n/h 0.0000 0.0253 0.0759

Kupiec 0.2076 0.2678 0.4587
Christoffersen 0.4520 0.5004 0.4254

Note: Kupiec and Christoffersen correspond to the p-values of the respective tests.

Table 4.16: Average losses computed based on the VaR forecasts for the testing period from January
02, 2008 to August 19, 2008 (150 days) and the results of the SPA test.

1%-VaR 5%-VaR

Benchmark Average Loss (%) Benchmark Average Loss (%)

Dynamic D-Vine 10.1303 Dynamic D-Vine 7.2424
(0.4583) (1.0000)

Static D-Vine 10.1266 Static D-Vine 7.3551
(1.0000) (0.0000)

Note: In parentheses, we have the p-value of the SPA test.

Table 4.17: Average losses computed based on the VaR forecasts for the testing period from May 08,
2012 to September 06, 2012 (79 days) and the results of the SPA test.

1%-VaR 5%-VaR 10%-VaR

Benchmark Average Loss (%) Benchmark Average Loss (%) Benchmark Average Loss (%)

Dynamic D-Vine 10.4407 Dynamic D-Vine 6.5108 Dynamic D-Vine 5.3403
(1.0000) (1.0000) (1.0000)

Static D-Vine 10.6093 Static D-Vine 6.7058 Static D-Vine 5.4557
(0.0000) (0.0000) (0.0000)

Note: In parentheses, we have the p-value of the SPA test.
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4.10 Appendix C: Figures

Figure 4.1: A D-vine with 5 variables, 4 trees and 10 edges. Each edge is associated with a pair-copula
density.
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Figure 4.2: Mean errors for the parameters of c12 and c23 - DGP dynamic D-vine.
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Figure 4.3: Mean errors for the parameters of c34 and c13|2 - DGP dynamic D-vine.
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Figure 4.4: Mean errors for the parameters of c24|3 and c14|23 - DGP dynamic D-vine.
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Figure 4.5: Mean errors for the parameters of c12 and c23 - DGP static D-vine.
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Figure 4.6: Mean errors for the parameters of c34 and c13|2 - DGP static D-vine.
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Figure 4.7: Mean errors for the parameters of c24|3 and c14|23 - DGP static D-vine.
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Figure 4.8: Root mean squared errors for the parameters of c12 and c23 - DGP dynamic D-vine.
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Figure 4.9: Root mean squared errors for the parameters of c34 and c13|2 - DGP dynamic D-vine.
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Figure 4.10: Root mean squared errors for the parameters of c24|3 and c14|23 - DGP dynamic D-vine.
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Figure 4.11: Root mean squared errors for the parameters of c12 and c23 - DGP static D-vine.
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Figure 4.12: Root mean squared errors for the parameters of c34 and c13|2 - DGP static D-vine.
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Figure 4.13: Root mean squared errors for the parameters of c24|3 and c14|23 - DGP static D-vine.
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Figure 4.14: The dynamics of the Kendall’s tau and the tail dependence parameters for the pair
FTSE-CAC.
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Figure 4.15: The dynamics of the Kendall’s tau and the tail dependence parameters for the pair CAC-
DAX.
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Figure 4.16: The dynamics of the Kendall’s tau and the tail dependence parameters for the pair DAX-
S&P500.
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Figure 4.17: The dynamics of the Kendall’s tau and the tail dependence parameters for the pair
S&P500-IBOVESPA.
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Figure 4.18: Log-returns of the portfolio for the period from January 02, 2008 to August 19, 2008 along
with 10%, 5% and 1% VaR forecasts from the dynamic and static D-vine copula models.
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Figure 4.19: Log-returns of the portfolio for the period from May 08, 2012 to September 06, 2012 along
with 10%, 5% and 1% VaR forecasts from the dynamic and static D-vine copula models.
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5 Considerações Finais

Na presente tese, desenvolvemos três ensaios em que exploramos a teoria de cópulas para obter

modelos de dependência suficientemente flex́ıveis, capazes de capturar os fatos estilizados pre-

sentes na estrutura de dependência de retornos financeiros multivariados, tais como dependência

caudal e dependência assimétrica.

Sklar (1959) mostra que existe uma função cópula que liga a função de distribuição conjunta

às suas distribuições marginais, de modo que a função cópula contém toda a informação sobre

a dependência entre as variáveis. O conjunto de famı́lias de cópulas bivariadas é extenso e

cada uma descreve um diferente padrão de dependência. O número de cópulas com dimensão

mais elevada, por sua vez, era bastante limitado até recentemente. Apesar das tentativas de se

estender as cópulas Arquimedianas para o caso de n > 2 variáveis e da popularidade das cópulas

eĺıpticas multivariadas, essas classes de cópulas ainda envolvem muitas restrições. A construção

de cópulas multivariadas com base em pair-copulas, proposta por Joe (1996), reverteu o proble-

ma.

O teorema de Sklar foi estendido por Patton (2006) para o caso de distribuições condicionais,

o que abriu a possibilidade de se incorporar dinâmica à estrutura de dependência. No primeiro

ensaio, Caṕıtulo 2 desta tese, propusemos um novo enfoque para modelar a dependência entre

retornos financeiros internacionais ao longo do tempo, combinando a metodologia de Patton

(2006), que permite que o parâmetro de dependência da cópula evolua de forma determińıstica

ao longo do tempo, e o modelo de mudança Markoviana, que permite incorporar mais assimetrias

ao modelo de cópula de uma forma bastante natural. Realizamos um estudo comparativo do

modelo proposto e dos modelos de cópulas tempo-variantes propostos por Patton (2006), Jon-

deau e Rockinger (2006) e Silva Filho et al. (2012a), em termos das dinâmicas de dependência

capturadas pelos modelos e das suas habilidades em prever Valor em Risco (VaR). Todos os

modelos identificaram um longo peŕıodo de alta dependência entre os retornos começando em

2007, quando a crise do subprime teve ińıcio oficialmente. A alta dependência no peŕıodo de

crise era esperada, porém os modelos com mudança de regime também indicaram peŕıodos de

alta dependência entre os anos de 2003 e 2006, quando as condições nos mercados financeiros
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eram favoráveis. Como trabalho futuro, sugerimos estimar o número de regimes, para verificar

de que modo os resultados anteriores seriam alterados. O melhor ajuste dos modelos de cópulas

eĺıpticas às caudas das distribuições conjuntas sugere que parte da assimetria pode ser gerada

por parâmetros de dependência tempo-variantes. Adicionalmente, a falta de dependência caudal

pode ser parcialmente compensada pela possibilidade de uma forte dependência mais geral.

No segundo ensaio, Caṕıtulo 3 desta tese, estendemos nosso estudo para o caso de n > 2

variáveis, usando o modelo de vine cópula para investigar a estrutura de dependência dos ı́ndices

DAX, CAC 40, FTSE 100, S&P 500 e IBOVESPA, e, particularmente, checar a hipótese de de-

pendência assimétrica nas caudas conjuntas da distribuição dos retornos dos ı́ndices financeiros.

Com base em nossas descobertas emṕıricas, entretanto, não pudemos verificar a hipótese de de-

pendência assimétrica, uma vez que uma decomposição vine canônica com todas as pair-copulas

t-Student teve o melhor ajuste aos dados, segundo o critério de verossimilhança. Segundo

Nikoloulopoulos et al. (2010), pode ser que a dependência assimétrica com cauda inferior mais

forte ocorra apenas temporariamente, o que motivaria a incorporação de dinâmica ao modelo

de vine cópula regular, como foi feito no terceiro ensaio.

A pesquisa em modelagem de dependência de séries financeiras multivariadas usando vine

cópulas está concentrada principalmente no caso de estruturas de dependência homogêneas no

tempo, porém, enfoques promissores para incorporação de dinâmica aos modelos de cópulas

têm sido apresentados. No terceiro ensaio, Caṕıtulo 4 desta tese, nós incorporamos dinâmica

ao modelo de vine cópula, permitindo que os parâmetros de dependência das pair-copulas em

uma decomposição D-vine variassem ao longo do tempo, seguindo um processo ARMA(1,m)

restrito como em Patton (2006). Essa extensão do modelo nos permitiu ampliar a flexibilidade

da modelagem da estrutura de dependência de dados financeiros multivariados sem, entretanto,

incorrer em perda em termos de tratabilidade do modelo, que pode ser estimado utilizando-se um

procedimento sequencial muito rápido e ainda assintoticamente eficiente. O modelo proposto

foi avaliado, primeiramente, em um estudo de Monte Carlo, cujos resultados foram bastante

favoráveis à cópula D-vine dinâmica em comparação a uma cópula D-vine estática. Também

avaliamos o modelo com respeito à acurácia das previsões de VaR em peŕıodos de crise: a cópula

D-vine dinâmica superou a cópula D-vine estática em termos de acurácia preditiva para os nossos
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conjuntos de dados. O modelo de cópula D-vine dinâmica ainda pode ser melhorado se estendido

para o caso geral de cópulas vine regulares e investigado em aplicações de dimensão mais elevada.

Adicionalmente, no futuro, podemos assumir que os parâmetros de dependência das pair-copulas

não apenas seguem um processo ARMA(1,m), mas também podem ser influenciados por uma

cadeia de Markov, uma vez que encontramos evidência de quebra no grau de dependência do

peŕıodo de 2003-2007 para o peŕıodo de 2008-2012.

Ainda há muito que ser explorado a respeito de estruturas de dependência multivariadas

(n > 2) tempo-variantes. Também seria interessante, como tópico de pesquisa futura, investigar

a possibilidade de se combinar cópulas e medidas realizadas, como variâncias, calculadas com

base em dados em alta frequência, para criar distribuições multivariadas flex́ıveis. As medi-

das realizadas fornecem melhores previsões do que as tradicionais, porém o conhecimento dos

segundos momentos apenas não determina a função de distribuição conjunta.
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