
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

LUCAS MACHADO

KL-Cut Based Remapping

Thesis presented in partial fulfillment

of the requirements for the degree of

Master of Microelectronics

Prof. Dr. André Inácio Reis
Advisor

Prof. Dr. Renato Perez Ribas
Co-advisor

Porto Alegre, May 2013.

CIP – CATALOGING-IN-PUBLICATION

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PGMICRO: Prof. Ricardo Augusto da Luz Reis
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Machado, Lucas

KL-Cut Based Remapping / Lucas Machado. – Porto Alegre:
PGMICRO da UFRGS, 2013.

88 f.:il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR – RS, 2013. Advisor: André Inácio Reis; Co-advisor: Renato
Perez Ribas.

1. Digital Circuits. 2. Logic Synthesis. 3. Technology
Remapping. 4. Cut Enumeration. 5. KL-cuts. 6. Multiple output
blocks. I. Reis, André Inácio. II. Ribas, Renato Perez. III. KL-Cut
Based Remapping.

“Engineers like to solve problems.

If there are no problems handily available,

they will create their own problems to solve.”

– Dilbert

ACKNOWLEDGEMENTS

I thank my advisor André Reis for his ideas, support, good critics and sense of
humor, which guided me during the development of this work. Also, I need to thank my
co-advisor Renato Ribas, for his understanding, encouraging, personal and professional
guidance, which helped me since I was an undergraduate student.

I am grateful for the help and support of the whole LogiCS group, but especially for
some people: Osvaldo Martinello, who performed the work that inspired mine; Mayler
Martins, which work on logic minimization (and all the possible variations we
discussed) was crucial to get the results I had; Vinicius Callegaro, who helped me a lot
on Java development, and implemented the mapping tool (with the very specific details)
used in this work; and Oendel Merlo, who implemented the SDC parser in all variations
I asked, which is also used in this work.

Also, I thank my friends from Lajeado and from Porto Alegre, which were there for
me in all times, during school, during graduation, during my research time, and helped
me to be the person I am today.

I need to thank immensely my family: my father Carson Machado, my mother
Gisele Machado and my brother Jonas Machado. I missed them a lot during the time I
was out, but they were, are and will always be my support to everything, and the giants
that took me in their shoulders and made me look further.

Last but not least, my girlfriend Rafaela Bortolini has my deepest gratitude. She
gave me the encouragement, the understanding, the love and caring more than I needed.
She gave me the north and help that I needed in life, and also to finish this work.

This research was partially funded by Nangate Inc. under a Nangate/UFRGS
research agreement, by CAPES and CNPq funding agencies, by FAPERGS under grant
11/2053-9 (Pronem), and by the European Community's Seventh Framework
Programme under grant 248538 – Synaptic.

ABSTRACT

This work introduces the concept of k-cuts and kl-cuts on top of a mapped circuit in
a netlist representation. Such new approach is derived from the concept of k-cuts and kl-
cuts on top of AIGs (and inverter graphs), respecting the differences between these two
circuit representations. The main differences are: (1) the number of allowed inputs for a
logic node, and (2) the presence of explicit inverters and buffers in the netlist.
Algorithms for enumerating k-cuts and kl-cuts on top of a mapped circuit are proposed
and implemented. The main motivation to use kl-cuts on top mapped circuits is to
perform local optimization in digital circuit logic synthesis.

The main contribution of this work is a novel iterative remapping approach using kl-
cuts, reducing area while keeping the timing constraints attained. The use of complex
gates can potentially reduce the circuit area, but they have to be chosen wisely to
preserve timing constraints. Logic synthesis commercial design tools work better with
simple cells and are not capable of taking full advantage of complex cells. The proposed
iterative remapping approach can exploit a larger amount of logic gates, reducing circuit
area, and respecting global timing constraints by performing an STA (static timing
analysis) check. Experimental results show that this approach is able to reduce up to
38% in area of the combinational portion of circuits for a subset of IWLS 2005
benchmarks, when compared to results obtained from logic synthesis commercial tools.

Another contribution of this work is a novel yield model for digital integrated
circuits (IC) manufacturing, considering lithography printability problems as a source of
yield loss. The use of regular layouts can improve the lithography, but it results in a
significant area overhead by introducing regularity. This is the first approach that
considers the tradeoff of cells with different level of regularity and different area
overhead during the logic synthesis, in order to improve overall design yield. The
technology remapping tool based on kl-cuts developed was modified in order to use
such yield model as cost function, improving the number of good dies per wafer, with
promising interesting results.

Keywords: Digital circuits, logic synthesis, technology mapping, cut enumeration,
static timing analysis, remapping, lithography.

Remapeamento baseado em cortes KL

RESUMO

Este trabalho introduz o conceito de cortes k e cortes kl sobre um circuito mapeado,
em uma representação netlist. Esta nova abordagem é derivada do conceito de cortes k e
cortes kl sobre AIGs (and inverter graphs), respeitando as diferenças entre essas duas
formas de representar um circuito. As principais diferenças são: (1) o número de
entradas em um nodo do grafo, e (2) a presença de inversores e buffers de forma
explícita no circuito mapeado. Um algoritmo para enumerar cortes k e cortes kl é
proposto e implementado. A principal motivação de usar cortes kl sobre circuitos
mapeados é para realizar otimizações locais na síntese lógica de circuitos digitais.

A principal contribuição deste trabalho é uma abordagem nova de remapeamento
iterativo, utilizando cortes kl, reduzindo a área do circuito e respeitando as restrições de
temporização do circuito. O uso de portas lógicas complexas pode potencialmente
reduzir a área total de um circuito, mas elas precisam ser escolhidas corretamente de
forma a manter as restrições de temporização do circuito. Ferramentas comerciais de
síntese lógica trabalham melhor com portas lógicas simples e não são capazes de
explorar eventuais vantagens em utilizar portas lógicas complexas. A abordagem
proposta de remapeamento iterativo utilizando cortes kl é capaz de explorar uma
quantidade maior de portas lógicas com funções lógicas diferentes, reduzindo a área do
circuito, e mantendo as restrições de temporização intactas ao fazer uma checagem STA
(análise temporal estática). Resultados experimentais mostram uma redução de até 38%
de área na parte combinacional de circuitos para um subconjunto de benchmarks IWLS
2005, quando comparados aos resultados de ferramentas comerciais de síntese lógica.

Outra contribuição deste trabalho é um novo modelo de rendimento (yield) para
fabricação de circuitos integrados (IC) digitais, considerando problemas de resolução da
etapa de litografia como uma fonte de diminuição do yield. O uso de leiautes regulares
pode melhorar bastante a resolução da etapa de litografia, mas existe um aumento de
área significativo ao se introduzir a regularidade. Esta é a primeira abordagem que
considera o compromisso (trade off) de portas lógicas com diferentes níveis de
regularidade e diferentes áreas durante a síntese lógica, de forma a melhorar o yield do
projeto. A ferramenta desenvolvida de remapeamento tecnológico utilizando cortes kl

foi modificada de forma a utilizar esse modelo de yield como função custo, de forma a
aumentar o número de boas amostras (dies) por lâmina de silício (wafer), com
resultados promissores.

Palavras-Chave: circuitos digitais, síntese lógica, mapeamento tecnológico,
enumeração de cortes, análise temporal estática, remapeamento, litografia.

LIST OF FIGURES

Figure 1.1 – Picture of the Moore's "Law" in the Computer History Museum showing
the number of dies per wafer in linear scale, California, United States of America (June,
2012) ... 19

Figure 1.2: Logic synthesis in the standard cell design flow.. 21

Figure 2.1: Truth tables representing the (a) AND, (b) OR and (c) NOT logical
operations. .. 26

Figure 2.2: Truth table representing function f... 26

Figure 2.3: Schematic representation of (a) NOT, (b) AND and (c) OR operators. 28

Figure 2.4: Boolean network mapped from Equation (2.3). ... 28

Figure 2.5: Boolean network mapped from Equation (2.5). ... 28

Figure 2.6: Boolean functions in the same P-equivalence class. 29

Figure 2.7: Boolean functions in the same NP-equivalence class. 29

Figure 2.8: Boolean functions in the same NPN-equivalence class. 29

Figure 2.9: Venn diagram showing the relationship between Boolean functions
equivalence classes: P, NP and NPN. ... 30

Figure 2.10: An example of directed acyclic graph.. 30

Figure 2.11: Example of AND-inverter graph. ... 31

Figure 2.12: Example of mapped circuit. ... 31

Figure 2.13: An example of a logic tree. .. 32

Figure 2.14 An AIG example illustrating covering using kl-cuts. Nodes a, b, c, d, f, g
and h are primary inputs. Nodes u and v are primary outputs. (a) A covering using 5-3-
cuts. (b) A covering using 3-2-cuts. (MARTINELLO, 2010) .. 33

Figure 2.15: Process to obtain cell delay and output transition time through the NLDM,
extracting the values from a Liberty file. It is necessary to know the input transition
time and the output load, and perform a bilinear interpolation in the values read in the
Liberty file. ... 36

Figure 3.1 Exaustive approach for computing R[f]P (HINSBERGER; KOLLA, 1988) 39

Figure 3.2 Reducing search space by cutting non-maximal branches (HINSBERGER;
KOLLA, 1998) ... 40

Figure 3.3 Example of Boolean factoring using Functional Composition.
(MARTINS, 2012) ... 41

Figure 3.4 Cost calculation and the first cut of the tree removed. (CORREIA, 2004) .. 42

Figure 3.5 Example of logic tree covering (before inverter minimization).
(CORREIA, 2004) .. 42

Figure 4.1 Combinational circuit example to demonstrate k-cuts and kl-cuts
computation. ... 44

Figure 4.2 And-inverter graph (AIG) representing a circuit. ... 45

Figure 4.3 Mapped circuit structurally similar to the AIG of Figure 4.2. 46

Figure 4.4 Pseudo-code for kl-cuts enumeration on top of a mapped circuit. 46

Figure 4.5 Example of kl-cut found in a commercial benchmark. 47

Figure 4.6 Example of Figure 4.3 remapped with polarity don’t cares information. 47

Figure 4.7 Example of Figure 4.3 remapped without polarity don’t cares information. 48

Figure 4.8 Logic circuit example. ... 48

Figure 5.1 Proposed kl-cut remapping flow. .. 49

Figure 5.2 Example of a complete remapping script. ... 50

Figure 5.3 Cell information read from a Liberty file. ... 51

Figure 5.4 Example of a library with four different logic gates. 52

Figure 5.5 Example of structural Verilog. .. 52

Figure 5.6 Example of the circuit data structure. ... 53

Figure 5.7 Example of kl-cut data structure representation.. 54

Figure 5.8 Example of kl-cut input in the remapping approach. 56

Figure 5.9 Example of Figure 5.8 remapped by the proposed approach. 57

Figure 5.10 Report timing performed in the c432 benchmark. 59

Figure 6.1 Comparison between (a) designed layout and (b) lithography simulation of
the designed layout. .. 62

Figure 6.2 Passing technology information to the remapping tool................................. 68

Figure 6.3 (a) Standard “yield-aware” flow, (b) Flow proposed by Nardi (2004), and (c)
the flow propose by this work. ... 68

LIST OF TABLES

Table 2.1: The k-cuts for all nodes of the AIG shown in Figure 2.11. 33

Table 3.1 Relationships allowed in multi-level logic factoring...................................... 40

Table 4.1 All k-cuts with k=5 for all nodes of the combinational circuit example of
Figure 4.1 .. 44

Table 5.1 Commands currently read in the STA engine developed. 54

Table 5.2 Original and factorized logic expressions of the kl-cut remapping example. 56

Table 5.3 Different paths analysed in the STA check. ... 58

Table 6.1 Values of CHSci derived according to Equation (6.13) considering a wafer of
600 cm². .. 66

Table 6.2. Values of #GDW considering a die of 4 cm² on a wafer of 600 cm² for the
reference cells, and the same number of cell instances for 1D-restr and 2D-restr cells;
sld=1. .. 67

Table 7.1 Comparison of the worst delay given by a commercial STA tool and the STA
engine developed for this work. ... 72

Table 7.2 Libraries used for area reduction experiments. .. 72

Table 7.3 ISCAS’85 benchmarks synthesized with commercial tool A. 73

Table 7.4 ISCAS’85 benchmarks synthesized with commercial tool B......................... 74

Table 7.5 ISCAS’85 benchmarks synthesized with commercial tool A remapped with
the proposed methodology. .. 74

Table 7.6 ISCAS’89 benchmarks synthesized with commercial tool A. 75

Table 7.7 ISCAS’89 benchmarks synthesized with commercial tool A remapped with
the proposed methodology. .. 76

Table 7.8 ITC’99 benchmarks synthesized with commercial tool A. 77

Table 7.9 ITC’99 benchmarks synthesized with commercial tool A remapped with with
the proposed methodology. .. 78

Table 7.10 Libraries used for manufacturing improvement experiments. 79

Table 7.11 Manufacturability results for reference library. ... 80

Table 7.12 Manufacturability results for 2D-gridded library. .. 80

Table 7.13 Manufacturability results for 1D-restricted library. 81

Table 7.14 Comparison between 1D-restricted library with reference library. 81

15

CONTENTS

ABSTRACT ... 7
RESUMO ... 9
LIST OF FIGURES .. 11
LIST OF TABLES .. 13
LIST OF ABBREVIATIONS AND ACRONYMS .. 17
1. INTRODUCTION .. 19
1.1 Logic synthesis .. 20
1.2 Motivation ... 21
1.3 Objectives .. 22
1.4 Thesis organization ... 23
2. TECHNICAL BACKGROUND .. 25
2.1 Boolean functions .. 25
2.2 Boolean expressions .. 26
2.3 Boolean networks .. 27
2.4 Equivalence of logic functions ... 28
2.5 Data structures .. 30

2.5.1 Directed acyclic graphs .. 30
2.5.2 And-inverter graph ... 30
2.5.3 Mapped circuit .. 31
2.5.4 Logic tree .. 31

2.6 Cuts on AIGs ... 32
2.6.1 K-cuts ... 32
2.6.2 KL-cuts ... 33

2.7 Cell library .. 34
2.8 Technology mapping .. 34
2.9 Static Timing Analysis ... 35
3. STATE-OF-THE-ART ... 37
3.1 Technology mapping .. 37
3.2 Boolean matching ... 38
3.3 Boolean factoring .. 39
3.4 Logic tree mapping ... 41
4. CUTS ON MAPPED CIRCUITS .. 43
4.1 Differences between AIGs and mapped circuits .. 43

4.1.1 Number of nodes inputs .. 43
4.1.2 Inverters as nodes or edges ... 43

4.2 K-cuts ... 44
4.3 KL-cuts .. 45
4.4 Enumeration algorithm .. 46
4.5 Polarity don’t cares ... 47

16

4.6 Degrees of freedom ... 48
4.7 Conclusion ... 48
5. KL-CUT BASED REMAPPING ... 49
5.1 Remapping using KL-cuts ... 49
5.2 KL-cut remapping flow .. 50

5.2.1 Liberty parser and data structure .. 51
5.2.2 Verilog parser and data structure .. 52
5.2.3 SDC parser and data structure .. 53
5.2.4 KL-cut enumeration and data structure .. 53
5.2.5 KL-cut P-group ... 54
5.2.6 KL-cut remapping approach ... 55
5.2.7 KL-cut replacement .. 56

5.2.7.1 KL-cuts overlapping ... 57
5.2.7.2 STA checking engine .. 57
5.2.7.3 Greedy choice and iterative remap ... 58

5.3 Conclusion ... 58
6. MANUFACTURABILITY COST FUNCTION .. 61
6.1 Design for manufacturability .. 61
6.2 Yield background ... 62
6.3 Yield model .. 63
6.4 Yield as a cost function ... 65
6.5 Yield remapping tool .. 67
6.6 Conclusion ... 69
7. RESULTS .. 71
7.1 Precision of STA engine ... 71
7.2 Area as a cost function ... 71

7.2.1 Libraries used for area experiments.. 72
7.2.2 ISCAS benchmarks area results ... 72

7.2.2.1 ISCAS’85 benchmarks area results .. 73
7.2.2.2 ISCAS’89 benchmarks area results .. 74

7.2.3 ITC’99 benchmarks area results ... 76
7.3 Manufacturability as a cost function .. 78

7.3.1 Libraries used for manufacturability experiments 79
7.3.2 ISCAS’85 benchmarks manufacturability results 79

8. CONCLUSIONS AND FUTURE WORK .. 83
8.1 Future work .. 84
REFERENCES .. 85

17

LIST OF ABBREVIATIONS AND ACRONYMS

AIG And-inverter graph

ASIC Application Specific Integrated Circuit

CAD Computer-Aided Design

CHS Criticality of Hot Spots

CMOS Complementary Metal Oxide Semiconductor

CMP Chemical Metal Polishing

DAG Directed acyclic graph

DFM Design For Manufacturability

DH Design House

EDA Electronic Design Automation

FC Functional Composition

GDW Good Dies per Wafer

IWLS International Workshop of Logic & Synthesis

LEF Library Exchange Format

HDL Hardware Description Language

NLDM Nonlinear Delay Model

NPN Negation Permutation Negation

OPC Optical Proximity Correction

PI Primary Input

PO Primary Output

POS Product of Sums

PSM Phase Shift Mask

QoR Quality of Results

RET Resolution Enhancement Technique

ROBDD Reduced Ordered Binary Decision Diagram

RTL Register Transfer Level

SDC Synopsys Design Constraints

SLD Severity of Lithography Defects

SOP Sum of Products

STA Static Timing Analysis

VLSI Very-Large-Scale Integration

18

19

1. INTRODUCTION

The world has changed a lot in the past fifty years. Most areas of human knowledge,
if not all, have improved significantly and these remarkable advancements happened
much faster than ever before. Problems that no one could ever think back then are now
solved in smartphones. The medicine has great diagnostic machines, a car is able to
drive itself taking pictures of the streets, and talking with someone anywhere in the
world is not a problem at all. All these achievements in this brave new world have a
major source: the integrated circuits (IC). In 1965, Gordon Moore stated that the
number of transistors in a chip would double every 24 months (MOORE, 1965), as seen
in the Figure 1.1. This trend predicted by Moore guided the evolution of computers and
its use in every field. Also, the use of computers to create new and better computers
emerged the electronic design automation (EDA) industry, creating a virtuous circle and
enabling this fast growing in technology in the recent years.

Figure 1.1 – Picture of the Moore's "Law" in the Computer History Museum
showing the number of dies per wafer in linear scale, California, United States of

America (June, 2012)

20

Looking at the Figure 1.1, a question hangs in the air: “how long will this trend
continue?” The scaling down of the current technology, based on MOS transistors, is
reaching a physical limit. The semiconductor most used to manufacture ICs is the Si,
and the lattice spacing of a Si crystal is around 0.5 nm (SZE, 2006). This means that
there are approximately 10 atoms of Si (or doping elements) within 5 nm. A variability
of 1 atom (which is very low) in the manufacturing process of 5 nm transistors will
likely produce 10% of variability between transistors (which is quite a lot). This
phenomenon is known as discrete random doping and it is just one of several different
effects that exist in deep nanometer scaling of current CMOS technology (SZE, 2006).
Nowadays, the manufacturing process is about 20 nm and has already lots of obstacles
to make it work. Clearly, this trend will likely have an end soon.

Besides CMOS scaling, several research topics investigate the next technology to
substitute CMOS, such as quantum computing, graphene, and carbon nanotubes.
However, until now, no feasible and effective substitute for CMOS has been found. On
the other hand, besides decreasing the size of transistors and investigating new
technologies, there are good alternatives that can be investigated and developed in order
to produce better and cheaper ICs, even with the current CMOS technology. For
instance, developing more powerful EDA tools, with higher quality-of-results (QoR),
will improve current IC performance and lower down its costs.

Before EDA tools, ICs were designed by hand. The first microprocessors were
drawn in engineering paper and color pencils, and then manufactured in primitive
semiconductor planar technology. After the first computers, it was possible to create
tools to help with the drawings, and then to place the transistors and route its wires. In
mid-80’s, the hardware description languages (HDL) emerged, changing completely the
way that ICs were designed. The logic synthesis tools starting from RTL descriptions
were introduced, trying to obtain the best hardware implementation for a given RTL
hardware description. Notice that logic synthesis tasks are very complex since many
variables must be taken into account, and trying all possibilities is not computationally
feasible. Consequently, in order to obtain good results, within reasonable time-to-
market, several heuristics were created, generating sub-optimal results. Therefore, logic
synthesis tools still have room for improvements and this work tries to explore this.

1.1 Logic synthesis

Logic synthesis is an important area of study in the field of very large scale
integration (VLSI) design automation, being responsible for the transformation of a
circuit behavior description into a netlist of logic gates for a given technology, i.e. a
digital mapped circuit. The logic synthesis is also an important process in the
application specific integrated circuit (ASIC) standard cell design flow, followed by the
physical synthesis where the placement and the routing of the logic gates are performed,
as illustrated in Figure 1.2.

According to Figure 1.2, the logic synthesis process can be divided into five stages.
In the first step, a hardware description is compiled and transformed in a technology
independent circuit representation. This circuit representation can be an and-inverter
graph (AIG), for instance. Then, several optimizations are performed in this circuit
representation. In AIGs, it is important to reduce the number of nodes (related to area)
and reduce the logic depth (related to delay) (MISHCHENKO, 2006). The next step is
to map the circuit representation using logic gates, usually given by a technology
standard cell library, known as technology mapping. After a covering step, several

21

optimizations are performed in order to: (1) meet the design constraints, such as delay;
and (2) make cell area and power consumption as low as possible. The last step is the
test logic insertion.

As already been stated, logic synthesis is a very complex task. The necessity of
having a reasonable solution within time-to-market led to several heuristics, generating
sub-optimal results, and left room for improvements. Finding optimal solutions may be
feasible only for small circuits. In order to improve the QoR, an additional step was
proposed, after the logic synthesis process. This extra phase, known as remapping or
resynthesis (DE MICHELI, 1994; KUNZ, 1997), performs local transformations at the
gate level (netlist) in order to improve the cost function of interest, such as cell area and
power consumption.

Logic Synthesis

Technology

Dependent

Optimizations

RTL to Boolean

Functions

Technology

Independent

Optimizations

Technology

Mapping

Test Logic

Insertion

Hardware

Description

Tape out

Place &

Route

Logic

Synthesis

Figure 1.2: Logic synthesis in the standard cell design flow.

1.2 Motivation

Before the EDA industry and the scaling down of the transistor size, the
development of ICs was very straightforward. There was a transistor network, which
should be handmade and drawn in engineering papers, and all the process was
understood and made by the development team. When the EDA industry began,
enabling the development of larger circuits, along with the scaling down of the
transistor size, numerous challenges appeared. Nowadays, besides the designed circuit
working in the performance defined and having the smallest cell area and power
consumption as possible, there are other concerns such as manufacturability, routing
congestion, interconnection delay, leakage power, aging effects, radiation effects,
lithography issues, and so on.

As the challenges arised, the EDA developers had to improve their tools in order to
handle these new bottlenecks. The tools are being used and changed in the past 25

22

years, passing from several different generations. Every new problem tackled by the
tool certainly made its code harder to read and harder to change. There is a rumor that
the core of the world’s most used commercial logic synthesis tool, is a black box that
will probably never be changed again. Notice that, if new problems emerge or if new
techniques to solve the current problems are discovered, there are basically two ways to
incorporate them. An approach could be redoing all the code to perform all logic
synthesis process, incorporating the new ideas and tackling the new problems.
However, it is important to understand that a tool of more than 25 years of success will
hardly be substituted by a new tool in any design house (DH). Also, the tool gives
already very good results.

The motivation of this work is to provide an alternative approach: to perform the
remapping of the gate level netlist given by a commercial tool, and to improve one or
more cost functions of interest, using new strategies and tackling new problems that
may arise.

1.3 Objectives

Remapping or resynthesis is not a new idea. Different approaches for resynthesis are
already used to improve circuits after mapping, or even during the technology
independent phase. In the work of (FIŠER, 2010), it is shown that the ABC tool
(Berkeley Logic Synthesis and Verification Group, 2012) is able to achieve better
results by performing iterative synthesis in random smaller parts of the circuit (sub-
circuits) instead of performing synthesis in the circuit as a whole. It is important to
notice that local optimizations can be applied in the results of different phases of logic
synthesis: technology independent and technology dependent. From a technology
independent point-of-view, local context can be extracted through windowing
(MISHCHENKO, 2006) or by k-cut enumeration (PAN, 1994). The k-cuts approach can
be considered a superior method to derive sub-circuits, since it is able to control the
number of inputs of the Boolean functions present in a sub-circuit. For this reason,
variations of k-cuts have been proposed, such as factor cuts (CHATTERJEE, 2006-b),
priority cuts (MISHCHENKO, 2007) and kl-cuts (MARTINELLO JR., 2010).
Interestingly, these advances in k-cut enumeration are strongly linked to the AIG data
structure, and therefore to the technology independent phase of logic synthesis.

Approaches to local optimization of mapped circuits (i.e. remapping) adopt circuit
partitioning techniques that do not consider the complexity of the Boolean functions in
the resulting sub-circuits. For this reason, these remapping approaches lose local
context, and need to investigate the surrounding environment (BENINI, 1998) to detect
controllability and observability don’t cares (SAVOJ, 1990), i.e. degrees of freedom. In
the context of k-cuts in AIGs, the observability don’t cares are incorporated in the sub-
circuits due to the use of k-cut dominance.

The objective of this work is to bring the concept of k-cuts and kl-cuts from AIGs in
order to be used on top of mapped netlists in a context of technology remapping. The kl-
cut based remapping, when compared to the approaches proposed in the literature,
introduces three important advantages: (1) to control the support cardinality; (2) all
outputs affected by the cut inputs are found, making possible the logic sharing between
outputs; and (3) a new concept of mapping flexibility through polarity don’t cares,
which is explained further in Section 4.5.

23

In order to validate the kl-cuts approach, an algorithm to enumerate kl-cuts on top of
mapped circuits is proposed and implemented. Moreover, technology mapping
techniques are implemented in order to improve a given cost function. In this work, two
cost functions are considered: area and manufacturability. Furthermore, a static timing
analysis (STA) tool is implemented in order to improve the cost functions of interest
without affecting the performance obtained by the commercial tool. Hence, everything
is put in a remapping flow and results are presented.

1.4 Thesis organization

The remaining of this thesis is organized as follows.

Chapter 2: Technical background – Provides the technical knowledge necessary to
understand the concepts presented herein.

Chapter 3: State-of-the-art – Gives a broad vision of technology mapping and also
provides the state of the art in important related topics to this thesis, such as Boolean
factoring, Boolean matching and logic tree covering.

Chapter 4: Cuts on mapped circuits – Presents the first contribution of this thesis,
the enumeration of k-cuts and kl-cuts on top of mapped circuits, and algorithms used
for that.

Chapter 5: KL-cut based remapping – Describes the second contribution of this
work, i.e. a complete flow, which is able to remap a circuit by extracting kl-cuts and
replacing back, reducing circuit area.

Chapter 6: Manufacturing cost function – This is the third contribution of this
work, which is a discussion about yield and lithography as a logic synthesis cost
function, improving the number of good dies per wafer.

Chapter 7: Results – Presents and discusses the experimetal results. First, an
analysis of the STA engine developed for this work is shown. Then, remapping
results for IWLS 2005 benchmarks (IWLS 2005 benchmarks, 2012) are shown,
reducing circuit area. The use of complex logic gates is also discussed. Finally,
results of remapping using the manufacturing cost function are presented.

Chapter 8: Conclusions and future work – Outlines the conclusions and major
contributions of this work, and also indicates future works.

24

25

2. TECHNICAL BACKGROUND

This chapter provides a review of technical concepts that are useful to the complete
understanding of the remaining of this work. It comprises logic synthesis and logic
circuit design topics, such as Boolean functions, expressions and networks, equivalence
classes of logic functions, logic synthesis data structures, cuts on AIG, description of
cell library, technology mapping, and static timing analysis. Readers with background
knowledge on these topics can skip the following sections without loss in the
understanding of the following chapters.

2.1 Boolean functions

The Boolean set is defined as B = {0, 1}, where 0 and 1 represent two well defined
logic states, such as true (1) or false (0). An n-dimensional Boolean set Bn, is composed
of 2n distinct Boolean vectors with length n. For instance, B1 = {0, 1}, B2 = {00, 01, 10,
11}, B

3 = {000, 001, 010, 011, 100, 101, 110, 111}, B
4 = {0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}, and so on.

A Boolean function f is a function that relates every element in the n-dimensional
Boolean set B

n (the function domain) into one element of the Boolean set B (the
function image), such that f : Bn � B. This means that each Boolean vector of length n

is associated by a Boolean function to either 0 or 1. The Boolean function f has n
Boolean variables. A Boolean variable can assume any value of B, i.e. it can assume the
values 0 or 1. A Boolean vector is also known as variable assignment, which means that
each position in the Boolean vector represents a variable assigned either to 0 or 1. For
instance, the Boolean vector 0000 has the four variables assigned to 0.

A very usual way to represent a Boolean function is a truth table, such as the tables
of Figure 2.1. On the left side of each table, each row represents a Boolean vector and
each column represents the corresponding Boolean variables. On the right side, the
columns represent the function names and the rows represent the value assumed by the
function for the corresponding Boolean vector.

There are several logical operations that can be done with Boolean variables in order
to generate different Boolean functions. The three basic Boolean operations are: AND
(f1), OR (f2) and NOT (f3), as seen in Figure 2.1. The operations AND and OR are
binary, meaning that they must be applied to at least two operands. The AND operation
returns 1 only if all operands are 1, returning 0 otherwise, as seen in Figure 2.1a. The
OR operation returns 0 only if all operands are 0, returning 1 otherwise, as seen in
Figure 2.1b. The NOT operation is a unary operation, which means that it is applied to
only one operand, and applies a negation of the operand: if the operand is 0, the NOT
returns 1, and vice-versa, as seen in Figure 2.1c.

26

Figure 2.1: Truth tables representing the (a) AND, (b) OR and (c) NOT logical
operations.

2.2 Boolean expressions

Besides a truth table, a Boolean function can also be represented as a Boolean

expression. In this case, the Boolean operators are represented as the following
symbols: AND operator is represented as * or ∙, the OR operator is represented as +, and
the NOT operator is represented as ! or ¬. These operators are applied to the variables of
the function in order to represent correctly its functionality. Each time a Boolean
variable appears in a Boolean expression, it is counted as one literal. The
implementation of a Boolean expression with fewer literals is preferred, since it will
likely use less logic elements, as discussed in Section 2.3.

Although a Boolean expression represents exactly one Boolean function, a Boolean
function can be represented by numerous Boolean expressions. For example, let’s take a
look on the function f, represented in the truth table of Figure 2.2. Extracting the
Boolean vectors that evaluate the function to 1, and representing them as Boolean
expressions in order to represent the correct functionality of f, the result is the Equation
(2.1), a sum-of-products (SOP).

a b c d f

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Figure 2.2: Truth table representing function f.

27

d)* c* b* (a + c)* b* a* d(! + d)* b* a* c(! + d)* c* a* b(! +

 d)* c* b* a(! + d)* c* b!* a(! + c)* d!* b!* a(! + d)* c!* b!* a(!f = (2.1)

Similarly, extracting the Boolean vectors that evaluate the function to 0, and
representing them as Boolean expressions in order to represent the correct functionality
of f, the result is the Equation (2.2), a product-of-sums (POS).

b) + a + d! + c(!* c) + a + d! + b(!* d) + a + c! + b(!* a) + d! + c! + b(!*

 c) + b + d! + a(!* d) + b + c! + a(!* b) + d! + c! + a(!* d)! + c! + b! + a(!f = (2.2)

These two representations are straightforward, since they simply use the
representation of the Boolean vectors as expressions, applying the correct logic
operations in order to represent correctly the Boolean function. However, the SOP and
POS representations have several literals. In Equation (2.1) and Equation (2.2) there are
32 literals each. In order to reduce the number of literals, the first approaches were with
two-level minimizations (COUDERT, 1994). The two-level minimizations of the SOP
and POS representations are in Equations (2.3) and (2.4), respectively, with 14 literals.

d)* (c + d)* b* (a + c)* b* (a + d)* b!* a(! + c)* b!* a(!f = (2.3)

 d) + (c* d) + a + b(!* c) + a + b(!* d) + b + a(!* c) + b + a(!f = (2.4)

Further optimizations can be applied in order to decrease even more the number of
literals, through multi-level minimizations, also known as Boolean factoring
(BRAYTON, 1987). More details about Boolean factoring can be seen in Section 3.3.
For instance, the minimal literal count expression of the function f can be seen in
Equation (2.5), with 8 literals.

 b)))! + a(!* b) + (a* d)! + c((! + d)!* c((!!f = (2.5)

2.3 Boolean networks

Figure 2.3 shows the schematic representation of the basic Boolean operators. In
order to represent a Boolean function through a Boolean network schematic, the
symbols of Figure 2.3 can be used to represent its implementation. Notice that the circle
in the output of the NOT operator representation in Figure 2.3a, also known as inverter,
shows the negation of this operator. The Figure 2.3b shows the representation of an
AND operator, and the Figure 2.3c shows the representation of an OR operator. The
NAND operator is created by adding a circle in the output of an AND operator,
generating the AND output negated. The NOR operator is created by adding a circle in
the output of an OR operator, generating the OR output negated. The NAND and NOR
operators can be seen in Figure 2.4 and Figure 2.5.

The Boolean network can be directly derived from the Boolean expression. This
derivation is not straightforward from the truth table representation, for example. Also,
the representation of a Boolean function as a Boolean network shows the importance of
reducing the number of literals in the corresponding Boolean expression. Notice that the
the minimized SOP expression of f (Equation (2.3), with 14 literals) produces a larger
Boolean network than the minimum expression of f (Equation (2.5), with 8 literals), as
seen in Figure 2.4 and Figure 2.5.

28

Figure 2.3: Schematic representation of (a) NOT, (b) AND and (c) OR operators.

a

b

d

c

f

Figure 2.4: Boolean network mapped from Equation (2.3).

a

b

d

c

f

Figure 2.5: Boolean network mapped from Equation (2.5).

2.4 Equivalence of logic functions

Consider the following operations in logic functions: (P) permutation of one or more
input variables; (Ni) negation of one or more input variables; and (No) negation of the
function. If a function g is equivalent to function h by operation P, then the functions g
and h are P-equivalent. In Figure 2.6, two Boolean networks are shown representing
two distinct Boolean functions pf1 and pf2, but in the same P-equivalence class (also at
the same P-equivalence class that function f in Figure 2.5).

Also, if a function g1 is equivalent to a function h1 by performing the operations P
and Ni, then the functions g1 and h1 are NP-equivalent. In Figure 2.7, two Boolean
networks are shown representing two distinct Boolean functions npf1 and npf2, but at
the same NP-equivalence class (also at the same NP-equivalence class that function f in
Figure 2.5, and functions pf1 and pf2 in Figure 2.6).

29

Finally, if a function g12 is equivalent to a function h12 by performing the operations
P, No and Ni, then the functions g12 and h12 are NPN-equivalent. In Figure 2.8, two
Boolean networks are shown representing two distinct Boolean functions npnf1 and
npnf2, but at the same NPN-equivalence class (also in the same NPN-equivalence class
that function f in Figure 2.5, functions pf1 and pf2 in Figure 2.6, and functions npf1 and
npf2 in Figure 2.7).

Figure 2.6: Boolean functions in the same P-equivalence class.

Figure 2.7: Boolean functions in the same NP-equivalence class.

Figure 2.8: Boolean functions in the same NPN-equivalence class.

Notice that in all these equivalence classes, the core of the circuit remained the
same. This characteristic is very useful in the technology mapping phase of logic
synthesis. Also, these equivalence classes have a relationship, shown in the Venn
diagram of Figure 2.9. For instance, there are a total of 65,536 Boolean functions with
four variables, which can be classified in 3984 P-equivalence classes, 402 NP-
equivalence classes or 222 NPN-equivalence classes (SASAO, 1999).

30

Figure 2.9: Venn diagram showing the relationship between Boolean functions
equivalence classes: P, NP and NPN.

2.5 Data structures

A Boolean network can be represented through different data structures. Each data
structure is more appropriate for different objectives and manipulations. Several data
structures are used in this work, and the following subsections describe them.

2.5.1 Directed acyclic graphs

Graphs are widely used data structures in computer science, due to its efficient way
of representing things and the also efficient algorithms created for graphs data
structures. In order to represent a combinational circuit using a graph, it is necessary to
guarantee the following conditions: (1) the edges must have a direction, i.e. the edges
are directed; and (2) there are no cycles (cycles are prohibited in combinational
circuits). These restrictions led to the use of directed acyclic graphs (DAGs) to represent
circuits. DAGs can be used as a direct translation of a Boolean network into a graph
data structure. An example of DAG can be seen in Figure 2.10.

Figure 2.10: An example of directed acyclic graph.

2.5.2 And-inverter graph

An AND-inverter graph (AIG) is a specific type of a DAG, where each node has
either zero incoming edges, the primary inputs (PIs), or two incoming edges, the AND
nodes. Each edge can be negated or not. Some nodes are marked as primary outputs
(POs). AIGs were created in order to perform fast transformations of circuits, since it is
a very simple data structure (MISHCHENKO, 2006). An example of an AIG can be
seen in Figure 2.11, where the nodes a, b and c are PIs, and the rest of the nodes are
AND nodes. Also, the nodes i, h, g and f are marked as POs.

31

Figure 2.11: Example of AND-inverter graph.

2.5.3 Mapped circuit

A combinational mapped circuit C is a specific type of DAG with three types of
nodes: the PI nodes, the logic gate nodes and the PO nodes. If a node of C has no
incoming edges and one or more outgoing edges, it is a PI. If a node of C has up to m
incoming edges, where m is an integer value such that m ≥ 1, and one or more outgoing
edges, it is a logic gate node. If a node of C has one incoming edge and no outgoing
edges, it is a PO. An example of mapped circuit can be seen in Figure 2.12.

Figure 2.12: Example of mapped circuit.

2.5.4 Logic tree

A tree is a particular case of DAG in which the fanout of every node is equal to one.
A logic tree is a specific type of tree in which the internal nodes are logic nodes, which
represent logic functions such as AND and OR. A logic tree is also a direct translation
of a Boolean expression into a data structure. An example of a logic tree is depicted in
Figure 2.13.

It is computationally hard to map a DAG representing a circuit into logic gates, due
to the several possibilities of mapping. The partitioning of DAG into several logic trees,

32

i.e. a forest of logic trees, reduces greatly the complexity of the DAG technology
mapping, at the cost of reducing the solution space and producing a mapping result of
lower quality. This approach will be explored in this work.

Figure 2.13: An example of a logic tree.

2.6 Cuts on AIGs

For scalability reasons, AIG is being used to represent circuits, since it is a very
simple data structure (MISHCHENKO, 2006). Several transformations can be done
with AIGs in order to reduce the number of nodes (area) or decrease the logic depth
(delay). One way is to extract parts of an AIG through cuts and improve them locally. A
cut of a node n in an AIG is a set of nodes c such that every path between a PI and n
contains a node in c. A cut of n is irredundant if no subset of it is also a cut. This section
describes k-cuts and kl-cuts on AIGs.

2.6.1 K-cuts

A k-feasible cut of an AIG � is an irredundant cut containing k or fewer inputs. Let
A and B be two sets of cuts, and let the auxiliary operation ⋈ be the operation described
in the Equation (2.6).

 � ⋈ � ≡ {� ∪ 	 | � ∈ �, 	 ∈ �, | � ∪ 	| < �} (2.6)

Notice that the ⋈ operation is commutative, since the ∪ operation is also
commutative. Let Φ����Φ� be the set of k-feasible cuts of � ∈ � and, if n is an AND
node, let n1 and n2 be its inputs. Then, Φ����Φ� is defined recursively as described in
Equation (2.7).

����� ≡ �{�} , ∶ � �� � �� {�} ∪ {Φ����� ⋈ Φ�����} ∶ !ℎ#$%��# (2.7)

The ⋈ operation can easily remove the redundant cuts by comparing the cuts with
one another. The k-cuts for all nodes of the AIG shown in the Figure 2.11 are described
in Table 2.1.

33

Table 2.1: The k-cuts for all nodes of the AIG shown in Figure 2.11.

Node k-cuts

a {a}

b {b}

c {c}

d {d}, {b, c}

e {e}, {a, b}

f {f}, {d, c}, {b, c}

g {g}, {d, f}, {d, c}, {b, c}

h {h}, {e, d}, {a, b, d}, {b, c, e}, {a, b, c}

i {i}, {a, e}, {a, b}

2.6.2 KL-cuts

The k-cuts are an efficient way to represent a region of an AIG regarding one output
generation. However, when it comes to multiple output regions, multiple k-cuts would
be needed. The kl-cuts (MARTINELLO JR., 2010) make use of multiple outputs to
overcome this issue.

A kl-cut defines a sub-graph �&' of � which has no more than k inputs and no more
than l outputs. It is represented as two sets of nodes {�&, �'}, being �& the inputs set and �' the outputs set. If a node n belongs to a path between �& ∈ �& and �' ∈ �', being � ∉�&, then n is contained in �&'. Notice that all nodes in �' are contained in �&'. However, �&' does not contain any node of �&. A kl-cut is said to be complete when all the
following conditions are attained: (1) every path between a PI and a node n' ∈ �'
contains a node in �&; (2) every path between a node contained in �&' and a PO contains
a node in �'; (3) no kl-cut defined by a subset of �& and the same �' is complete; and (4)
no kl-cut defined by the same �& and a subset of �' is complete. Two examples of AIG
covering using kl-cuts can be seen in Figure 2.14. If the kl-cuts with k=5 and l=3 (or
simply 5-3-cuts) are computed, a resulting possible covering of this AIG is in Figure
2.14a. Another covering using 3-2 cuts is shown in Figure 2.14b. Further details on kl-
cuts for AIGs can be seen in the work of Martinello (2010).

Figure 2.14 An AIG example illustrating covering using kl-cuts. Nodes a, b, c, d, f, g
and h are primary inputs. Nodes u and v are primary outputs. (a) A covering using 5-3-

cuts. (b) A covering using 3-2-cuts. (MARTINELLO, 2010)

34

2.7 Cell library

A logic gate, or a logic cell, is an element that performs a certain logic or memory
function. The logic gates that implement Boolean functions are used to map the
combinational part of logic circuits. Logic gates that perform memory function, such as
latches and flip-flops, are used to create temporal barriers in order to generate sequential
circuits, i.e. circuits that work in a well determined clock period.

A cell library is a finite set of logic gates. Traditionally, these logic gates are
previously built and characterized through electrical simulations, resulting in well-
defined cells to be used in the technology mapping. This approach is widely used and is
known as library-based technology mapping, where the exact physical area, power
consumption and delay of the cells are previously known. It is expected that a larger
amount of logic gates would result in a higher QoR, since there are more options to
reduce circuit area, for example. However, due to the high complexity of the technology
mapping algorithms and the applied heuristics, a larger amount of logic gates does not
necessarily improve the QoR.

A cell library is divided into several files. However, for logic synthesis two files are
usually used: the Liberty file and the LEF file. The Liberty file is a standard text file that
has the general library information, such as operating conditions (voltage, process and
temperature), interconnections delay model, templates for timing and power tables,
units for capacitance, voltage, time, etc. Also, the Liberty file has the information about
all logic gates of the library, such as timing tables for each timing arc, logic function,
input capacitances, power consumption tables, area, and so on. The library exchange
format (LEF) file is a standard text file used to describe the geometrical shapes of the
library cells layout, and also some geometrical restrictions of the IC manufacturing
using this cell library. The standard cell flow has this name due to the standard height of
the logic gates, and the information about the standard height is in the LEF file.

2.8 Technology mapping

Technology mapping is an important phase in the logic synthesis, which transforms
a technology independent circuit description into a gate netlist of a technology library,
i.e. a mapped circuit. It can be decomposed into three phases: decomposition, matching
and covering.

Decomposition is the process that transforms the initial representation of the circuit
into a simpler representation, more restricted, in order to make the process less
computationally hard. In this step, it is applied structural transformations to the design
representation, such as breaking the design graph into logic trees.

Once the circuit graph is computationally tractable, the matching step starts. The
matching tries to find the parts of the graphs that can be implemented by a cell (or more
than one cell) present in the library. In this step, the identification of Boolean functions
in the same equivalence class is important, since a logic gate can implement different
Boolean functions by performing the permutation of inputs, for instance.

Finally, the covering step chooses a subset of the match results in such a way that
the entire circuit is covered, while optimizing one or more cost function such as area,
delay and power. The result of the covering is a gate netlist that must correspond to the
correct logic network received as input, i.e. all nodes of the input Boolean network must
be covered.

35

The technology mapping is a phase that is crucial for a good QoR in the final circuit
layout. The physical synthesis results depend directly on the technology mapping
results. Also, it is important to notice that all steps in the technology mapping are
important. Optimal algorithms for matching and covering deliver low quality results if
the input design graph is not efficiently decomposed. This dependence in the previous
structure is a problem known as structural biasing (CHATTERJEE, 2006-a).

2.9 Static Timing Analysis

Sequential digital circuits must be analyzed in order to check if there are no timing
violations. This analysis is very important to determine if the design works correctly at
the expected performance. Different approaches exist in order to check if there are no
timing violations.

An approach to evaluate timing is through timing simulation, which is a method to
perform timing analysis by testing all possible input vectors in the design. Timing
simulation is a task that demands a lot of computational effort (BHASKER, 2009), since
all different possibilities of inputs must be tested, i.e. a design with n inputs must check
2n input vectors and check if any of these input vectors violates timing constraints. This
means that a design with 100 inputs would have to test 1.26*1030 input vectors and
propagate these vectors towards the design outputs, which is clearly a computational
hard task.

An alternative approach to evaluate timing is the static timing analysis (STA). The
static timing analysis is a fast way to analyze timing, considering only the worst case at
each logic gate of the design. It is static, since it is the worst case, independent of the
input vector. Also, since CMOS logic gates have different rise and fall characteristics,
both cases must be considered. There is a small “penalty” in using this approach: STA
is pessimist, since it considers only the worst cases. However, it is important to notice
that it is better to have a timing check that guarantees that the design works, and in a
reasonable time, since the timing check must be done several times in all phases of the
design flow.

There are several delay models to determine the delay of a logic gate. The delay
model most used in the standard cell design flow is the nonlinear delay model (NLDM).
It determines the output transition time (tout) and the output delay (td) of a logic gate
through the input transition times (tin) of the gate inputs and the capacitance load (cL) at
the gate output (BHASKER, 2009). Cells timing tables are read from Liberty files of the
cell libraries, and using the tin and the cL, it is possible to obtain the correct tout and td
through bilinear interpolation. In Figure 2.15 shows which values are necessary to know
in order to perform the bilinear interpolation and calculate the output transition time and
cell delay, for a timing arc of an AND gate of 2 inputs, for the rise condition.

Any timing analysis tool is able to determine the circuit delays only due to the
circuit itself. The environment conditions and restrictions must be informed to the
timing analysis tool through the timing constraints in order to make such analysis more
realistic. Timing constraints define, for example, the clock period and uncertainty, the
input and output delays, input transition times and output loads. The standard format
text file to inform the tool the timing constraints is the Synopsys design constraints
(SDC) file.

In order to evaluate the worst case delay of a sequential circuit, which determines its
performance (clock period), it can be applied the critical path method. In this method,

36

the delay is propagated from the inputs (or registers outputs) to the outputs (or registers
inputs), considering only the worst case timing arc at each cell (for rise and fall). Clock
uncertainty time and setup time must be added in registers endpoints. The input
transitions of the evaluated cell are either: the input transition times defined in the SDC,
in the case of an input pin, or the output transition times of the previous logic gates. The
output load of the evaluated cell is the output load defined in the SDC, in the case of an
output pin, added by all the input capacitances of all the cells the evaluated cell is
driving. In the paths that involve input and output pins, input and output delays must be
considered. The worst case delay is the largest delay from all endpoints (circuit outputs
or register inputs).

Figure 2.15: Process to obtain cell delay and output transition time through the NLDM,
extracting the values from a Liberty file. It is necessary to know the input transition

time and the output load, and perform a bilinear interpolation in the values read in the
Liberty file.

37

3. STATE-OF-THE-ART

This chapter presents a broad vision about the technology mapping algorithms
existent in the literature, showing their limitations and heuristics. Then, state-of-the-art
algorithms on Boolean matching, Boolean factoring and logic tree mapping algorithms
are shown, and as they were adapted to be used in this work.

3.1 Technology mapping

DAGON was the first technology mapping algorithm, which was proposed by
Keutzer (1987). Keutzer noticed that the tasks performed by a software compiler were
very similar to the tasks performed by the technology mapping. The pattern matching of
sub-graphs of a circuit representation using library cells are very similar to the matching
of sub-parts of a computer program using an instruction set of a computer processor.
The subject graph circuit is a binary tree represented with a string. But the first
technology mapping algorithm had some drawbacks. The structural matching approach
performed by DAGON, and the representation of the circuit given in its input, restrict
the search space performed by the mapping, affecting negatively the quality of the
resulting mapped circuit. Another issue is that the algorithm requires all isomorphic
matches stored in each node of the circuit tree representation, until the very end of the
circuit covering. This led to a restriction of using cell libraries with a large number of
cells, because the number of cells affects directly the number of pattern matchings
found in each node.

The first method that used logic trees as subject graph was proposed by Detjens
(1987). It has some similarities with DAGON, and some additions. It was the first work
that proposed the use of a pair of inverters in every non-inverted net of the circuit
representation. This approach increases the solution space, impacting positively in the
quality of the resulting mapped circuit. However, the approach proposed by Detjens had
to create several decompositions for each library cell available, increasing exponentially
the amount of pattern matchings, and also limiting the use of larger cell libraries.

Mailhot (1993) improved the technology mapping algorithm by improving the
comparison between the sub-trees and the cells of the library using ROBDDs
(NARAYAN, 1997). Like the previous algorithms presented (KEUTZER, 1987;
DETJENS, 1987), the proposed approach split the initial circuit DAG into a forest of
trees and maps them individually. But since ROBDDs are a canonical form of
representing circuits, the matches did not depend in the structure of the sub-trees, but in
the Boolean function it represented. However, this Boolean comparison was
computationally expensive, also limiting the size of the cell library used.

An approach to minimize the dependence in the initial graph representation was
proposed by Lehman (1995), using a dynamic reorganization. The decomposition step

38

was integrated with the pattern matching by making sub-graphs functionally equivalent
but structurally different associated, for each node of the circuit DAG. This approach
increased the search space, but it is also impractical for large circuits since the graph
size increases exponentially.

Stok (1999) proposed the algorithm wavefront, similar to Lehman’s approach but
with no scalability problems. The circuit was mapped directly in the DAG, using a
delay model independent of the cell output load. In order to prevent the DAG of
increasing exponentially by inserting different representations for each node, the steps
of decomposition, pattern matching and covering are executed in parallel in a “window”
of parameterizable logic depth. This “window” performs the mapping from the inputs to
the outputs, and has better results and runtime if compared with its predecessors.

The state-of-the-art in library-based technology mapping approaches is still the work
presented by Chatterjee (2006-a) It brings together several techniques used in logic
synthesis integrated in order to benefit the technology mapping. The pattern matching is
performed by Boolean matching and the data structure used is the AIG. This algorithm
and its improvements are all incorporated in the academic logic synthesis tool ABC
(Berkeley Logic Synthesis and Verification Group, 2012).

By performing this holistic view of some of the most important technology mapping
approaches presented in the literacture, which the commercial tools are strongly based,
some limitations were observed. Two are important limitations that this work tries to
take advantage: (1) the scalability issues due to the use of a large cell library, and (2) the
scalability issues of performing mappings with a large solution space in large circuits.

3.2 Boolean matching

The pattern matching is an important step in the technology mapping, which can be
perfomed using a structural analysis, i.e. comparing two structures if they are the same,
as it can be done in the circuits of the Figure 2.6. This comparison is computationally
easy and several technology mapping algorithms took advantage of this to have faster
results. However, a logic function can have numerous structures to represent it, and
therefore a structural matching obtains very limited results.

Another way to perform pattern matching is through a functional (Boolean) analysis
of the two functions. This comparison is computationally harder than a structural
matching, but it is much more powerful, since it does not depend on the structural
implementation of the circuit. This work uses Boolean matching in order to check if two
functions are in the same P-equivalence class.

A well-known Boolean matching algorithm for any type of function was proposed
by Hinsberger (1998). The method is based on the definition of a canonical
representative function R[f] for each equivalence class f. The matching between two
functions happen when the representative function calculated is the same: R[f1] = R[f2].

A function can be defined through a truth table, which can be represented as a bit
string. The method proposed by Hinsberger (1998) uses the largest number that the
given function can represent permutating the input variables as the representative
function. For example, Figure 3.1 shows an exhaustive approach for finding this
representative function for a function of three variables. In the Figure 3.1, the values in
the parenthesis show in the top the variable selected (1, 2 or 3), and the position in the
function in which the function was set (1, 2 or 3). Notice that the input variables must

39

obey a very strict ordering. Also, notice that the leftmost value (10101000) represents
the truth table of the input function, since it places the variable 1 in the position 1, the
variable 2 in the position 2 and the variable 3 in the position 3. In this case, the
representative function is 1110000 since it is the largest value found.

The computation of which branch gives the largest value can be done earlier,
choosing the next branch at each tree level. This is done in the Figure 3.2, where the
search space was reduced by deciding the largest function value earlier.

Another reduction that can be done in order to reduce further the amount of
computation is to only check the variables in the same symmetry class. Two variables a
and b of a function f are in the same symmetry class when they can be exchanged
without changing the resulting function: f(a,b) = f(b,a). In the Figure 3.2, the variables 2
and 3 are in the same symmetry class for this function, and therefore only one of the
branches should be checked: (1,2) or (1,3).

In the work of Martinello (2010), it is proposed an extension of this Boolean
matching algorithm in order to match multiple-output functions, where it is defined a
PP-equivalence class. This extension is very important to group kl-cuts in the same
equivalence class and improve the remapping flow runtime, with no affect in the quality
of the resulting circuit.

Figure 3.1 Exaustive approach for computing R[f]P (HINSBERGER; KOLLA, 1988)

3.3 Boolean factoring

Factoring is the process of deriving a parenthesized algebraic equation representing
a given logic function (BRAYTON, 1987). Factoring algorithms can be classified into
algebraic and Boolean.

The algebraic factoring has its basis in polynomial division, pretending that the
Boolean variables behave like real numbers. The basic concept is that, given the
functions f and p, the algorithm tries to find functions q and r such that rqpf +⋅= .
The function p is called a divisor of f if r is not null, and a factor if r is null. Some
relationships can be used to simplify the results during factoring. The relationships used
in algebraic factoring are shown in the left column of Table 3.1. Algebraic factoring is
usually very fast, but commonly the results are far from optimal.

40

Figure 3.2 Reducing search space by cutting non-maximal branches (HINSBERGER;
KOLLA, 1998)

Table 3.1 Relationships allowed in multi-level logic factoring

Relationships allowed
in algebraic and
Boolean factoring

Relationships allowed
only for Boolean
factoring

a•b= b•a a+a’ = 1

a+b= b+a a•a’ = 0

a•(b•c) = (a•b)•c a•a= a

a+(b+c) = (a+b)+c a+a= a

a•(b+c) = a•b+ a•c a+1 = 1

a•1 = a a+(b•c) = (a+b)•(a+c)

a•0 = 0

a+0 = a

On the other hand, Boolean factoring algorithms achieve better results, but they can
be very time and memory consuming, since it is an NP-complete task. The state-of-the-
art Boolean factoring algorithm was presented in the work of Martins (2012), using the
functional composition (FC) paradigm. The FC exact algorithm uses dynamic
programming and a bottom-up approach to find minimum literal logic expressions. But
the exact approach is impractical to be used in a remapping flow, since it uses a lot of
time and memory. In the same work presented by Martins (2012), several heuristics
were added to this algorithm in order to make it faster and have still obtain very good
results. The FC heuristic algorithm has comparable runtime to previous works and
results in logic expressions with smaller literal count. An example of how the FC
heuristic algorithm works is shown in the Figure 3.3: from the function variables
(selected in the correct polarity) the functions are associated until the target function is
found.

41

Figure 3.3 Example of Boolean factoring using Functional Composition.
(MARTINS, 2012)

Besides the FC heuristic algorithm, this work uses a modified version of it,
regarding the use of the XOR operator (MARTINS, 2012), and also logic sharing. In
order to use logic sharing, two approaches were used. A simpler approach was to use
the other outputs functions (all outputs but the current output being factorized) as input
to the FC algorithm as one literal functions. Another approach was to identify partial
logic functions that were used by more than one output and use a dynamic cost to these
intermediate functions (one literal or more), according to the effective use of them.

3.4 Logic tree mapping

The output of the FC algorithm is a set of logic expressions. This logic expressions
can be represented as logic trees and mapped, resulting in a mapped circuit. This logic
tree mapping is not straightforward and requires several transformations to obtain a
good logic tree covering.

A very good logic tree mapping algorithm was proposed by Correia (2004). It
performs several transformations in the logic tree (DeMorgan’s theorem, grouping of
equivalente nodes, decompositions of a logic node) in order to have different options of
tree covering, which may lead to different results. The algorithm proposed by Correia
(2004) was intended to be used in a library-free flow, so the actual implementation of
the standard cells is not known during the mapping. The cost calculation step, as seen in
the Figure 3.4, is performed using the number of series/parallel (s,p) transistors at each
node. In this case, 2 transistors in series or 2 transistors in parallel was used as the limit
to represent a logic gate, and the tree is then divided in sub-trees with this maximum
cost. By performing iteratively this algorithm, the resulting cover and mapped circuit
can be seen in the Figure 3.5.

Several modifications of this algorithm were performed in order to adapt this tree
mapping algorithm to a technology dependent context. The first change was the cost:
the number of transistors is not a good measure for a technology dependent mapper. So,

42

a cost is given in the tree mapper input (area, power, etc.) and the cost is calculated at
each logic tree node using the information of the library cells. The pair of inverters
approach was also used, increasing the search space. The resulting tree mapping
algorithm performs a Boolean matching for every node of the tree, saving all minimal
implementations for all nodes of the tree, and returning a tree mapped with the cell
library given with the minimal cost desired, disconsidering logic depth and timing.

Figure 3.4 Cost calculation and the first cut of the tree removed. (CORREIA, 2004)

Figure 3.5 Example of logic tree covering (before inverter minimization).
(CORREIA, 2004)

43

4. CUTS ON MAPPED CIRCUITS

This chapter presents the first contribution of this work, which is the enumeration of
cuts on top of mapped circuits. The use of kl-cuts is inspired in the work of Martinello
(2010), which introduced such idea for AIGs, a technology independent data structure.
This work tries to improve the results of the logic synthesis process, which results in a
technology dependent mapped circuit, by performing local optimizations. These local
optimizations are performed inside the sub-circuits found through the kl-cut
enumeration algorithm.

4.1 Differences between AIGs and mapped circuits

And-inverter graphs and mapped circuits are two different types of DAGs, which
can represent a logic circuit. The main differences between AIG and mapped circuit
descriptions are: (1) the number of incoming edges on the nodes; and (2) the existence
of inverters and buffers instead of simply negated or direct edges. In order to extend the
concept of k-cuts to mapped circuits, it is necessary to handle these differences.

4.1.1 Number of nodes inputs

The nodes on AIGs simply perform the AND operation, and are limited to two
inputs (MISHCHENKO, 2006). This is because the AIG was created to be a very
simple and scalable data structure, in order to perform complex and computational hard
logic minimization techniques. Other logic operations, besides AND operation of two
inputs, need inverters (which are in the edges of the AIG) and AND nodes arranged in a
way to perform the logic operation desired. Any logic function (of any inputs) can be
implemented using the AND logic operation and inversions.

The nodes in mapped circuits can perform any logic function, from one input
(inverters and buffers) to m inputs, where m is the integer number representing the
number of inputs of the logic gate with the largest number of inputs in the library. This
data structure is not simply a logic circuit representation, but also a logic circuit
implementation, i.e. a data structure of a circuit that can be built as is.

4.1.2 Inverters as nodes or edges

In AIGs, the negation is performed in the edges instead of using specific nodes for
that. This representation simplifies the methods of logic minimization based on AIGs,
making them more scalable and simple. In real world mapped circuits, negations on the
nets do not exist. In order to perform signal invertions, an inverter is necessary, i.e.
inversions are perfomed in nodes of the graph in mapped circuits, instead of edges in
AIGs. Besides inverters, there are also buffers, which are one input logic gates that are
used to decrease the delay to load larger capacitances, without changing the logic
function.

44

4.2 K-cuts

The k-cuts on top of a mapped circuit * must take into account the higher amount of
inputs at internal nodes and one input logic gates (inverters and buffers), which are not
present in AIGs. Let Φ����Φ� to be the set of k-cuts of � ∈ *, and if n is a logic gate
node, let ��, … , �, to be its inputs, where g is an integer value representing the number
of inputs of n such that 1 ≤ / ≤ 0. By using the same operation ⋈ described in Section
2.6.1, Φ����Φ� is defined recursively as seen in Equation (4.1). Figure 4.1 shows a
combinational circuit example. By enumerating the k-cuts with k=5 for the example in
Figure 4.1, the values given in Table 4.1 are obtained. Notice that wire0 does not appear
in any k-cut, since it is the output of a cell with a single input.

 ����� ≡ 1 {�} , ∶ � �� � �� Φ����� , ∶ / = 1 {�} ∪ 3Φ����� ⋈ … ⋈ Φ�4�,56 ∶ !ℎ#$%��# (4.1)

Figure 4.1 Combinational circuit example to demonstrate k-cuts and kl-cuts
computation.

Table 4.1 All k-cuts with k=5 for all nodes of the combinational circuit example of
Figure 4.1

Node k-cuts

a {a}
b {b}
c {c}
d {d}
e {e}
f {f}
g {g}
h {h}

wire0 {a}
wire1 {wire1}, {d, a}
wire2 {a, b, c, d}, {a, b, c, wire1}, {wire2}
wire3 {wire3}, {e, f, g, h}

o0 {a, b, c, d}, {a, b, c, wire1}, {wire2}
o1 {o1}, {a, wire3}, {a, e, f, g, h}
o2 {o2}, {a, e, f, h}

all nodes {a, b, c, d}, {d, a}, {a, wire3}, {e, f, g, h}, {a, b, c, wire1}, {a, e, f, g, h}, {a, e, f, h}

45

4.3 KL-cuts

The kl-cuts on top of AIGs are sub-parts extracted in order to have different options
to cover the AIG functionality afterwards, mapping to a FPGA for example. The
objective of enumerating kl-cuts on top of mapped circuits is to improve a cost function
of the cuts and then replace them in the original circuit. Hence, kl-cuts formed by only
one cell or with k equals to one (e.g. inverter or buffer chains) are not considered.
Furthermore, in order to identify all possible shared logic for a given set of inputs, the l
is defined as unbounded, not limiting the number of outputs and keeping track of all
outputs that depend on the same set of variables.

The kl-cuts introduce important advantages, such as: (1) the control of the support
cardinality, and (2) the possibility of performing logic sharing between outputs, since all
outputs affected by the kl-cut inputs are found. In order to better understand the
advantages of using kl-cuts, consider a simple and-inverter-graph (AIG) example, as it
is shown in Figure 4.2. If it is desired to create a sub-circuit in which the node 14 is the
output with up to 4 inputs, a search backwards would find that the node 14 depends on
the nodes {4, 5, 11, 8} and stop, due to the five input barrier made by nodes {4, 5, 6, 7,
8}. That is a limitation in the sub-circuit search in (KUNZ, 1997; BENINI, 1998;
KRAVETS, 2004; MISHCHENKO, 2006; FIŠER, 2010), which will not find that node
14 depends directly on nodes {a, b, c, d}. By performing k-cuts enumeration, it is
guaranteed that node 14 depends directly on nodes {a, b, c, d}.

This is an important feature of k-cuts, in which the kl-cuts are based. Nevertheless, a
k-cut generates only one output, i.e. a k-cut does not cover all outputs it affects. Notice
the mapped circuit in Figure 4.3, which is structurally similar to the AIG of Figure 4.2.
Consider the cover of the k-cut {a, b, c, d} generating the logic at the output of the logic
gate 14. In order to cover logic gate 13, while respecting the cover for logic gate 14, it is
necessary to duplicate part of the logic that is common to both logic gates. By
identifying all outputs that the input nodes of a k-cut affects, a kl-cut is found, making
possible to remap it locally and replace it in the circuit netlist, keeping the logic
equivalency and efficiency. It is important to notice that kl-cuts provide a complete
input-output interface for a sub-circuit substitution. Additionally, kl-cuts minimize the
support of the Boolean functions inside the cut. By minimizing the support, it is
possible to apply aggressively Boolean minimization techniques that would not scale for
larger circuits.

a

b

1

d

c
14

2

6

5

4

3

9

7

8

12
11

13

10

Figure 4.2 And-inverter graph (AIG) representing a circuit.

46

Figure 4.3 Mapped circuit structurally similar to the AIG of Figure 4.2.

4.4 Enumeration algorithm

A pseudo-code for kl-cuts enumeration on top of a mapped circuit is shown in
Figure 4.4. The algorithm receives a k limit and a mapped circuit. If the design has
sequential elements, it is necessary to treat these sequential elements as PIs and POs to
the combinational logic. The algorithm starts by enumerating all k-cuts for all nodes of
the circuit. All k-cuts of all nodes are grouped, such that each k-cut can generate one kl-
cut. For example, the line all nodes of Table 4.1 represents the kcuts (line 2) for the
circuit in Figure 4.1.

The function addInsts() traverses the circuit from each kcut input (line 3) to the
outputs direction, storing the logic gate instances, the outputs generated and all logic
functions. Each logic gate node is checked by the function KCutsOK(), which returns
true if the node has at least one k-cut formed only by kcut inputs. If KCutsOK() returns
false, or the node is a PO, the node checked is a kl-cut output. Notice that a kl-cut of a
circuit can be exchanged by another, since all signals which are affected by the cut are
taken into account. Thus, the use of kl-cuts in remapping is justified. In the circuit
example of Figure 4.1, three kl-cuts are found, which are shown with rectangles around
the instances contained in each kl-cut.

Figure 4.4 Pseudo-code for kl-cuts enumeration on top of a mapped circuit.

01. compute_klcuts(k, circuit) {

02. kcuts = compute_kcuts(circuit, k)

03. for each kcut in kcuts do {

04. insts <- ø

05. outputs <- ø

06. for each node in kcut do {

07. addInsts(node, insts, outputs)

08. }

09. klcut = createKLcut(kcut, insts, outputs)

10. klcuts.add(klcut)

11. }

12. return klcuts

13. }

47

4.5 Polarity don’t cares

After identifying a kl-cut instances, inputs, and outputs, a further search is performed
on the inputs, identifying inverters and buffers. All the inverters and buffers that are
used only to drive the kl-cut can be encapsulated. The inverters and buffers that drive
not only the cut, but also other parts of the circuit, must not be encapsulated. Notice that
there is an inverter (INST0) in Figure 4.1 not encapsulated by the kl-cuts found, since it
is used in distinct parts of the circuit.

If these inverters or buffers are encapsulated, there is a duplication of these cells
during remapping (as in the following example) or an overlap of kl-cuts (explained
further in Section 5.2.7.1). During the search on the inputs, the inverters that are not
encapsulated can be used to generate a mapping flexibility: the polarity don’t cares. A
similar approach can be done in the flip-flops that generate both polarities of a signal.

A kl-cut found in a commercial benchmark is shown in Figure 4.5. Notice that the
kl-cut has two polarity don’t cares (i9=!i0 and i12=!i1). Using the polarity don’t care

information in the remapping tool, there is a reduction of 20% in area of the kl-cut. If
this information is not used, the reduction is of only 6%. The circuits obtained with and
without polarity don’t care information are shown in Figure 4.6 and Figure 4.7,
respectively. Notice that there is an addition of two inverters (INST6 and INST7) in
Figure 4.7.

Figure 4.5 Example of kl-cut found in a commercial benchmark.

INST0

INST4

INST5

INST3

o0

o1

o2

o3

i0

i4

i2

i1

i12

i3

INST2

INST1

i9

Figure 4.6 Example of Figure 4.3 remapped with polarity don’t cares information.

48

Figure 4.7 Example of Figure 4.3 remapped without polarity don’t cares

information.

4.6 Degrees of freedom

In the work proposed by Benini (1998), an extra search in the neighborhood of the
partitioned circuit is performed in order to identify the degrees of freedom (SAVOJ,
1990). In Figure 4.8, for example, an extra search in the neighborhood is able to notice
that, if ‘i1’ and ‘i4' are equals to ‘0’, the outputs of the “logic gate netlist” don’t care,
which are known as observability don’t cares. By enumerating the kl-cuts with (at
least) k=4 in Figure 4.8, the outputs o1 and o2 depend directly on the inputs i1, i2, i3
and i4, and this don’t care information is self-contained in the kl-cut. This search in the
neighborhood is necessary in the work proposed by Benini (1998) because the logic
gate netlist is created randomly, by selecting a node and adding more nodes to it. Since
the kl-cuts are enumerated from the inputs to the outputs, the observability don’t cares
due to the kl-cuts inputs will be satisfiability don’t cares, and then can be removed
during the resynthesis.

Figure 4.8 Logic circuit example.

4.7 Conclusion

This chapter presented a comparison of k-cuts and kl-cuts performed on top of
mapped circuits as opposed to computing k-cuts and kl-cuts on top of AIG
representations. The main differences lie on (1) the number of inputs for the 2-input
AND nodes used on AIGs and the nodes of a gate netlist which may have several
inputs, and (2) the existence of explicit inverters and buffers, appearing as nodes, in the
netlist compared to the use of negated or direct edges used in the AIG. Moreover,
algorithms to enumerate k-cuts and kl-cuts on top of a netlist representation were
proposed and implemented.

49

5. KL-CUT BASED REMAPPING

This chapter presents the main contribution of this work, which is the use of cuts on
top of mapped circuits in order to perform iterative remapping. A complete operational
flow is presented, with details about every step of the flow.

5.1 Remapping using KL-cuts

The advantages of the current approach are linked to the use of kl-cuts to enumerate
the sub-circuits. Previous remapping approaches of mapped circuits adopt circuit
partitioning techniques that do not consider the complexity of the Boolean functions in
the resulting sub-circuits (DEY, 1990; KUNZ, 1997; BENINI, 1998). For this reason,
these remapping approaches lose local context, and need to investigate the surrounding
environment to detect observability don’t cares (BENINI, 1998). By using k-cuts, the
observability don’t cares are incorporated in the sub-circuits due to the k-cut
characteristic of dominance (PAN, 1998). In this work, the concepts of k-cuts and kl-
cuts are used on top of mapped circuits in the context of technology remapping. When
compared to the approaches proposed in (KUNZ, 1997; BENINI, 1998; KRAVETS,
2005; MISHCHENKO, 2006; FIŠER, 2010), kl-cuts introduce important advantages,
such as (1) the control of the support cardinality, and (2) the possibility to perform logic
sharing between outputs, since all outputs affected by the kl-cut inputs are found.

Figure 5.1 Proposed kl-cut remapping flow.

50

5.2 KL-cut remapping flow

The proposed flow is shown in Figure 5.1. In order to perform the remapping, the
following inputs are necessary: the gate-level netlist of the design and the liberty files
(library) used to map it. If it is desired to have a more precise timing analysis, an SDC
file must be read as well. If no SDC is provided, the remapping flow will improve the
cost function regardless of timing constraints. After reading the necessary files, the
remapping is performed. A common flow is shown in Figure 5.2, using the tool
developed, named KLever2. It is necessary to define the maximum size of the kl-cut
inputs k (the functions support), which is 6 in this case. The number of iterations desired
n is also necessary. For n=0, the tool performs remapping iterations while it is still
possible to improve the cost function. For n different of 1, the improved netlist is used
again in the flow, in order to perform the next iteration, as illustrated by the dashed line
in Figure 5.1. In this example, an area reduction of 13.6% was found after 3 iterations
for c432 benchmark (IWLS benchmarks 2005, 2012).

Figure 5.2 Example of a complete remapping script.

51

The remapping starts by enumerating all kl-cuts and remapping them. Then, the
remapped cuts are sorted from the highest to the lowest gain according to the cost
function desired, performing a greedy selection. Notice that the mapped kl-cuts selected
to be replaced in the design are only the ones that improve the cost function. The kl-cuts
can be overlapped (details in subsubsection 5.2.7.1), so it is checked if there is no
overlapping before replacing them back in the netlist. If there is no overlapping, the kl-
cut is replaced and the timing is checked. If the timing remains acceptable, the
replacement is approved and the kl-cuts replacement continues until there are no more
kl-cuts to replace.

5.2.1 Liberty parser and data structure

The Liberty file is a standard cell library file format used in the standard cell flow.
The Liberty file contains information about the library cells, such as: the cell name, the
input and output pins names, the logic function performed by each output, the timing
and power tables, the cell area, the inputs capacitances, etc. The power tables have been
neglected in the parser developed to this work, since the power information was not
studied in this first version, i.e. only area and timing was considered. Figure 5.3 shows
the information read from an AND2 gate of a Liberty file, which is possible to get with
the command print_library_cells.

.SUBCKT AND2_X1 A1 A2 Q VDD VSS

*.PININFO A1:I A2:I Q:O VDD:P VSS:G

*.COMBINATIONAL_LOGIC_GATE

*.AREA_VALUE 1.224

*.CAP_VALUES RISE: A1:9.08E-4 A2:9.98E-4 FALL: A1:9.32E-4 A2:0.00103

*.EQN Q=(A1 * A2)

*.TIMING_TABLES

* OUTPUT_PIN: Q

* INPUT_PIN: A1

* UNATENESS: POSITIVE_UNATE

* INPUT_NET_TRANSITION_INDEX: [0.0010, 0.02, 0.04]

* OUTPUT_TOTAL_CAPACITANCE_INDEX: [2.80653E-4, 0.00407697, 0.00815394]

* CELL_RISE: [(0.0226,0.04134,0.060053)

 (0.031938,0.050609,0.069501)

 (0.041727,0.060403,0.079288)]

* CELL_FALL: [(0.019064,0.031426,0.042973)

 (0.029097,0.04149,0.053071)

 (0.039568,0.052127,0.063734]

* RISE_TRANSITION: [(0.008929,0.028669,0.05085)

 (0.008986,0.028663,0.050975)

 (0.009931,0.028854,0.051089]

* FALL_TRANSITION: [(0.006406,0.017923,0.030511)

 (0.006481,0.017936,0.030482)

 (0.007601,0.018293,0.030684)]

* INPUT_PIN: A2

* UNATENESS: POSITIVE_UNATE

* INPUT_NET_TRANSITION_INDEX: [0.0010, 0.02, 0.04]

* OUTPUT_TOTAL_CAPACITANCE_INDEX: [2.80653E-4, 0.00407697, 0.00815394]

* CELL_RISE: [(0.025413,0.044382,0.063154)

 (0.034863,0.053786,0.072692)

 (0.044417,0.063269,0.082138)]

* CELL_FALL: [(0.019785,0.031108,0.041521)

 (0.029581,0.040946,0.051377)

 (0.040131,0.051612,0.062045)]

* RISE_TRANSITION: [(0.009158,0.028734,0.050867)

 (0.009174,0.028725,0.050995)

 (0.009716,0.028841,0.050939)]

* FALL_TRANSITION: [(0.006249,0.016571,0.027764)

 (0.006313,0.016564,0.027796)

 (0.00732,0.0169,0.027867)]

.ENDS

Figure 5.3 Cell information read from a Liberty file.

52

Figure 5.4 shows an example of a library with four combinational cells. It was
implemented two ways to access a cell in the library: (1) using the cell name, which is
important while parsing a Verilog file, for example; and (2) using the cell function P-
signature, which is important during technology mapping.

Figure 5.4 Example of a library with four different logic gates.

5.2.2 Verilog parser and data structure

The gate-level netlist of a given design can be described in different hardware
description languages. One of the most used in digital design is the Verilog language,
which was used in this work. An example of the Verilog format accepted in the tool is
illustrated in Figure 5.5. It is expected that the input Verilog has only one module, with
the header formatted in Verilog 1993 format: module <module_name>

(<list_of_terminals>);. Then, the inputs, outputs and wires are described, followed by
the cells instantiations. Assignments are also accepted. When the Verilog file is read, a
circuit data structure is created, similar to the example in Figure 5.6.

module Design(i0, i1, i2, i3, o0, o1, o2);

 input i0, i1, i2, i3;

 output o0, o1, o2;

 wire x1, x2, x3;

 NOR3_X1 U2(

 .A(i1),

 .B(i2),

 .C(i3),

 .Q(x3));

 AND2_X1 U4(

 .A(i0),

 .B(i1),

 .Q(x1));

 XOR2_X1 U1(

 .A(i1),

 .B(i2),

 .Q(x2));

 XOR2_X1 U2(

 .A(x2),

 .B(x3),

 .Q(o2));

 HA_X1 U2(

 .A(x1),

 .B(x3),

 .S(o0),

 .C(o1));

endmodule

Figure 5.5 Example of structural Verilog.

53

Figure 5.6 Example of the circuit data structure.

The circuit data structure has the design name (Verilog module name), a list of the
inputs names, a list of the outputs names, a map to the cell instances, a map to the
driving nodes, and the circuit area (which is the sum of the area of all instantiated cells).
The instance data structure has the instance name, a map with the inputs names, a map
with the outputs names, a pointer to the library cell, and the timing information, which
is updated when the STA is performed. For example, the maps of the instance U3 in
Figure 5.6 are the following. Inputs map: (A=x2, B=x3); outputs map (Q=o2). The node
data structure has the net name, the instance name and the pin name, or the terminal
name (input or output). There are two types of nodes, the source and destination. The
source nodes have a list of pointers to the fanout nodes which they drive, and the
destination nodes have a pointer to the fanin node which drives them.

5.2.3 SDC parser and data structure

A timing analysis tool is able to determine timing only due to the circuit itself. The
environment conditions and restrictions must be informed to the timing analysis tool
through the timing constraints, in order to the make the analysis more realistic. Timing
constraints define, for example, the clock period and uncertainty, the input and output
delays, input transition times and output loads. The SDC commands currently read in
the proposed STA engine are described in Table 5.1.

5.2.4 KL-cut enumeration and data structure

The kl-cut enumeration is performed as described in the algorithm of Section 4.4. By
defining the k (k>1), which represents the maximum number of inputs, the k-cuts are
found and each k-cut generates a kl-cut. It is very important to limit the number of
inputs of the sub-circuits found, since it is a limiting variable in Boolean minimization
algorithms, increasing time exponentially with the number of inputs. An example of a
kl-cut found is in Figure 5.7. This data structure can be obtained by the command
get_cuts followed by the command print_cuts.

The kl-cut data structure has the cut name, which is unique; a pointer to the circuit
data structure; a map with the inputs names and a map with the outputs names, such as
the “identifiers” row in Figure 5.7; a list of pointers to the instances of the cut; a list of
the intermediate wires; the kl-cut area, which is the sum of the instances’ area; a map
with the logic expressions of the outputs; and the polarity don’t cares available.

54

Table 5.1 Commands currently read in the STA engine developed.

Command name Description

set_input_delay
Defines the delay necessary to add in a path starting at a circuit input,
necessary in input-to-register and input-to-output paths.

set_output_delay
Defines the delay necessary to add in a path starting at a circuit output,
necessary in input-to-output and register-to-output paths.

set_clock_transition
Defines the transition time of a clock signal, necessary to define the
delay and the setup time of the registers.

set_input_transition
Defines the transition time of an input signal, necessary to define the
delay and output transition time of the cells driven by input terminals.

set_load
Defines the capacitance load at an output, necessary to define the delay
and output transition time of the cells that drive output terminals.

set_clock_uncertainty
Defines the error margin of a clock period. This value must be added
to all paths, in order to guarantee that timing will be attained. Clock
skew and clock jitter are the values usually used.

create_clock Defines the clock name, pin and period.

set_logic_zero
Defines an input as zero, enabling constant propagation and logic
minization.

set_logic_one
Defines an input as one, enabling constant propagation and logic
minization.

set_false_path Defines a path as false for timing analysis.

.SUBCKT E4 i0 i1 i2 i3 i4 i5 i9 o0 o1 o2 o3 VDD VSS

*.PININFO i0:I i1:I i2:I i3:I i4:I i5:I i9:I o0:O o1:O o2:O o3:O VDD:P VSS:G

*.IDENTIFIERS i0:N82 i1:N76 i2:n106 i3:n105 i4:n103 i5:n23 i9:N223 o0:n1 o1:n36 o2:n93 o3:n78

*.INSTANCES U142:CLKINV_X1 U140:INV_X0D5 U183:NOR2_X1 U110:OAI21_X0D5 U108:NAND3_X1 U155:NAND2_X1

*.AREA_VALUE 5.508

*.DESIGN_NAME c432

*.INTERMEDIATE_WIRES n21 n45

*.POLARITY_DONT_CARES i5 i9

*.EQN i5=!i0

*.EQN i9=!i4

*.EQN o0=!((!((i0 * i4) + (i0 * !i1)) + !i2) + !i3)

*.EQN o1=(!i3 + (!((i0 * i4) + (i0 * !i1)) + !i2))

*.EQN o2=(!i1 * i0)

*.EQN o3=((!i1 * i0) + i4)

.ENDS

Figure 5.7 Example of kl-cut data structure representation.

5.2.5 KL-cut P-group

A design can have a lot of kl-cuts. For instance, a design with 10,000 logic gates can
have easily 100,000 kl-cuts. However, lots of these cuts have similar logic, which can
be grouped in P-classes, reducing the amount of cuts from 5,000 to 20,000. In the
current implementation, the remapping does not consider local timing information while
the technology mapping, so the kl-cuts can be grouped without any lose of quality.

In order to decrease the amount of remappings, which is the bottleneck of the current
flow, an extension of the multiple output PP-signature introduced by Martinello (2010)
has been implemented. This extension was necessary to also consider polarity don’t

cares. The idea is the following: the inputs have an order defined by the PP-signature,
and polarity don’t cares are assigned to the inputs using this order. Consequently, two
kl-cuts are in the same PP-class if they have the same PP-signature, and if the same
variables in the PP-signature order have polarity don’t cares available.

Another technique used in order to decrease the runtime was to keep a database of
the best implementation cuts, which was called golden cuts. By using the parameter –m

55

in the iterative_remap command, the tool keeps the best implementation of each P-class
to be used in the following iterations so reducing runtime.

5.2.6 KL-cut remapping approach

The remapping is performed trying to improve a cost function. The cost function
primarily used is area, which is a historically common cost function in the logic
synthesis and technology mapping. The remapping starts in the Liberty reading, where
the lowest cost cells are selected for each P-signature. Using area as cost function, the
cells with drive strength equals to 1 (X1 cells) were selected, since they have the
smallest area in the cell library.

During the remapping flow, all kl-cuts are remapped. The logic expressions of each
kl-cut is processed by a factoring algorithm, based on Martins (2012) Functional
Composition (FC) paradigm, which reduces the amount of literals in each logic
expression. The “circuit DAG” in this case is minimized to a set of logic expressions.
Notice that the mapping for minimum area in a DAG is NP-complete, but if the DAG is
partitioned into trees, each tree can be mapped with minimum area with linear time.

Currently, there are different ways to factorize the equations performed: factoring
each output expression independently (single output); use the output functions as inputs
to other outputs (multiple output); and identify portions of logic that can be used by
more than one output (partial multiple output). The FC algorithm used can perform
factorization using the basic operators, resulting expressions with {AND, OR, INV}
operators, and also using the XOR operator, which results in expressions with {AND,
OR, XOR, INV} operators. Therefore, each kl-cut can have its logic expressions in up
to six sets of expressions: single output, multiple output, partial multiple output, with
and without the XOR operator. It is important to notice that the factoring results are
technology independent, which means that the best set of expressions may differ for
different technologies. For instance, a technology with complex cells with area
comparable to simple cells can obtain better results by factoring the outputs expressions
independently.

After the factoring step, each set of logic expressions factorized is passed to a logic
tree mapper. Each logic expression of the set is mapped independently, using the
polarity don’t care information, i.e. the circuit was divided in a forest of trees. The tree
mapping algorithm is based on the Correia’s (2004) algorithm, trying to improve a cost
function. By connecting the logic tree mapper results, a kl-cut circuit is generated for
each of the logic expression factorized sets. The following example shows how this
remapping approach is able to reduce area of kl-cuts, and consequently of the circuit.

Consider the following kl-cut example, found in one of the benchmarks examinated.
The kl-cut inputs are i0, i1, i2, i3, i4, i9, i12; and the outputs are o0, o1, o2, o3, as seen
in Figure 5.8. There are two polarity don’t cares available: i9=!i0, and i12=!i1. The
area of this sub-circuit is 9.792 um², as found in the mapped circuit benchmark. By
performing the proposed factoring, four different sets of logic expressions were found.
The original logic expressions of the kl-cut outputs and the different factorized
expressions are on Table 5.2.

Notice that the multiple output with XOR expressions have less literals than the
multiple output results. Nevertheless, the best area result is obtained by the circuit
mapped with multiple output expressions, since the logic tree mapping algorithm was
able to use the SPI7F165 complex gate (which logic expression is (a*b)+c*(d*e+f*g)).

56

This result is also interesting since the xor operation inside o1 expression
(!i0*i1)+(i0*!i1) is performed in series/parallel format, because of the polarity don’t

cares available, (i9*i1)+(i0*i12), as seen in Figure 5.9.

Figure 5.8 Example of kl-cut input in the remapping approach.

Table 5.2 Original and factorized logic expressions of the kl-cut remapping example.

Method Logic expressions

Mapped

circuit

area

Difference

Original

o0 = (!i0 + !i3)
o1 = ((!i3 * ((!i0 * i1 * i4) + (!i1 * !i4 * i0))) + (i2 * i3))
o2 = (!i3 * ((!i1 * !i4) + (i1 * i4)))
o3 = ((!i1 * !i4) + (i1 * i4))

9.792 um² 0%

Multiple

output

o0=(!i0 + !i3)
o1=((i2 * i3) + (o2 * ((!i0 * i1) + (i0 * !i1))))
o2=(!i3 * o3)
o3=!((i1 * !i4) + (!i1 * i4))

6.732 um² -31.25%

Multiple
output

with xor

o0=(!i0 + !i3)
o1=((i2 * i3) + ((!i0 + !o2) ^ (!i1 + !o2)))
o2=(!i3 * o3)
o3=!(i1 ^ i4)}

9.18 um² -6.25%

Single
output

o0=(!i0 + !i3)
o1=((i2 * i3) + (!i3 * ((i0 * (!i1 * !i4)) + (!i0 * (i1 * i4)))))
o2=(!i3 * !((i1 * !i4) + (!i1 * i4)))
o3=!((i1 * !i4) + (!i1 * i4))

9.792 um² 0%

Single
output

with xor

o0=(!i0 + !i3)
o1=((i2 * i3) + (!i3 * ((i0 * (!i1 * !i4)) + (!i0 * (i1 * i4)))))
o2=(!i3 * !(i1 ^ i4))
o3=!(i1 ^ i4)}

10.404
um²

+6.25%

5.2.7 KL-cut replacement

After remapping all kl-cuts, the cuts are ordered from the largest to the lowest gain,
and a greedy selection is performed. It is necessary to save a copy of the current circuit,
in the case of the resulting circuit does not respect the timing constraints, so the cut
replacement can be undone. A parenthesis for the implementation of this copy: in Java,
it must be done with a copy constructor instead of a simple clone method; otherwise,
there is a memory leak problem which causes the program to fail or increases a lot the
runtime.

57

During the cut replacement, if the cuts are grouped in P-classes, it is necessary to use
the signature information of the inputs and outputs to correct the order. This information
is fundamental to keep the correct logic equivalence. Then, the instances and the
intermediate wires contained in the original kl-cut are removed, the new intermediate
wires and instances are added, and the inputs and outputs of the kl-cut are connected to
the circuit.

Figure 5.9 Example of Figure 5.8 remapped by the proposed approach.

5.2.7.1 KL-cuts overlapping

Two kl-cuts do not overlap if: (1) their set of logic gates covered is disjoint; and (2)
their intermediate wires and input/output sets are disjoint, since an intermediate wire of
a kl-cut cannot be used by another after restructuring its internal logic. The
overwhelming majority of the cases are due to (1), the condition (2) is necessary due to
the polarity don’t cares.

The overlapping of kl-cuts happens due to the kl-cuts algorithm characteristic of
finding different supports for the same node. This kl-cut characteristic finds
optimizations that are not found by other techniques, since several different sub-circuits
are found in the same part of the circuit, but it is necessary to check the overlapping,
since two overlapped cuts cannot be replaced at the same time.

5.2.7.2 STA checking engine

A kl-cut remapped can improve a lot the cost function, but it is necessary to
guarantee that the design still meets the performance requirements after replacing the
cut back in the netlist. In this work, the kl-cuts are remapped disconsidering timing, and
timing is checked only when the cut is replaced. The replacement is undone if the delay
increased (higher than the design constraints). However, even if the kl-cuts were
remapped considering timing, this check after replacing a cut would still be necessary,
since a cut replacement may affect negatively the timing in other region of the circuit.

There are four different paths that must be checked, as seen in Table 5.3. All
endpoints are analysed and the worst delay of all paths is returned. The circuit is
checked against the clock period defined in the SDC file. A command to report timing

58

was created, as seen in Figure 5.10, in order to help the user to debug the critical path
delay.

5.2.7.3 Greedy choice and iterative remap

During the development of this work, it was tried to develop a better choice
algorithm. However, the high computational effort did not correspond in great gains in
the cost function desired. The selection of the best subset of kl-cuts that do not overlap
can be reduced to a graph coloring problem, which is NP-complete. Moreover, when a
kl-cut is replaced, the timing of all the following kl-cut replacements is affected.
Therefore, the selection of the best subset of kl-cuts that (1) do not overlap and (2) keep
the timing constraints attained is very complex and not worth computationally.

The option to perform a greedy choice and more remapping iterations resulted in
better runtime and results, if compared to a better selection algorithm. Since the
objective of the remapping flow is to improve a cost function, the proposed iterative
algorithm with a greedy choice is able to achieve that, in all cases, with a reasonable
runtime.

Table 5.3 Different paths analysed in the STA check.

Path type Worst delay

input-to-register input delay+combinational circuit delay+clock uncertainty+register setup

input-to-output input delay+combinational circuit delay+clock uncertainty+output delay

register-to-register register delay+combinational circuit delay+clock uncertainty+ register setup

register-to-output register delay+combinational circuit delay+clock uncertainty+output delay

5.3 Conclusion

This chapter presented an iterative remapping flow, based on local transformations
using kl-cuts. The proposed approach was implemented in an operational tool called
KLever2, and it is able to reduce a cost function such as area, while respecting timing
constraints. A complete suite of implementations and knownledge was necessary to
implement such a tool: a Liberty parser and library data structure; a structural Verilog
parser and mapped circuit data structure; an SDC parser and data structure; k-cut and kl-
cut enumeration algorithms, parser and data structure; an extension of a multiple output
P-signature algorithm, in order to consider polarity don’t cares; an STA engine, with
results comparable to a commercial tool; Boolean factoring aggressive algorithms; and
logic tree mapping algorithms. The proposed flow is composed of many heuristics. The
quality of results is due to a combination of the following attributes: (1) use of kl-cuts
which minimize the support of the Boolean functions; (2) extraction of full context, by
using kl-cuts instead of k-cuts; (3) use of aggressive Boolean optimization techniques to
optimize sub-circuits (kl-cuts); and (4) allow only substitutions that do not impact
negatively on the timing constraints.

59

Figure 5.10 Report timing performed in the c432 benchmark.

60

61

6. MANUFACTURABILITY COST FUNCTION

This chapter presents the third contribution of this work, which is a cost function to
use during logic synthesis. The cost function tries to improve the number of good chips
per wafer during logic synthesis, considering lithography printability and other sources
of yield loss.

6.1 Design for manufacturability

Integrated circuit (IC) design tools target a well-defined circuit layout, which take
into account different environment conditions. Nevertheless, due to the presence of
defects and variations during the IC fabrication, the final circuit may be very different
from the circuit provided by the CAD (computer-aided design) tools. Additionally, the
well-defined circuit layout may not work after the fabrication process. In order to
increase the number of good dies per wafer, several techniques have been created,
leading to the emergence of the Design for Manufacturability (DFM) field (AITKEN,
2006). DFM methods include estimation of yield prior to fabrication, enabling to solve
manufacturability problems earlier in the design flow.

One of the sources of defects and variations in IC manufacturing is the
lithography process resolution. The CMOS technology scaling down is forcing the
lithography to transfer sub-wavelength design features. The current lithography
systems, which have a wavelength of 193nm, are being operated in 20nm technologies
(WONG, 2009). The result is that the printability of layout shapes is very limited as
seen in Figure 6.1. Figure 6.1a shows the square features expected in the designed
layout, and its deformed lithography result is in Figure 6.1b, showing rounded shapes
and potential problems in the contacts. Several resolution enhancement techniques
(RETs) are used to improve the layout printability, such as optical proximity corrections
(OPC) and phase shift mask (PSM). However, the post-layout processing steps are not
able to exploit all the benefits of such techniques (KHETERPAL, 2005). Moreover, the
cost of RETs is also very high if applied to a non-regular layout. Consequently, the use
of regular layouts can increase a lot the effectiveness of RETs, while keeping them at a
reasonable cost. Nevertheless, notice that there is a significant area overhead by
introducing regular layouts, which also affects the number of good dies per wafer.

It is known that DFM techniques applied in post-layout phase improve yield in up to
10%, according to (NARDI, 2004). But, a general rule is that a higher level of
abstraction implies higher possibilities of improvement of a cost function. Following
this general rule, several works explored improvements in yield earlier in the design
flow (HEINEKEN, 1998; SHAIK, 2000; NARDI, 2004). In (HEINEKEN, 1998), in-
place substitution of the original cells by yield-optimized cells was proposed, preserving
the gate-level netlist, and therefore obtaining limited results. The necessity of

62

considering manufacturability during logic synthesis has already been stated (SHAIK,
2000), and implemented. The pioneer work of Nardi (2004) considered yield as cost
function in a logic synthesis tool and generating an yield optimized gate-level netlist.
However, regularity and lithography printability was not considered, and thus the results
may not be so relevant for sub wavelength technologies.

Figure 6.1 Comparison between (a) designed layout and (b) lithography simulation
of the designed layout.

No previous work considers the tradeoff of cells with different levels of regularity
and area overheads, in order to improve overall design yield during logic synthesis. This
work presents a novel yield model for ICs, which considers lithography printability
problems (WUU, 2009; GÓMEZ, 2010; DING, 2011; SUNDARESWARAN, 2011) as
a source of yield loss. Moreover, a technology remapping approach considering this
yield model as cost function is proposed and implemented, using the kl-cuts
methodology. The methodology proposed by this work can take advantage of regularity
for different degrees of severity of lithography hot spots, in order to improve the
number of good dies per wafer.

6.2 Yield background

IC yield is the amount of the ICs that meet all design specifications divided by the
total number of manufactured ICs. When the IC works, but does not meet all
performance specifications, this is known as a parametric yield loss. The catastrophic

yield loss refers to problems that cause the product to fail completely (WONG, 2009).
Parametric yield loss is generally solved through statistical methods, which try to
explore the intrinsic statistical characteristics of fabrication process variations (SINGH,
2005). The catastrophic yield loss has several sources, such as the class of the
manufacturing clean room and lithography issues. This work only considers
catastrophic yield, and from this point on, the word catastrophic will be suppressed.

The manufacturing clean room dust particles distribution and size is one of the major
sources of yield loss, especially in current technologies, since a very small particle can
cause a full die to fail. The calculation of this source of yield loss has to take into
account the probability of a dust particle size to be anywhere in the wafer, considering
the statistics of the clean room, and the critical area. Moreover, the critical area also has
to be defined statistically, as it is defined by processes such as chemical metal polishing
(CMP) (LUO, 2006), etching and lithography (BUBEL, 1995).

The fabrication process variations are other major sources of yield loss. Processes
such as CMP can make metal lines more susceptible to fail than they were designed.
Over (under) etching can make some features larger (smaller) than expected in the
designed layout, leading to potential shorts or breaks. Lithography problems can be

63

divided into: (1) defects in the masks or lithography process which generate positive
(e.g. bridges) or negative (e.g. holes) pattern transfers, and (2) problems due to
resolution of sub wavelength pattern transfers (WONG, 2009).

The problems due to dust particles, process variations and lithography defects can be
investigated after fabrication and solved, leading to a learning curve in the fabrication
processes. That is one of the main obstacles of performing DFM techniques earlier in
the design flow, since a fabrication process that used to be the major source of defects
during design phase, can be already solved in the manufacturing phase (AITKEN, 2006;
WONG, 2009). Nonetheless, as long the sub wavelength lithography exists, the
difficulties of resolution will exist, and the quality of resolution will depend on the
RETs and the regularity of layout. This work tries to explore this source of yield loss,
while taking into account the other sources, in order to improve the number of good dies
per wafer.

6.3 Yield model

This section describes the novel yield model proposed by this work. The goal of this
yield model is to consider both sources of yield loss: density of defects (process
variations, dust particles and lithography defects) and lithography printability. The effort
is not on a severe statistical model for yield prediction, but an intuitive cost function to
be explored during logic synthesis phase.

The profitability of a process is affected by the number of dies per wafer (#DW). The
number of dies per wafer depends on the area of the wafer (Awafer) and on the area of the
die (Adie), which is given by Equation (6.1).

 (6.1)

The profitability of a process is given by the number of good dies per wafer (#GDW).
The #GDW is the number of dies per wafer (#DW) multiplied by the yield, as expressed
by Equation (6.2).

 (6.2)

The yield due the presence of defects during the manufacturing processes depends on
the critical area (ca) and the defect density (dd). The critical area (ca) of a circuit can be
defined as the sum of the critical area of all circuit cells, as defined in Equation (6.3).

 (6.3)

The critical area of a circuit cell (CAci) is a region of the cell that may be affected by
defects, leading a circuit to failure. In order to calculate CAci, it is necessary to take into
account the manufacturing processes that affect the real size of critical area after
fabrication (BUBEL, 1995; LUO, 2006). Moreover, the CAci value must consider the
types and diameters of the defects, i.e. the defects that can effectively lead a circuit to
fail.

die

wafer

A

A
DW ≅#

DWyieldGDW ## ⋅=

∑
=

=

n

i

CAcica

1

)(

64

The defect density (dd) is inherently associated with the process, and it depends on
factors such as the class of the clean room and manufacturing processes variations. The
defect density value must consider not only statistical results of the foundry, but also a
probability function: a defect can appear in any part of the wafer.

Yield due to density of defects (dd_yield) can be defined as a Poisson distribution of
the ca and dd product, as shown in Equation (6.4). Notice that this model is pessimistic
for yield value prediction, mainly because defects are not uniformly distributed across
the wafer but tend to cluster. There are numerous models that predict yield more
accurately (KOREN, 1998), but the objective of this work does not lay on the accuracy
of the model. The goal is to know how logic synthesis can be used in order to improve
manufacturability.

)(_ cadd

eyielddd
⋅−= (6.4)

It is important to notice that this formulation does not consider the dependency on the
lithography printability of the cells. A large number of authors state that having more
regular layouts increase yield due to improve in lithography printability (KHETERPAL,
2005), but this behavior is not well captured in Equation (6.1) to Equation (6.4). By
using this model, since regular cells have a larger area, regular layouts would reduce the
predicted #GDW due to area overhead. Under these considerations, the previously
described yield could be stated as the yield related to the defect density. In the following,
an additional factor to the formulation is proposed, taking into account the criticality of
lithography hot spots (chs) of the circuit layout. The factor chs depends solely on the
circuit layout. On the opposite, the severity of lithography hot spots depends on the
fabrication technology, the RETs used, and the quality (and calibration) of the
lithography system. Consequently, a severity of lithography resolution defects (sld)
factor is introduced in the formulation. This analysis results in a different yield
formulation, called herein as lhs_yield, which is related to lithography printability and it
is given by Equation (6.5).

 (6.5)

Notice that Equation (6.5), meant for lithography, is very similar to Equation (6.4),
meant for defect density. The criticality of lithography hot spots (chs) used in Equation
(6.6) can be expressed as the sum of the cell criticality of lithography hot spots (CHSci)
for all cells instantiated in the circuit, as describe in Equation (6.7). In order to define
CHSci, it is necessary to evaluate the lithography hot spots. Lithography hot spots are
patterns in the layout which are more susceptible to suffer a large variation during
lithography (WUU, 2009; GÓMEZ, 2010; DING, 2011; SUNDARESWARAN, 2011).

 (6.6)

Equation (6.4) and Equation (6.5) give two different formulations for yield, from
different yield loss causes. These formulas can be combined into a new yield formulation
shown in Equation (6.7), called herein as total yield (ty). The substitution of Equation
(6.3) to Equation (6.6) into Equation (6.7) gives the complete formulation for total yield,
illustrated in Equation (6.8). Notice that in Equation (6.8) the total yield (ty) depends on

)(_ chssld
eyieldlhs

⋅−=

∑
=

=

n

i

CHScichs

1

)(

65

two foundry technology parameters: the defect density and the severity of lithography
resolution defects.

 (6.7)

 (6.8)

The total yield in Equation (6.8) can be used to compose a cost function to take both
yield loss sources into account while performing technology mapping. This can be done
by substituting Equation (6.1) and Equation (6.8) into Equation (6.2). The resulting cost
function expresses the number of good dies per wafer (#GDW) and it is illustrated in
Equation (6.9).

 (6.9)

The #GDW has to be maximized during technology mapping, in order to improve
manufacturability. The formulation in Equation (6.9) allows to tradeoff lithography
effects, defect density and total area while maximizing the number of good dies per
wafer.

6.4 Yield as a cost function

The yield model has been proposed, it is important to discuss about the values to be
used in a cost function. This section is intended to explain the rationale of the choice of
numbers for dd and sld; as well as the range of values for CHSci for the cells. The defect
density (dd) is a function of the expected number of critical area defects (#cad) expected
in a wafer, given in Equation (6.10). The #cad must be calculated through a statistical
and probabilistic analysis.

 (6.10)

The sld has to emulate a similar behavior to dd for the lhs_yield. The purpose of the
sld parameter in the proposed formulation is to increase or decrease the number of
expected lithography resolution defects (#LD) for a given technology, compared to the
expected number of critical area defects (#cad). For sld=1, it is assumed that #LD is
similar to #cad, as demonstrated in Equation (6.11). As a consequence, the sld can be
modeled as the ratio between the number of expected lithography resolution defects
(#LD) and the number of expected critical area defects (#cad), as expressed by Equation
(6.12).

 (6.11)

 (6.12)

yieldlhsyieldddty __ ⋅=

))()((
11

ciCHSsldciCAdd

n

i

n

iety
∑∑

==

⋅+⋅−

=

))()((
11#

ciCHSsldciCAdd

die

wafer

n

i

n

ie
A

A
GDW

∑∑
⋅= ==

⋅+⋅−

waferA

cad
dd

#
=

waferwafer A

cad
dd

A

LD
dldsld

##
1 =≅=→=

cadsldLD
cad

LD
sld #)1(#

#

#
≅=→≅

66

The purpose of the criticality of hot spots (CHSci) parameter is to express how the
quality of cell layouts influences #LD. The parameter CHSci is derived from the number
of lithography resolution defects expected in a wafer completely filled with instances of
a cell ci (#LDci). The parameter #LDci is called number of lithography resolution defects
induced by a cell. The relationship between CHSci and #LDci is expressed in Equation
(6.13). A cell layout with good printability has , a cell with bad printability
has , and a cell with average printability has .

wafer

cell

cell

wafer

A

A
LDciCHSciLDci

A

A
CHSci ⋅≅→=⋅ ## (6.13)

Consider as an example, a wafer with 600 cm2 of area, which can produce
approximately 150 dies of 4cm2, and the #cad equals to 15. This scenario implies a
defect density of 15 defects/wafer, or 0.025 defects/cm2. Consider also that the
technology has a sld equals to 1, meaning that additional 15 defects will happen in the
wafer due to lithography resolution problems, i.e. #LD equals to 15 defects/wafer on
average. Additionally, assume that the #LDci of cells can vary around #LD, depending
on the printability of the cell layout.

Table 6.1 shows values of CHSci computed for cell versions with different degrees of
printability. The cells considered as reference layout do not include any lithography
consideration. Some cells are restricted to be designed on a regularly spaced grid, but can
use two-dimensional features (2D-grid). Litho-friendly cells are restricted to use one-
dimensional features (1D-restr). The CHSci values in Table 6.1 can be used to compute
the yield given by the different choices of layout.

Table 6.1 Values of CHSci derived according to Equation (6.13) considering a
wafer of 600 cm².

Cell Function Layout type Area (µµµµm
2
) Printability #LDci CHSci

and2 1D-restr 1.57 good 7 1.83e-10
and2 2D-grid 1.41 average 15 3.53e-10
and2 reference 1.22 bad 30 6.10e-10
inv 1D-restr 0.784 good 7 0.92e-11
inv 2D-grid 0. 706 average 15 1.77e-10
inv reference 0.612 bad 30 3.06e-10

Assume that a designer wants to verify the yield of dies that would have 4cm2 with
reference layouts. This results in a number of instances of the reference layout given by
Equation (6.14).

 (6.14)

The yield values for 1D-restr and 2D-grid layouts are computed for the same number
of instances. The computation of the yield of several instances of the same benchmark
tied together can be computed as described in Equation (6.15).

 (6.15)

Results scaled for reference layouts with 4cm2 are shown in Table 6.2. Notice that the
option that produces the larger #GDW is the reference cells for this scenario (sld=1) due

LDLDci ## <

LDLDci ## > LDLDci ## ≅

reference

die

A

A
inst =#

)1()(# #
tyinstty inst=

67

to a larger #DW, even with the worst yield. The results in Table 6.2 are affected by the
sld value. A sld equals to 2 would make 1D-restr similar to reference cells, in terms of
#GDW. A sld equals to 3 would make 1D-restr cells better than the other layout types
cells, in terms of #GDW, justifying the use of regular layout cells.

Table 6.2. Values of #GDW considering a die of 4 cm² on a wafer of 600 cm² for
the reference cells, and the same number of cell instances for 1D-restr and 2D-restr

cells; sld=1.

Cell Function Layout type #inst Area (cm
2
) #DW Yield #GDW

and2 1D-restr 3.28e8 5.15 116 82.80% 96
and2 2D-grid 3.28e8 4.62 129 79.36% 102
and2 reference 3.28e8 4.00 150 74.08% 111
inv 1D-restr 6.54e8 5.12 117 82.87% 96
inv 2D-grid 6.54e8 4.61 130 79.40% 103
inv reference 6.54e8 4.00 150 74.08% 111

6.5 Yield remapping tool

The information of lithography criticality of hot spots and critical area is passed to
the tool when the library is read, associating the values of the cells as they are read from
the Liberty files. The information about wafer size, density of defects and severity of
lithography defects is passed through set_technology_info command, as seen in Figure
6.2.

The standard yield-aware design flow is shown in Figure 6.3a. The logic synthesis
(targeting area, performance and power) generates a gate-level netlist, which goes to
placement and routing to create the design layout. The only concern on yield
improvements happens on the post-layout phase, where in-place yield enhancements are
performed. The flow proposed by Nardi (2004) is shown on Figure 6.3b, where the
manufacturability is considered during logic synthesis, performing a more global
optimization of yield. However, it is not a good approach to simply replace the
commercial tool, or its cost function. For instance, the area results can be much worse
and the number of dies per wafer (#DW) may decrease a lot. Furthermore, the
lithography resolution problems are simply ignored in (NARDI, 2004).

This work proposes a technology remapping approach after the usual logic synthesis
process performed by a commercial tool. The proposed tool improves a cost function of
interest, as seen in Figure 6.3c. In this case, the cost function used is the number of good
dies per wafer (#GDW), according to Equation (6.9). Besides the methodology itself,
the proposed approach takes into account the tradeoff between lithography printability
and area overhead. Additionally, the proposed method can be applied in design sub
modules that are statistically more susceptible to yield loss, for instance.

68

Figure 6.2 Passing technology information to the remapping tool.

Figure 6.3 (a) Standard “yield-aware” flow, (b) Flow proposed by Nardi (2004),
and (c) the flow propose by this work.

69

6.6 Conclusion

This chapter presented the introduction of a novel yield model for integrated circuits
manufacturing, considering lithography printability and density of defects, which can be
used as a cost function for logic synthesis process. The proposed methodology
establishes a new standpoint in the field of regular layout by introducing a metric to
tradeoff area and printability of layouts. Many of the previous works completely
ignored these tradeoffs and simply pointed out that regularity is expected to improve
yield somehow, without presenting or discussing metrics. Therefore, a great
contribution of this work is to propose a discussion about the tradeoffs between
different area overheads and different levels of lithography printability for regular
layouts.

70

71

7. RESULTS

This chapter presents the results of the experiments of this work. Section 7.1
presents the results of the STA engine developed in order to guarantee that the design
will still work at the expected performance after the remapping approach. Section 7.2
shows experiments trying to improve area results of commercial tools. Section 0
presents the results of experiments improving the cost function proposed in Chapter 6.

7.1 Precision of STA engine

Sequential digital circuits must be analyzed in order to check if there are no timing
violations. This analysis is very important to determine if the design works correctly at
the expected performance. The static timing analysis is a method to analyze timing,
considering only the worst case at each logic gate of the design (BHASKER, 2009).
Since CMOS logic gates have different rise and fall characteristics, both cases must be
considered.

The STA tool developed for this work is implemented using the nonlinear delay
model (NLDM). NLDM determines the output transition time and the output delay of a
logic gate through the input transition time of the gate inputs and the capacitance load at
the gate output (BHASKER, 2009). The cells timing information is read from Liberty
files of the cell library, and the timing constraints are read from a Synopsys Design
Constraints (SDC) file (BHATNAGAR, 2001).

In order to identify the critical path, the delay is propagated from the inputs (or
registers outputs) to the outputs (or registers inputs), considering only the worst case
timing arc at each cell (for rise and fall). The worst delay of a design is the largest delay
from all endpoints, i.e. circuit outputs and register inputs.

With the purpose of validating the STA engine, several benchmarks and SDC files
have been checked. And for the benchmarks analyzed, no difference in results was
observed between the STA tool developed and commercial STA tools. Table 7.1 shows
the differences on worst delay analysis between a commercial STA tool and the
proposed STA engine, which is basically due to number rounding.

7.2 Area as a cost function

For evaluation of the proposed methodology, the first experiments were on reducing
the area. Area is a very good cost function, since represents a direct cost in the final
circuit, and also it has a very good correlation: decreasing the area of sub-parts will
certainly decreases the whole. The following experiments were performed on a
computer with a Core i5 processor, and 4GB of RAM. The commercial logic synthesis
tools results were obtained with versions of 2006.

72

Table 7.1 Comparison of the worst delay given by a commercial STA tool and the
STA engine developed for this work.

Benchmark Commercial STA tool delay (ns) This paper STA delay (ns) Diff (ps)
c1355 0.9929 0.9929 0.011
c1908 0.9867 0.9867 0.024
c1908a 0.9725 0.9725 0.035
c2670 0.9806 0.9806 -0.010
c2670a 0.9409 0.9409 0.054
c3540 1.0001 1.0001 0.031
c3540a 0.9978 0.9978 0.090
c432 0.9908 0.9908 -0.069
c499 0.7742 0.7743 0.059

c5315 1.0007 1.0008 0.118
c5315a 0.988 0.988 0.053
c6288 1.9997 2.0007 1.018
c7552 0.9775 0.9776 0.098
c880a 0.8019 0.8023 0.365

7.2.1 Libraries used for area experiments

Two standard cell libraries were used in the experiments: a base library and an
extended library. The technology node is 40nm, and the cell libraries were generated by
a commercial automatic library generation tool. The base library contains 266 logic
gates and a total of 49 different logic functions of combinational cells, which is a
representative of common commercial cell libraries.

The extended library is composed of the base library cells plus all cells with up to
three transistors in series and up to three transistors in parallel. In the extended library,
there are 132 more logic functions than the base library and a total of 181 different logic
functions of combinational cells. For this work, we will only consider minimal drive
strength cells (X1), for simplification.

The use of an extended library in the experiments is to measure the use of complex
logic gates with commercial tools, comparing to the proposed methodology. The use of
complex gates can potentially reduce circuit area, but they have to be chosen wisely to
preserve timing constraints while remapping.

Table 7.2 Libraries used for area reduction experiments.

Nickname # of cells # of functions Description

Base library 266 49
Common cells found on
commercial cell libraries

SP33 174 174
All possible cells using at most
3 transistors in series/parallel

Extended library 398 181 Base library plus SP33

7.2.2 ISCAS benchmarks area results

ISCAS benchmarks are simple circuits well-known in logic synthesis field, and
therefore were chosen to evaluate the STA engine at first, and to evaluate the first
results of the proposed remapping flow. The ISCAS benchmarks are divided in
ISCAS’85 set, which are basically simple combinational circuits, and in ISCAS’89 set,
which contain simple and complex sequential circuits. The both sets were used for the

73

following experiments. The results were obtained with unlimited number of remapping
iterations and k=5.

7.2.2.1 ISCAS’85 benchmarks area results

The delay constraint and the results of the synthesis using commercial tool A for
ISCAS’85 benchmarks (IWLS 2005 benchmarks, 2012) are in Table 7.3. Notice that
two syntheses were performed for each benchmark: a synthesis using base library (Set
1) and a synthesis using extended library (Set 2). The delay constraint was defined
based on the mapping of the circuits without timing constraints.

It is important to see that commercial tool A is not always able to use the extra cells
in order to improve area. On the contrary, commercial tool A increases area for several
benchmarks when extra cells are available, up to 20%. For the following results, the Set
1 results were used as reference.

Table 7.3 ISCAS’85 benchmarks synthesized with commercial tool A.

Benchmark Delay Constraint (ns)
Base library (Set 1) Extended library (Set 2)

Area (µm²) Delay (ns) Area Diff Delay (ns)

c1355 1.0 289.4760 0.9929 -5.71% 0.9639
c1908 1.0 277.2360 0.9867 +2.10% 0.9994
c1908a 1.0 200.7360 0.9725 +0.15% 0.9951
c2670 1.0 372.0960 0.9806 -0.99% 0.9957
c2670a 1.0 386.7840 0.9409 -1.35% 0.9964
c3540 1.0 660.6540 1.0001 +9.91% 1.0005
c3540a 1.0 559.9800 0.9978 +19.78% 0.9999
c432 1.0 121.4820 0.9907 +3.78% 0.9991
c499 1.0 261.6300 0.7743 -0.58% 0.7432

c5315 1.0 921.9780 1.0008 -2.62% 0.9986
c5315a 1.0 896.2740 0.9880 -3.35% 0.9988
c6288 2.0 2572.2583 1.9996 +18.81% 2.0007
c7552 1.0 1163.7180 0.9776 +1.24% 1.0000
c880a 1.0 229.5000 0.8023 -3.33% 0.9219

Average - - - +2.70% -
Worst - - - +19.78% -
Best - - - -5.71% -

In order to check if the results could be further improved with a different
commercial logic synthesis tool, the benchmarks were synthesized using commercial
tool B and the results are shown in Table 7.4. The area results were much worse than
the results obtained with commercial tool A. The proposed methodology was used to
remap only the commercial tool A results, since the results are already very good, and
therefore harder to improve.

The gate netlists generated by commercial tool A were then remapped using the
proposed methodology, and the results shown in

Table 7.5 were generated. Notice that area was reduced in all cases (up to 15%), and
almost all cases were using the extra complex gates. The average runtime was about 8
minutes, the best case runtime was 2 seconds and the worst case runtime was 70
minutes (for “c6288” benchmark, which is the biggest and therefore more kl-cuts and
more iterations). Notice that the area results are being compared with the circuits from

74

Set 1, therefore the remapping results of Set 2 reduced the area compared to Set 2, but
the area results are still larger than Set 1 results in some cases.

Table 7.4 ISCAS’85 benchmarks synthesized with commercial tool B.

Benchmark Delay Constraint (ns)
Base library Extended library

Area Diff Delay (ns) Area Diff Delay (ns)

c1355 1.0 +42.28% 0.5870 +42.28% 0.5872
c1908 1.0 +44.59% 0.9407 +43.49% 0.9565
c1908a 1.0 +56.25% 0.8206 +56.86% 0.8137
c2670 1.0 +89.97% 0.6351 +90.05% 0.6354
c2670a 1.0 +56.09% 0.6161 +56.01% 0.6233
c3540 1.0 +42.66% 0.9878 +45.58% 0.9890
c3540a 1.0 +35.30% 0.9699 +34.26% 0.9919
c432 1.0 +34.51% 0.9314 +32.75% 0.8893
c499 1.0 +57.43% 0.5871 +57.43% 0.5886

c5315 1.0 +49.05% 0.9883 +50.15% 0.9883
c5315a 1.0 +50.97% 0.9883 +49.37% 0.9828
c6288 2.0 -2.95% 1.9919 -6.38% 1.9919
c7552 1.0 +52.59% 0.9853 +53.14% 0.9854
c880a 1.0 +27.20% 0.6950 +30.13% 0.6748

Average - +45.42% - +45.37% -
Worst - +89.97% - +90.05% -
Best - -2.95% - -6.38% -

Table 7.5 ISCAS’85 benchmarks synthesized with commercial tool A remapped with
the proposed methodology.

Benchmark

Remapping of Set 1 Remapping of Set 2

Base library Extended library Extended library

Area Diff Delay (ns) Area Diff Delay (ns) Area Diff Delay (ns)

c1355 -6.24% 0.9225 -7.61% 0.9931 -10.99% 0.9309
c1908 -8.06% 0.9564 -8.61% 0.9878 -9.16% 0.9988
c1908a -3.96% 0.9993 -5.95% 0.9424 -6.86% 0.9496
c2670 -6.50% 0.9938 -7.24% 0.9999 -6.00% 0.9956
c2670a -7.67% 0.9950 -8.86% 0.9817 -6.88% 0.9998
c3540 -5.60% 0.9997 -7.18% 0.9985 +7.23% 1.0002
c3540a -4.64% 0.9989 -5.25% 0.9986 +16.78% 1.0000
c432 -5.54% 0.9980 -5.54% 0.9945 -4.03% 0.9967
c499 -2.92% 0.8235 -3.27% 0.8679 -2.92% 0.8942

c5315 -10.16% 0.9985 -11.35% 0.9821 -13.38% 0.9798
c5315a -11.27% 0.9902 -12.63% 0.9895 -13.52% 0.9670
c6288 -8.69% 2.0000 -8.09% 2.0000 +7.20% 1.9998
c7552 -14.17% 0.9967 -14.99% 0.9999 -13.02% 0.9914
c880a -6.40% 0.9453 -7.20% 0.9665 -9.07% 0.9878

Average -7.27% - -8.13% - -4.62% -
Worst -2.92% - -3.27% - +16.78% -
Best -14.17% - -14.99% - -13.52% -

7.2.2.2 ISCAS’89 benchmarks area results

 The delay constraint and the results of the synthesis using commercial tool A for
ISCAS’89 benchmarks (IWLS 2005 benchmarks, 2012) are shown in Table 7.6. Notice
that two syntheses were performed for each benchmark: a synthesis using base library
(Set 3) and a synthesis using the extended library (Set 4). The delay constraint was

75

defined based on the mapping of the circuits without timing constraints. Again,
commercial tool A was not always able to use the extra cells in order to improve area,
increasing area for several benchmarks when extra cells are available. For the following
results, the Set 3 results were used as reference.

The gate netlists generated by commercial tool A were then remapped by the
proposed methodology and the results shown in Table 7.7 were generated. Notice that
combinational area was reduced in all cases (up to 23%), and the majority of cases was
using the extra cells. The analysis in sequential benchmarks must consider the
combinational area separately from the total area, since the remapping proposed only
performs combinational logic restructuring, and therefore may improve only
combinational area. The average runtime was about 45 seconds, the best case runtime
was 2 seconds, and the worst case runtime was 8 minutes (for “s38584” benchmark).
Notice that the area results are being compared with the circuits from Set 3, therefore
the remapping results of Set 4 reduced the area compared to Set 4, but the area results
are still larger than Set 3 results in some cases.

Table 7.6 ISCAS’89 benchmarks synthesized with commercial tool A.

Benchmark

Delay

Constraint

(ns)

Commercial tool A

Base library (Set 3) Extended library (Set 4)

Comb. Area

(µm²)
Area (µm²)

Delay

(ns)

Comb.

Area Diff

Area

Diff

Delay

(ns)

s1196 0.5 384.948 533.6640 0.5002 +5.01% +3.84% 0.4999
s1238 0.5 378.828 527.5440 0.4995 +2.34% +1.68% 0.4996

s13207 0.5 700.74 3411.9000 0.5004 -1.44% -0.31% 0.4993
s1423 2.0 318.24 929.6280 1.9995 +3.94% +1.48% 1.9973
s1488 0.5 509.184 562.4280 0.5000 -0.96% -0.98% 0.5001
s1494 0.5 490.824 542.2320 0.4996 +0.81% +1.07% 0.4996

s15850 0.5 417.69 1522.6560 0.4995 -5.42% -0.92% 0.5102
s208_1 0.5 38.862 104.9580 0.4968 -6.30% -2.33% 0.4815

s298 0.5 74.358 190.6380 0.4977 -9.47% -4.01% 0.4995
s344 0.5 87.21 211.1400 0.4983 +9.82% +4.35% 0.4996
s349 0.5 85.374 209.3040 0.4993 +16.13% +7.16% 0.4992

s35932 2.0 5478.624 19755.3600 1.9821 -0.01% +0.00% 1.9260
s382 0.5 91.494 264.9960 0.4982 +2.01% +0.69% 0.4999

s38417 1.5 5103.774 18025.5420 1.3684 -2.62% -0.74% 1.4986
s38584 1.5 4769.622 14403.1140 1.2262 -1.55% -0.51% 1.4318

s386 0.5 68.544 118.1160 0.4728 -0.89% -0.52% 0.4974
s400 0.5 93.024 266.5260 0.4993 +4.61% +1.61% 0.4979

s420_1 0.5 97.92 231.3360 0.4997 +6.25% +2.65% 0.4982
s444 0.5 87.822 261.3240 0.4985 +8.01% +2.69% 0.4996
s510 0.5 175.644 226.4400 0.5002 +1.74% +1.62% 0.4989
s526 0.5 106.488 280.6020 0.4986 +8.91% +3.16% 0.4993

s526n 0.5 115.974 289.4760 0.4989 -1.32% -0.53% 0.4993
s5378 0.5 868.428 2223.7020 0.5000 -3.17% -1.29% 0.5002
s641 0.5 107.712 231.6420 0.4975 +4.55% +2.11% 0.4995
s713 0.5 105.264 229.1940 0.4978 +8.14% +3.74% 0.4982
s820 0.5 219.096 262.2420 0.4999 +3.07% +2.80% 0.4996
s832 0.5 225.828 269.5860 0.4998 -8.54% -7.60% 0.4985

s838_1 1.5 169.524 433.9080 1.3220 -8.12% -3.17% 1.4823
s9234_1 1.0 531.828 1729.8180 0.9902 -1.04% -0.32% 0.9968
Average - - - - +1.19% +0.60% -
Worst - - - - +16.13% +7.16% -
Best - - - - -9.47% -7.60% -

76

Table 7.7 ISCAS’89 benchmarks synthesized with commercial tool A remapped with
the proposed methodology.

Benchmark

Remapping of Set 3 Remapping of Set 4

Base library Extended library Extended library

Comb.

Area

Diff

Area

Diff

Delay

(ns)

Comb.

Area

Diff

Area

Diff

Delay

(ns)

Comb.

Area

Diff

Area

Diff

Delay

(ns)

s1196 -14.71% -10.61% 0.4995 -12.16% -8.77% 0.4999 -10.10% -7.05% 0.4996
s1238 -11.95% -8.58% 0.4995 -13.25% -9.51% 0.4994 -10.82% -7.77% 0.4992

s13207 -17.25% -5.72% 0.4994 -17.95% -5.87% 0.4989 -16.68% -5.62% 0.5000
s1423 -4.52% -1.55% 1.9974 -7.31% -2.50% 1.9998 -4.42% -1.38% 1.9997
s1488 -6.67% -6.04% 0.4998 -8.77% -7.94% 0.4999 -5.59% -5.17% 0.5001
s1494 -3.68% -3.33% 0.4997 -3.68% -3.33% 0.4997 -4.99% -4.18% 0.4998

s15850 -12.23% -3.36% 0.4996 -11.28% -3.09% 0.4999 -21.90% -5.45% 0.5090
s208_1 -3.15% -1.17% 0.4983 -8.66% -3.21% 0.4976 -11.81% -4.37% 0.4826

s298 -7.41% -2.89% 0.4987 -9.47% -3.69% 0.4990 -23.05% -9.31% 0.4991
s344 -8.77% -3.62% 0.4973 -8.42% -3.48% 0.4998 +0.70% +0.58% 0.4986
s349 -5.38% -2.19% 0.4974 -5.02% -2.05% 0.4993 -2.15% -0.29% 0.4983

s35932 -2.78% -0.77% 1.9486 -2.93% -0.81% 1.9480 -2.84% -0.79% 1.9313
s382 -8.36% -2.89% 0.4951 -10.03% -3.46% 0.4950 0.00% 0.00% 0.5000

s38417 -4.04% -1.14% 1.4958 -4.83% -1.37% 1.4923 -7.70% -2.18% 1.4797
s38584 -7.28% -2.41% 1.4189 -10.27% -3.40% 1.4971 -10.28% -3.41% 1.4346

s386 -3.12% -1.81% 0.4784 -3.12% -1.81% 0.4784 -4.91% -2.85% 0.4973
s400 -8.88% -3.10% 0.4972 -9.21% -3.21% 0.4984 -4.61% -1.61% 0.4985

s420_1 -12.81% -5.42% 0.4969 -14.38% -6.08% 0.4967 -7.19% -3.04% 0.5000
s444 -5.92% -1.99% 0.4978 -4.18% -1.41% 0.4963 +2.09% +0.70% 0.4990
s510 -9.41% -7.30% 0.4999 -15.68% -12.16% 0.4983 -17.07% -12.97% 0.4991
s526 -3.45% -1.31% 0.4967 -4.31% -1.64% 0.4997 -5.46% -2.29% 0.4923

s526n -8.71% -3.49% 0.4988 -9.50% -3.81% 0.4970 -8.97% -3.59% 0.4995
s5378 -9.69% -3.78% 0.4998 -10.25% -4.00% 0.4998 -10.50% -4.16% 0.5002
s641 -22.16% -10.30% 0.4997 -22.16% -10.30% 0.4950 -6.25% -2.91% 0.4995
s713 -17.44% -8.01% 0.4989 -16.28% -7.48% 0.4991 -15.70% -7.21% 0.4979
s820 -11.59% -9.68% 0.4999 -12.71% -10.62% 0.4998 -2.09% -1.52% 0.4998
s832 -12.06% -10.10% 0.4997 -13.96% -11.69% 0.4998 -19.65% -16.91% 0.4994

s838_1 -7.22% -2.82% 1.4970 -8.30% -3.24% 1.4909 -13.90% -5.43% 1.4959
s9234_1 -5.01% -1.54% 0.9937 -6.04% -1.86% 0.9305 -6.85% -2.11% 0.9872
Average -8.82% -4.38% - -9.80% -4.89% - -8.71% -4.22% -
Worst -2.78% -0.77% - -2.93% -0.81% - +2.09% +0.70% -
Best -22.16% -10.61% - -22.16% -12.16% - -23.05% -16.91% -

7.2.3 ITC’99 benchmarks area results

Even though ISCAS benchmarks are still widely used in logic synthesis research,
they are very old. In order to give results with more recent benchmarks, ITC 99
benchmarks (IWLS 2005 benchmarks, 2012) were chosen. The delay constraint and the
results of the synthesis using commercial tool A for ITC’99 benchmarks are shown in
Table 7.8. The delay constraint was defined based on the mapping of the circuits
without timing constraints. Notice that two syntheses were performed for each
benchmark: a synthesis using the base library (Set 5) and a synthesis using the extended
library (Set 6). Commercial tool A was not always able to use the extra cells in order to
improve area, and increases area for several benchmarks when extra cells are available,
with the worst case of 68% combinational area increase. For the following results, the
Set 5 results were used as reference.

77

The gate netlists generated by commercial tool A were then remapped by the
proposed methodology and the results shown in Table 7.9 were generated. Notice that
combinational area was reduced in all cases (up to 39%) and the majority of cases was
using the extra cells. The average runtime was about 4 hours, the best case runtime was
2 seconds and the worst case runtime was 35 hours (for “b18” benchmark). Notice that
the area results are being compared with the circuits from Set 5, therefore the remapping
results of Set 6 reduced the area compared to Set 6, but the area results are still larger
than Set 5 results in some cases.

Table 7.8 ITC’99 benchmarks synthesized with commercial tool A.

Benchmark

Delay

Constraint

(ns)

Commercial tool A

Base library (Set 5) Extended library (Set 6)

Comb. Area

(µm²)
Area (µm²)

Delay

(ns)

Comb.

Area Diff

Area

Diff

Delay

(ns)

b01 0.4 33.660 75.582 0.400 -3.64% -1.62% 0.396
b02 0.4 14.076 47.124 0.331 -10.87% -3.25% 0.362
b03 0.8 76.194 324.054 0.793 -0.80% -0.19% 0.759
b04 1.5 470.322 1015.614 1.403 -2.34% -1.08% 1.428
b05 1.5 478.584 759.492 1.497 -0.13% -0.08% 1.498
b06 0.5 33.048 107.406 0.408 -2.78% -0.85% 0.449
b07 1.0 273.564 637.092 0.923 -1.68% -0.72% 0.925
b08 0.6 119.340 294.678 0.599 -11.28% -5.19% 0.598
b09 1.0 83.538 314.874 0.819 -2.93% -0.78% 0.863
b10 1.0 119.646 260.100 0.949 -5.63% -2.59% 0.892
b11 0.6 551.412 811.818 0.601 +10.93% +7.95% 0.601
b12 0.6 833.850 1839.672 0.600 +0.11% +0.12% 0.601
b13 1.0 179.928 617.814 0.782 -4.59% -1.34% 0.783
b14 2.0 7794.432 9571.374 2.002 +12.21% +9.94% 2.004

b14_1 2.0 5443.107 7219.482 2.001 +68.04% +51.29% 2.004
b15 2.0 5585.112 9031.590 2.011 -0.78% -0.48% 2.012

b15_1 2.0 5586.948 9034.038 2.011 -0.87% -0.53% 2.011
b17 2.0 17185.604 28069.199 2.001 -0.31% -0.17% 2.004

b17_1 2.0 17356.014 28241.964 2.000 -1.17% -0.73% 2.004
b18 4.0 60159.294 85477.734 4.004 -0.58% -0.39% 4.001

b18_1 4.0 60645.528 85963.968 4.002 -0.90% -0.62% 4.002
b19 4.0 123083.910 173741.598 4.002 -0.64% -0.44% 4.003

b19_1 4.0 123706.711 174415.984 4.002 -0.17% -0.13% 4.004
b20 2.0 24243.156 27796.428 2.002 -0.86% -0.74% 2.001

b20_1 2.0 22822.398 26376.894 2.002 +4.55% +3.97% 2.002
b21 2.0 23019.768 26576.100 2.002 +3.87% +3.36% 2.002

b21_1 2.0 22498.038 26056.818 2.003 +6.60% +5.69% 2.003
b22 2.0 37029.366 42364.476 2.001 -2.17% -1.88% 2.004

b22_1 2.0 25233.508 30567.236 2.003 +13.89% +11.46% 2.003
Average - - - - +2.24% +2.41% -
Worst - - - - +68.04% +51.29% -
Best - - - - -11.28% -5.19% -

78

Table 7.9 ITC’99 benchmarks synthesized with commercial tool A remapped with with
the proposed methodology.

Benchmark

Remapping of Set 5 Remapping of Set 6

Base library Extended library Extended library

Comb.

Area

Diff

Area Diff
Delay

(ns)

Comb.

Area

Diff

Area

Diff

Delay

(ns)

Comb.

Area Diff
Area Diff

Delay

(ns)

b01 -4.55% -2.02% 0.3983 -4.55% -2.02% 0.3986 -9.09% -4.05% 0.3936
b02 -10.87% -3.25% 0.3882 -13.04% -3.90% 0.3575 -19.57% -5.84% 0.3946
b03 -0.40% -0.09% 0.7978 -0.40% -0.09% 0.7978 -2.41% -0.57% 0.7148
b04 -29.15% -13.50% 1.4613 -27.46% -12.71% 1.3935 -27.98% -12.96% 1.3225
b05 -24.04% -15.15% 1.4980 -25.90% -16.32% 1.4870 -25.64% -16.16% 1.4994
b06 -21.30% -6.55% 0.4603 -26.85% -8.26% 0.4323 -23.15% -7.12% 0.4391
b07 -19.35% -8.31% 0.9289 -21.25% -9.13% 0.9258 -21.14% -9.08% 0.9513
b08 -2.31% -0.93% 0.5986 -4.36% -1.77% 0.5998 -20.26% -8.83% 0.6000
b09 -10.26% -2.72% 0.8264 -10.26% -2.72% 0.8264 -13.19% -3.50% 0.8061
b10 -2.56% -1.18% 0.8995 -3.58% -1.65% 0.9009 -7.16% -3.29% 0.8023
b11 -14.71% -9.99% 0.6000 -12.26% -8.33% 0.5998 -4.16% -2.30% 0.6001
b12 -10.79% -4.89% 0.6000 -12.84% -5.82% 0.5996 -10.46% -4.67% 0.6006
b13 -9.35% -2.72% 0.7043 -9.52% -2.77% 0.8060 -13.27% -3.86% 0.7588
b14 -21.09% -17.18% 1.9999 -20.52% -16.71% 2.0000 -6.02% -4.91% 2.0000

b14_1 -27.93% -21.06% 1.9999 -29.04% -21.89% 1.9999 +34.37% +25.91% 2.0000
b15 -18.37% -11.45% 1.9989 -18.70% -11.66% 1.9999 -19.41% -12.10% 1.9996

b15_1 -18.78% -11.70% 1.9977 -19.21% -11.97% 1.9995 -19.30% -12.02% 1.9998
b17 -18.02% -11.12% 2.0000 -18.38% -11.34% 1.9999 -18.04% -11.03% 2.0000

b17_1 -15.90% -9.77% 2.0000 -17.95% -11.03% 2.0000 -19.27% -11.85% 1.9999
b18 -27.53% -19.86% 4.0000 -27.83% -20.07% 3.9999 -31.81% -22.86% 4.0000

b18_1 -20.64% -15.04% 3.9998 -31.15% -22.46% 4.0000 -34.72% -24.96% 4.0000
b19 -32.77% -23.69% 4.0000 -32.77% -23.69% 4.0000 -37.91% -27.32% 4.0000

b19_1 -33.73% -24.41% 4.0000 -34.87% -25.22% 4.0000 -38.44% -27.76% 4.0000
b20 -11.13% -9.71% 2.0000 -12.18% -10.63% 2.0000 -13.80% -12.03% 2.0000

b20_1 -10.91% -9.44% 2.0000 -11.52% -9.97% 2.0000 -9.12% -7.86% 2.0014
b21 -8.98% -7.78% 2.0000 -10.51% -9.11% 2.0000 -9.17% -7.93% 2.0000

b21_1 -9.60% -8.29% 2.0015 -10.27% -8.87% 2.0022 -6.20% -5.36% 2.0017
b22 -11.44% -10.62% 2.0000 -12.37% -11.43% 2.0000 -15.00% -13.73% 2.0017

b22_1 -21.07% -18.26% 2.0000 -22.08% -19.09% 2.0000 -12.24% -10.98% 2.0005
Average -16.12% -10.37% - -17.30% -11.06% - -15.64% -9.28% -
Worst -0.40% -0.09% - -0.40% -0.09% - +34.37% +25.91% -
Best -33.73% -24.41% - -34.87% -25.22% - -38.44% -27.76% -

7.3 Manufacturability as a cost function

The ISCAS’85 benchmarks were mapped with commercial tool A using different
libraries, with different regularity rules: reference, 2D-gridded and 1D-restricted.
Commercial tool A is focused in area reduction keeping the timing constraints attained,
and therefore ignores the proposed metric. Then, the proposed methodology using the
proposed cost function remapped the gate-level netlists provided by commercial tool A,
trying to maximize the #GDW. Differently from the experiments on Section 7.2, these
experiments do not try to exploit libraries with different amount of logic gates, but
libraries with different levels of regularity. The values used are the same as the Section
6.4: a wafer with 600 cm2 of area, dies of 4cm2, and dd=0.025 defects/cm2.

79

7.3.1 Libraries used for manufacturability experiments

The libraries descriptions are in Table 7.10. In the reference library, the layouts do
not include any lithography consideration. Therefore, the cells of the reference library
are smaller, since a higher compression can be done in the cell layouts, and the
lithography printability is worse. The 2D-gridded library is composed of cells that are
restricted to be designed on a regularly spaced grid, but can use two-dimensional
features. Notice that the 2D-gridded library has cells with slightly larger area if
compared to the reference library cells, but have a better printability. The 1D-restricted
library is composed by litho-friendly cells that are restricted to use one-dimensional
features (GÓMEZ; MOLL, 2010). Notice that the 1D-restricted cells have a much larger
area if compared to the reference library cells, but have a much better printability. The
cell layouts were not evaluated with any lithography simulation. In order to perform the
experiments, the cells were assigned random values of CHSci, according to the level of
regularity of the library, as seen in Table 7.10.

Table 7.10 Libraries used for manufacturing improvement experiments.

Name # of cells
of

functions
Description CHSci

Reference 266 49 Commercial cell library, no restrictions of features 20 to 30

2D-gridded 266 49
Same cells of reference library, with layout

restricted to two dimensions (a grid) features
10 to 20

1D-restricted 266 49
Same cells of reference library, with layout

restricted to one dimension features
5 to 10

7.3.2 ISCAS’85 benchmarks manufacturability results

Since foundry details on lithography resolution and yield are not known, four
different values of sld were used, as can be seen in Tables 7.11, 7.12 and 7.13. For sld
equals to 0.5, lithography resolution has less influence than other sources of yield loss.
For sld equals to 1, density of defects and lithography printability are in the same range.
For sld equals to 2, lithography resolution defects have more influence than critical area
defects. Finally, for sld equals to 5, lithography is five times more important than
critical area defects. Notice that mapping considering the cost function always improves
the number of good dies per wafer (#GDW) when the proposed mapping is compared to
an area-oriented mapping with same sld, and same library. This is verified in Tables
7.11, 7.12 and 7.13.

Results for the reference library are shown in Table 7.11. Notice that the number of
dies per wafer (#DW) is always 150 for the reference library mapped by commercial
tool A. This happens because the results were scaled to a number of instances of the
benchmarks such that the total number of instances represents a die of 4 cm². This is
done according to Equation (6.14) and Equation (6.15). All results of the experiment are
scaled to have a number of instances equal to the reference benchmark (the number of
instances vary from benchmark to benchmark, but it is constant for a single benchmark
circuit).

Results for the 2D-gridded library are shown in Table 7.12 and results for the 1D-
restricted library are shown in Table 7.13. The results show that the remapping of the
results given by commercial tool A can lead to a significant increase in the #GDW, for
different libraries with different regularity, and for different severity of lithography

80

resolution defects. The increase of #GDW happened due to: (1) increase of #DW (i.e.
smaller benchmarks area), and (2) increase in total yield (i.e. smaller critical area and
better printability). The results can also be used to verify the proportion of lithography
resolution defects that justifies the use of a more regular layout. The results show that
for sld equals to 5, the use of 1D characteristic in final layout is able to achieve better
#GDW than a non-regular reference library, even with a very larger area, and
consequently much smaller #DW. This comparison can be seen in Table 7.14, where the
results of reference library and the 1D-restricted library are compared.

Table 7.11 Manufacturability results for reference library.

Benchmark

Commercial tool A Proposed manufacturing remapping methodology

#DW
sld=0.5 sld=1 sld=2 sld=5 sld=0.5 sld=1 sld=2 sld=5

#GDW #GDW #GDW #GDW #DW #GDW #DW #GDW #DW #GDW #DW #GDW

c1355 150 125 113 95 57 165 141 164 129 164 112 163 70
c1908 150 125 113 94 55 157 133 158 124 157 105 156 65
c1908a 150 125 114 95 57 155 131 156 122 155 103 155 64
c2670 150 125 113 94 55 153 129 153 119 153 101 154 62
c2670a 150 125 113 95 56 155 131 153 119 152 100 154 63
c3540 150 126 114 96 59 160 136 160 126 159 108 160 70
c3540a 150 126 114 96 58 162 138 162 128 161 110 161 71
c432 150 125 113 95 56 154 130 154 120 154 102 154 63
c499 150 125 113 95 57 151 127 151 117 150 98 151 60

c5315 150 126 114 97 59 170 146 169 135 173 121 169 76
c5315a 150 126 115 97 60 174 150 173 139 174 122 173 80
c6288 150 125 114 96 58 152 128 151 117 151 100 151 62
c7552 150 125 114 96 57 173 149 174 140 174 123 177 85
c880a 150 125 114 95 57 155 131 155 121 155 103 155 63

Table 7.12 Manufacturability results for 2D-gridded library.

Benchmark

Commercial tool A Proposed manufacturing remapping methodology

#DW
sld=0.5 sld=1 sld=2 sld=5 sld=0.5 sld=1 sld=2 sld=5

#GDW #GDW #GDW #GDW #DW #GDW #DW #GDW #DW #GDW #DW #GDW

c1355 140 119 111 99 71 155 135 155 128 155 116 155 85
c1908 140 119 111 99 70 145 125 151 125 151 113 152 84
c1908a 142 121 113 100 70 148 128 148 121 150 111 149 79
c2670 142 121 113 101 72 147 127 148 121 147 108 146 78
c2670a 138 117 109 97 68 142 122 142 115 143 105 142 75
c3540 142 122 114 102 74 152 132 152 125 153 114 151 82
c3540a 143 123 115 104 76 151 131 152 126 153 115 152 86
c432 136 116 109 97 71 143 123 147 121 147 110 145 80
c499 142 121 113 100 70 147 127 146 119 147 107 147 77

c5315 141 121 113 101 73 154 134 155 128 153 114 153 85
c5315a 142 122 114 102 74 157 137 157 130 156 117 156 87
c6288 135 114 106 94 65 138 118 136 109 137 98 137 69
c7552 142 122 114 102 73 165 145 162 135 162 124 163 95
c880a 139 119 111 99 71 146 126 146 119 146 108 147 80

81

Table 7.13 Manufacturability results for 1D-restricted library.

Benchmark

Commercial tool A Proposed manufacturing remapping methodology

#DW
sld=0.5 sld=1 sld=2 sld=5 sld=0.5 sld=1 sld=2 sld=5

#GDW #GDW #GDW #GDW #DW #GDW #DW #GDW #DW #GDW #DW #GDW

c1355 117 100 95 89 73 126 109 128 108 129 102 128 84

c1908 119 102 98 91 75 126 109 125 105 125 99 124 81

c1908a 117 100 96 89 73 121 104 121 101 121 95 124 81

c2670 117 100 96 89 74 121 105 122 102 123 96 122 80

c2670a 115 98 94 87 72 120 103 120 100 121 95 120 78

c3540 116 99 94 88 72 128 112 127 107 127 101 127 85

c3540a 116 99 94 88 72 124 107 124 104 124 98 124 82

c432 118 101 97 91 75 122 106 122 102 122 96 122 80

c499 117 100 96 89 73 117 100 117 97 117 91 117 74

c5315 116 99 94 88 71 130 114 130 110 130 104 130 88

c5315a 117 100 95 89 72 131 114 131 111 131 105 132 90

c6288 117 100 95 89 72 118 101 118 98 118 91 118 75

c7552 117 100 95 89 72 128 111 129 109 128 102 128 85

c880a 114 97 93 86 71 119 102 119 99 119 93 120 77

Table 7.144 Comparison between 1D-restricted library with reference library.

Benchmark
sld=0.5 sld=1 sld=2 sld=5

#GDW #GDW #GDW #GDW

c1355 -12.80% -4.42% +7.37% +47.37%
c1908 -12.80% -7.08% +5.32% +47.27%
c1908a -16.80% -11.40% 0.00% +42.11%
c2670 -16.00% -9.73% +2.13% +45.45%
c2670a -17.60% -11.50% 0.00% +39.29%
c3540 -11.11% -6.14% +5.21% +44.07%
c3540a -15.08% -8.77% +2.08% +41.38%
c432 -15.20% -9.73% +1.05% +42.86%
c499 -20.00% -14.16% -4.21% +29.82%

c5315 -9.52% -3.51% +7.22% +49.15%
c5315a -9.52% -3.48% +8.25% +50.00%
c6288 -19.20% -14.04% -5.21% +29.31%
c7552 -11.20% -4.39% +6.25% +49.12%
c880a -18.40% -13.16% -2.11% +35.09%

82

83

8. CONCLUSIONS AND FUTURE WORK

The main contribution of this work was the introduction of the concept of k-cuts and
kl-cuts performed on top of mapped circuits as opposed to computing k-cuts and kl-cuts
on top of AIG representations. Besides bringing the idea from a technology independent
data structure to a technology dependente gate netlist, three related contributions were
also introduced: (1) algorithms to enumerate k-cuts and kl-cuts on top of mapped
circuits; (2) a complete and operational remapping flow based on kl-cuts, which is able
to reduce the area of circuits mapped by commercial logic synthesis tools; and (3) a
novel manufacturing cost function to be used in the logic synthesis process, which
considers lithography printability in order to increase the number of good dies per wafer
manufactured.

The first contribution of this work is a comparison of k-cuts and kl-cuts performed
on top of mapped circuits as opposed to computing k-cuts and kl-cuts on top of AIG
representations. The main differences lie on (1) the number of inputs for the 2-input
AND nodes used on AIGs and the nodes of a gate netlist which may have several
inputs, and (2) the existence of explicit inverters and buffers, appearing as nodes, in the
netlist compared to the use of negated or direct edges used in the AIG. Moreover,
algorithms to enumerate k-cuts and kl-cuts on top of a netlist representation were
proposed and implemented.

The second contribution presented is an iterative remapping flow, based on local
transformations using kl-cuts. The proposed approach was implemented in an
operational tool called KLever2, and it is able to reduce a cost function such as area,
while respecting timing constraints. A complete suite of implementations and
knownledge was necessary to implement such a tool: a Liberty parser and library data
structure; a structural Verilog parser and mapped circuit data structure; an SDC parser
and data structure; k-cut and kl-cut enumeration algorithms, parser and data structure; an
extension of a multiple output P-signature algorithm, in order to consider polarity don’t

cares; an STA engine, with results comparable to a commercial tool; Boolean factoring
aggressive algorithms; and logic tree mapping algorithms. For the benchmark circuits
analyzed (ISCAS’85, ISCAS’89 and ITC’99), results show that the proposed flow can
reduce combinational area in up to 38%, while still respecting the required timing. Also,
the experiments have show that the use of complex logic gates is not well explored by
commercial tools. The use of complex gates is better explored by the tool developed,
showing a higher quality of results with a larger amount of different combinational
cells. The proposed flow is composed of many heuristics. The quality of results is due to
a combination of the following attributes: (1) use of kl-cuts which minimize the support
of the Boolean functions; (2) extraction of full context, by using kl-cuts instead of k-
cuts; (3) use of aggressive Boolean optimization techniques to optimize sub-circuits (kl-

84

cuts); and (4) allow only substitutions that improve area and do not impact negatively
on the timing constraints.

The third contribution of this work was the introduction of a novel yield model for
integrated circuits manufacturing, considering lithography printability and density of
defects, which can be used as a cost function for logic synthesis process. A technology
remapping tool using kl-cuts was developed considering this cost function, and results
were compared with the results of a commercial logic synthesis tool for three different
libraries, with different printability and area overhead characteristics. The proposed
methodology establishes a new standpoint in the field of regular layout by introducing a
metric to tradeoff area and printability of layouts. Many of the previous works
completely ignored these tradeoffs and simply pointed out that regularity is expected to
improve yield somehow, without presenting or discussing metrics. Therefore, a great
contribution of this work is to propose a discussion about the tradeoffs between
different area overheads and different levels of lithography printability for regular
layouts. Another important contribution is to show that taking the proposed cost
function into account during technology mapping produces circuits with larger number
of good dies per wafer, when compared to simply minimizing the area.

8.1 Future work

Several improvements in the proposed approaches can be done in order to improve
runtime and quality of results. For example, more types of kl-cuts could be explored,
such as factor cuts (CHATTERJEE, 2006-b), which technique is able to find larger sub-
circuits. Also, sub-circuits with higher amount of inputs could be found, if an approach
such as priority cuts (MISHCHENKO, 2007) is applied. Larger sub-circuits tend to
result in higher gains in the cost function desired, and a trade-off between runtime and
quality of results can be done. Moreover, the runtime in larger circuits could be greatly
improved, if a partial STA check is performed, such as the STA check proposed in
(COUDERT, 1997). A timing fix engine would certainly improve a lot the quality of
results and runtime, since the kl-cuts with a very large gain usually increase delay. By
performing a timing fix, this large gain would be kept, and the kl-cuts that overlap with
the kl-cut replaced would not be tested, and therefore less STA checks would be
performed. Besides quality of results and runtime, different cost functions could be
investigated, such as power (TIWARI, 1993), and a combination of cost functions.

85

REFERENCES

AITKEN, R. DFM metrics for standard cells. IN: INTERNATIONAL SYMPOSIUM
ON QUALITY ELECTRONIC DESIGN, 2006…Proceedings. [S.l.:s.n.], 2006. p. 491-
496.

Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. Accessed in November of 2012. Available at
http://www.eecs.berkeley.edu/~alanmi/abc/.

BENINI, L.; VUILLOD, P.; DE MICHELI, G. Iterative remapping for logic circuits.
IEEE Trans. on Computer-Aided Design, vol. 17, pp. 948–964, 1998.

BHASKER, J.; CHADHA, R. Static Timing Analysis for Nanometer Designs: A

Practical Approach. [S.l.]: Springer, 2009.

BHATNAGAR, H. Advanced ASIC Chip Synthesis Using Synopsys® Design

Compiler® Physical Compiler® and PrimeTime®. [S.l.]: Springer, 2001.

BRAYTON, R. K. Factoring logic functions. IBM Journal of Research and

Development, vol. 31, no. 2, pp.187-98. Mar 1987.

BUBEL, I. et al. AFFCCA: A Tool for Critical Area Analysis with Circular Defects and
Lithography Deformed Layout. IN: INTERNATIONAL WORKSHOP ON DEFECT
AND FAULT TOLERANCE IN VLSI SYSTEMS, 1995…Proceedings. [S.l.:s.n.],
1995. p. 10-18.

CORREIA, V.; REIS, A.I. Advanced technology mapping for standard-cell generators.
IN: 17TH SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN,
2004…Proceedings. [S.l.:s.n.], 2004. p. 254-259.

COUDERT, O. Two-level logic minimization: an overview. The VLSI journal

Integration, Elsevier, vol. 17, no. 2, pp. 97-140, 1994.

COUDERT, O. Gate sizing for constrained delay/power/area optimization. IEEE

Transactions on VLSI Systems, vol. 5, no. 4, pp. 465- 472, 1997.

CHATTERJEE, S.; MISHCHENKO, A.; BRAYTON, R.; WANG, X.; KAM, T.
Reducing structural bias in technology mapping. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 25, n. 12, pp. 2894–2903,
2006.

CHATTERJEE, S.; MISHCHENKO, A.; BRAYTON, R. Factor cuts. IN:
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN,
2006...Proceedings. [S.l.:s.n.], 2006. p. 143–150.

DE MICHELI, G. Synthesis and Optimization of Digital Circuits. [S.l]: McGraw-
Hill, New York, 1994.

86

DETJENS, E.; GANNOT, G.; RUDELL, R.; SANGIOVANNI-VINCENTELLI, A.;
WANG, A. Technology mapping in MIS. IN: INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 1987...Proceedings. [S.l.:s.n.], 1987. p. 116–119.

DEY, S.; BRGLEZ, F.; KEDEM, G. Corolla based circuit partitioning and resynthesis.
IN: 27TH DESIGN AUTOMATION CONFERENCE, 1990...Proceedings. [S.l.:s.n.],
1990. p. 607-612.

DING, D.; TORRES, A.J.; PIKUS, F.G.; PAN, D.Z. High performance lithographic
hotspot detection using hierarchically refined machine learning. IN: 16TH ASIA AND
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, 2011...Proceedings.

[S.l.:s.n.], 2011. p. 775-780.

FIŠER, P.; SCHMIDT, J. It Is Better to Run Iterative Resynthesis on Parts of the
Circuit. IN: 19TH INTERNATIONAL WORKSHOP ON LOGIC & SYNTHESIS,
2010...Proceedings. [S.l.:s.n.], 2010. p. 17-24.

GÓMEZ, S.; MOLL, F. Lithography Aware Regular Cell Design Based on a Predictive
Technology Model. Journal of Low Power Electronics, vol. 6, pp. 588-600, 2010.

HEINEKEN, H.T.; KHARE, J.; d’ABREU, M. Manufacturability Analysis of Standard
Cell Libraries. IN: IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE,
1998...Proceedings. [S.l.:s.n.], 1998. p. 321-324.

HINSBERGER, U.; KOLLA, R. Boolean matching for large libraries. IN: 35TH
ANNUAL DESIGN AUTOMATION CONFERENCE, 1998…Proceedings. [S.l.:s.n.],
1998. p. 206-211.

IWLS 2005 benchmarks. Accessed in November of 2012. Available at
http://iwls.org/iwls2005/benchmarks.html.

KHETERPAL, V., ROVNER, V., HERSAN, T.G., MOTIANI, D., TAKEGAWA, Y.,
STROJWAS, A.J. PILEGGI, L. Design methodology for IC manufacturability based on
regular logic-bricks. IN: 42ND DESIGN AUTOMATION CONFERENCE,
2005…Proceedings. [S.l.:s.n.], 2005. p. 353-358.

KEUTZER, K. DAGON: technology binding and local optimization by DAG matching.
IN: 24TH DESIGN AUTOMATION CONFERENCE, 1987…Proceedings. [S.l.:s.n.],
1987. p. 341-347.

KOREN, I.; KOREN, Z. Defect tolerance in VLSI circuits: techniques and yield
analysis. Proceedings of the IEEE, vol. 86, no.9, pp. 1819-1838, 1998.

KRAVETS, V.N.; KUDVA, P. Implicit enumeration of structural changes in circuit
optimization. IN: 42ND DESIGN AUTOMATION CONFERENCE,
2004…Proceedings. [S.l.:s.n.], 2004. p. 438-441.

KUNZ, W.; STOFFEL, D. Reasoning in Boolean Networks, [S.l]: Springer, Boston,
1997.

LEHMAN, E. Logic decomposition during technology mapping. IN:
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN,
1995…Proceedings. [S.l.:s.n.], 1995. p. 264-271.

LEHMAN, E.; WATANABE, Y.; GRODSTEIN, J.; HARKNESS, H. Logic
decomposition during technology mapping. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 16, n. 8, pp. 813-834, 1997.

87

LUO, J.; SINHA, S.; SU, Q.; KAWA, J.; CHIANG, C. An IC Manufacturing Yield
Model Considering Intra-Die Variations. IN: DESIGN AUTOMATION
CONFERENCE, 2006…Proceedings. [S.l.:s.n.], 2006. p. 749-754.

MAILHOT, F.; DI MICHELI, G. Algorithms for technology mapping based on binary
decision diagrams and on Boolean operations. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 12, n. 5, pp. 599-620, 1993.

MARTINELLO JR., O. KL-cuts: a new approach for logic synthesis targeting

multiple output blocks. 2010. 85 f. Dissertação (Mestrado em Ciência da Computação)
– Instituto de Informática, UFRGS, Porto Alegre.

MARTINS, M.G.A.. Functional Composition and Applications. 2012. 95 f.
Dissertação (Mestrado em Microeletrônica) – Instituto de Informática, UFRGS, Porto
Alegre.

MISHCHENKO , A.; BRAYTON, R. Scalable Logic Synthesis using a Simple Circuit
Structure. IN: 15TH INTERNATIONAL WORKSHOP ON LOGIC & SYNTHESIS,
2006…Proceedings. [S.l.:s.n.], 2006. p. 15-22.

MISHCHENKO, A.; CHO, S.; CHATTERJEE, S.; BRAYTON, R. Combinational and
sequential mapping with priority cuts. IN: INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 2007…Proceedings. [S.l.:s.n.], 2007. p. 354–361.

MOORE, G. E. Craming more components onto integrated circuits. Electronics, vol.
38, number 8, 1965.

NARAYAN, A.; JAIN, J.; FUJITA, M.; SANGIOVANNI-VINCENTELLI, A.
Partitioned ROBDDs—a compact, canonical and efficiently manipulable representation
for Boolean functions. IN: INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, 1997…Proceedings. [S.l.:s.n.], 1997. p. 547–554.

NARDI, A.; SANGIOVANNI-VINCENTELLI, A. L. Logic synthesis for
manufacturability. IEEE Design & Test of Computers, vol. 21, no. 3, pp. 192- 199,
May-June 2004.

PAN, P.; LIN, C. A New Retiming-based Technology Mapping Algorithm for LUT-
based FPGAs. IN: 6TH INTERNATIONAL SYMPOSIUM ON FPGAS,
1998…Proceedings. [S.l.:s.n.], 1998. p. 35-42.

SASAO, T. Switching theory for logic synthesis. [S.l.]: Kluwer Academic Publishers,
1999.

SAVOJ, H.; BRAYTON, R.K. The use of observability and external don't cares for the
simplification of multi-level networks. IN: 27TH DESIGN AUTOMATION
CONFERENCE, 1990…Proceedings. [S.l.:s.n.], 1990. p. 297-301.

SHAIK, S.A.; KHARE, J.; HEINEKEN, H.T. Manufacturability and testability oriented
synthesis. IN: 13TH INTERNATIONAL CONFERENCE ON VLSI DESIGN,
2000…Proceedings. [S.l.:s.n.], 2000. p. 185-191.

SINGH, A.K.; MANI, M.; ORSHANSKY, M. Statistical technology mapping for
parametric yield. IN: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, 2005…Proceedings. [S.l.:s.n.], 2005. p. 511-518.

STOK, L.; IYER, M. A.; SULLIVAN, A. J. Wavefront technology mapping. IN:
CONFERENCE ON DESIGN, AUTOMATION AND TEST IN EUROPE,
1999…Proceedings. [S.l.:s.n.], 1999. p. 531-536.

88

SUNDARESWARAN, S.; MAZIASZ, R.; ROZENFELD, V.; SOTNIKOV, M.;
KONSTANTIN, M. A sensitivity-aware methodology to improve cell layouts for DFM
guidelines. IN: INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC
DESIGN, 2011…Proceedings. [S.l.:s.n.], 2011. p. 1-6.

SZE, S.M. Physics of semiconductor devices. [S.l.]: Wiley, 2006.

TIWARI, V.; ASHAR, P.; MALIK, S. Technology Mapping for Low Power. IN: 30TH

DESIGN AUTOMATION CONFERENCE, 1993…Proceedings. [S.l.:s.n.], 1993. p.
74-79.

WONG, B.; ZACH, F.; MOROZ, V.; MITTAL, A.; STARR, G.; KAHNG. A. Nano

CMOS Design for Manufacturability: Robust Circuit and Physical Design for Sub-
65 nm Technology Nodes, [S.l.]: John Wiley & Sons, 2009.
WUU, J.Y.; PIKUS, F.G.; TORRES, A.J.; MAREK-SADOWSKA, M. Detecting
Context Sensitive Hot Spots in Standard Cell Libraries. IN: INTERNATIONAL
SOCIETY FOR OPTICAL ENGINEERING SYMPOSIUM, 2009…Proceedings.

[S.l.:s.n.], 2009. p. 727515-1 to 727515-9.

