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Ground states of spin-1 bosons in asymmetric double wells
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In this work we investigate the different states of a system of spin-1 bosons in two potential wells connected
by tunneling, with spin-dependent interaction. The model utilizes the well-known Bose-Hubbard Hamiltonian,
adding a local interaction term that depends on the modulus of the total spin in a well, favoring a high- or low-spin
state for different signs of the coupling constant. We employ the concept of fidelity to detect critical values of
parameters for which the ground state undergoes significant changes. The nature of the states is investigated
through evaluation of average occupation numbers in the wells and of spin correlations. A more detailed analysis
is done for a two-particle system, but a discussion of the three-particle case and some results for larger numbers

are also presented.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensates
(BECQ) in dilute atomic gases [1-3] is one of the most exciting
recent achievements in physics, and research associated with
this peculiar state of matter has flourished in recent years. One
remarkable development in this context is the realization of
spinor Bose gases in optical lattices. In contrast to a magnetic
trap, where spins are frozen, in an optical trap the atoms
keep their spin degrees of freedom. Several experimental
groups have successfully created spinor BECs of >*Na [4,5]
and ¥Rb atoms [6-8]. Spinor gases exhibit richer quantum
effects than their single-component counterparts, and allow us
to investigate mesoscopic magnetism.

These experimental developments have stimulated exten-
sive study of related theoretical models [9-24]. In particular,
the behavior of spin-1 bosons in a double-well potential can be
described by a variant of the two-site Bose-Hubbard Hamil-
tonian [25] including spin-dependent interactions [11,23] that
affect physical properties of the system. Of particular interest is
the case where the number of atoms is small, motivated by the
recent successful experimental trapping of few atoms with high
control and precision [26-28]. Remarkably, the experimental
preparation of only two interacting particles in a double well
has been reported [29], and in principle the extension to three
particles is feasible with the state-of-the-art experiments [30].
These experimental achievements have generated an intense
theoretical effort in few-body quantum systems (see, for
instance, Refs. [31—41]). Despite their simplicity, they still
constitute a very challenging research field.

In this work we investigate the ground-state properties of
a few spin-1 bosons in a double well. Such systems can be
viewed as building blocks of optical lattices with cold atoms
that can be in three different hyperfine states. Besides the usual
Hubbard-type repulsion, the model includes a spin-dependent
attractive interaction between the particles, which may favor
the establishment of a high- or low-spin state in each of
the wells depending on the sign of the coupling constant of
this interaction. Our basic goal is to study changes in the
characteristics of the ground state induced by variations of the
model parameters.

The paper is organized as follows. In Sec. II, we discuss
the Hamiltonian and its diagonalization. A detailed analysis
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of the two-particle system is developed in Sec. III, where
we also introduce the tools that we use to obtain information
about relevant properties. Section IV shows relatively detailed
results for the three-boson system and discusses general trends
for larger numbers, using the cases of four and five particles
as examples. Final remarks are presented in Sec. V.

II. MODEL AND MATRIX REPRESENTATION

Following Ref. [23], we write a variant of the Bose-Hubbard
Hamiltonian for a system composed of two wells, at positions
L (left) and R (right), as

H = G(nL - nR) —1 Z(a}:aaRa + aLaaLa)

a

1 1
+§U Z ni(ni—l)-i-EU Z (S?—Zn,‘), (D

i=L,R i=L,R

where afa and q;, are the creation and annihilation operators
of a boson in a given well (i = L, R) and in the spin state o =
{—1,0,1}; n; and S; are the number and total-spin operators
for each well. We assume a single level per well in the zero-
tunneling limit (r = 0), with energies +¢. This means that € is
an asymmetry (or tilf) parameter, since the wells are identical
only for € = 0. All interactions in the model are local. Apart
from the usual (repulsive) Hubbard interaction U, the last term
in Eq. (1) describes a spin-dependent interaction with coupling
constant U’. It should be noted that this term contributes only
when more than one particle is present in the same well, in
which case low- and high-spin states are favored for U’ >
0 and U’ < 0, respectively. The number and spin operators
appearing in the Hamiltonian are given by

n; = Za}aaia, Si = ZajaTag/aid’a (2)

o oo’

where T = T,X+ T,§ + T;Z, in terms of the usual spin-1
matrices.

From Eq. (1) we can see that the total number of particles
(N, = Np + Ng), the total spin (S; = S, + Sg), as well as
any component of the latter (which we choose to be S7) are
conserved quantities. It is natural to investigate the properties
of a system with a fixed number of particles. Moreover, since
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the energies do not depend on the value of S7, we can restrict
our analysis to the subspace with S? eigenvalue equal to zero,
as this subspace is always present for any number of spin-1
particles.

A convenient basis is provided by a set of vectors of the
form [{N,,Ng},{S,,Sg},S,), labeled by the number and spin
values in each well, and the total spin S,. Bosonic symmetry
imposes that S; + N; must be an even integer [23] (i = L,R).
This is an interesting basis because it explicitly separates
subspaces of different values of §,, which are not connected
by the Hamiltonian. However, to deal with the tunneling term
it is better to use appropriate symmetric combinations of
vectors of type |N(0),N£1),N£_l); NI(QO),NI(;),NI({U), specifying
the number of particles per spin state in each well. Since these
two sets of vectors are related by Clebsh-Gordon coefficients,
it is straightforward to generate any matrix elements.

All results that we discuss here were obtained starting from
exact diagonalization of the Hamiltonian matrix for a given
set of model parameters and particle number. The on-site
Coulomb repulsion U was kept fixed and chosen to be the
energy unit. Hence, in what follows we set U = 1, it being
implicitly assumed that any quantity with dimension of energy
is expressed in units of U.

III. TWO-PARTICLE SYSTEM

We begin by investigating the energy spectrum for the
simplest case, N, = 2, with emphasis on changes in the ground
state when varying the parameters of the Hamiltonian.

As an example, Fig. 1 shows the energy eigenvalues for
two bosons as functions of the asymmetry parameter e,
for moderately weak tunneling (+ = 0.1) and spin-dependent
coupling (U’ = 0.3). For comparison, the top panel shows the
case of decoupled wells (+ = 0). We recall that the local energy
levels are € and —e for left (L) and right (R) wells, respectively,
which can be related to their depths. Thus, € < 0 means that
the L well is deeper. The inversion symmetry around € = 0 is
noticeable in the plots.

From Fig. 1 it is clear that there are values of € near which
the ground-state changes. These points occur at level crossings
in the absence of tunneling, and the degeneracy lifting is
stronger as tunneling increases.

A. Ground-state changes monitored by fidelity

Ground-state changes in finite-size systems may be viewed
as precursors of quantum phase transitions (QPTs) in the
macroscopic limit. Among the usual techniques to detect
QPTs, the fidelity of two ground states corresponding to
different sets of parameters can be used unambiguously for
finite-size systems. This is a concept derived from quantum-
information theory and measures the similarity between
two quantum states. Although there are generalized defini-
tions [42], the simplest one, which serves our purposes, is

Fh.0) = (¥lo)l. 3)

It defines the fidelity between any two states of the Hilbert
space as the absolute value of their scalar product. For
normalized states, 0 < F < 1.
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FIG. 1. (Color online) Energy eigenvalues as functions of €, for
N, =2 and U’ = 0.3. The top panel shows decoupled wells (+ = 0),
while the bottom panel corresponds to moderately weak tunneling
(t=0.1).

In our case, judging from Fig. 1, an appropriate control
parameter is €, so that we define the fidelity

fE(E;NIat7U/) = |(e - 67Ntat7U/|€ + (SaNtatvU/H ) (4)

where § is small in the scale of € values, and the notation
for the ground-state vector also includes all quantities that
are kept fixed. Later on we are interested in the effect of
varying the spin-dependent interaction U’, in which case a
more convenient choice of fidelity is

fU’(Eﬂlet; U/) = |<67NZ5I7U/ - 8|E’Nf7taU/ + 8>| N (5)

Characteristic behavior of F, for two particles is shown
in Fig. 2. The smoother curve corresponds to the system
parameters used in Fig. 1. Clearly defined minima are observed
at values of the control parameter for which a substantial
change of ground state occurs. These minima become much
sharper when the tunneling is reduced, as shown by the dashed
curve, for which they appear at different € values because a
different U’ was chosen.

B. Occupation number and spin correlations

Although the fidelity finds parameter values for which
the ground sate changes, it does not give direct information
about the nature of states. For this we need to evaluate
(average values of) relevant physical quantities. An obvious
one is the occupation number of each well [23]. Also
interesting is the spin correlation function, usually employed
to study magnetic properties of solids, as they are directly
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FIG. 2. (Color online) Ground-state fidelity as a function of the
asymmetry parameter € for N, =2, with two sets of values of
tunneling amplitude and spin-dependent coupling: t = 0.1, U’ = 0.3
(solid line, right y axis), and# = 0.005, U’ = 0.1 (dashed, left y axis).

associated with magnetic susceptibility. The latter not only
gives the response to an applied field but serves to signal
the establishment of magnetic order. The concept of magnetic
order does not make sense in a small system as the one that
we are studying. However, spin correlation functions can give
important information about the nature of the ground state with
respect to relative orientations of the spins.

We define the spin correlation function between the two
wells as

C(Ethvt9U/) = (€’Nt7tsU/|SL : SR|Ethvt1U/>’ (6)

where S; and Sy denote the total spin operator associated to
the left and right wells, respectively.

Figure 3 shows typical behavior of the right-well occupa-
tion number and interwell spin correlation function for two
particles, in the same range of relative depths as in Fig. 2. The
staircase behavior of Ng is easy to understand on the basis
of a competition between the on-site repulsion, that tends to
keep particles apart, and the energy asymmetry, that favors
occupation of the deepest well. The role of U’ is to select spin
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FIG. 3. (Color online) Occupation number of the R well (solid
line) and interwell spin correlation function (dashed) as a function of
€ for two particles, with the same parameters that show sharp minima
in Fig. 2.
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FIG. 4. (Color online) Regions of qualitatively different ground
states for two particles. The outer regions correspond to double
occupation of the L (LI) and R (I'II') wells. Single occupation
of both wells occur in the center region, with AF (III) and FM (IV)
spin correlations.

states and to counteract the repulsion U since it is attractive
for the appropriate spin orientations.

By the definition (6), C is zero if one of the wells is empty or
doubly occupied with zero total spin, which is observed in the
large |€| regions of Fig. 3. In the single-occupation regime, we
see that the spin correlation is negative, reflecting the fact that
U’ > 0 favors a low total spin in each well, which is consistent
with tunneling to singly occupied states with opposite spins.
This is similar to the mechanism of exchange interaction
between localized electrons of neighboring atoms in a crystal,
although in that case, due to the exclusion principle, there is
no need for a spin-dependent interaction.

The results shown up to now correspond to a weak positive
U’. From Fig. 2 it is possible to see that the single-occupation
range shrinks as U’ grows. This regime disappears when U’
exceeds a critical value U jr = 0.5, since the attractive effect
of U’ overcomes the repulsion U, favoring formation of a
zero-spin pair in the deeper well.
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FIG. 5. (Color online) Variation of the average double occupancy
as a function of the the ratio between Hubbard repulsion and tunneling
strength in the two-particle ground state for a symmetric double well.
The curves correspond to values of the spin-dependent interaction
within the region III of Fig. 4.

033608-3



D. W. S. CARVALHO, A. FOERSTER, AND M. A. GUSMAO

=====3.00

1250
.......... 12.00
F 11.50 Ng

.......... -4 1.00

FIG. 6. (Color online) Fidelity (continuous) and R-well occupa-
tion (dashed) for N, = 3, ¢t = 0.005, and U’ = 0.1.

In the case of U’ < 0, still for a two-boson system, the spin
correlation behaves similarly to what was seen for U’ > 0 in
Fig. 3, except that the sign of C is reversed. Double occupancy
continues to be favored by U’, but now with maximum total
spin in the doubly occupied well. Hence, the single-occupation
region for small |U’| will show ferromagnetic correlations. The
critical value for suppression of this regime is now U/ = —1.0
(meaning U’ = —U).

C. Two-particle regimes in the (¢,U’) plane

It is interesting to see a complete picture of the case N, = 2,
varying the asymmetry parameter € and the spin-dependent
interaction U’, as shown in Fig. 4. The limiting lines of the
various regions were obtained from fidelity minima (mostly
Fe, but the line at U’ = 0 is better seen with Fy). In regions
I and II there is double occupation of the L well, with S; = 0
and 2, respectively. Regions I’ and II' are equivalent to I and II,
but the particles are located in the R side. States of one particle
in each well are observed in the two central regions, III and
IV, respectively with negative and positive spin correlations.
Borrowing denominations from magnetism, we can say that
spin correlations are antiferromagnetic (AF) in region III and
ferromagnetic (FM) in IV.

0.000
—0.003
—0.006

—0.009

FIG. 7. (Color online) Spin correlation functions for N, = 3 and
t = 0.005 in the cases of positive and negative U’. Notice the enlarged
scale and displaced origin for the solid line.
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FIG. 8. (Color online) Variation of the ground-state fidelity with
€ and U’ for t = 0.1 in a three-particle system. Notice that the fidelity
axis is inverted, and the values are normalized to fall in the range [0, 1].

It is worth observing that the characterization of states
in terms of doubly or singly occupied wells refers to the
average occupation. Fluctuations occur for any ¢ # 0, so that
the sharp boundary lines of Fig. 4 are only sharp for very weak
tunneling. For instance, by choosing a favorable condition for
single occupancy inside region III (e.g., symmetric wells and
small |U’|), a possible measure of the probability of double
occupancy is given by D = 1 — F2, where F, is the fidelity
between the ground states with zero and nonzero tunneling.
This is shown as a function of U/t in Fig. 5, where we can
see that it is null for decoupled wells and grows with the
tunneling strength, approaching 1/2 for large ¢, when all
possible occupancies become energetically equivalent. The
bottom curve (U’ = 0) is very similar to the one obtained
for two fermions in a double well [29]. Here, the effect of
increasing U’ is to lower the energy of doubly occupied wells.

IV. THREE OR MORE PARTICLES

Adding a third particle to the system leads to noticeable
qualitative changes. Figure 6 shows the fidelity and R-well
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FIG. 9. (Color online) Regions of qualitatively different ground
states for three particles. The outer regions correspond to double
occupation of the L (I,II) and R (I',IT') wells. In the central regions
(101, 10, TV, TV’) there is single occupation in one well and double in
the other, with very weak AF correlations for U’ > 0 and strong FM
correlations for U’ < 0.
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FIG. 10. (Color online) Normalized fidelity (F,), spin correlation function (C), and R-well occupation for systems of four particles (left

panel) and five particles (right panel), with ¢+ = 0.005 and U’ = 0.1.

occupation for varying €. The plot is for U’ > 0, but the
behavior for negative U’ is qualitatively the same. Notice that
there is a central minimum of the fidelity, corresponding to the
extra step observed for N, but no central plateau, in contrast
with Fig. 2, since it is impossible to have the same number
of particles in both wells. The most striking difference comes
from the spin correlation function, shown in Fig. 7. For positive
U’ the correlation is negative but close to zero except, for a
slight increase in magnitude near the changes of ground state.
This is due to the fact that there is always either zero or two
particles in one of the wells, which means that one of the spins
is always essentially null. In contrast, for U’ < 0 the whole
central region, where none of the wells is empty, presents
a large positive correlation between the spins of the two
wells.

As in the two-particle case, when the magnitude of a nega-
tive U’ grows beyond a critical value (once more, U’ = —1),
all three particles stick together in one of the wells (with
maximum spin S; = 3), so that the two inner regions around
the central minimum in Fig. 6 cease to exist. On the other hand,
for positive U’ the fidelity minima are located at the same €
values seen in Fig. 6, independent of U’. This is shown in
Fig. 8, where we plot a normalized fidelity F,, (rescaled to fall
in the range [0, 1]) as a function of both € and U’. The observed
independence on U’ is due to the constraint that N; 4+ S; must
be even, which means that the minimum total spin in a given
wellis S; = Ofor N; = 2and S; = 1for N; = 3. It then follows
that the eigenvalue associated with the U’ term [see Eq. (1)]
is S;(S; + 1) — 2N; = —4 in both cases, so that the change in
ground state is driven by a balance between € and the local
repulsion U.

A ground-state diagram like that of Fig. 4 can be built for
N = 3, as shown in Fig. 9. Here too the regions labeled with
primed roman numbers are equivalent to the corresponding
unprimed ones upon the exchange L <> R.InIand II we have
essentially three particles in L while R is nearly empty, with
S; =3 inTand S; =1 in II. Regions III and IV correspond
to double occupation of L and the third particle in R, with
the spin states compatible with spin correlations as shown
in Fig. 7.

Larger N

The main trends in behavior observed for two and three
particles appear in general for even and odd particle numbers.
This is exemplified in Fig. 10 for N, = 4 and 5. Obviously,
the staircase increase in single-well average occupation has a
number of steps reflecting the total particle number. Each step
is accompanied by a sharp minimum of the fidelity.

Spin correlation functions are shown in Fig. 10 only for
U’ > 0. They reproduce the scenarios already viewed for two
and three particles. Also similarly to those cases, correlations
for U’ < 0 are positive (when not null), and have significant
values that remain nearly constant between jumps of single-
well occupations.

The “phase diagrams” are similar to Fig. 4 for even N, and
to Fig. 9 for odd N,, except that the central part has a growing
number of nested regions as the number of possible distributed
occupations increases.

V. CONCLUSIONS

We studied the possible ground states of spin-1 bosons
in double-well potentials. Such systems can model the basic
unit of optical lattices with trapped cold atoms, for which
parameters such as the depth of the wells, amplitude of
tunneling between them, and interactions between particles
can be controlled. We based our analysis on the usual
Bose-Hubbard Hamiltonian with an additional on-site spin-
dependent interaction, as proposed in Ref. [23].

Even considering different total numbers of particles,
restriction to two wells allowed us to exactly diagonalize
the Hamiltonian matrix in relevant subspaces and to study
changes of the ground state induced by variation of the
model parameters. Our analysis focused primarily on a regime
of weak tunneling relative to the local repulsive (Hubbard)
interaction, which we kept fixed. The variable parameters were
then the relative depth between the two wells and the local
spin-dependent coupling, which we allowed to be positive or
negative, respectively, favoring low and high total spin in each
well.
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We showed that regime changes in the system can be
detected by evaluating the ground-state fidelity as some
parameter is varied. This quantity presents sharp minima
at parameter values for which the nature of the ground
state changes, which should correspond to critical values for
occurrence of quantum phase transitions in the macroscopic
limit. Information on the nature of the different ground
states has to be sought through evaluation of average val-
ues of appropriate physical quantities, like the number of
particles and total spin in a given well or interwell spin
correlations.

The results allowed us to construct maps of different
regimes in parameter space, identifying regions of full oc-
cupancy of a single well, and regions with particles distributed
in both wells, in which case either ferromagnetic or antiferro-
magnetic spin correlations between the two wells occur as a
consequence of the spin-dependent interaction. This was done
in detail for system of two and three particles. Comparison
with some results for four and five particles revealed that the

PHYSICAL REVIEW A 91, 033608 (2015)

main qualitative differences occur between even and odd total
number of particles in the system.

This study can be extended to larger numbers, not only
of particles but also of wells, the limitations being only
computational. Work in dynamical processes in the same
model is now in progress, including investigation of spin
effects on transistor-like behavior [43] in the three-well case.
Additionally, by increasing the number of wells we can address
the problem of Anderson localization [44] with a distribution
of well depths, taking into account the effect of nonzero spin
and spin-dependent interactions.
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