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ABSTRACT 

This work introduces the concept of k-cuts and kl-cuts on top of a mapped circuit in 
a netlist representation. Such new approach is derived from the concept of k-cuts and kl-
cuts on top of AIGs (and inverter graphs), respecting the differences between these two 
circuit representations. The main differences are: (1) the number of allowed inputs for a 
logic node, and (2) the presence of explicit inverters and buffers in the netlist. 
Algorithms for enumerating k-cuts and kl-cuts on top of a mapped circuit are proposed 
and implemented. The main motivation to use kl-cuts on top mapped circuits is to 
perform local optimization in digital circuit logic synthesis.  

The main contribution of this work is a novel iterative remapping approach using kl-
cuts, reducing area while keeping the timing constraints attained. The use of complex 
gates can potentially reduce the circuit area, but they have to be chosen wisely to 
preserve timing constraints. Logic synthesis commercial design tools work better with 
simple cells and are not capable of taking full advantage of complex cells. The proposed 
iterative remapping approach can exploit a larger amount of logic gates, reducing circuit 
area, and respecting global timing constraints by performing an STA (static timing 
analysis) check. Experimental results show that this approach is able to reduce up to 
38% in area of the combinational portion of circuits for a subset of IWLS 2005 
benchmarks, when compared to results obtained from logic synthesis commercial tools. 

Another contribution of this work is a novel yield model for digital integrated 
circuits (IC) manufacturing, considering lithography printability problems as a source of 
yield loss. The use of regular layouts can improve the lithography, but it results in a 
significant area overhead by introducing regularity. This is the first approach that 
considers the tradeoff of cells with different level of regularity and different area 
overhead during the logic synthesis, in order to improve overall design yield. The 
technology remapping tool based on kl-cuts developed was modified in order to use 
such yield model as cost function, improving the number of good dies per wafer, with 
promising interesting results. 

 

 

 

 

 

Keywords: Digital circuits, logic synthesis, technology mapping, cut enumeration, 
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Remapeamento baseado em cortes KL 

RESUMO 

Este trabalho introduz o conceito de cortes k e cortes kl sobre um circuito mapeado, 
em uma representação netlist. Esta nova abordagem é derivada do conceito de cortes k e 
cortes kl sobre AIGs (and inverter graphs), respeitando as diferenças entre essas duas 
formas de representar um circuito. As principais diferenças são: (1) o número de 
entradas em um nodo do grafo, e (2) a presença de inversores e buffers de forma 
explícita no circuito mapeado. Um algoritmo para enumerar cortes k e cortes kl é 
proposto e implementado. A principal motivação de usar cortes kl sobre circuitos 
mapeados é para realizar otimizações locais na síntese lógica de circuitos digitais. 

A principal contribuição deste trabalho é uma abordagem nova de remapeamento 
iterativo, utilizando cortes kl, reduzindo a área do circuito e respeitando as restrições de 
temporização do circuito. O uso de portas lógicas complexas pode potencialmente 
reduzir a área total de um circuito, mas elas precisam ser escolhidas corretamente de 
forma a manter as restrições de temporização do circuito. Ferramentas comerciais de 
síntese lógica trabalham melhor com portas lógicas simples e não são capazes de 
explorar eventuais vantagens em utilizar portas lógicas complexas. A abordagem 
proposta de remapeamento iterativo utilizando cortes kl é capaz de explorar uma 
quantidade maior de portas lógicas com funções lógicas diferentes, reduzindo a área do 
circuito, e mantendo as restrições de temporização intactas ao fazer uma checagem STA 
(análise temporal estática). Resultados experimentais mostram uma redução de até 38% 
de área na parte combinacional de circuitos para um subconjunto de benchmarks IWLS 
2005, quando comparados aos resultados de ferramentas comerciais de síntese lógica. 

Outra contribuição deste trabalho é um novo modelo de rendimento (yield) para 
fabricação de circuitos integrados (IC) digitais, considerando problemas de resolução da 
etapa de litografia como uma fonte de diminuição do yield. O uso de leiautes regulares 
pode melhorar bastante a resolução da etapa de litografia, mas existe um aumento de 
área significativo ao se introduzir a regularidade. Esta é a primeira abordagem que 
considera o compromisso (trade off) de portas lógicas com diferentes níveis de 
regularidade e diferentes áreas durante a síntese lógica, de forma a melhorar o yield do 
projeto. A ferramenta desenvolvida de remapeamento tecnológico utilizando cortes kl 

foi modificada de forma a utilizar esse modelo de yield como função custo, de forma a 
aumentar o número de boas amostras (dies) por lâmina de silício (wafer), com 
resultados promissores. 

 

 

 

Palavras-Chave: circuitos digitais, síntese lógica, mapeamento tecnológico, 
enumeração de cortes, análise temporal estática, remapeamento, litografia. 
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1. INTRODUCTION 

The world has changed a lot in the past fifty years. Most areas of human knowledge, 
if not all, have improved significantly and these remarkable advancements happened 
much faster than ever before. Problems that no one could ever think back then are now 
solved in smartphones. The medicine has great diagnostic machines, a car is able to 
drive itself taking pictures of the streets, and talking with someone anywhere in the 
world is not a problem at all. All these achievements in this brave new world have a 
major source: the integrated circuits (IC). In 1965, Gordon Moore stated that the 
number of transistors in a chip would double every 24 months (MOORE, 1965), as seen 
in the Figure 1.1. This trend predicted by Moore guided the evolution of computers and 
its use in every field. Also, the use of computers to create new and better computers 
emerged the electronic design automation (EDA) industry, creating a virtuous circle and 
enabling this fast growing in technology in the recent years. 

 

Figure 1.1 – Picture of the Moore's "Law" in the Computer History Museum 
showing the number of dies per wafer in linear scale, California, United States of 

America (June, 2012) 
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Looking at the Figure 1.1, a question hangs in the air: “how long will this trend 
continue?” The scaling down of the current technology, based on MOS transistors, is 
reaching a physical limit. The semiconductor most used to manufacture ICs is the Si, 
and the lattice spacing of a Si crystal is around 0.5 nm (SZE, 2006). This means that 
there are approximately 10 atoms of Si (or doping elements) within 5 nm. A variability 
of 1 atom (which is very low) in the manufacturing process of 5 nm transistors will 
likely produce 10% of variability between transistors (which is quite a lot). This 
phenomenon is known as discrete random doping and it is just one of several different 
effects that exist in deep nanometer scaling of current CMOS technology (SZE, 2006). 
Nowadays, the manufacturing process is about 20 nm and has already lots of obstacles 
to make it work. Clearly, this trend will likely have an end soon.  

Besides CMOS scaling, several research topics investigate the next technology to 
substitute CMOS, such as quantum computing, graphene, and carbon nanotubes. 
However, until now, no feasible and effective substitute for CMOS has been found. On 
the other hand, besides decreasing the size of transistors and investigating new 
technologies, there are good alternatives that can be investigated and developed in order 
to produce better and cheaper ICs, even with the current CMOS technology. For 
instance, developing more powerful EDA tools, with higher quality-of-results (QoR), 
will improve current IC performance and lower down its costs. 

Before EDA tools, ICs were designed by hand. The first microprocessors were 
drawn in engineering paper and color pencils, and then manufactured in primitive 
semiconductor planar technology. After the first computers, it was possible to create 
tools to help with the drawings, and then to place the transistors and route its wires. In 
mid-80’s, the hardware description languages (HDL) emerged, changing completely the 
way that ICs were designed. The logic synthesis tools starting from RTL descriptions 
were introduced, trying to obtain the best hardware implementation for a given RTL 
hardware description. Notice that logic synthesis tasks are very complex since many 
variables must be taken into account, and trying all possibilities is not computationally 
feasible. Consequently, in order to obtain good results, within reasonable time-to-
market, several heuristics were created, generating sub-optimal results. Therefore, logic 
synthesis tools still have room for improvements and this work tries to explore this. 

1.1 Logic synthesis 

Logic synthesis is an important area of study in the field of very large scale 
integration (VLSI) design automation, being responsible for the transformation of a 
circuit behavior description into a netlist of logic gates for a given technology, i.e. a 
digital mapped circuit. The logic synthesis is also an important process in the 
application specific integrated circuit (ASIC) standard cell design flow, followed by the 
physical synthesis where the placement and the routing of the logic gates are performed, 
as illustrated in Figure 1.2. 

According to Figure 1.2, the logic synthesis process can be divided into five stages. 
In the first step, a hardware description is compiled and transformed in a technology 
independent circuit representation. This circuit representation can be an and-inverter 
graph (AIG), for instance. Then, several optimizations are performed in this circuit 
representation. In AIGs, it is important to reduce the number of nodes (related to area) 
and reduce the logic depth (related to delay) (MISHCHENKO, 2006). The next step is 
to map the circuit representation using logic gates, usually given by a technology 
standard cell library, known as technology mapping. After a covering step, several 
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optimizations are performed in order to: (1) meet the design constraints, such as delay; 
and (2) make cell area and power consumption as low as possible. The last step is the 
test logic insertion. 

As already been stated, logic synthesis is a very complex task. The necessity of 
having a reasonable solution within time-to-market led to several heuristics, generating 
sub-optimal results, and left room for improvements. Finding optimal solutions may be 
feasible only for small circuits. In order to improve the QoR, an additional step was 
proposed, after the logic synthesis process. This extra phase, known as remapping or 
resynthesis (DE MICHELI, 1994; KUNZ, 1997), performs local transformations at the 
gate level (netlist) in order to improve the cost function of interest, such as cell area and 
power consumption. 

Logic Synthesis

Technology 

Dependent

Optimizations

RTL to Boolean

Functions

Technology 

Independent

Optimizations

Technology 

Mapping

Test Logic

Insertion

Hardware

Description

Tape out

Place & 

Route

Logic

Synthesis

 

Figure 1.2: Logic synthesis in the standard cell design flow. 

1.2 Motivation 

Before the EDA industry and the scaling down of the transistor size, the 
development of ICs was very straightforward. There was a transistor network, which 
should be handmade and drawn in engineering papers, and all the process was 
understood and made by the development team. When the EDA industry began, 
enabling the development of larger circuits, along with the scaling down of the 
transistor size, numerous challenges appeared. Nowadays, besides the designed circuit 
working in the performance defined and having the smallest cell area and power 
consumption as possible, there are other concerns such as manufacturability, routing 
congestion, interconnection delay, leakage power, aging effects, radiation effects, 
lithography issues, and so on. 

As the challenges arised, the EDA developers had to improve their tools in order to 
handle these new bottlenecks. The tools are being used and changed in the past 25 
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years, passing from several different generations. Every new problem tackled by the 
tool certainly made its code harder to read and harder to change. There is a rumor that 
the core of the world’s most used commercial logic synthesis tool, is a black box that 
will probably never be changed again. Notice that, if new problems emerge or if new 
techniques to solve the current problems are discovered, there are basically two ways to 
incorporate them. An approach could be redoing all the code to perform all logic 
synthesis process, incorporating the new ideas and tackling the new problems. 
However, it is important to understand that a tool of more than 25 years of success will 
hardly be substituted by a new tool in any design house (DH). Also, the tool gives 
already very good results.  

The motivation of this work is to provide an alternative approach: to perform the 
remapping of the gate level netlist given by a commercial tool, and to improve one or 
more cost functions of interest, using new strategies and tackling new problems that 
may arise. 

1.3 Objectives 

Remapping or resynthesis is not a new idea. Different approaches for resynthesis are 
already used to improve circuits after mapping, or even during the technology 
independent phase. In the work of (FIŠER, 2010), it is shown that the ABC tool 
(Berkeley Logic Synthesis and Verification Group, 2012) is able to achieve better 
results by performing iterative synthesis in random smaller parts of the circuit (sub-
circuits) instead of performing synthesis in the circuit as a whole. It is important to 
notice that local optimizations can be applied in the results of different phases of logic 
synthesis: technology independent and technology dependent. From a technology 
independent point-of-view, local context can be extracted through windowing 
(MISHCHENKO, 2006) or by k-cut enumeration (PAN, 1994). The k-cuts approach can 
be considered a superior method to derive sub-circuits, since it is able to control the 
number of inputs of the Boolean functions present in a sub-circuit. For this reason, 
variations of k-cuts have been proposed, such as factor cuts (CHATTERJEE, 2006-b), 
priority cuts (MISHCHENKO, 2007) and kl-cuts (MARTINELLO JR., 2010). 
Interestingly, these advances in k-cut enumeration are strongly linked to the AIG data 
structure, and therefore to the technology independent phase of logic synthesis.  

Approaches to local optimization of mapped circuits (i.e. remapping) adopt circuit 
partitioning techniques that do not consider the complexity of the Boolean functions in 
the resulting sub-circuits. For this reason, these remapping approaches lose local 
context, and need to investigate the surrounding environment (BENINI, 1998) to detect 
controllability and observability don’t cares (SAVOJ, 1990), i.e. degrees of freedom. In 
the context of k-cuts in AIGs, the observability don’t cares are incorporated in the sub-
circuits due to the use of k-cut dominance.  

The objective of this work is to bring the concept of k-cuts and kl-cuts from AIGs in 
order to be used on top of mapped netlists in a context of technology remapping. The kl-
cut based remapping, when compared to the approaches proposed in the literature, 
introduces three important advantages: (1) to control the support cardinality; (2) all 
outputs affected by the cut inputs are found, making possible the logic sharing between 
outputs; and (3) a new concept of mapping flexibility through polarity don’t cares, 
which is explained further in Section 4.5. 
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In order to validate the kl-cuts approach, an algorithm to enumerate kl-cuts on top of 
mapped circuits is proposed and implemented. Moreover, technology mapping 
techniques are implemented in order to improve a given cost function. In this work, two 
cost functions are considered: area and manufacturability. Furthermore, a static timing 
analysis (STA) tool is implemented in order to improve the cost functions of interest 
without affecting the performance obtained by the commercial tool. Hence, everything 
is put in a remapping flow and results are presented. 

1.4 Thesis organization 

The remaining of this thesis is organized as follows. 

Chapter 2: Technical background – Provides the technical knowledge necessary to 
understand the concepts presented herein.  

Chapter 3: State-of-the-art – Gives a broad vision of technology mapping and also 
provides the state of the art in important related topics to this thesis, such as Boolean 
factoring, Boolean matching and logic tree covering. 

Chapter 4: Cuts on mapped circuits – Presents the first contribution of this thesis, 
the enumeration of k-cuts and kl-cuts on top of mapped circuits, and algorithms used 
for that. 

Chapter 5: KL-cut based remapping – Describes the second contribution of this 
work, i.e. a complete flow, which is able to remap a circuit by extracting kl-cuts and 
replacing back, reducing circuit area.  

Chapter 6: Manufacturing cost function – This is the third contribution of this 
work, which is a discussion about yield and lithography as a logic synthesis cost 
function, improving the number of good dies per wafer. 

Chapter 7: Results – Presents and discusses the experimetal results. First, an 
analysis of the STA engine developed for this work is shown. Then, remapping 
results for IWLS 2005 benchmarks (IWLS 2005 benchmarks, 2012) are shown, 
reducing circuit area. The use of complex logic gates is also discussed. Finally, 
results of remapping using the manufacturing cost function are presented. 

Chapter 8: Conclusions and future work – Outlines the conclusions and major 
contributions of this work, and also indicates future works. 
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2. TECHNICAL BACKGROUND 

This chapter provides a review of technical concepts that are useful to the complete 
understanding of the remaining of this work. It comprises logic synthesis and logic 
circuit design topics, such as Boolean functions, expressions and networks, equivalence 
classes of logic functions, logic synthesis data structures, cuts on AIG, description of 
cell library, technology mapping, and static timing analysis. Readers with background 
knowledge on these topics can skip the following sections without loss in the 
understanding of the following chapters. 

2.1 Boolean functions 

The Boolean set is defined as B = {0, 1}, where 0 and 1 represent two well defined 
logic states, such as true (1) or false (0). An n-dimensional Boolean set Bn, is composed 
of 2n distinct Boolean vectors with length n. For instance, B1 = {0, 1}, B2 = {00, 01, 10, 
11}, B

3 = {000, 001, 010, 011, 100, 101, 110, 111}, B
4 = {0000, 0001, 0010, 0011, 

0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}, and so on. 

A Boolean function f is a function that relates every element in the n-dimensional 
Boolean set B

n (the function domain) into one element of the Boolean set B (the 
function image), such that f : Bn � B. This means that each Boolean vector of length n 

is associated by a Boolean function to either 0 or 1. The Boolean function f has n 
Boolean variables. A Boolean variable can assume any value of B, i.e. it can assume the 
values 0 or 1. A Boolean vector is also known as variable assignment, which means that 
each position in the Boolean vector represents a variable assigned either to 0 or 1. For 
instance, the Boolean vector 0000 has the four variables assigned to 0. 

A very usual way to represent a Boolean function is a truth table, such as the tables 
of Figure 2.1. On the left side of each table, each row represents a Boolean vector and 
each column represents the corresponding Boolean variables. On the right side, the 
columns represent the function names and the rows represent the value assumed by the 
function for the corresponding Boolean vector. 

There are several logical operations that can be done with Boolean variables in order 
to generate different Boolean functions. The three basic Boolean operations are: AND 
(f1), OR (f2) and NOT (f3), as seen in Figure 2.1. The operations AND and OR are 
binary, meaning that they must be applied to at least two operands. The AND operation 
returns 1 only if all operands are 1, returning 0 otherwise, as seen in Figure 2.1a. The 
OR operation returns 0 only if all operands are 0, returning 1 otherwise, as seen in 
Figure 2.1b. The NOT operation is a unary operation, which means that it is applied to 
only one operand, and applies a negation of the operand: if the operand is 0, the NOT 
returns 1, and vice-versa, as seen in Figure 2.1c. 
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Figure 2.1: Truth tables representing the (a) AND, (b) OR and (c) NOT logical 
operations. 

2.2 Boolean expressions 

Besides a truth table, a Boolean function can also be represented as a Boolean 

expression. In this case, the Boolean operators are represented as the following 
symbols: AND operator is represented as * or ∙, the OR operator is represented as +, and 
the NOT operator is represented as ! or ¬. These operators are applied to the variables of 
the function in order to represent correctly its functionality. Each time a Boolean 
variable appears in a Boolean expression, it is counted as one literal. The 
implementation of a Boolean expression with fewer literals is preferred, since it will 
likely use less logic elements, as discussed in Section 2.3. 

Although a Boolean expression represents exactly one Boolean function, a Boolean 
function can be represented by numerous Boolean expressions. For example, let’s take a 
look on the function f, represented in the truth table of Figure 2.2. Extracting the 
Boolean vectors that evaluate the function to 1, and representing them as Boolean 
expressions in order to represent the correct functionality of f, the result is the Equation 
(2.1), a sum-of-products (SOP). 

a b c d f 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

Figure 2.2: Truth table representing function f. 
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d)*  c*  b*  (a + c)*  b*  a*  d(! + d)*  b*  a*  c(! + d)*  c*  a*  b(! +

 d)*  c*  b*  a(! + d)*  c*  b!*  a(! + c)*  d!*  b!*  a(! + d)*  c!*  b!*  a(!f =        (2.1) 

Similarly, extracting the Boolean vectors that evaluate the function to 0, and 
representing them as Boolean expressions in order to represent the correct functionality 
of f, the result is the Equation (2.2), a product-of-sums (POS).  

b) + a + d! + c(!*  c) + a + d! + b(!*  d) + a + c! + b(!*  a) + d! + c! + b(!* 

 c) + b + d! + a(!*  d) + b + c! + a(!*  b) + d! + c! + a(!*  d)! + c! + b! + a(!f =          (2.2) 

These two representations are straightforward, since they simply use the 
representation of the Boolean vectors as expressions, applying the correct logic 
operations in order to represent correctly the Boolean function. However, the SOP and 
POS representations have several literals. In Equation (2.1) and Equation (2.2) there are 
32 literals each. In order to reduce the number of literals, the first approaches were with 
two-level minimizations (COUDERT, 1994). The two-level minimizations of the SOP 
and POS representations are in Equations (2.3) and (2.4), respectively, with 14 literals. 

d)*  (c + d)*  b*  (a + c)*  b*  (a + d)*  b!*  a(! + c)*  b!*  a(!f =    (2.3) 

                          d) + (c*  d) + a + b(!*  c) + a + b(!*  d) + b + a(!*  c) + b + a(!f =        (2.4) 

Further optimizations can be applied in order to decrease even more the number of 
literals, through multi-level minimizations, also known as Boolean factoring 
(BRAYTON, 1987). More details about Boolean factoring can be seen in Section 3.3.  
For instance, the minimal literal count expression of the function f can be seen in 
Equation (2.5), with 8 literals. 

 b)))! + a(!*  b) + (a*  d)! + c((! + d)!*  c((!!f =              (2.5) 

2.3 Boolean networks 

Figure 2.3 shows the schematic representation of the basic Boolean operators. In 
order to represent a Boolean function through a Boolean network schematic, the 
symbols of Figure 2.3 can be used to represent its implementation. Notice that the circle 
in the output of the NOT operator representation in Figure 2.3a, also known as inverter, 
shows the negation of this operator. The Figure 2.3b shows the representation of an 
AND operator, and the Figure 2.3c shows the representation of an OR operator. The 
NAND operator is created by adding a circle in the output of an AND operator, 
generating the AND output negated. The NOR operator is created by adding a circle in 
the output of an OR operator, generating the OR output negated. The NAND and NOR 
operators can be seen in Figure 2.4 and Figure 2.5. 

The Boolean network can be directly derived from the Boolean expression. This 
derivation is not straightforward from the truth table representation, for example. Also, 
the representation of a Boolean function as a Boolean network shows the importance of 
reducing the number of literals in the corresponding Boolean expression. Notice that the 
the minimized SOP expression of f (Equation (2.3), with 14 literals) produces a larger 
Boolean network than the minimum expression of f (Equation (2.5), with 8 literals), as 
seen in Figure 2.4 and Figure 2.5. 
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Figure 2.3: Schematic representation of (a) NOT, (b) AND and (c) OR operators. 

a

b

d

c

f

 

Figure 2.4: Boolean network mapped from Equation (2.3). 

a

b

d

c

f

 

Figure 2.5: Boolean network mapped from Equation (2.5). 

2.4 Equivalence of logic functions 

Consider the following operations in logic functions: (P) permutation of one or more 
input variables; (Ni) negation of one or more input variables; and (No) negation of the 
function. If a function g is equivalent to function h by operation P, then the functions g 
and h are P-equivalent. In Figure 2.6, two Boolean networks are shown representing 
two distinct Boolean functions pf1 and pf2, but in the same P-equivalence class (also at 
the same P-equivalence class that function f in Figure 2.5). 

Also, if a function g1 is equivalent to a function h1 by performing the operations P 
and Ni, then the functions g1 and h1 are NP-equivalent. In Figure 2.7, two Boolean 
networks are shown representing two distinct Boolean functions npf1 and npf2, but at 
the same NP-equivalence class (also at the same NP-equivalence class that function f in 
Figure 2.5, and functions pf1 and pf2 in Figure 2.6). 
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Finally, if a function g12 is equivalent to a function h12 by performing the operations 
P, No and Ni, then the functions g12 and h12 are NPN-equivalent. In Figure 2.8, two 
Boolean networks are shown representing two distinct Boolean functions npnf1 and 
npnf2, but at the same NPN-equivalence class (also in the same NPN-equivalence class 
that function f in Figure 2.5, functions pf1 and pf2 in Figure 2.6, and functions npf1 and 
npf2 in Figure 2.7). 

 

  

Figure 2.6: Boolean functions in the same P-equivalence class. 

 

  

Figure 2.7: Boolean functions in the same NP-equivalence class. 

 

  

Figure 2.8: Boolean functions in the same NPN-equivalence class. 

Notice that in all these equivalence classes, the core of the circuit remained the 
same. This characteristic is very useful in the technology mapping phase of logic 
synthesis. Also, these equivalence classes have a relationship, shown in the Venn 
diagram of Figure 2.9. For instance, there are a total of 65,536 Boolean functions with 
four variables, which can be classified in 3984 P-equivalence classes, 402 NP-
equivalence classes or 222 NPN-equivalence classes (SASAO, 1999). 
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Figure 2.9: Venn diagram showing the relationship between Boolean functions 
equivalence classes: P, NP and NPN. 

2.5 Data structures 

A Boolean network can be represented through different data structures. Each data 
structure is more appropriate for different objectives and manipulations. Several data 
structures are used in this work, and the following subsections describe them. 

2.5.1 Directed acyclic graphs 

Graphs are widely used data structures in computer science, due to its efficient way 
of representing things and the also efficient algorithms created for graphs data 
structures. In order to represent a combinational circuit using a graph, it is necessary to 
guarantee the following conditions: (1) the edges must have a direction, i.e. the edges 
are directed; and (2) there are no cycles (cycles are prohibited in combinational 
circuits). These restrictions led to the use of directed acyclic graphs (DAGs) to represent 
circuits. DAGs can be used as a direct translation of a Boolean network into a graph 
data structure. An example of DAG can be seen in Figure 2.10. 

 

Figure 2.10: An example of directed acyclic graph. 

2.5.2 And-inverter graph 

An AND-inverter graph (AIG) is a specific type of a DAG, where each node has 
either zero incoming edges, the primary inputs (PIs), or two incoming edges, the AND 
nodes. Each edge can be negated or not. Some nodes are marked as primary outputs 
(POs). AIGs were created in order to perform fast transformations of circuits, since it is 
a very simple data structure (MISHCHENKO, 2006). An example of an AIG can be 
seen in Figure 2.11, where the nodes a, b and c are PIs, and the rest of the nodes are 
AND nodes. Also, the nodes i, h, g and f are marked as POs. 
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Figure 2.11: Example of  AND-inverter graph. 

 

2.5.3 Mapped circuit 

A combinational mapped circuit C is a specific type of DAG with three types of 
nodes: the PI nodes, the logic gate nodes and the PO nodes. If a node of C has no 
incoming edges and one or more outgoing edges, it is a PI. If a node of C has up to m 
incoming edges, where m is an integer value such that m ≥ 1, and one or more outgoing 
edges, it is a logic gate node. If a node of C has one incoming edge and no outgoing 
edges, it is a PO. An example of mapped circuit can be seen in Figure 2.12. 

 
Figure 2.12: Example of mapped circuit. 

2.5.4 Logic tree 

A tree is a particular case of DAG in which the fanout of every node is equal to one. 
A logic tree is a specific type of tree in which the internal nodes are logic nodes, which 
represent logic functions such as AND and OR. A logic tree is also a direct translation 
of a Boolean expression into a data structure. An example of a logic tree is depicted in 
Figure 2.13. 

It is computationally hard to map a DAG representing a circuit into logic gates, due 
to the several possibilities of mapping. The partitioning of DAG into several logic trees, 
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i.e. a forest of logic trees, reduces greatly the complexity of the DAG technology 
mapping, at the cost of reducing the solution space and producing a mapping result of 
lower quality. This approach will be explored in this work. 

 

Figure 2.13: An example of a logic tree. 

2.6 Cuts on AIGs 

For scalability reasons, AIG is being used to represent circuits, since it is a very 
simple data structure (MISHCHENKO, 2006). Several transformations can be done 
with AIGs in order to reduce the number of nodes (area) or decrease the logic depth 
(delay). One way is to extract parts of an AIG through cuts and improve them locally. A 
cut of a node n in an AIG is a set of nodes c such that every path between a PI and n 
contains a node in c. A cut of n is irredundant if no subset of it is also a cut. This section 
describes k-cuts and kl-cuts on AIGs. 

2.6.1 K-cuts 

A k-feasible cut of an AIG � is an irredundant cut containing k or fewer inputs. Let 
A and B be two sets of cuts, and let the auxiliary operation ⋈ be the operation described 
in the Equation (2.6). 

 � ⋈ � ≡ {� ∪ 	 | � ∈ �, 	 ∈ �, | � ∪ 	| < �}               (2.6) 

Notice that the ⋈ operation is commutative, since the ∪ operation is also 
commutative. Let Φ����Φ� be the set of k-feasible cuts of � ∈ � and, if n is an AND 
node, let n1 and n2 be its inputs. Then, Φ����Φ� is defined recursively as described in 
Equation (2.7). 

����� ≡  �{�} ,                                                 ∶ � �� � ��       {�} ∪ {Φ����� ⋈ Φ�����}     ∶  !ℎ#$%��#         (2.7) 

The ⋈ operation can easily remove the redundant cuts by comparing the cuts with 
one another. The k-cuts for all nodes of the AIG shown in the Figure 2.11 are described 
in Table 2.1. 
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Table 2.1: The k-cuts for all nodes of the AIG shown in Figure 2.11. 

Node k-cuts 

a {a} 

b {b} 

c {c} 

d {d}, {b, c} 

e {e}, {a, b} 

f {f}, {d, c}, {b, c} 

g {g}, {d, f}, {d, c}, {b, c} 

h {h}, {e, d}, {a, b, d}, {b, c, e}, {a, b, c} 

i {i}, {a, e}, {a, b} 

2.6.2 KL-cuts 

The k-cuts are an efficient way to represent a region of an AIG regarding one output 
generation. However, when it comes to multiple output regions, multiple k-cuts would 
be needed. The kl-cuts (MARTINELLO JR., 2010) make use of multiple outputs to 
overcome this issue. 

A kl-cut defines a sub-graph �&' of � which has no more than k inputs and no more 
than l outputs. It is represented as two sets of nodes {�&, �'}, being �& the inputs set and �' the outputs set. If a node n belongs to a path between �& ∈ �& and �' ∈ �', being � ∉�&, then n is contained in �&'. Notice that all nodes in �' are contained in �&'. However, �&' does not contain any node of �&. A kl-cut is said to be complete when all the 
following conditions are attained: (1) every path between a PI and a node n' ∈ �' 
contains a node in �&; (2) every path between a node contained in �&' and a PO contains 
a node in �'; (3) no kl-cut defined by a subset of �& and the same �' is complete; and (4) 
no kl-cut defined by the same �& and a subset of �' is complete. Two examples of AIG 
covering using kl-cuts can be seen in Figure 2.14. If the kl-cuts with k=5 and l=3 (or 
simply 5-3-cuts) are computed, a resulting possible covering of this AIG is in Figure 
2.14a. Another covering using 3-2 cuts is shown in Figure 2.14b. Further details on kl-
cuts for AIGs can be seen in the work of Martinello (2010).  

 

Figure 2.14 An AIG example illustrating covering using kl-cuts. Nodes a, b, c, d, f, g 
and h are primary inputs. Nodes u and v are primary outputs. (a) A covering using 5-3-

cuts. (b) A covering using 3-2-cuts. (MARTINELLO, 2010) 
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2.7 Cell library 

A logic gate, or a logic cell, is an element that performs a certain logic or memory 
function. The logic gates that implement Boolean functions are used to map the 
combinational part of logic circuits. Logic gates that perform memory function, such as 
latches and flip-flops, are used to create temporal barriers in order to generate sequential 
circuits, i.e. circuits that work in a well determined clock period. 

A cell library is a finite set of logic gates. Traditionally, these logic gates are 
previously built and characterized through electrical simulations, resulting in well-
defined cells to be used in the technology mapping. This approach is widely used and is 
known as library-based technology mapping, where the exact physical area, power 
consumption and delay of the cells are previously known. It is expected that a larger 
amount of logic gates would result in a higher QoR, since there are more options to 
reduce circuit area, for example. However, due to the high complexity of the technology 
mapping algorithms and the applied heuristics, a larger amount of logic gates does not 
necessarily improve the QoR. 

A cell library is divided into several files. However, for logic synthesis two files are 
usually used: the Liberty file and the LEF file. The Liberty file is a standard text file that 
has the general library information, such as operating conditions (voltage, process and 
temperature), interconnections delay model, templates for timing and power tables, 
units for capacitance, voltage, time, etc. Also, the Liberty file has the information about 
all logic gates of the library, such as timing tables for each timing arc, logic function, 
input capacitances, power consumption tables, area, and so on. The library exchange 
format (LEF) file is a standard text file used to describe the geometrical shapes of the 
library cells layout, and also some geometrical restrictions of the IC manufacturing 
using this cell library. The standard cell flow has this name due to the standard height of 
the logic gates, and the information about the standard height is in the LEF file. 

2.8 Technology mapping 

Technology mapping is an important phase in the logic synthesis, which transforms 
a technology independent circuit description into a gate netlist of a technology library, 
i.e. a mapped circuit. It can be decomposed into three phases: decomposition, matching 
and covering. 

Decomposition is the process that transforms the initial representation of the circuit 
into a simpler representation, more restricted, in order to make the process less 
computationally hard. In this step, it is applied structural transformations to the design 
representation, such as breaking the design graph into logic trees. 

Once the circuit graph is computationally tractable, the matching step starts. The 
matching tries to find the parts of the graphs that can be implemented by a cell (or more 
than one cell) present in the library. In this step, the identification of Boolean functions 
in the same equivalence class is important, since a logic gate can implement different 
Boolean functions by performing the permutation of inputs, for instance.  

Finally, the covering step chooses a subset of the match results in such a way that 
the entire circuit is covered, while optimizing one or more cost function such as area, 
delay and power. The result of the covering is a gate netlist that must correspond to the 
correct logic network received as input, i.e. all nodes of the input Boolean network must 
be covered.  
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The technology mapping is a phase that is crucial for a good QoR in the final circuit 
layout. The physical synthesis results depend directly on the technology mapping 
results. Also, it is important to notice that all steps in the technology mapping are 
important. Optimal algorithms for matching and covering deliver low quality results if 
the input design graph is not efficiently decomposed. This dependence in the previous 
structure is a problem known as structural biasing (CHATTERJEE, 2006-a). 

2.9 Static Timing Analysis 

Sequential digital circuits must be analyzed in order to check if there are no timing 
violations. This analysis is very important to determine if the design works correctly at 
the expected performance. Different approaches exist in order to check if there are no 
timing violations.  

An approach to evaluate timing is through timing simulation, which is a method to 
perform timing analysis by testing all possible input vectors in the design. Timing 
simulation is a task that demands a lot of computational effort (BHASKER, 2009), since 
all different possibilities of inputs must be tested, i.e. a design with n inputs must check 
2n input vectors and check if any of these input vectors violates timing constraints. This 
means that a design with 100 inputs would have to test 1.26*1030 input vectors and 
propagate these vectors towards the design outputs, which is clearly a computational 
hard task. 

An alternative approach to evaluate timing is the static timing analysis (STA). The 
static timing analysis is a fast way to analyze timing, considering only the worst case at 
each logic gate of the design. It is static, since it is the worst case, independent of the 
input vector. Also, since CMOS logic gates have different rise and fall characteristics, 
both cases must be considered. There is a small “penalty” in using this approach: STA 
is pessimist, since it considers only the worst cases. However, it is important to notice 
that it is better to have a timing check that guarantees that the design works, and in a 
reasonable time, since the timing check must be done several times in all phases of the 
design flow. 

There are several delay models to determine the delay of a logic gate. The delay 
model most used in the standard cell design flow is the nonlinear delay model (NLDM). 
It determines the output transition time (tout) and the output delay (td) of a logic gate 
through the input transition times (tin) of the gate inputs and the capacitance load (cL) at 
the gate output (BHASKER, 2009). Cells timing tables are read from Liberty files of the 
cell libraries, and using the tin and the cL, it is possible to obtain the correct tout and td 
through bilinear interpolation. In Figure 2.15 shows which values are necessary to know 
in order to perform the bilinear interpolation and calculate the output transition time and 
cell delay, for a timing arc of an AND gate of 2 inputs, for the rise condition. 

Any timing analysis tool is able to determine the circuit delays only due to the 
circuit itself. The environment conditions and restrictions must be informed to the 
timing analysis tool through the timing constraints in order to make such analysis more 
realistic. Timing constraints define, for example, the clock period and uncertainty, the 
input and output delays, input transition times and output loads. The standard format 
text file to inform the tool the timing constraints is the Synopsys design constraints 
(SDC) file. 

In order to evaluate the worst case delay of a sequential circuit, which determines its 
performance (clock period), it can be applied the critical path method. In this method, 
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the delay is propagated from the inputs (or registers outputs) to the outputs (or registers 
inputs), considering only the worst case timing arc at each cell (for rise and fall). Clock 
uncertainty time and setup time must be added in registers endpoints. The input 
transitions of the evaluated cell are either: the input transition times defined in the SDC, 
in the case of an input pin, or the output transition times of the previous logic gates. The 
output load of the evaluated cell is the output load defined in the SDC, in the case of an 
output pin, added by all the input capacitances of all the cells the evaluated cell is 
driving. In the paths that involve input and output pins, input and output delays must be 
considered. The worst case delay is the largest delay from all endpoints (circuit outputs 
or register inputs). 

 

Figure 2.15: Process to obtain cell delay and output transition time through the NLDM, 
extracting the values from a Liberty file. It is necessary to know the input transition 

time and the output load, and perform a bilinear interpolation in the values read in the 
Liberty file. 
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3. STATE-OF-THE-ART 

This chapter presents a broad vision about the technology mapping algorithms 
existent in the literature, showing their limitations and heuristics. Then, state-of-the-art 
algorithms on Boolean matching, Boolean factoring and logic tree mapping algorithms 
are shown, and as they were adapted to be used in this work. 

3.1 Technology mapping 

DAGON was the first technology mapping algorithm, which was proposed by 
Keutzer (1987). Keutzer noticed that the tasks performed by a software compiler were 
very similar to the tasks performed by the technology mapping. The pattern matching of 
sub-graphs of a circuit representation using library cells are very similar to the matching 
of sub-parts of a computer program using an instruction set of a computer processor. 
The subject graph circuit is a binary tree represented with a string. But the first 
technology mapping algorithm had some drawbacks. The structural matching approach 
performed by DAGON, and the representation of the circuit given in its input, restrict 
the search space performed by the mapping, affecting negatively the quality of the 
resulting mapped circuit. Another issue is that the algorithm requires all isomorphic 
matches stored in each node of the circuit tree representation, until the very end of the 
circuit covering. This led to a restriction of using cell libraries with a large number of 
cells, because the number of cells affects directly the number of pattern matchings 
found in each node. 

The first method that used logic trees as subject graph was proposed by Detjens 
(1987). It has some similarities with DAGON, and some additions. It was the first work 
that proposed the use of a pair of inverters in every non-inverted net of the circuit 
representation. This approach increases the solution space, impacting positively in the 
quality of the resulting mapped circuit. However, the approach proposed by Detjens had 
to create several decompositions for each library cell available, increasing exponentially 
the amount of pattern matchings, and also limiting the use of larger cell libraries. 

Mailhot (1993) improved the technology mapping algorithm by improving the 
comparison between the sub-trees and the cells of the library using ROBDDs 
(NARAYAN, 1997). Like the previous algorithms presented (KEUTZER, 1987; 
DETJENS, 1987), the proposed approach split the initial circuit DAG into a forest of 
trees and maps them individually. But since ROBDDs are a canonical form of 
representing circuits, the matches did not depend in the structure of the sub-trees, but in 
the Boolean function it represented. However, this Boolean comparison was 
computationally expensive, also limiting the size of the cell library used. 

An approach to minimize the dependence in the initial graph representation was 
proposed by Lehman (1995), using a dynamic reorganization. The decomposition step 
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was integrated with the pattern matching by making sub-graphs functionally equivalent 
but structurally different associated, for each node of the circuit DAG. This approach 
increased the search space, but it is also impractical for large circuits since the graph 
size increases exponentially. 

Stok (1999) proposed the algorithm wavefront, similar to Lehman’s approach but 
with no scalability problems. The circuit was mapped directly in the DAG, using a 
delay model independent of the cell output load. In order to prevent the DAG of 
increasing exponentially by inserting different representations for each node, the steps 
of decomposition, pattern matching and covering are executed in parallel in a “window” 
of parameterizable logic depth. This “window” performs the mapping from the inputs to 
the outputs, and has better results and runtime if compared with its predecessors. 

The state-of-the-art in library-based technology mapping approaches is still the work 
presented by Chatterjee (2006-a) It brings together several techniques used in logic 
synthesis integrated in order to benefit the technology mapping. The pattern matching is 
performed by Boolean matching and the data structure used is the AIG. This algorithm 
and its improvements are all incorporated in the academic logic synthesis tool ABC 
(Berkeley Logic Synthesis and Verification Group, 2012). 

By performing this holistic view of some of the most important technology mapping 
approaches presented in the literacture, which the commercial tools are strongly based, 
some limitations were observed. Two are important limitations that this work tries to 
take advantage: (1) the scalability issues due to the use of a large cell library, and (2) the 
scalability issues of performing mappings with a large solution space in large circuits. 

3.2 Boolean matching 

The pattern matching is an important step in the technology mapping, which can be 
perfomed using a structural analysis, i.e. comparing two structures if they are the same, 
as it can be done in the circuits of the Figure 2.6. This comparison is computationally 
easy and several technology mapping algorithms took advantage of this to have faster 
results. However, a logic function can have numerous structures to represent it, and 
therefore a structural matching obtains very limited results. 

Another way to perform pattern matching is through a functional (Boolean) analysis 
of the two functions. This comparison is computationally harder than a structural 
matching, but it is much more powerful, since it does not depend on the structural 
implementation of the circuit. This work uses Boolean matching in order to check if two 
functions are in the same P-equivalence class. 

A well-known Boolean matching algorithm for any type of function was proposed 
by Hinsberger (1998). The method is based on the definition of a canonical 
representative function R[f] for each equivalence class f. The matching between two 
functions happen when the representative function calculated is the same: R[f1] = R[f2]. 

A function can be defined through a truth table, which can be represented as a bit 
string. The method proposed by Hinsberger (1998) uses the largest number that the 
given function can represent permutating the input variables as the representative 
function. For example, Figure 3.1 shows an exhaustive approach for finding this 
representative function for a function of three variables. In the Figure 3.1, the values in 
the parenthesis show in the top the variable selected (1, 2 or 3), and the position in the 
function in which the function was set (1, 2 or 3). Notice that the input variables must 



 

 

39 

 

obey a very strict ordering. Also, notice that the leftmost value (10101000) represents 
the truth table of the input function, since it places the variable 1 in the position 1, the 
variable 2 in the position 2 and the variable 3 in the position 3. In this case, the 
representative function is 1110000 since it is the largest value found. 

The computation of which branch gives the largest value can be done earlier, 
choosing the next branch at each tree level. This is done in the Figure 3.2, where the 
search space was reduced by deciding the largest function value earlier. 

Another reduction that can be done in order to reduce further the amount of 
computation is to only check the variables in the same symmetry class. Two variables a 
and b of a function f are in the same symmetry class when they can be exchanged 
without changing the resulting function: f(a,b) = f(b,a). In the Figure 3.2, the variables 2 
and 3 are in the same symmetry class for this function, and therefore only one of the 
branches should be checked: (1,2) or (1,3). 

In the work of Martinello (2010), it is proposed an extension of this Boolean 
matching algorithm in order to match multiple-output functions, where it is defined a 
PP-equivalence class. This extension is very important to group kl-cuts in the same 
equivalence class and improve the remapping flow runtime, with no affect in the quality 
of the resulting circuit. 

 

Figure 3.1 Exaustive approach for computing R[f]P (HINSBERGER; KOLLA, 1988) 

3.3 Boolean factoring 

Factoring is the process of deriving a parenthesized algebraic equation representing 
a given logic function (BRAYTON, 1987). Factoring algorithms can be classified into 
algebraic and Boolean. 

The algebraic factoring has its basis in polynomial division, pretending that the 
Boolean variables behave like real numbers. The basic concept is that, given the 
functions f and p, the algorithm tries to find functions q and r such that rqpf +⋅= . 
The function p is called a divisor of f if r is not null, and a factor if r is null. Some 
relationships can be used to simplify the results during factoring. The relationships used 
in algebraic factoring are shown in the left column of Table 3.1. Algebraic factoring is 
usually very fast, but commonly the results are far from optimal. 
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Figure 3.2 Reducing search space by cutting non-maximal branches (HINSBERGER; 
KOLLA, 1998) 

Table 3.1 Relationships allowed in multi-level logic factoring 

Relationships allowed 
in algebraic and 
Boolean factoring 

Relationships allowed 
only for Boolean 
factoring 

a•b= b•a a+a’ = 1 

a+b= b+a a•a’ = 0 

a•(b•c) = (a•b)•c a•a= a 

a+(b+c) = (a+b)+c a+a= a 

a•(b+c) = a•b+ a•c a+1 = 1 

a•1 = a a+(b•c) = (a+b)•(a+c) 

a•0 = 0  

a+0 = a  

On the other hand, Boolean factoring algorithms achieve better results, but they can 
be very time and memory consuming, since it is an NP-complete task. The state-of-the-
art Boolean factoring algorithm was presented in the work of Martins (2012), using the 
functional composition (FC) paradigm. The FC exact algorithm uses dynamic 
programming and a bottom-up approach to find minimum literal logic expressions. But 
the exact approach is impractical to be used in a remapping flow, since it uses a lot of 
time and memory. In the same work presented by Martins (2012), several heuristics 
were added to this algorithm in order to make it faster and have still obtain very good 
results. The FC heuristic algorithm has comparable runtime to previous works and 
results in logic expressions with smaller literal count. An example of how the FC 
heuristic algorithm works is shown in the Figure 3.3: from the function variables 
(selected in the correct polarity) the functions are associated until the target function is 
found. 
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Figure 3.3 Example of Boolean factoring using Functional Composition.          
(MARTINS, 2012) 

Besides the FC heuristic algorithm, this work uses a modified version of it, 
regarding the use of the XOR operator (MARTINS, 2012), and also logic sharing. In 
order to use logic sharing, two approaches were used. A simpler approach was to use 
the other outputs functions (all outputs but the current output being factorized) as input 
to the FC algorithm as one literal functions. Another approach was to identify partial 
logic functions that were used by more than one output and use a dynamic cost to these 
intermediate functions (one literal or more), according to the effective use of them. 

3.4 Logic tree mapping 

The output of the FC algorithm is a set of logic expressions. This logic expressions 
can be represented as logic trees and mapped, resulting in a mapped circuit. This logic 
tree mapping is not straightforward and requires several transformations to obtain a 
good logic tree covering. 

A very good logic tree mapping algorithm was proposed by Correia (2004). It 
performs several transformations in the logic tree (DeMorgan’s theorem, grouping of 
equivalente nodes, decompositions of a logic node) in order to have different options of 
tree covering, which may lead to different results. The algorithm proposed by Correia 
(2004) was intended to be used in a library-free flow, so the actual implementation of 
the standard cells is not known during the mapping. The cost calculation step, as seen in 
the Figure 3.4, is performed using the number of series/parallel (s,p) transistors at each 
node. In this case, 2 transistors in series or 2 transistors in parallel was used as the limit 
to represent a logic gate, and the tree is then divided in sub-trees with this maximum 
cost. By performing iteratively this algorithm, the resulting cover and mapped circuit 
can be seen in the Figure 3.5. 

Several modifications of this algorithm were performed in order to adapt this tree 
mapping algorithm to a technology dependent context. The first change was the cost: 
the number of transistors is not a good measure for a technology dependent mapper. So, 
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a cost is given in the tree mapper input (area, power, etc.) and the cost is calculated at 
each logic tree node using the information of the library cells. The pair of inverters 
approach was also used, increasing the search space. The resulting tree mapping 
algorithm performs a Boolean matching for every node of the tree, saving all minimal 
implementations for all nodes of the tree, and returning a tree mapped with the cell 
library given with the minimal cost desired, disconsidering logic depth and timing. 

 

Figure 3.4 Cost calculation and the first cut of the tree removed. (CORREIA, 2004) 

 

Figure 3.5 Example of logic tree covering (before inverter minimization).                 
(CORREIA, 2004) 
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4. CUTS ON MAPPED CIRCUITS 

This chapter presents the first contribution of this work, which is the enumeration of 
cuts on top of mapped circuits. The use of kl-cuts is inspired in the work of Martinello 
(2010), which introduced such idea for AIGs, a technology independent data structure. 
This work tries to improve the results of the logic synthesis process, which results in a 
technology dependent mapped circuit, by performing local optimizations. These local 
optimizations are performed inside the sub-circuits found through the kl-cut 
enumeration algorithm. 

4.1 Differences between AIGs and mapped circuits 

And-inverter graphs and mapped circuits are two different types of DAGs, which 
can represent a logic circuit. The main differences between AIG and mapped circuit 
descriptions are: (1) the number of incoming edges on the nodes; and (2) the existence 
of inverters and buffers instead of simply negated or direct edges. In order to extend the 
concept of k-cuts to mapped circuits, it is necessary to handle these differences. 

4.1.1 Number of nodes inputs 

The nodes on AIGs simply perform the AND operation, and are limited to two 
inputs (MISHCHENKO, 2006). This is because the AIG was created to be a very 
simple and scalable data structure, in order to perform complex and computational hard 
logic minimization techniques. Other logic operations, besides AND operation of two 
inputs, need inverters (which are in the edges of the AIG) and AND nodes arranged in a 
way to perform the logic operation desired. Any logic function (of any inputs) can be 
implemented using the AND logic operation and inversions. 

The nodes in mapped circuits can perform any logic function, from one input 
(inverters and buffers) to m inputs, where m is the integer number representing the 
number of inputs of the logic gate with the largest number of inputs in the library. This 
data structure is not simply a logic circuit representation, but also a logic circuit 
implementation, i.e. a data structure of a circuit that can be built as is. 

4.1.2 Inverters as nodes or edges 

In AIGs, the negation is performed in the edges instead of using specific nodes for 
that. This representation simplifies the methods of logic minimization based on AIGs, 
making them more scalable and simple. In real world mapped circuits, negations on the 
nets do not exist. In order to perform signal invertions, an inverter is necessary, i.e. 
inversions are perfomed in nodes of the graph in mapped circuits, instead of edges in 
AIGs. Besides inverters, there are also buffers, which are one input logic gates that are 
used to decrease the delay to load larger capacitances, without changing the logic 
function. 



 

 

44 

 

4.2 K-cuts 

The k-cuts on top of a mapped circuit * must take into account the higher amount of 
inputs at internal nodes and one input logic gates (inverters and buffers), which are not 
present in AIGs. Let Φ����Φ� to be the set of k-cuts of � ∈ *, and if n is a logic gate 
node, let ��, … , �, to be its inputs, where g is an integer value representing the number 
of inputs of n such that 1 ≤ / ≤ 0. By using the same operation ⋈ described in Section 
2.6.1, Φ����Φ� is defined recursively as seen in Equation (4.1). Figure 4.1 shows a 
combinational circuit example. By enumerating the k-cuts with k=5 for the example in 
Figure 4.1, the values given in Table 4.1 are obtained. Notice that wire0 does not appear 
in any k-cut, since it is the output of a cell with a single input. 

 ����� ≡ 1 {�} ,                                                      ∶ � �� � ��   Φ����� ,                                              ∶  / = 1        {�} ∪ 3Φ����� ⋈ …  ⋈ Φ�4�,56 ∶  !ℎ#$%��#            (4.1) 

 

Figure 4.1 Combinational circuit example to demonstrate k-cuts and kl-cuts 
computation. 

Table 4.1 All k-cuts with k=5 for all nodes of the combinational circuit example of 
Figure 4.1 

Node k-cuts 

a {a} 
b {b} 
c {c} 
d {d} 
e {e} 
f {f} 
g {g} 
h {h} 

wire0 {a} 
wire1 {wire1}, {d, a} 
wire2 {a, b, c, d}, {a, b, c, wire1}, {wire2} 
wire3 {wire3}, {e, f, g, h} 

o0 {a, b, c, d}, {a, b, c, wire1}, {wire2} 
o1 {o1}, {a, wire3}, {a, e, f, g, h} 
o2 {o2}, {a, e, f, h} 

all nodes {a, b, c, d}, {d, a}, {a, wire3}, {e, f, g, h}, {a, b, c, wire1}, {a, e, f, g, h}, {a, e, f, h} 
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4.3 KL-cuts 

The kl-cuts on top of AIGs are sub-parts extracted in order to have different options 
to cover the AIG functionality afterwards, mapping to a FPGA for example. The 
objective of enumerating kl-cuts on top of mapped circuits is to improve a cost function 
of the cuts and then replace them in the original circuit. Hence, kl-cuts formed by only 
one cell or with k equals to one (e.g. inverter or buffer chains) are not considered. 
Furthermore, in order to identify all possible shared logic for a given set of inputs, the l 
is defined as unbounded, not limiting the number of outputs and keeping track of all 
outputs that depend on the same set of variables. 

The kl-cuts introduce important advantages, such as: (1) the control of the support 
cardinality, and (2) the possibility of performing logic sharing between outputs, since all 
outputs affected by the kl-cut inputs are found. In order to better understand the 
advantages of using kl-cuts, consider a simple and-inverter-graph (AIG) example, as it 
is shown in Figure 4.2. If it is desired to create a sub-circuit in which the node 14 is the 
output with up to 4 inputs, a search backwards would find that the node 14 depends on 
the nodes {4, 5, 11, 8} and stop, due to the five input barrier made by nodes {4, 5, 6, 7, 
8}. That is a limitation in the sub-circuit search in (KUNZ, 1997; BENINI, 1998; 
KRAVETS, 2004; MISHCHENKO, 2006; FIŠER, 2010), which will not find that node 
14 depends directly on nodes {a, b, c, d}. By performing k-cuts enumeration, it is 
guaranteed that node 14 depends directly on nodes {a, b, c, d}. 

This is an important feature of k-cuts, in which the kl-cuts are based. Nevertheless, a 
k-cut generates only one output, i.e. a k-cut does not cover all outputs it affects. Notice 
the mapped circuit in Figure 4.3, which is structurally similar to the AIG of Figure 4.2. 
Consider the cover of the k-cut {a, b, c, d} generating the logic at the output of the logic 
gate 14. In order to cover logic gate 13, while respecting the cover for logic gate 14, it is 
necessary to duplicate part of the logic that is common to both logic gates. By 
identifying all outputs that the input nodes of a k-cut affects, a kl-cut is found, making 
possible to remap it locally and replace it in the circuit netlist, keeping the logic 
equivalency and efficiency. It is important to notice that kl-cuts provide a complete 
input-output interface for a sub-circuit substitution. Additionally, kl-cuts minimize the 
support of the Boolean functions inside the cut. By minimizing the support, it is 
possible to apply aggressively Boolean minimization techniques that would not scale for 
larger circuits. 
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Figure 4.2 And-inverter graph (AIG) representing a circuit. 
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Figure 4.3 Mapped circuit structurally similar to the AIG of Figure 4.2. 

4.4 Enumeration algorithm 

A pseudo-code for kl-cuts enumeration on top of a mapped circuit is shown in 
Figure 4.4. The algorithm receives a k limit and a mapped circuit. If the design has 
sequential elements, it is necessary to treat these sequential elements as PIs and POs to 
the combinational logic. The algorithm starts by enumerating all k-cuts for all nodes of 
the circuit. All k-cuts of all nodes are grouped, such that each k-cut can generate one kl-
cut. For example, the line all nodes of Table 4.1 represents the kcuts (line 2) for the 
circuit in Figure 4.1. 

The function addInsts() traverses the circuit from each kcut input (line 3) to the 
outputs direction, storing the logic gate instances, the outputs generated and all logic 
functions. Each logic gate node is checked by the function KCutsOK(), which returns 
true if the node has at least one k-cut formed only by kcut inputs. If KCutsOK() returns 
false, or the node is a PO, the node checked is a kl-cut output. Notice that a kl-cut of a 
circuit can be exchanged by another, since all signals which are affected by the cut are 
taken into account. Thus, the use of kl-cuts in remapping is justified. In the circuit 
example of Figure 4.1, three kl-cuts are found, which are shown with rectangles around 
the instances contained in each kl-cut.  

 

Figure 4.4 Pseudo-code for kl-cuts enumeration on top of a mapped circuit. 

01. compute_klcuts(k, circuit) { 

02.   kcuts = compute_kcuts(circuit, k) 

03.   for each kcut in kcuts do { 

04.     insts <- ø 

05.     outputs <- ø 

06.     for each node in kcut do { 

07.       addInsts(node, insts, outputs) 

08.     } 

09.     klcut = createKLcut(kcut, insts, outputs) 

10.     klcuts.add(klcut) 

11.   } 

12.   return klcuts 

13. } 
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4.5 Polarity don’t cares 

After identifying a kl-cut instances, inputs, and outputs, a further search is performed 
on the inputs, identifying inverters and buffers. All the inverters and buffers that are 
used only to drive the kl-cut can be encapsulated. The inverters and buffers that drive 
not only the cut, but also other parts of the circuit, must not be encapsulated. Notice that 
there is an inverter (INST0) in Figure 4.1 not encapsulated by the kl-cuts found, since it 
is used in distinct parts of the circuit. 

If these inverters or buffers are encapsulated, there is a duplication of these cells 
during remapping (as in the following example) or an overlap of kl-cuts (explained 
further in Section 5.2.7.1). During the search on the inputs, the inverters that are not 
encapsulated can be used to generate a mapping flexibility: the polarity don’t cares. A 
similar approach can be done in the flip-flops that generate both polarities of a signal. 

A kl-cut found in a commercial benchmark is shown in Figure 4.5. Notice that the 
kl-cut has two polarity don’t cares (i9=!i0 and i12=!i1). Using the polarity don’t care 

information in the remapping tool, there is a reduction of 20% in area of the kl-cut. If 
this information is not used, the reduction is of only 6%. The circuits obtained with and 
without polarity don’t care information are shown in Figure 4.6 and Figure 4.7, 
respectively. Notice that there is an addition of two inverters (INST6 and INST7) in 
Figure 4.7.  

 

Figure 4.5 Example of kl-cut found in a commercial benchmark. 
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Figure 4.6 Example of Figure 4.3 remapped with polarity don’t cares information. 
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Figure 4.7 Example of Figure 4.3 remapped without polarity don’t cares 

information. 

4.6 Degrees of freedom 

In the work proposed by Benini (1998), an extra search in the neighborhood of the 
partitioned circuit is performed in order to identify the degrees of freedom (SAVOJ, 
1990). In Figure 4.8, for example, an extra search in the neighborhood is able to notice 
that, if ‘i1’ and ‘i4' are equals to ‘0’, the outputs of the “logic gate netlist” don’t care, 
which are known as observability don’t cares.  By enumerating the kl-cuts with (at 
least) k=4 in Figure 4.8, the outputs o1 and o2 depend directly on the inputs i1, i2, i3 
and i4, and this don’t care information is self-contained in the kl-cut. This search in the 
neighborhood is necessary in the work proposed by Benini (1998) because the logic 
gate netlist is created randomly, by selecting a node and adding more nodes to it. Since 
the kl-cuts are enumerated from the inputs to the outputs, the observability don’t cares 
due to the kl-cuts inputs will be satisfiability don’t cares, and then can be removed 
during the resynthesis. 

 

Figure 4.8 Logic circuit example. 

4.7 Conclusion 

This chapter presented a comparison of k-cuts and kl-cuts performed on top of 
mapped circuits as opposed to computing k-cuts and kl-cuts on top of AIG 
representations. The main differences lie on (1) the number of inputs for the 2-input 
AND nodes used on AIGs and the nodes of a gate netlist which may have several 
inputs, and (2) the existence of explicit inverters and buffers, appearing as nodes, in the 
netlist compared to the use of negated or direct edges used in the AIG. Moreover, 
algorithms to enumerate k-cuts and kl-cuts on top of a netlist representation were 
proposed and implemented.  
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5. KL-CUT BASED REMAPPING 

This chapter presents the main contribution of this work, which is the use of cuts on 
top of mapped circuits in order to perform iterative remapping. A complete operational 
flow is presented, with details about every step of the flow. 

5.1 Remapping using KL-cuts 

The advantages of the current approach are linked to the use of kl-cuts to enumerate 
the sub-circuits. Previous remapping approaches of mapped circuits adopt circuit 
partitioning techniques that do not consider the complexity of the Boolean functions in 
the resulting sub-circuits (DEY, 1990; KUNZ, 1997; BENINI, 1998). For this reason, 
these remapping approaches lose local context, and need to investigate the surrounding 
environment to detect observability don’t cares (BENINI, 1998). By using k-cuts, the 
observability don’t cares are incorporated in the sub-circuits due to the k-cut 
characteristic of dominance (PAN, 1998). In this work, the concepts of k-cuts and kl-
cuts are used on top of mapped circuits in the context of technology remapping. When 
compared to the approaches proposed in (KUNZ, 1997; BENINI, 1998; KRAVETS, 
2005; MISHCHENKO, 2006; FIŠER, 2010), kl-cuts introduce important advantages, 
such as (1) the control of the support cardinality, and (2) the possibility to perform logic 
sharing between outputs, since all outputs affected by the kl-cut inputs are found. 

 

Figure 5.1 Proposed kl-cut remapping flow. 
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5.2 KL-cut remapping flow 

The proposed flow is shown in Figure 5.1. In order to perform the remapping, the 
following inputs are necessary: the gate-level netlist of the design and the liberty files 
(library) used to map it. If it is desired to have a more precise timing analysis, an SDC 
file must be read as well. If no SDC is provided, the remapping flow will improve the 
cost function regardless of timing constraints. After reading the necessary files, the 
remapping is performed. A common flow is shown in Figure 5.2, using the tool 
developed, named KLever2. It is necessary to define the maximum size of the kl-cut 
inputs k (the functions support), which is 6 in this case. The number of iterations desired 
n is also necessary. For n=0, the tool performs remapping iterations while it is still 
possible to improve the cost function. For n different of 1, the improved netlist is used 
again in the flow, in order to perform the next iteration, as illustrated by the dashed line 
in Figure 5.1. In this example, an area reduction of 13.6% was found after 3 iterations 
for c432 benchmark (IWLS benchmarks 2005, 2012). 

 

Figure 5.2 Example of a complete remapping script. 
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The remapping starts by enumerating all kl-cuts and remapping them. Then, the 
remapped cuts are sorted from the highest to the lowest gain according to the cost 
function desired, performing a greedy selection. Notice that the mapped kl-cuts selected 
to be replaced in the design are only the ones that improve the cost function. The kl-cuts 
can be overlapped (details in subsubsection 5.2.7.1), so it is checked if there is no 
overlapping before replacing them back in the netlist. If there is no overlapping, the kl-
cut is replaced and the timing is checked. If the timing remains acceptable, the 
replacement is approved and the kl-cuts replacement continues until there are no more 
kl-cuts to replace. 

5.2.1 Liberty parser and data structure 

The Liberty file is a standard cell library file format used in the standard cell flow. 
The Liberty file contains information about the library cells, such as: the cell name, the 
input and output pins names, the logic function performed by each output, the timing 
and power tables, the cell area, the inputs capacitances, etc. The power tables have been 
neglected in the parser developed to this work, since the power information was not 
studied in this first version, i.e. only area and timing was considered. Figure 5.3 shows 
the information read from an AND2 gate of a Liberty file, which is possible to get with 
the command print_library_cells. 

 
.SUBCKT AND2_X1 A1 A2 Q VDD VSS 

*.PININFO A1:I A2:I Q:O VDD:P VSS:G 

*.COMBINATIONAL_LOGIC_GATE  

*.AREA_VALUE 1.224 

*.CAP_VALUES RISE: A1:9.08E-4 A2:9.98E-4 FALL: A1:9.32E-4 A2:0.00103 

*.EQN Q=(A1 * A2) 

*.TIMING_TABLES 

* OUTPUT_PIN: Q 

*    INPUT_PIN: A1 

*    UNATENESS: POSITIVE_UNATE 

*    INPUT_NET_TRANSITION_INDEX: [0.0010, 0.02, 0.04] 

*    OUTPUT_TOTAL_CAPACITANCE_INDEX: [2.80653E-4, 0.00407697, 0.00815394] 

*    CELL_RISE: [(0.0226,0.04134,0.060053) 

                 (0.031938,0.050609,0.069501)  

                 (0.041727,0.060403,0.079288)] 

*    CELL_FALL: [(0.019064,0.031426,0.042973) 

                 (0.029097,0.04149,0.053071)  

                 (0.039568,0.052127,0.063734] 

*    RISE_TRANSITION: [(0.008929,0.028669,0.05085)  

                       (0.008986,0.028663,0.050975)  

                       (0.009931,0.028854,0.051089] 

*    FALL_TRANSITION: [(0.006406,0.017923,0.030511)  

                       (0.006481,0.017936,0.030482)  

                       (0.007601,0.018293,0.030684)] 

*    INPUT_PIN: A2 

*    UNATENESS: POSITIVE_UNATE 

*    INPUT_NET_TRANSITION_INDEX: [0.0010, 0.02, 0.04] 

*    OUTPUT_TOTAL_CAPACITANCE_INDEX: [2.80653E-4, 0.00407697, 0.00815394] 

*    CELL_RISE: [(0.025413,0.044382,0.063154)  

                 (0.034863,0.053786,0.072692)  

                 (0.044417,0.063269,0.082138)] 

*    CELL_FALL: [(0.019785,0.031108,0.041521) 

                 (0.029581,0.040946,0.051377)  

                 (0.040131,0.051612,0.062045)] 

*    RISE_TRANSITION: [(0.009158,0.028734,0.050867)  

                       (0.009174,0.028725,0.050995)  

                       (0.009716,0.028841,0.050939)] 

*    FALL_TRANSITION: [(0.006249,0.016571,0.027764)  

                       (0.006313,0.016564,0.027796)  

                       (0.00732,0.0169,0.027867)] 

.ENDS 

Figure 5.3 Cell information read from a Liberty file. 
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Figure 5.4 shows an example of a library with four combinational cells. It was 
implemented two ways to access a cell in the library: (1) using the cell name, which is 
important while parsing a Verilog file, for example; and (2) using the cell function P-
signature, which is important during technology mapping. 

 

Figure 5.4 Example of a library with four different logic gates. 

5.2.2 Verilog parser and data structure 

The gate-level netlist of a given design can be described in different hardware 
description languages. One of the most used in digital design is the Verilog language, 
which was used in this work. An example of the Verilog format accepted in the tool is 
illustrated in Figure 5.5. It is expected that the input Verilog has only one module, with 
the header formatted in Verilog 1993 format: module <module_name> 

(<list_of_terminals>);. Then, the inputs, outputs and wires are described, followed by 
the cells instantiations. Assignments are also accepted. When the Verilog file is read, a 
circuit data structure is created, similar to the example in Figure 5.6. 

module Design(i0, i1, i2, i3, o0, o1, o2); 

 input i0, i1, i2, i3; 

 output o0, o1, o2; 

 wire x1, x2, x3; 

 NOR3_X1 U2( 

  .A(i1),  

  .B(i2),  

  .C(i3),  

  .Q(x3)); 

 AND2_X1 U4( 

  .A(i0),  

  .B(i1),  

  .Q(x1)); 

 XOR2_X1 U1( 

  .A(i1),  

  .B(i2),  

  .Q(x2)); 

 XOR2_X1 U2( 

  .A(x2),  

  .B(x3),  

  .Q(o2)); 

 HA_X1 U2( 

  .A(x1),  

  .B(x3),  

  .S(o0),  

  .C(o1)); 

endmodule 

Figure 5.5 Example of structural Verilog. 
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Figure 5.6 Example of the circuit data structure. 

The circuit data structure has the design name (Verilog module name), a list of the 
inputs names, a list of the outputs names, a map to the cell instances, a map to the 
driving nodes, and the circuit area (which is the sum of the area of all instantiated cells). 
The instance data structure has the instance name, a map with the inputs names, a map 
with the outputs names, a pointer to the library cell, and the timing information, which 
is updated when the STA is performed. For example, the maps of the instance U3 in 
Figure 5.6 are the following. Inputs map: (A=x2, B=x3); outputs map (Q=o2). The node 
data structure has the net name, the instance name and the pin name, or the terminal 
name (input or output). There are two types of nodes, the source and destination. The 
source nodes have a list of pointers to the fanout nodes which they drive, and the 
destination nodes have a pointer to the fanin node which drives them. 

5.2.3 SDC parser and data structure 

A timing analysis tool is able to determine timing only due to the circuit itself. The 
environment conditions and restrictions must be informed to the timing analysis tool 
through the timing constraints, in order to the make the analysis more realistic. Timing 
constraints define, for example, the clock period and uncertainty, the input and output 
delays, input transition times and output loads. The SDC commands currently read in 
the proposed STA engine are described in Table 5.1. 

5.2.4 KL-cut enumeration and data structure 

The kl-cut enumeration is performed as described in the algorithm of Section 4.4. By 
defining the k (k>1), which represents the maximum number of inputs, the k-cuts are 
found and each k-cut generates a kl-cut. It is very important to limit the number of 
inputs of the sub-circuits found, since it is a limiting variable in Boolean minimization 
algorithms, increasing time exponentially with the number of inputs. An example of a 
kl-cut found is in Figure 5.7. This data structure can be obtained by the command 
get_cuts followed by the command print_cuts. 

The kl-cut data structure has the cut name, which is unique; a pointer to the circuit 
data structure; a map with the inputs names and a map with the outputs names, such as 
the “identifiers” row in Figure 5.7; a list of pointers to the instances of the cut; a list of 
the intermediate wires; the kl-cut area, which is the sum of the instances’ area; a map 
with the logic expressions of the outputs; and the polarity don’t cares available. 
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Table 5.1 Commands currently read in the STA engine developed. 

Command name Description 

set_input_delay 
Defines the delay necessary to add in a path starting at a circuit input, 
necessary in input-to-register and input-to-output paths. 

set_output_delay 
Defines the delay necessary to add in a path starting at a circuit output, 
necessary in input-to-output and register-to-output paths. 

set_clock_transition 
Defines the transition time of a clock signal, necessary to define the 
delay and the setup time of the registers. 

set_input_transition 
Defines the transition time of an input signal, necessary to define the 
delay and output transition time of the cells driven by input terminals. 

set_load 
Defines the capacitance load at an output, necessary to define the delay 
and output transition time of the cells that drive output terminals. 

set_clock_uncertainty 
Defines the error margin of a clock period. This value must be added 
to all paths, in order to guarantee that timing will be attained. Clock 
skew and clock jitter are the values usually used. 

create_clock Defines the clock name, pin and period. 

set_logic_zero 
Defines an input as zero, enabling constant propagation and logic 
minization. 

set_logic_one 
Defines an input as one, enabling constant propagation and logic 
minization. 

set_false_path Defines a path as false for timing analysis. 
 

.SUBCKT E4 i0 i1 i2 i3 i4 i5 i9 o0 o1 o2 o3 VDD VSS 

*.PININFO i0:I i1:I i2:I i3:I i4:I i5:I i9:I o0:O o1:O o2:O o3:O VDD:P VSS:G 

*.IDENTIFIERS i0:N82 i1:N76 i2:n106 i3:n105 i4:n103 i5:n23 i9:N223 o0:n1 o1:n36 o2:n93 o3:n78 

*.INSTANCES U142:CLKINV_X1 U140:INV_X0D5 U183:NOR2_X1 U110:OAI21_X0D5 U108:NAND3_X1 U155:NAND2_X1 

*.AREA_VALUE 5.508 

*.DESIGN_NAME c432 

*.INTERMEDIATE_WIRES n21 n45 

*.POLARITY_DONT_CARES i5 i9 

*.EQN i5=!i0 

*.EQN i9=!i4 

*.EQN o0=!((!((i0 * i4) + (i0 * !i1)) + !i2) + !i3) 

*.EQN o1=(!i3 + (!((i0 * i4) + (i0 * !i1)) + !i2)) 

*.EQN o2=(!i1 * i0) 

*.EQN o3=((!i1 * i0) + i4) 

.ENDS 

Figure 5.7 Example of kl-cut data structure representation. 

5.2.5 KL-cut P-group 

A design can have a lot of kl-cuts. For instance, a design with 10,000 logic gates can 
have easily 100,000 kl-cuts. However, lots of these cuts have similar logic, which can 
be grouped in P-classes, reducing the amount of cuts from 5,000 to 20,000. In the 
current implementation, the remapping does not consider local timing information while 
the technology mapping, so the kl-cuts can be grouped without any lose of quality. 

In order to decrease the amount of remappings, which is the bottleneck of the current 
flow, an extension of the multiple output PP-signature introduced by Martinello (2010) 
has been implemented. This extension was necessary to also consider polarity don’t 

cares. The idea is the following: the inputs have an order defined by the PP-signature, 
and polarity don’t cares are assigned to the inputs using this order. Consequently, two 
kl-cuts are in the same PP-class if they have the same PP-signature, and if the same 
variables in the PP-signature order have polarity don’t cares available. 

Another technique used in order to decrease the runtime was to keep a database of 
the best implementation cuts, which was called golden cuts. By using the parameter –m 
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in the iterative_remap command, the tool keeps the best implementation of each P-class 
to be used in the following iterations so reducing runtime. 

5.2.6 KL-cut remapping approach 

The remapping is performed trying to improve a cost function. The cost function 
primarily used is area, which is a historically common cost function in the logic 
synthesis and technology mapping. The remapping starts in the Liberty reading, where 
the lowest cost cells are selected for each P-signature. Using area as cost function, the 
cells with drive strength equals to 1 (X1 cells) were selected, since they have the 
smallest area in the cell library. 

During the remapping flow, all kl-cuts are remapped. The logic expressions of each 
kl-cut is processed by a factoring algorithm, based on Martins (2012) Functional 
Composition (FC) paradigm, which reduces the amount of literals in each logic 
expression. The “circuit DAG” in this case is minimized to a set of logic expressions. 
Notice that the mapping for minimum area in a DAG is NP-complete, but if the DAG is 
partitioned into trees, each tree can be mapped with minimum area with linear time.  

Currently, there are different ways to factorize the equations performed: factoring 
each output expression independently (single output); use the output functions as inputs 
to other outputs (multiple output); and identify portions of logic that can be used by 
more than one output (partial multiple output). The FC algorithm used can perform 
factorization using the basic operators, resulting expressions with {AND, OR, INV} 
operators, and also using the XOR operator, which results in expressions with {AND, 
OR, XOR, INV} operators. Therefore, each kl-cut can have its logic expressions in up 
to six sets of expressions: single output, multiple output, partial multiple output, with 
and without the XOR operator. It is important to notice that the factoring results are 
technology independent, which means that the best set of expressions may differ for 
different technologies. For instance, a technology with complex cells with area 
comparable to simple cells can obtain better results by factoring the outputs expressions 
independently. 

After the factoring step, each set of logic expressions factorized is passed to a logic 
tree mapper. Each logic expression of the set is mapped independently, using the 
polarity don’t care information, i.e. the circuit was divided in a forest of trees. The tree 
mapping algorithm is based on the Correia’s (2004) algorithm, trying to improve a cost 
function. By connecting the logic tree mapper results, a kl-cut circuit is generated for 
each of the logic expression factorized sets. The following example shows how this 
remapping approach is able to reduce area of kl-cuts, and consequently of the circuit.  

Consider the following kl-cut example, found in one of the benchmarks examinated. 
The kl-cut inputs are i0, i1, i2, i3, i4, i9, i12; and the outputs are o0, o1, o2, o3, as seen 
in Figure 5.8. There are two polarity don’t cares available: i9=!i0, and i12=!i1. The 
area of this sub-circuit is 9.792 um², as found in the mapped circuit benchmark. By 
performing the proposed factoring, four different sets of logic expressions were found. 
The original logic expressions of the kl-cut outputs and the different factorized 
expressions are on Table 5.2. 

Notice that the multiple output with XOR expressions have less literals than the 
multiple output results. Nevertheless, the best area result is obtained by the circuit 
mapped with multiple output expressions, since the logic tree mapping algorithm was 
able to use the SPI7F165 complex gate (which logic expression is (a*b)+c*(d*e+f*g)). 
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This result is also interesting since the xor operation inside o1 expression 
(!i0*i1)+(i0*!i1) is performed in series/parallel format, because of the polarity don’t 

cares available, (i9*i1)+(i0*i12), as seen in Figure 5.9. 

 
Figure 5.8 Example of kl-cut input in the remapping approach. 

Table 5.2 Original and factorized logic expressions of the kl-cut remapping example. 

Method Logic expressions 

Mapped 

circuit 

area 

Difference 

Original 

o0 = (!i0 + !i3) 
o1 = ((!i3 * ((!i0 * i1 * i4) + (!i1 * !i4 * i0))) + (i2 * i3)) 
o2 = (!i3 * ((!i1 * !i4) + (i1 * i4))) 
o3 = ((!i1 * !i4) + (i1 * i4)) 

9.792 um² 0% 

Multiple 

output 

o0=(!i0 + !i3) 
o1=((i2 * i3) + (o2 * ((!i0 * i1) + (i0 * !i1)))) 
o2=(!i3 * o3) 
o3=!((i1 * !i4) + (!i1 * i4)) 

6.732 um² -31.25% 

Multiple 
output 

with xor 

o0=(!i0 + !i3) 
o1=((i2 * i3) + ((!i0 + !o2) ^ (!i1 + !o2))) 
o2=(!i3 * o3) 
o3=!(i1 ^ i4)} 

9.18 um² -6.25% 

Single 
output 

o0=(!i0 + !i3) 
o1=((i2 * i3) + (!i3 * ((i0 * (!i1 * !i4)) + (!i0 * (i1 * i4))))) 
o2=(!i3 * !((i1 * !i4) + (!i1 * i4))) 
o3=!((i1 * !i4) + (!i1 * i4)) 

9.792 um² 0% 

Single 
output 

with xor 

o0=(!i0 + !i3) 
o1=((i2 * i3) + (!i3 * ((i0 * (!i1 * !i4)) + (!i0 * (i1 * i4))))) 
o2=(!i3 * !(i1 ^ i4)) 
o3=!(i1 ^ i4)} 

10.404 
um² 

+6.25% 

5.2.7 KL-cut replacement 

After remapping all kl-cuts, the cuts are ordered from the largest to the lowest gain, 
and a greedy selection is performed. It is necessary to save a copy of the current circuit, 
in the case of the resulting circuit does not respect the timing constraints, so the cut 
replacement can be undone. A parenthesis for the implementation of this copy: in Java, 
it must be done with a copy constructor instead of a simple clone method; otherwise, 
there is a memory leak problem which causes the program to fail or increases a lot the 
runtime. 
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During the cut replacement, if the cuts are grouped in P-classes, it is necessary to use 
the signature information of the inputs and outputs to correct the order. This information 
is fundamental to keep the correct logic equivalence. Then, the instances and the 
intermediate wires contained in the original kl-cut are removed, the new intermediate 
wires and instances are added, and the inputs and outputs of the kl-cut are connected to 
the circuit. 

 

Figure 5.9 Example of Figure 5.8 remapped by the proposed approach. 

5.2.7.1 KL-cuts overlapping 

Two kl-cuts do not overlap if: (1) their set of logic gates covered is disjoint; and (2) 
their intermediate wires and input/output sets are disjoint, since an intermediate wire of 
a kl-cut cannot be used by another after restructuring its internal logic. The 
overwhelming majority of the cases are due to (1), the condition (2) is necessary due to 
the polarity don’t cares. 

The overlapping of kl-cuts happens due to the kl-cuts algorithm characteristic of 
finding different supports for the same node. This kl-cut characteristic finds 
optimizations that are not found by other techniques, since several different sub-circuits 
are found in the same part of the circuit, but it is necessary to check the overlapping, 
since two overlapped cuts cannot be replaced at the same time. 

5.2.7.2 STA checking engine 

A kl-cut remapped can improve a lot the cost function, but it is necessary to 
guarantee that the design still meets the performance requirements after replacing the 
cut back in the netlist. In this work, the kl-cuts are remapped disconsidering timing, and 
timing is checked only when the cut is replaced. The replacement is undone if the delay 
increased (higher than the design constraints). However, even if the kl-cuts were 
remapped considering timing, this check after replacing a cut would still be necessary, 
since a cut replacement may affect negatively the timing in other region of the circuit.  

There are four different paths that must be checked, as seen in Table 5.3. All 
endpoints are analysed and the worst delay of all paths is returned.  The circuit is 
checked against the clock period defined in the SDC file. A command to report timing 
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was created, as seen in Figure 5.10, in order to help the user to debug the critical path 
delay. 

5.2.7.3 Greedy choice and iterative remap 

During the development of this work, it was tried to develop a better choice 
algorithm. However, the high computational effort did not correspond in great gains in 
the cost function desired. The selection of the best subset of kl-cuts that do not overlap 
can be reduced to a graph coloring problem, which is NP-complete. Moreover, when a 
kl-cut is replaced, the timing of all the following kl-cut replacements is affected. 
Therefore, the selection of the best subset of kl-cuts that (1) do not overlap and (2) keep 
the timing constraints attained is very complex and not worth computationally. 

The option to perform a greedy choice and more remapping iterations resulted in 
better runtime and results, if compared to a better selection algorithm. Since the 
objective of the remapping flow is to improve a cost function, the proposed iterative 
algorithm with a greedy choice is able to achieve that, in all cases, with a reasonable 
runtime. 

Table 5.3 Different paths analysed in the STA check. 

Path type Worst delay 

input-to-register input delay+combinational circuit delay+clock uncertainty+register setup 

input-to-output  input delay+combinational circuit delay+clock uncertainty+output delay 

register-to-register register delay+combinational circuit delay+clock uncertainty+ register setup 

register-to-output register delay+combinational circuit delay+clock uncertainty+output delay 

5.3 Conclusion 

This chapter presented an iterative remapping flow, based on local transformations 
using kl-cuts. The proposed approach was implemented in an operational tool called 
KLever2, and it is able to reduce a cost function such as area, while respecting timing 
constraints. A complete suite of implementations and knownledge was necessary to 
implement such a tool: a Liberty parser and library data structure; a structural Verilog 
parser and mapped circuit data structure; an SDC parser and data structure; k-cut and kl-
cut enumeration algorithms, parser and data structure; an extension of a multiple output 
P-signature algorithm, in order to consider polarity don’t cares; an STA engine, with 
results comparable to a commercial tool; Boolean factoring aggressive algorithms; and 
logic tree mapping algorithms.  The proposed flow is composed of many heuristics. The 
quality of results is due to a combination of the following attributes: (1) use of kl-cuts 
which minimize the support of the Boolean functions; (2) extraction of full context, by 
using kl-cuts instead of k-cuts; (3) use of aggressive Boolean optimization techniques to 
optimize sub-circuits (kl-cuts); and (4) allow only substitutions that do not impact 
negatively on the timing constraints. 
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Figure 5.10 Report timing performed in the c432 benchmark. 
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6. MANUFACTURABILITY COST FUNCTION 

This chapter presents the third contribution of this work, which is a cost function to 
use during logic synthesis. The cost function tries to improve the number of good chips 
per wafer during logic synthesis, considering lithography printability and other sources 
of yield loss. 

6.1 Design for manufacturability 

Integrated circuit (IC) design tools target a well-defined circuit layout, which take 
into account different environment conditions. Nevertheless, due to the presence of 
defects and variations during the IC fabrication, the final circuit may be very different 
from the circuit provided by the CAD (computer-aided design) tools. Additionally, the 
well-defined circuit layout may not work after the fabrication process. In order to 
increase the number of good dies per wafer, several techniques have been created, 
leading to the emergence of the Design for Manufacturability (DFM) field (AITKEN, 
2006). DFM methods include estimation of yield prior to fabrication, enabling to solve 
manufacturability problems earlier in the design flow. 

One of the sources of defects and variations in IC manufacturing is the 
lithography process resolution. The CMOS technology scaling down is forcing the 
lithography to transfer sub-wavelength design features. The current lithography 
systems, which have a wavelength of 193nm, are being operated in 20nm technologies 
(WONG, 2009). The result is that the printability of layout shapes is very limited as 
seen in Figure 6.1. Figure 6.1a shows the square features expected in the designed 
layout, and its deformed lithography result is in Figure 6.1b, showing rounded shapes 
and potential problems in the contacts. Several resolution enhancement techniques 
(RETs) are used to improve the layout printability, such as optical proximity corrections 
(OPC) and phase shift mask (PSM). However, the post-layout processing steps are not 
able to exploit all the benefits of such techniques (KHETERPAL, 2005). Moreover, the 
cost of RETs is also very high if applied to a non-regular layout. Consequently, the use 
of regular layouts can increase a lot the effectiveness of RETs, while keeping them at a 
reasonable cost. Nevertheless, notice that there is a significant area overhead by 
introducing regular layouts, which also affects the number of good dies per wafer. 

It is known that DFM techniques applied in post-layout phase improve yield in up to 
10%, according to (NARDI, 2004). But, a general rule is that a higher level of 
abstraction implies higher possibilities of improvement of a cost function. Following 
this general rule, several works explored improvements in yield earlier in the design 
flow (HEINEKEN, 1998; SHAIK, 2000; NARDI, 2004). In (HEINEKEN, 1998), in-
place substitution of the original cells by yield-optimized cells was proposed, preserving 
the gate-level netlist, and therefore obtaining limited results. The necessity of 
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considering manufacturability during logic synthesis has already been stated (SHAIK, 
2000), and implemented. The pioneer work of Nardi (2004) considered yield as cost 
function in a logic synthesis tool and generating an yield optimized gate-level netlist. 
However, regularity and lithography printability was not considered, and thus the results 
may not be so relevant for sub wavelength technologies.  

 

Figure 6.1 Comparison between (a) designed layout and (b) lithography simulation 
of the designed layout. 

No previous work considers the tradeoff of cells with different levels of regularity 
and area overheads, in order to improve overall design yield during logic synthesis. This 
work presents a novel yield model for ICs, which considers lithography printability 
problems (WUU, 2009; GÓMEZ, 2010; DING, 2011; SUNDARESWARAN, 2011) as 
a source of yield loss. Moreover, a technology remapping approach considering this 
yield model as cost function is proposed and implemented, using the kl-cuts 
methodology. The methodology proposed by this work can take advantage of regularity 
for different degrees of severity of lithography hot spots, in order to improve the 
number of good dies per wafer. 

6.2 Yield background 

IC yield is the amount of the ICs that meet all design specifications divided by the 
total number of manufactured ICs. When the IC works, but does not meet all 
performance specifications, this is known as a parametric yield loss. The catastrophic 

yield loss refers to problems that cause the product to fail completely (WONG, 2009). 
Parametric yield loss is generally solved through statistical methods, which try to 
explore the intrinsic statistical characteristics of fabrication process variations (SINGH, 
2005). The catastrophic yield loss has several sources, such as the class of the 
manufacturing clean room and lithography issues. This work only considers 
catastrophic yield, and from this point on, the word catastrophic will be suppressed. 

The manufacturing clean room dust particles distribution and size is one of the major 
sources of yield loss, especially in current technologies, since a very small particle can 
cause a full die to fail. The calculation of this source of yield loss has to take into 
account the probability of a dust particle size to be anywhere in the wafer, considering 
the statistics of the clean room, and the critical area. Moreover, the critical area also has 
to be defined statistically, as it is defined by processes such as chemical metal polishing 
(CMP) (LUO, 2006), etching and lithography (BUBEL, 1995). 

The fabrication process variations are other major sources of yield loss. Processes 
such as CMP can make metal lines more susceptible to fail than they were designed. 
Over (under) etching can make some features larger (smaller) than expected in the 
designed layout, leading to potential shorts or breaks. Lithography problems can be 
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divided into: (1) defects in the masks or lithography process which generate positive 
(e.g. bridges) or negative (e.g. holes) pattern transfers, and (2) problems due to 
resolution of sub wavelength pattern transfers (WONG, 2009). 

The problems due to dust particles, process variations and lithography defects can be 
investigated after fabrication and solved, leading to a learning curve in the fabrication 
processes. That is one of the main obstacles of performing DFM techniques earlier in 
the design flow, since a fabrication process that used to be the major source of defects 
during design phase, can be already solved in the manufacturing phase (AITKEN, 2006; 
WONG, 2009). Nonetheless, as long the sub wavelength lithography exists, the 
difficulties of resolution will exist, and the quality of resolution will depend on the 
RETs and the regularity of layout. This work tries to explore this source of yield loss, 
while taking into account the other sources, in order to improve the number of good dies 
per wafer.  

6.3 Yield model 

This section describes the novel yield model proposed by this work. The goal of this 
yield model is to consider both sources of yield loss: density of defects (process 
variations, dust particles and lithography defects) and lithography printability. The effort 
is not on a severe statistical model for yield prediction, but an intuitive cost function to 
be explored during logic synthesis phase. 

The profitability of a process is affected by the number of dies per wafer (#DW). The 
number of dies per wafer depends on the area of the wafer (Awafer) and on the area of the 
die (Adie), which is given by Equation (6.1). 

      (6.1) 

 

The profitability of a process is given by the number of good dies per wafer (#GDW). 
The #GDW is the number of dies per wafer (#DW) multiplied by the yield, as expressed 
by Equation (6.2). 

      (6.2) 

The yield due the presence of defects during the manufacturing processes depends on 
the critical area (ca) and the defect density (dd). The critical area (ca) of a circuit can be 
defined as the sum of the critical area of all circuit cells, as defined in Equation (6.3). 

                (6.3) 

The critical area of a circuit cell (CAci) is a region of the cell that may be affected by 
defects, leading a circuit to failure. In order to calculate CAci, it is necessary to take into 
account the manufacturing processes that affect the real size of critical area after 
fabrication (BUBEL, 1995; LUO, 2006). Moreover, the CAci value must consider the 
types and diameters of the defects, i.e. the defects that can effectively lead a circuit to 
fail. 
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The defect density (dd) is inherently associated with the process, and it depends on 
factors such as the class of the clean room and manufacturing processes variations. The 
defect density value must consider not only statistical results of the foundry, but also a 
probability function: a defect can appear in any part of the wafer.  

Yield due to density of defects (dd_yield) can be defined as a Poisson distribution of 
the ca and dd product, as shown in Equation (6.4). Notice that this model is pessimistic 
for yield value prediction, mainly because defects are not uniformly distributed across 
the wafer but tend to cluster. There are numerous models that predict yield more 
accurately (KOREN, 1998), but the objective of this work does not lay on the accuracy 
of the model. The goal is to know how logic synthesis can be used in order to improve 
manufacturability. 
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It is important to notice that this formulation does not consider the dependency on the 
lithography printability of the cells. A large number of authors state that having more 
regular layouts increase yield due to improve in lithography printability (KHETERPAL, 
2005), but this behavior is not well captured in Equation (6.1) to Equation (6.4). By 
using this model, since regular cells have a larger area, regular layouts would reduce the 
predicted #GDW due to area overhead. Under these considerations, the previously 
described yield could be stated as the yield related to the defect density. In the following, 
an additional factor to the formulation is proposed, taking into account the criticality of 
lithography hot spots (chs) of the circuit layout. The factor chs depends solely on the 
circuit layout. On the opposite, the severity of lithography hot spots depends on the 
fabrication technology, the RETs used, and the quality (and calibration) of the 
lithography system. Consequently, a severity of lithography resolution defects (sld) 
factor is introduced in the formulation. This analysis results in a different yield 
formulation, called herein as lhs_yield, which is related to lithography printability and it 
is given by Equation (6.5). 

     (6.5) 

Notice that Equation (6.5), meant for lithography, is very similar to Equation (6.4), 
meant for defect density. The criticality of lithography hot spots (chs) used in Equation 
(6.6) can be expressed as the sum of the cell criticality of lithography hot spots (CHSci) 
for all cells instantiated in the circuit, as describe in Equation (6.7). In order to define 
CHSci, it is necessary to evaluate the lithography hot spots. Lithography hot spots are 
patterns in the layout which are more susceptible to suffer a large variation during 
lithography (WUU, 2009; GÓMEZ, 2010; DING, 2011; SUNDARESWARAN, 2011).  

     (6.6) 

Equation (6.4) and Equation (6.5) give two different formulations for yield, from 
different yield loss causes. These formulas can be combined into a new yield formulation 
shown in Equation (6.7), called herein as total yield (ty). The substitution of Equation 
(6.3) to Equation (6.6) into Equation (6.7) gives the complete formulation for total yield, 
illustrated in Equation (6.8). Notice that in Equation (6.8) the total yield (ty) depends on 
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two foundry technology parameters: the defect density and the severity of lithography 
resolution defects. 

     (6.7) 

     (6.8) 

The total yield in Equation (6.8) can be used to compose a cost function to take both 
yield loss sources into account while performing technology mapping. This can be done 
by substituting Equation (6.1) and Equation (6.8) into Equation (6.2). The resulting cost 
function expresses the number of good dies per wafer (#GDW) and it is illustrated in 
Equation (6.9). 

   (6.9) 

The #GDW has to be maximized during technology mapping, in order to improve 
manufacturability. The formulation in Equation (6.9) allows to tradeoff lithography 
effects, defect density and total area while maximizing the number of good dies per 
wafer.  

6.4 Yield as a cost function 

The yield model has been proposed, it is important to discuss about the values to be 
used in a cost function. This section is intended to explain the rationale of the choice of 
numbers for dd and sld; as well as the range of values for CHSci for the cells. The defect 
density (dd) is a function of the expected number of critical area defects (#cad) expected 
in a wafer, given in Equation (6.10). The #cad must be calculated through a statistical 
and probabilistic analysis.  

               (6.10) 

The sld has to emulate a similar behavior to dd for the lhs_yield. The purpose of the 
sld parameter in the proposed formulation is to increase or decrease the number of 
expected lithography resolution defects (#LD) for a given technology, compared to the 
expected number of critical area defects (#cad). For sld=1, it is assumed that #LD is 
similar to #cad, as demonstrated in Equation (6.11). As a consequence, the sld can be 
modeled as the ratio between the number of expected lithography resolution defects 
(#LD) and the number of expected critical area defects (#cad), as expressed by Equation 
(6.12). 

     (6.11) 

     (6.12) 
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The purpose of the criticality of hot spots (CHSci) parameter is to express how the 
quality of cell layouts influences #LD. The parameter CHSci is derived from the number 
of lithography resolution defects expected in a wafer completely filled with instances of 
a cell ci (#LDci). The parameter #LDci is called number of lithography resolution defects 
induced by a cell. The relationship between CHSci and #LDci is expressed in Equation 
(6.13). A cell layout with good printability has , a cell with bad printability 
has , and a cell with average printability has . 

wafer

cell

cell

wafer

A

A
LDciCHSciLDci

A

A
CHSci ⋅≅→=⋅ ##   (6.13) 

Consider as an example, a wafer with 600 cm2 of area, which can produce 
approximately 150 dies of 4cm2, and the #cad equals to 15. This scenario implies a 
defect density of 15 defects/wafer, or 0.025 defects/cm2. Consider also that the 
technology has a sld equals to 1, meaning that additional 15 defects will happen in the 
wafer due to lithography resolution problems, i.e. #LD equals to 15 defects/wafer on 
average. Additionally, assume that the #LDci of cells can vary around #LD, depending 
on the printability of the cell layout.  

Table 6.1 shows values of CHSci computed for cell versions with different degrees of 
printability. The cells considered as reference layout do not include any lithography 
consideration. Some cells are restricted to be designed on a regularly spaced grid, but can 
use two-dimensional features (2D-grid). Litho-friendly cells are restricted to use one-
dimensional features (1D-restr). The CHSci values in Table  6.1 can be used to compute 
the yield given by the different choices of layout.  

Table 6.1 Values of CHSci derived according to Equation (6.13) considering a 
wafer of 600 cm². 

Cell Function Layout type Area (µµµµm
2
) Printability #LDci CHSci 

and2 1D-restr 1.57 good 7 1.83e-10 
and2 2D-grid 1.41 average 15 3.53e-10 
and2 reference 1.22 bad 30 6.10e-10 
inv 1D-restr 0.784 good 7 0.92e-11 
inv 2D-grid 0. 706 average 15 1.77e-10 
inv reference 0.612 bad 30 3.06e-10 

Assume that a designer wants to verify the yield of dies that would have 4cm2 with 
reference layouts. This results in a number of instances of the reference layout given by 
Equation (6.14). 

     (6.14) 

The yield values for 1D-restr and 2D-grid layouts are computed for the same number 
of instances. The computation of the yield of several instances of the same benchmark 
tied together can be computed as described in Equation (6.15). 

     (6.15) 

Results scaled for reference layouts with 4cm2 are shown in Table 6.2. Notice that the 
option that produces the larger #GDW is the reference cells for this scenario (sld=1) due 
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to a larger #DW, even with the worst yield. The results in Table 6.2 are affected by the 
sld value. A sld equals to 2 would make 1D-restr similar to reference cells, in terms of 
#GDW. A sld equals to 3 would make 1D-restr cells better than the other layout types 
cells, in terms of #GDW, justifying the use of regular layout cells. 

Table 6.2. Values of #GDW considering a die of 4 cm² on a wafer of 600 cm² for 
the reference cells, and the same number of cell instances for 1D-restr and 2D-restr 

cells; sld=1. 

Cell Function Layout type #inst Area (cm
2
) #DW Yield #GDW 

and2 1D-restr 3.28e8 5.15 116 82.80% 96 
and2 2D-grid 3.28e8 4.62 129 79.36% 102 
and2 reference 3.28e8 4.00 150 74.08% 111 
inv 1D-restr 6.54e8 5.12 117 82.87% 96 
inv 2D-grid 6.54e8 4.61 130 79.40% 103 
inv reference 6.54e8 4.00 150 74.08% 111 

 

6.5 Yield remapping tool 

The information of lithography criticality of hot spots and critical area is passed to 
the tool when the library is read, associating the values of the cells as they are read from 
the Liberty files. The information about wafer size, density of defects and severity of 
lithography defects is passed through set_technology_info command, as seen in Figure 
6.2. 

The standard yield-aware design flow is shown in Figure 6.3a. The logic synthesis 
(targeting area, performance and power) generates a gate-level netlist, which goes to 
placement and routing to create the design layout. The only concern on yield 
improvements happens on the post-layout phase, where in-place yield enhancements are 
performed. The flow proposed by Nardi (2004) is shown on Figure 6.3b, where the 
manufacturability is considered during logic synthesis, performing a more global 
optimization of yield. However, it is not a good approach to simply replace the 
commercial tool, or its cost function. For instance, the area results can be much worse 
and the number of dies per wafer (#DW) may decrease a lot. Furthermore, the 
lithography resolution problems are simply ignored in (NARDI, 2004). 

This work proposes a technology remapping approach after the usual logic synthesis 
process performed by a commercial tool. The proposed tool improves a cost function of 
interest, as seen in Figure 6.3c. In this case, the cost function used is the number of good 
dies per wafer (#GDW), according to Equation (6.9). Besides the methodology itself, 
the proposed approach takes into account the tradeoff between lithography printability 
and area overhead. Additionally, the proposed method can be applied in design sub 
modules that are statistically more susceptible to yield loss, for instance. 
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Figure 6.2 Passing technology information to the remapping tool. 

 

 

Figure 6.3 (a) Standard “yield-aware” flow, (b) Flow proposed by Nardi (2004), 
and (c) the flow propose by this work. 

 



 

 

69 

 

6.6 Conclusion 

This chapter presented the introduction of a novel yield model for integrated circuits 
manufacturing, considering lithography printability and density of defects, which can be 
used as a cost function for logic synthesis process. The proposed methodology 
establishes a new standpoint in the field of regular layout by introducing a metric to 
tradeoff area and printability of layouts. Many of the previous works completely 
ignored these tradeoffs and simply pointed out that regularity is expected to improve 
yield somehow, without presenting or discussing metrics. Therefore, a great 
contribution of this work is to propose a discussion about the tradeoffs between 
different area overheads and different levels of lithography printability for regular 
layouts.  
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7. RESULTS 

This chapter presents the results of the experiments of this work. Section 7.1 
presents the results of the STA engine developed in order to guarantee that the design 
will still work at the expected performance after the remapping approach. Section 7.2 
shows experiments trying to improve area results of commercial tools. Section 0 
presents the results of experiments improving the cost function proposed in Chapter 6. 

7.1 Precision of STA engine 

Sequential digital circuits must be analyzed in order to check if there are no timing 
violations. This analysis is very important to determine if the design works correctly at 
the expected performance. The static timing analysis is a method to analyze timing, 
considering only the worst case at each logic gate of the design (BHASKER, 2009). 
Since CMOS logic gates have different rise and fall characteristics, both cases must be 
considered.  

The STA tool developed for this work is implemented using the nonlinear delay 
model (NLDM). NLDM determines the output transition time and the output delay of a 
logic gate through the input transition time of the gate inputs and the capacitance load at 
the gate output (BHASKER, 2009). The cells timing information is read from Liberty 
files of the cell library, and the timing constraints are read from a Synopsys Design 
Constraints (SDC) file (BHATNAGAR, 2001).  

In order to identify the critical path, the delay is propagated from the inputs (or 
registers outputs) to the outputs (or registers inputs), considering only the worst case 
timing arc at each cell (for rise and fall). The worst delay of a design is the largest delay 
from all endpoints, i.e. circuit outputs and register inputs.  

With the purpose of validating the STA engine, several benchmarks and SDC files 
have been checked. And for the benchmarks analyzed, no difference in results was 
observed between the STA tool developed and commercial STA tools. Table 7.1 shows 
the differences on worst delay analysis between a commercial STA tool and the 
proposed STA engine, which is basically due to number rounding. 

7.2 Area as a cost function 

For evaluation of the proposed methodology, the first experiments were on reducing 
the area. Area is a very good cost function, since represents a direct cost in the final 
circuit, and also it has a very good correlation: decreasing the area of sub-parts will 
certainly decreases the whole. The following experiments were performed on a 
computer with a Core i5 processor, and 4GB of RAM. The commercial logic synthesis 
tools results were obtained with versions of 2006. 



 

 

72 

 

Table 7.1 Comparison of the worst delay given by a commercial STA tool and the 
STA engine developed for this work. 

Benchmark Commercial STA tool delay (ns) This paper STA delay (ns) Diff (ps) 
c1355 0.9929 0.9929 0.011 
c1908 0.9867 0.9867 0.024 
c1908a 0.9725 0.9725 0.035 
c2670 0.9806 0.9806 -0.010 
c2670a 0.9409 0.9409 0.054 
c3540 1.0001 1.0001 0.031 
c3540a 0.9978 0.9978 0.090 
c432 0.9908 0.9908 -0.069 
c499 0.7742 0.7743 0.059 

c5315 1.0007 1.0008 0.118 
c5315a 0.988 0.988 0.053 
c6288 1.9997 2.0007 1.018 
c7552 0.9775 0.9776 0.098 
c880a 0.8019 0.8023 0.365 

 

7.2.1 Libraries used for area experiments 

Two standard cell libraries were used in the experiments: a base library and an 
extended library. The technology node is 40nm, and the cell libraries were generated by 
a commercial automatic library generation tool. The base library contains 266 logic 
gates and a total of 49 different logic functions of combinational cells, which is a 
representative of common commercial cell libraries.  

The extended library is composed of the base library cells plus all cells with up to 
three transistors in series and up to three transistors in parallel. In the extended library, 
there are 132 more logic functions than the base library and a total of 181 different logic 
functions of combinational cells. For this work, we will only consider minimal drive 
strength cells (X1), for simplification. 

The use of an extended library in the experiments is to measure the use of complex 
logic gates with commercial tools, comparing to the proposed methodology. The use of 
complex gates can potentially reduce circuit area, but they have to be chosen wisely to 
preserve timing constraints while remapping. 

Table 7.2 Libraries used for area reduction experiments. 

Nickname # of cells # of functions Description 

Base library 266 49 
Common cells found on 
commercial cell libraries 

SP33 174 174 
All possible cells using at most 
3 transistors in series/parallel 

Extended library 398 181 Base library plus SP33 
 

7.2.2 ISCAS benchmarks area results 

ISCAS benchmarks are simple circuits well-known in logic synthesis field, and 
therefore were chosen to evaluate the STA engine at first, and to evaluate the first 
results of the proposed remapping flow. The ISCAS benchmarks are divided in 
ISCAS’85 set, which are basically simple combinational circuits, and in ISCAS’89 set, 
which contain simple and complex sequential circuits. The both sets were used for the 
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following experiments. The results were obtained with unlimited number of remapping 
iterations and k=5. 

7.2.2.1 ISCAS’85 benchmarks area results 

The delay constraint and the results of the synthesis using commercial tool A for 
ISCAS’85 benchmarks (IWLS 2005 benchmarks, 2012) are in Table 7.3. Notice that 
two syntheses were performed for each benchmark: a synthesis using base library (Set 
1) and a synthesis using extended library (Set 2). The delay constraint was defined 
based on the mapping of the circuits without timing constraints. 

It is important to see that commercial tool A is not always able to use the extra cells 
in order to improve area. On the contrary, commercial tool A increases area for several 
benchmarks when extra cells are available, up to 20%. For the following results, the Set 
1 results were used as reference. 

 

Table 7.3 ISCAS’85 benchmarks synthesized with commercial tool A. 

Benchmark Delay Constraint (ns) 
Base library (Set 1) Extended library (Set 2) 

Area (µm²) Delay (ns) Area Diff Delay (ns) 

c1355 1.0 289.4760 0.9929 -5.71% 0.9639 
c1908 1.0 277.2360 0.9867 +2.10% 0.9994 
c1908a 1.0 200.7360 0.9725 +0.15% 0.9951 
c2670 1.0 372.0960 0.9806 -0.99% 0.9957 
c2670a 1.0 386.7840 0.9409 -1.35% 0.9964 
c3540 1.0 660.6540 1.0001 +9.91% 1.0005 
c3540a 1.0 559.9800 0.9978 +19.78% 0.9999 
c432 1.0 121.4820 0.9907 +3.78% 0.9991 
c499 1.0 261.6300 0.7743 -0.58% 0.7432 

c5315 1.0 921.9780 1.0008 -2.62% 0.9986 
c5315a 1.0 896.2740 0.9880 -3.35% 0.9988 
c6288 2.0 2572.2583 1.9996 +18.81% 2.0007 
c7552 1.0 1163.7180 0.9776 +1.24% 1.0000 
c880a 1.0 229.5000 0.8023 -3.33% 0.9219 

Average - - - +2.70% - 
Worst - - - +19.78% - 
Best - - - -5.71% - 

 

In order to check if the results could be further improved with a different 
commercial logic synthesis tool, the benchmarks were synthesized using commercial 
tool B and the results are shown in Table 7.4. The area results were much worse than 
the results obtained with commercial tool A. The proposed methodology was used to 
remap only the commercial tool A results, since the results are already very good, and 
therefore harder to improve. 

The gate netlists generated by commercial tool A were then remapped using the 
proposed methodology, and the results shown in  

Table 7.5 were generated. Notice that area was reduced in all cases (up to 15%), and 
almost all cases were using the extra complex gates. The average runtime was about 8 
minutes, the best case runtime was 2 seconds and the worst case runtime was 70 
minutes (for “c6288” benchmark, which is the biggest and therefore more kl-cuts and 
more iterations). Notice that the area results are being compared with the circuits from 
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Set 1, therefore the remapping results of Set 2 reduced the area compared to Set 2, but 
the area results are still larger than Set 1 results in some cases. 

Table 7.4 ISCAS’85 benchmarks synthesized with commercial tool B. 

Benchmark Delay Constraint (ns) 
Base library Extended library 

Area Diff Delay (ns) Area Diff Delay (ns) 

c1355 1.0 +42.28% 0.5870 +42.28% 0.5872 
c1908 1.0 +44.59% 0.9407 +43.49% 0.9565 
c1908a 1.0 +56.25% 0.8206 +56.86% 0.8137 
c2670 1.0 +89.97% 0.6351 +90.05% 0.6354 
c2670a 1.0 +56.09% 0.6161 +56.01% 0.6233 
c3540 1.0 +42.66% 0.9878 +45.58% 0.9890 
c3540a 1.0 +35.30% 0.9699 +34.26% 0.9919 
c432 1.0 +34.51% 0.9314 +32.75% 0.8893 
c499 1.0 +57.43% 0.5871 +57.43% 0.5886 

c5315 1.0 +49.05% 0.9883 +50.15% 0.9883 
c5315a 1.0 +50.97% 0.9883 +49.37% 0.9828 
c6288 2.0 -2.95% 1.9919 -6.38% 1.9919 
c7552 1.0 +52.59% 0.9853 +53.14% 0.9854 
c880a 1.0 +27.20% 0.6950 +30.13% 0.6748 

Average - +45.42% - +45.37% - 
Worst - +89.97% - +90.05% - 
Best - -2.95% - -6.38% - 

 

Table 7.5 ISCAS’85 benchmarks synthesized with commercial tool A remapped with 
the proposed methodology. 

Benchmark 

Remapping of Set 1 Remapping of Set 2 

Base library Extended library Extended library 

Area Diff Delay (ns) Area Diff Delay (ns) Area Diff Delay (ns) 

c1355 -6.24% 0.9225 -7.61% 0.9931 -10.99% 0.9309 
c1908 -8.06% 0.9564 -8.61% 0.9878 -9.16% 0.9988 
c1908a -3.96% 0.9993 -5.95% 0.9424 -6.86% 0.9496 
c2670 -6.50% 0.9938 -7.24% 0.9999 -6.00% 0.9956 
c2670a -7.67% 0.9950 -8.86% 0.9817 -6.88% 0.9998 
c3540 -5.60% 0.9997 -7.18% 0.9985 +7.23% 1.0002 
c3540a -4.64% 0.9989 -5.25% 0.9986 +16.78% 1.0000 
c432 -5.54% 0.9980 -5.54% 0.9945 -4.03% 0.9967 
c499 -2.92% 0.8235 -3.27% 0.8679 -2.92% 0.8942 

c5315 -10.16% 0.9985 -11.35% 0.9821 -13.38% 0.9798 
c5315a -11.27% 0.9902 -12.63% 0.9895 -13.52% 0.9670 
c6288 -8.69% 2.0000 -8.09% 2.0000 +7.20% 1.9998 
c7552 -14.17% 0.9967 -14.99% 0.9999 -13.02% 0.9914 
c880a -6.40% 0.9453 -7.20% 0.9665 -9.07% 0.9878 

Average -7.27% - -8.13% - -4.62% - 
Worst -2.92% - -3.27% - +16.78% - 
Best -14.17% - -14.99% - -13.52% - 

 

7.2.2.2 ISCAS’89 benchmarks area results 

 The delay constraint and the results of the synthesis using commercial tool A for 
ISCAS’89 benchmarks (IWLS 2005 benchmarks, 2012) are shown in Table 7.6. Notice 
that two syntheses were performed for each benchmark: a synthesis using base library 
(Set 3) and a synthesis using the extended library (Set 4). The delay constraint was 
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defined based on the mapping of the circuits without timing constraints. Again, 
commercial tool A was not always able to use the extra cells in order to improve area, 
increasing area for several benchmarks when extra cells are available. For the following 
results, the Set 3 results were used as reference. 

The gate netlists generated by commercial tool A were then remapped by the 
proposed methodology and the results shown in Table 7.7 were generated. Notice that 
combinational area was reduced in all cases (up to 23%), and the majority of cases was 
using the extra cells. The analysis in sequential benchmarks must consider the 
combinational area separately from the total area, since the remapping proposed only 
performs combinational logic restructuring, and therefore may improve only 
combinational area. The average runtime was about 45 seconds, the best case runtime 
was 2 seconds, and the worst case runtime was 8 minutes (for “s38584” benchmark). 
Notice that the area results are being compared with the circuits from Set 3, therefore 
the remapping results of Set 4 reduced the area compared to Set 4, but the area results 
are still larger than Set 3 results in some cases. 

Table 7.6 ISCAS’89 benchmarks synthesized with commercial tool A. 

Benchmark 

Delay 

Constraint 

(ns) 

Commercial tool A 

Base library (Set 3) Extended library (Set 4) 

Comb. Area 

(µm²) 
Area (µm²) 

Delay 

(ns) 

Comb. 

Area Diff 

Area 

Diff 

Delay 

(ns) 

s1196 0.5 384.948 533.6640 0.5002 +5.01% +3.84% 0.4999 
s1238 0.5 378.828 527.5440 0.4995 +2.34% +1.68% 0.4996 

s13207 0.5 700.74 3411.9000 0.5004 -1.44% -0.31% 0.4993 
s1423 2.0 318.24 929.6280 1.9995 +3.94% +1.48% 1.9973 
s1488 0.5 509.184 562.4280 0.5000 -0.96% -0.98% 0.5001 
s1494 0.5 490.824 542.2320 0.4996 +0.81% +1.07% 0.4996 

s15850 0.5 417.69 1522.6560 0.4995 -5.42% -0.92% 0.5102 
s208_1 0.5 38.862 104.9580 0.4968 -6.30% -2.33% 0.4815 

s298 0.5 74.358 190.6380 0.4977 -9.47% -4.01% 0.4995 
s344 0.5 87.21 211.1400 0.4983 +9.82% +4.35% 0.4996 
s349 0.5 85.374 209.3040 0.4993 +16.13% +7.16% 0.4992 

s35932 2.0 5478.624 19755.3600 1.9821 -0.01% +0.00% 1.9260 
s382 0.5 91.494 264.9960 0.4982 +2.01% +0.69% 0.4999 

s38417 1.5 5103.774 18025.5420 1.3684 -2.62% -0.74% 1.4986 
s38584 1.5 4769.622 14403.1140 1.2262 -1.55% -0.51% 1.4318 

s386 0.5 68.544 118.1160 0.4728 -0.89% -0.52% 0.4974 
s400 0.5 93.024 266.5260 0.4993 +4.61% +1.61% 0.4979 

s420_1 0.5 97.92 231.3360 0.4997 +6.25% +2.65% 0.4982 
s444 0.5 87.822 261.3240 0.4985 +8.01% +2.69% 0.4996 
s510 0.5 175.644 226.4400 0.5002 +1.74% +1.62% 0.4989 
s526 0.5 106.488 280.6020 0.4986 +8.91% +3.16% 0.4993 

s526n 0.5 115.974 289.4760 0.4989 -1.32% -0.53% 0.4993 
s5378 0.5 868.428 2223.7020 0.5000 -3.17% -1.29% 0.5002 
s641 0.5 107.712 231.6420 0.4975 +4.55% +2.11% 0.4995 
s713 0.5 105.264 229.1940 0.4978 +8.14% +3.74% 0.4982 
s820 0.5 219.096 262.2420 0.4999 +3.07% +2.80% 0.4996 
s832 0.5 225.828 269.5860 0.4998 -8.54% -7.60% 0.4985 

s838_1 1.5 169.524 433.9080 1.3220 -8.12% -3.17% 1.4823 
s9234_1 1.0 531.828 1729.8180 0.9902 -1.04% -0.32% 0.9968 
Average - - - - +1.19% +0.60% - 
Worst - - - - +16.13% +7.16% - 
Best - - - - -9.47% -7.60% - 
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Table 7.7 ISCAS’89 benchmarks synthesized with commercial tool A remapped with 
the proposed methodology. 

Benchmark 

Remapping of Set 3 Remapping of Set 4 

Base library Extended library Extended library 

Comb. 

Area 

Diff 

Area 

Diff 

Delay 

(ns) 

Comb. 

Area 

Diff 

Area 

Diff 

Delay 

(ns) 

Comb. 

Area 

Diff 

Area 

Diff 

Delay 

(ns) 

s1196 -14.71% -10.61% 0.4995 -12.16% -8.77% 0.4999 -10.10% -7.05% 0.4996 
s1238 -11.95% -8.58% 0.4995 -13.25% -9.51% 0.4994 -10.82% -7.77% 0.4992 

s13207 -17.25% -5.72% 0.4994 -17.95% -5.87% 0.4989 -16.68% -5.62% 0.5000 
s1423 -4.52% -1.55% 1.9974 -7.31% -2.50% 1.9998 -4.42% -1.38% 1.9997 
s1488 -6.67% -6.04% 0.4998 -8.77% -7.94% 0.4999 -5.59% -5.17% 0.5001 
s1494 -3.68% -3.33% 0.4997 -3.68% -3.33% 0.4997 -4.99% -4.18% 0.4998 

s15850 -12.23% -3.36% 0.4996 -11.28% -3.09% 0.4999 -21.90% -5.45% 0.5090 
s208_1 -3.15% -1.17% 0.4983 -8.66% -3.21% 0.4976 -11.81% -4.37% 0.4826 

s298 -7.41% -2.89% 0.4987 -9.47% -3.69% 0.4990 -23.05% -9.31% 0.4991 
s344 -8.77% -3.62% 0.4973 -8.42% -3.48% 0.4998 +0.70% +0.58% 0.4986 
s349 -5.38% -2.19% 0.4974 -5.02% -2.05% 0.4993 -2.15% -0.29% 0.4983 

s35932 -2.78% -0.77% 1.9486 -2.93% -0.81% 1.9480 -2.84% -0.79% 1.9313 
s382 -8.36% -2.89% 0.4951 -10.03% -3.46% 0.4950 0.00% 0.00% 0.5000 

s38417 -4.04% -1.14% 1.4958 -4.83% -1.37% 1.4923 -7.70% -2.18% 1.4797 
s38584 -7.28% -2.41% 1.4189 -10.27% -3.40% 1.4971 -10.28% -3.41% 1.4346 

s386 -3.12% -1.81% 0.4784 -3.12% -1.81% 0.4784 -4.91% -2.85% 0.4973 
s400 -8.88% -3.10% 0.4972 -9.21% -3.21% 0.4984 -4.61% -1.61% 0.4985 

s420_1 -12.81% -5.42% 0.4969 -14.38% -6.08% 0.4967 -7.19% -3.04% 0.5000 
s444 -5.92% -1.99% 0.4978 -4.18% -1.41% 0.4963 +2.09% +0.70% 0.4990 
s510 -9.41% -7.30% 0.4999 -15.68% -12.16% 0.4983 -17.07% -12.97% 0.4991 
s526 -3.45% -1.31% 0.4967 -4.31% -1.64% 0.4997 -5.46% -2.29% 0.4923 

s526n -8.71% -3.49% 0.4988 -9.50% -3.81% 0.4970 -8.97% -3.59% 0.4995 
s5378 -9.69% -3.78% 0.4998 -10.25% -4.00% 0.4998 -10.50% -4.16% 0.5002 
s641 -22.16% -10.30% 0.4997 -22.16% -10.30% 0.4950 -6.25% -2.91% 0.4995 
s713 -17.44% -8.01% 0.4989 -16.28% -7.48% 0.4991 -15.70% -7.21% 0.4979 
s820 -11.59% -9.68% 0.4999 -12.71% -10.62% 0.4998 -2.09% -1.52% 0.4998 
s832 -12.06% -10.10% 0.4997 -13.96% -11.69% 0.4998 -19.65% -16.91% 0.4994 

s838_1 -7.22% -2.82% 1.4970 -8.30% -3.24% 1.4909 -13.90% -5.43% 1.4959 
s9234_1 -5.01% -1.54% 0.9937 -6.04% -1.86% 0.9305 -6.85% -2.11% 0.9872 
Average -8.82% -4.38% - -9.80% -4.89% - -8.71% -4.22% - 
Worst -2.78% -0.77% - -2.93% -0.81% - +2.09% +0.70% - 
Best -22.16% -10.61% - -22.16% -12.16% - -23.05% -16.91% - 

 

7.2.3 ITC’99 benchmarks area results 

Even though ISCAS benchmarks are still widely used in logic synthesis research, 
they are very old. In order to give results with more recent benchmarks, ITC 99 
benchmarks (IWLS 2005 benchmarks, 2012) were chosen. The delay constraint and the 
results of the synthesis using commercial tool A for ITC’99 benchmarks are shown in 
Table 7.8. The delay constraint was defined based on the mapping of the circuits 
without timing constraints. Notice that two syntheses were performed for each 
benchmark: a synthesis using the base library (Set 5) and a synthesis using the extended 
library (Set 6). Commercial tool A was not always able to use the extra cells in order to 
improve area, and increases area for several benchmarks when extra cells are available, 
with the worst case of 68% combinational area increase. For the following results, the 
Set 5 results were used as reference. 
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The gate netlists generated by commercial tool A were then remapped by the 
proposed methodology and the results shown in Table 7.9 were generated. Notice that 
combinational area was reduced in all cases (up to 39%) and the majority of cases was 
using the extra cells. The average runtime was about 4 hours, the best case runtime was 
2 seconds and the worst case runtime was 35 hours (for “b18” benchmark). Notice that 
the area results are being compared with the circuits from Set 5, therefore the remapping 
results of Set 6 reduced the area compared to Set 6, but the area results are still larger 
than Set 5 results in some cases. 

 

Table 7.8 ITC’99 benchmarks synthesized with commercial tool A. 

Benchmark 

Delay 

Constraint 

(ns) 

Commercial tool A 

Base library (Set 5) Extended library (Set 6) 

Comb. Area 

(µm²) 
Area (µm²) 

Delay 

(ns) 

Comb. 

Area Diff 

Area 

Diff 

Delay 

(ns) 

b01 0.4 33.660 75.582 0.400 -3.64% -1.62% 0.396 
b02 0.4 14.076 47.124 0.331 -10.87% -3.25% 0.362 
b03 0.8 76.194 324.054 0.793 -0.80% -0.19% 0.759 
b04 1.5 470.322 1015.614 1.403 -2.34% -1.08% 1.428 
b05 1.5 478.584 759.492 1.497 -0.13% -0.08% 1.498 
b06 0.5 33.048 107.406 0.408 -2.78% -0.85% 0.449 
b07 1.0 273.564 637.092 0.923 -1.68% -0.72% 0.925 
b08 0.6 119.340 294.678 0.599 -11.28% -5.19% 0.598 
b09 1.0 83.538 314.874 0.819 -2.93% -0.78% 0.863 
b10 1.0 119.646 260.100 0.949 -5.63% -2.59% 0.892 
b11 0.6 551.412 811.818 0.601 +10.93% +7.95% 0.601 
b12 0.6 833.850 1839.672 0.600 +0.11% +0.12% 0.601 
b13 1.0 179.928 617.814 0.782 -4.59% -1.34% 0.783 
b14 2.0 7794.432 9571.374 2.002 +12.21% +9.94% 2.004 

b14_1 2.0 5443.107 7219.482 2.001 +68.04% +51.29% 2.004 
b15 2.0 5585.112 9031.590 2.011 -0.78% -0.48% 2.012 

b15_1 2.0 5586.948 9034.038 2.011 -0.87% -0.53% 2.011 
b17 2.0 17185.604 28069.199 2.001 -0.31% -0.17% 2.004 

b17_1 2.0 17356.014 28241.964 2.000 -1.17% -0.73% 2.004 
b18 4.0 60159.294 85477.734 4.004 -0.58% -0.39% 4.001 

b18_1 4.0 60645.528 85963.968 4.002 -0.90% -0.62% 4.002 
b19 4.0 123083.910 173741.598 4.002 -0.64% -0.44% 4.003 

b19_1 4.0 123706.711 174415.984 4.002 -0.17% -0.13% 4.004 
b20 2.0 24243.156 27796.428 2.002 -0.86% -0.74% 2.001 

b20_1 2.0 22822.398 26376.894 2.002 +4.55% +3.97% 2.002 
b21 2.0 23019.768 26576.100 2.002 +3.87% +3.36% 2.002 

b21_1 2.0 22498.038 26056.818 2.003 +6.60% +5.69% 2.003 
b22 2.0 37029.366 42364.476 2.001 -2.17% -1.88% 2.004 

b22_1 2.0 25233.508 30567.236 2.003 +13.89% +11.46% 2.003 
Average - - - - +2.24% +2.41% - 
Worst - - - - +68.04% +51.29% - 
Best - - - - -11.28% -5.19% - 
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Table 7.9 ITC’99 benchmarks synthesized with commercial tool A remapped with with 
the proposed methodology. 

Benchmark 

Remapping of Set 5 Remapping of Set 6 

Base library Extended library Extended library 

Comb. 

Area 

Diff 

Area Diff 
Delay 

(ns) 

Comb. 

Area 

Diff 

Area 

Diff 

Delay 

(ns) 

Comb. 

Area Diff 
Area Diff 

Delay 

(ns) 

b01 -4.55% -2.02% 0.3983 -4.55% -2.02% 0.3986 -9.09% -4.05% 0.3936 
b02 -10.87% -3.25% 0.3882 -13.04% -3.90% 0.3575 -19.57% -5.84% 0.3946 
b03 -0.40% -0.09% 0.7978 -0.40% -0.09% 0.7978 -2.41% -0.57% 0.7148 
b04 -29.15% -13.50% 1.4613 -27.46% -12.71% 1.3935 -27.98% -12.96% 1.3225 
b05 -24.04% -15.15% 1.4980 -25.90% -16.32% 1.4870 -25.64% -16.16% 1.4994 
b06 -21.30% -6.55% 0.4603 -26.85% -8.26% 0.4323 -23.15% -7.12% 0.4391 
b07 -19.35% -8.31% 0.9289 -21.25% -9.13% 0.9258 -21.14% -9.08% 0.9513 
b08 -2.31% -0.93% 0.5986 -4.36% -1.77% 0.5998 -20.26% -8.83% 0.6000 
b09 -10.26% -2.72% 0.8264 -10.26% -2.72% 0.8264 -13.19% -3.50% 0.8061 
b10 -2.56% -1.18% 0.8995 -3.58% -1.65% 0.9009 -7.16% -3.29% 0.8023 
b11 -14.71% -9.99% 0.6000 -12.26% -8.33% 0.5998 -4.16% -2.30% 0.6001 
b12 -10.79% -4.89% 0.6000 -12.84% -5.82% 0.5996 -10.46% -4.67% 0.6006 
b13 -9.35% -2.72% 0.7043 -9.52% -2.77% 0.8060 -13.27% -3.86% 0.7588 
b14 -21.09% -17.18% 1.9999 -20.52% -16.71% 2.0000 -6.02% -4.91% 2.0000 

b14_1 -27.93% -21.06% 1.9999 -29.04% -21.89% 1.9999 +34.37% +25.91% 2.0000 
b15 -18.37% -11.45% 1.9989 -18.70% -11.66% 1.9999 -19.41% -12.10% 1.9996 

b15_1 -18.78% -11.70% 1.9977 -19.21% -11.97% 1.9995 -19.30% -12.02% 1.9998 
b17 -18.02% -11.12% 2.0000 -18.38% -11.34% 1.9999 -18.04% -11.03% 2.0000 

b17_1 -15.90% -9.77% 2.0000 -17.95% -11.03% 2.0000 -19.27% -11.85% 1.9999 
b18 -27.53% -19.86% 4.0000 -27.83% -20.07% 3.9999 -31.81% -22.86% 4.0000 

b18_1 -20.64% -15.04% 3.9998 -31.15% -22.46% 4.0000 -34.72% -24.96% 4.0000 
b19 -32.77% -23.69% 4.0000 -32.77% -23.69% 4.0000 -37.91% -27.32% 4.0000 

b19_1 -33.73% -24.41% 4.0000 -34.87% -25.22% 4.0000 -38.44% -27.76% 4.0000 
b20 -11.13% -9.71% 2.0000 -12.18% -10.63% 2.0000 -13.80% -12.03% 2.0000 

b20_1 -10.91% -9.44% 2.0000 -11.52% -9.97% 2.0000 -9.12% -7.86% 2.0014 
b21 -8.98% -7.78% 2.0000 -10.51% -9.11% 2.0000 -9.17% -7.93% 2.0000 

b21_1 -9.60% -8.29% 2.0015 -10.27% -8.87% 2.0022 -6.20% -5.36% 2.0017 
b22 -11.44% -10.62% 2.0000 -12.37% -11.43% 2.0000 -15.00% -13.73% 2.0017 

b22_1 -21.07% -18.26% 2.0000 -22.08% -19.09% 2.0000 -12.24% -10.98% 2.0005 
Average -16.12% -10.37% - -17.30% -11.06% - -15.64% -9.28% - 
Worst -0.40% -0.09% - -0.40% -0.09% - +34.37% +25.91% - 
Best -33.73% -24.41% - -34.87% -25.22% - -38.44% -27.76% - 

 

7.3 Manufacturability as a cost function 

The ISCAS’85 benchmarks were mapped with commercial tool A using different 
libraries, with different regularity rules: reference, 2D-gridded and 1D-restricted. 
Commercial tool A is focused in area reduction keeping the timing constraints attained, 
and therefore ignores the proposed metric. Then, the proposed methodology using the 
proposed cost function remapped the gate-level netlists provided by commercial tool A, 
trying to maximize the #GDW. Differently from the experiments on Section 7.2, these 
experiments do not try to exploit libraries with different amount of logic gates, but 
libraries with different levels of regularity. The values used are the same as the Section 
6.4: a wafer with 600 cm2 of area, dies of 4cm2, and dd=0.025 defects/cm2. 
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7.3.1 Libraries used for manufacturability experiments 

The libraries descriptions are in Table 7.10. In the reference library, the layouts do 
not include any lithography consideration. Therefore, the cells of the reference library 
are smaller, since a higher compression can be done in the cell layouts, and the 
lithography printability is worse. The 2D-gridded library is composed of cells that are 
restricted to be designed on a regularly spaced grid, but can use two-dimensional 
features. Notice that the 2D-gridded library has cells with slightly larger area if 
compared to the reference library cells, but have a better printability. The 1D-restricted 
library is composed by litho-friendly cells that are restricted to use one-dimensional 
features (GÓMEZ; MOLL, 2010). Notice that the 1D-restricted cells have a much larger 
area if compared to the reference library cells, but have a much better printability. The 
cell layouts were not evaluated with any lithography simulation. In order to perform the 
experiments, the cells were assigned random values of CHSci, according to the level of 
regularity of the library, as seen in Table 7.10. 

 

Table 7.10 Libraries used for manufacturing improvement experiments. 

Name # of cells 
# of 

functions 
Description CHSci 

Reference 266 49 Commercial cell library, no restrictions of features 20 to 30 

2D-gridded 266 49 
Same cells of reference library, with layout 

restricted to two dimensions (a grid) features 
10 to 20 

1D-restricted 266 49 
Same cells of reference library, with layout 

restricted to one dimension features 
5 to 10 

 

7.3.2 ISCAS’85 benchmarks manufacturability results 

Since foundry details on lithography resolution and yield are not known, four 
different values of sld were used, as can be seen in Tables 7.11, 7.12 and 7.13. For sld 
equals to 0.5, lithography resolution has less influence than other sources of yield loss. 
For sld equals to 1, density of defects and lithography printability are in the same range. 
For sld equals to 2, lithography resolution defects have more influence than critical area 
defects. Finally, for sld equals to 5, lithography is five times more important than 
critical area defects. Notice that mapping considering the cost function always improves 
the number of good dies per wafer (#GDW) when the proposed mapping is compared to 
an area-oriented mapping with same sld, and same library. This is verified in Tables 
7.11, 7.12 and 7.13.  

Results for the reference library are shown in Table 7.11. Notice that the number of 
dies per wafer (#DW) is always 150 for the reference library mapped by commercial 
tool A. This happens because the results were scaled to a number of instances of the 
benchmarks such that the total number of instances represents a die of 4 cm². This is 
done according to Equation (6.14) and Equation (6.15). All results of the experiment are 
scaled to have a number of instances equal to the reference benchmark (the number of 
instances vary from benchmark to benchmark, but it is constant for a single benchmark 
circuit).  

Results for the 2D-gridded library are shown in Table 7.12 and results for the 1D-
restricted library are shown in Table 7.13. The results show that the remapping of the 
results given by commercial tool A can lead to a significant increase in the #GDW, for 
different libraries with different regularity, and for different severity of lithography 
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resolution defects. The increase of #GDW happened due to: (1) increase of #DW (i.e. 
smaller benchmarks area), and (2) increase in total yield (i.e. smaller critical area and 
better printability). The results can also be used to verify the proportion of lithography 
resolution defects that justifies the use of a more regular layout. The results show that 
for sld equals to 5, the use of 1D characteristic in final layout is able to achieve better 
#GDW than a non-regular reference library, even with a very larger area, and 
consequently much smaller #DW. This comparison can be seen in Table 7.14, where the 
results of reference library and the 1D-restricted library are compared. 

 

Table 7.11 Manufacturability results for reference library. 

Benchmark 

Commercial tool A Proposed manufacturing remapping methodology 

#DW 
sld=0.5 sld=1 sld=2 sld=5 sld=0.5 sld=1 sld=2 sld=5 

#GDW #GDW #GDW #GDW #DW #GDW #DW #GDW #DW #GDW #DW #GDW 

c1355 150 125 113 95 57 165 141 164 129 164 112 163 70 
c1908 150 125 113 94 55 157 133 158 124 157 105 156 65 
c1908a 150 125 114 95 57 155 131 156 122 155 103 155 64 
c2670 150 125 113 94 55 153 129 153 119 153 101 154 62 
c2670a 150 125 113 95 56 155 131 153 119 152 100 154 63 
c3540 150 126 114 96 59 160 136 160 126 159 108 160 70 
c3540a 150 126 114 96 58 162 138 162 128 161 110 161 71 
c432 150 125 113 95 56 154 130 154 120 154 102 154 63 
c499 150 125 113 95 57 151 127 151 117 150 98 151 60 

c5315 150 126 114 97 59 170 146 169 135 173 121 169 76 
c5315a 150 126 115 97 60 174 150 173 139 174 122 173 80 
c6288 150 125 114 96 58 152 128 151 117 151 100 151 62 
c7552 150 125 114 96 57 173 149 174 140 174 123 177 85 
c880a 150 125 114 95 57 155 131 155 121 155 103 155 63 

 

Table 7.12 Manufacturability results for 2D-gridded library. 

Benchmark 

Commercial tool A Proposed manufacturing remapping methodology 

#DW 
sld=0.5 sld=1 sld=2 sld=5 sld=0.5 sld=1 sld=2 sld=5 

#GDW #GDW #GDW #GDW #DW #GDW #DW #GDW #DW #GDW #DW #GDW 

c1355 140 119 111 99 71 155 135 155 128 155 116 155 85 
c1908 140 119 111 99 70 145 125 151 125 151 113 152 84 
c1908a 142 121 113 100 70 148 128 148 121 150 111 149 79 
c2670 142 121 113 101 72 147 127 148 121 147 108 146 78 
c2670a 138 117 109 97 68 142 122 142 115 143 105 142 75 
c3540 142 122 114 102 74 152 132 152 125 153 114 151 82 
c3540a 143 123 115 104 76 151 131 152 126 153 115 152 86 
c432 136 116 109 97 71 143 123 147 121 147 110 145 80 
c499 142 121 113 100 70 147 127 146 119 147 107 147 77 

c5315 141 121 113 101 73 154 134 155 128 153 114 153 85 
c5315a 142 122 114 102 74 157 137 157 130 156 117 156 87 
c6288 135 114 106 94 65 138 118 136 109 137 98 137 69 
c7552 142 122 114 102 73 165 145 162 135 162 124 163 95 
c880a 139 119 111 99 71 146 126 146 119 146 108 147 80 
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Table 7.13 Manufacturability results for 1D-restricted library. 

Benchmark 

Commercial tool A Proposed manufacturing remapping methodology 

#DW 
sld=0.5 sld=1 sld=2 sld=5 sld=0.5 sld=1 sld=2 sld=5 

#GDW #GDW #GDW #GDW #DW #GDW #DW #GDW #DW #GDW #DW #GDW 

c1355 117 100 95 89 73 126 109 128 108 129 102 128 84 

c1908 119 102 98 91 75 126 109 125 105 125 99 124 81 

c1908a 117 100 96 89 73 121 104 121 101 121 95 124 81 

c2670 117 100 96 89 74 121 105 122 102 123 96 122 80 

c2670a 115 98 94 87 72 120 103 120 100 121 95 120 78 

c3540 116 99 94 88 72 128 112 127 107 127 101 127 85 

c3540a 116 99 94 88 72 124 107 124 104 124 98 124 82 

c432 118 101 97 91 75 122 106 122 102 122 96 122 80 

c499 117 100 96 89 73 117 100 117 97 117 91 117 74 

c5315 116 99 94 88 71 130 114 130 110 130 104 130 88 

c5315a 117 100 95 89 72 131 114 131 111 131 105 132 90 

c6288 117 100 95 89 72 118 101 118 98 118 91 118 75 

c7552 117 100 95 89 72 128 111 129 109 128 102 128 85 

c880a 114 97 93 86 71 119 102 119 99 119 93 120 77 

 

Table 7.144 Comparison between 1D-restricted library with reference library. 

Benchmark 
sld=0.5 sld=1 sld=2 sld=5 

#GDW #GDW #GDW #GDW 

c1355 -12.80% -4.42% +7.37% +47.37% 
c1908 -12.80% -7.08% +5.32% +47.27% 
c1908a -16.80% -11.40% 0.00% +42.11% 
c2670 -16.00% -9.73% +2.13% +45.45% 
c2670a -17.60% -11.50% 0.00% +39.29% 
c3540 -11.11% -6.14% +5.21% +44.07% 
c3540a -15.08% -8.77% +2.08% +41.38% 
c432 -15.20% -9.73% +1.05% +42.86% 
c499 -20.00% -14.16% -4.21% +29.82% 

c5315 -9.52% -3.51% +7.22% +49.15% 
c5315a -9.52% -3.48% +8.25% +50.00% 
c6288 -19.20% -14.04% -5.21% +29.31% 
c7552 -11.20% -4.39% +6.25% +49.12% 
c880a -18.40% -13.16% -2.11% +35.09% 
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8. CONCLUSIONS AND FUTURE WORK 

The main contribution of this work was the introduction of the concept of k-cuts and 
kl-cuts performed on top of mapped circuits as opposed to computing k-cuts and kl-cuts 
on top of AIG representations. Besides bringing the idea from a technology independent 
data structure to a technology dependente gate netlist, three related contributions were 
also introduced: (1) algorithms to enumerate k-cuts and kl-cuts on top of mapped 
circuits; (2) a complete and operational remapping flow based on kl-cuts, which is able 
to reduce the area of circuits mapped by commercial logic synthesis tools; and (3) a 
novel manufacturing cost function to be used in the logic synthesis process, which 
considers lithography printability in order to increase the number of good dies per wafer 
manufactured. 

The first contribution of this work is a comparison of k-cuts and kl-cuts performed 
on top of mapped circuits as opposed to computing k-cuts and kl-cuts on top of AIG 
representations. The main differences lie on (1) the number of inputs for the 2-input 
AND nodes used on AIGs and the nodes of a gate netlist which may have several 
inputs, and (2) the existence of explicit inverters and buffers, appearing as nodes, in the 
netlist compared to the use of negated or direct edges used in the AIG. Moreover, 
algorithms to enumerate k-cuts and kl-cuts on top of a netlist representation were 
proposed and implemented.  

The second contribution presented is an iterative remapping flow, based on local 
transformations using kl-cuts. The proposed approach was implemented in an 
operational tool called KLever2, and it is able to reduce a cost function such as area, 
while respecting timing constraints. A complete suite of implementations and 
knownledge was necessary to implement such a tool: a Liberty parser and library data 
structure; a structural Verilog parser and mapped circuit data structure; an SDC parser 
and data structure; k-cut and kl-cut enumeration algorithms, parser and data structure; an 
extension of a multiple output P-signature algorithm, in order to consider polarity don’t 

cares; an STA engine, with results comparable to a commercial tool; Boolean factoring 
aggressive algorithms; and logic tree mapping algorithms. For the benchmark circuits 
analyzed (ISCAS’85, ISCAS’89 and ITC’99), results show that the proposed flow can 
reduce combinational area in up to 38%, while still respecting the required timing. Also, 
the experiments have show that the use of complex logic gates is not well explored by 
commercial tools. The use of complex gates is better explored by the tool developed, 
showing a higher quality of results with a larger amount of different combinational 
cells. The proposed flow is composed of many heuristics. The quality of results is due to 
a combination of the following attributes: (1) use of kl-cuts which minimize the support 
of the Boolean functions; (2) extraction of full context, by using kl-cuts instead of k-
cuts; (3) use of aggressive Boolean optimization techniques to optimize sub-circuits (kl-
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cuts); and (4) allow only substitutions that improve area and do not impact negatively 
on the timing constraints. 

The third contribution of this work was the introduction of a novel yield model for 
integrated circuits manufacturing, considering lithography printability and density of 
defects, which can be used as a cost function for logic synthesis process. A technology 
remapping tool using kl-cuts was developed considering this cost function, and results 
were compared with the results of a commercial logic synthesis tool for three different 
libraries, with different printability and area overhead characteristics. The proposed 
methodology establishes a new standpoint in the field of regular layout by introducing a 
metric to tradeoff area and printability of layouts. Many of the previous works 
completely ignored these tradeoffs and simply pointed out that regularity is expected to 
improve yield somehow, without presenting or discussing metrics. Therefore, a great 
contribution of this work is to propose a discussion about the tradeoffs between 
different area overheads and different levels of lithography printability for regular 
layouts. Another important contribution is to show that taking the proposed cost 
function into account during technology mapping produces circuits with larger number 
of good dies per wafer, when compared to simply minimizing the area.  

8.1 Future work 

Several improvements in the proposed approaches can be done in order to improve 
runtime and quality of results. For example, more types of kl-cuts could be explored, 
such as factor cuts (CHATTERJEE, 2006-b), which technique is able to find larger sub-
circuits. Also, sub-circuits with higher amount of inputs could be found, if an approach 
such as priority cuts (MISHCHENKO, 2007) is applied. Larger sub-circuits tend to 
result in higher gains in the cost function desired, and a trade-off between runtime and 
quality of results can be done. Moreover, the runtime in larger circuits could be greatly 
improved, if a partial STA check is performed, such as the STA check proposed in 
(COUDERT, 1997). A timing fix engine would certainly improve a lot the quality of 
results and runtime, since the kl-cuts with a very large gain usually increase delay. By 
performing a timing fix, this large gain would be kept, and the kl-cuts that overlap with 
the kl-cut replaced would not be tested, and therefore less STA checks would be 
performed. Besides quality of results and runtime, different cost functions could be 
investigated, such as power (TIWARI, 1993), and a combination of cost functions.  
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