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ABSTRACT

Our inability to perceive and understand all the factors that account for real-world phe-
nomena forces us to rely on clues when reasoning and making decisions about the world.
Clues can be internal such as our psychological state and our motivations; or external,
such as the resources available, the physical environment, the social environment, etc.
The social environment, or social context, encompasses the set of relationships and cul-
tural settings by which we interact and function in a society. Much of our thinking is influ-
enced by the social environment and we constantly change the way we solve problems in
response to our social environment. Nevertheless, this human trait has not been thought-
fully investigated by current computational models of human social problem-solving, for
these models have lacked the heterogeneity and self-adaptive behavior observed in hu-
mans. In this work, we address this issue by investigating the impact of social context
in social problem solving by means of extensive numerical simulations using a modified
social model. We show evidences that social context plays a key role in how the system
behaves and performs. More precisely, we show that the centrality of an agent in the
network is an unreliable predictor the agent’s contribution when this agent can change
its problem-solving strategy according to social context. Another finding is that social
context information can be used to improve the convergence speed of the group to good
solutions and that diversity in search strategies does not necessarily translates into diver-
sity in solutions. We also determine that even if nodes perceive social context in same
way, the way they react to it may lead to different outcomes along the search process.
Together, these results contribute to the understanding that social context does indeed im-
pact in social problem-solving. We conclude discussing the overall impact of this work
and pointing future directions.

Keywords: Computer Science; Artificial Intelligence; Social Computing.



RESUMO

Nossa incapacidade em compreender todos os fatores responsáveis por fenômenos
naturais faz com que tenhamos que recorrer a simplificações na representação e na ex-
plicação destes. Por sua vez, a forma com que representamos e pensamos a respeito
destes fenômenos é influenciada por fatores de natureza interna, como o nosso estado
psicológico, ou então de natureza externa, como o ambiente social. Dentre os fatores ex-
ternos, o ambiente social, ou contexto social, é um dos que tem maior influência na forma
que pensamos e agimos. Quando estamos em grupo, mudamos a todo instante a forma
com que resolvemos problemas em resposta ao contexto que nos cerca. Entretanto, esta
característica até então foi pouco explorada em modelos computacionais de resolução co-
letiva de problemas. Este trabalho investiga o impacto do contexto social na resolução
coletiva de problemas. Nós apresentaremos evidências de que o contexto social tem um
papel importante na forma com que o grupo e o indivíduos se comportam. Mais precisa-
mente, nós mostraremos que a centralidade de um indivíduo na rede social nem sempre
é um bom preditor de sua contribuição quando o mesmo pode adaptar sua estratégia de
busca em resposta ao contexto. Além disso, mostraremos que a adaptação ao contexto
social por parte dos indivíduos pode melhorar o desempenho coletivo, facilitando a con-
vergência para soluções boas; e que a diversidade de estratégias de resolução do problema
não leva necessariamente a uma diversidade de soluções na população; e que, mesmo que
o contexto social seja percebido da mesma forma pelos indivíduos, a forma com que eles
reagem pode levar a diferentes resultados. Todos estes resultados suportam a ideia de que
o contexto social deve ser considerado em experimentos com resolução social de proble-
mas. Por fim, concluímos o trabalho discutindo o impactso do mesmo e apontando novos
problemas a serem investigados.

Palavras-chave: Ciência da Computação, Inteligência Artificial, Computação Social.
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1 INTRODUCTION

A system capable of problem-solving is usually regarded as an intelligent system
(NEWELL; SIMON, 1976). It is not surprising, though, that our intelligence is closely
related with our skils in problems-solving. It is through such skills that we accomplish
everyday trivial activities, such as deciding what is the fastest way to the airport, or more
complicated activities such as analyzing the outcomes of a specific problem involving the
expected outcomes of a group of people. The set of mental procedures we employ to
find the best solution to problems is known as the problem-solving strategy, or heuris-
tic (PEARL, 1984; WEISBERG, 2006). Different problems require different problem-
solving strategies, therefore, there are strategies that are “well-practiced and virtually au-
tomatic, whereas others involve more on-line consideration and computation” (TAYLOR,
1998).

The best problem-solving strategy depends on the circumstances we face. For in-
stance, the fastest path to the airport depends on the transportation methods available at
the time. To decide which strategy is the best one, we rely on two kinds of clues: internal
and external clues(FISKE; TAYLOR, 1991; SCHWARZ, 1998). Internal clues include
our mood, motivation, expertise, personal goals; external clues include the physical envi-
ronment, the physical resources available, the social environment, etc.

Social context is a particularly relevant external clue because much of our thinking is
influenced by the social surrounding (LEVINE; RESNICK, 1993). It is difficult to imag-
ine a purely cognitive situation where emotions, social meanings, social motivations, or
any social artifacts make no difference at all. One explanation for the social cognition na-
ture of our thinking is that it emerges from our internalization of social experiences during
our socialization process (VALSINER; VEER, 1988). From a less theoretical and more
pragmatical perspective, Mason and Watts 2012 have found that, as problem-solvers, we
indeed change a lot our strategies when socially solving a problem.They found that hu-
mans performed generally better and copied considerably less solutions when compared
to artificial counterparts. They attribute such result to the observation that all artificial
agents in the population followed the same problem-solving strategy — in contrast with
humans where the set of problem-solving strategies was highly heterogeneous — and that
agents were not allowed to change their search behavior along the simulation — whereas
the search strategies employed by humans varied a lot along the experiment. However,
our inability to understand complex systems composed of distinct parts that can interact
is limited (BARABÁSI; ALBERT, 1999) and, hence, it remains unclear whether social
context accounts for the observed patterns in the experiment.

In this work, we address the relevance of social context in social problem-solving by
measuring its impact in individual and collective performance. We do so by means of
extensive numerical simulations using a modified social model. We provide evidences
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that social context is indeed relevant to social problem-solving. We show, for instance,
that centrality measures of an agent in the network is an unreliable predictor the agent’s
contribution when this agent can change its problem-solving strategy according to the
social context. Another finding is that social context information can be used to improve
the convergence speed of the group to good solutions and that diversity in search strategies
does not necessarily translates into diversity in solutions. In addition, we also determined
that even if nodes perceive social context in same way, the way they react to it may lead
to different outcomes along the search process.

We now detail the how we will tackle the problem.

1.1 General Methodology

We decided to investigate the impact of social context through an empirical approach
instead of an analytical one. This is because agent-based models of problem-solving defy
analytical approaches despite their triviality (POLI; KENNEDY; BLACKWELL, 2007).
The stochastic processes that govern the individual behavior of the agents make these
systems hardly predictable. In addition, these agents interact by exchanging messages
that influence the outcomes of their actions and their peers actions in the future — the
units that compose the system are heavily interdependent, yet autonomous.

We also decide to use the Memetic Networks model(ARAÚJO; LAMB, 2008, 2010)
as our underlying framework, which attempts to mimic how humans solve problems when
in group. The model of Memetic Networks specifies three generic rules that command
the system during the problem-solving process. The model provides us flexibility to ac-
commodate social context without violating any of its theoretical and philosophical un-
derpinnings.

This dissertation is the aggregate product of each of the following steps.

1. Situate this work within a theoretical referential by providing the general and the
specific context information.

2. Formalize the concept of social context within the chosen framework of the Meme-
tic Networks.

3. Develop a method to measure social context in Memetic Networks.

4. Devise mechanisms that allow agents to react to social context.

5. Compare the results with the original model (control).

The Background chapter, chapter 2, covers the first step. The second, third, and fourth
steps are covered in the Social Context chapter, chapter 3. The Experiment’s chapter,
chapter 4, presents the fifth; there we will discuss the experiments and their respective
results. Finally, chapter 5 gives an overall discussion of this work and points further
directions worthy of consideration.

We have performed parallel investigations along this dissertation. Even if these in-
vestigations shared with the present work the model of Memetic Networks as the basic
framework, they sought to solve fundamentally different problems. Therefore, we opted
to separate them from the main topic of this dissertation in an attempt to make its con-
tent more streamlined and terser. Nonetheless, we include and contextualize them in the
appendix.
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2 BACKGROUND

This chapter presents the relevant and essential background information to the un-
familiarized reader. We present the field of Social Computing, its perspectives and its
current research issues. We then proceed to detail the research issue of agent-based social
modeling and its methodological principles. Finally, we describe the general ideas behind
the Memetic Networks model.

2.1 Social Computing

Social computing is a computing paradigm that involves fields such as sociology, so-
cial psychology, organization theory, and communication theory to analyze, model and
understand social behavior phenomena. One social computing’s main goal is to produce
applications that support and improve interaction and communication of people in infor-
mational social systems (KING; LI; CHAN, 2009). Social computing can be precisely
defined as the “computational facilitation of social studies and human social dynamics as
well as the design and use of Information and Communication technologies that consider
social context” (WANG et al., 2007).

This definition of social computing has two interdependent perspectives: one tech-
nological and one theoretical. The technological perspective of social computing seeks
to build informational systems that consider social context and support effective commu-
nication among people. Therefore, findings in social computing can be directly applied
in the development of any information system where people interact. One example is to
create web services and tools, like blogs or social network services, that help people share
and spread their ideas more easily and i in real-time to a large pool of readers.

The theoretical perspective on social computing aims to solve the research issues that
stems from the application of technological domains and to understand theories about the
social life. Recently, the theoretical branch has come to be known as Computational So-
cial Science (LAZER et al., 2009) while the term Social Computing has become increas-
ingly more associated with technological . Among the issues in Computational Social Sci-
ence, there is the problem of representation of social information and social knowledge,
the problem of analysis and prediction techniques for social systems, and the problem of
modeling social behavior at both individual and collective levels using artificial agents.

In order to illustrate the interdependence, suppose that a store owner wants its recom-
mending system to perform more effective advertisement by increasing its accuracy. One
way to do so is to improve current knowledge discovery systems that are based solely on
their client’s attributes and their past interactions. If we assume the hypothesis that peo-
ple who are friends tend to buy similar products, then, knowing who is friend of whom is
valuable information to consider. The theoretical branch is concerned to prove or not such
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hypothesis while the technological branch seeks to solve design questions that may arise
during the development of such system. We now proceed to further detail the theoretical
branch, for this is closer to this work.

Social relations, institutional hierarchy, influence, roles, social context, among others,
represent social information. From the individual’s perspective, social knowledge repre-
sents the memory this individual has about exogenous entities as well as its endogenous
cognitive variables that guide its goals and motivations. Both social information and so-
cial knowledge are basic descriptive information from which decisions can be taken in
order to coordinate activities in a social system. Representing this information accurately
at the right level of abstraction is a fundamental research issue. Social information about
the structure of a social system is usually described using graphs. This formalism allows
one to represent social ties as edges and social agents as nodes in the graph (EASLEY;
KLEINBERG, 2010).

The analysis and prediction techniques for social systems includes statistic methods
to analyse and predict costs and benefits associated with strategies, polices and decision-
making methods. Some of these techniques include structural equations, cellular au-
tomata, Bayesian networks, hidden Markov models. Techniques from data-mining, machi-
ne-learning, and data visualization can be used to help to identify patterns and relation-
ships within data. Social network analysis is focused on the relationships among so-
cial entities, and on the patterns and implications of these relationships (WASSERMAN;
FAUST, 1994).

Agent-based social modeling is a theoretical approach that seeks to understand social
life through the use of simplified formal models of group of individuals. It originated in
computer science and artificial intelligence to study complex adaptive systems composed
of a number of autonomous but interdependent entities (MACY; FLACHE, 2009). Such
models are called agent-based because their basic units are the individuals. There are two
aspects in agent-based social modeling: the macrosocial aspect, that seeks to generate
or reproduce a pattern in the population from the aggregate behavior of all agents; and
the microsocial aspect, that is concerned with methodologies to model agents and their
interactions and the influence of the whole population in the individual. Since the research
issue of agent-based social modeling is central in this dissertation, we will further explain
it in the next section.

2.2 Agent-based Social Modeling

Methodological Individualism is a theory based on the principle that some macroso-
cial patterns can be explained as the outcome of individual decisions and actions (MACY;
FLACHE, 2009). Examples of macrosocial patterns include herd behavior (BANERJEE,
1992), the evolution of cooperation(NOWAK, 2006), residential segregation (SCHELLING,
1978), homophily (MCPHERSON; SMITH-LOVIN; COOK, 2001), etc. The Method-
ological Individualism assumes that the individuals’ attributes play no direct role in ma-
crosocial outcomes if they are unable to make a decision and act in response to the en-
vironment. In this context, the Methodological Individualism theory can be seen as a
reductionist approach to understand the social life.

To understand how some macrosocial pattern unfold from the interaction among in-
dividuals, researchers have resorted to computational models based in a population of
artificial individuals, called agents (EPSTEIN, 2011). Agents are the basic units from
agent-based models. They are computer programs whose behavior is formally encoded
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by rules. As so, they can perform computations to decide which course of action is the
best one considering future outcomes — by solely measuring the utility of each available
action — or previous outcomes — the agent takes the decision based in what actions
proved successful in previous interactions. The dynamics of the model is given by the
iteration of this process (MACY; FLACHE, 2009).

The goal of agent-based social modeling is to generate a complex population pattern
from a simple model of local interactions among agents. Local interactions in Agent-
based models must be the simplest and must hold as few as possible assumptions if one
wants to explain what are the causal actions that build to the macrosocial patterns. Overly
complex and arbitrary agent-based models can potentially hinder the research’s ability to
draw relevant and valuable cause-effect relations from the model, i.e. the model may look
completely random through close inspection. In such cases, determining the underlying
causal mechanism for the pattern is utterly difficult. However, highly complex and non-
linear macrosocial patterns are hard to achieve from bottom-up. One classic example of
agent-based model that retains simplicity and is able to build rich population pattern is
the Schelling’s residential segregation model (SCHELLING, 1978).

We will present the agent-based model of Memetic Networks in next section.

2.3 Memetic Networks

Earlier ideas on psychology and artificial intelligence tried to understand people ’as
general problem solvers (NEWELL; SIMON, 1972). These ideas prompted the develop-
ment of numerous cognitive models of how a person in isolation would solve problems.
Social Computational Science shifted this focus from the individual to the collective level
(LAZER et al., 2009; KEARNS, 2012). The Memetic Networks model is an example of
an agent-based model resultant from this shift. It models how humans collectively solve
problems (ARAÚJO; LAMB, 2008, 2010).

Memetic Networks is computational framework that determines guidelines to the de-
velopment of a system whose objective is to search for the best solution to a given prob-
lem. One implements a Memetic Network to investigate the system itself under some
scenarios or to devise a novel problem-solving system that solves a problem more effi-
cient than current systems.

The model defines two entities: elements and rules. Both are conceptually problem
invariant. Elements are: nodes, that represent the agents; edges, that represent social ties;
and memes, that represent units of information. Rules state how these elements process,
interact, and relate to each other. A memenet is what is called the final construct of a
Memetic Network. It is when one assembles the Memetic Network’s elements and then
describes the rules by which the elements will interact. A memenet is composed of the
following basic components:

Nodes — Nodes are the fundamental units of any memenet. They carry a complete or
temporary solution to the problem at hand. This solution has a numerical value
associated that describes how good it is, i.e. its objective quality. In addition, nodes
are responsible for retrieving, aggregating and processing memes.

Meme — Memes are basic units of information (DAWKINS, 2006) and a solution in a
memenet is a set of memes. The concept of what is “basic unit of information”
depends on problem at hand. Links can be bi-directional or not.
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Links — Links connects nodes so they can exchange memes. They are modeled as edges
in a graph and they represent social ties among agents. If a link connects two nodes,
than these nodes are said to be neighbors. Neighbors nodes can exchange memes
during the problem-solving process. Links can by static — established at beginning
of the search and kept until the end — or dynamic — at every iteration, or a group
of iteration, they are updated according to some aspect of system.

The Memetic Network elements alone are not self-sufficient to perform search as it
remains necessary to define how these elements will behave when assembled together.
This is accomplished by three rules, which roughly capture how humans process infor-
mation in a social context. These rules detail (1) how nodes choose to connect to each
other, (2) how information is retrieved from the social network, and (3) how individual
nodes contribute to a solution being sought. Each rule is detailed in what follows.

Connection Rule — Defines how the nodes should connect, i.e. how links are to be
established. This rule can be performed once before the search takes place, char-
acterizing a static network topology. Alternatively, the connection rule can be exe-
cuted during the search process so the network topology can evolve together with
the system. As in other socially-inspired models (e.g. Particle Swarm Optimizers),
there is currently no conclusive evidence about what topology is generally better
for specific types of problems (POLI; KENNEDY; BLACKWELL, 2007).

Aggregation Rule — This rule controls the interaction between connected nodes, that
is, how nodes retrieve and aggregate information from their network neighbors.
Typically, a node retrieve information 1 from better ranked neighbors only. After
retrieving memes, a node must aggregate — i.e. combine — them to assemble a new
solution. The aggregation rule must also describe algorithmically how these memes
are to be combined. Aggregation is highly dependent on the network topology 2.

Appropriation Rule — In possession of the recently aggregated solution, a node may
add some novelty to it. In this step, local information is added to the solution, allow-
ing memenets to explore the search space, much in the same way mutation works
in genetic algorithms. Appropriation can happen by simple random changes to the
solution or by applying some deterministic local search to it (in a similar fashion to
Genetic Algorithms (GOLDBERG, 1989) and Memetic Algorithms (MOSCATO,
1999) respectively).

Although the aggregation and the appropriation rules depend on the problem, the
structure of a Memetic Network is the same across different problems. Algorithm 1 de-
scribes this structure of a generic memenet that uses a static network. The stop condition
can be the number of iterations or a desired solution quality threshold and the Problemsize

input represents the size of the array, or equivalently, the dimension of the function’s do-
main.

The memenet is first initialized with a population of nodes. These nodes are carry
only a solution and have no links connecting them to other nodes. The second step is the
execution of the connection rule, which establishes links among nodes and, thus, it gives

1Retrieval of information is considered noiseless. It remains an open question whether communication
noise could be beneficial or not for population-based optimization problems.

2This feature is where socially-inspired optimization algorithms differ the most from Evolutionary Al-
gorithms that have no explicit structured social network to regulate breeding.
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Algorithm 1: Structure of Memetic Network using a static network.
Input : Populationsize, Problemsize

Output: Solutionbest
// Initialize the population.

memenet←− ∅
for i← 1 to Populationsize do

memenet←− memenet ∪ NewNode (Problemsize)

// Establish links between nodes.

Connect (memenet)

// The search process itself.

repeat
foreach node ∈ memenet do

Aggregate (node,Problemsize)
Appropriate (node,Problemsize)

// Keep track of the best solution found so far.

UpdateBestSolution (Solutionbest, memenet)
until stop condition
return Solutionbest

every node the references about whose nodes are their neighbors. After these two initial
steps, the algorithm iterates the aggregation and appropriation rules over all population.
This is done for a limited number of turns while the algorithm keeps track of the best
solution found so far.

In one wants to model a dynamic network topology, one need to place the connection
procedure within the for loop. Naturally, this network feature incurs more overhead than
a static network and adds complexity to whole system.

We now describe how to instantiate a memenet to the problem of function minimiza-
tion. We need only to formalize the aggregation and the appropriation procedures.
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2.4 Memetic Networks and the Problem of Function Minimization

Real-valued function minimization is a problem where one seeks the input that min-
imizes a given function. The input is a real-valued array and the output is numerical
value. Each input’s component represents a position within a single dimension of the
search space. By definition, a given input has exactly one output which is quality of that
solution. The lowest the values, the highest the quality.

To develop a memenet that performs minimization over real-valued function, one can
associate an array with a complete solution and a meme to an array component. Therefore,
an array of size n is a solution composed of n memes. After defining these concepts, we
need to define the aggregation and the appropriation rule.

The aggregation rule retrieves and then combines memes from better ranked neighbors
to create a new solution. This process is described in Algorithm 2.

Algorithm 2: The aggregation rule instantiated to function minimization.
Input: node,Problemsize

memepool←− [nodesolution]
foreach neighbor ∈ nodeneighbors do

if neighborsolution isBetterThan nodesolution then
memepool←− memepool ∪ neighborsolution

if |memepool| > 1 then
for i← 1 to Problemsize do

SolutionChosen←− RandomlyChooseASolutionFrom (memepool)
nodesolution[i]←− SolutionChosen[i]

The first step is to create the memepool: a data structure whose objective is to store
better or equally ranked neighbors’ solutions. It can be implemented as an array of arrays.
The node’s own solution is also include in the memepool too. The second step generates
a new solution by selecting memes from a randomly chosen solutions in the MemePool.
All solutions from the MemePool have equal chances to be chosen.
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Aggregation does not generate new memes because it only compose new combina-
tions from already known solution components. To address aggregation’s inability to
add innovation, the memenet uses an appropriation rule by which nodes to modify their
memes.The Algorithm 3 portrays random search that randomly replaces a meme by an-
other valid meme.

Algorithm 3: The appropriation rule instantied to minimization.
Input : node, Problemsize, Pappropriation
Output: Solution

for i← 1 to Problemsize do
With probability 1

Problemsize
:

Solutioni←− RandomlyChooseMeme ()
return Solution

For each component of the solution, a valid meme is generated and attributed with
probability 1

Problemsize
. As with mutation probability in genetic algorithms, the probabil-

ity of changing a meme should be small enough so that convergence is not drastically
disrupted. All valid memes have the same probability of being generated in this process.
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3 SOCIAL CONTEXT

Social context encompasses “the social relationships, and cultural milieus within which
defined groups of people function and interact” (BARNETT; CASPER, 2001). Cul-
ture and language, for instance, are two such artifacts that compose social context and
that constantly influence the way we think about the social, physical and spiritual life
(VALSINER; VEER, 1988). Therefore, social context is a particularly important factor
in our problem-solving skills because much of what we think and do is influenced by it
(LEVINE; RESNICK, 1993).

As explained in the introductory chapter, recent evidence pointed that humans fre-
quently change their problem-solving strategies in the social setting and, currently, no so-
cial model capture this human behavior. According to (MASON; WATTS, 2012), a major-
ity of social problem-solving models use homogeneous populations where the agents are
unable to change their strategies; models that lack heterogeneity and the self-adaptability
observed in real systems undermines attempts to generalize these unrealistic models. It
is unknown, though, whether social context accounted for the observed behavior in these
experiments.

Since we are concerned with the investigation of the impact of the social context
in social problem-solving, we proceed to explain social context from the perspective of
Memetic Networks, and elaborate on the various interpretations that social context can
have within it.

3.1 Social Context in Memetic Networks

From a conceptual point of view, any information that is not part of the problem itself
which a memetic node receives, processes, and sends is social context — in other words,
anything that is not a meme and flows from one node to another can be used as social
context information.

This section lists some kinds of information that can be candidates to be used as so-
cial context information. Here we refer to a problem-solving strategy as the combination
of the search algorithms implemented within the aggregation, the appropriation, and the
connection rules. For example, if two nodes implement the same aggregation and ap-
propriation rules but a distinct connection rule, then these nodes do not have the same
problem-solving strategy. Some possible interpretations for social context are:

• Social Relative Performance — A node can compare its current solution quality
with its neighbors to have a hint on how well it is doing compared to them. After
this comparative assessment, the same node can use this information to adapt its
current problem-solving strategy;
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• Local Contribution — A node can contribute to its neighborhood as long as it holds
a better solution. The information of how many times a node contributed to its
neighborhood can characterize a measure of local social contribution;

• Global Contribution — The information of how many times a node contributed to
the best solution known by the whole system can be also taken as social context;

• Neighbors’ Strategy — A node can determine which combination of rules led its
neighbors to improve their respective solution quality. With this information, it can
adapt its problem-solving strategy according to the social circumstances;

• Neighbors’ Centrality — From a collective point of view, centrally positioned indi-
viduals tend to be more relevant to the whole than peripheral individuals (BONACICH,
1987; BURT, 1995). Therefore, the information about the network’s position of
neighbors can give a clue about their likelihood to hold good solutions.

There could many other interpretations of social context. The next section details one
of them, the simple Social Relative Performance.

3.2 Measuring Social Context

We define the Social Relative Performance (SRP) as the relationship between the num-
ber of neighbor nodes that are faring better against the total number of peers nodes of the
focal node. The idea is to count how many neighbors are faring better than the focal node
and divide this number by the total number of neighbors. The SRP ratio is given by Equa-
tion (3.2) where Better is the set of better ranked neighbors of node n and Total the set
all neighbors of the focal node n.

SRP (n) =
|Bettern|
|Totaln|

(3.1)

The best ranked nodes in the network will have an SRP of 0.0, and, the worst ranked
nodes, an SRP of 1.0. In addition, we define a node a leader if it has SRP equals to 0.0.
Figure 3.1 depicts the possible SRP values that a node can assume if it has 6 neighbors.
SRP increases linearly as the number of better ranked neighbors increases.
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We opted to use this non-parametric model of social context because of its simplicity.
Using an overly complex and arbitrary form can undermine our investigation in the sense
that it would require a parameter exploration. We acknoledge the importance of the study
of more sophisticated forms of social context but, at this point, we must restrain ourselves
to the most simple forms. We still need to define how this information can be used to
change its current problem-solving strategy. The next section elaborates on that.

3.3 Using Social Context Information

As with social context interpretations, there could be many mechanisms by which
a node is able use SRP to change its current problem-solving strategy. There could be
mechanisms within any rule: the connection rule, where links could settled and unsettled
according to the social context; the aggregation rule, where the combination of solutions
could consider social context; and the appropriation rule, which can use social context
information as a parameter to adjust exploration and exploitation rates within of the algo-
rithm implemented within it.

We will start by listing and explaining candidate mechanisms that can be implemented
within the appropriation rule:

• Dynamic Appropriation Probability — In previous chapter, we implemented a ran-
dom search algorithm inside appropriation(as described in algorithm 2). The algo-
rithm there used a fixed probability to change memes ( 1

Problemsize
. The mechanism

of Dynamic Appropriation Probability basically uses the social context information
to dynamically adjust this parameter. A node that lags behind its peers can increase
this probability aiming at increasing its chance of finding better memes than the
current ones — since these do not constitute a good solution;

• Acceptance Policy Rule — The Appropriation rule is a compulsory rule. Even if
a node is the best among its peers, it must execute it at the risk of loosing good
memes. Thus, one may ask what if a leader node (SRP of 0.0) could decide upon
accepting the appropriated solution or not? It is plausible to accept higher solutions
and reject lower quality solutions. In this case, social context is used to change the
way the node decide which results must be accepted or not. The algorithm itself
can stay the same;

• Dynamic Search Range — Instead of randomly replacing a meme with any meme
during appropriation, it may be reasonable to attribute a higher probability to “closer”
memes when the node is performing well (i.e. favor small changes to the solution
when one is doing well compared to their peers). Alternatively, a node which is
performing poorly compared to its peers may benefit from modifying its solution to
a greater extent;

• Algorithm Switch — This mechanism tells the node to use a completely different
algorithm within appropriation, and not just adjusting a parameter as function of
social context. For example, a node may choose to perform as a random search or
as guided local search method according to its social context.

The next two subsections will explain implementations of the Acceptance Policy Rule
and the Dynamic Search Range mechanisms, respectively.
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3.3.1 Acceptance Policy Rule

We believe that the Acceptance Policy Rule mechanism (APR) is the most simple
form of self-adaptive mechanism that can respond to social context. The mechanism we
propose grants to leader nodes (SRP = 0.0) the decision to accept or not the appropriated
solution. The hypothesis behind this mechanism is that leaders could act as keepers of
locally valuable pieces of information: good memes. Nodes that implement the APR
mechanism are called APR nodes.

The inspiration for this mechanism comes from elitism selection schemes developed
for GA(GOLDBERG, 1989). There, a set with better individuals from both the offspring
and the parent generation moves directly to next generation without any change at all. This
way, valuable genes are passed to generation to the next generation(THIERENS, 1998).
The main difference among the elitist selection and the APR mechanism is that the former
is global and the second is local. More specifically, the elitist selection mechanism origi-
nally considers all the population to select the set of better individuals: it uses only fitness
information to rank all individuals in a group and only then selects the elitist subgroup.
In addition, these individuals never perform any genetic operation as long as they remain
at the elite group — and they can stay in that group indefinitely. Meanwhile, the APR
mechanism is local in the sense if a leader can keep its solution even this leader happens
to perform inefficiently when compared to the whole population: social ties and solution
quality are combined to select what individuals are allowed to keep their solutions. APR
nodes that are leaders still perform appropriation, though they do not aggregate memes
because they know no better neighbors.

Algorithm 4 describes the APR mechanism within the appropriation rule. Note that
the SRP is calculated beforehand as is passed as an input to the mechanism.

Algorithm 4: The APR mechanism within appropriation. Note that the SRP is
calculated beforehand.

Input : node, Problemsize, SRPn

TmpSolution←− ∅
for i← 1 to Problemsize do

With probability frac1Problemsize:
TmpSolution[i]←− RandomlyChooseMeme ()

if SRPn > 0.0 or TmpSolution isBetterThan nodesolution then
nodesolution←− TmpSolution
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3.3.2 Dynamic Search Range

The mechanism of Dynamic Search Range (DSR) uses social context to adapt how a
node exploits local information during the search. Instead of randomly replacing a meme
with any valid meme during appropriation, the DSR mechanism limits the search range
according to the SRP parameter. If the appropriation rule implements a random search
algorithm, then it is plausible to give higher probability to “closer” memes when the
node is performing well (i.e. favor small changes to the solution when one is doing well
compared to their peers). Alternatively, a node which is performing poorly compared to
its peers may benefit from modifying its solution to a greater extent.

In order to instantiate DSR mechanism, we defined ∆ to be the maximum variation
allowed when modifying each component of the solution (i.e. when choosing the a new
component for the solution, it must vary at most with +∆ and at least −∆). The ∆ vari-
ation must be calculated as function of the SRP of a node. Therefore, we used a linear
function model to calculate ∆ value. This function uses the maximum and minimum
valid input values that the function to be minimized supports and calculates the maximum
interval possible. The resultant interval is then multiplied by the SRP and summed with
a correction factor called α. The correction factor serves as the minimum amount of vari-
ation to be used when the node is a leader node (SRP = 0.0). Equation (3.2) describes
this linear function where Max and Min represent the maximum and minimum input
values allowed by the function, respectively.

∆ = (|Max|+ |Min|)/ 2× SRP + α (3.2)

In this equation, a node with an SRP equals to zero — i.e. the best ranked node in the
neighborhood — will have an effective search range of [−α,+α] while the worst node will
have a search range of [−(α+ (|Max|+ |Min|)/2),+(α+ (|Max|+ |Min|)/2). Nodes
with intermediate performance will have linearly intermediate search ranges. Figure 3.2
describes ∆ values as function of the SRP.

-30

-20

-10

 0

 10

 20

 30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
e
lt

a

SRP

+Delta
-Delta

Figure 3.2: The linear function model that calculates ∆ values using the SRP informa-
tion. This example considers α as 3.0 and the valid maximum function value as 30.0 and
minimum as -30.0



26

Algorithm 5 describes the APR mechanism within the appropriation rule.

Algorithm 5: The DSR mechanism within appropriation. Note that the SRP is
calculated beforehand as is passed as an input to the mechanism.

Input: node, Problemsize, SRPn

∆←− (|Max|+ |Min|)/ 2 × (SRPn) + α
for i← 1 to Problemsize do

With 1
Problemsize

probability:
nodesolution[i]←− RandomlyChooseMemeBetween ( Solutioni −∆ ,
Solutioni + ∆ )

return Solution

This appropriation version requires a repair routine afterwards for it may generate
solutions outside the valid search range. We proceed to use a simple routine which sets
every meme that is smaller than Min to Min and Max to memes that are larger than
Max.
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4 EXPERIMENTS

In this chapter we describe the experiments themselves and their respective results. We
performed three experiments to assess the impact of the social context in social problem
solving:

The experiment 1 , described in section 4.3, seeks to understand the individual impact
of how centrality and social context relate to each other;

The experiment 2 , in section 4.4, aims to investigate the collective aspect of how social
context impacts on the speed that the system converges to the optimal solution (if it
converges) and in the solution diversity in the population;

The experiment 3 , in section 4.5, explores the dynamics of a heterogeneous system
composed with canonical, APR, and DSR nodes.

Each experiment has its own specific methodology, nevertheless, we will discuss some
general points in the next section.

4.1 Experimental Methods

All experiments were developed using the same parametric computational framework.
This problem-solving framework was described in Python3 (version 3.2) code. We used
the specialized numerical package numpy to manage the calculations, the statistical tools
from the package scipy to handle statistical calculations, the Networkx package to model
the network topologies used in experiments, and the matplotlib package and gnuplot pro-
gram to plot the results. The pseudo-random number generator used across all experi-
ments was standard python random number generator which uses “the Mersenne Twister
as the core generator. [...] The Mersenne Twister is one of the most extensively tested
random number generators in existence.”(ROSSUM; DRAKE, 2012). The original ran-
dom number generator can be found in Matsumoto et al. original work(MATSUMOTO;
NISHIMURA, 1998).

The main method used to assess the impact of social context is to compare the canon-
ical Memetic Networks model with the models composed entirely with Aceptance Policy
Rule (APR) nodes and Dynamic Search Range (DSR) nodes. The canonical model is the
model explained in the Background chapter, chapter 2. The α parameter used by the DSR
was fixed at 0.0001.

The stochastic nature of the models we will investigate makes them harder to analyze
than purely deterministic models. Randomization is used inside aggregation, appropria-
tion, and initialization. It very likely results will be different across independent runs. To
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Figure 4.1: A periodic grid topology of 6×6 nodes.

tackle this problem, we will repeat the experiments 50 times and use the mean and con-
fidence intervals to describe the data over all the independent executions (KRUSCHKE,
2012).

These nodes executed their search operations until the system reaches the stop criteria.
In our experiments, the stop criteria used was number of iterations where each complete
iteration counted after all nodes have executed their search operations. Alternatively to
the number iterations, we could use a threshold value for the best known solution: if the
systems find a solution that is best or equal to the threshold, than the system ceases the
search. However, threshold values are usually arbitrary and their use may difficult future
comparisons.

The grid topology used in the experiments 2 and 3 connects every node to other four
other nodes: one above, one below, one at the right, and one at the left. Nodes at ex-
tremities are connected to the other side of the grid. This topology fix the number of
neighbors of all nodes to four. Of course there could be other topologies more close to
real social network such small-world (WATTS; STROGATZ, 1998) or those generated
by the preferential attachment mechanism (BARABÁSI; ALBERT, 1999); however, by
using the grid topology, we isolate the impact of centrality and facilitate the analysis of
the results because there is no parameter in this topology. With illustrative purposes, we
provide a three dimensional representation of a 6×6 grid topology Figure 4.1.

A compilation of traditional functions used in in the problem can be found in the work
of Reynolds and Chung(REYNOLDS; CHUNG, 1997). We will use five functions that
will be individually described in the next section. The domain dimension used was of 30.

4.2 Benchmark Functions

All functions can generalized to as many dimensions as one wants. However, the
maximum and minimum limit values for components of a solution are fixed. The mathe-
matical description of these functions is in table 4.1. The search range column specifies
the minimum and maximum values for each component of the input. The n represents
the number of dimensions in the general form. More detailed information can be found
elsewhere (MENDES, 2004).
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Table 4.1: The benchmark functions used. The n represents the number of dimensions.

Name Definition
Search Range
[xmin, xmax]n

Ackley 20 + e− 20e
−0.2

√
1
n

∑n
i=1 x

2
i − e 1

n

∑n
i=1 cos(2πxi) [−30.0, 30.0]n

Griewank 1
4000

∑n
i=1 (xi − 100)2 −∏n

i=1 cos(xi−100√
i

) + 1 [−600.0, 600.0]n

Rastrigin
∑n

i=1

(
x2i − 10 cos(2πxi) + 10

)
[−5.1, 5.1]n

Rosenbrock
∑n−1

i=1

(
100(xi+1 − x2i )2 + (xi − 1)2

)
[−30.0, 30.0]n

Sphere
∑n

i=1 x
2
i [−100.0, 100.0]n

The mathematical description of these functions hides more intuitive information
about their search spaces. To help with the visualization, we provide bidimensional rep-
resentations — a landscape — and a verbose description of the five functions in what
follows.

4.2.1 Ackley Function

The Ackley function is highly multi-modal function with the best solution f(x) = 0.0
at the very center x = [0, .., 0] of the search space. The function is likely to trap a greedy
myopic search process towards the center. Every component of x is defined between
[−30.0, 30.0]. Figure 4.2 depicts its landscape representation.
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Figure 4.2: Ackley function landscape.

4.2.2 Griewank Function

The Griewank function is a multi-modal function with the largest search search space
among all other functions. The best solution value is f(x) = 0.0 at the center x = [0, .., 0]
of the search space. Every component of x is defined between [−600.0, 600.0]. Figure 4.3
depicts its landscape representation.
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Figure 4.3: Griewank function landscape.

4.2.3 Rastrigin Function

The Rastrigin function is a multi-modal, with many local-minima distributed of the
search space. The best solution value is f(x) = 0.0 at the center x = [0, .., 0] of the
search space. Every component of x is defined between [−5.12, 5.12]. Figure 4.4 depicts
its landscape representation.
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Figure 4.4: Rastrigin function landscape.

4.2.4 Rosenbrock Function

The Rosenbrock function is a unimodal function with a shape that resembles a banana.
The gradient information may mislead algorithms. It is the only one function that has
the global minimum at the center, in this case, the best solution value is f(x) = 0.0
at x = [1, .., 1]. x is defined between [−30.0, 30.0]. Figure 4.5 depicts its landscape
representation.
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4.2.5 Sphere Function

The Sphere function is the most simple function of the whole set. It is unimodal
and the global optimum is at the very center of the search space, gradient information is
reliable in this function. The best solution value is f(x) = 0.0 at the center x = [0, .., 0]
of the search space. Every component of x is defined between [−100.0, 100.0]. Figure 4.6
depicts its landscape representation.

-100
-50

 0
 50

 100-100
-50

 0
 50

 100

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

-10 -5  0  5  10

-10

-5

 0

 5

 10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Figure 4.6: Sphere function landscape.



32

4.3 Experiment 1: Centrality and Social Context

We can characterize an individual by counting the number of connections that he has
in the social network (BURT, 1995). In many domains that are modeled using graphs,
nodes that have many connections, or hubs, tend to be more relevant than nodes have a
few (BARABÁSI, 2003). For example, if one wants to shut down the Internet, or least
render it useless, one needs to systematically aim at the most connected servers (ALBERT;
JEONG; BARABáSI, 2000). In case of problem-solving, centrality has been associated
with efficiency (FREEMAN, 1979).

In this experiment, we experiment the impact of social context in the relationship
between centrality and efficiency. We proceed to characterize nodes by their between-
ness centrality — a measure o centrality — and their respective global contribution. We
call global contribution as a measure of how many times that node updated the known
solution by the system. The Betweenness centrality measures how much information
flows between nodes in the network by the way of the target node. In other words, it
is the proportion of shortest paths between pairs of nodes that pass through the central
node(FREEMAN, 1977). Equation 4.1 depicts how one calculates the betweenness cen-
trality C of a node n: x, y and n are nodes and || denotes the cardinality of the set.

C(n) =
∑

x6=n6=y

|shortest paths between nodes x and y that pass through n|
|shortest paths between nodes x and y| (4.1)

We compare the average result of the canonical Memetic Network model and a me-
metic network composed of APR nodes in the five functions and gather the global con-
tribution after the 5000th iteration. Functionally, nodes from these two models have only
the appropriation rule implemented differently.

The topologies used were the wheel and the path topology. We will explain these
topologies and why they were chosen in what follows.

Path topology The path topology is built from a 2-regular graph also, but this time a
single random edge is removed, opening the ring and leaving the network with
two extremes far away from a center of the path. In this topology, centrality dis-
tributes itself as bell-shaped form: the lowest centrality values are in the extremes
and centrality increases linearly as the node’s position approached the middle of
the path. The assumption tested here that nodes near the middle tend to contribute
more(BONACICH, 1987; BURT, 1995) and the hypothesis is social context may
spread the contribution more equally along the path;

Wheel topology The wheel topology is built from a 2-regular graph where one node is
selected randomly to be connected to all other nodes, this way the graph has highly
centralized node. This topology has a central and highly connected node that sees
all other nodes while the rest population is connected to only to neighbors. The
assumption is that the central node will contribute the most without social context
information and the hypothesis is that social context could reduce its contribution.

The first experiment used the path graph with 16 nodes. This scenario considered the
canonical memetic network model and the second scenario considered a population com-
posed entirely of APR nodes. The results summarizes the results from the five previously
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described functions. A bidimensional representation of the topology including the posi-
tional labeling and the betweenness information is depicted in figure 4.7a. Figure 4.7b
shows the results of the global contribution per position — due to symmetry property and
in an attempt to facilitate visualization, we plotted only 8 nodes, where node 8th node
represent the most central node. The values inside the nodes and their color represent the
betweenness centrality of the node, the darker the node, the higher the centrality.
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Figure 4.7: Global contribution of nodes in the path topology using 16 nodes. Global con-
tribution measures how many times that node updated the known solution by the system.
The 1st position represents an extreme node and the 8th position represents a middle node
(the remaining positions have analogous results). The first result is centrality and global
contribution are related and the second result is that the global contribution becomes more
equally distributed when social context is available.

The main result from this experiment is that the node’s betweenness centrality and its
global contribution are related. The more central the node is, the more likely it its for that
node to contribute. This result was expected and it gives additional evidence that centrality
is a key property to predict how the contribution of individuals in collective problem
solving(BONACICH, 1987; BURT, 1995). As we hypothesized, the second result is that
the global contribution becomes more equally distributed when social context is available.
We can observe that the extreme nodes in the APR model have contributed much more in
comparison with the extreme nodes of canonical model. Our explanation for this result is
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that the extreme nodes have only one neighbor, thus, their chance to be a leader is higher
than their peer node, which has two neighbors. Since leader nodes do not loose good
solutions, they are more likely to contribute than non-leader solutions.

Another minor result is that the confidence intervals increased in size in the APR
model, meaning that social context leaves the system more unpredictable. This result is
expected since the social context increases the interdependence among the nodes, which,
in turn, leaves the system more difficult to predict.

The second experiment used the wheel graph using 16 nodes. Again there were two
scenarios, one that used the canonical memetic network and the other use an APR popu-
lation. We plotted only 8 nodes, where the 8th position represents the central node. The
results summarize the behavior observed in the five functions. The methodology was the
same from the previous scenario.
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Figure 4.8: Global contribution of nodes in the wheel topology. The same pattern repeated
in the wheel topology: centrality is related to global contribution and the whole population
of nodes contributed more when there is social context. Without social context, the very
central node contributed most of times and when social context was available, this node
contribute less than the average node.

The wheel graph showed more evidently the same pattern that the path graph showed:
network centrality is related to global contribution; the more central a node is, the more
likely it is to contribute. Nevertheless, when social context information is available, an
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heterogeneous population makes centrality less important. The central node radically
shifted from the most important node for global contribution to the least important node.
We believe that the affluence of social context information destabilized the central node
by making that node less prone to become a leader node.

Our conclusion from this experiment is that the centrality of a node can not be solely
used to predict this node’s contribution: we provided evidence that the ability to change
and to adapt the search strategy in response to the social context can change the what
has been known about the importance of centrality to predict the behavior of a node.
Summarizing, centrality can be a good predictor when all nodes use the same search
strategy.
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4.4 Experiment 2: Social Context and Problem-solving Efficiency

A particularly interesting descriptive feature of a problem-solving system is how it
improves its best known solution along a search. This convergence information is useful
if one is to assess whether the system is prone to stagnation or not. Therefore, measuring
the system’s convergence characteristics is also a way to measure the impact of social
context. This experiment deals with a comparison between convergence and distribution
analysis of the canonical, APR and DSR models. We defined the stop criteria as 5000
iterations and used a population of 36 individuals. These indidividuals were arranged in
a grid network topology as previosly stated. The first results from this experiments are
depicted in Figure 5.3.

The canonical Memetic Network model stagnated too early when compared with the
proposed methods. It was not able to minimize any test function after approximately the
250th iteration. Within the parameter interval chosen, the APR and DSR extensions did
not stagnated. In all functions, social context allowed the system to converge to better
solutions in the long run. Considering that the confidence intervals tell us that the mean
of the distributions have 95% of probability to be within the interval and that the intervals
were small, we assert that indeed social context improved the performance of the sys-
tem. The hypothesis behind the APR and the DSR models lead to diversity in the search
strategies employed by individuals in the population. When combined, these results add
evidence that heterogeneity among the strategies used by problem-solvers benefits the
whole system(HONG; PAGE, 2004).

Although these results give us an idea of how the best solution held by a node within
the population evolves over time, this information alone can not describe the dynamic of
the whole population. Therefore, in order to understand how social context influences
the entire population at different search moments, we decided to plot and analyze the
complete population distribution at different iterations. We considered the 10th iteration
as the initial stage and the 3000th iteration as the final one. We then extracted the entire
population of 36 nodes from the 50 runs — amounting 1800 data points to visualize the
population distribution through boxplots. A box is drawn around the region between the
first and third quartiles, with a horizontal line at the median value. Whiskers extend from
the box to any value that lies within 1.5 times the interquartile range.

Figure 4.10 shows the distribution at the initial stage.
The main conclusion from these results is that at initial stages, there is hardly any

differentiation among the models. This happens because ten iterations is a small value for
us to observe the convergence of the model and also because nodes are initialized using
a uniform random distribution across all search space. The DSR model slightly shifts the
population downwards because its median individual is under all other medians.

Figure 4.11 depicts the distribution at the final stage.
The DSR model is prone to reduce diversity, as one can observe from the data. Al-

though the DSR model brought heterogeneity at the strategy level, it reduced diversity
at the solution quality level when compared to the canonical and the APR model. An
explanation for this fact is that nodes in the DSR model are too sensitive to their peers
performance, which in turn makes them less independent of the results their neighbors
possess. For instance, when a DSR node is performing well (its SRP is near or equal to
0.0), it will change its solution by a small factor, holding a new and likely similar solu-
tion. Since aggregation is performed towards the best performing neighbors, over time,
the peers of that node will possess most of its memes and yet searching far away for better
memes.
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(c) Rastrigin function.
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(d) Rosenbrock function.
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(e) Sphere function.

Figure 4.9: The evolution of the best solution held the population in the canonical Meme-
tic Networks, the APR model and the DSR model.
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Figure 4.10: Boxplots describing the population distribution right after the 10th iteration
for the three models. There is hardly any differentiation among the models at the initial
stage.
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Figure 4.11: Boxplots describing the population distribution right after the 3000th itera-
tion for the three models. The DSR model eliminated solution diversity because individ-
uals tend to have similar solutions. This pattern can be seem more clearly in functions
Sphere, Rosenbrock and Griewank.
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Other results are that the APR model induces similar solution diversity when com-
pared to the canonical model — this result was expected since the APR model does di-
verge too much from the canonical model — and that the population distribution of the
canonical model is the most predictable and homogeneous one — this result can be ex-
plained by the fact all that nodes in the canonical model follow the same rules rendering
the population some homogeneity in solution and diversity when centrality is the same
among nodes.

The overall conclusions from this experiment is that use of social context information
can improve the convergence speed of the group to good solutions and that diversity in
search strategies does not necessarily translates into diversity of solutions.
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4.5 Experiment 3: Heterogeneous Populations and Social Context

The use of heterogeneous populations of problem-solvers is relatively new and presents
itself as an alternative to hybridization. Hybridization typically combines search opera-
tors from traditional methods into one method. If the hybrid system is devised to perform
search using a population of collaborative search processes, then this population is usu-
ally composed of the same methods, in other words, it is homogeneous. Scientists have
began to study heterogeneous problem-solving systems recently(OCA et al., 2009; EN-
GELBRECHT, 2010) though these are still strictly related to the PSO model and they
seek to contributed to the design of more efficient generalist heuristics.

In this experiment, we seek to understand the behavior of a heterogeneous population
of social agents. So far, we have studied heterogeneous populations that changed their
search strategy through a parameter the measured social context. In previous cases, the
agents used the Social Relative Performance as the input parameters to the algorithms im-
plemented within the appropriation rule. In other words, we want to know what happens
when APR, DSR or canonical nodes are collaborating in the same population. This way,
we brought heterogeneity to a new level.

We intuitively believe that, in a heterogeneous population, some strategies will be-
come more adapted to solve the problem than the others. Thus, to test our hypothesis, we
designed an experiment with an equally distributed population of individuals and counted
how many times a the nth position in the ranking. We used twelve canonical nodes, twelve
APR nodes and twelve DSR nodes. We used this problem-solving strategy distribution
because it does not make any assumptions about other than that strategies are equally
distributed along the population. We used the grid network topology and sampled the
ranking in the initial search stage (before any iteration, and after the 10th iteration), inter-
mediate state(the 500th iteration) and final stage(10000th iteration). Results are depicted
from Figure 4.12 to Figure4.14. The rank position number 1 represents the best position
while the position number 36 represents the worst ranked node. The vertical axis repre-
sents the percentage of times that the respective ranking was occupied by a certain kind
of node. Nodes were arranged randomly into the grid.

At the very beginning of the search process we can not see a clear predominance of an
strategy over the other. We believe this happen because there is not much time for nodes
to process any information at all, so they tend to distribute themselves equally across
the ranking positions. However, after the tenth iteration, there is a slightly shift in the
population’s distribution: DSR nodes tended to occupy the very highest rankings while
the canonical and APR nodes do not differ considerably. The fact nodes that nodes that
can use social context to adapt how far they can see in the search space grants them initial
advantage, we believe that DSR nodes tend do find good memes earlier than other nodes
and these nodes have not been propagated yet.

Figure 4.13 show the ranking distribution after the 500th iteration, the intermediate
stage:

At intermediate stages, we see a modest reversal in the pattern: APR nodes start to
differentiate from the canonical nodes by occupying better ranking positions. We at-
tribute this to the fact that good memes have already started flowing in the social network,
increasing the chance of APR nodes to possess good memes, and, consequently, good
solutions. DSR nodes start to loose the likelihood of occupying the first ranks due to their
inability to retain good memes.

Figure 4.14 presents the ranking distribution in the the final stage.
In the final stage, the ranking distribution remained the same. The DSR nodes occu-
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(a) Initial ranking distribution.
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(b) Ranking distribution after the 10th iteration.

Figure 4.12: In the initial stage, the population is more of less equally distributed with no
clear pattern in distribution other than an uniform distribution. The rank position number
1 represents the best position while the position number 36 represents the worst ranked
node. The vertical axis represents the percentage of times that the respective ranking was
occupied by a certain kind of node.

pied the highest positions while APR nodes tended to be distributed at the best and worst
ranking positions while DSR and canonical more or less equally at intermediate positions.
Canonical nodes performed worst in the long run.

The main result from this experiment is that even if social context information is the
same for all nodes, the way that those nodes react to it is relevant for us to predict their
behavior along the search process.
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Figure 4.13: Ranking distribution after the 500th iteration. Int the intermediate stage,
there is an emerging pattern in population distribution: APR nodes start to differentiate
from the canonical nodes by occupying better ranking positions.
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Figure 4.14: In the final stage, the population kept almost the same distribution from
the intermediate stage. The DSR nodes occupied the highest positions while APR nodes
tended to be distributed at the best and worst ranking positions while DSR and canon-
ical were distributed more or less equally at intermediate positions. Canonical nodes
performed worst in the long run.

4.6 General Discussion

We investigated the impact of social context in three cases and we found evidence
that social context indeed impacts the system at the individual and at the collective level.
To assess the individual impact, we measured how the expected contribution of a node is
affected by social context; and to assess the collective impact, we measured the evolution
of the whole system towards the best solution as well as the solution diversity within in
the population. And we also studied which mechanisms tended to perform better than
others in a heterogeneous population.

The first experiment confirmed the common belief that centrality is a relevant mea-
sure to characterize nodes in social system. In the case we investigated, we found that the
betweenness centrality of a problem-solving node is directly related to its contribution.
However, when nodes can adapt their search strategy according to their social surround-
ings, we found that the (1) expected contribution can be more uniformly distributed in
population and that (2) highly centralized nodes can perform worse then nodes averagely
centralized nodes.

The second experiment showed the consequences of social context in the whole sys-
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tem. We found that both APR and DSR nodes improved the system’s performance At the
problem-solving by allowing them to converge faster to better solutions when compared
to the canonical model. Another finding was that, although the DSR model improved
when compared to the canonical model, it was prone to reduce solution diversity.

The third experiment investigated how a heterogeneous system composed of DSR,
APR, and canonical nodes would behave. These nodes were equally distributed in the
network, and we measure how many many times a given global ranking position was
occupied by a kind a node. We found that DSR performed best and therefore occupied
the first positions while canonical nodes occupied the last positions. The main result was
that the way that nodes adapt their search strategies is relevant to predict their outcome in
the search process.

We now proceed to the conclusions chapter, where we give and overview of this dis-
sertation, focusing on the contribution of this investigation.
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5 CONCLUSIONS

This dissertation presented an experimental investigation of the impact of social con-
text in social problem-solving. We elaborated on the topic of social context, and then
designed and performed experiments to assess what were the implications of social con-
text at the individual and at the collective level. We devised a method to measure social
context and designed two reactive mechanisms to social context.

By using the Memetic Networks model as the fundamental framework and framing
the problem to real-valued function minimization, we defined social context as any infor-
mation that a memetic node receives and sends that is not part of a solution to the problem,
that is, everything that is not a meme. After elaborating on this definition and listing some
potential interpretations, we opted for a simple yet expressive form of social context: the
relationship between a node’s number of neighbor nodes faring better against the total
number of neighbors. We adapted this measure into a linear equation which result we
called as the Social Relative Performance (SRP) of the node. The SRP of a node may
range from 0.0 to 1.0 and is updated at each iteration. A SRP of 0.0 means that the node
has no better faring neighbor while a SRP of 1.0 means that the node is the worst among
his neighbors.

After defining social context in Memetic Networks, we elaborated on reactive mech-
anisms to social context. These mechanisms used the SRP metric to adapt the problem-
solving strategy employed by nodes. The first and most simple mechanism was the Ac-
ceptance Policy Rule (APR), this mechanism defines that a node that has no better ranked
neighbor can accept the result they appropriate in case this result improves their current
solution or, otherwise, reject the result. The second mechanism, the Dynamic Search
Range (DSR) employs the SRP to define the search range of the node. The mechanism is
built on the assumption that a node with high SRP may not risk loosing potentially good
memes during the appropriation step while a low SRP node may use a more risky strategy
by searching more distantly for new memes. Both mechanisms when applied to the whole
population generate the APR and the DSR models. We also give supportive evidence that
social context information can be used to improve the convergence speed of the group to
good solutions and that even if nodes perceive social context in same way, the way they
react to it may lead to different outcomes along the search process.

Our main methodology was to compare the developed mechanisms with the original
Memetic Network model. Among the experiments, we investigated the relationship be-
tween the betweenness centrality and the social context, finding that the centrality of a
node is not always a good predictor of the node’s contribution to the whole when this
node can change its strategy according to the social context. In another experiment, we
studied the impact of social context in the system convergence to good solutions and in
solution diversity. We found that social context information can be used to improve the
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convergence speed of the group to good solutions and that diversity in search strategies
does not necessarily translates into diversity in solutions. In the last experiment, we tested
the impact of heterogeneity at the individual level by assembling a population of equally
partitioned groups of canonical memetic nodes, APR and DSR nodes. We found that in
the short run, the DSR nodes tended to occupy the highest social ranks among the entire
population. From this experiment we conclude is that even if social context information
is same for all nodes, the way that those nodes react to such is relevant for us to predict
their behavior along the search process.

Yet, there remains open questions worthy of exploration:

1. Communication noise — What is the role of communication noise in a collec-
tive problem-solving system? What if aggregation does not copy the exactly same
memes?

2. New network topologies — Investigate more complex networks topologies that re-
semble real social networks, such as clustered and dynamic small-worlds networks.

3. Strategy learning schemes — Devise methods that can learn from social context in
order to improve its solution.

4. Explore social context in other models — Can we generalize our findings with Me-
metic Networks to the also socially-inspired Particle Swarm Optimization model?

Among the contributions of this dissertation, we cite: the development of the simple
metric of social context, the Social Relative Performace (SRP); the APR and the DSR
mechanisms whose objective was to allow agents to change their search strategies. Nev-
ertheless, the main contribution of this dissertation is to provide strong evidences that
social context impacts social problem-solving in a simulated setting. Through empirical
experiments, we showed that the social environment of a problem solver must be consid-
ered in forthcoming experiments with social problem-solving experiments that use both
human and artificial agents.

The parallel investigations during the master course lead other contributions, which
were: the understanding that the Memetic Networks model is not suitable for low dimen-
sionality search spaces; the investigation of the effects of heterogeneity in social-problem
solving; and, the feasibility of using the DSR model to solve the problem of protein struc-
ture prediction. A summary of these can be found in the appendix.
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APPENDIX

5.1 O Impacto do Contexto Social em Redes Meméticas

Sistemas capazes de resolver problemas por si só são usualmente considerados sis-
temas inteligentes (NEWELL; SIMON, 1976). Boa parte do esforço inicial dos pesquisadores
de Inteligência Artificial se focou em tais sistemas e, sem surpresas, o principal sistema
inteligente estudado nesta época fora o ser humano. O objetivo destes pesquisadores era
de encontrar pistas sobre a forma com que humanos resolviam problemas a fim de que
estas levassem ao desenvolvimento de sistemas computacionais robustos e genéricos o
suficiente para resolver problemas diversos. A premissa de que humanos são exímios
resolvedores de problemas em geral se mostrou falsa: um dos principais resultados do
estudo foi a constatação de humanos são eficientes em algumas classes de problemas
e péssimos em outras (RUSSELL; NORVIG, 2010). O campo de estudo responsável
pelo desenvolvimento de sistemas que combinam e exploram as as vantagens humanas e
de sistemas computacionais em um único sistema híbrido é atualmente conhecido como
Computação Humana (AHN et al., 2008).

Recentemente, o estudo de sistemas inteligentes tem se focado no aspecto social destes
sistemas, mas com um novo objetivo: facilitar a compreensão da dinâmica social humana
(WANG et al., 2007; LAZER et al., 2009). Tal estudo é mais conhecido como Ciência So-
cial Computacional e se apresenta como uma ramificação teórica da Área de Computação
Social.

Quando resolvemos problemas em grupo, usualmente empregamos estratégias que
mudam ao longo do tempo e que também dificilmente se repetem dentro do grupo (MA-
SON; WATTS, 2012). Uma explicação para essa diversidade e dinamicidade de estraté-
gias está na hipótese de que nós adaptamos nossas estratégias de acordo com indícios
internos e externos (FISKE; TAYLOR, 1991; TAYLOR, 1998; SCHWARZ, 1998). Estes
indícios são como variáveis internas e externas ao indivíduos que interferem na forma
em que o problema é representado e na forma com que a solução é investigada. Entre os
indícios de natureza interna, estão o nosso estado psicológico, nossas motivações, nossa
disposição, etc. Já entre os de natureza externa, estão os recursos físicos disponíveis, o
tempo, o ambiente social, entre outros.

Dentre os fatores externos, o ambiente social, ou contexto social, é um dos que tem
maior influência na forma que pensamos e agimos (VALSINER; VEER, 1988; LEVINE;
RESNICK, 1993; BURT, 1995). Entretanto, até então, os modelos de resolução social de
problemas têm sido insuficientemente sofisticados e heterogêneos para capturar a diver-
sidade observada em experimentos com seres humanos (MASON; WATTS, 2012): se faz
necessário, portanto, que se investigue qual é o impacto do contexto social da resolução
social de problemas.
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Nesta dissertação, nós propomos a investigação do impacto do contexto social na
resolução social de problemas. Para tal, investigaremos o conceito de contexto social
dentro do modelo computacional das Redes Meméticas (ARAÚJO; LAMB, 2010). Este
modelo foi escolhido por originalmente considerar a população como homogênea quanto
às estratégias de resolução de problemas e por modelar computacionalmente a forma com
que humanos resolvem problemas em grupos. Além disso, o modelo original servira como
controle para que pudéssemos comparar um sistema que contempla o uso do contexto
social e outro que não.

O contexto social pode ser definido como o conjunto de relações entre grupos de pes-
soas (BARNETT; CASPER, 2001). Dentro do modelo das Redes Meméticas, o contexto
social pode ser interpretado como qualquer informação interna ao sistema que não faz
parte da solução em si — qualquer informação que não é um meme. Dentre as várias in-
terpretações possíveis para o contexto social dentro de redes meméticas, nós escolhemos a
que nos pareceu a mais simples: o desempenho social relativo, ou “Social Relative Perfor-
mance” (SRP). O SRP define o quão boa é uma solução quando comparada às soluções de
vizinhos na rede social. O SRP decresce linearmente em relação à qualidade de respota
do nó, quanto maior a qualidade da resposta quando comparada aos nodos vizinhos da
rede, menor é o SRP.

Para que os indivíduos da rede considerassem o contexto social durante a resolução
dos problemas, nós adaptamos o modelo original das Redes Meméticas para que ele
acomodasse mecanismos de reação ao Social Relative Performance (SRP). A partir da
definição do SRP, nós projetamos dois mecanismos reativos ao contexto: o Acceptance
Policy Rule (APR) e o Dynamic Search Range(DSR). O primeiro mecanismo muda a re-
gra de aceitação de novas resposta; o segundo, modifica a taxa de exploração e intensifi-
cação da busca em resposta o SRP. Ambos mecanismos foram comparados com o modelo
original já que este não oferece suporta o contexto social — logo, não apresenta alguma
heterogeinidade de estratégias na população.

Para que pudéssemos averiguar o impacto do contexto social na resolução coletiva de
problemas, decidimos realizar dois experimentos principais que foram: identificar (1) a
correlação entre centralidade e o contexto social e (2) o impacto do contexto social na
eficência coletiva. O problema a ser resolvido em todos experimentos foi o problema de
minimização de funções contínuas. Para todos experimentos, foram usadas cinco funções
de avaliação: Ackley, Griewank, Rastrigin, Rosenbrock e Rastrigin. Estas funções são co-
mumente usadas na investigação e verificação de algoritmos de otimização baseados em
sistemas naturais e se distinguem em termos de número de mínimos locais e do grau de
dificuldade. A minimização foi feita em 30 dimensões para todas as funções. Os experi-
mentos também fora repetidos 50 vezes para que pudéssemos descrever o comportamento
esperado do algortimo dentro de um intervalo de confiança de 95%.

Os resultados experimentais serão apresentados nas seções a seguir.

5.1.1 A Centralidade e o Contexto social

Podemos caracterizar um indivíduo em uma rede social pela sua posição na rede (?).
Usualmente, indivíduos que ocupam posições centrais na rede são tidos como indíviuduos
mais relevantes àquela rede. Logo, a centralidade de um indivíduo dentro de uma rede é
uma informação importante. Uma forma de se medir o grau de centralidade de um indiví-
duo é através de sua centralidade de intermediação (do Inglês betweenness centrality). A
centralidade de intermediação de um indivíduo é dada pelo número de caminhos mínimos
entre quaisquer dois outros indivíduos que passam pelo indivíduo em questão.
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Neste experimento, estamos interessados em medir o impacto do contexto social em
indivíduos de diferentes posições sociais. Para tal, serão avaliados os resultados con-
tribuição individual do indivíduo por posição após a quinta milésima iteração. A con-
tribuição individual aqui representa o número de vezes que um indivíduo contribui com a
melhor solução conhecida pelo sistema. Serão usadas duas topologias de rede com pro-
priedades distintas: a primeira topologia é a topologia path, que é construída a partir de
uma topologia em anel onde uma aresta é aleatoriamente selecionada e removida; a se-
gunda topologia é a topologia wheel, onde a partir de uma topologia de anel, um indivíduo
é escolhido aleatoriamente e conectado a todos os demais indivíduos. Na topologia path,
a centralidade por intermédio cresce conforme o indivíduo se afasta das extremidades da
rede. Na topologia wheel, o indivíduo escolhido para se conectar aos demais é o indivíduo
mais central da rede enquanto os demais indivíduos possuem a mesma centralidade.

Ambas topologias foram instanciadas com 16 indivíduos. Foram testados e compara-
dos dois grupos em cada topologia: um grupo de controle, que apresentava reação ao
contexto social (a forma canônica das Redes Meméticas); e um grupo de teste com in-
divíduos que implementavam o mecanismo APR. A figura 5.1a mostra a topologia path
usada onde os valores dentro de cada nó representam o valor de centralidade de intermé-
dio normalizada e os valores fora dos nós representam um índice do nó. Estes índices são
usados para indicar a contribuição do nó na figura 5.1b. Como a centralidade se distribui
de forma simétrica entre os indíviduos ao longo da rede, apenas a metade dos indivíduos
foi representada para facilitar a visualização.

Os dados suportam que (1) a centralidade e a contribuição de um indivíduos estão
de fato bastante relacionadas e que (2) a adaptação ao contexto social faz com que a
contribuição esperada seja distribuída de forma mais uniforme. Além disso, o contexto
social fez com que a contribuição esperada de um indivíduo ficasse dentro de um intervalo
maior.

A figura 5.2a mostra a topologia wheel e a figura 5.2b mostra a contribuição individ-
ual.

No grupo de controle, a centralidade está relacionada diretamente com a contribuição
do indivíduo enquanto esta relação se inverte no grupo de teste, que considera o contexto
social. A contribuição do nó central no modelo APR foi, inclusive, inferior a contribuição
nós periféricos.

5.1.2 A eficiência coletiva e o contexto social

Uma característica descritiva de um sistema de resolução de problemas é a relação
entre a qualidade da melhor solução conhecida pelo sistema e o como essa qualidade
muda ao longo do tempo. Esta relação mostra o quão rápido o sistema convergiu para
boas soluções. Além disso, esta relação aponta se o sistema tende a estagnar a busca pela
solução do problema ou não. Portanto, medir a convergência do sistema podes nos dizer
qual o impacto do contexto social no sistema, ou seja, no coletivo.

Para tal, elaboramos um experimento onde comparamos a convergência do sistema
dos modelos APR e do modelo DSR. O critério de parada foi definido como 5000 iter-
ações com uma população de 36 indivíduos. Este indivíduos foram posisionados aleato-
riamente em um grid períodico de tamanho 6×6. A jusfiticativa para a escolha desta
topologia está no fato de que, nela, todos os indivíduos possuem a mesma centralidade o
que nos permite isolar os efeitos da centralidade no desempenho coletivo e individual. Os
resultados deste experimentos estão expostos na figura 5.3.

O modelo original das Redes Meméticas mostrou uma tendência à estagnação já nas
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Figure 5.1: A contribuição individual média na topologia path. A contribuição mede o
número de vezes que um indivíduo atualizou a melhor solução conhecida pelo sistema so-
cial. A primeira posição representa um indivíduo um uma extremidade da rede enquanto
que a posição representa um indivíduo no centro da rede. As barras verticais represen-
tam um intervalo de confiança de 95%. Os dados suportam que (1) a centralidade e a
contribuição de um indivíduos estão de fato bastante relacionadas e que (2) a adaptação
ao contexto social faz com que a contribuição esperada seja distribuída de forma mais
uniforme. Além disso, o contexto social fez com que a contribuição esperada de um
indivíduo ficasse dentro de um intervalo maior.

primeiras iterações — após aproximadamente 250 iterações para todas funções. Con-
siderando os parâmetros usados, os modelos APR e DSR não apresentaram a mesma
tendência à estagnação. Para todas funções, o contexto social permitiu que o sistema
encotrasse soluções melhores em relação ao modelo original.
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Figure 5.2: Contribuição individual média na topologia wheel. A posição 8 representa o
nó central e as barras verticais representam um intervalo de confiança de 95%. No grupo
de controle, a centralidade está relacionada diretamente com a contribuição do indivíduo
enquanto esta relação se inverte no grupo de teste, que considera o contexto social. No
modelo APR, a contribuição do nó central foi inferior a contribuição nós periféricos.

5.1.3 Conclusões

Este trabalho teve, como objetivo principal, a busca pela compreensão do impacto do
contexto social sobre o indivíduo e sobre o coletivo em um sistema social de resolução
de problemas. Para tal, adaptamos um modelo já existente para que ele acomodasse
uma forma simples de contexto social, o Social Relative Performance (SRP). A partir
da definição do SRP, nós projetamos dois mecanismos reativos ao contexto: o Accep-
tance Policy Rule (APR) e o Dynamic Search Range(DSR). O primeiro mecanismo muda
a regra de aceitação de novas resposta; o segundo, modifica a taxa de exploração e in-
tensificação da busca em resposta o SRP. Ambos mecanismos foram comparados com o
modelo original já que este não oferece suporta o contexto social — logo, não apresenta
alguma heterogeinidade de estratégias na população.

Através de três experimentos, avaliamos o impacto do contexto social no aspecto indi-
vidual e coletivo. Mais precisamente, nós mostramos que a centralidade de um indivíduo
na rede social nem sempre é um bom preditor de sua contribuição quando o mesmo pode
adaptar sua estratégia de busca em resposta ao contexto. Além disso, mostramos que
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(b) Função Griewank.
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(d) Função Rosenbrock.
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Figure 5.3: Evolução da melhor solução conhecida pela pela população no modelo orig-
inal das redes meméticas, no modelo APR e no modelo DSR. As barras verticais repre-
sentam um intervalo de confiança de 95%.

a adaptação ao contexto social, por parte dos indivíduos, pode melhorar o desempenho
coletivo, facilitando a convergência para soluções boas; que a diversidade de estratégias
de resolução do problema não leva necessariamente a uma diversidade de soluções na
população; e que, mesmo que o contexto social seja percebido da mesma forma pelos in-
divíduos, a forma com que eles reagem pode levar a resultados diferentes. Todos estes re-
sultados contribuem para o entendimento de que o contexto social é relevante à resolução
social de problemas e deve, portanto, ser considerado em experimentos relacionados.
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5.2 Published Works

This chapter presents a list of published works that were written during the master
course. These works represent checkpoints of the ongoing and parallel investigations
carried during the master course. Table 5.1 describes the year, conference name, and
some bibliometric information.

Table 5.1: List of Publications in Conference Proceedings.

Year Title Conference Qualis H-Index

2011
Two Novel Algorithms for High
Quality Motion Estimation in High
Definition Video Sequences

SIBGRAPI B1 28

2012
Modeling Adaptative Social Behav-
ior in Collective Problem Solving
Algorithms

SASO B3 15

2012

A memetic Network-based Ap-
proach to Search the 3-D Protein
Conformational Space (Best Poster
Award)

X-Meeting B4 8

2013
Investigating a Socially Inspired
Heterogeneous System of Problem-
solving Agents (accepted)

AINA A2 39

The first parallel investigation we pursued was to determine the applicability of the
Memetic Networks model in the problem of motion estimation. Motion estimation is a
numerical optimization problem performed in 2 dimensions whose objective is to reduce
a kind of data redundancy found in most digital videos: the temporal redundancy. We
instantiated an algorithm called MNA-ME to solve it and found that our algorithm per-
formed poorly in terms of solution quality and number of calculations when compared
to classical benchmark algorithms. We concluded that model of Memetic Networks does
not perform well in the problem of motion estimation that it is likely perform as so in
problems modeled in a few dimensions. The whole exploration was published on the Pro-
ceedings 24th Sibgrapi Conference on Graphics, Patterns and Images (SIBGRAPI-2011)
(NOBLE et al., 2011).

The second parallel investigation studied the effect of hybridization at the population
level of two social models of problem-solving: the Memetic Networks model and the
Particle Swarm Optimization model. Hybridization is usually studied at the individual
level, where a homogeneous population of individuals share search operators from two or
more models. In this investigation, we studied the effects of hybridization at the popula-
tion level, i.e. we placed individuals from different models into the same population. We
found that the heterogeneous model outperformed the two original model in the Rastri-
gin and in the Ackley functions. Otherwise, it performed as well as the best performing
homogeneous model. The results from this investigation were accepted for publication at
the 27th IEEE International Conference on Advanced Information Networking and Ap-
plications (AINA-2013) (NOBLE; ARAÚJO; LAMB, 2013).

The third parallel investigation studied the feasibility of using the canonical Memetic
and the DSR mechanism in the problem of Protein Structure Prediction (PSP) bioinformat-
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ics. In this problem, the model must find the right angles between the chain of aminoacids
that compose a protein. We modeled the problem the as a problem of minimization of real-
functions and used, as objective function, a conformational energy function. We found
preliminary evidence that the DSR mechanism improved over the canonical Memetic Net-
works in that domain. The results were reported at the 5th International Conference of the
Brazilian Association for Bioinformatics and Computational Biology (X-meeting 2012)
(NOBLE; DORN; LAMB, 2012).

We attached the three papers published or accepted for publication that were written
during the master course.
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Abstract—In this paper, we propose two new algorithms for
high quality motion estimation in high definition digital videos.
Both algorithms are based on the use of random features that
guarantee robustness to avoid dropping into a local-minimum.
The first algorithm was developed from a simple two stage
approach where a random stage is complemented by a greedy
stage in a very simple fashion. The second algorithm is based
on a more refined class of algorithms called Memetic Network
Algorithms where each instance of the search may exchange
information with its neighbour instances according to some rules
that control the information flow. The proposed algorithms were
implemented and tested exclusively with high definition sequences
against well known fast algorithms like Diamond Search and
Three Step Search. The results show that our algorithms can
outperform other algorithms in quality yielding an increment
in complexity that may be amortized if resources for a parallel
execution are available. Additionally, we provide further evidence
that fast algorithms do not perform well in high definition.

Keywords-Motion Estimation; Video Coding; High Definition

I. INTRODUCTION

Most modern video coding standards like H.264/AVC, for
example, use block motion estimation (BME) together with
motion compensation (MC) as a way to reduce or eliminate
temporal redundancy in uncompressed video streams [1]. By
doing so, BME and MC account for a large proportion in
the reduction of the bit rate. However, this technique also
represent the most computationally complex module of the
coder [2]. In fact, motion estimation can consume up to 60%
of the total encoding time of the H.264/AVC codec when just
one reference frame is used [3].

To tackle this complexity, several fast algorithms have been
proposed. Such algorithms rely on heuristics and metaheuris-
tics to guide how the sampling of the solution space is
conducted. Some well known representatives of this class of
algorithms include: The Three Step Search algorithm (TSS)
[4], one of the first fast ME algorithms proposed; Diamond
Search (DS) [5], which uses two geometrically shaped search
patterns, and Hexagon-Based Search (HEXBS) [6].

For applications where low bit rate is a key issue, e.g. cell
phones, all these algorithms perform well provided that, in this

context, fast and complex motion tends to be infrequently [7].
In this paper, we will present two novel algorithms for motion
estimation in High Definition (HD) which were specifically
designed to achieve high quality in this context while enjoying
comparable computational complexity of fast algorithms pre-
viously developed. Furthermore, we will also show evidence
that fast algorithms do not produce satisfactory results in face
of HD digital video coding. Hence the importance to address
inherent features of HD in the development of modern ME
algorithms.

This paper is organised as follows: Section II gives an
overview of the basics of motion estimation and related work.
Section III will introduce in detail our two proposed algo-
rithms. In Section IV, experimental results and their impact
are described. Finally, we draw the conclusions and point out
future research directions.

II. ON MOTION ESTIMATION

An uncompressed digital video has many kinds of informa-
tion redundancy. One of them is temporal redundancy, which
is related to the spatial similarity that temporally correlated
frames have. This superfluous information is an effect of the
temporal sampling of a video where, commonly, 30 frames are
condensed in a second so a human viewer can have a feeling of
real-time movement. For a digital video to be more efficiently
transmitted or stored, one needs to eliminate this information
redundancy with within limits of what is acceptable in terms
of image quality loss.

The ME/MC module of a block-based video encoder at-
tempts to reduce the temporal redundancy by compensating the
motion in a video through translating or warping the samples
of the previously transmitted reference frame, which in its
turn is likely to very similar to the actual frame yet to be
encoded. The resulting motion-compensated predicted frame is
then subtracted from the current frame to produce the residual
frame [8], which is potentially a sparse matrix that can be more
easily coded by the next stages of the coder. The more efficient
the ME process is, the more efficient the compression becomes
because less residual energy, or error, needs to be encoded and
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less information should be discarded in the quantization step
for a fixed bit rate.

In a block-based video coding scheme, a frame is subdivided
into non-overlapping blocks of pixels. These blocks may have
sizes of 4 × 4, 8 × 8, 16 × 16 or any combinations of these.
The size of the block used and the possibility of adopting
multiple block sizes are completely dependent upon the video
standard in question in these choices considerably affect the
coding efficiency and complexity of the ME process [9].

The motion vector (MV) for a given block is achieved by
conducting an algorithmic search which tries to minimize the
value of a matching criterion. The most commonly used and
one of the simplest criterion is the sum of absolute differences
[2], [8], or SAD, which is calculated from the current block
(which comes from the actual frame) and an equally sized
reference block (which comes from the reference frame).
Equation (1) depicts the SAD formula between two blocks
of the same size where R represents the reference block and
C, the current block.

SAD(R,A) =
N∑

i=0

N∑

j=0

∣∣R(i,j) − C(i,j)

∣∣ (1)

The spatial distance (measured in Cartesian coordinates)
related to the best of all candidate reference and the current
block is kept and it represents the MV. Regularly, the search
for the MV is limited by a range in horizontal e vertical axis,
called search window. This simplification significantly reduces
the number of reference blocks to be analyzed. The search
window may also be referenced as search range in the sense
that a search window of N ×N is equivalent to a search range
of (±N/2, ±N/2). In this work, both concepts will be used
interchangeably kept the right meaning.

The complexity of a Block Matching-based encoder largely
depends upon motion estimation and the rate-constrained
control [1]. However, the main goal of ME is to predict
the actual frame as precisely as possible so less residual
information needs to be processed and then transmitted. These
two objectives are contradictory because usually the more
precision is required, the more computationally demanding the
search becomes. The trade off between these aspects depends
on the application.

When precision (and thus objective quality) is the main
objective, the Full Search (FS) algorithm is the best candidate
since it evaluates all the possible reference blocks within the
search window. However, due to the very high computational
cost that this exhaustive search method demands, practical
applications are hindered from using it. Generally, algorithms
developed for ME try to maximize PSNR while minimizing
the computational effort. It is useful to define the most used
objective quality metric [10], the peak-signal-to-noise ratio
(PSNR), shown in equation (2), in it R represents the reference
frame and C, the current frame.

PSNR = 20 · log




255√
1

N2

N∑
i=0

N∑
j=0

(
R(i,j) − C(i,j)

)2




(2)

A. ME in High Definition

In our findings, we compared SAD maps so we could have
a visual comprehension on how the solution space would seem
like. These maps were built using the Full Search algorithm
by plotting SAD values into a Cartesian coordinate system
where each point of these maps represent the SAD value of
that block. Figure 1 depicts one set of these maps for the same
region of the same video in different resolutions. Note that the
search window of each map remains proportionally the same
and the center of the space solution is represented exactly
at the center of a relative map where darker regions indicate
better block matchings than brighter areas. The resolution is
seen at the bottom of the respective caption.

In Figure 1a, the global optima can be clearly seen, near
the center. This pattern is somehow common for sequences in
this resolution. In an optimization context, a greedy approach
would yield very satisfactory results since this search process
will converge to a global optima solution most of the time.
This hypothesis partially explains why fast algorithms reach
almost the same quality performance of full search for low
definition sequences.

Nevertheless, for a larger resolution in Figure 1b, two
regions can be seen in the map. Both, can potentially hold
the global optimum and break the previous pattern. The ME
in this map can be considered more difficult than in 1a since
one needs to widen the search to better evaluate the solution
space. This observation is also valid for an enhanced definition
sequence in Figure 1c, where the map gets even rougher and
one may not notice with certainty the difference between the
global optima and local optima. Estimating motion in high
definition gets even harder as can be seen in Figures 1d and
1e where a very complex and rough map with lots of valleys
and hills that may intricate the problem even further.

Generally, as resolution grows the motion estimation also
becomes more difficult in the sense that more search points
may need to be evaluated. Considering the recently available
consumer electronics devices such as HD digital video broad-
casting [7], this is an evidence that ME in HD may become
a central issue in the forthcoming years. To the best of our
knowledge, there is a paucity of results about this issue, which
requires further research.

B. Related Work

Several algorithms have been proposed to efficiently find
motion vectors. All the previously mentioned algorithms could
be seen as classical algorithms, because they have influenced
many modern algorithms and techniques. They are generally
considered fast algorithms because they do not search the
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(a) LD 144p (b) UMD 272p

(c) ED 480p (d) HD 720p

(e) HD 1080p

Fig. 1: SAD maps for the block in different resolutions of a
same sequence.

entire solution space. As a result, the motion vectors they find
are not necessarily the optimum ones.

Three Step Search (TSS) was one of the first algorithms
proposed to deal with this problem [4]. The TSS algorithm
selects nine search points: one at the center and eight concen-
trically positioned points at the same distance. This pattern is
repeated two times; at each step, the center of the eight points
is the best evaluated block from the last step and the distance is
divided by a factor of two. This algorithm was very successful
and widely adopted in the early stages of video coding [11]
due to its simplicity and regularity. The NTSS [12] algorithm
is more recent improvement over it.

The Diamond Search Algorithm [5] is a well-known algo-
rithm that led or influenced various other algorithms like the
Hexagon Search algorithm (HS) [6] which uses a hexagon
shaped geometry to execute the search. In its turn, HS
has spawned Unsymmetrical-cross Multi-hexagon-grid Search
(UMHexagonS) [3]. The work of [2] proposes the improve-

ment of the UMHexagonS algorithm. In [13], the three-
dimensional predict hexagon search (3DPHS) algorithm is
proposed. This algorithm uses a rood-shaped search pattern
at the fist two searching steps with a higher probability to
get motion vectors and it can predict the object movement in
horizontal and vertical direction. Most of these algorithms rely
on using techniques to improve a common ancestor and in fact
should be regarded as algorithmic improvements but not, up
to a certain extent, fully original algorithms.

None of these algorithms is focused on high definition or
is evaluated as such. In [14], the Dynamically Variable Step
Search (DVSS) algorithm is proposed. However, qualitative
results in terms of mean absolute differences (MAD) are
not carried out in high definition sequences although the
hardware architecture proposed is capable of processing 1080p
video streams in real-time. In [15], two new random search
algorithms are proposed, but their conclusions so far are highly
prone to deviate from a HD real case scenario since the
evaluation is conducted for only 20 frames of two non-HD
sequences.

The need for developing algorithms for high definition
ME has only been recently addressed. In [7] the Recursive
Dynamically Variable Step Search (RDVSS) ME algorithm
for real-time processing of HD video formats is proposed.
This algorithm is an improvement over the DVSS algorithm
and it dynamically determines the search patterns that will
be used for each block based on the MVs of its spatial and
temporal neighboring blocks. The algorithm qualitative evalu-
ation is solely performed in high definition videos sequences.
Although no quantitative evidence about why fast algorithms
perform poorly on HD case studies, the results presented point
the same tendency that our qualitative analysis.

III. THE PROPOSED ALGORITHMS

In this section, we will introduce our algorithms and explain
each one accordingly.

A. The Random Search Algorithm RS4

Considering that motion estimation is a non-convex opti-
mization problem, randomized techniques are a common tool
in this kind of optimization [15]. The sole use of a greedy
heuristic to guide the search would not suffice to accurately
estimate all kinds of motion. This can be intuitively perceived
by analyzing Figure 1e. Following this idea, it is possible to
draw that combining these two approaches may have some
advantage over a single particular approach. Howerver, we also
assume that a completely random search is not efficient since
it ignores some common and well-known patterns of motion
estimation.

Discovering a new pattern that can be explored to improve
the ME is a central issue in the design of motion estimation
algorithms. For instance, it is commonly assumed that the
matching error will decrease monotonically when approaching
the global best point [3]. It is important to know that this
assumption does not hold true for video sequences especially
for those with large motion content [5]. These statements may
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seem contradictory but by joining these ideas with random
search, we can derive that a previously applied random search
step could open some solutions of the whole space and then
select the best one for positioning the local step search. This
local step search can be guided by a greedy heuristic and may
use even a common geometrical search shape.

Assuming that high definition sequences particularly benefit
from large search ranges [16], the randomization becomes a
very attractive approach and it is based on these observations
we propose a novel algorithm: the Random Search 4 (RS4)
algorithm.

The search in RS4 is done in Two Steps: the random step
and the iterated local step. Before the execution of the random
step, the central search point and its four neighbour points at
distance 1 are evaluated. Thus, this step guarantees that the
search is executed at the middle where for stationary takes the
best candidate is likely to be. Then, with uniform probability
N points within the search window are chosen to be evaluated
(random step). The best candidate among the 5+N is set aside
so that its position will be used as the center for the iterative
local step. This step step iterates using the SDSP pattern [5]
until the stop criteria is reached, that is the new evaluated
block presents no advantage over the last best candidate.

B. The Memetic Network Algorithm MNA-ME

Memetic Networks is a class of algorithms that define a
population which is able to communicate through a network
[17]. This approach has the advantage of being flexible enough
to adapt to many problems of optimization. Differently from
other multi-agent based algorithms, the performance of a
Memetic Network is strongly affected by the way the agents
are connected, how they exchange information and how this
information affects their current context. The Memetic Net-
work model can be seen as a model of cultural evolution in the
sense that a meme (that is a piece of information) may spread
through a population in a fast manner when compared to a
gene in a Genetic Algorithm (GA). An instance of a memetic
network is created from three well-defined rules where each
rule applies equally to all agents:

I Connection Rule: tells how the agents should connect, that
is, to whom one agent should connect to. Distinct rules
will generate distinct topologies where some topologies
are more adequate to particular problems than other.
This rule definition allows one to borrow theorems from
network science.

II Aggregation Rule: this rule is responsible to manage how
one agent’s meme (or solution) should influence their
respectively connected agents.

III Appropriation Rule: tells how the agent should manipulate
the meme it has. For instance, it could be any metaheuris-
tic used in a local iterated search algorithm.

As one may realize, this model is extremely flexible in
the sense that rules are defined from a very abstract context.
Moreover, this model is extremely powerful because it could
unify different metaheuristics and techniques into a single and
hybrid instance.

The memetic network model has some advantages over a
purely GA approach. One of them is that an instance of this
model may converge faster than a GA to a good solution and
this is particularly interesting in the case of the ME problem
especially for real-time video coders. This advantage and the
structural simplicity of a memetic network form together the
main motivation to the use of an instance of this model focused
on the HD ME problem. We thus propose a new memetic
network-based algorithm called MNA-ME.

In the MNA-ME, one agent always start in the center and
the others should start in random positions inside the search
window. Given that, the three rules are defined as follows:

I Connection Rule: each agent should necessarily connect
to the central agent and with the agent who holds the best
current solution. This way, each agent should know where
is the best ranked agent, that is the best block matching
achieved so far. This rule is represented by a matrix which
is updated at each iteration.

II Aggregation Rule: the agent which has incoming con-
nections spatially “attracts” the connected agent by a
factor named aggressiveness denoted by α. The higher
this factor is, the stronger will be its influence.

III Appropriation Rule: the agent, after exchanging informa-
tion, performs a full search in the range (±1, ±1) and
changes its current location to better solution if one is
found.

It is useful to further explain the aggressiveness parameter
which denotes the factor by which an agent should change
its positions according to connections made so far. This
parameter may vary from 0.0 to 1.0 but is fixed throughout
the computation. The value 0.0 denotes no influence at all,
while the value 1.0 replicates the best agent rendering itself
irrelevant. A value of 0.5 puts the connected agents at the
middle of the original distance between them.

IV. EXPERIMENTAL RESULTS

As our objective with both algorithms is to achieve high
quality in high definition, the test sequence set should be
composed exclusively of HD sequences. These sequences are
freely available at [18] and their resolution is 1920x1080
pixels progressive (1080p). Motion estimation and motion
compensation were executed solely on luminance samples and
the PSNR was obtained comparing the original frame and the
motion compensated frame that is, the output of the MC (the
residual frame was discarded). This decision is justified in
the sense that this work is not tied to a single video coding
standard, but rather to a conceptual point of view. Adopting
this principle is useful in the sense that it contributes to the
generalization of our contribution.1

Our main complexity metric is the number of evaluated
search points (ESP). Since the processing time grows linearly
with the number of evaluated blocks, the time length of each
simulation was also discarded. The block size used was fixed

1The algorithms RS4 and MNA-ME were implemented in C so they could,
in principle, be evaluated in terms of complexity and objective quality.
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in 4 × 4 pixels because more vectors would be generated
and consequently a more precise motion estimation process
would be carried out. Using a small block size is not a
problem at all since a bottom-up variable block size algorithm
[19], [20] can be used to achieve larger block sizes that in
turn may reduce the number of vectors to be encoded. Thus
improving the coding efficiency of the coder as a whole. No
SAD sampling technique was used in our experiments and
only the first two hundreds frames of each sequence were
considered (approximately 8 seconds).

Since the RS4 and the MNA-ME are essentially stochastic
algorithms, their results may change from distinct executions
for the same input. This feature renders the need of running the
execution many times, so the expected behaviour can be better
know. For our experiments, both algorithms were executed ten
times for each sequence for a given set of parameters and the
mean absolute deviation rendered itself not significant, being
less then 0.02 in average for PSNR. Figure 2 presents the
results of the RS4 algorithm for each sequence video test
set where each line represents a different size of the search
window used. A search window of 16 × 16 means that the
range of search is from −8 to +8 and so on. The number of
search points chosen for the random step was 16 since this
value is approximately the upper bound for the DS algorithm
with 4 iterations.

The first result to be noticed is that sequences like pedes-
trian area and riverbed can be better coded using a bigger
search range. These sequences are motion intensive and the
64 × 64 search window presents considerable gains over the
32×32 search window of 1.46db and 1db respectively. These
values are considerable high considering the logarithm scale of
the PSNR metric. On the other hand, the RS4 algorithm shows
better efficiency with a small search window on sequences
with low motion information, namely station2 and sunflower.
For the sequences tractor and rush hour, the 32 × 32 search
window yielded the best results.

The MNA-ME algorithm was tested with the fixed con-
nection rule described in Section III and three agents only
to keep complexity under an acceptable limit. However, the
aggressiveness parameter was evaluated in the range [0, 1]
with 0.2 incremental steps. This evaluation would allow us
to better understand how much a single node may interfere on
its neighbor nodes in different space solutions. For example,
a rough space solution search may be privileged by a higher
aggressiveness since less time would be spent in potentially
low quality solutions. In Figure 3, the results of this study are
presented.

All results in Figure 3 were evaluated for a window size of
256x256. The decision to use such a relatively large search
area is to make the motion estimation difficult especially for
the random step so a real hard test would be endured by
the MNA-ME algorithm. According to the results, there is a
correlation between aggressiveness and the objective quality
which holds true for all sequences except sunflower and
station2. The optimum value for this parameter considering
the test set was 0.2, which is a relatively small value.

For a more wider comparison with our algorithms, one
should carry out evaluations of classical algorithms even if
their focus is not HD. Thus, for completeness we considered
both fast classical algorithms and one exhaustive search. The
former with relatively large fixed search window range and
the later with different search window ranges. This data is
available in Table I where the average results of each algorithm
for the test sequences are introduced. The table contains the
quality metric (PSNR in db) and the complexity metric (ESP)
for a given search range. The algorithms implemented and
evaluated were: the Diamond Search (DS) algorithm, the Three
Step Search algorithm (TSS), the 4 Step Search algorithm
(4SS) and the Full Search algorithm.

TABLE I: Comparative of the proposed with the classic
algorithms.

Algorithm PSNR ESP (×109) Search Range

RS4 34.43 0.723 (±8,±8)
RS4 34,87 0.716 (±16,±16)
RS4 34,82 0.719 (±32,±32)
RS4* 35,51 - -
MNA-ME 33,27 0.983 (±128,±128)
TSS 32.77 0.697 (±64,±64)
4SS 34.7 0.928 (±64,±64)
DS 33.46 0.637 (±64,±64)
FS 35.08 7.429 (±8,±8)
FS 38.33 26.542 (±16,±16)
FS 40.21 106.168 (±32,±32)
FS 41.31 424.673 (±64,±64)

Except for the range (±8,±8), the RS4 algorithm presented
PSNR gains over the DS, TSS and 4SS algorithms. In the case
of RS4 algorithm in the search range of (±16, ±16) gains
of 2.1db, 1.41db and 0.17db in PSNR were achieved over
TSS, DS and 4SS respectively. Considering the ESP, the RS4’s
complexity is very close to the TSS and is just 11% higher.
It should be noted that a fixed N value was used and that
this ESP is closely related with it. As it can be seen, the RS4
algorithm better evaluates a search window when compared
to other fast classical algorithms. This in turn reflects in less
burden to memory buses since small data chunks are needed.
Compared to the smallest FS, the RS4 achieves in average
0.65db less in PSNR but does approximately 10 times less
block operations. Since the FS explores all possible candidate
blocks, its ESP grows exponentially as the search range grows.
However, the PSNR seems saturated at search ranges larger
than (±64, ±64). The RS4* row presents the average result
of the best search range among (±8, ±8), (±16,±16) and
(±32, ±32), that is the range maximize PSNR for a given
sequence and its relevance is to show that a adaptive search
range technique may improve considerably the quality results
for a fixed N value. Furthermore, it is important to note that the
results in this case were better than the Full Search algorithm.

59



 28

 30

 32

 34

 36

 38

 40

blue sky pedestrian riverbed rush hour station2 sunflower tractor
 28

 30

 32

 34

 36

 38

 40
P

S
N

R
 in

 d
B

Video sequence

16x16
32x32
64x64

Fig. 2: The effect of search window size in RS4 PSNR results.

The MNA-ME algorithm did poorly in quality and com-
plexity since it did not outperform the DS and the 4SS,
achieving quality gains only over the TSS algorithm. These
results present evidence that our current approach may not
be the optimal one. In particular, the failure to achieve a
good quality on HD ME merits further investigation about the
problem, instance of the model and the model itself. This may
also suggest that a fundamentally different approach is needed,
combining a more straightforward approach in the design of
the algorithm. One hypothesis is that distinct agents may leave
too soon their current local optimal in favour of other agent
information. This in turn could be a trap since the former
agent could possible reach a better solution give time for it.
Moreover, the agent that provided the information could be
stuck in a local minimal.

A possible solution would be allowing to have agents that
do not share information neither allow others to see their
solution since this approach would allow some agents to
better explore its neighbour blocks. Another solution would
be adopting an information exchange strategy similar to a
simulated annealing where one may locally explore its close
solution at the beginning and as time advances they become
more willing to influence of other agents. This approach may
guarantee better local space solution evaluating we believe.

Comparing the results of new algorithms would be per se a
relatively important contribution but this is not the focus of this
work. For simplicity, we assume that the improvements they
present over the original classical algorithms are essentially
dependent of the performance of the root algorithm for a
specific video sequence.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced two novel algorithms for high
quality motion estimation for high definition coding. The first
algorithm, the RS4, relies in an initial random sampling that is
further refined by a greedy search step. Although very simple,
the RS4 algorithm presented good results with the advantage
that it could be better tuned in real time by adjusting the
N parameter dynamically according to the video input. This
feature has not been implemented yet, but it has the potential
to reduce the number of search points calculated for low
motion sequences and then spend this saved computations
when needed and thus providing a better solution at all.
Additionally, dynamically adjusting the search window and
using a motion prediction vector algorithm may help the RS4
algorithm to achieve a better trade off between complexity and
quality.

The other algorithm was based on a population-based
stochastic optimization class of algorithms in which individu-
als exchange information through the underlying network. This
algorithm was based on a memetic network algorithm. The
rules were appropriately defined for the ME application and
the resulting instance was called MNA-ME. This instance was
tested in for high definitions sequences and our results implied
that the choice of the rules (especially the connection rule) may
not be the optimum one since the results were somewhow
limited in terms of quality and complexity. Perhaps, this
empirical study also revealed more fundamental issues related
to the MNA class. Although addressing and solving these
issues with the model is not the focus of this work, it is
worth to mention that one still lacks an efficient methodology
to instantiate an optimization algorithm of this class for a
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specific problem. This issue is completely understandable in
the sense that MNA is a relatively new general model for
solving problems.

Another contribution of this work is that we provided further
evidence that fast algorithms do not perform well for high
definition video sequences and that all the work related to
this field should consider addressing this point by executing
the simulations for HD contents also. This point is consistent
with the ever increasing demand for high definition content
to the final user. Moreover, we believe that it is important to
bring this point into consideration.

As future work, we pretend to improve both algorithms and
implement them inside a real coder so that bit rate data could
be obtained from simulations. For instance, new topologies
should be evaluated for a new MNA-ME instance like small-
worlds, hierarchical and sparsely-connected topologies, etc.
We also pretend to experiment SAD subsampling techniques
with our algorithms since they do not affect the quality in a
significant way [21]. Besides, a hardware implementation in
an FPGA device for RS4 algorithm is currently being planned.
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Abstract—Collective problem solving can lead to the devel-
opment of new methods and algorithms that can potentially
contribute to novel Artificial Intelligence applications and
tools. Socially-inspired optimization algorithms are a class
of algorithms that aim at conducting a search over a large
solution space using mechanisms similar to how humans solve
problems in a social context. Several such algorithms exist
in the literature, including adaptations of classical ones, such
as Genetic Algorithms. These models, however, do not take
into account a fundamental concept in human social systems:
the individual ability to adapt problem-solving strategies as
a function of the social context. In this paper, we propose
and investigate an extension inside a socially-inspired model of
collective problem solving which allows one to model agents
with such adaptability. This extension is based on the concept
of humans as “motivated tacticians” and it dictates how agents
are to adapt their search heuristics according to their respective
social context. We show how this rule can speed up the
system’s convergence to good solutions and improve the search
space exploration. The results contribute towards the design of
socially inspired computational systems for collective problem-
solving.

Keywords-Computational Intelligence; Swarm Intelligence;
Optimization

I. I NTRODUCTION

A central issue in Artificial Intelligence is how to effi-
ciently perform search for solutions in a very large search
space [1]. Several heuristics exist that try and reduce the
need for computational resources over exhaustive search
methods. These heuristics are developed with a “strategy
first” approach which renders them as black box generalist
methods. Analytical results showed that no such black box
algorithm can outperform every algorithm across all domains
[2]. This important result points that the development of an
algorithm must be bound to its application, incorporating as
much information as possible about the domain. Yet, there
the study of black box optimization algorithms is a strong
research area and its main motivation is to devise algorithms
which could be used as last choice when there is little to
no information about the problem to be solved. Complying
with this motivation, is the need to better understand search
mechanisms and their limitations.

A somewhat recent trend in the design of search heuristics
is to take inspiration in social systems, by using parallel

computing to represent many simultaneous search that some-
how exchange information. Such systems can be composed
of e.g. social insects [3] or simpler “inanimate” particles
[4]. Human social systems have recently gained attention
and some heuristics try and capture some aspects of human
social networks [5]. The motivation for such heuristics range
from understanding how these social systems work in the
real world to constructing algorithms that can perform well
in certain scenarios.

These socially-inspired models typically employ agents
that are simple rule-based automatons, unable to adapt to
any information discovered during the search. To do so, we
modified an instance of the Memetic Network metamodel [5]
to allows agents to adapt their search heuristic based on the
social context information.

We provide preliminary experimental results on the effects
of introducing such concept in several optimization scenar-
ios composed of minimizing multidimensional real-valued
functions. The results provide evidence that allowing social
adaptation can be beneficial to the search as a whole.

The paper is organized as follows. Section II provides the
necessary background to understand Memetic Networks and
provides a standard instance of the model for real-valued
function minimization. Section III introduces the extension
of the model by which agents are allowed to adapt their
search behavior. Section IV presents the experimental setup.
Section V presents and analyzes the results. Section VI
concludes the paper and point out directions for further
research.

II. T HE MEMETIC NETWORK MODEL

Memetic Networks is a recent metamodel inspired by
how humans collectively solve problems [5]. It basically
determines guidelines for the development of a system
whose task is to search for the best solution to a given
problem. The development of such system may be driven
solely by the search task. However, one may also want
to investigate the effects of modeling real social features
into artificial social systems by objectively measuring the
performance of the system in the search.

The metamodel defines simple elements such as nodes,
memes and links and also defines rules that state how
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these constructs relate to each other. The concepts behind
elements and rules are problem invariant, however their
implementation is not: one needs to encode information
about the problem’s domain in order to build an effective
problem solving system. In this sense, the Memetic Net-
works metamodel is a not a purely blackbox box method
for optimization, but rather a guideline for structured design
of algorithms with embedded information about the problem
domain.

A memenetis the final construct when one assembles the
Memetic Network’s elements and then describes the rules
by which the elements will interact. The memenet’s main
objective is to achieve better solutions in less iterationsthan
purely independent and isolated nodes would achieve. To do
so, it allows nodes to, a nodes in a memenet are allowed to
exchange information.

The computing mechanism behind Memetic Networks
is represented by nodes. Each node contains a complete
solution to the problem at hand. This solution can be (i) eval-
uated using a global evaluation function, and (ii) compared
or ranked against other solutions. Nodes are responsible
for retrieving, aggregating and processingmemes, which
are the minimal meaningful pieces that compose complete
solutions. The meme concept is partially based in ideas from
Dawnkin’s book,The Selfish Gene[6]. Links connect nodes
and ultimately determine a supporting “social” network. If
there is a link between two nodes, then these nodes are
allowed to exchanging memes in both directions.

The Memetic Network elements alone are not self-
sufficient to perform search, it remains necessary to define
how these elements will behave when assembled together.
This is accomplished by three rules, which roughly capture
how humans process information in a social context [5].
These rules detail how nodes choose to connect to each other,
how information is retrieved from the social network and
how individual nodes contribute to a solution being sought.
Each rule is detailed in what follows.

Connection Rule— Defines how the nodes should con-
nect, that is, how links are to be established. This rule can be
performed once before the search takes place, characterizing
a static network topology. Alternatively, the connection rule
can be executed during the search process so the network
topology can evolve together with the system. As in other
socially-inspired models1, there is currently no conclusive
evidence about what topology is generally better for specific
types of problems [7].

Aggregation Rule — This rule controls the interaction
between connected nodes, that is, how nodes retrieve and ag-
gregate information from their network neighbors. Typically,
a node retrieve information2 from better ranked neighbors

1e.g. Particle Swarm Optimizers
2Retrieval of information is considered noiseless. It remains an open

question whether communication noise could be benefical ornot for
population-based optimization problems.

only. After retrieving memes, a node must aggregate —
i.e. combine — them to assemble a new solution. The
aggregation rule must also describe algorithimically how
these memes are to be combined. Aggregation is highly
dependent on the network topology3.

Appropriation Rule — In possession of the recently
aggregated solution, a node may add some novelty to it. In
this step, local information is added to the solution, allowing
memenets to explore the search space, much in the same
way mutation works in genetic algorithms. Appropriation
can happen by simple random changes to the solution or
by applying some deterministic local search to it (in a
similar fashion to Genetic Algorithms [8] and Memetic
Algorithms [9] respectively).

Although the aggregation and the appropriation rules
depend on the problem at hand, the structure of a memetic
network algorithm is the same across different problems.
Algorithm 1 describes this structure if one is to model a
static — the connection rule is performed once only — fully
connected network. Thestop conditioncan be the number
of iterations or a desired solution quality threshold.

Now that the structure of the metamodel is described, we
need to instantiate the model to the problem of minimization
over multidimensional real functions. This is done in the next
subsection.

A. Memetic Networks for Function Minimization

In this subsection, we will define the elements and the
rules to build a memenet capable of performing minimiza-
tion over multidimensional real functions. A solution for this
problem can be coded as a real-valued array where each
component represents a position inside a single dimension
of the search space. Every solution has an evaluation and
the goal is to find the solution that minimizes this evaluation
function.

Having defined the problem, it is possible to build a
straightforward memenet by associating an array to a node
and a meme to an array component. So if we are working
with a function in an-dimensional space, a node will store
an array of sizen where each component of this array
will be considered a meme. Links in our memenet will
be bi-directional and static, these features will keep the
model essentially simple while still in accordance with our
objectives. For comparative purposes, every node will also
carry the function output from the last function evaluation.
This value is calledcost for this is a minimization problem.

The aggregation rule retrieves and then combines memes
from better ranked neighbors to create a new solution. This
process is described in Algorithm 2. A node first creates
a MemePool. The purpose of this structure is to store
solutions that came from neighbors with lower scores and

3This feature is where socially-inspired optimization algorithms differ
the most from Evolutionary Algorithms.
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Algorithm 1: Pseudocode for the Memetic Network Algorithm using a staticfully connected network.
Input : Populationsize, Problemsize

Output : Solutionbest

memenet ←− InitializePopulation (Populationsize,Problemsize)
foreach node ∈ memenet do

nodeneighbors ←− All nodes frommemenet

repeat
EvaluatePopulation (memenet)
foreach node ∈ memenet do

betterNeighbors←− RetrieveBetterRankedNeighbors (nodeneighbors,nodescore)
SolutionAggregated ←− Aggregate (betterNeighbors,Problemsize)
SolutionAppropriated ←− Appropriate (SolutionAggregated, Problemsize)
nodeSolution ←− SolutionAppropriated

Solutionbest ←− RetrieveBestSolutionFrom (memenet)
until stop condition
return Solutionbest

also the nodes own solution. Each component of the solution
is replaced by a respective meme of theMemePool list, that
is a meme from the same position of the available arrays. All
solutions fromMemePool have equal chances to be chosen.

Algorithm 2: The aggregation rule instantied to mini-
mization.
Input : BetterNeighbors, Problemsize

Output : Solution

MemePool←− RetrieveSolutions (BetterNeighbors)
Append node’s solution toMemePool
Solution ←− ∅
if CountSolutions (MemePool) > 1 then

for i← 1 to Problemsize do
SolutionChosen ←−
RandomlyChooseASolutionFrom (MemePool)
Solutioni ←− SolutionChoseni

else// When the node has no better
neighbor, its solution is kept.

Solution ←− CurrentNodeSolution

return Solution

Aggregation does not generate new memes because it only
compose new combinations from already known solution
components. To address aggregation’s inability to add inno-
vation, the memetic network employs a mechanism which
allows nodes to modify their memes. A stochastic simple
mechanism is portrayed in Algorithm 3. For each component
of the solution, a valid meme is generated and attributed
with probabilityPappropriation. As with mutation probability
in genetic algorithms, thep value should be small enough
so that convergence is not drastically disrupted. All valid
memes have the same probability of being generated in this
process.

Algorithm 3: The appropriation rule instantied to mini-
mization.
Input : Solution, Problemsize, Pappropriation

Output : Solution

for i← 1 to Problemsize do
With Pappropriation probability:

Solutioni ←− RandomlyChooseMeme ()

return Solution

III. M ODELING ADAPTATIVE SOCIAL BEHAVIOR

In the last section, we described an appropriation method
for the problem of function minimization. By that method,
all nodes in the population follow the same fixed and uncon-
ditional set of steps, insensible to social context. This feature
contradicts the evidence social psycologists have that in real
social systems “individual behavior is strongly influenced
by the environment, especially the social environment” [10]–
[12].

We hypothesize that if an agent is capable of infer its so-
cial context, then adapting its search behavior may improve
not only its results but also the collective performance in
minimization. We further qualify our hypothesis by specify-
ing that nodes which are faring well (good social context)
must exploit more their good solution Our investigation then
aims at the analysis of the effects of the influence the social
environment has in socially sensible agents.

In the context of Memetic Networks, we could define
socially sensible agents as agents who know how its social
relative performance. Based on its social relative perfor-
mance, an agent is capable of adapt its search behavior then
during the appropriation step. This is justified because in
this step, no memes are exchanged anymore and the node
is to improve its solution by itself

To test our hypothesis, we must decide (1) which clues
will be used to guide appropriation and (2) in what ways ap-
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propriation will implement different search behaviors. There
are many answers to each these questions though we are
interested in the simplest ones. Regarding the first question,
a node could be allowed to count how many nodes are faring
better than it. Regarding the second, a node may dynamically
manipulate the search space range. Hitherto, we need more
formal and concise description of the previous answers.

We define aSocial Relative Performance(SRP) ratio to
determine how well a node fairs in social context. The idea
is to allow agents to infer social context by counting how
many neighbors are faring better than them. The SRP ratio
is given by Equation (2) whereB is the set of better ranked
neighbors of noden andT the set all neighbors ofn. This
is a utterly simple property a node have and can be easily
computed during the search.

SRP (n) =
|B|
|T | (1)

Therefore, the best ranked node in the network will have
an SRP of0.0 and the worst node an SRP of1.0.

We propose adapting a node’s search heuristic by con-
trolling how much it changes the solution as a function
of its SRP. Instead of randomly replacing a meme with
any meme during appropriation, it may be reasonable to
attribute a higher probability to “closer” memes when the
node is performing well (i.e. favor small changes to the
solution when one is doing well compared to their peers).
Alternatively, a node which is performing poorly compared
to its peers may benefit from modifying its solution to a
greater extent. A similar approach in Genetic algorithms
(GA) is to use Gaussian mutation operators [13]. Our
contribution is new in the sense that it regulates such
adjustment through the provided social context, something
which essentially GAs lack.

In order to instantiate the above reasoning, we define
∆ to be the maximum variation allowed when modifying
each component of the solution (i.e. when choosing the
a new component for the solution, it must vary at most
with ∆). The simplest choice to relate SRP with search
heuristic is to adapt the range according a linear function.
Equation (2) describes this function, whereMax andMin
represent the maximum and minimum values allowed by
the representation of the problem, respectively. The constant
α defines the minimum amount of variation possible is
bounded by the machine representation.

∆ = (|Max|+ |Min|)/ 2× SRP + α (2)

In this equation, a node with an SRP equals to zero — i.e.
the best ranked node in the neighborhood — will have an
effective search range of[−α, +α] while the worst node will
have a search range of[−(α + (|Max|+ |Min|)/2), +(α +
(|Max|+ |Min|)/2). Nodes with intermediate performance
will have linearly intermediate search ranges. We call this

appropriation algorithmR* in reference to range adaptation
and we describe it in Algorithm 4.

Algorithm 4: The R* appropriation rule instantiated to
minimization.
Input : Solution, Problemsize, Pappropriation,

nodeNeighbors

Output : Solution

Better ←− CountBetter (nodeNeighbors)
Total ←− Count (nodeNeighbors)
SRP ←− Better/Total
∆ ←− (|Max|+ |Min|)/ 2 × (SRP ) + α
for i← 1 to Problemsize do

With Pappropriation probability:
Solutioni ←− RandomlyChooseMemeBetween (
Solutioni −∆ , Solutioni +∆ )

return Solution

The R* appropriation requires a repair routine afterwards
for its may generate solutions outside the search range. We
use a simple routine which sets every meme that is smaller
thanMin to Min andMax to memes that are larger than
Max.

IV. EXPERIMENTAL SETUP

Five benchmark functions were used to test our hypothe-
sis: Ackley, Griewank, Rastrigin, Rosenbrock, and Sphere
functions. They are described in in Table I as is their
respective search ranges and the values used in initialization.

The unsymmetrical range during initialization was pur-
poseful since uniform distribution inside the search space
may favor or prejudice search operators [14]. With the
exception of the Rosenbrock Function, all functions have
their global minimum at the very center of the search space.
The global minimum value is0.0 for all functions. The
Rosenbrock and the Sphere function are unimodal while the
remaining three functions are multimodal. These functions
were evaluated in 30 dimensions.

The float precision used was of eight decimal digits. We
used 1000 iterations as thestop conditionfor all functions.
All links were static and they were built under no specific
assumptions4. The experiments were carried using a pop-
ulation of 36 nodes arranged in a6 × 6 Von Neumann
network topology. In this topology each node has four
distinct neighbors. Fig. 1 depicts this topology in a three
dimensional representation.

In each experiment, the original memenet was compared
against the memenet extended with the R* appropriation and
the canonical Particle Swarm Optmization. The R* appropri-
ation usedα← (|Max|+ |Min|) /2000. We performed 100
independent trials for each experiment and provide statistical
results of these experiments.

4One could assume that spatial position or initial score could be used to
establish links between related nodes.
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Table I
BENCHMARK FUNCTIONS

Name Definition
Initialization Range
[xmin, xmax]

n
Search Range
[xmin, xmax]

n

Ackley 20 + e− 20e
−0.2

√
1
n

∑
n

i=1
x2
i − e

1
n

∑
n

i=1
cos(2πxi) [15.0, 30.0]n [−30.0, 30.0]n

Griewank 1
4000

∑n

i=n
(xi − 100)2 −

∏n

i=1
cos(xi−100√

i
) + 1 [300.0, 600.0]n [−600.0, 600.0]n

Rastrigin
∑n

i=n

(
x2
i − 10 cos(2πxi) + 10

)
[2.5, 5.1]n [−5.1, 5.1]n

Rosenbrock
∑n−1

i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
[15.0, 30.0]n [−30.0, 30.0]n

Sphere
∑n

i=1
x2
i [50.0, 100.0]n [−100.0, 100.0]n

Figure 1. The6×6 three dimensional representation of the Von Neumann
network topology used in the experiments.

V. RESULTS

Fig. 2 depicts the convergence of the memenet with R*
appropriation, the memenet wit the conventional appropria-
tion and the canonical PSO [7], [15]. In it, the 10 worst and
best trials were removed and the results were averaged over
the 80 remaining trials — this was done to guarantee more
stable results. The vertical lines represent the maximum and
the minimum results.

The convergence of the R* appropriation in the Ack-
ley and Griewank functions was slightly faster then the
conventional appropriation. The R* appropriation also kept
improving the result until the stop criteria in the former.
Until the 300th iteration the R* appropriation was competi-
tive with the PSO. The R* appropriation outperformed the
PSO algorithm the Rastrigin fuction, a highly multimodal
function. In this case, the memenet presented the largest
variation of minimum and maximum values of quality for the
best solutions. This behavior was not observed in the other
functions where the convergence of the R* appropriation
was remarkably stable. The result of R* appropriation in the
Rosenbrock function was competitive with the PSO result.
In the Sphere function, the R* appropriation’s result was
better than the convetional appropriation while worse than
the PSO. This last result was expected due to the PSO highly
exploitation rate.

VI. CONCLUSIONS

In this article, we have investigated the metaphor of
“motivated tacticians” in order to derive mechanisms of
social adaptation. Our motivation was to contribute towards

the design of socially inspired computational systems with
intelligent methods. We hypothesized that through a social
adaptation mechanism, a collective problem-solving system
could converge faster to better solutions than a system with-
out it. We described a mechanism — the R* appropriation
— within a model inspired by human social problem-solving
and this mechanism operated as a function of the social
context. We tested this new mechanism in five benchmark
functions and two different network topologies.

The results of the R* appropriation gave supporting evi-
dence to our hypothesis that a swarm of motivated tacticians
sensible to social context can in fact improve the system’s
convergence speed. Improvements were achieved in terms
of both convergence rate and solution quality.

As future work, we plan to extend the SRP ratio to take
into account the neighbor’s scores as well as the simple
count of how many are doing better. There is also the
problem of investigating noise in form of small random
perturbations during the retrieval of memes by a node. We
are also interested to observe the how motivated tacticiansin-
fluence the system in combinatorial optimization problems.
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Abstract—Social interactions have recently been used as an in-
spiration for novel agent-based problem-solving models. Particle
Swarm Optimization and Memetic Networks are two such algo-
rithms. Although they draw inspiration from different real-world
social systems, they both rely on the concept of a social network
to regulate the internal information flow in a structured way.
In this paper, we systematically investigate how a heterogeneous
population composed of individuals from these two models behave
as the system seeks the solution to the benchmark problems.
We report on extensive numerical simulations, showing that this
heterogeneous model is able to converge faster in two highly mul-
timodal scenarios while being otherwise statistically equivalent to
the original homogeneous models. Our results provide supportive
evidence for the hypothesis that higher diversity in populations of
problem-solvers can be beneficial and also adds a new dimension
to previous heterogeneous problem-solving models.

Index Terms—Computational Intelligence; Swarm Intelligence;
Problem-solving; Optimization

I. INTRODUCTION

Many real-world problems can be translated into optimiza-
tion tasks, which can be challenging to be solved by traditional
methods due to their dynamic, multimodal, non-continuous
and non-linear features. When the problem domain is novel
and little to nothing is known about it, general algorithms, i.e.
black-box methods, can be used as first-line choices. Several
such algorithms try to mimic how similar problems are solved
in nature. This is the case of e.g. Genetic Algorithms [1], [2]
and Artificial Immune Systems [3], [4]. Such approaches have
two benefits: allowing for automatically and efficiently finding
good solutions to certain problems and providing insights on
the workings of the natural system.

Social systems have also been used to draw inspiration
for novel algorithms. For example, Ant Colony Optimization
mimics social insects, Particle Swarm Optimization [5], [6]
(PSO) models bird flocks and fish schools foraging for food.
More recently, attempts have been made to build algorithms
based on human social systems, either by extending existing
models [7]–[9] or by the proposal of novel models, such as
Memetic Networks [10]. These socially inspired models differ
on the general philosophical approach and in the specification
of the individuals’ behaviors and interactions. However, they
share at least a common feature which is the underlying
social network that regulates the information flow between
the individuals.

In this paper, we investigate the benefits of creating a
heterogeneous model composed of two socially inspired mod-
els: Memetic Networks and PSO. In particular, we provide
a way for the two types of individuals to communicate
seamlessly when solving the same problem and test this new
model on several benchmark optimization tasks. We report
that the heterogeneous model we developed outperforms the
homogeneous models in highly multimodal scenarios.

The paper is organized as follows. Section II introduces
relevant previous work on heterogeneous problem-solving
systems. Section III briefly describes the PSO and the Memetic
Networks model, respectively. Section IV presents the het-
erogeneous model we propose. Section V describes the ex-
perimental setup and section VI presents and elaborates on
the results. Section VII concludes the paper and points out
directions for further research.

II. BACKGROUND AND MOTIVATION

Since no problem-solving algorithm is superior to others
under any situation [11], researchers from the field of com-
putational intelligence have resorted to hybridization as a
strategy that “capitalizes on the respective strengths of the
components of the hybrid computational intelligent system,
and eliminate weaknesses of individual components” [12].
And hybrid algorithm typically combine local and global
search operators from different heuristic models into a single
model [13]–[18]. If the hybrid algorithm is devised to perform
search using a population of collaborative search processes,
then this population is usually composed of the same methods,
in other words: it is homogeneous.

The literature about heterogeneous problem-solvers is scarce
in comparison to hybrid homogeneous models. Thus, the
purpose of this section is to present and integrate the most
relevant works on heterogeneous populations of problem-
solvers and describes our motivation to study them under a
social bias.

Mühlenbein et al. [19] proposed one of the first hetero-
geneous models of problem-solving for minimization of real
functions. In their work, a Parallel Genetic Algorithm was
adapted to support mixed subpopulations. Such subpopulations
seek to locate local minima of the function to be minimized.
If a subpopulation does not progress after a fixed number
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of generations, a hill-climbing strategy is used then. Sub-
populations can exchange information about the position of
good local minima with other neighboring subpopulations
also. Their algorithm presented superior results in highly
multimodal scenarios. A rather similar approach was done by
Alba et al. [20] whose work addressed the parallelization of
the Gradual Distributed Real-Coded Genetic Algorithm. Their
algorithm used a set of eight subpopulations organized in a
cube topology having two faces for promoting exploration and
exploitation. Though essentially heterogeneous, both works
were restricted to Genetic Algorithms family.

Engelbrecht [21] proposed heterogeneous models where
particles were allowed to use one search behavior available
from a pool of five distinct PSO algorithms. He called
the approach as Heterogeneous Particle Swarm Optimization
(HPSO) and reported improvements over some homogeneous
approaches. Montes de Oca et al. [22] carried experiments with
a dual particle heterogeneous population. They explored the
intra-swarm interaction among particles with different config-
urations and the effects of such interactions on the algorithms
performance. They tested two forms of heterogeneity: update
rule heterogeneity and model of influence heterogeneity. Their
results points that heterogeneous swarms perform better than
the worst homogeneous swarm in some cases and can outper-
form the best homogeneous model in other cases. A related
work showed that heterogeneous Particle Swarm Optimization
models scale better in the problem size than homogeneous
PSO models [23]. These models are strictly associated with
the Particle Swarm Optimization family though.

The Lifecycle [24] model presents a more broader approach
for problem-solving with a heterogeneous population because
it is not tied to a specific family of models. The Lifecycle’s
population is composed of individuals that have different
search heuristics. An individual can perform search using oper-
ators from Genetic Algorithms, Particles Swarm Optimization
or hill-climber models at a time. These individuals can change
their category during the search according to a stagnation
criteria. It is, however, not clear whether individuals from
distinct categories are allowed to communicate seamlessly. For
example, it is not clear whether a genetic algorithm individual
can perform a crossover operation using a particle and a hill
climber. The model was tested with the problem of function
minimization using five benchmark real functions and the
authors report improvements over the individual algorithms.

In another previous work, social scientists designed a het-
erogeneous system to better understand the role of diver-
sity within the group. They report that a random group of
intelligent problem-solvers outperforms a group of the best
problem-solvers [25]. Although their experiments used the
maximization of random functions as the problem 1, we
believe this result is not only relevant from sociological point
of view, but also from a computational point of view since a
heterogeneous framework for problem-solving could help us
to better exploit the vast number of problem-solving models

1It has been argued that no problem in real world is random [26]

developed over the years. Additionally, in a recent work Mason
and Watts [27] found mismatching results from a problem-
solving system composed of real human subjects and artificial
problem-solving systems, warning that current artificial socio-
logical systems based on a population of problem-solvers are
insufficiently sophisticated and heterogeneous to reflect real
human responses to changing circumstances.

The study of heterogeneous problem-solving system is
embodied with a higher level of difficulty then homogeneous
systems for all those models need to collaborate together.
Thus, communication plays a key role for the success of the
collective. The main problems that arise in the investigation
of such systems are: (1) the design of a communication
medium that does not interfere with a model search process
while allowing different models to exchange information and
cooperate, this medium ought to be simple in order to avoid
communication overhead; and (2) the complexity inherent of
a heterogeneous system must be kept bearable to analysis.
To tackle such problems, a sound approach would be the
using of problem-solving systems where effective commu-
nication is as important as the individual performance, such
problem-solving systems are called socially inspired systems
of problem-solving. As our knowledge about heterogeneous
problem-solving systems increases, more robust and efficient
problem-solvers as well as more realistic systems can be built
to test and predict real social phenomena. In light of these
observations, we selected two socially inspired systems to
start the endeavor of studying heterogeneous problem-solving
systems: the Particle Swarm Optimization algorithm [5] (PSO)
and the Memetic Networks [10] algorithms.

The next section will describe both PSO and Memetic Net-
works models before we introduce the initial heterogeneous
model we propose.

III. SOCIALLY INSPIRED MODELS OF PROBLEM-SOLVING

A. Particle Swarm Optimization

The model of Particle Swarm Optimization had its inception
in the work of Heppner and Grenander [28]. In this work, the
authors investigated simple social analogues of a population of
interacting automatons which were modeled as flocks of birds
searching for food. Kennedy and Eberhart [5] evolved their
ideas intending to produce computational intelligence from
the interactions of such automatons [6]. The resulting model
was then used with relative success to solve optimization
problems. In 2008, Poli [29] analyzed over 1100 publications
concerning improvements and applications of the PSO model.
He contributed to the understanding that the PSO model is a
mature and quite successful model of social problem-solving.

The PSO model basically defines how particles will interact
collectively and the individual effect of such interaction. At
the collective level, particles are allowed to interact if there
is a communication channel between. This level is usually
modeled using undirected graphs, where particles are repre-
sented by nodes and channels by edges of the graph. The most
common interaction between particles is through copy where
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a particle retrieves and then slightly changes the position 2 of
the neighbor node which is faring the best. At the individual
level, particles are concerned with their current and previous
positions. Nonetheless, the objective of all particles is to find
the position which minimizes — or maximizes — the output
of the target function.

The collective and the individual influence interplay in the
internal state of the particle characterizes a motion in search
space of valid positions. This motion is described by a velocity
vector and it is the mechanism by which a particle update
its position. Previous studies recognized the importance of
restraining the particle’s velocity in some way [6]. Thus,
Kennedy [30] developed the constriction factor mechanism.
Equations (1) and (2) depict the process of velocity and
position update considering these constriction factors.

~vi+1 ← 0.7298(~vi + U(0, 2.05)
⊗(~pi − ~xi) + U(0, 2.05)
⊗(~pg − ~xi))

(1)

~xi+1 ← ~xi + vi+1 (2)

where vi and xi represent the current velocity and position
respectively of a particle, U(0, 2.05) represents a random vec-
tor with components uniformly distributed between [0, 2.05],
⊗ is the component-wise multiplication, pg is the best previous
position know by the best ranked neighbor — the collective
influence, and pi is the best previous position know by the
own particle — the individual influence.

Yet, improvement was achieved when the particle’s speed
was limited in each dimension by the maximum range of
such [31]. The PSO with constriction factors and with speed
limits is considered the canonical version of PSO [6].

B. Memetic Networks

Memetic Networks is a recent metamodel inspired by how
humans collectively solve problems [32]. It basically deter-
mines guidelines for the development of a system whose task
is to search for the best solution to a given problem. The
development of such system may be driven solely by the
search task. However, one may also want to investigate the
effects of modeling real social features into artificial social
systems by objectively measuring the performance of the
system along the search process.

The metamodel defines simple elements such as nodes,
memes and links and also defines rules that state how these
constructs relate to each other. The concepts behind elements
and rules are problem invariant; however, their implementation
is not: one needs to encode information about the problem’s
domain in order to build an effective problem-solving system.
In this sense, the Memetic Networks metamodel is not a
purely blackbox method for optimization, but rather a design
guideline for the development of algorithms with embedded
information about the problem domain.

2Or a candidate solution to the optimization problem in other words.

A memenet is the final construct when one assembles the
Memetic Network’s elements and then describes the rules
by which the elements will interact. The memenet’s main
objective is to achieve better solutions in less iterations than
independent and isolated nodes would achieve. To do so, nodes
in a memenet are allowed to exchange information.

The computing mechanism behind Memetic Networks is
represented by nodes. Each node contains a complete solution
to the problem at hand. This solution can be (i) evaluated
using a global evaluation function, and (ii) compared or ranked
against other solutions. Nodes are responsible for retrieving,
aggregating and processing memes, which are the minimal
meaningful pieces that compose complete solutions. The
meme concept is partially based in ideas from Dawkin’s book,
The Selfish Gene [33]. Links connect nodes and ultimately
determine a supporting “social” network. If there is a link
between two nodes, then these nodes are allowed to exchange
memes.

The Memetic Network elements alone are not self-sufficient
to perform search as it remains necessary to define how
these elements will behave when assembled together. This
is accomplished by three rules, which roughly capture how
humans process information in a social context [32]. These
rules detail how nodes choose to connect to each other, how
information is retrieved from the social network and how
individual nodes contribute to a solution being sought. Each
rule is detailed in what follows.

Connection Rule — Defines how the nodes should connect,
i.e. how links are to be established. This rule can be performed
once before the search takes place, characterizing a static
network topology. Alternatively, the connection rule can be
executed during the search process so the network topology
can evolve together with the system. As in other socially-
inspired models (e.g. Particle Swarm Optimizers), there is
currently no conclusive evidence about what topology is
generally better for specific types of problems [6].

Aggregation Rule — This rule controls the interaction
between connected nodes, that is, how nodes retrieve and
aggregate information from their network neighbors. Typically,
a node retrieve information 3 from better ranked neighbors
only. After retrieving memes, a node must aggregate — i.e.
combine — them to assemble a new solution. The aggregation
rule must also describe algorithmically how these memes
are to be combined. Aggregation is highly dependent on the
network topology 4.

Appropriation Rule — In possession of the recently aggre-
gated solution, a node may add some novelty to it. In this step,
local information is added to the solution, allowing memenets
to explore the search space, much in the same way mutation
works in genetic algorithms. Appropriation can happen by
simple random changes to the solution or by applying some

3Retrieval of information is considered noiseless. It remains an open ques-
tion whether communication noise could be beneficial or not for population-
based optimization problems.

4This feature is where socially-inspired optimization algorithms differ the
most from Evolutionary Algorithms.
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deterministic local search to it (in a similar fashion to Genetic
Algorithms [1] and Memetic Algorithms [34] respectively).

Although the aggregation and the appropriation rules depend
on the problem at hand, the structure of a Memetic Network
is the same across different problems.

IV. THE SOCIALLY INSPIRED HETEROGENEOUS MODEL
OF PROBLEM-SOLVING

In this section, we will address the design decisions relative
to the heterogeneous problem-solving system we propose
and instantiate the model to the problem of real function
minimization. Here we are concerned with the solution which
has the least cost according to an objective function. A solution
is encoded as an array of real numbers and for every valid
array, there is an output from the function which we will be
cost.

The initial design decision was select the right models to
combine into the same population. The decision of choosing
socially inspired models of problem-solving was addressed
in section II but here will elaborate more on it. The PSO
and Memetic Networks models rely on the concept of so-
cial network to regulate the internal information flow in a
structured way. Such structure allow a node to retrieve and
send information to as many sources as possible. Additionally,
socially inspired models need a few modifications from their
canonical form to work in collaboration, since communication
and information processing are conceptually separated. This
contrasts with the canonical GA, for instance, which commu-
nication is done indirectly trough crossover operations using
two individuals.

In the heterogeneous system, the communication between
a particle and a memetic node should be as seamlessly as
possible in order to any avoid communication overhead that
translating routines may impose. To facilitate such feature, all
agents must encode the solution in the same way. For example,
if memetic nodes encode their solutions as arrays of real
values, particles shall encode their solutions as arrays of values
as well. To solve the problem, we developed a simple interface
that must be followed by all nodes, particles and memetic
nodes, which is the following: a node must have a routine (1)
to update its internal state by performing its respective search
operations, (2) evaluate its current internal state, and (3) store
the internal state if it leads to a better solution then any state.
Algorithm 1 describes the structure of the proposed model
including references to routines for population initialization
and social network formation 5. The stop condition can be
a maximum number of iterations, running time, or a desired
solution quality threshold.

The next decision is about the communication between
particles and memetic nodes and vice versa. Each particle
retrieves a solution from its best ranked neighbor while a
memetic node retrieves multiple solutions from the set of better
ranked neighbors. However, if a memetic node is the best

5The network routine depicted is done only once, characterizing a static
network

Algorithm 1: Structure of our heterogeneous system. Note
that the build_network() sub procedure is performed once
only and that the stop condition can be the number of
iterations or a desired solution quality threshold.

Input : Populationsize, stopcondiction, Problemsize

Output: Solutionbest
Population ←− InitializePopulation (
Populationsize, Problemsize )
InitializeNetwork (Population)
repeat

foreach node ∈ Population do
UpdateState (node)
EvaluateState (node)
if node′scurrentscore < node′sbestscore_yet then

// Store new solution as best
solution found so far by node.

until stopcondition
Solutionbest ←− RetrieveBestSolutionFrom
(Population)
return Solutionbest

ranked neighbor of a particle, it must provide its previous best
position to the particle. Therefore, a memetic node must store
its previous best position even if this was originally not sought
in the Memetic Networks model. If a memetic node has a one
or more particles in its neighboord, then it can retrieve their
current solution directly.

It remains necessary to implement the search operators from
both particles and memetic nodes trough the UpdateState
routine for the problem of function minimization. We will
start by the particle UpdateState routine which is depicted
in Algorithm 2.

Algorithm 2: Update state procedure for a particle.
Input: node
BestNeighbor ←− RetrieveBestNeighbor (node)
UpdateVelocity (node,BestNeighbor)
UpdatePosition (node)

Our implementation follows the canonical PSO form stated
in Poli’s review work [6]; more details can be found in the
original work [31].

The UpdateState routine of a memetic node is depicted in
Algorithm 3.

Algorithm 3: Update state procedure for a memetic node.
Input: node
BetterNeighbors ←− RetrieveBetterNeighbors
(node)
aggregatedsolution ←− Aggregate (BetterNeighbors)
Appropriate ( aggregatedsolution)

The aggregation procedure retrieves and then combines
memes from a set of solutions from better ranked neighbors
to create a new solution. For real-function minimization this
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process is described in Algorithm 4 and work as follows: the
memetic node generates an array of arrays called MemePool.
The purpose of this structure is to store solutions that came
from neighbors with better scores and also the node’s own
solution. Each component of the solution is replaced by a
respective meme of the MemePool list, that is a meme from
the same position of the available arrays. All solutions from
MemePool have equal chances to be chosen.

Algorithm 4: The aggregation rule instantiated to mini-
mization.

Input : BetterNeighbors, Problemsize

Output: Solution
MemePool ←− RetrieveSolutions (BetterNeighbors)
Append node’s solution to MemePool
Solution ←− ∅
if CountSolutions (MemePool) > 1 then

for i← 1 to Problemsize do
SolutionChosen ←−
RandomlyChooseASolutionFrom (MemePool)
Solutioni ←− SolutionChoseni

else // When the node has no better neighbor,
its solution is kept.

Solution ←− CurrentNodeSolution

return Solution

The appropriation procedure is the mechanism which allows
nodes to exploit their current solution, that is perform small
modifications to it. For real-function minimization a simple
mechanism is portrayed in Algorithm 5. For each component
of the solution, a valid meme is generated randomly by a
uniform distribution and attributed with probability p. As
with mutation probability in genetic algorithms, the p value
should be small enough so that convergence is not drastically
disrupted.

Algorithm 5: The appropriation rule instantied to mini-
mization.

Input : Solution, Problemsize, Pappropriation
Output: Solution
for i← 1 to Problemsize do

With Pappropriation probability:
Solutioni ←− RandomlyChooseMeme ()

return Solution

V. EXPERIMENTAL SETUP

This section provides the methodology used to validate the
model. For the purpose of this paper, we used five benchmark
functions for the problem of real-function minimization. These
functions were: Ackley (f1), Griewank (f2), Rastrigin (f3),
Rosenbrock (f4), and Sphere (f5). Three functions are multi-
modal, f1 to f3 (Ackley, Griewank and Rastrigin) while two
functions, f4 and f5, are unimodal. Functions f2 and f4 are
not separable. Solutions are represented by arrays of floating

point numbers. The number of dimensions of the solutions,
i.e. the size of the arrays, was set to 100. The float precision
used was of eight decimal digits for both solution components
and cost value.

Since four functions have the global minimum at the very
center of the search space 6, all particles and nodes were
initialized following a uniform distribution inside a limited
search range to avoid any advantage a model may have over
the other [35]. The specific information about these functions
is described in Table I.

The total population size was set to 30, distributed as half
particles and half memetic nodes. The distribution of the
population remained static along 10,000 iterations that were
used as the stop condition.

The network topology chosen for all experiments was a 6×5
“Von Neumann” neighborhood. In this setting, the population
is arranged in a rectangular matrix where each node is con-
nected to one individual above, one below, and one at both
sides, wrapping the edges of the matrix [36]. Previous works
found supporting evidence that this topology is better suited to
the kind of problem we are tackling [9], [36], [37]. Moreover,
this topology is balanced in terms of density and average path
length when compared to more traditional network topologies
— like the fully connected network or the ring network.
Figure 1 provides a three dimensional representation of the
topology used. All links between nodes or particles were static
and were built under no specific assumptions7.

Fig. 1. The 6× 5 periodic grid graph used as the network topology in our
experiments.

In each experiment, the heterogeneous model was compared
against the original PSO and Memetic Network models. Also,
an improved version of PSO algorithm, the Fully Informed
Particle Swarm (FIPS) algorithm [9] was included with com-
parative purposes. The FIPS algorithm improves over the
original PSO by gathering information of all neighbors the
particle have and not just the best one. Each experiment was
repeated 50 times and the results averaged. The p probability
used by memetic nodes in appropriation was 0.02.

6The exception is the Rosenbrock Function.
7One could assume that spatial position or initial score could be used to

establish links between related nodes.
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TABLE I
BENCHMARK FUNCTIONS

Name Definition Initialization Range
[xmin, xmax]

n
Search Range
[xmin, xmax]

n

Ackley 20 + e− 20e
−0.2
√

1
n

∑n

i=1
x2
i − e

1
n

∑n

i=1
cos(2πxi) [15.0, 30.0]n [−30.0, 30.0]n

Griewank 1
4000

∑n

i=1
(xi − 100)2 −

∏n

i=1
cos(xi−100√

i
) + 1 [300.0, 600.0]n [−600.0, 600.0]n

Rastrigin
∑n

i=1

(
x2i − 10 cos(2πxi) + 10

)
[2.5, 5.1]n [−5.1, 5.1]n

Rosenbrock
∑n−1

i=1

(
100(xi+1 − x2i )

2 + (xi − 1)2
)

[15.0, 30.0]n [−30.0, 30.0]n

Sphere
∑n

i=1
x2i [50.0, 100.0]n [−100.0, 100.0]n

VI. EMPIRICAL RESULTS

Figure 2 presents the evolution of the best solution found
by all algorithms averaged over the 50 independent trials. Our
heterogeneous model is represented by Hybrid, the original
memenet by MN, the original PSO by PSO and the Fully
Informed Particle Swarm by FIPS.

The heterogeneous model with the population distribution of
half particles and half memetic nodes presented no statistically
difference from the best performing model in the Griewank,
Rosenbrock and Sphere functions. In such cases, the PSO was
the best performing model that composed the heterogeneous
models. This result is positive because if we suppose that one
is to solve a novel problem that no exploitable structure is
known at moment, then a heterogeneous model can perform
sometimes as better than the worst performer or as good
as the best performing model. The insight of which model
performs best is a valuable one, for it allows the designer
to concentrate the efforts into a single model. Moreover, such
result confirms previous findings by Montes de Oca et al. [22].
The extended version of PSO, the FIPS algorithm, presented
slightly advantage in cited functions.

In the Ackley and Rastrigin functions, both highly mul-
timodal, the heterogeneous model presented a remarkable
advantage. We performed unpaired t-tests comparing all the
50 last generations of the heterogeneous model against PSO,
Memetic Networks and FIPS, finding significant results (p =
0,t < 0). The hypothesis for such result is the heterogeneous
model presents a higher solution diversity in these functions. A
higher solution diversity translates into a more exploratory and
less exploitative search behavior, which in turns increases the
likelihood of finding a good solution. To test this hypothesis,
we extracted the 30 individuals from the last generation of all
the 50 runs and analyzed the distribution of the population
according to their solution quality. Figure 3 presents the
boxplots of this distribution.

As hypothesized, the heterogeneous model presented the
highest solution diversity in the tested functions: Ackley and
Rastrigin. This result was expected because the two sorts of
individuals 8 that compose our heterogeneous model can be
seen as two driving forces that guide the search to different
regions. It is likely that particles may find a specific region
of the search space more promising than memetic nodes as

8Represented by their search heuristics.
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Fig. 3. Solution quality distribution extracted the 30 individuals from the last
generation of all the 50 runs. The heterogeneous model presented the highest
solution diversity among all as we hypothesized.

well as the opposite. From this lack of agreement, a favorable
search pattern may have arisen in these two functions. Never-
theless, we are further investigating the effect and developing
a visualization tools to analyze the population dynamics across
all generations. Another result was that the pure PSO model
eventually found the global optimum in the Ackley function
— this can be seen as the lower whisker mark. However,
the expected result is much above it. The pure Memetic
Networks model achieved similar results in most runs, this
fact is depicted by the equally distributed quartiles from the
median.
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Fig. 2. The evolution of the best solution found by all algorithms averaged over the 50 independent trials. Our heterogeneous model with the population
distribution of half particles and half memetic nodes presents better results for the Ackley and Rastrigin Functions after one thousand iterations. In the other
cases, the heterogeneous model was equivalent to PSO and FIPS. Both axis are in logarithmic scale.

VII. CONCLUSIONS

In this paper, we have proposed an initial heterogeneous
problem-solving system based on socially inspired models.
More specifically, we were concerned with the investigation
of the benefits of a heterogeneous problem-solving system
composed of two socially inspired models: Particle Swarm
Optimization and Memetic Networks. Our approach did not
change how individuals behave, as it is commonly tackled
by hybridization mechanisms, rather it allowed different indi-
viduals, with different search heuristics, to communicate and
collaborate to solve the problem at hand — which we framed
as minimization of five real valued functions.

These individuals were connected by links in Von Neumann
network and they were allowed to communicate information

about their solution through a communication medium de-
signed for that. Our results showed that at one hand the
heterogeneous system was able to outperform the Memetic
Network model in all scenarios and considerably outperform
the PSO model in two of the most difficult (highly multimodal)
scenarios. On the other hand, in simpler scenarios (mostly
unimodal functions), the heterogeneous model was able to
perform equally well as the homogeneous models. We further
investigated why our heterogeneous model performed well in
highly multimodal scenarios and elaborated the hypothesis that
heterogeneous models increase diversity of solutions. From the
analysis of distribution of solution quality we were able to
confirm our hypothesis. Together, these results are evidence
that heterogeneous systems are promising problem-solving
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tools but their inner working mechanisms must still be better
understood.

As future work, we intend to devise meta-heuristics capable
of inferring which search behavior is the best for a given agent
or set of agents. To do so, we need to investigate mechanisms
that can detect problem features and switch the agent search
behavior accordingly. Such endeavor explicits the need for a
statistical framework that would allow one to assess which
kind of agent contributed the most and when it contributed
along the search. We are also interested to assess the network
topology influence in this algorithm and investigate the other
forms of heterogeneity, as solution encoding, for example.
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