
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JOÃO HENRIQUE FERREIRA FLORES

ARMA-CIGMN - An Incremental Gaussian
Mixture Network for time series analysis

and forecasting

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Paulo Martins Engel
Advisor

Porto Alegre, 6, March 2015

CIP – CATALOGING-IN-PUBLICATION

Flores, João Henrique Ferreira

ARMA-CIGMN - An Incremental Gaussian Mixture Network
for time series analysis and forecasting / João Henrique Ferreira
Flores. – Porto Alegre: PPGC da UFRGS, 2015.

90 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2015. Advisor: Paulo Martins Engel.

1. Neural networks. 2. Time series. 3. Forecasting.
4. ARIMA. 5. IGMN. 6. ARMA-CIGMN. I. Engel, Paulo Mar-
tins. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pro-Reitor de Coordenação Acadêmica: Prof. Rui Vicente Oppermann
Pro-Reitor de Pos-Graduação: Vladimir Pinheiro Nascimento
Diretor do Instituto de Informatica: Luis da Cunha Lamb
Coordenardor PPGC: Prof. Luigi Carro

“Everything must be made as simple as possible.
But not simpler.”

— EINSTEIN, ALBERT

ACKNOWLEDGEMENTS

First, I like to thanks my advisor, Dr. Paulo Martins Engel. Mainly because of his
particular views in the work and his major contributions. My graduate formation as an
statistician may have helped in the formal presentations, but the language use and the
implications of that in the field of computer science was all his. And most of the questions
and inspirations that made this work come together. And, for all that, I’m thankful. Also,
the Instituto de Informática, UFRGS and the Instituto de Matemática, with regards for the
Departamento de Estatística, for the opportunity they gave me and the believe they had
on me.

My parents and relatives, specially, Ms. Dulcy Ferreira Flores and Mr. João Alcides
Flores, my parents. They helped me finding time. Some say that time is priceless, and so
are their contribution. I’m really thankful for that.

My colleagues and friends. All of them helped me in some or other way, but some
of them made more important contributions and must be cited here. Edigleison, Renato
and Rafael Pinto for their views and contributions over the algorithm and the model eval-
uation. The discussions we had made this work more solid, and I have to thank them.
Rafael Santos, also an statistician, for helping me in the statistical department. He also
have major contributions to this work. And all my other colleagues and friends that are
not cited here, but also had helped.

Finally, my family. My wife, Patrice Basso and my daughter Helena. I got married
and had a daughter during this work and that alone may explain why these two women are
so important in my life now. While I’m thankful for all cited above, and this, the reason
I’m able to made this work in the first place was her and now, it is for my daughter too.
For them, I dedicate this work.

ABSTRACT

This work presents a new model of neural network for time series analysis and fore-
casting: the ARMA-CIGMN (Autoregressive Moving Average Classical Incremental Gaus-
sian Mixture Network) model and its analysis. This model is based on modifications made
to a reformulated IGMN, the Classical IGMN (CIGMN). The CIGMN is similar to the
original IGMN, but based on a classical statistical approach. The modifications to the
IGMN algorithm were made to better fit it to time series. The proposed ARMA-CIGMN
model demonstrates good forecasts and the modeling procedure can also be aided by
known statistical tools as the autocorrelation (acf) and partial autocorrelation functions
(pacf), already used in classical statistical time series modeling and also with the orig-
inal IGMN algorithm models. The ARMA-CIGMN model was evaluated using known
series and simulated data. The models used for comparisons were the classical statisti-
cal ARIMA model and its variants, the original IGMN and two modifications over the
original IGMN: (i) a modification similar to a classical ARMA (Autoregressive Moving
Average) model and (ii) a similar NOE (Nonlinear Output Error) model. It is also pre-
sented a reformulated IGMN version with a classical statistical approach, which is needed
for the ARMA-CIGMN model.

Keywords: Neural networks, time series, forecasting, ARIMA, IGMN, ARMA-CIGMN.

RESUMO

ARMA-CIGMN - Uma Rede Incremental de Mistura Gaussiana para análise e
previsão de séries temporais

Este trabalho apresenta um novo modelo de redes neurais para análise e previsão
de séries temporais: o modelo ARMA-CIGMN (do inglês, Autoregressive Moving Ave-
rage Classical Incremental Gaussian Mixture Network) além dos resultados obtidos pelo
mesmo. Este modelo se baseia em modificações realizadas em uma versão reformulada
da IGMN. A IGMN Clássica, CIGMN, é similar à versão original da IGMN, porém base-
ada em uma abordagem estatística clássica, a qual também é apresentada neste trabalho.
As modificações do algoritmo da IGMN foram feitas para melhor adpatação a séries tem-
porais. O modelo ARMA-CIGMN demonstra boa capacidade preditiva e a modelagem
ainda pode ser auxiliada por conhecidas ferramentas estatísticas como a função de autor-
relação (acf, do original em inglês autocorrelation function) e a de autocorrelação parcial
(pacf, do original em inglês partial autocorrelation function), já utilizadas em modela-
gem de séries temporais e nos modelos da IGMN original. As comparações foram feitas
utilizando-se séries conhecidas e dados simulados. Foram selecionados para comparação
os modelos estatísticos clássicos ARIMA (do inglês, Autoregressive Integrated Moving
Average), a IGMN original e duas modificações feitas ainda na IGMN original:(i) um
modelo similar ao modelo ARMA (do inglês, Autoregressive Moving Average) clássico e
(ii) um modelo similar ao modelo NOE (do inglês, Nonlinear Output Error). Também é
apresentada um versão reformulada da IGMN, usando a abordagem clássica da estatística,
necessária para o desenvolvimento do modelo ARMA-CIGMN.

Palavras-chave: redes neurais, séries temporais, previsão, ARIMA, IGMN, ARMA-
CIGMN.

LIST OF ABBREVIATIONS AND ACRONYMS

ACF Autocorrelation Function

ADANN Automatic Design of Artificial Neural Networks

ANN Artificial Neural Networks

ARCH Autoregressive Conditional Heteroskedasticity

ARIMA Autoregressive Integrated Moving Average

ARMA-CIGMN Autoregressive Moving Average Classical Incremental Gaussian Mix-
ture Network

GARCH Generalized Autoregressive Conditional Heteroskedasticity

IGMN Incremental Gaussian Mixture Network

MA Moving Average

MAE Mean Absolute Error

MLP Multilayer Perceptron

MSE Mean Squared Error

NARX Nonlinear Autoregressive with Exogenous Variables

NMSET Normalized Mean Squared Error with the Trivial Solution

NOE Nonlinear Output Error

OLS Ordinary Least Squares

PACF Partial Autocorrelation Function

CIGMN Classical Incremental Gaussian Mixture Network

PSO Particle Swarm Optimization

RBF Radial Base Function

RMSE Root Mean Squared Error

SARIMA Seasonal Autoregressive Integrated Moving Average

TDNN Time Delay Neural Network

LIST OF FIGURES

Figure 1.1: A graphical example of the early stopping procedure on MATLAB
Neural Networks Toolbox. 15

Figure 2.1: Example of a acf(a) and pacf(b) of a second order autoregressive(AR)
model - AR(2) . 23

Figure 3.1: An example of IGMN with 3 input nodes and 5 Gaussian compo-
nents. Two of the input elements were selected for estimating the
third one. The different color intensities inside each Gaussian com-
ponent represent their different likelihoods after seeing data xi (only
the known elements), and are used to weight the contributions of each
component to the final result. 34

Figure 3.2: An example of IGMN ARMA-like structure with 3 components rep-
resenting an ARMA-like(2,2) model, where x(t) represents the present
value, x(t−1) and x(t−2) the autoregressive past values, AR(2), and
e(t−1) and e(t−2) the past errors, similar as in an MA(2) model. 39

Figure 3.3: An example of the IGMN NOE-like structure with 3 components rep-
resenting a NOE-like(2,2) model, where x(t) represents the present
value, x(t−1) and x(t−2) the autoregressive past values and x′(t−1) and
x′(t−2) the past estimated values. 40

Figure 4.1: The air passengers time series data 54
Figure 4.2: The acf(a) and pacf(b) of the air passengers data 55
Figure 4.3: The monthly sunspots numbers time series data 56
Figure 4.4: The acf(a) and pacf(b) of the sunspots data 57
Figure 4.5: The lynx time series . 58
Figure 4.6: The acf(a) and pacf(b) of the lynx series 59
Figure 4.7: The final acf(a) and pacf(b) of the air passengers data 61
Figure 4.8: The acf(a) and pacf(b) of the air passengers data with the ARMA-

CIGMN model without the MA components 62
Figure 4.9: The final acf(a) and pacf(b) of the sunspots data using the ARMA-

CIGMN(3,2) model . 64
Figure 4.10: The acf and pacf of the IGMN-AR(17) model on the air passengers data 66
Figure 4.11: The acf and pacf of the significant lags model on the air passengers data 66
Figure 4.12: The acf and pacf of the ARMA-like model on the air passengers data 67
Figure 4.13: The acf and pacf of the NOE-like model on the air passengers data . . 67
Figure 4.14: The acf(a) and pacf(b) of the air passengers data with the ARMA-

CIGMN(3,1) model . 68

Figure 4.15: The acf(a) and pacf(b) of the air passengers data with the ARMA-
CIGMN(14,0) model . 69

Figure 4.16: The acf(a) and pacf(b) of the air passengers data with the ARMA-
CIGMN(14,12) model . 70

Figure 4.17: An example of a simulated MA(1) series using θ = 0.5. 72
Figure 4.18: An example of a simulated ARIMA(1,1,1) series using φ = 0.5 and

θ = 0.5. 72
Figure 4.19: An example of a simulated ARMA(1,1) series using φ = 0.5 and

θ = 0.5. 73
Figure 4.20: Box-plot of the forecasting mean squared errors where: (a) represents

the classic model, (b) is the IGMN using only differences, (c) is the
IGMN using differences and bias, (d) is the ARMA-like model and
(e) the ARMA-CIGMN model, in the MA(1) simulated series. 77

Figure 4.21: Box-plot of the forecasting mean squared errors where: (a) repre-
sents the classic model and (b) is the ARMA-CIGMN model in the
ARMA(1,1) simulated series. 80

Figure 4.22: The acf(a) and pacf(b) of the residuals after the ARMA-CIGMN model 82
Figure 4.23: The lynx series (line) with the ARMA-CIGMN adjusted model (dot-

ted line) . 83
Figure 4.24: The lynx series (line) with the ARMA-CIGMN model forecasts in a

one-step-ahead horizon (dotted line) 83

LIST OF TABLES

Table 3.1: A comparative table for some different characteristics between the
original IGMN and the Classical IGMN. 50

Table 4.1: The air passengers forecasts results. * The SARIMA model does not
present clusters. 60

Table 4.2: The monthly sunspots forecasts results 63
Table 4.3: Results of the different IGMN models on the air passengers data . . . 65
Table 4.4: Values that lie outside the limits boundaries on the acf graphic for the

classical model in the MA(1) simulated series - in % 74
Table 4.5: Values that lie outside the limits boundaries on the pacf graphic for

the classical model in the MA(1) simulated series - in % 74
Table 4.6: Values that lie outside the limits boundaries on the acf graphic for the

IGMN model using only past differences ε(t−1) in the MA(1) simu-
lated series - in % . 74

Table 4.7: Values that lie outside the limits boundaries on the pacf graphic for
the IGMN model using only past differences ε(t−1) in the MA(1) sim-
ulated series - in % . 74

Table 4.8: Values that lie outside the limits boundaries on the acf graphic for
the IGMN model using past differences ε(t−1) and bias in the MA(1)
simulated series - in % . 75

Table 4.9: Values that lie outside the limits boundaries on the pacf graphic for
the IGMN model using past differences ε(t−1) and bias in the MA(1)
simulated series - in % . 75

Table 4.10: Values that lie outside the limits boundaries on the acf graphic for the
ARMA-like(1,1) model in the MA(1) simulated series - in % 75

Table 4.11: Values that lie outside the limits boundaries on the pacf graphic for
the ARMA-like(1,1) model in the MA(1) simulated series - in % . . . 76

Table 4.12: Values that lie outside the limits boundaries on the acf graphic for the
ARMA-CIGMN(0,1) model in the MA(1) simulated series - in % . . 76

Table 4.13: Values that lie outside the limits boundaries on the pacf graphic for
the ARMA-CIGMN model(0,1) in the MA(1) simulated series - in % 76

Table 4.14: Forecasting mean squared errors for the different models, for all θ
used, in the MA(1) simulated series. 77

Table 4.15: Values that lie outside the limits boundaries on the acf graphic for the
classical model, in the ARIMA(1,1,1) simulated series - in % 78

Table 4.16: Values that lie outside the limits boundaries on the pacf graphic for
the classical model, in the ARIMA(1,1,1) simulated series - in % . . . 78

Table 4.17: Values that lie outside the limits boundaries on the acf graphic for the
ARMA-CIGMN(2,1) model, in the ARIMA(1,1,1) simulated series -
in % . 78

Table 4.18: Values that lie outside the limits boundaries on the pacf graphic for
the ARMA-CIGMN(2,1) model, in the ARIMA(1,1,1) simulated se-
ries - in % . 79

Table 4.19: Forecasting mean squared errors for the classical and the ARMA-
CIGMN models, for all φ and θ used in the ARIMA(1,1,1) simulated
series. 79

Table 4.20: Values that lie outside the limits boundaries on the acf graphic for the
classical model in the ARMA(1,1) simulated series - in % 79

Table 4.21: Values that lie outside the limits boundaries on the pacf graphic for
the classical model in the ARMA(1,1) simulated series - in % 80

Table 4.22: Values that lie outside the limits boundaries on the acf graphic for the
ARMA-CIGMN(1,1) model in the ARMA(1,1) simulated series - in % 80

Table 4.23: Values that lie outside the limits boundaries on the acf graphic for the
ARMA-CIGMN(1,1) model in the ARMA(1,1) simulated series - in % 81

Table 4.24: Forecasting mean squared errors for the classical and the ARMA-
CIGMN models, for all φ and θ used in the ARMA(1,1) simulated
series. 81

Table 4.25: Comparison between models - Lynx series, 14 values, one-step ahead
horizon . 84

CONTENTS

1 INTRODUCTION . 14
1.1 Initial comments . 14
1.2 Main objectives and contributions . 17
1.3 Outline . 17

2 TIME SERIES MODELING . 19
2.1 Initial Comments . 19
2.2 Classical Statistical Models . 20
2.2.1 The Box-Jenkins models (SARIMA) . 20
2.2.2 Linear regression models on time series 27
2.3 Artificial Neural Networks Models . 29

3 THE ARMA-CIGMN . 32
3.1 Initial comments . 32
3.2 The original IGMN Bayesian formulation 32
3.3 The ARMA-like IGMN . 38
3.4 The NOE-like IGMN . 40
3.5 The ARMA-CIGMN . 41
3.5.1 Correlation Model . 42
3.5.2 The Classical Incremental Gaussian Mixture Network - CIGMN 44
3.5.3 Modeling the Moving Average (MA) component 51

4 EXPERIMENTS AND RESULTS . 53
4.1 Initial Comments . 53
4.2 Presentation of the real time series data 53
4.2.1 The air passengers data . 54
4.2.2 The sunspots data . 54
4.2.3 The Canadian lynx series . 56
4.3 Modeling using acf and pacf . 56
4.4 Comparison among different configurations for the IGMN 63
4.5 Simulated series . 71
4.5.1 Description of the experiment . 71
4.5.2 The simulated MA(1) series . 73
4.5.3 The simulated ARIMA(1,1,1) . 77
4.5.4 The simulated ARMA(1,1) . 79
4.6 Modeling the lynx series . 81

5 CONCLUSION AND DISCUSSION . 85
5.1 Discussion . 85
5.2 Future works . 86

REFERENCES . 88

14

1 INTRODUCTION

1.1 Initial comments

The process of forecasting is considered a fundamental tool for planning in any given
area. However, the act of forecasting can be done in many different ways. Guessing to-
morrow temperature, the possible traffic or even the time of arrival are common problems
based on forecasts. In a more scientific approach, to make a forecast, we need data and
a model (or models). Nowadays, data is found more easily, and more vastly. These data,
when sequentially observing some results over a period of time are called time series. To
analyze and to forecast based on these data, these time series, there is a large number of
models (MORETTIN; TOLOI, 2006; HAMILTON, 1994). All models have some theo-
retical assumptions for working correctly. The problem, in most cases, is not to obtain the
data, or to compute the parameters of a model, but which model to use. Particularly, in
univariate time series.

With the advance in data storage, the easiness to obtain time series data, and the
software tools available, the problem is to choose the "best" model. For example, if a
series is considered nonlinear because of its variance (an heteroskedastic series), mod-
els of the ARCH/GARCH (autoregressive conditional heteroskedasticity and general au-
toregressive conditional heteroskedasticy model, respectively) family are recommended
(ENDERS, 1995; HAMILTON, 1994), but it is not, by any case, the only solution. And,
even if the ARCH/GARCH family is chosen, there are more than one hundred varia-
tions of the ARCH/GARCH models (MORETTIN; TOLOI, 2006; HAMILTON, 1994;
ENDERS, 1995). Other statistical models have similar problems.

There are, basically, four different types of time series: (i) linear, (ii) nonlinear in
respect to its mean, (iii) nonlinear in respect to its variance and (iv) nonlinear in respect
to its both mean and variance (MORETTIN; TOLOI, 2006). There are different models
to each of these characteristics, not to mention the classical models, the nonparametric
models and the Bayesian approach. There are, also, different approaches on known mod-
els like in (HAMZAÇEBI; AKAY; KUTAY, 2009; DELLANA; WEST, 2009; COSTA;
BRAGA; MENEZES, 2007; WANG; LU, 2006; CRONE; HIBON; NIKOLOPOULOS,
2011; DONATE; SANCHEZ; MIGUEL, 2012), just to name a few.

One way to solve the problem of model selection is to use a more general model. A
model that, if not optimal, is robust, or suboptimal, in some sense. Models are considered
robust if one or more of the assumptions are not met, but the parameters can still be well
adjusted. We can mention the Artificial Neural Network (ANN) models (similar to an
statistical nonparametric model), the seasonal autoregressive integrated moving average
model (SARIMA, classical statistical approach), the Bayesian approach of some classical
models among a few others. Of all these approaches, one of the most usual method is the

15

nonparametric approach, which includes the ANN models.
The nonparametric approach has less assumptions than the others and even these as-

sumptions are considered rather comprehensive, mostly sample based instead of a popu-
lation based, like in the classical approach or somehow subjective, like in the Bayesian
approach. Because of this, the nonparametric models can be adapted to nearly every sit-
uation. One issue related to nonparametric models, however, is that this adaptation does
not follow a set of rules, a process to help the user. Also, in many cases, it falls as subjec-
tive as in the Bayesian approach or as a trial-and-error models (ZHANG, 2001; ZHANG;
BERARDI, 2001; ZHANG, 2003; QI; ZHANG, 2001; ZHANG; KLINE, 2007; YAN,
2012). Most papers presenting ANN models adjusted to time series do not explain the
used method, but only the final model. And even this final model is not a final model
at all, but one among others that has, in average or not, better results. There is another
problem with most models in the nonparametric approach: the randomness of the model
parameters (HAYKIN, 2001). In the Multilayer Perceptron (MLP) for example, based on
the used training method, for each time that a model is generated, it is a different model.
Not all nonparametric methods are heavily dependent on the initial parameters, but some
of them are. Also, nonparametric models are more likely to present overfitting.

The model overfitting has been a problem almost exclusively of the nonparametric ap-
proach. Basically, an ANN model, more generally, can be adjusted to any given function
(HAYKIN, 2001). The problem is to forecast using this model. For example, a Multilayer
Perceptron (MLP) model can be easily fitted to any time series model so well, that the er-
ror between the model generated data and the real data is negligible. However, if we want
to forecast, based on this model, the results are, most likely, awfully poor. The problem of
overfitting is more practical than theoretical. We have a perfect model fitted to the train-
ing data and poorly forecast data. This problem is usually avoided by some programming
tools, as the early stop function available in some softwares, as seen in Figure 1.1.

Figure 1.1: A graphical example of the early stopping procedure on MATLAB Neural
Networks Toolbox.

Observing Figure 1.1, it is possible to see that the training error keeps getting smaller
after each epoch and that the validation error get smaller but after epoch 5 begins to
grow. So, for this example, after epoch 5, the model is possibly overfitted. This problem

16

can also be avoided by some heuristics and the separation of data in groups for training,
adjusting and verification of the model. The randomness of the models and the overfitting
are problems that the classical models do not present (MORETTIN; TOLOI, 2006).

The classical models, mainly the SARIMA models have their own set of assumptions
and are considered robust enough in respect to some of these assumptions (MORETTIN;
TOLOI, 2006; ENDERS, 1995). The classical models, commonly, do not present the
same randomness that the nonparametric models and are less prone to overfitting. For
example, the SARIMA models have an algorithm, a series of analysis to help the final
user to obtain a parsimonious model. This algorithm is based on Box and Jenkins works
(BOX; JENKINS, 1976; BOX; JENKINS; REINSEL, 1994), this is why these models are
also known as Box-Jenkins models (ENDERS, 1995). It is based on graphical analysis
and statistical tests to help the user. However, these graphical tools and the statistical
tests not only help the user, they also prevent the model overfitting (HAMILTON, 1994;
ENDERS, 1995; MORETTIN; TOLOI, 2006).

The SARIMA models are based on only 6 different parameters for modeling, and
these parameters can be computed via two graphical tools. These graphical tools are the
autocorrelation function (acf) and the partial autocorrelation function (pacf) that help the
user to set the parameters and to verify the model. Other classical models share these
same properties to some extent. The other desirable characteristic of the classical models,
also based on their assumptions, is that they follow a probabilistic approach. Based on
this, confidence intervals can be computed, among other statistical tests.

The problem is that, even for the robust models, some assumptions can be considered
too restrictive in some cases. The SARIMA models assume that the time series is linear
and stationary. A series can be nonlinear in three different ways, as shown before. If a
series is nonlinear in respect to its mean, this can be solved by the integration (or seasonal
integration) parameter, but only in some cases. And, because of this, there are hundreds
of different classical models, nearly one for each specific situation.

Summing up, on the one hand we have nonparametric models with lesser assump-
tions, but too subjective to model. On the other hand, we have the classical models,
with more assumptions, less subjective, but with so many different models to choose. A
good solution would be a mixture of the nonparametric and classical models characteris-
tics. The Incremental Gaussian Mixture Network (IGMN) is supposed to be this model.
In different works (HEINEN, 2011; PINTO, 2011; FLORES; PINTO; ENGEL, 2012),
the IGMN has been used to model time series. Initially, it was used with the same ap-
proach as some of the ANN models, mainly the MLP, the Radial Base Function (RBF)
and the Time-Delay Neural Network (TDNN) showing good results (HEINEN, 2011).
Later, with some variations (PINTO, 2011), and finally with an approach similar to the
classical models (FLORES; PINTO; ENGEL, 2012). The IGMN has shown that it can
model different time series, linear and nonlinear, and, to some extent, can mimic the pro-
cess used to model, based on the acf and pacf, as the classical models. In addition the
IGMN does not suffer from the randomness of most ANN models and, because of its
probability definitions, also shares most of the properties found in classical models, as
confidence intervals among others. However, even the IGMN fails to model the moving
average (MA) component of a time series and also, the IGMN models are still adjusted
based on the same principles as others ANN models, mainly by trial and error and with
some subjective knowledge about the data.

17

1.2 Main objectives and contributions

The IGMN has already been presented in other works, mainly in HEINEN (2011).
However, the process of generating a model has not yet been well presented for the
IGMN. An important issue is that IGMN has not been developed exclusively for use with
time series, even that its capabilities for this task have been demonstrated on (PINTO,
2011). Another problem presented in (FLORES; PINTO; ENGEL, 2012) is about the
difficulty that the IGMN has to model a moving average (MA) process. Based on these
facts and some preliminary results, the main goal of this work is to present a new model, a
modification on the IGMN algorithm, that we call the ARMA-CIGMN, which stands for
Autoregressive Moving Average Classical Incremental Gaussian Mixture Network. The
ARMA-CIGMN takes into account the MA component of a time series using a classi-
cal statistical approach of the IGMN algorithm. We present and test this model on some
known series and simulated data against classical models and other versions of the IGMN.

A secondary objective is to improve the online incremental one-shot learning using
the proposed ARMA-CIGMN model and the autocorrelation function (acf) and partial
autocorrelation function (pacf). These tools and methods are similar to what is used in
SARIMA modeling, i.e., to help the user to achieve a parsimonious model. This goal can
be seen on some results found in (FLORES; PINTO; ENGEL, 2012) using the original
IGMN models and, in this work, the same process was applied to the proposed ARMA-
CIGMN model.

Another contribution of his work is a theoretical analysis of the IGMN algorithm
showing that it follows a Bayesian approach. However, in a Bayesian approach, the θ
parameters of the MA components can not be estimated online, depending on sampling
techniques, like the Gibbs sampling (CONGDON, 2003). On the other hand, the estimate
of the θ parameters used in this work and demonstrated in (ENDERS, 1995; HAMILTON,
1994) is based on an online procedure and it is only possible under the classical statistical
approach. Thereafter, an important contribution of this work is the reformulation of the
IGMN algorithm using a classical approach, resulting in the Classical IGMN, or simply
CIGMN.

It is also a goal of this work to present the IGMN, and CIGMN, as an all around
model. It is important to note that it is not an objective of this work to present IGMN
as a model with a minimal prediction error or to compare with other models using some
prediction, or forecasting, error comparison metric. These comparisons are made to show
that the IGMN model is good as any specific model, but without the problem of choosing
one specific model for each specific task, mainly in the univariate time series approach.
Some results presented in this work reinforce this goal.

1.3 Outline

This text is organized as follows. Chapter 2 presents the classical approach of time
series, as a background to future references and to establish the algorithm that later will
be adapted to the IGMN on time series modeling. This chapter also presents the most
common classical model, the SARIMA model class, the regression models on time series
and a background on Artificial Neural Networks (ANN) models, in general.

Chapter 3 shows the IGMN, the classical statistical approach for the IGMN and the
proposed ARMA-CIGMN model. It presents its formulation, the parameters used to help
the computational work and some important analysis. In this chapter it is also shown

18

that the IGMN can be considered as a combination of multiple linear regression models,
which allows IGMN to be considered a nonlinear model, and the earlier modifications on
the original IGMN.

Chapter 4 presents the experiments and results. These experiments, and the results
that follow, show some important characteristics of the different models applied.

Finally, Chapter 5 concludes this work summarizing the results and contributions and
presenting future works, observations and recommendations.

19

2 TIME SERIES MODELING

2.1 Initial Comments

The most common definition of a time series is, basically, a series of data observed and
registered over a definite period of time. It is understandable that these data points are not
independent to each other. This probable correlation among data adds some dependence,
which is used to develop the different models (MORETTIN; TOLOI, 2006). The most
common statistical tools to analyze data make the assumption of independent data and so
these correlations affect these methods. Thereafter, there is a need to elaborate models
that can deal with the assumption of correlated data. These correlations can be due to
a random factor, for example, a Markov Chain similar effect (HAMILTON, 1994; EN-
DERS, 1995). For example, in the classic Air Passengers data (BOX; JENKINS, 1976),
the passengers over months can be dependent of past months passengers or because of
one Markov Chain path. Suppose that the number of passengers on June be dependent on
January’s passengers, because these passengers told their families about the convenience
of a flight and these families took vacations, raised money and trade the bus to an airplane.
But this can also be because of some Markov Chain that presents the probability of peo-
ple who flew in January to fly again in June. The problem with the Markov Chain is the
growth tendency of a time series. This problem and its consequences will be addressed in
the coming section. Nevertheless, both these definitions, the temporal correlation and the
random process, add up to the classical statistical models.

It is important to note that, some assumptions are not exclusive to the classical sta-
tistical models, or even to other models. One of the assumptions that persists in almost
every time series models is the notion of a data generating process, most similar to a dif-
ferential equation with stochastic components (ENDERS, 1995). The other assumptions
are more a delimitation of this work: the discrete time representation and the univariate
data. To demonstrate it, let us assume that y is a quantitative variable, discrete or con-
tinuous, where yk, yk+h, yk+2h, . . . , yt is a sample of a time series. The time correlations
are used so that a value of, let us say, yk+7h can be explained only by the past values, i.e.,
yk, yk+h, . . . , yk+6h or some combination of these values. The h intervals, as the constant
k are discrete. This is a sample of a time series of size T , that represents the population.
The models presented here are all based on these assumptions: an unknown data generat-
ing process, but that can be estimated, the discrete time representation and the univariate
component.

The models presented here also share other characteristics. The time series analysis
models are commonly used to: (i) forecasts, (ii) component identification and (iii) param-
eters analysis. However, it is usual to apply a model only for forecasting. The models
to be presented in this work are focused on their forecast capabilities and the process of

20

estimation of their parameters. Forecasting is the most common use of time series mod-
els (MORETTIN; TOLOI, 2006; SHUMWAY; STOFFER, 2000) and is often applied, to
model selection (FLORES, 2006; MORETTIN; TOLOI, 2006; INOUE; KILIAN, 2006;
QI; ZHANG, 2001; GRANGER; KING; WHITE, 1995; SIN; WHITE, 1996). A model
can be very well adjusted to a data series but with poor forecasts. It is a common rule to
divide the data series in two sequential groups: (i) modeling and (ii) forecasting. There
is no global optimal rule to divide the data series. This separation depends on the chosen
model and even on the model parameters and restrictions. But it is usual that the modeling
group must be bigger than the forecasting group. The modeling group can be defined as
all the data series except the last k values, where k is the size of the forecasting group. For
example, a series of size 100, could have the modeling group defined as the first 90 values
and the last 10 as the forecasting group. This evaluation of the forecasts is necessary to
prevent the problem of overfitting (FLORES, 2006; SHUMWAY; STOFFER, 2000). A
model can be considered overfitted when the prediction errors are much smaller than the
forecasting errors. This could indicate that the model is well fitted to the modeling group,
but has difficulties when forecasting (MORETTIN; TOLOI, 2006; ENDERS, 1995).

In the sequence, different approaches to model a time series will be presented. In this
work, the time series models presented are: (i) the SARIMA classical statistical model
family and (ii) the ANN models. The classical statistical models are presented because
of its formulation and the ANN models as a background for the later presentation of the
IGMN, CIGMN and the ARMA-CIGMN model.

2.2 Classical Statistical Models

The classical statistical models make assumptions of the classical statistics or the para-
metric statistics. Classical because of the statistical inference foundation, to assume that
a parameter of a population is constant and unknown and that the sample contains all the
information needed to estimate this parameter (ROHATGI, 2003; MORETTIN; TOLOI,
2006). The models presented here make the assumption of a stochastic component, a
random error.

In these models, the assumption is that the stochastic component behaves according to
a Gaussian Probabilistic Distribution (MORETTIN; TOLOI, 2006; ENDERS, 1995). In
specific cases, the Student’s t Distribution is used. Using the description made earlier, T
being the time series population, an stochastic process is a family X = x(t), t ∈ T , such
that, for each t ∈ T , x(t) is a random variable, also denoted by xt. So, t is a sample of T .
For every t, xt is a random variable defined over Ω, the probability space. This definition
allows that, for any t, xt follows a different probabilistic function, discrete or continuous.
However, in this work, we consider xt equally distributed for all t, unless otherwise noted.

There is not just one classical statistical model, but many models. In this work, only
the most usual models will be presented. One of the critics made about the classical
models approach is the large number of models, some of them for very specific situations.

2.2.1 The Box-Jenkins models (SARIMA)

Probably, the most common classical model is based on the Box-Jenkins algorithm
(BOX; JENKINS, 1976; BOX; JENKINS; REINSEL, 1994). The Box-Jenkins approach
for estimating a time series model is in the form of:

21

xt = µ+ φ1xt−1 + . . .+ φpxt−p + εt + θ1εt−1 + . . .+ θqεt−q (2.1)

The model represented by (2.1) is called an autoregressive moving average model
or simply an ARMA(p,q) model, where p and q represent the autoregressive and mov-
ing average orders, respectively. The parameter vector φ represents the autoregressive
components (AR(p)), the parameter vector θ represents the moving average components
(MA(q)) and µ is the intercept or mean. It is considered that the noise εt is the stochastic
component of the model. The εt−1, εt−1, . . . , εt−q are past values, obtained by (2.2).

εt−q = xt−q − x̂t−q (2.2)

where xt−q is the real observed value and x̂t−q is the value estimated by the model in time
t− q.

It is important to notice that εt represents, on this approach, a white noise process.
The white noise process can be defined by (2.3), (2.4) and (2.5).

E[εt] = E[εt−1] = . . . = 0 (2.3)

V ar(εt) = V ar[εt−1] = . . . = σ2 (2.4)

Cov(εt, εt−s) = Cov(εt−j, εt−j−s) = · · · = 0,∀ j and s (2.5)

An ARMA(p,q) model assumes that the time series is stationary. For this, let us
assume an ARMA(2,1) model, according to (2.6).

xt = φ0 + φ1xt−1 + φ2xt−2 + εt + θ1εt−1 (2.6)

Since the magnitude of the intercept µ does not affect the stationary conditions, con-
sider µ = 0. To find a particular solution, using the method of undetermined coefficients,
the solution is (ENDERS, 1995):

xt =
∞∑
i=0

αiεt−i (2.7)

For (2.7) to be a solution of (2.6), the αi must satisfy:

α0εt + α1εt−1 + α2εt−2 + . . . = φ1(α0εt−1 + α1εt−2 + α2εt−3 + . . .)+
φ2(α0εt−2 + α1εt−3 + α2εt−4 + . . .) + εt + θ1εt−1

(2.8)

To match the coefficients on the terms containing εt, εt−1, εt−2, . . ., it is necessary to
set:

1. α0 = 1
2. α1 = φ1α0 + θ1 ⇒ α1 = φ1 + θ1
3. αi = φ1αi−1 + φ2αi−2 for all i ≥ 2

(2.9)

22

If the characteristic roots of (2.6) are within the unit circle, the αi must constitute a
convergent sequence (ENDERS, 1995). To verify that the xt generated by (2.7) is station-
ary, take the expectation to formE[xt] = E[xt−i] = 0, for all t and i. So, the mean is finite
and independent of time. The εt was defined as a white noise process, so the variance of
xt is constant and also independent of time, so follows:

V ar(xt) = E[(α0εt + α1εt−1 + α2εt−2 + . . .)2] = σ2

∞∑
i=0

α2
i (2.10)

So, V ar(xt) = V ar(xt−s), for all t and s. Finally, the covariance between xt and xt−s
is:

Cov(xt, xt−s) = σ2(αs + αs+1α1 + αs+2α2 + . . .)2 (2.11)

Then, the Cov(xt, xt−s) is also constant and independent of t, for all t and s. If the
characteristic roots of (2.1) do not lie within the unit circle, the sequence of αi will not
converge and so, the xt sequence (ENDERS, 1995; HAMILTON, 1994).

Based of this preliminary analysis, two graphical and statistical tools are used for
modeling classical models (ENDERS, 1995; MORETTIN; TOLOI, 2006; HAMILTON,
1994), (i) the autocorrelation function (acf) and (ii) the partial autocorrelation function
(pacf). These functions show the intensity of the temporal autocorrelation, each on its
own manner. A model is considered adjusted when both, acf and pacf, show no significant
autocorrelation, i.e., when εt behaves like a white noise process using a user defined lag
L.

The acf is obtained from the linear correlation of each xt value of the series to the oth-
ers in different lags, as xt−1, xt−2 and so on, until the lag L defined. The pacf, computes a
similar function, but removing the interference of other values. After the modelling, these
graphs are computed using the residuals, the past prediction errors εi, i = t,t−1,. . .,t−L.
Unless noted otherwise, all acf and pacf graphs presented in this work are made using the
residuals. In the acf, for example, the correlation between xt and xt−2 suffers the inter-
ference of xt−1. The pacf removes that interference. Each of these functions not only has
its own interpretation, but also a combined interpretation. For example, observe Figure
(2.1).

In the graphs of Figure (2.1) one can note two different correlations beyond the sta-
tistical significance limits, the dashed lines. By definition, the acf graph shows every lag
correlation, even on lag zero, which is not taken into account. In Figure (2.1) it is also
possible to observe significant correlations in the pacf graph, even with a second order
autoregressive model. This is due to common sample variations and the possible interac-
tion of the autoregressive (AR) term in the moving average (MA) term. Not only, but also
because of this, it is recommended to use both functions.

By definition, autoregressive components can be observed when the pacf is statisti-
cally different from zero at the lags m = 1, 2, . . . , p and zero thereafter. In this cases an
AR(p) is used, according to (2.12), where φ are the autoregressive parameters, xt is the
observation on time t and εt is the white noise on time t.

xt = φ1x(t−1) + φ2x(t−2) + . . .+ φpx(t−p) + εt (2.12)

23

(a)

(b)

Figure 2.1: Example of a acf(a) and pacf(b) of a second order autoregressive(AR) model
- AR(2)

24

The seasonal autoregressive component has a statistically equal zero pacf, except in
the lags m = s, 2s, . . . , Ps, in which case an ARs(P) model is obtained, according to
(2.13), where s represents that seasonal effect.

xt = φsx(t−s) + φ2sx(t−2s) + . . .+ φPsx(t−Ps) + εt (2.13)

The autoregressive behavior refers to the correlation that exists between the current
and the past values. However, some precautions are necessary. The limits of acceptable
correlation (represented by the dashed line in Figure (2.1)) are constructed assuming the
data, or residuals, follow a Gaussian probability distribution. If this assumption can not
be verified, the amplitude of the limits becomes different and the limits must be calculated
on a nonparametric approach. In our experiments, the applied series are also previously
used in other works using the classical statistical approach, so it is not necessary to take
these verifications into account.

The other model component to be detected is the moving average (MA) component.
This component can be identified using, mainly, the acf. When the acf is statistically
different from zero on lags m = 1, 2, . . . , q and equal zero thereafter, the model is a
MA(q), according (2.14), where θ are the moving average parameters and εt the residuals
on time t.

xt = θ1ε(t−1) + θ2ε(t−2) + . . .+ θqε(t−q) + εt (2.14)

It is important to note, however, that the εt is a white noise, but the ε(t−1), ε(t−2), . . . , ε(t−q)
are not, as they are already observed in previous periods, as seen on (2.2).

The seasonal moving average component has an acf statistically equal to zero, except
on lags m = s, 2s, . . . , Qs, in which case a MAs(Q) model is suggested, according to
Equation (2.15).

xt = θsε(t−s) + θ2sε(t−2s) + . . .+ θQsε(t−Qs) + εt (2.15)

The Seasonal Autoregressive Integrated Moving Average(SARIMA) model combines
the effects of an AR(p), an ARs(P), a MA(q), a MAs(Q) component and a differentiation
(or integrated) component. This model is presented as a SARIMA(p,i,q)×(P,I,Q)s, where
the i component stands for integrated component, I for the seasonal integrated component
and s the seasonal time period, as seen before. A SARMA model, according to (2.16),
is similar to a SARIMA model, but without the integrated component. The integrated, or
seasonal integrated, components are used in classical statistical approach when the time
series is not stationary, namely a time series with a non constant mean, as seen on (2.16).

xt = φ1x(t−1) + . . .+ φpx(t−p) + φsx(t−s) + . . .+ φPsx(t−Ps)+

θ1ε(t−1) + . . .+ θqε(t−q) + θsε(t−s) + . . .+ θQsε(t−Qs) + εt (2.16)

However, in practice, the mean x̄, variance s2 and the correlation rs are obtained from
a sample and the real, theoretical values are unknown. For this, let us assume, as before,
a sample of size t, where:

25

x̄ =
1

t

t∑
i=1

xi (2.17)

s2 =
1

t− 1

t∑
i=1

(xt − x̄)2 (2.18)

rs =

∑t
i=s+1 (xt − x̄)(xt−s − x̄)∑t

i=1 (xt − x̄)2
, for each value of s = 1, 2, 3, . . . (2.19)

With these definitions, and based on the model assumptions, we have two similar
statistical tests to verify if the computed autocorrelations and partial autocorrelations are
statistically significant or a result of a random effect, using a definite lag-window, s. The
first test is based on the Box-Pierce Q-statistic (BOX; JENKINS, 1976).

Q = t
s∑
i=1

r2i , where Q ∼ χ2
s (2.20)

where χ2
s represents a Chi-square distribution with s degrees of freedom.

However, the calculation of the Box-Pierce Q-statistic in (2.20), works poorly, even
in moderately large samples (ENDERS, 1995). Ljung and Box (MORETTIN; TOLOI,
2006) use another form to calculate the Q-statistic, that has reportedly, superior perfor-
mance on small samples, as shown in (2.21).

Q = t(t+ 2)
s∑
i=1

r2i
t− i

, where Q ∼ χ2
(s−p−q) (2.21)

The calculation of the Q-statistic presented in (2.21) also follows a Chi-square distri-
bution (χ2), but with different degrees of freedom. In (2.21) the degrees of freedom are
based not only on the lag-window s, but on the parameters of an ARMA model, p and q.

Paremeter estimation

Using the acf and pacf to identify the expected model, the next step is to estimate
the model parameters. This can be done with different methods, but only the maximum
likelihood will be presented. The method will be presented for an ARMA(p,q) model. Let
us assume a vector Θ ≡ (φ,θ, σ2), φ = (c, φ1, φ2, . . . , φp) where c is any finite constant,
and θ = (θ1, θ2, . . . , θq). Suppose we have observed a sample of size t(x1, x2, . . . , xt).
The approach will be to calculate the probability density

fxt,xt−1,...,x1(xt, xt−1, . . . , x1; Θ) = (2π)−
t
2σ−texp

{
−
∑t

i=1 x
2
i

2σ2

}
(2.22)

which might loosely be viewed as the probability of observing this particular sample.
The maximum likelihood estimate (MLE) for Θ is the value for which this sample is
most likely to have been observed; that is, the value of Θ that maximizes (2.22). Finding

26

the MLE involves two different steps: (i) calculate the likelihood function (2.22) and (ii)
compute the value (or values) of Θ that maximizes this function.

The ARMA(p,q) model takes the form of

xt = c+ φ1xt−1 + φ2xt−2 + . . .+ φpxt−p

+θ1εt−1 + θ2εt−2 . . .+ θqεt−q + εt (2.23)

Replacing xt from Equation (2.23) into Equation (2.22), then we have the MLE, as
shown in Equation (2.24):

L(Θ|x0, e0) = (2π)−
t
2σ−texp

{
− 1

2σ2

(
t∑
i=1

φ1xt−1 + φ2xt−2 + . . .

+ φpxt−p + θ1et−1 + θ2et−2 + . . .+ θqet−q)2
}

(2.24)

Which is the likelihood function for an ARMA(p,q) model conditioned on both x’s and
ε’s. Taking initial values for x0 ≡ (x0, x−1, x−2, . . . , x−p+1) and ε0 ≡ (ε0, ε−1, ε−2, . . . , ε−q+1)
as given, the sequence {ε1, ε2, . . . , εt} can be calculated from {x1, x2, . . . , xt} by iterating
on:

εt = xt − c− φ1xt−1 − φ2xt−2 − . . .− φpxt−p
−θ1εt−1 − θ2εt−2 . . .− θqεt−q, (2.25)

The conditional log likelihood is then:

l = log(L(Θ)) = logfxt,xt−1,...,x1|x0,ε0(xt, xt−1, . . . , x1|x0, ε0; Θ) =

− t
2
log(2π)− t

2
log(σ2)−

t∑
i=1

ε2t
2σ2

(2.26)

One common approach is to set initial x’s and ε’s equal to their expected values. That
is, set xs = c/(1− φ1 − φ2 − . . .− φp) for s = 0,−1,−2, . . . ,−p+ 1 and set εs = 0 for
s = 0,−1,−2, . . . ,−q + 1), and then proceed with the iteration in (2.26) for all sample.
Alternatively, (BOX; JENKINS, 1976) recommended setting ε’s to zero but y’s equal to
their actual values. Thus, iteration using (2.25) is started at time step t = p + 1 with
x1, x2, . . . , xp set to the observed values and:

εp = εp−1 = εp−2 = . . . = εp−q+1 = 0 (2.27)

Then the conditional likelihood calculated as in (2.28).

l = log(L(Θ)) =

logf(xt, xt−1, . . . , xp+1|xp, xp−1, . . . , x1, εp = 0, . . . , εp−q+1 = 0) =

−t− p
2

log(2π)− t− p
2

log(σ2)−
t∑

i=p+1

ε2t
2σ2

(2.28)

27

As in the case of the moving average models, these approximations should be used
only if all values of z satisfy (2.29).

1 + θ1z + θ2z
2 + . . .+ θqz

q = 0 (2.29)

The same process can be applied, with few adaptations, for the other models. Using
the Kalman filter (HAMILTON, 1994) is the simplest approach to compute the exact
likelihood function. Numerical optimization can also be used. Methods as grid search,
steepest ascent, Newton-Raphson, Davidon-Fletcher-Powel (HAMILTON, 1994) among
others can be used.

2.2.2 Linear regression models on time series

A simple linear regression model can be described as in Equation (2.30).

yi = β0 + xiβ1 + εi (2.30)

where yi represents a dependent variable (or vector), xi an independent variable (or ob-
servable), β0 is an estimate parameter of the model constant, β1 is an estimate parameter or
the linear coefficient, εi is an independent identically distributed (i.i.d.) probabilistic error,
commonly a Gaussian distributed error and i is a sample index, where i = 1, 2, 3, . . . , n.

The main objective of the regression model is to express the dependence among yi re-
sults and xi observations, or simply, the conditional expectancy of Y on X , i.e., E[Y |X].
The model presented on Equation (2.30) is the theoretical, or population based, model.
With the βi estimates, denoted as β̂i, the model becomes as defined on Equation (2.31).

yi = β̂0 + xiβ̂1 + ei (2.31)

where β̂ is the β estimate and ei the residual ei = yi − ŷi.
The β̂i of these models are obtained via a well known method, the ordinary least

squares (OLS). The OLS estimate of βi is the value of βi that minimizes the residuals
sum of squares (RSS), as presented on Equation (2.32).

RSS =
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − β̂0 − xiβ̂1)2 (2.32)

The substitution made on Equation (2.32), is based on the prediction equation, as in
Equation (2.33).

ŷi = β̂0 + xiβ̂1 (2.33)

where ŷi is the prediction of yi based on the observable xi, a constant β̂0 and the linear
coefficient β̂1.

In general, a multivariate model, with m dependent variables y, k independent vari-
ables x and a sample size of n observations can be represented as in Equation (2.34).

28


y1,1 y1,2 . . . y1,m
y2,1 y2,2 . . . y2,m

...
...

yn,1 yn,2 . . . yn,m

 =


1 x1,1 x1,2 . . . x1,k
1 x2,1 x2,2 . . . x2,k
...

...
...

1 xn,1 xn,2 . . . xn,k



β0
β1
...

βk−1

 (2.34)

Then, the OLS estimate for the (k − 1) β parameters, is shown on Equation (2.35).

β̂ = (XTX)−1XTY (2.35)

The OLS is a best linear unbiased estimator, or simply BLUE (HAMILTON, 1994;
NETER et al., 1996; GUJARATI, 2006), based on some assumptions: (i) errors have a
zero expectation, (ii) errors are uncorrelated and (iii) errors are homoscedastic, as shown
in Equations (2.36) through (2.38).

E[εi] = 0; (2.36)
V ar(εi) = σ2,∀i, σ2 <∞; (2.37)
Cov(εi, εj) = 0, ∀i 6= j (2.38)

As expected, it is possible to make statistical tests to verify these assumptions over
the sample residuals ei. It is important to notice that no assumptions are made on the
probabilistic distribution for the errors εi. These assumptions are needed for, basically,
hypothesis tests and confidence intervals for the parameters.

Using a regression model as defined above for time series, requires just simple manip-
ulations on the formulation, but more complex ones on the assumptions. Let us assume
an AR(p) component. We may present the regression model as in Equation (2.39), which
is very similar to an AR model.

xt = β0 + β1xt−1 + β2xt−2 + . . .+ βpxt−p + εi (2.39)

However, by using the OLS to estimate the parameters of the model presented in
Equation (2.39), some issues arise. In the OLS estimate presented on Equation (2.35)
we need that (XTX) exists and be invertible. This can only occur when the values in X
are not linearly dependent, or statistically correlated. In a model constructed using past
values, xt−1, xt−2, xt−3 and so on it is very likely that some correlation appears. This
correlation is worst in small samples. Without this independence, the OLS parameters β̂
return a biased estimate of β for any autoregression, and the follow up statistical tests (t
test and F test) can only be justified asymptotically (HAMILTON, 1994; NETER et al.,
1996).

The problem with the MA parameters in regression is more complex, as the θ can not
be obtained via an OLS estimate because it depends on another OLS estimate. Let us
assume an MA(q) model as in Equation (2.40) 1.

xt = θ1ε(t−1) + θ2ε(t−2) + . . .+ θqε(t−q) + εt (2.40)

1The similar equation can be seen on Equation (2.14) and it is presented here only for readability

29

where ε(t−i) = x(t−i) − x̂(t−i).
To estimate the model θ, we need the past ε, where the past ε can only be obtained

with the real observed values xt and model estimates x̂t and, finally, the estimated x̂t can
only be obtained with the estimated θ, resulting in a recurrent dependence. Summing up,
the regression models can be used on time series, but work better on large samples, using
the OLS estimate, and only to AR(p) components, as the MA(q) components suffer from
recurrence. In the next chapter, this problem will be further discussed and a solution will
be presented.

2.3 Artificial Neural Networks Models

Besides the classical statistical models, another approach to time series analysis are the
nonparametric models. While there is a wide range of different nonparametric models,
the Artificial Neural Networks (ANN) models are the most common (RIPLEY, 1996).
ANNs have been widely used for a diversity of forecasting problems, including linear and
nonlinear time series and present excellent results in terms of forecasting for both. The
problems with the use of ANNs are: (i) the randomness of the model and (ii) the search
for an optimal configuration. Each one of these issues would not be so relevant if the
other one does not occur.

For example, in the work of (ZHANG, 2001) the author made many tests using
Multilayer Perceptron (MLP) models in different simulated linear time series, using the
ARIMA models family, as an MA(1), MA(2) among others, and concludes that the MLP
models can work very well, if not better, than classical ARIMA models on linear se-
ries. In the same work it is said that for nonlinear time series, the ANNs have already
been tested and also presented excellent forecasting capabilities. But all the comparisons
were made using different types of forecasting errors and using too many different MLP
configurations to find the ones that the author recommends.

The ANNs, in general, do not use any tools to assist the user to find the optimal
network configuration. They heavily depend on systematic methods, where the most
common is the genetic algorithm. This can be seen in the works of (CRONE; HIBON;
NIKOLOPOULOS, 2011), (DONATE; SANCHEZ; MIGUEL, 2012) and (LIN WANG;
CHEN, 2015). In (CRONE; HIBON; NIKOLOPOULOS, 2011) the authors report and
analyse the results from the NN3 competition, a competition of time series forecast-
ing. Besides being an empirical result, all mentioned models and configurations were
obtained using some systematic search method to find the best configurations, including
genetic and evolutionary algorithms. In the work of (DONATE; SANCHEZ; MIGUEL,
2012) the authors present a different approach based on Automatic Design of Artificial
Neural Networks (ADANN), among other models. The main goal of the work is to de-
velop an accurate automatic method to design ANNs. Finally, in (LIN WANG; CHEN,
2015), an improved adaptive differential evolution (ADE) method is proposed using back-
propagation neural network (BPNN) to stablish better connection weights and thresholds.
This reinforces the idea that, mainly, the ANN models presented in different works were
obtained by using some automatic method.

For other works, as in (ZOUNEMAT-KERMANI; TESHNEHLAB, 2007; CHIU;
CHEN, 2009; DELLANA; WEST, 2009), they use a trial-and-error method, which con-
sists in using a large number of different configurations and test all in the series. In
(ZOUNEMAT-KERMANI; TESHNEHLAB, 2007), the authors use an adaptive neuro-
fuzzy network, with different configurations. The authors tried 20 different configura-

30

tions, although only 10 are shown in the results. In (CHIU; CHEN, 2009), the authors use
a fuzzy-based support vector machine with a high dimensional input layer (a total of 61
inputs) and genetic algorithms. The authors indicate that the genetic algorithms used in
the work are to optimize the model parameters, but in fact, as the parameters can be set
to zero (0), they are used to configure the input layer. The authors also tested different
configurations for the input layer. In (DELLANA; WEST, 2009), the authors also use
various different configurations for forecasting and, as in the previous works, choose one
that offers the better results for the used series.

As said before, the use of automatic methods or trial-and-error is not an issue by itself.
Even the classical ARIMA models are normally presented with different configurations
or using some automatic method to find the used parameters. The issue is the lack of tools
to help the user to achieve, if not the best configuration, one that suits the problem well
enough. The question that arises is: what criterium can be used to define well enough?
Almost all automatic methods need to optimize a certain criterium. In the ANN models
for time series, this criterium is the forecasting errors. But what forecasting errors? The
forecasting errors can be calculated in many different ways and with many different re-
sults. The Mean Squared Error (MSE), the Root Mean Squared Error (RMSE) and the
Mean Absolute Percentage Error (MAPE) are very popular, but are not the only ones.
In the work of (ZHANG, 2001), a different version of MAPE is used, as in the works
of (DELLANA; WEST, 2009). In fact, in the work of (QI; ZHANG, 2001), the authors
present 17 different error metrics. Based only on this work, the user may have to choose
among 17 different metrics along the different automatic methods to find a suitable model.
In (VOYANT et al., 2015) the authors propose to use heterogeneous transfer functions on
a MLP modelling to improve forecasting. However, even then, the user will be confronted
with another issue of the ANNs, the randomness of the model.

The majority of ANNs models suffer from the randomness of that parameters, which
is, basically, the fact that the same configuration applied for the same training data achieves
different results (HAYKIN, 2001; RIPLEY, 1996). Even with some modifications on
the algorithm, as in the works of (COSTA; BRAGA; MENEZES, 2007; ZHANG, 2003;
WANG; LU, 2006), the problem persists. Most works show the results using a k-fold
cross validation or presenting the best model, based on some error metric, as in (COSTA;
BRAGA; MENEZES, 2007; WANG; LU, 2006; DELLANA; WEST, 2009; KHASHEI;
BIJARI, 2010, 2014; ZHANG, 2003; ZOUNEMAT-KERMANI; TESHNEHLAB, 2007)
among others. So, after choosing for an error metric and an automatic method, the model
must be verified over a k-fold cross validation or repeatedly trained until a suitable model
emerges. And all this excluding the fact that, even after all that steps, the model must be
retrained after some period, as the series may have changed.

These issues persist even on newer approaches, as the hybrid models, that use some
of the classical ARIMA capabilities, as we can see in (KHASHEI; BIJARI, 2010, 2014;
ZHANG, 2003). These works present hybrid models using the classical ARIMA to model
the linear patterns and the ANN to model the nonlinear ones. The work of (KHASHEI;
BIJARI, 2010) uses a different approach than the work of (ZHANG, 2003), and just the re-
sults are compared, but both use already tested configurations or trial-and-error methods,
for different presented series. In (KHASHEI; BIJARI, 2014) they use a fuzzy artificial
neural network hybrid model, with mostly trial-and-error methods.

Finally, an issue that all the nonparametric methods have, and often not mentioned,
is the issue of overfitting. The ANNs also suffer from this, but some algorithm modifi-
cations, as shown on (COSTA; BRAGA; MENEZES, 2007) and (WANG; LU, 2006),

31

and software tools, as the MATLAB Neural Networks Toolbox, can prevent it. The
work of (COSTA; BRAGA; MENEZES, 2007) presents a different control option for
the Levenberg-Marquadt algorithm, preventing the model from overfitting. The work of
(WANG; LU, 2006) presents the same Levenberg-Marquadt algorithm but adds a stochas-
tic particle swarm optimization (PSO), which can also help to prevent overfitting. The
method used in Matlab is more practical: it is called early stop and it stops the training
when the forecasting errors (commonly forecasting MSE) begin to increase. Overfitting
is not commonly mentioned any longer as nearly all models are adjusted using some au-
tomatic method based on forecasting errors, minimizing the risk of an overfitted model.

So, we have a class of models that, while can offer a vast range of uses and presents
very small forecasting errors, is also randomly parametrized, heavily dependent on auto-
matic methods to be configured and that must be retrained after a certain period of use.
We intend to offer a model that, while maintaining some, if not all, the best characteristics
of the ANN models: (i) can be used in a more systematic manner, preventing overfitting,
(ii) can offer tools to help the user to achieve a parsimonious model, (iii) be less randomly
generated, (iv) be less dependent on automatic methods and (v) can be used online, with-
out the need to rebuild the model. The ARMA-CIGMN model is the result we achieved
and will be presented in the next chapter.

32

3 THE ARMA-CIGMN

3.1 Initial comments

In this chapter we initially present the original IGMN, based on a Bayesian approach,
as shown in (HEINEN; ENGEL; PINTO, 2011) and (HEINEN, 2011) with some modifi-
cations made after (PINTO, 2011), to work with time series. We also present our previous
attempts to better adapt the original IGMN to time series and to work with MA com-
ponents. This previous attempts were made modifying the original IGMN to a similar
ARMA model, that we call the ARMA-like model, and a similar NOE (Nonlinear Output
Errors) model, which we call the NOE-like model.

We then present our proposed model, the ARMA-CIGMN, and the reformulation of
the original IGMN. The reformulation of the IGMN into a classical statistical approach
led to the Classical IGMN (CIGMN), a necessary step to model the MA components. The
ARMA-CIGMN model is a classical statistical version of the IGMN algorithm that can
work with both autoregressive and moving average components of a time series.

3.2 The original IGMN Bayesian formulation

This section presents the general formulation, based on the works of (HEINEN, 2011)
and (HEINEN; ENGEL; PINTO, 2011). The difference between this general presentation
and the time series formulation is the specification of the components over a time series.

Let us assume a set of variables as X1, X2, . . . , Xp, represented by the vector X,
from a population. And let us assume a sample from this population to be presented
as x1, x2, . . . , xp, represented by the vector x. A Gaussian Mixture Model (GMM) is,
basically, a weighted sum of M Gaussian density components, as shown in 3.1.

p(X|θ) =
M∑
i=1

wig(X|µi,Σi), (3.1)

where X is a p-dimensional continuous-valued data vector, wi, i = 1, 2, . . . ,M , are the
mixture weights and g(X|µi,Σi), i = 1, 2, . . . ,M , are the Gaussian density components.
Each component density is a p-variate Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)p/2|Σi|1/2
exp

{
−1

2
(x− µi)

TΣ−1i (x− µi)

}
, (3.2)

with mean vector µi and covariance matrix Σi. The mixture weights wi satisfy the con-

33

dition of

M∑
i=1

wi = 1. (3.3)

Using Bayes’ Theorem, the a posteriori probability for any i component is given by

P (i|xt,θ) =
wig(xt|µi,Σi)

M∑
k=1

wkg(xt|µk,Σk)

(3.4)

The Gaussian mixture model is completely parametrized by the mean, weight vectors
and the covariance matrices, for all components, i.e., for all distributions. The mean,
weight vectors and the covariance matrices are represented by θ, where

θi = {wi,µi,Σi}, ∀i = 1, 2, . . . ,M. (3.5)

The covariance matrix Σj can be full rank or constrained to be diagonal. The pa-
rameters can also be shared among all components, with some care to the wi, because of
(3.3).

These parameters can be computed by various means, being the most common, the
maximum likelihood (ML) estimation. Assuming a sample of size t, a training data, and
the independence between the vectors, the ML estimation is based on maximizing

p(x|θ) =
t∏
i=1

p(xi|θ) =
t∏
i=1

[
M∑
i=1

wig(x|µi,Σi)

]
(3.6)

One simple way of understanding the IGMN is as an incremental way to obtain the
wi and the necessary number of components M , as represented on Figure 3.1. One of
the problems in Gaussian mixture models is the a priori need to define the number of
components, i.e., M , should be set before adjusting the parameters. In an online model,
this is not convenient, since the full data sample is unavailable at the beginning of the
process.

Initially, the IGMN model starts with a single component (M = 1), with the mean
(µ) set at the same values of the first input data vector, i.e., x1. The covariance matrix is
set at a baseline, as Σ1 = diag(σ2

ini), where diag(σini) is a diagonal matrix calculated
using an user defined fraction γ of the overall variance. Usually, σini = 3γsx, where sx
represents the sample standard deviation of the dataset. If a dataset is not available, the
constant 3 is chosen, based on the coverage of the Gaussian distribution.

So, in the first input data vector, the θ1, we have

w1 = 1,µ1 = x1 and Σ1 = diag(σ2
ini). (3.7)

When the second input vector arrives, the algorithm must decide, based on a threshold,
if the new vector belongs to the old component (M = 1), and that component must be
updated, or if the new vector belongs to a new component. This decision is based on

34

Figure 3.1: An example of IGMN with 3 input nodes and 5 Gaussian components. Two of
the input elements were selected for estimating the third one. The different color intensi-
ties inside each Gaussian component represent their different likelihoods after seeing data
xi (only the known elements), and are used to weight the contributions of each component
to the final result.

an user defined parameter τmin, usually set around 0.01, for example, using a modified
density function, as shown in (3.8).

ĝ(x|µi,Σi) = exp

{
−1

2
(x− µi)

TΣ−1i (x− µi)

}
(3.8)

The value computed with (3.8) is always between 0 and 1, where 1 represents a vector
identical to the mean vector, i.e., the data is already represented. This calculation is made
for all M components. If, for all M components, the computed ĝ(x|µi,Σi) is bellow
τmin, then a new component is created.

There is another user defined parameter to help prevent model overfitting. For exam-
ple, if a large number of data vectors is similar, in respect to the mean, the component
that better represents these data is updated too many times. This is, however, subjective to
each problem and user. The parameter τmax prevents overfitting using a superior limit for
the ĝ(x|µi,Σi) computed with (3.8). Usually, τmax is set up near 1 (0.99, for example) to
prevent that very similar data modify the other parameters. This calculation is also made
for all M components. In short, after a data vector arrives, using (3.8), there are three
options:

1. The value is bellow τmin and a new component is created (as seen above, in (3.7));

2. The value is greater than the τmax and this vector is considered too similar and is no
further considered in the update process.

3. The value is between τmin and τmax and no new component is created and the vector
is used to update the components;

The focus now is when the value computed with (3.8) is between τmin and τmax and
the model is updated. First, the a posteriori probabilities are computed for all M compo-

35

nents, according to (3.4). The following equations present the other parameters updates
according to the algorithm (PINTO, 2011).

vi,t = vi,t−1 + 1 (3.9)

spi,t = spi,t−1 + P (j|xt,θ) (3.10)

ei = x− µi,t (3.11)

ψi =
P (j|xi,θ)

spi
(3.12)

∆µi = ψiei (3.13)

µi,t = µi,t−1 + ∆µi (3.14)

Σi,t = (1− ψi)Σi,t−1 −∆µi∆µi
′ + ψi(ee′) (3.15)

wi =
spi

M∑
q=1

spq

(3.16)

where spi and vi are the accumulator and the age of component i, respectively, and
wi, as defined before, is its prior probability.

The age of the component, vi, is necessary to evaluate the stability criterium (HEINEN,
2011) for a component. For example, if an outlier is presented to the model, probably a
new component will be created. However, this component, also probably, will not be up-
dated again. So, after some time without any updates, a component (based on its age, vi)
is deleted.

The spi parameter determines the a priori probability. One problem is that the spi, as
seen on (3.10), is based on the quantity of updates that the component has experienced.
To control the possible over estimate, i.e., too many updates, of the a priori the τmax
parameter is used.

The ψi parameter is the contribution over the spi of the new component or new data.
It is similar to a weight and is used to update the mean (3.14) and the covariance matrix
(3.15). If, at any time t a data vector is presented with missing data, then the IGMN enters
its recalling method.

36

The recalling is made estimating the posterior probability using only the provided
data. Let us assume that an incomplete data vector is presented, xi. In this case, the
posterior probability is calculated using (3.4) with few modifications. The a posteriori
probability equation becomes (3.17).

P (j|xi,θ) =
wjg(xi|µj ,Σj)

M∑
k=1

wkg(xi|µk,Σk)

∀j = 1, 2, . . . ,M (3.17)

With all the a posteriori probabilities calculated, the missing data, x̂t, can be recon-
structed using (3.18).

x̂t =
M∑
j=1

P (j|xi,θ)(µj,t + Σj,tiΣ
−1
j,i (xi − µj,i)) (3.18)

where µj,t is the jth’s component mean of the missing data, µj,i is the jth’s component
mean of the incomplete data vector, xi, Σj,ti and Σj,i are the submatrices of Σj , as in
(3.19).

Σj =

[
Σj,t Σj,ti

Σj,it Σj,i

]
(3.19)

For example, let us assume a simple bivariate model in (x, y). If any yi, is missing,
then the recalling function will be as:

ŷi =
M∑
j=1

P (j|xi,θ)

(
ȳ +

cov(x, y)

var(x)
(xi − x̄)

)
(3.20)

Suppose that the model has only one component, i.e., M = 1, so (3.20) becomes:

ŷi = ȳ +
cov(x, y)

var(x)
(xi − x̄) (3.21)

The sample covariance (bivariate) is computed with (3.22) and the variance with (3.23).

cov(x, y) =

n∑
i=1

(xi − x̄)(yi − ȳ)

n− k
(3.22)

var(x) = s2 =

n∑
i=1

(xi − x̄)2

n− k
(3.23)

where k is the number of parameters in the model, which is not relevant, as both variance
and covariance use the same k. Replacing both (3.22) and (3.23) in (3.21) and with both
denominators (n− k) being the same, then:

ŷi = ȳ +

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
(xi − x̄) (3.24)

37

Equation (3.24) is very similar to the linear regression model, using ordinary least
squares. In the linear regression model, there are two parameters, β0 and β1, that are
computed as bellow.

β0 = ȳ + β1x̄ (3.25)

β1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
(3.26)

Using (3.26) to replace the ratio in (3.24) by β1 results

ŷi = ȳ + β1(xi − x̄) (3.27)

Expanding (3.27) even more, we get

ŷi = (ȳ − β1x̄) + β1xi (3.28)

Finally, using the definition of β0 in (3.25) and replacing in (3.28) we obtain

ŷi = β0 + β1xi (3.29)

So the recalling model of the IGMN is a probabilistic combination of linear regression
models. For the specific case where M = 1 and D = 2, the recalling model is shown
in (3.29). This result opens some other uses for the IGMN. In the particular, but not
uncommon, case where we have only one output, a wide range of models is available. For
example, econometric models, as the log-log, lin-log or log-lin models can be learned by
the algorithm. Classification models, models with dummies variables among others can
be adapted, in some cases, without any modifications whatsoever to the algorithm. These
variations are not presented in this work, but can be seen on (NETER et al., 1996).

The probabilistic combination of linear models allows the IGMN model to be consid-
ered nonlinear. This can also be shown in the general case, for any M and D. The general
model class is called a Normal Correlation Model (NETER et al., 1996), or Gaussian
Correlation Model. In a correlation model, all variables are random and their combined
densities are multivariate Gaussian (or Normal) densities. To demonstrate the similarities,
let us assume a bivariate model using Y1 and Y2. The density function for the correlation
model using the bivariate Gaussian distribution is

f(Y1, Y2) =
1

2πσ1σ2
√

1− ρ212
exp

{
− 1

2(1− ρ212)

[(
Y1 − µ1

σ1

)2

−2ρ12

(
Y1 − µ1

σ1

)(
Y2 − µ2

σ2

)
+

(
Y2 − µ2

σ2

)2
]}

(3.30)

which is the same Gaussian distribution presented in (3.2), except that in (3.30) it is the
bivariate distribution. Note, however, that in (3.30) there are five different parameters: µ1,
σ1,µ2, σ2 and ρ12. Where µ1 and σ1 are the mean and standard deviation of Y1; µ2 and σ2

38

the mean and standard deviation of Y2 and ρ12 the coefficient of correlation between Y1
and Y2, defined by

ρ12 = ρ{Y1, Y2} =
σ12
σ1σ2

(3.31)

where σ12 denotes de covariance between Y1 and Y2.
Now suppose that Y2 has a known value and we want to estimate Y1 based on Y2, i.e.,

f(Y1|Y2), that is defined as

f(Y1|Y2) =
f(Y1, Y2)

f2(Y2)
(3.32)

where f(Y1, Y2) is the joint density function of Y1 and Y2, as in (3.30), and f2(Y2) is the
marginal density function of Y2.

Then the conditional probability distribution of Y1 for any given value of Y2 is

f(Y1|Y2) =
1√

2πσ2
1.2

exp

{
−1

2

(
Y1 − α1.2 − β12Y2

σ1.2

)2
}

(3.33)

where α1.2 + β12Y2 is the mean and σ1.2 is the standard deviation.
The parameters α1.2, β12 and σ1.2 are functions of the parameters of the joint proba-

bility distribution (3.30), as follows:

α1.2 = µ1 − µ2ρ12
σ1
σ2

(3.34)

β12 = ρ12
σ1
σ2

(3.35)

σ2
1.2 = σ2

1(1− ρ212) (3.36)

As seen on Equation (3.33), the mean for f(Y1|Y2), i.e., E[Y1|Y2] = α1.2 − β12Y2 is
similar to the regression model presented in (3.29), with α1.2 representing the β0 and β12
representing β1. The notation on α and β is necessary because the constant and slope are
different if different Y is given. The parameter α1.2 is the constant if Y1 is unknown and
we know Y2.

For example, in a model with four different variables (Y1, Y2, Y3 and Y4). If Y1, Y3 and
Y4 are known and we want to estimate the value of Y2, then we have the parameter α2.134

and β2134.

3.3 The ARMA-like IGMN

The first modification we made on the original IGMN to better adapt it to time series
consists in using similar inputs as the classical ARMA model, i.e., the actual observed p
past values x(t−p) and the q past errors e(t−q), defined in Equation (3.37).

e(t−q) = x(t−q) − x̂(t−q) (3.37)

39

For the IGMN to use the past errors e(t−q), first they have to be estimated. So, in the
first q steps, it is necessary to fill in a vector buffer e for future use. With this first e vector,
the IGMN begins estimating its parameters and components, using both the past values
and the past errors.

For example, an ARMA(2,2) model, as described in Equation (3.38) can be mapped
to an IGMN structure as shown in Figure 3.2.

x(t) = φ1x(t−1) + φ2x(t−2) + θ1e(t−1) + θ2e(t−2) + et (3.38)

Figure 3.2: An example of IGMN ARMA-like structure with 3 components representing
an ARMA-like(2,2) model, where x(t) represents the present value, x(t−1) and x(t−2) the
autoregressive past values, AR(2), and e(t−1) and e(t−2) the past errors, similar as in an
MA(2) model.

This approach, however, presents two problems: (i) the additional step of recalling
within the learning mode, and (ii) the nonlinearity of the estimates.

The first problem occurs when the IGMN, in learning mode, for every new data, must
enter the recalling mode to obtain the estimates. Then, with the estimate, it calculates the
error, includes this error on the input data and enters learning mode again. This additional
step of recalling for each new data makes the IGMN slower when learning.

The second problem is the nonlinearity of its estimates. For example, let us assume a
simple ARMA(1,1) model, as described on Equation (3.39).

x(t) = φx(t−1) + θe(t−1) + et (3.39)

So, the estimates of x can be achieved using

x̂(t) = φx(t−1) + θe(t−1)

While x(t−1) is an observable value, e(t−1) must be calculated. The same approach can
be used to past values, and so x̂(t−1) is predicted by

x̂(t−1) = φx(t−2) + θe(t−2)

40

and so on, for any x̂(t−r), where r = 1, 2, . . . , (t− 1).
We previously defined et, on Equation (3.37). Assuming q = 1, for simplicity, and

replacing x̂(t−q) we have

e(t−1) = x(t−1) − x̂(t−1)
e(t−1) = x(t−1) − (φx(t−2) + θe(t−2))

We can backtrack the errors, replacing every e(t−q) as in Equation (3.37) and notice that
the past errors also depend on θ, and, on this example, also depend on φ. The estimates
used on the original IGMN are based on a OLS estimator, which can not be applied in a
nonlinear system, as discussed on (GUJARATI, 2006; HAMILTON, 1994; NETER et al.,
1996). The limitations of this approach will be further discussed in Chapter 4.

3.4 The NOE-like IGMN

With this version we intend that the IGMN should model the behavior of the past er-
rors e(t−r) implicitly and not explicitly, as with the classical ARMA model. For example,
an ARMA(2,2) model can be represented on a IGMN structure as shown on Figure 3.3
and Equation (3.40)

x(t) = φ1x(t−1) + φ2x(t−2) + θ1x̂(t−1) + θ2x̂(t−2) + et (3.40)

Figure 3.3: An example of the IGMN NOE-like structure with 3 components represent-
ing a NOE-like(2,2) model, where x(t) represents the present value, x(t−1) and x(t−2) the
autoregressive past values and x′(t−1) and x′(t−2) the past estimated values.

This version uses the past predicted values (or past forecasts) information as output
errors, similar to the well known NOE model. Although presenting some good results, as
we can see later in this work, it also presents two problems, similar as with the ARMA-
like version: (i) the additional step for forecasting and (ii) the nonlinearity of its estimates.
To better present this, we use a simple ARMA(1,1) model which, with this modification,
can be presented as shown on Equation (3.41).

41

x(t) = φx(t−1) + θx̂(t−1) + et (3.41)

where x̂(t−1) is computed using Equation (3.42).

x̂(t−1) = φx(t−2) + θx̂(t−2) (3.42)

Here, as with the ARMA-like version, we can see that x̂(t−1) depends on two different
parameters, φ and θ, which is practically the same problem addressed in the ARMA-
like version, plus the extra recalling step to obtain the predicted x̂(t−r) values. There are
some alternatives to solve this problem, but most of them are not able to run online or
incrementally (NETER et al., 1996; MORETTIN; TOLOI, 2006).

Also, there is another issue in both versions when working with a time series that
presents only the MA process, which is called a pure MA process. It is not very common
to work on a pure MA process time series, but for any pure MA process, an MA(q) model
more generally, both versions need, at least one AR component. In the NOE-like version,
and in the ARMA-like version, the past predicted values x̂(t−r), and so the past errors
e(t−r) can only be computed with an AR(1) component, at least. For example, suppose an
MA(1) process, as described on Equation (3.43)

x(t) = θe(t−1) + et (3.43)

For both versions we may start the process with e(0) = 0 or x̂(1) = x(1) and work from
there

x̂(1) = θe(0) = 0

x̂(2) = θe(1) = θ(x(1) − x̂(1)) = θx(1)

x̂(3) = θe(2) = θ(x(2) − x̂(2)) = θ(x(2) − θx(1))

and so on, which is very similar as an AR process. The initialization of x̂(1) = x(1)
or e(0) = 0 can be modified but with little or no practical effect. In the next section, we
present our proposal to solve the MA components estimation and, in Chapter 4 we present
the results for this approach.

3.5 The ARMA-CIGMN

In this section we reformulate the original IGMN. Some minor modifications where
made in the overall algorithm, but a major one in the approach, to take into account
the moving average (MA) component. While the original formulation uses a Bayesian
approach, this one uses a classical statistical approach. This is made to further present
the IGMN as a combination of correlation models, which is similar to a combination of
regression models, and to adapt the MA parameters, as the method present here is only
possible under a classical statistical approach. In fact, we begin the presentation with the
correlation model and its similarities to the classical regression model. We reformulate
the IGMN algorithm in the classical statistical approach resulting in the Classical IGMN
(CIGMN). Thereafter, we present the modifications made in the CIGMN algorithm to take
into account the moving average process (MA(q) components) resulting in the ARMA-
CIGMN model.

42

As seen in past works of (FLORES; PINTO; ENGEL, 2012) and (PINTO; ENGEL;
HEINEN, 2011), the vast majority of ANN models fail to incorporate the moving average
(MA) component in time series analysis. As previously shown, a wider autoregressive
(AR) component window can be used to reduce the MA component effect. However, to
best use the information and to show a more theoretical and practical modeling, we added
a MA structure to the IGMN model. Although this MA structure is simple, it increases
the dimensionality of the data and, so, the model becomes more complex.

3.5.1 Correlation Model

Let us suppose a data frame described by a k-by-n matrix X, where k is the number
of different random variablesX1, X2, . . . , Xk and n it is the sample size of such variables.

The covariance between any pair of variables is defined as

Cov(Xi, Xj) = σ(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])] (3.44)

where i 6= j, and i = j = 1, 2, 3, . . . , k. In the case where i = j, we have

Cov(Xi, Xi) = σ(Xi, Xi) = E[(Xi − E[Xi])(Xi − E[Xi])] =

E[(Xi − E[Xi])
2] = E[X2

i]− (E[Xi])
2 = V AR(Xi) = σ2(Xi)

(3.45)

which is the variance of the variable Xi.

In a k-dimensional, multivariate approach, the variances and covariances of each sin-
gle pair (Xi, Xj) are grouped in a k-by-k matrix, the covariance matrix Σ.

Suppose we have a k-dimensional realization vector of X, xi, for i = 1, 2, 3, . . . , n.
To estimate a covariance matrix from a known sample, we use

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (3.46)

where x̄ is the mean vector calculated over the sample, and defined as

x̄ =


x̄1

x̄2
...

x̄k

 =
1

n

n∑
i=1

(xi) (3.47)

Using Equation 3.46 and rewriting it, we have a more computational, and easy way to

43

adapt it to an online learning environment.

n∑
i=1

(xi − x̄)(xi − x̄)T =
n∑
i=1

(xi − x̄)(xTi − x̄T)

=
n∑
i=1

(xix
T
i − xix̄

T − x̄xTi + x̄x̄T)

=
n∑
i=1

(xix
T
i)−

n∑
i=1

(xix̄
T)−

n∑
i=1

(x̄xTi) + nx̄x̄T

=
n∑
i=1

(xix
T
i)−

(
n∑
i=1

xi

)
x̄T − x̄

n∑
i=1

xTi + nx̄x̄T

=
n∑
i=1

(xix
T
i)− 1

n

(
n∑
i=1

xi

)(
n∑
i=1

xTi

)
− 1

n

(
n∑
i=1

xi

)(
n∑
i=1

xTi

)
+ nx̄x̄T

=
n∑
i=1

(xix
T
i)− 2x̄

n∑
i=1

xTi + nx̄x̄T

=
n∑
i=1

(xix
T
i)− 2x̄

n∑
i=1

xTi + x̄
n∑
i=1

xTi

=
n∑
i=1

(xix
T
i)− x̄

n∑
i=1

xTi

=
n∑
i=1

xix
T
i − nx̄x̄T

which results in

S =
1

n− 1

(
n∑
i=1

xix
T
i − nx̄x̄T

)
(3.48)

Observing Equation (3.48), it is noted that we only need to store two sets of values to
obtain the covariance matrix Σ:(i) the outer product summation of the values, xixTi and
(ii) the summation vector

∑
xi. This can also be demonstrated in Equation (3.49).

Sn =
1

n− 1

(
s2n −

1

n
sns

T
n

)
(3.49)

where

s2n =
n∑
i=1

xix
T
i

sn =
n∑
i=1

xi

The estimate Sn and the vector x̄ are considered best linear unbiased estimator (BLUE)
for the parameters Σ and µ, respectively. With the covariance matrix and the mean vector,

44

a multivariate Gaussian distribution N(µ,Σ) is completely defined, as seen on Equation
(3.50).

f(x) =
1√

(2π)k|Σ|
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(3.50)

Now suppose that any subset of the k variables is missing. It is possible to estimate
it, based on the vector x̄ and the matrix Sn. The process is similar to a regression model,
however, in this scenario, any of the k variables can be the output (or response) variable,
even more than one. This process in known as a correlation model (NETER et al., 1996),
where all the variables are considered random and any subset can be used for making
inferences about the remaining variables. This, however, does not change how these
inferences are made.

For now, suppose a set of Yl missing variables, where l < k and l ≥ 1, and Xk−l
known variables. For simplicity, we assume these variables are grouped together. In a
regression model, the estimation of the Yl variables are made using Equation (3.51).

Ŷ = Xβ̂ (3.51)

where β̂ is the estimate of β and Ŷ is the estimate of the missing Yl variables.
These β are known as regression parameters and represent how the unknown variables

can be explained by the known variables, i.e., Ŷ|X. Using the similarities between the
correlation and the regression model, an estimate of β can be expressed as in Equation
3.52.

β̂ = (XTX)−1(XTY) (3.52)

Equation (3.52) represents an estimate of β using the ordinary least squares (OLS),
which is a BLUE estimator (NETER et al., 1996) under some assumptions. It is important
to note that even the β̂ can be calculated using the same set of values used to obtain x̄
and Sn. To show this, assume that the outer product is computed using

∑
xix

T
i , where

all variables are known and are represented by M. Suppose that some of the variables are
missing, i.e., Y. So, M can be represented as in Equation (3.53).

M =

[
XTX XTY

(XTY)T Y TY

]
(3.53)

Observing Equation (3.53), we can recognize the first and second part of the Equation
(3.52).

All these parameters can be computed at any given time, even after a short sample of
n elements, where n > k. The model presented here is, however, a linear model. It has
almost the same restrictions as an OLS regression model.

3.5.2 The Classical Incremental Gaussian Mixture Network - CIGMN

The correlation model is not suitable for nonlinear systems. However, a combina-
tion of correlation models can be. The original IGMN has this characteristic, but uses
a Bayesian approach. To our needs, the IGMN must be reformulated using a classical

45

statistical approach, which we call the Classical Incremental Gaussian Mixture Network,
CIGMN. We use almost the same principles as in the correlation model and the origi-
nal IGMN, but using a classical statistical Gaussian Mixture Model instead of a simple
Multivariate Gaussian.

The probability density function of a Gaussian Mixture Model can be described as in
Equation (3.54).

g(x) =
m∑
i=1

πif(x) (3.54)

where πi is the mixture weight,
∑m

i=1 πi = 1, and m components. Each of the m com-
ponents is a Gaussian distribution or a Multivariate Gaussian distribution, also known as
Multivariate Normal distribution or simply MVN, as shown in Equation (3.50). The same
occurs with the CIGMN, where each of its components is a MVN, completely defined
with the estimates of the parameters µ and Σ, i.e., x̄ and Sn.

One of the differences between the correlation model and the mixture model is that the
estimation of the parameters of the former is linear, while in the last one is not. One of the
most used methods to estimate π, µ and Σ is the EM algorithm (MCLACHLAN; PEEL,
2000; SHUMWAY; STOFFER, 2000). However, in our approach, the use of the EM is
not possible, mainly because: (i) we do not know, in advance, how many components
are necessary and (ii) we do not have the entire sample available. To be an one-shot
online incremental model, the CIGMN can not depend on the EM algorithm to estimate
its parameters. Besides, our model is not an attempt to reproduce the exact Gaussian
Mixture, but a way of representing a complex system. The CIGMN, therefore, does not
aim to be a good estimate for π, µ and Σ, but uses these parameters to better describe a
nonlinear system.

Suppose we have a continuous data flow, represented here by x. Our presentation of
time series, assumes that the user defines a window of k observations for x, transforming
this data flow in vectors of size k. These vectors then form a matrix, as shown in Equation
(3.55).


x1,1 x1,2 . . . x1,(k−1) x1,k
x2,1 x2,2 . . . x2,k x2,(k+1)

...
...

...
xn,1 xn,2 . . . xn,(k+n−2) xn,(k+n−1)

 (3.55)

The CIGMN uses only one line of the matrix presented in Equation (3.55) at a time
step and can be summarized in two different modes: (i) learning mode and (ii) recalling
mode.

3.5.2.1 Learning Mode

The CIGMN learning mode can be performed perpetually, without a defined training
phase. Wherever a complete pattern is presented, the CIGMN learning mode is applied.
In this work, this means that a complete time window of size k is presented. In learning
mode, CIGMN uses the data pattern to one of two possibilities: (i) create a new com-
ponent or (ii) updating the existing ones. To decide between create or update, the IGMN
uses the quadratic Mahalanobis’ distance as a test statistic using the following hypothesis:

46

{
H0 : Xt ∈ N(µi,Σi), updates the existing components
H1 : Xt /∈ N(µi,Σi), creates a new component

where Xt is a random vector of time t, µi is the mean of the i-th component and Σi is
the covariance matrix of the i-th component. The test is made for all i components and is
a unilateral test based on the Mahalanobis’ distance, the Qui-Square distribution and an
user defined α, which is a type I error measure. If, for any i component, M2 ≤ χ2

(k,α),
then it updates the components. If, for all i components, M2 > χ2

(k,α) then it creates a
new component. Where M2 is the quadratic Mahalanobis’ distance, as seen on Equation
(3.56) and χ2

(k,α) is a limit score based on the χ2 distribution with k degrees of freedom
and α probability on the right side.

M2
i = (x− x̄i)

TSn,i
−1(x− x̄i), ∀i = 1, 2, 3, . . . ,m (3.56)

As seen on Equation (3.54), every component has its own set of parameters x̄ and Sn.
To update its parameters, first the contribution of all components is computed and then,
weighted. The contribution of each of its components is based on the likelihood of the
data, as seen on Equation (3.57) and the weights on Equation (3.58).

Li =
1√
|Sn,i|

exp

(
−1

2
M2

i

)
,∀i = 1, 2, 3, . . . ,m (3.57)

wi =
Li∑m
i=1 Li

(3.58)

where wi is used to weight the updates across the significant components.
With all the wi computed, we move on to first update the sufficient statistics, i.e., sn

and s2n. This is made using Equations (3.59) and (3.60), respectively.

s(n+1),i =
n∑
j=1

xj + wix(j+1) = sn,i + wix(j+1), (3.59)

s2(n+1),i =
n∑
j=1

xjx
T
j + wix(j+1)x

T
(j+1) = s2n,i + wix(j+1)x

T
(j+1), ∀i = 1, 2, 3, . . . ,m

(3.60)

where x(j+1) represents the new data, with sn and s2n calculated over all components.
The next step is to update the remaining parameters, shown in Equations from (3.61)

through (3.64).

n(n+1),i = nn,i + wi, (3.61)

p(n+1),i =
n(n+1),i∑k
i=1 n(n+1),i

(3.62)

x̄(n+1),i =
s(n+1),i

n(n+1),i

, (3.63)

S(n+1),i =
1

n(n+1),i − 1

(
s2(n+1),i −

1

n(n+1),i

s(n+1),is
T
(n+1),i

)
(3.64)

47

where p(n+1),i is an estimate for the mixture weight πi.
If, when presenting a data vector, it is necessary to create a new component, then it

means that this data vector is not statistically significant to all m components. So, a new
component m+ 1 is created and the likelihood of the new data xn will be Lm+1 = 1 and,
by definition, Li = 0, ∀i = 1, 2, . . . ,m. So, adapting Equation (3.58), the result is shown
on Equation (3.65).

wm+1 =
Lm+1∑m+1
i=1 Li

=
Lm+1

L1 + . . .+ Lm + Lm+1

=
Lm+1

0 + . . .+ 0 + Lm+1

= 1 (3.65)

This is the learning mode of the CIGMN and, as said before, can be done perpetually.
At some point, it is necessary to address the problem of creating too many components.
This can be done with a multivariate Gaussian distribution test. It is, however, not pre-
sented here because in the used series it is not an issue. For this test, the CIGMN must
not be in learning mode and neither in the recalling mode, but which we call an stand-by
mode, as the process for the multivariate Gaussian test is computationally costly. Nev-
ertheless, with the sn and s2n stored for each component, even if some components are
removed, this information can be reallocated on other components, loosing no informa-
tion whatsoever.

3.5.2.2 Recalling Mode

CIGMN enters in the recalling mode whenever the new data xn is not complete. If
any, but not all, elements are missing, the CIGMN initiates the recalling mode to esti-
mate the missing elements. As stated before, the recalling mode can be described as a
linear combination of regression models. The CIGMN allows three different linear com-
binations using the likelihood Li of the non-missing data, the mixture weight pi of the
components and a combination of both.

Before further presentations, let us assume the following covariance matrix represen-
tation which is similar to the one shown on Equation (3.53).

M =

[
Mk,k Mk,l

Ml,k Ml,l

]
(3.66)

Equation (3.66) is used as a model, showing four submatrices, Mk,k, Mk,l, Ml,k and
Ml,l. The Mk,k is a submatrix about the known k elements. The matrices Mk,l and Ml,k

are submatrices about the interaction between the k known elements and the l missing
elements. Finally, the Ml,l is about the l missing elements. This four submatrices will be
used to better show how to obtain the regression β̂ and the recalling likelihood, using a
reduced S.

So, assuming that Yl elements are missing, l < k, the first step is to obtain all the
k − l estimated regression β̂, as shown on Equation (3.67).

β̂i = (XT
i Xi)

−1(XT
i Yi), ∀i = 1, 2, 3, . . . ,m. (3.67)

where (XT
i Xi) represents the Mk,k submatrix of the outer product matrix M for each

component and (XT
i Yi) represents the Mk,l submatrix of the outer product matrix M. As

shown before, on Equation (3.53), every component stores the outer product and, when
one or more values are missing, it is used to obtain the regression β̂.

48

The second step is to compute the recalling likelihood Lr for each component, as
shown on Equation (3.68).

Lri =
1√
|S∗n,i|

exp

(
−1

2
M∗2

i

)
, ∀i = 1, 2, 3, . . . ,m (3.68)

where S∗n,i is the Mk,k submatrix for each one of the Sn,i matrices andM∗2
i is the quadratic

Mahalanobis’ distance for each one of the components, as shown on Equation (3.56),
using only the known elements x̄ and the Sn,i, as shown on Equation (3.69).

M2
i = (xk − x̄i,k)

TS∗n,i
−1(xk − x̄i,k), ∀i = 1, 2, 3, . . . ,m (3.69)

where xk represent the known elements and x̄i,k the mean of the known elements.
With all the regression β̂ estimated, the estimate for the missing values can be made

in many different ways. In this work, we use three approaches: the weighted likelihood,
Lr∗i , the mixture weights pi and a weighted combination of the recalling likelihood and the
mixture weights, Ui. To use the weighted likelihood approach, first we need to compute
the weighted recalling likelihood, as shown on Equation (3.70) and then using Lr∗i to
weight all the regressions, as shown on Equation (3.71). The first step is made to guarantee
that

∑m
i=1 Lr

∗
i = 1. However this approach does not use the information on the mixture

weights pi and it is suitable for systems with small nn,i, but significant, components. Some
of the used series may fall in this category.

Lr∗i =
Lri∑m
i=1 Lri

(3.70)

Ŷ =
m∑
i=1

Lr∗iXβi (3.71)

The simplistic approach is to use only the mixture weights computed using Equation
(3.62). This approach is more appropriate on components with small nn,i or components
that are largely distinct, and is shown on Equation (3.72)

Ŷ =
m∑
i=1

piXβi (3.72)

Another approach is to combine the information on the mixture weights pi with the
recalling likelihood Lri. In this approach we first need to compute the weighted combina-
tion between the mixture weights pi and the recalling likelihood Lri, which we call Ui, as
shown on Equation (3.73). And then, as was done before, weight the estimates for all the
components, as shown on Equation (3.74). It is important to notice that these approaches
have, for the most cases, very similar results, but only the best results are presented in the
Experiments section.

Ui =
Lripi∑m
i=1 Lripi

(3.73)

49

Ŷ =
m∑
i=1

UiXβi (3.74)

Algorithm (1) shows the learning mode of the CIGMN. Algorithm (2) shows how
the CIGMN creates a new component, when necessary. Algorithm (3) shows how the
CIGMN updates its components and finally, Algorithm (4) shows the CIGMN recalling
mode. And Table 3.1 presents a brief comparison between the original IGMN and the
CIGMN.

Data: k-dimensional vector x
Result: CIGMN Model
initialization;
for i = 1 to m do

Obtain the Quadradtic Mahalanobis’ Distance M2
i - Equation (3.56) ;

Obtain the likelihood Li - Equation (3.57) ;
end
if M2

i > χ2
k ∀i = 1 : m then

Create a new component - Algorithm 2;
else

Update the existing components - Algorithm 3;
end

Algorithm 1: Pseudo-code for the CIGMN Learning mode

Data: k-dimensional vector x and Li
Result: CIGMN Model with m+ 1 components
begin

CIGMN$sumx2(m+1) ← x′x ;
CIGMN$sumx(m+1) ← x ;
CIGMN$n(m+1) ← 1 ;
CIGMN$mean(m+1) ← x ;
CIGMN$varcov(m+1) ← diag(x′x) ;

end
Algorithm 2: Pseudo-code to create a new component on CIGMN Learning mode

50

Differences between IGMN and CIGMN
Original IGMN Classic IGMN

Updates Uses bayesian approach
to update the necessary
values, based on prior
and posterior distribu-
tions.

Uses a classical ap-
proach to update the
mean vector, covariance
matrix and the compo-
nents weights.

Creation of a new com-
ponent

Based on values τmin
and τmax to reduce over-
fitting.

Uses the Mahalanobis
distance with a χ2-test.

Inference Also made using
bayesian approach,
with priors and posteri-
ors well defined.

Based on the OLS
estimation, combined
with the components
weights.

Parameter estimation Uses the EM algorithm. Based on maximum
likelihood estimation
and OLS estimation.

Table 3.1: A comparative table for some different characteristics between the original
IGMN and the Classical IGMN.

Data: k-dimensional vector x and Li
Result: CIGMN Model with updated components
initialization ;
Obtain all wi - Equation (3.58) ;
for i = 1 to m do

Update the outer product s2i - Equation (3.60) ;
Update the summation si - Equation (3.59) ;
Update the ni - Equation (3.61) ;
Update the mixture weight pi - Equation (3.62) ;
Update the mean x̄i - Equation (3.63) ;
Update the variance-covariance matrix Si - Equation (3.64) ;

end
Algorithm 3: Pseudo-code to update existing components on CIGMN Learning
mode

Data: k-dimensional vector x with missing data
Result: Estimate of the missing data, Ŷ
initialization ;
Obtain all β̂i - Equation (3.67) ;
Obtain all Lri - Equation (3.68) ;
Obtain all Ui - Equation (3.73) ;
Estimate Ŷ accordingly - Equation (3.71) or (3.74) ;
Algorithm 4: Pseudo-code to estimate missing data using an CIGMN model

51

3.5.3 Modeling the Moving Average (MA) component

First, assume that a time series presents the moving average (MA) component where,
as shown before, θ represents the MA parameters, θ = {θ1, θ2, . . . , θq}. The actual and
future errors are unknown and random errors, but the past errors can be estimated. As
shown in works of (ENDERS, 1995) and (HAMILTON, 1994), the θ can be estimated via
a sequential method. First, by definition, we assume that

ε0 = 0

and follows that

ε1 = y1

ε2 = y2 − θ1ε1 = y2 − θ1y1
ε3 = y3 − θ1ε1 − θ2ε2 = y3 − θ2y2 − θ1y1

and so on. In general, we have

εt = yt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q = yt −
q∑
i=1

θiεt−i (3.75)

where q is the q-th MA order, i.e., MA(q).
The procedure presented in Equation (3.75) is done sequentially, with the initial value

for θ defined by the user, as a θ̂init. The sequential procedure used to estimate θ, or simply
θ̂ corresponds to the same method we use to estimate the recalling β̂, as seen on Equation
(3.52). However, with the MA modification, the error vector ε must be reconstructed for
every new data, i.e., for each step. Assuming that, by definition, the first estimate ε̂0 = 0
or simply e0 = 0 and that e1 = x1, then, all the others q elements are also, sequentially
computed, as shown on Equation (3.76).

en = xn −
q∑
i=1

θ̂i,(n−1)ei,(n−1) (3.76)

Being en dependent on observed data xn and also θ̂i, for every new data, the error
vector e must be reconstructed with the actual θ̂, estimated in the same way the β̂ were,
as in Equation (3.52). So, for now, we have θ̂(i,n) where n is the sample size or, in this
time series scenario, the available time patterns. For simplicity we use a common e for all
components, using the last Li as a weighted mean, as shown on Equation (3.77).

en =
m∑
i=1

L∗n,ien,i (3.77)

where L∗i,n is the weighted Ln,i as shown on Equation (3.78).

L∗n,i =
Ln,i∑m
i=1 Ln,i

(3.78)

52

For example, let us assume an MA(1) process. When the first data vector arrives, the
CIGMN uses the above definition and sets the ε̂ or simply e at zero (0). So, the first input
data that the CIGMN model receives is

[e0 x1] = [0 x1]

instead of

[x1 x2]

Using the estimates e, we reconstruct the time series and improve our θ̂ estimate,

ε2 = y2 − θ̂1,1ε1 = y2 − θ̂1,1y1
ε3 = y3 − θ̂1,2ε2
ε4 = y4 − θ̂1,3ε3
. . .

εt = yt − θ̂1,(t−1)εt−1

where θ̂1,(t−1) represents the θ̂1 estimate at t-th step. The difference in the MA process is
that the estimates are used at every new data, instead of using only when there are missing
values. This, however, introduces a new step in the used algorithms. At the initial step of
the process, the steps described in Algorithm 5 are used.

Data: k-dimensional vector x and β0
Result: (k + q)-dimensional vector
begin

Set q-dimensional e vector with zeros 0 ;
Use β0 to obtain the first min(q, k) errors ;
Bind the e vector with the x vector ;
Uses the new x∗ as the input vector ;

end
Algorithm 5: Pseudo-code of the initial steps necessary for the MA parameters
estimate

After the initial step (used only with the first input data), the steps on Algorithm 6
shows how the MA θ̂ updates.

Data: k-dimensional vector x and θ̂T−1
Result: (k + q)-dimensional vector and θ̂T
begin

Recover q-dimensional eT−1 vector ;
Updates θT−1 using the x∗ vector ;
Updates eT−1 ;

end
Algorithm 6: Pseudo-code of the initial steps necessary for the MA parameters
estimate

With these definitions, the CIGMN model with the MA process capabilities is called
an ARMA-CIGMN(p,q) model, where p represents the AR order and q the MA order of
the model.

53

4 EXPERIMENTS AND RESULTS

4.1 Initial Comments

In this chapter we propose, design and analyze four different types of experiments,
based on three different real time series and three simulated models. The models used
for comparisons are (i) the ARIMA family, (ii) the original IGMN, (iii) the ARMA-like,
(iv) the NOE-like and (v) the ARMA-CIGMN models. We used well known time series,
chosen for their characteristics: (i) the air passengers data, (ii) the monthly sunspots and
(iii) the Canadian lynx data. The simulated series were an MA(1) model, a pure MA
process of order 1, with different parameters, an ARIMA(1,1,1) and an ARMA(1,1), using
the same parametrization as the simulated MA(1) series.

In the first experiment we use the air passengers data and the sunspot data to show
the advantages of using acf and pacf graphs, the issue with MA components and compare
the original IGMN models, the ARIMA model and the ARMA-CIGMN model. With the
exception of the ARIMA model, the other models are compared with different configura-
tions using these two data series.

The second experiment compares the ARMA-like, the NOE-like model, the original
IGMN and the ARMA-CIGMN models, using the air passengers data. This experiment
was designed to show how the different models compare with a nonstationary series that
presents MA components.

The third experiment is more focused on the MA components and the integration coef-
ficient. In this case, MA(1), ARIMA(1,1,1) and ARMA(1,1) models were simulated. The
models used for comparison for the MA(1) series were: a classical MA(1), an ARMA-
like, an original IGMN using bias and the ARMA-CIGMN. For the ARIMA(1,1,1) and
the ARMA(1,1) series, we only used the classical and the ARMA-CIGMN models. In
this experiment, one-step forecasts were made, to better verify the capabilities of each
model for all the simulated models.

At last, we use the Canadian lynx series to demonstrate that the ARMA-CIGMN mod-
els the MA components and, also, to show its forecasting capabilities. In this experiment,
we choose some of the smallest forecasting errors models to compare with the ARMA-
CIGMN model.

4.2 Presentation of the real time series data

Here we present the real time series data. These three series are widely used because
some of their characteristics like nonstationarity, nonlinearity among others.

54

4.2.1 The air passengers data

The air passengers time series represents a total of 144 observations about the monthly
total of international airline passengers between 1949 and 1960, in thousands, as seen in
Figure 4.1.

Figure 4.1: The air passengers time series data

This particular series can be modelled in the classical statistical approach with a rea-
sonably simple model, a SARIMA(1,0,1)x(0,1,1)12, even being considered a nonlinear
time series. The majority of ANN models applied to this series uses a 12-lag window or
24-lag window (PINTO, 2011). Figure 4.2 shows the acf and pacf of the series. Observ-
ing the pacf graph, one can notice the statistically significant lags that will be used in the
IGMN models. The acf graph shows only a non stationary time series, this is why the inte-
gration coefficients in the SARIMA model are commonly used. This is also characteristic
for a nonlinear time series.

4.2.2 The sunspots data

The sunspots time series represents the monthly mean relative sunspot numbers from
1749 to 1983. This series is commonly used to verify the capabilities of different models,
as it is considered a nonlinear time series (MAKRIDAKIS; WHEELWRIGHT; HYND-
MAN, 1998).

The classical statistical models to this series range from an AR(9) to more complex
models. Usually, the ANN models applied to this series have a 12-lag window or even
a wider one (PINTO, 2011). Observing the graphs on Figure 4.4 one can see that the
acf graph is similar to the air passengers data, but the pacf shows that the statistically
significant lags are on the beginning of the series and after a long period.

55

(a)

(b)

Figure 4.2: The acf(a) and pacf(b) of the air passengers data

56

Figure 4.3: The monthly sunspots numbers time series data

4.2.3 The Canadian lynx series

This is an annual record of Canadian lynx fur sold from the London archives and
represents the amount of lynx trapped for each year in Northern Canada. The series has
114 values beginning in 1821 and ending in 1934. Figure 4.5 presents the series.

This series was treated as a log10 of the data, based on (KHASHEI; BIJARI, 2010)
and, also, for comparison with other models. Figure 4.6 presents the acf and pacf graphs
of this series, which uses a classical AR(12) as a reference classical model. The series
presents a nonlinear behavior and an approximately 10 year periodicity.

Observing the graphs on Figure 4.6 one can see that the acf graph presents a variable
seasonality, as the peak values occur on lags 5, 14, 24 and so on. The pacf only indicates
that the model should present an MA component.

4.3 Modeling using acf and pacf

The acf and pacf functions are used in two different moments. In the beginning of
the modeling, to compute the input representative lag window, or the representative time-
delays, and after the modeling to analyze the residuals. The residuals of any given model
(linear or nonlinear) must be uncorrelated. This is the same method used in the classical
statistical modeling. The only remark is that the original air passengers data are used, not
the differential, integrated or log data. For the purpose of these experiments, we try to
use nonlinear time series and that is one of the reasons to use the original data, namely
to test the capabilities of the acf and pacf function as tools to improve the performance
of the IGMN model. The other major reason is to be able to compare both models. The
same is done with the sunspot series. After modeling using the acf and pacf functions,
IGMN models are generated, as the traditional method to compare with, using the whole
lag window, or time-delays. We also used the classical SARIMA model to present the re-
sults with an observation: the SARIMA model uses the differentiated series, as presented

57

(a)

(b)

Figure 4.4: The acf(a) and pacf(b) of the sunspots data

58

Figure 4.5: The lynx time series

before. And finally the proposed ARMA-CIGMN model.

The lag window or time-delay representation used in this work is as follows: a lag
window of 1 is the input of x(t) to forecast x(t+1), a lag window of 2 is the input of
x(t−1) and x(t) to forecast x(t+1) and so on. Using the acf and pacf we apply the term
representative lag window because the model does not use the whole lag window, but just
some elements of it, the representative lags. A model can be described as using the x(t−6),
x(t−1) and x(t) to forecast x(t+1). This is not a lag window of 7, which is described by
x(t−6), x(t−5), ..., x(t−1) and x(t) to forecast x(t+1). To assess the contribution of the acf and
pacf functions to produce more compact models, two models with distinct input-layers
were presented for the IGMN. One of them has a compact input-layer corresponding to
the representative lag window with the delays determined using the acf and pacf functions.
The other one has an input-layer corresponding to the proper (whole) lag window, as seen
above.

The results for the trained models will be presented with the following measures: root
mean square error (RMSE) as in (4.1) and the normalized mean square error with the
trivial solution (NMSET) as in (4.2). The trivial solution for forecasts represents the use
of the last value xt as a forecast for the future value xt+1, or simply that the last observed
value is the best predictor for the future value. These results are computed using only
the forecasts, not the whole series. In both series the last observations will be removed
for forecasting and to compute the RMSE and NMSET. The forecast corresponds to an
one-step horizon.

RMSE =

√√√√ n∑
t=1

(x(t) − x̂(t))2
n

(4.1)

59

(a)

(b)

Figure 4.6: The acf(a) and pacf(b) of the lynx series

60

NMSET =

∑n
t=2 (x(t) − x̂(t))2∑n
t=2 (x(t−1) − x(t))2

(4.2)

where x(t) is the real observation at time t and x̂(t) is the predicted value at time t.
The first series to be modeled corresponds to the air passengers data. Two differ-

ent original IGMN models were computed: a model with a lag window of 14 observa-
tions, i.e., x(t), x(t−1), . . . , x(t−13), x(t−14) and a model with only the lags x(t), x(t−12) and
x(t−14). We also used the classical SARIMA model and three different configurations
of the ARMA-CIGMN. The first one, using the same lag-window as the original IGMN
with significant lags, except for an MA component. The second one using the same lag-
window of 14 values as the original IGMN, with additional 12 MA components. At last,
just to present the MA improvement, the same model with a lag-window of 14 values but
without the MA components. The last 30 observations were used to verify the RMSE and
NMSET. The results are shown in Table 4.1.

Table 4.1: The air passengers forecasts results. * The SARIMA model does not present
clusters.

Models Clusters RMSE NMSET
IGMN x(t), x(t−12) and x(t−14) 1 18.2622 0.1205
IGMN x(t), . . . , x(t−14) 9 47.2595 0.8069
ARMA-CIGMN(3,1) 4 18.3052 0.1258
ARMA-CIGMN(14,12) 1 14.2494 0.0762
ARMA-CIGMN(14,0) 1 15.9670 0.0957
SARIMA(1,0,1)x(0,1,1)12 * 17.3773 0.1134

Table 4.1 presents a better performance of the IGMN model that uses the information
of the acf and pacf graphs, comparing with the IGMN that uses the entire lag-window.
The IGMN model with the significant lags, x(t), x(t−12) and x(t−14) has 1 cluster instead
of 9 and a RMSE of 18.3 and a NMSET of 0.12. The ARMA-CIGMN model using only
significant lags achieves a similar, yet slightly greater RMSE and NMSET results, than
the one without the MA component. This can be caused by the inclusion of the MA com-
ponent in the modeling process that may alter the significant lags. The main comparison
is made between the classical SARIMA and the 14 lag-window ARMA-CIGMN models
with and without the MA component. The classical SARIMA model surpasses the results
obtained by all the original IGMN models, and also the ARMA-CIGMN(3,1) with an
NMSET of 0.11 and a RMSE of 17.38. The ARMA-CIGMN(14,12) obtained a RMSE of
14.25 and a NMSET of 0.08. The same model without the MA component has slightly
greater NMSET and RMSE.

Figure 4.7 presents the final acf and pacf, using the residuals of the model with the
lowest NMSET and RMSE in Table 4.1, the ARMA-CIGMN(14,12).

Observing the acf and pacf in Figure 4.7, one can easily see that only on the acf graph,
in the lag 12, there is a value over the limit by a small amount. To better show how the
MA components of the ARMA-CIGMN may solve the moving average problem, Figure
4.8 shows the acf and pacf for the ARMA-CIGMN model with the same lag-window
but without the MA components. In this case, the value at lag 12 for both graphs are
significant, indicating an MA(12) component.

61

(a)

(b)

Figure 4.7: The final acf(a) and pacf(b) of the air passengers data

62

(a)

(b)

Figure 4.8: The acf(a) and pacf(b) of the air passengers data with the ARMA-CIGMN
model without the MA components

63

The other series analyzed corresponds to the sunspots data. The same steps that were
followed in the air passengers data are repeated here. The used models are an IGMN
with a lag window of 6 steps, i.e., x(t), x(t−1), . . . , x(t−5), x(t−6), an IGMN with only the
significant lags x(t), x(t−3) and x(t−6), the ARMA-CIGMN using only the significant lags
and 2 MA components (ARMA-CIGMN(3,2)), the ARMA-CIGMN using the 6 steps lag-
window and also 2 MA components (IGMN-ARMA(6,2)) and the ARMA-CIGMN with
the 6 steps lag-windows and without any MA component (ARMA-CIGMN(6,0)). The
last 93 observations were used to verify the RMSE and NMSET. The results are shown in
Table 4.2.

Table 4.2: The monthly sunspots forecasts results

Models Clusters RMSE NMSET
IGMN x(t), x(t−3) and x(t−6) 11 20.0275 0.9169
IGMN x(t), . . . , x(t−6) 12 22.4864 1.1558
ARMA-CIGMN(3,2) 8 10.1612 0.9322
ARMA-CIGMN(6,2) 10 10.3287 0.9632
ARMA-CIGMN(6,0) 17 10.6282 1.0198

The IGMN model with the significant lags produced smaller NMSET errors than any
other model, but in respect to the RMSE, all the ARMA-CIGMN models presented better
results, as one can see in Table 4.2. It is important to note that, again, the ARMA-CIGMN
model without the MA components has worst results than the model with the MA compo-
nents. In the sunspot series, the model using only significant lags has the lowest RMSE,
10.1612, and the second best NMSET of 0.9322. Figure 4.9 shows the acf and pacf graphs
for the ARMA-CIGMN(3,2) model with the significant lags.

Both the acf an the pacf graphs in Figure 4.9 seem well adjusted, with the exception
of two lags on the pacf graph, around lag 15. This reinforces that the ARMA-CIGMN
can model a moving average process.

4.4 Comparison among different configurations for the IGMN

As presented before, the modeling starts with the initial acf and pacf of the air pas-
sengers series. Figure 4.2 presents the initial acf and pacf of the data. From here on
we take different approaches, according to the used configuration. The AR configuration
uses the same input configuration as (PINTO, 2011), for comparison. In this model, no
other analysis was made. It uses a lag-window of 17 elements. In the significant lags con-
figuration, we used the same model as seen in (FLORES; PINTO; ENGEL, 2012). This
configuration, after the acf and pacf analysis, uses the x(t), x(t−12) and x(t−14) to forecast
x(t+1). The ARMA-like model uses the past errors to improve the forecasts and it is based
on almost the same structure as the relevant lags model.

In the ARMA-like model, the data used was the x(t), x(t−12), x(t−14) and also the
ε(t−3), ε(t−6), ε(t−10), computed over the forecasts and the real values. It is important to
note, however, that this is only possible using an initial buffer on the input of the IGMN.
This same method was used in the fourth different configuration of the input layer, us-
ing the forecasts values as input, the NOE-like model. It uses the same time lags as the
ARMA-like model configuration, but using the past predicted values instead of the past

64

(a)

(b)

Figure 4.9: The final acf(a) and pacf(b) of the sunspots data using the ARMA-
CIGMN(3,2) model

65

errors, i.e., x(t), x(t−12), x(t−14) and also the x̂(t−3), x̂(t−6), x̂(t−10) to predict x(t+1).
The last presented models are based on the ARMA-CIGMN, and we use the same

configurations as before. The first one, an ARMA-CIGMN(3,1), uses x(t), x(t−12), x(t−14)
and a MA component et to forecast x(t+1). The second one uses the complete lag-window,
going from x(t), x(t−1), . . ., x(t−14) to forecast x(t+1), which is similar to the one presented
in (PINTO, 2011), but 3 lags shorter. And finally, the third one has the same lag-window
as the second one plus the 12 lag-window MA component, et, e(t−1), . . ., e(t−12).

The generated models will be compared separately using the same parameters, with
the exception of the number and content of the input layer. The only remark is that the
original air passengers data are used, not the differential, integrated or log data. As stated
before, the time series should be nonlinear and that is one of the reasons to use the original
data, namely to test the capabilities of each model.

The results for the trained models will be presented with the following measures: root
mean square error (RMSE) as in (4.1) and the normalized mean square error with the
trivial solution (NMSET) as in (4.2). These results are computed using only the forecasts,
not the whole series. As before, the last 30 observations will be removed to forecasting
and compute the RMSE and NMSET. The forecast corresponds to an one-step horizon.

After modeling and forecasting the series, Table 4.3 presents the RMSE and NMSET
of the different used models.

Table 4.3: Results of the different IGMN models on the air passengers data

Models Clusters RMSE NMSET
IGMN-AR(17) 1 16.8230 0.1064
IGMN-x(t), x(t−12), x(t−14) 1 18.2622 0.1205
IGMN-ARMA-like(3,3) 8 24.3729 0.2190
IGMN-NOE-like(3,3) 4 20.3165 0.1583
ARMA-CIGMN(3,1) 4 18.3052 0.1258
ARMA-CIGMN(14,0) 1 15.9670 0.0957
ARMA-CIGMN(14,12) 1 14.2494 0.0762

Observing Table 4.3 we can see that the model with the lowest RMSE (14.2494) and
NMSET (0.0762) is the one with the most input lags, using 14 lags and 12 MA com-
ponents (ARMA-CIGMN(14,12)). The ARMA-CIGMN(14,0), using the inputs similar
to an AR model, has come in second with RMSE (15.9670) and NMSET (0.0957). The
difference between the NOE and the significant lags model is not relevant. With the ex-
ception of the ARMA-CIGMN(3,1), the other two ARMA-CIGMN models have smaller
RMSE and NMSET. If we consider the modifications, as the ARMA-like and the NOE-
like, the ARMA-CIGMN(3,1) still has better results. Next, we present the acf and pacf
graphs of each model. The graphs for the original IGMN model and its modifications
were made using the Statistical Toolbox of MATLAB. The graphs for the ARMA-CIGMN
were made using R statistical package. Figure 4.10 presents the acf and pacf of the AR
configuration, Figure 4.11 the AR with significant lags, Figure 4.12 the ARMA-like, Fig-
ure 4.13 the NOE-like, Figure 4.14 the ARMA-CIGMN(3,1), Figure 4.16 the ARMA-
CIGMN(14,12) and Figure 4.15 the ARMA-CIGMN(14,0) models, respectively.

Figure 4.10 shows the results for the IGMN-AR(17) and we can see, on both graphs,
that all values are inside the limits. This may be an example of using a large AR compo-

66

Figure 4.10: The acf and pacf of the IGMN-AR(17) model on the air passengers data

nent, p = 17, to solve the underlined MA process.

Figure 4.11: The acf and pacf of the significant lags model on the air passengers data

Figure 4.11 shows the results for the IGMN model with significant lags and we can
notice that, in both graphs, some values are outside the limits, but not by much and, even
with this values, the model is still well adjusted.

Figure 4.12 shows the results for the ARMA-like model and we can notice that all the
values are inside the limits, for both graphs. The ARMA-like model seems well adjusted,
including the possible MA process.

Figure 4.13 shows the results for the NOE-like model and even with smaller RMSE
and NMSET than the ARMA-like model, the model presents too many values outside the
limits, specifically on the acf graph. The model clearly fails to address some AR and/or
MA components.

Figure 4.14 shows the results for a simple configuration ARMA-CIGMN model, sim-

67

Figure 4.12: The acf and pacf of the ARMA-like model on the air passengers data

Figure 4.13: The acf and pacf of the NOE-like model on the air passengers data

68

(a)

(b)

Figure 4.14: The acf(a) and pacf(b) of the air passengers data with the ARMA-
CIGMN(3,1) model

69

ilar as the ARMA-like, but both graphs1 shows values outside the limits. Similar to what
happens with the significant lags model with exception to the first pacf value.

(a)

(b)

Figure 4.15: The acf(a) and pacf(b) of the air passengers data with the ARMA-
CIGMN(14,0) model

Figure 4.15 shows the results of the ARMA-CIGMN model similar as the ARMA-
CIGMN model before, but using only the AR components.

And finally, Figure 4.16 shows the results for the more complex ARMA-CIGMN
model using an AR(14) and an MA(12) components. In comparison with the graphs in
Figure 4.15, we can clearly see the effect of the MA components, specially in respect
to the value at lag 12, corresponding to the order of the MA component in the previous
model, the ARMA-CIGMN(14,0). Almost all values are inside the limits for both graphs,
with some exception made on the acf graph at lag 12, but even this value may be not
relevant. Which reinforces that the ARMA-CIGMN can model MA components and
present the smallest NMSET and RMSE of the configurations tested.

1The acf graphs that were made using the R statistical software always present the lag 0 correlation
by default and it is always equal to 1. This is made for some verifications and it is not common on other
software as, for example, the MATLAB Statistical Toolbox, also used.

70

(a)

(b)

Figure 4.16: The acf(a) and pacf(b) of the air passengers data with the ARMA-
CIGMN(14,12) model

71

4.5 Simulated series

As shown before, the original IGMN model seems not to fit well on series with
MA components. The goal here is to simulate different MA(1), an ARIMA(1,1,1) and
an ARMA(1,1) models and use different configurations of the IGMN, the classical MA
model and the ARMA-CIGMN model for comparisons. In the MA(1) simulated series,
we present three different configurations of the original IGMN, the ARMA-CIGMN and
the classical model to show the effect on the acf and pacf graphics. In the ARIMA(1,1,1)
and the ARMA(1,1) simulated series we compare only the classical model and the ARMA-
CIGMN model. Later, the same models are presented with the forecasting errors, for all
the simulated series. We choose to present this way to better show the capabilities and
limitations of these different models in comparison with the classic model.

4.5.1 Description of the experiment

First, we choose the most simple moving average model to be simulated, an MA(1)
model, as in (4.3), which is a simplified presentation of (2.14).

x(t+1) = θε(t) + ε(t+1) (4.3)

As seen on Chapter 2, ε(t+1) is a white noise, and so, unknown and unpredictable.
However, ε(t) is known, computed as seen on Equation (2.2).

Later, we use a complete ARIMA model, using an AR(1) and a MA(1) model, with the
integration coefficient 1, resulting in an ARIMA(1,1,1), as described in Equation (4.4).

x∗(t+1) = φx∗t − θε(t) + ε(t+1) (4.4)

where x∗t is the integrated variable xt, i.e., x∗t = xt − xt−1.
Finally, we simulate an ARMA(1,1), as described in Equation (4.5), to better show

the effects caused by the integration coefficient.

x(t+1) = φxt − θε(t) + ε(t+1) (4.5)

We generated 100 samples of size 1000 each for 9 different φ and θ. The last 100
values were separated to verify the one-step horizon forecasting errors. For each one of
these samples, IGMN and/or ARMA-CIGMN models were adjusted and the pacf and acf
computed. A classical statistical ARIMA(1,1,1) and a MA(1) model were also adjusted,
just for comparison purposes. These 9 different parameters come from an increasing
sequence with 0.1 increments, being the first φ and θ equal to 0.1 and the last equal to 0.9,
all positive values, except in the ARIMA and ARMA models, as the θ presents the same
value as the φ, but negative. Figure 4.17, Figure 4.18 and Figure 4.19 present an example
of a simulated MA(1), a simulated ARIMA(1,1,1) and a simulated ARMA(1,1) models,
respectively.

The metric used for comparison is the amount of values that are beyond the limits of
the acf and pacf, using a lag of 12 steps. It is expected that the different IGMN configura-
tions and the ARMA-CIGMN achieve similar, if not greater, values beyond the limits than
a classical model would, that is why the classical models are also used. We also expect
that the ARMA-CIGMN get results very similar as the classical model, at least with the
MA(1) and ARMA(1,1) simulated series.

72

Figure 4.17: An example of a simulated MA(1) series using θ = 0.5.

Figure 4.18: An example of a simulated ARIMA(1,1,1) series using φ = 0.5 and θ = 0.5.

73

Figure 4.19: An example of a simulated ARMA(1,1) series using φ = 0.5 and θ = 0.5.

4.5.2 The simulated MA(1) series

In the original IGMN, 3 different configurations were used: (i) an ARMA-like con-
figuration, (ii) a simple MA configuration and (iii) a bias configuration. The ARMA-like
configuration uses, besides the ε(t), an x(t), which is similar to an ARMA(1,1) model. The
simple MA configuration uses only the ε(t). And the bias configuration uses the ε(t) and
a bias (values equal to one). This last configuration was used as the IGMN is shown to
be similar to a regression model and with this approach we intend to mimic the behavior
of a constant in the regression model, commonly represented with β0 in regression analy-
sis. The ARMA-like configuration was used because the way the algorithm of the IGMN
works and this approach is similar to an algorithm for classic MA models presented in
(MORETTIN; TOLOI, 2006). Tables from (4.4) to (4.11) show the results based on the
model adjustment for these configurations.

The ARMA-CIGMN model was a pure MA model, i.e., ARMA-CIGMN(0,1). For
this presentation, we decided to force the ARMA-CIGMN model to create and update
only one component. This decision was made to better verify the MA capabilities of our
proposed model. If we do not force the one component model, the combination of dif-
ferent components on a large series can mislead the conclusions. This also simplifies the
simulation process, as the model was simply adjusted for every different MA parameter.
Tables 4.12 and 4.13 present the results for the ARMA-CIGMN models.

Observing Tables (4.4) and (4.5) one can see how the classic MA model behaves.
The percentage of models considered well adjusted, i.e., models with none or one value
outside the limits, are no less than 90%, with only two exceptions seen on Table (4.4) with
θ equals to 0.1, that has 88% and θ equals to 0.5, that also has 88%. We use these tables
for comparison with the different configurations of the IGMN models.

The IGMN model using only the differences shows problems with larger θ in the acf
graphics, as seen on Table (4.6). In fact, with θ = 0.2 the IGMN already presents an 82%
of models not well adjusted. The same can be seen on Table (4.7).

74

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 88% 94% 94% 90% 88% 94% 90% 95% 94%
2 or 3 outside 11% 6% 5% 10% 12% 6% 10% 5% 6%
4 or more outside 1% 0% 1% 0% 0% 0% 0% 0% 0%

Table 4.4: Values that lie outside the limits boundaries on the acf graphic for the classical
model in the MA(1) simulated series - in %

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 95% 93% 92% 93% 91% 92% 92% 91% 94%
2 or 3 outside 5% 7% 8% 7% 9% 8% 8% 9% 6%
4 or more outside 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.5: Values that lie outside the limits boundaries on the pacf graphic for the classical
model in the MA(1) simulated series - in %

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 72% 18% 4% 0% 0% 0% 0% 0% 0%
2 or 3 outside 27% 76% 84% 77% 71% 67% 60% 64% 74%
4 or more outside 1% 6% 12% 23% 29% 33% 40% 36% 26%

Table 4.6: Values that lie outside the limits boundaries on the acf graphic for the IGMN
model using only past differences ε(t−1) in the MA(1) simulated series - in %

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 73% 16% 3% 0% 0% 0% 0% 0% 0%
2 or 3 outside 27% 79% 88% 77% 26% 7% 5% 1% 0%
4 or more outside 0% 5% 9% 23% 74% 93% 95% 99% 100%

Table 4.7: Values that lie outside the limits boundaries on the pacf graphic for the IGMN
model using only past differences ε(t−1) in the MA(1) simulated series - in %

75

As in Table (4.6), Table (4.7) also shows problems with this configuration. However,
in respect to the pacf graphics, the number of well adjusted models is even lower. With
θ = 0.6 there are more than 90% of the models poorly adjusted, reaching 100% (all
models) with θ = 0.9.

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 70% 25% 5% 0% 0% 0% 0% 0% 0%
2 or 3 outside 29% 70% 81% 75% 70% 68% 58% 65% 76%
4 or more outside 1% 5% 14% 25% 30% 32% 42% 35% 24%

Table 4.8: Values that lie outside the limits boundaries on the acf graphic for the IGMN
model using past differences ε(t−1) and bias in the MA(1) simulated series - in %

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 73% 25% 4% 1% 0% 0% 0% 0% 0%
2 or 3 outside 27% 69% 86% 78% 28% 9% 4% 1% 0%
4 or more outside 0% 6% 10% 21% 72% 91% 96% 99% 100%

Table 4.9: Values that lie outside the limits boundaries on the pacf graphic for the IGMN
model using past differences ε(t−1) and bias in the MA(1) simulated series - in %

The IGMN model that uses differences and bias configuration has similar results as
the IGMN model using only differences, both in the acf graphics, shown on Table (4.8),
as in the pacf graphics, shown on Table (4.9). These two configurations seem to work
better on models with lower θ. This could also happen because of the great impact that
some of the IGMN parameters seem to have on the final model. The fact is that even this
configuration fails to model the MA component, at least for θ > 0.2.

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 97% 94% 92% 91% 62% 16% 0% 0% 0%
2 or 3 outside 3% 6% 8% 9% 38% 77% 85% 76% 68%
4 or more outside 0% 0% 0% 0% 0% 7% 15% 24% 32%

Table 4.10: Values that lie outside the limits boundaries on the acf graphic for the ARMA-
like(1,1) model in the MA(1) simulated series - in %

The ARMA-like configuration seems to behave better than the other two on the acf
graphics, as shown on Tables (4.10) and (4.11). However, even this configuration fails to
adapt with larger θ. The configuration works seemingly well until θ = 0.5 for both graph-
ics. For greater θ, the configuration becomes worst, with 100% models poorly adjusted
for pacf graphics, in Table (4.11).

Observing Tables 4.12 and Table 4.13, we note that, compared to the different con-
figurations of the original IGMN model, the ARMA-CIGMN achieves better results. At

76

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 96% 93% 91% 90% 55% 9% 0% 0% 0%
2 or 3 outside 4% 7% 9% 10% 45% 82% 59% 3% 0%
4 or more outside 0% 0% 0% 0% 0% 9% 41% 97% 100%

Table 4.11: Values that lie outside the limits boundaries on the pacf graphic for the
ARMA-like(1,1) model in the MA(1) simulated series - in %

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 91% 91% 91% 89% 92% 88% 83% 82% 58%
2 or 3 outside 9% 9% 9% 10% 8% 12% 17% 17% 38%
4 or more outside 0% 0% 0% 1% 0% 0% 0% 1% 4%

Table 4.12: Values that lie outside the limits boundaries on the acf graphic for the ARMA-
CIGMN(0,1) model in the MA(1) simulated series - in %

Parameters of the MA models - θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 93% 92% 92% 87% 93% 88% 83% 81% 62%
2 or 3 outside 7% 8% 8% 13% 7% 12% 17% 18% 32%
4 or more outside 0% 0% 0% 0% 0% 0% 0% 1% 6%

Table 4.13: Values that lie outside the limits boundaries on the pacf graphic for the
ARMA-CIGMN model(0,1) in the MA(1) simulated series - in %

4 or more values outside the limits, the percentage is, at maximum, 6% for θ = 0.9. In
the pacf graphs, for seven different parameters, the percentage of 4 or more values out-
side the limits is zero (0%). However, when compared with the results of the classical
MA(1) model, some results are yet to be matched. With lower θ, specifically less than
0.8 the results are very promising. With higher θ, even with the good results, the ARMA-
CIGMN falls behind the classical MA(1). But, even with the problems on higher θ, the
ARMA-CIGMN shows some interesting results with a pure, simulated, MA(1) process,
even surpassing the classical model on some cases.

The next step is to show how these different configurations behave on forecasting in
comparison with the classic model. Table (4.14) presents the forecasting mean squared
errors (MSE) for each of the tested models and configurations.

Observing Table (4.14), the forecasting errors are similar, with the exception of the
maximum error for the configuration with differences only and the configuration with dif-
ferences and bias. The classical model presents the smallest forecasting errors (minimum
of 0.5809), but the difference to the other four models is not relevant. If, however, we con-
sider the mean and median, the model with the lowest mean MSE and median MSE is the
ARMA-CIGMN. While the ARMA-CIGMN model stays somewhat behind the classical
model in respect with the acf and pacf graphs, in forecasting errors the model surpasses
even the model used to generate the series. This is maybe better represented with Figure
(4.20), that shows the same information of Table (4.14) using a Box-plot graphic.

77

IGMN Models
Classic Differences Differences

Resume model only and bias ARMA-like(1,1) ARMA-CIGMN(0,1)
Minimum 0.5809 0.6813 0.6813 0.5899 0.6165

1st Quartile 0.9097 0.9824 0.9814 0.9379 0.9044
Median 1.0092 1.1165 1.1161 1.0469 1.0016

Mean 1.0147 1.1378 1.1367 1.0638 1.0105
3rd Quartile 1.1084 1.2649 1.2655 1.1681 1.1120

Maximum 1.5305 2.1397 2.1113 1.8851 1.5243

Table 4.14: Forecasting mean squared errors for the different models, for all θ used, in
the MA(1) simulated series.

Figure 4.20: Box-plot of the forecasting mean squared errors where: (a) represents the
classic model, (b) is the IGMN using only differences, (c) is the IGMN using differences
and bias, (d) is the ARMA-like model and (e) the ARMA-CIGMN model, in the MA(1)
simulated series.

The Box-plot shown on Figure (4.20) shows that, the configurations that were poorly
adjusted using acf and pacf graphics presents more heterogeneity, and more outliers. The
ARMA-CIGMN shows a behavior similar to the classical model, as the IGMN configura-
tion using differences and autoregressive component, besides the magnitude of its outliers.

4.5.3 The simulated ARIMA(1,1,1)

In this scenario, we compare only the classical model and the ARMA-CIGMN model.
Because of the integration component, we decided to use an ARMA-CIGMN(2,1), i.e.,
two AR components and one MA component, instead of an ARMA-CIGMN(1,1). The
second AR component should model the integration.

Another important difference is that, in the simulated ARIMA(1,1,1), the ARMA-
CIGMN models were not forced to use only one component. This was also because of

78

the integration coefficient, as a linear model may not be able to model an integrated series
very well. So, in this simulated series, the ARMA-CIGMN may create more than one
component. Tables 4.15 and 4.16 present the results for the classical model, while Tables
4.17 and 4.18 present the results for the ARMA-CIGMN models.

Parameters of the ARIMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 93% 90% 89% 96% 93% 95% 95% 91% 92%
2 or 3 outside 7% 10% 11% 4% 7% 5% 5% 9% 8%
4 or more outside 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.15: Values that lie outside the limits boundaries on the acf graphic for the classical
model, in the ARIMA(1,1,1) simulated series - in %

Parameters of the ARIMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 93% 90% 89% 96% 93% 95% 95% 91% 92%
2 or 3 outside 7% 10% 11% 4% 7% 5% 5% 9% 8%
4 or more outside 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.16: Values that lie outside the limits boundaries on the pacf graphic for the clas-
sical model, in the ARIMA(1,1,1) simulated series - in %

From Tables (4.15) and (4.16) we can observe how the classical model behaves similar
as in the MA(1) simulated series. Being a confidence interval of 95%, the values were
expected, as for most of the parameters, the models considered well adjusted (none or one
value outside the limits) are more or equal than 90%, for both acf and pacf and among all
parameters, with one exception, as the pacf and acf using φ = 0.3 and θ = 0.3, on Tables
4.16 and 4.15.

Parameters of the ARIMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 53% 50% 51% 57% 50% 61% 49% 59% 53%
2 or 3 outside 15% 9% 9% 16% 11% 6% 14% 10% 12%
4 or more outside 32% 41% 40% 27% 39% 33% 37% 31% 35%

Table 4.17: Values that lie outside the limits boundaries on the acf graphic for the ARMA-
CIGMN(2,1) model, in the ARIMA(1,1,1) simulated series - in %

From Table 4.17 and Table 4.18, we note that, compared to the classical model, the
ARMA-CIGMN achieves poor results, being almost 50% of the models well adjusted,
i.e., equal or less than 1 value outside the limits. Both Tables, 4.18 and 4.17, show how
the integration coefficient has a great impact on the residuals analysis. However, as the
classical model, the results presented with the ARMA-CIGMN are the same for both
Tables 4.18 and 4.17, with the same percentages, which may indicate that the ARMA-
CIGMN can work with both components, even with the integration coefficient.

79

Parameters of the ARIMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 53% 50% 51% 57% 50% 61% 49% 59% 53%
2 or 3 outside 15% 9% 9% 16% 11% 6% 14% 10% 12%
4 or more outside 32% 41% 40% 27% 39% 33% 37% 31% 35%

Table 4.18: Values that lie outside the limits boundaries on the pacf graphic for the
ARMA-CIGMN(2,1) model, in the ARIMA(1,1,1) simulated series - in %

The next step is to compare the forecasting errors for both models. Table (4.19)
presents the forecasting mean squared errors (MSE) for both models using all the dif-
ferent parameters.

Resume ARIMA(1,1,1) ARMA-CIGMN(2,1)
Minimum 0.0007 0.6690

1st Quartile 0.0032 0.9866
Median 0.0072 1.1225

Mean 0.0123 2.7603
3rd Quartile 0.0154 1.4535

Maximum 0.1172 154.22

Table 4.19: Forecasting mean squared errors for the classical and the ARMA-CIGMN
models, for all φ and θ used in the ARIMA(1,1,1) simulated series.

As Table 4.19 shows, the ARMA-CIGMN model achieve less accurate results. The
integration coefficient still offer a challenge for the ARMA-CIGMN model, even with the
multiple components. For this specific case, the results are too far apart for a graphical
presentation, so we choose not to present the Box-plot of the forecasting errors.

4.5.4 The simulated ARMA(1,1)

After the results shown for the ARMA-CIGMN model using an ARIMA(1,1,1) sim-
ulated series, the next step is to show the ARMA-CIGMN model on an ARMA(1,1) sim-
ulated series, without the integration coefficient. As with the previous simulated series,
Tables 4.20 and 4.21 show the results with the classical model and Tables 4.22 and 4.23
show the results using the ARMA-CIGMN(1,1) model.

Parameters of the ARMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 95% 95% 92% 95% 95% 89% 92% 95% 92%
2 or 3 outside 5% 5% 8% 5% 5% 11% 8% 5% 8%
4 or more outside 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.20: Values that lie outside the limits boundaries on the acf graphic for the classical
model in the ARMA(1,1) simulated series - in %

As with the previous series, the classical model is used as a standard, or a control,
for comparison. Observing Tables 4.20 and 4.21, all the results are compatible with the
previous classical models used. We then proceed to the ARMA-CIGMN analysis.

80

Parameters of the ARMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 95% 95% 92% 95% 95% 89% 92% 95% 92%
2 or 3 outside 5% 5% 8% 5% 5% 11% 8% 5% 8%
4 or more outside 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.21: Values that lie outside the limits boundaries on the pacf graphic for the clas-
sical model in the ARMA(1,1) simulated series - in %

Parameters of the ARMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 92% 86% 86% 89% 92% 89% 92% 94% 93%
2 or 3 outside 8% 13% 13% 11% 8% 11% 8% 6% 7%
4 or more outside 0% 1% 1% 0% 0% 0% 0% 0% 0%

Table 4.22: Values that lie outside the limits boundaries on the acf graphic for the ARMA-
CIGMN(1,1) model in the ARMA(1,1) simulated series - in %

Without the integration coefficient, the results are, by far, better. Table 4.22 and Table
4.23 present the same results, as with the ARMA-CIGMN model on the ARIMA(1,1,1)
simulated series. These results are close to the results of the classical model. This rein-
forces that the previous results are not better because of the integration coefficient. Table
4.24 present the results of the forecasting errors for all the parameters and models.

Observing Table 4.24, the differences are much smaller, being almost irrelevant be-
tween these two models. The results of the minimum, the maximum and the third quartile
MSE error of the ARMA-CIGMN are noteworthy, presenting better performance than the
classical model. Figure 4.21 presents the Box-plot of both models.

Figure 4.21: Box-plot of the forecasting mean squared errors where: (a) represents the
classic model and (b) is the ARMA-CIGMN model in the ARMA(1,1) simulated series.

Figure 4.21 shows that, while the majority of the results are almost the same, the

81

Parameters of the ARMA models - φ and θ
Values off limits 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 or 1 outside 92% 86% 86% 89% 92% 89% 92% 94% 93%
2 or 3 outside 8% 13% 13% 11% 8% 11% 8% 6% 7%
4 or more outside 0% 1% 1% 0% 0% 0% 0% 0% 0%

Table 4.23: Values that lie outside the limits boundaries on the acf graphic for the ARMA-
CIGMN(1,1) model in the ARMA(1,1) simulated series - in %

Resume ARMA(1,1) ARMA-CIGMN(1,1)
Minimum 0.5909 0.5406

1st Quartile 0.8839 0.9059
Median 0.9848 1.0015

Mean 0.9991 1.0065
3rd Quartile 1.1017 1.0957

Maximum 1.6071 1.4487

Table 4.24: Forecasting mean squared errors for the classical and the ARMA-CIGMN
models, for all φ and θ used in the ARMA(1,1) simulated series.

classical model presents larger MSE than the ARMA-CIGMN model. This shows that
even with simulated series using the classical models, with except for the ARIMA(1,1,1)
series, the ARMA-CIGMN can achieve results very similar to the classical models.

4.6 Modeling the lynx series

Finally we present the experiment with the Canadian lynx series. This series was cho-
sen to show how the ARMA-CIGMN can be a precise model, even with a small amount
of data. The complete series presents 114 values: 100 was used for the ARMA-CIGMN
learning and 14 for the recalling, or simply, forecasting. Figure 4.22 presents the acf and
pacf graphs after the adjusted ARMA-CIGMN model.

It is possible to notice in Figure 4.22 that, except for a few point outside the limits,
the model is well adjusted. We used a single component ARMA-CIGMN model with
5 significant AR components and 2 significant MA components, or simply, an ARMA-
CIGMN(5,2). We used a single component IGMN only to compare with the other mod-
els presented: an AR(12) classical model, Zhang’s hybrid model (ZHANG, 2003) and
Khashei-Bijari hybrid model (KHASHEI; BIJARI, 2010). The adjusted model and the
log series are shown in Figure 4.23.

The adjusted model shown in Figure 4.23, besides being a single component model,
seems to be well adjusted, specifically near the index 60 values. The model was then
tested for forecasting the last 14 values. The real values and the forecasts are shown on
Figure 4.24.

The model shows similar results as in the learning data series. Figure 4.24 shows that
the model can also present a lower forecasting errors, with exception for the index 8 and
10 values.

Finally, the model was tested against other models using the same metrics used on
other works: the mean absolute error (MAE) and the mean squared error (MSE), as seen
on Equations (4.6) and (4.7). Table 4.25 presents the comparison results.

82

(a)

(b)

Figure 4.22: The acf(a) and pacf(b) of the residuals after the ARMA-CIGMN model

83

Figure 4.23: The lynx series (line) with the ARMA-CIGMN adjusted model (dotted line)

Figure 4.24: The lynx series (line) with the ARMA-CIGMN model forecasts in a one-
step-ahead horizon (dotted line)

84

MAE =
1

n

n∑
i=1

|ei| (4.6)

MSE =
1

n

n∑
i=1

(e2i) (4.7)

Table 4.25: Comparison between models - Lynx series, 14 values, one-step ahead horizon

Models MAE MSE
AR(12) 0.112255 0.020486
Zhang’s hybrid model 0.103972 0.017233
Khashei-Bijari hybrid model 0.089625 0.013609
ARMA-CIGMN(5,2) 0.099014 0.013057

The results presented in Table 4.25 show that the ARMA-CIGMN has the smallest
MSE error, but the second smallest MAE error. This is probably because the forecasting
errors near the 8 and 10 values of the forecasting data series.

85

5 CONCLUSION AND DISCUSSION

5.1 Discussion

The original IGMN model has shown in past works, (HEINEN, 2011; PINTO, 2011;
FLORES; PINTO; ENGEL, 2012), that can model time series data very well. The prob-
lem is how to stablish the correct inputs for the network. The first experiment, using the
acf and pacf graphs to help the user, shows that the original IGMN fails to detect some
behavior of the time series, as the MA component. Even with the ARMA-like and the
NOE-like models, the problem with the MA components persists over the different ex-
periments. This problem is more theoretical than practical as the IGMN model, even with
simple configurations, can forecast very well, with errors similar, if not lower, to other
models. The theoretical problem is that even the IGMN supposes that the input data are
independent from each other, which only happens when the resulting acf and pacf graph-
ics for the residuals show all values inside the limits, or at least the deviations are not
statistically significant. The other theoretical problem is that the MA components estima-
tion under the Bayesian approach is not online and the method we use is only possible
under a classical statistical approach.

The ARMA-CIGMN solves that problem. The ARMA-CIGMN, as the experiments
show, can model MA components and, in fact, had improved the forecasting errors over
the original IGMN and its different versions. Also, the ARMA-CIGMN works with the
acf and pacf graphs and even maintains some of the best characteristics of the original
IGMN. This is the main goal of this work and the main contribution: a neural network
model that can model the AR component and also the MA component with small fore-
casting errors.

But we need to highlight the results of the ARMA-CIGMN on two different series:
the air passengers and the ARIMA(1,1,1) simulated series. Although the ARMA-CIGMN
is well adjusted to the former series, better than the classical model, is has poor results
on the last one. Both series present an integration component, but the ARMA-CIGMN
works well in only one of them, the air passengers. The fact is that the air passengers
series presents an always increasing mean, while the ARIMA(1,1,1), as shown on Figure
4.18, presents a more random behavior of the mean. The ARMA-CIGMN, because of the
multiple components, seems to model very well a constant shifting in mean but not when
the shifts occur more randomly, as in the simulated ARIMA(1,1,1) series. The simple
integration coefficient does not work online, and may present some issues with different
components, but it is one possible goal for future works.

Moreover, some new issues arise, while others continue to affect the modeling of a
time series. One of these issues is the addition of new parameters that are user-defined.
The ARMA-CIGMN needs some inputs from the user, as the initial θ, for example. This

86

parameters can heavily modify the resulting model. All of the models presented in this
work used a value of θ = 0.1, because is near, but not equal, to zero (0) and can easily
be update for positive or negative values. In fact, the value must be higher than 0 (zero)
and less than 1 (one) for statistical purposes, but there is no way to find an optimal value
for now. For larger samples, which is the purpose of an online incremental model, it is
almost irrelevant, as it tends to converge very fast. But in smaller samples, the value set
could have significant influence in the final model.

The other user defined parameter is the α criterium to create new components. If set to
a very low value, no new components are created and the IGMN becomes an online linear
model, as the incremental part disappears. If it is set too high, too many components
are created, the component-wise sample size becomes smaller and the result, and even the
model, can diverge. By now, there are no specifications whatsoever for how the parameter
must be set, and is still dependent on a trial-and-error method.

Some other minor issues have also arisen during the ARMA-CIGMN model devel-
opment. Some of them were inherited from the original IGMN, as the option of using
diagonal covariance matrices, ignoring the covariances and using only the variances, or
simplifying the create-or-update test to work always with a single missing value, very
common on univariate time series. But even with these problems, the ARMA-CIGMN
model had improve on almost every aspect over the original IGMN and the early ver-
sions. The only downside seems to be the increase in computational cost, caused by the
increase of its dimensionality due to the MA components. The ARMA-CIGMN achieves
lower forecasting errors even when the model has only one component. It surpasses the
classical model on the air passengers series, with the classical model working on a differ-
entiate series while the ARMA-CIGMN works on a nonstationary raw data.

We also presented the CIGMN as a combination of linear models, which opens new
possibilities and new challenges. As a combination of linear models, component-wise,
we have a well known estimator, the OLS. Very few assumptions are made for the OLS,
but we can make some other assumptions and have an understanding of each components
model, as, for example, assuming Gaussian i.i.d. errors and working with inference and
hypothesis tests over the parameters for each component. As a new challenge, we have
the problem of possible collinearity inside the components, which can affect the model
and the forecasts directly.

Finally, besides the related issues, the ARMA-CIGMN may be considered an all
around model, based on the experiments and the results presented. The model performed
well on linear series against a classical linear model, non stationary series as the Air pas-
sengers, surpassing other similar models and even in non linear time series, as the monthly
sunspot series and the Canadian lynx series.

5.2 Future works

As stated before, the ARMA-CIGMN had brought some new issues along some other
inheritances from the original IGMN. The new user-defined parameters: α and the initial
θ offer some subjectivity and affect the resulting model directly. Relating these values
with the series presented is one of our future goals, along the integration issue that arise
from the comparison between the results in the air passengers series and the simulated
ARIMA(1,1,1) series.

Another area of interest are the IGMN components (also called neurons). Is it pos-
sible to assure that all components will have some common area, to avoid gaps when

87

forecasting? Is it possible to define, based on some previous sample, the optimal number
of components desired and set this quantity? Can the MA components work indepen-
dently from the AR components? If so, the model becomes more or less complex? The
inclusion of the MA components, although it solves the MA estimation problems, has
generated new questions that need to be answered.

88

REFERENCES

BOX, G.; JENKINS, G. M. Time series analysis. 1st.ed. San Francisco: Holden-Day,
1976.

BOX, G.; JENKINS, G. M.; REINSEL, G. Time series analysis. 3rd.ed. New York:
Prentice Hall, 1994. 592p.

CHIU, D.-Y.; CHEN, P.-J. Dynamically exploring internal mechanism of stock market
by fuzzy-based support vector machines with high dimension input space and genetic
algorithm. Expert Systems with Applications, [S.l.], v.36, p.9, 2009.

CONGDON, P. Applied bayesian modelling. 1.ed. London: Wiley, 2003. 457p.

COSTA, M. A.; BRAGA, A.; MENEZES, B. R. de. Improving generalization of MLPs
with sliding mode control and the Levenberg-Marquardt algorithm. Neurocomputing,
[S.l.], v.70, p.1342–1347, 2007.

CRONE, S. F.; HIBON, M.; NIKOLOPOULOS, K. Advances in forecasting with neu-
ral networks? Empirical evidence from the NN3 competition on time series prediction.
International Journal of Forecasting, [S.l.], v.27, p.635–660, 2011.

DELLANA, S. A.; WEST, D. Predictive modeling for wastewater applications: linear
and nonlinear approaches. Environmental Modelling & Software, [S.l.], v.24, p.96–
106, 2009.

DONATE, J. P.; SANCHEZ, G. G.; MIGUEL, A. S. de. Time series forecasting. A com-
parative study between an evolving artificial neural networks system and statistical meth-
ods. International Journal on Artificial Intelligence Tools, [S.l.], v.21, n.1, p.26, 2012.

ENDERS, W. Applied econometric time series. 1.ed. New York: Wiley, 1995. 433p.

FLORES, J. H. F. Aplicação de redes neurais artificiais à previsão de vendas de
máquinas agrícolas. Porto Alegre, 2006. 60p.

FLORES, J. H. F.; PINTO, R. C.; ENGEL, P. M. Autocorrelation and partial autocorre-
lation functions to improve neural networks models on univariate time series forecasting.
In: IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, Bris-
bane (AU). Proceedings. . . [S.l.: s.n.], 2012.

GRANGER, C. W. J.; KING, M. L.; WHITE, H. Comments on testing economic theories
and the use of model selection criteria. Journal of Econometrics, [S.l.], v.67, p.173–187,
1995.

89

GUJARATI, D. Basic Econometrics. 4th.ed. New York: McGraw-Hill, 2006. 812p.

HAMILTON, J. D. Time series analysis. 1.ed. Princeton: Princeton University Press,
1994. 799p.

HAMZAÇEBI, C.; AKAY, D.; KUTAY, F. Comparison of direct and iterative artificial
neural network forecast approaches in multi-periodic time series forecasting. Expert Sys-
tems with Applications, [S.l.], v.36, p.3839–3844, 2009.

HAYKIN, S. Redes neurais. 2.ed. Porto Alegre: Bookman, 2001. 900p.

HEINEN, M. A connectionist approach for incremental function approximation and
on-line tasks. 2011. Tese (Doutorado em Ciência da Computação) — Universidade Fed-
eral do Rio Grande do Sul - Instituto de Informática.

HEINEN, M.; ENGEL, P.; PINTO, R. IGMN: an incremental gaussian mixture network
that learns instantaneously from data flows. In: IX ENIA - BRAZILIAN MEETING ON
ARTIFICIAL INTELLIGENCE, Natal (RN). Proceedings. . . [S.l.: s.n.], 2011.

INOUE, A.; KILIAN, L. On the selection of forecasting models. Journal of Economet-
rics, [S.l.], v.130, p.273–306, 2006.

KHASHEI, M.; BIJARI, M. An artificial neural network (p, d, q) model for timeseries
forecasting. Expert Systems with Applications, [S.l.], n.37, p.479–489, 2010.

KHASHEI, M.; BIJARI, M. Fuzzy artificial neural network (p, d, q) model for incomplete
financial time series forecasting. Journal of Intelligent and Fuzzy Systems, [S.l.], v.26,
n.2, p.14, 2014.

LIN WANG, Y. Z.; CHEN, T. Back propagation neural network with adaptive differen-
tial evolution algorithm for time series forecasting. Expert Systems with Applications,
[S.l.], v.42, n.2, p.8, 2015.

MAKRIDAKIS, S.; WHEELWRIGHT, S. C.; HYNDMAN, R. J. Forecasting Methods
and Applications. 3st.ed. New York: Wiley, 1998. 642p.

MCLACHLAN, G. J.; PEEL, D. Finite Mixture Models. 1st.ed. New York: Wiley, 2000.
438p.

MORETTIN, P. A.; TOLOI, C. M. C. Análise de séries temporais. 2.ed. São Paulo:
Edgard Blücher, 2006. 538p.

NETER, J. et al. Applied Linear Statistical Models. 4th.ed. New York: McGraw-
Hill/Irwin, 1996. 1408p.

PINTO, R. C. Online Incremental One-Shot Learning of Temporal Sequences. 2011.
Dissertação (Mestrado em Ciência da Computação) — Universidade Federal do Rio
Grande do Sul (UFRGS).

PINTO, R.; ENGEL, P.; HEINEN, M. Echo State Incremental Gaussian Mixture Network
for Spatio-Temporal Pattern Processing. In: IX ENIA - BRAZILIAN MEETING ON
ARTIFICIAL INTELLIGENCE, Natal (RN). Proceedings. . . [S.l.: s.n.], 2011.

90

QI, M.; ZHANG, G. P. An investigation of model selection criteria for neural net-
work time series forecasting. European Journal of Operational Research, [S.l.], v.132,
p.666–680, 2001.

RIPLEY, B. D. Pattern recognition and neural networks. 1st.ed. Cambridge: Cam-
bridge University Press, 1996. 415p.

ROHATGI, V. K. Statistical Inference. 1st.ed. New York: Dover, 2003. 948p.

SHUMWAY, R. H.; STOFFER, D. S. Time series analysis and its applications. 1.ed.
New York: Springer-Verlag, 2000. 549p.

SIN, C.-Y.; WHITE, H. Information criteria for selecting possibly misspecified models.
Journal of Econometrics, [S.l.], v.71, p.207–225, 1996.

VOYANT, C. et al. Heterogeneous transfer functionsMultiLayer Perceptron (MLP) for
meteorological time series forecasting. International Journal of Modeling, Simulation,
and Scientific Computing, [S.l.], p.100, Jan. 2015.

WANG, D.; LU, W.-Z. Forecasting of ozone level in time series using MLP model with
a novel hybrid training algorithm. Atmospheric Environment, [S.l.], v.40, p.913–924,
2006.

YAN, W. Toward automatic time-series forecasting using neural networks. IEEE Trans-
action on Neural Networks and Learning Systems, [S.l.], v.23, n.7, p.1028–1039, 2012.

ZHANG, G. P. An investigation of neural networks for linear time series forecasting.
Computers & Operations Research, [S.l.], v.28, p.1183–1202, 2001.

ZHANG, G. P. Time series forecasting using a hybrid ARMA and neural network model.
Neurocomputing, [S.l.], v.50, n.1, p.16, 2003.

ZHANG, G. P.; BERARDI, V. L. Time series forecasting with neural network ensembles:
an application for exchange rate prediction. Journal of Operational Research Society,
[S.l.], v.52, p.652–664, 2001.

ZHANG, G. P.; KLINE, D. M. Quarterly time-series forecasting with neural networks.
IEEE transactions on neural networks, [S.l.], v.18, n.6, p.1800–1814, 2007.

ZOUNEMAT-KERMANI, M.; TESHNEHLAB, M. Using adaptive neuro-fuzzy infer-
ence system for hydrological time series prediction. Applied Soft Computing, [S.l.], p.9,
2007.

