MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA

Cálculo Simbólico de Modos Vibratórios no Modelo de *Kirchhoff-Love* para Placas

 por

Leonardo Dagnino Chiwiacowsky

Dissertação submetida como requisito parcial para a obtenção do grau de Mestre em Matemática Aplicada

Prof. Dr. Julio Cesar Ruiz Claeyssen Orientador

Porto Alegre, Agosto de 2000

CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Leonardo Dagnino Chiwiacowsky

Cálculo Simbólico de Modos Vibratórios no Modelo de *Kirchhoff-Love* para Placas / Leonardo Dagnino Chiwiacowsky.—Porto Alegre: PPGMAp da UFRGS, 2000.

153 p.: il.

Dissertação (Mestrado)—Universidade Federal do Rio Grande do Sul, Instituto de Matemática, Programa de Pós-Graduação em Matemática Aplicada, Porto Alegre, 2000. Orientador: Prof. Dr. Julio César Ruiz Claeyssen

Área: Engenharia Matemática e Matemática Industrial

Palavras chave: Autovalores, Autofunções, Kirchhoff-Love

Cálculo Simbólico de Modos Vibratórios no Modelo de *Kirchhoff-Love* para Placas

por

Leonardo Dagnino Chiwiacowsky

Dissertação submetida ao Corpo Docente do Programa de Pós-Graduação em Matemática Aplicada, PPGMAp, do Instituto de Matemática da Universidade Federal do Rio Grande do Sul, como parte dos requisitos necessários para a obtenção do grau de

Mestre em Matemática Aplicada

Área de Concentração: Engenharia Matemática e Matemática Industrial

Orientador: Prof. Dr. Julio César Ruiz Claeyssen

Aprovada por:

Profa. Dra. Sônia Maria GomesProfa. Dra. Teresa Tsukazan de RuizProf. Dr. Rudnei Dias da Cunha

Prof. Dr. Rudnei Dias da Cunha Coordenador do PPGMAp Porto Alegre, 2000

AGRADECIMENTOS

Agradeço, em especial, ao Prof. Júlio Claeyssen pelos ensinamentos, apoio, incentivo e dedicação durante minha formação acadêmica e desenvolvimento deste trabalho.

Agradeço aos demais professores do PPGMAp pela colaboração em minha formação, destacadamente os professores Rudnei, Liliane, Maria Cristina e Teresa.

Agradeço aos colegas Antônio, Cíntia, Evandro, Fernando, Inês, Leandro, Priscilla, Rosandra e Rosemaira pela alegria, amizade e incentivo sempre presentes.

Agradeço ao colega Germán pelas dicas e discussões salutares para o desenvolvimento de qualquer trabalho científico.

Agradeço aos meus pais, Sylvia e Pedro, pelos ensinamentos de vida e confiança depositados. Também a minha irmã, Patricia, pelo companheirismo e apoio.

Agradeço ao PPGMAp pela oportunidade e disponibilização dos recursos, materiais e humanos, necessários para a realização deste trabalho.

SUMÁRIO

LISTA DE FIGURAS			
LISTA DE TABELAS			
RESUMO	x		
ABSTRACT	xi		
1 INTRODUÇÃO	1		
2 MODELAGEM	5		
2.1 Considerações sobre Elasticidade	5		
2.2 Vibrações Transversais de Placas Retangulares	9		
2.3 Condições Iniciais e de Contorno	15		
3 METODOLOGIA DE SOLUÇÃO	19		
3.1 Freqüências e Modos de Vibração	19		
3.2 Limitação do Método da Separação de Variáveis	20		
3.3 Solução por <i>Lévy</i>	21		
3.3.1 Usando a Base Clássica	23		
3.3.2 Usando a Base Dinâmica	26		
4 ESTUDO DA EQUAÇÃO $(\nabla^4 - \beta^4)W = 0 \dots \dots \dots \dots$	28		
4.1 A Equação Matricial Modal	28		

	4.2	Solução Usando a Base Clássica	32
	4.3	Solução Usando a Base Dinâmica	37
5	CÁ	LCULO MATRICIAL DOS MODOS	44
	5.1	Placa Apoiada-Apoiada-Apoiada	47
	5.2	Placa Apoiada-Fixa-Apoiada-Fixa	59
	5.3	Placa Apoiada-Fixa-Apoiada-Apoiada	71
	5.4	Placa Apoiada-Fixa-Apoiada-Livre	83
	5.5	Placa Apoiada-Apoiada-Livre	95
	5.6	Placa Apoiada-Livre-Apoiada-Livre	107
	5.7	Análise dos Resultados	120
		5.7.1 Raízes e Parâmetros Adimensionais de Freqüência	120
		5.7.2 Modos de Vibração	121
6	DE	MAIS RESULTADOS	125
	6.1	A Influência da Razão de <i>Poisson</i>	125
	6.2	Simetria e Anti-simetria	129
7	CO	NCLUSÕES	135
A	NEX	O A-1 SEPARAÇÃO DE VARIÁVEIS	137
A	NEX	XO A-2 SOLUÇÃO ATRAVÉS DE FATORIZAÇÃO	142

ANEXO A-3	MATRIZES \mathcal{B}	146
ANEXO A-4	AUTOVALORES DA PLACA A-A-A-A	148
BIBLIOGRAFIA		150

LISTA DE FIGURAS

Figura 2.1	Componentes de tensão sobre a face $ABCD$ de um elemento de	
	volume da placa	6
Figura 2.2	Deslocamentos no plano OXY	8
Figura 2.3	Elemento da Placa. (a) Não deformado. (b) Deformado	10
Figura 2.4	Relação entre $u \in w \dots \dots$	11
Figura 2.5	Forças e momentos sobre um elemento de volume de uma placa	13
Figura 2.6	Derivação da Força Cisalhante Efetiva	16
Figura 3.1	Caso Particular da Placa com Duas Bordas Opostas Apoiadas (A)	21
Figura 5.1	Convenção gráfica das condições de contorno	46
Figura 5.2	Esquema de ordenação	120

LISTA DE TABELAS

Tabela 5.1	Raízes K e Parâmetros λ para placa A-A-A e $a/b=2/5.$	48
Tabela 5.2	Raízes K e Parâmetros λ para placa A-A-A-A e $a/b=2/3.$	48
Tabela 5.3	Raízes K e Parâmetros λ para placa A-A-A e $a/b=1.$	49
Tabela 5.4	Raízes K e Parâmetros λ para placa A-A-A e $a/b=3/2.$	49
Tabela 5.5	Raízes K e Parâmetros λ para placa A-A-A e $a/b=5/2.$	50
Tabela 5.6	Modos Clássicos e Dinâmicos para placa A-A-A-A	50
Tabela 5.7	Raízes K e Parâmetros λ para placa A-F-A-F e $a/b=2/5.$	60
Tabela 5.8	Raízes K e Parâmetros λ para placa A-F-A-F e $a/b=2/3.$	60
Tabela 5.9	Raízes K e Parâmetros λ para placa A-F-A-F e $a/b=1.\ .\ .$.	61
Tabela 5.10	Raízes K e Parâmetros λ para placa A-F-A-F e $a/b=3/2.$	61
Tabela 5.11	Raízes K e Parâmetros λ para placa A-F-A-F e $a/b=5/2.$	62
Tabela 5.12	Modos Clássicos e Dinâmicos para placa A-F-A-F	62
Tabela 5.13	Raízes K e Parâmetros λ para placa A-F-A-A e $a/b=2/5.$	72
Tabela 5.14	Raízes K e Parâmetros λ para placa A-F-A-A e $a/b=2/3.$	72
Tabela 5.15	Raízes K e Parâmetros λ para placa A-F-A-A e $a/b=1.\ .\ .$.	73
Tabela 5.16	Raízes K e Parâmetros λ para placa A-F-A-A e $a/b=3/2.$	73
Tabela 5.17	Raízes K e Parâmetros λ para placa A-F-A-A e $a/b=5/2.$	74
Tabela 5.18	Modos Clássicos e Dinâmicos para placa A-F-A-A.	74

Tabela 5.19	Raízes K e Parâmetros λ para placa A-F-A-L e $a/b=2/5.$	84
Tabela 5.20	Raízes K e Parâmetros λ para placa A-F-A-L e $a/b=2/3.$	84
Tabela 5.21	Raízes K e Parâmetros λ para placa A-F-A-L e $a/b=1.\ .\ .$.	85
Tabela 5.22	Raízes K e Parâmetros λ para placa A-F-A-L e $a/b=3/2.$	85
Tabela 5.23	Raízes K e Parâmetros $\lambda {\rm para}$ placa A-F-A-L e $a/b=5/2.~$	86
Tabela 5.24	Modos Clássicos e Dinâmicos para placa A-F-A-L	86
Tabela 5.25	Raízes K e Parâmetros λ para placa A-A-A-L e $a/b=2/5.$	96
Tabela 5.26	Raízes K e Parâmetros λ para placa A-A-A-L e $a/b=2/3.$	96
Tabela 5.27	Raízes K e Parâmetros λ para placa A-A-A-L e $a/b=1.\ .\ .$.	97
Tabela 5.28	Raízes K e Parâmetros λ para placa A-A-A-L e $a/b=3/2.$	97
Tabela 5.29	Raízes K e Parâmetros λ para placa A-A-A-L e $a/b=5/2.$	98
Tabela 5.30	Modos Clássicos e Dinâmicos para placa A-A-A-L	98
Tabela 5.31	Raízes K e Parâmetros λ para placa A-L-A-L e $a/b=2/5.$	108
Tabela 5.32	Raízes K e Parâmetros λ para placa A-L-A-L e $a/b=2/3.$	108
Tabela 5.33	Raízes K e Parâmetros λ para placa A-L-A-L e $a/b=1.\ .\ .$.	109
Tabela 5.34	Raízes K e Parâmetros λ para placa A-L-A-L e $a/b=3/2.$	109
Tabela 5.35	Raízes K e Parâmetros λ para placa A-L-A-L e $a/b=5/2.$	110
Tabela 5.36	Modos Clássicos e Dinâmicos para placa A-L-A-L	111
Tabela 6.1	Parâmetro adimensional de freqüência $\lambda = \omega a^2 \sqrt{\rho h/D}$ como	

função de ν para placas A-L-A-L na razão de aspectoa/b=2/5.~~126

- Tabela 6.2 Parâmetro adimensional de freqüência $\lambda = \omega a^2 \sqrt{\rho h/D}$ como função de ν para placas A-L-A-L na razão de aspecto a/b = 1. 126
- Tabela 6.3 Parâmetro adimensional de freqüência $\lambda = \omega a^2 \sqrt{\rho h/D}$ como função de ν para placas A-L-A-L na razão de aspecto a/b = 5/2. 127
- Tabela 6.4 Variação de λ com ν para o modo 22 e razão de aspecto a/b=2/5.127
- Tabela 6.5 Variação de $\lambda \operatorname{com} \nu$ para o modo 22 e razão de aspecto a/b = 1. 128
- Tabela 6.6 Variação de λ com ν para o modo 22 e razão de aspecto a/b=5/2. 128
- Tabela A-1.2 Funções de base para os diferentes casos com $\beta = 0.$ 141

LISTA DE ABREVIATURAS

Grandezas Físicas:

x, y, z	variáveis espaciais $[m]$
$\sigma_x, \sigma_y, \sigma_z$	componentes de tensão direta $\left[N/m\right]$
$\sigma_{xy}, \sigma_{yz}, \sigma_{xz}$	componentes de tensão cisalhante $\left[N/m\right]$
$\varepsilon_x, \varepsilon_y, \varepsilon_z$	componentes de deformação direta $\left[m\right]$
$\varepsilon_{xy}, \varepsilon_{yz}, \varepsilon_{xz}$	componentes de deformação cisalhante $\left[m\right]$
u, v, w	deslocamentos nas direções $\overrightarrow{OX}, \overrightarrow{OY}, \overrightarrow{OZ},$
	respectivamente $[m]$,
a, b	dimensões da placa no eixo X e Y, respectivamente $\left[m\right]$
G	módulo cisalhante ou de rigide z $\left[N/m^2\right]$
E	módulo de Young $[N/m^2]$
γ',γ''	distorção angular [rad]
ρ	massa específica $[Kg/m^3]$
h	espessura $[m]$
R_x	raio de curvatura $[m]$
θ	ângulo de deformação ou de curvatura da placa $\left[rad\right]$
M_x, M_y	momento fletor $[N\cdot m]$
M_{xy}, M_{yx}	momento torçor $[N\cdot m]$
S_x, S_y	força cisalhante transversal $[N\cdot m]$
D	rigidez flexural $[N \cdot m]$
V_x	força cortante efetiva $\left[N\right]$
ω	freqüência característica $\left[rad/s\right]$
ω_b	freqüência natural de uma viga apoiada $\left[rad/s \right]$
κ	rigidez translacional $[N\cdot m]$
κ^{\measuredangle}	rigidez rotacional $[N \cdot m]$
h(y)	solução dinâmica ou resposta-impulso $[m]$

Matrizes e demais grandezas:

Φ	matriz das autofunções ou funções de base
B	matriz das condições de contorno
U	matriz das autofunções associadas
	às condições de contorno
с	vetor dos coeficientes
$\phi^{(k)}_{ij}$	k-ésima derivada do i-ésimo contorno da
	j-ésima autofunção
η_k	funções de base clássicas
ψ_k	funções de base dinâmicas
$ abla^2$	operador laplaciano bidimensional
$ abla^4$	operador biharmônico
X(x), Y(y)	funções usadas na separação de variáveis
W(x,y)	modo de vibração ass ssociado à freqüência ω
ν	razão de Poisson
$\beta^4 = \omega^2 \frac{\rho h}{D}$	constante auxiliar
$i = \sqrt{-1}$	unidade imaginária
m, n	parâmetros inteiros e variáveis das funções $X(x)$ e $Y(y)$,
	respectivamente
π	número pi
$K = \frac{\omega}{\left(\frac{m\pi}{a}\right)^2 \sqrt{\frac{D}{\rho h}}}$	raízes da equação característica
A, B, C, E, E'	constantes arbitrárias
$\upsilon = \frac{2}{K} \left(\frac{a}{m\pi}\right)^2$	constante auxiliar
$\lambda = \omega a^2 \sqrt{\frac{\rho h}{D}}$	parâmetro adimensional de freqüência

TÍTULO: "CÁLCULO SIMBÓLICO DE MODOS VIBRATÓRIOS NO MODELO DE *KIRCHHOFF-LOVE* PARA PLACAS"

RESUMO

Este trabalho tem como objetivo a análise vibratória livre de placas retangulares bem como resultados analíticos precisos e abrangentes, baseando-se na equação biharmônica, obtida a partir das hipóteses de Kirchhoff-Love. São fixadas as condições de duas bordas opostas como simplesmente apoiadas e outras seis combinações possíveis, para as demais bordas, de acordo com as condições engastada (fixa), simplesmente apoiada (apoiada) e livre. São apresentadas as seis equações características exatas. Os modos são determinados simbolicamente através de uma formulação matricial genérica a qual permite o uso de uma base espectral clássica ou de uma base dinâmica. Este procedimento amplia a metodologia introduzida por Navier e por Lévy, obtendo-se uma equação matricial singular. Parâmetros de freqüência precisos, assim como os modos, são apresentados para uma faixa de razões de aspecto $(a/b = 2/5, 2/3, 1, 3/2 \in 3/5)$ para cada caso avaliado. Observa-se que para materiais isotrópicos as freqüências naturais são influenciadas significativamente pela razão de Poisson (ν). Devido à simetria geométrica existente em relação ao eixo y, os modos podem ser separados em uma parte simétrica e outra anti-simétrica, permitindo diminuir a complexidade computacional.

TITLE: "SYMBOLIC CALCULATING OF VIBRATION MODES IN THE KIRCHHOFF-LOVE MODEL FOR PLATES"

ABSTRACT

This work has, as its main objective, the free vibration analysis of rectangular plates as well as comprehensive and accurate analytical results, based on the biharmonic equation, obtained from *Kirchhoff-Love* assumptions. We set the boundary conditions of two opposite edges as simply-supported and other six possible combinations, for the other two edges, of clamped, simply-supported, and free conditions. The six characteristic equations are given. The mode shapes are simbolically determined through general matrix formulation which allows the use of the classic espectral base or the dynamic base. These procedure enlarge the *Navier* and *Lévy* methodology, producing a singular matrix equation. Accurate frequency parameters, as well as the mode shapes, are presented for a range of aspect ratios $(a/b = 2/5, 2/3, 1, 3/2 \in 3/5)$ for each case. It has been noticed that for isotropic materials, the natural frequencys were significantly influenced by the *Poisson*'s ratio (ν) . Because of the geometric symmetry which exists about the y axis, vibration modes can be separated into a y-symmetric part and a yantisymmetric part, allowing to decrease the computational efforts.

1 INTRODUÇÃO

Neste trabalho, é estudada, através de uma formulação matricial clássica e dinâmica, esta última introduzida por *Claeyssen* [CLA 90a], [CLA 99a], [CLA 99b], a obtenção dos modos relativos às vibrações transversais livres de placas, descritas pela equação de *Kirchhoff-Love*. Esta abordagem é feita em termos de uma base genérica para uma equação diferencial parcial de quarta ordem denominada equação biharmônica. Os cálculos simbólicos são realizados utilizando a base espectral clássica, obtida a partir das raízes de uma equação diferencial ordinária de quarta ordem, e a base dinâmica, caracterizada por condições iniciais impulsivas.

Placas são estruturas de superfície reta e plana (não-curva), cuja espessura é pequena comparada a suas outras dimensões. Geometricamente, são limitadas ou por linhas retas ou por linhas curvas. Estaticamente, placas têm condições de contorno simplesmente apoiada, fixa e livre, incluindo suportes elásticos e restrições elásticas, ou, em alguns casos, suportes pontuais. Os carregamentos estático ou dinâmico suportados por placas são predominantemente perpendiculares à superfície da placa.

A ação estrutural bidimensional de placas resulta em estruturas mais leves e portanto oferece numerosas vantagens econômicas. Isto tem contribuído consideravelmente para o largo uso de placas em todos os campos da engenharia. Muitas estruturas, como *containers*, navios, etc, requerem fechamento completo que pode ser realizado facilmente por placas, sem o uso de cobertura adicional; consequentemente, é alcançada uma maior economia em material e mão-de-obra.

Devido às vantagens distintas discutidas acima, placas são usadas extensivamente em todos os campos da engenharia. Placas são usadas em estruturas arquitetônicas, pontes, estruturas hidráulicas, calçamento, *containers*, aviões, mísseis, instrumentos, partes de máquinas, etc. 1 Introdução

É comum subdividir placas dentro das seguintes categorias principais baseadas na sua ação estrutural:

- Placas rígidas, que são placas finas com rigidez flexural, bidimensionalmente suportando cargas, principalmente por momentos internos (fletor e torçor) e por cisalhamentos transversais, geralmente em uma maneira similar a vigas. Na prática de engenharia, placa é entendida como placa de rigidez média, a não ser que seja especificado de outra maneira.
- 2. Membrana, que são placas finas sem rigidez flexural, suportam as cargas laterais devido a forças cisalhantes axial e central. Esta ação de carregamento de carga pode ser aproximada por uma rede de cabos tensionados, devido a sua finura extrema, sua resitência de momento é de uma ordem de magnitude desprezível.
- 3. Placas flexíveis, que representa uma combinação de placas rígidas e membranas e carrega cargas externas pela ação combinada de momentos internos, forças cisalhantes internas e centrais e forças axiais. Tais placas, devido a sua razão peso-carga ser favorável, são largamente usadas pela indústria aeroespacial.
- Placas espessas, cuja condição de tensão interna parece com aquela do contínuo tridimensional.

A dinâmica de uma estrutura é modelada, em geral, através de um conjunto de equações diferenciais parciais, obtidas a partir da aplicação de leis, princípios físicos e hipóteses assumidas, sujeitos a um conjunto de condições iniciais e condições de contorno.

Há dezenas de teorias para placas, cada uma com suas hipóteses, porém dois modelos dinâmicos mais comumente usados são os de *Kirchhoff-Love*, para placas finas, e *Reissner-Mindlin*, para placas semi-espessas. No modelo de *Kirchhoff-*

2

Love [FON 99], [SZI 74], [WAR 76], os termos relativos ao cisalhamento e à inércia de rotação são desprezados. É considerado que as seções transversais planas permanecem sempre planas e perpendiculares ao plano médio da placa após o deslocamento. O modelo de *Reissner-Mindlin* [RES 45], [MIN 51], é mais complexo, supõe que as seções transversais planas permanecem planas, não necessariamente perpendiculares ao plano médio da placa, pois, devido ao cisalhamento, apresenta-se um giro da seção em relação a esse plano.

A seguir, é feita uma breve descrição dos capítulos que formam este trabalho.

No capítulo 2 são apresentados alguns conceitos de elasticidade e em seguida é feita uma descrição do modelo matemático referente a vibrações transversais em placas retangulares, apresetando-se a forma da equação biharmônica. Após, são apresentadas as condições iniciais e de contorno clássicas que serão consideradas, e também condições não-clássicas.

No capítulo 3 são introduzidos os conceitos de freqüências e modos de vibração. Considera-se o método de separação de variáveis onde é apresentada, na forma geral, sua expressão final. Por fim é empregado o método de *Lévy* [SZI 74] para solução do problema abordado, usando tanto a base espectral clássica quanto a dinâmica.

No capítulo 4 é apresentada uma formulação matricial genérica para o estudo e solução da equação diferencial parcial linear, que aparece na forma compacta $(\nabla^4 - \beta^4)W = 0$. Também é apresentada uma solução de um caso particular de condições de contorno, empregando-se tanto a base clássica quanto a dinâmica.

No capítulo 5 são enunciados os resultados algébricos e gráficos, obtidos com o auxílio do *software* MAPLE V5, onde são determinados os parâmetros adimensionais de freqüência e os modos de vibração da placa nas possíveis combinações das condições de contorno. É feita uma discussão com relação a estes resultados algébricos e gráficos.

No capítulo 6 é avaliada e discutida a influência da mudança da razão de *Poisson* (ν) sobre o parâmetro adimensional de freqüência (λ). Também é apresentada a metodologia para a separação do modo de vibração na sua parte simétrica e anti-simétrica, onde são mostrados os resultados para os três casos possíveis.

Para finalizar, apresentam-se as conclusões pertinentes.

2 MODELAGEM

Neste capítulo é deduzida a equação de movimento da placa baseada no modelo de *Kirchhoff-Love*, onde o cisalhamento é desprezado. São assumidas algumas hipóteses para tal dedução tal como a de que as seções transversais perpendiculares e planas permanecem sempre planas e perpendiculares ao plano médio da placa após a flexão. Neste modelo a dimensão da espessura da placa é pequena em comparação com o seu comprimento e largura, em geral uma ordem de grandeza menor.

2.1 Considerações sobre Elasticidade

Na teoria de elasticidade tridimensional a tensão em um ponto é especificada por seis grandezas:

 $\sigma_x \sigma_y \sigma_z$ as componentes de tensão direta;

 $\sigma_{xy} \sigma_{yz} \sigma_{xz}$ as componentes de tensão cisalhante.

As componentes de tensão sobre a face ABCD de um elemento (figura 2.1) têm a seguinte convenção de sinais: tensões diretas são positivas quando tensionarem; as tensões cisalhantes σ_{xz} agem sobre a face perpendicular ao eixo X na direção paralela ao eixo Z e é positiva se agir na direção positiva do eixo Z sobre uma face para qual a tensão direta positiva está na direção \overrightarrow{OX} . Se os comprimentos dos lados do elemento de volume são dx, $dy \in dz$, as tensões cisalhantes σ_{xz} sobre as faces $ABCD \in OFHJ$ formam um par em relação ao eixo Y de magnitude $(\sigma_{xz}dydz)dx$. Considerando as outras componentes de tensão cisalhante, somente as componentes σ_{zx} agindo sobre as faces $DCHJ \in OABF$ formam um par em relação ao eixo Y. Assim, tomando os momentos em relação ao eixo Y para o equilíbrio do elemento, $\sigma_{xz} = \sigma_{zx}$. Analogamente, $\sigma_{xy} = \sigma_{yx} \in \sigma_{yz} = \sigma_{zy}$.

Figura 2.1 Componentes de tensão sobre a face ABCD de um elemento de volume da placa

A deformação em um ponto é definida simultaneamente por:

 $\varepsilon_x \; \varepsilon_y \; \varepsilon_z$ as componentes de deformação direta;

 $\varepsilon_{xy}~\varepsilon_{yz}~\varepsilon_{xz}$ as componentes de deformação cisalhante.

As componentes de deslocamento em qualquer ponto (x, y, z) são $u, v \in w$, positivos nas direções $\overrightarrow{OX}, \overrightarrow{OY} \in \overrightarrow{OZ}$, respectivamente.

As componentes de tensão e deformação diretas são relacionadas pela lei de *Hooke*, extendida para incluir os efeitos da razão de *Poisson* (ν),

$$\varepsilon_x = \frac{1}{E} [\sigma_x - \nu (\sigma_y + \sigma_z)], \qquad (2.1)$$

com expressões análogas para ε_y e ε_z . As componentes de tensão e deformação cisalhantes são relacionados por

$$\varepsilon_{xy} = \frac{1}{G} \sigma_{xy}, \text{ etc.}$$
 (2.2)

Nestas equações E, $G \in \nu$ são as constantes elásticas, módulo de Young, módulo cisalhante (ou módulo de rigidez) e razão de Poisson, respectivamente. Cabe salientar que estarão sendo considerandos apenas sólidos elásticos isotrópicos homogêneos. Para estes sólidos há somente duas constantes elásticas independentes e

$$E = 2G(1+\nu).$$
 (2.3)

A seguir as relações tensão-deformação serão estabelecidas. Se o deslocamento na direção X do ponto (x, y, z) é u, então o deslocamento na mesma direção do ponto adjacente (x + dx, y, z) é $[u + (\partial u/\partial x)]$. Assim a deformação direta na direção X é dada por:

$$\varepsilon_x = \frac{\text{Aumento no comp. do elemento}}{\text{Comp. inicial do elemento}}$$
$$= \frac{[dx + (\partial u/\partial x)dx] - dx}{dx}$$
$$= \frac{\partial u}{\partial x}.$$
(2.4)

Analogamente,

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 e $\varepsilon_z = \frac{\partial w}{\partial z}$.

Considerando um elemento ABCD (figura 2.2), inicialmente retangular e tendo lados de comprimento dx e dy paralelos aos eixos X e Y, e canto A, inicialmente no ponto (x, y), é deslocado para A_1 no plano OXY, com componentes de deslocamento u e v nas direções X e Y, respectivamente. O ponto B é deslocado para B_1 , com um deslocamento na direção Y de $[v + (\partial v/\partial x)dx]$; o ponto D é deslocado

Figura 2.2 Deslocamentos no plano ${\cal O}XY$

para D_1 , com um deslocamento na direção X de $[u + (\partial u/\partial y)dy]$. O formato deformado do elemento é o paralelogramo $A_1B_1C_1D_1$ e a deformação cisalhante é $(\gamma' + \gamma'')$. Assim para pequenos ângulos

$$\varepsilon_{xy} = \gamma' + \gamma'' = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}.$$
(2.5)

Analogamente,

$$\varepsilon_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$$
 e $\varepsilon_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$

2.2 Vibrações Transversais de Placas Retangulares

O plano não deformado da placa é definido como OXY, com os eixos $X \in Y$ paralelos às bordas da placa; o eixo Z terá seu sentido positivo tomado para cima (figura 2.5). As seguintes hipóteses são feitas:

- 1. A placa é fina e de espessura uniforme h; assim as superfícies livres da placa são os planos $z = \pm \frac{1}{2}h$.
- 2. A tensão direta na direção transversal, σ_z , é zero. Esta componente da tensão deve ser nula nas superfícies livres, e dado que a placa é fina, é razoável assumir que será nula em qualquer seção z.
- 3. Tensões no plano médio da placa (tensões de membrana) são desprezadas; isto é, forças transversais são suportadas por tensões fletoras, como na flexão de uma viga. Para a ação de membrana não ocorrer, os deslocamentos devem ser pequenos comparados com a espessura da placa.
- 4. Seções planas que inicialmente são normais ao plano médio permanecem planas e normais a este. Com esta hipótese as deformações cisalhantes ε_{xz} e ε_{yz} são nulas.
- 5. Somente o deslocamento transnversal w (na direção z) tem que ser considerado.

A figura (2.3a) mostra um elemento da placa de comprimento dx no estado não deformado e a figura (2.3b) o elemento correspondente no estado deformado. Se OA representa o plano médio da placa, então $OA = O_1A_1$ da terceira hipótese; também $O_1A_1 = R_x d\theta$, onde R_x é o raio de curvatura do plano médio deformado. Assim a deformação em BC,a uma distância z do plano médio, será

$$\varepsilon_x = \frac{B_1 C_1 - BC}{BC}$$
$$= \frac{(R_x + z) - R_x}{R_x}$$
$$= \frac{z}{R_x}.$$

Figura 2.3 Elemento da Placa. (a) Não deformado. (b) Deformado

A relação entre a curvatura e o deslocamento do plano médio, w, é:

$$\frac{1}{R_x} = -\frac{\partial^2 w}{\partial x^2}$$

Assim

$$\varepsilon_x = -z \frac{\partial^2 w}{\partial x^2}.$$
(2.6)

Analogamente

$$\varepsilon_y = -z \frac{\partial^2 w}{\partial y^2}.$$
(2.7)

Da equação (2.5) a deformação cisalhante ε_{xy} a uma distância z da superfície média é $[(\partial u/\partial y) + (\partial v/\partial x)]$, onde u e v são os deslocamentos na profundidade z nas direções X e Y, respectivamente. Usando a hipótese de que seções normais ao plano médio permanecem normais a este,

$$u = -z \frac{\partial w}{\partial x}$$
 (figura 2.4).

Figura 2.4 Relação entre $u \in w$

Analogamente

$$v = -z \frac{\partial w}{\partial y}.$$

Assim

$$\varepsilon_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y}.$$
(2.8)

(Na equação (2.8) o termo $(\partial^2 w/\partial x \partial y)$ representa a torção da superfície).

$$E\varepsilon_x = \sigma_x - \nu\sigma_y$$

е

$$E\varepsilon_y = \sigma_y - \nu\sigma_x,$$

que podem ser arranjadas para dar

$$\sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y),$$

$$\sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x).$$
(2.9)

 ${\rm Tamb\acute{e}m}$

$$\sigma_{xy} = \frac{E}{2(1+\nu)}\varepsilon_{xy}$$

O elemento de volume da placa com lados dx e dy e espessura h, mostrado na figura (2.5), está sujeito a um momento fletor M_x , um momento torçor M_{xy} e uma força cisalhante transversal S_x por unidade de comprimento sobre a face OB; sobre a face OA há, por unidade de comprimento, um momento fletor M_y , um momento torçor M_{yx} e uma força cisalhante S_y . Cada momento é denotado por uma flexa de ponta dupla na direção de seus eixos. Os momentos fletores M_x e M_y são os momentos resultantes devido às tensões diretas σ_x e σ_y , respectivamente, após integração através da espessura da placa. Analogamente, os momentos torçores são as resultantes devido à tensão cisalhante σ_{xy} .

Figura 2.5 Forças e momentos sobre um elemento de volume de uma placa

Mantendo uma convenção de sinal consistente entre as definições para tensões na figura (2.1) e os momentos mostrados na figura (2.5), tem-se

$$M_x = \int_{-h/2}^{h/2} \sigma_x z dz,$$

$$M_y = \int_{-h/2}^{h/2} \sigma_y z dz,$$

$$M_{xy} = M_{yx} = \int_{-h/2}^{h/2} \sigma_{xy} z dz.$$
(2.10)

A figura (2.5) mostra as quantidades incrementais agindo sobre as faces $AC \in BC$ e a força aplicada por unidade de área p(x, y)f(t), na direção Z. Há também uma força de inércia por unidade de área , $\rho h \partial^2 w / \partial t^2$, na direção Z. As equações de equilíbrio, obtidas pela resolução na direção Z e tomando os momentos em relação aos eixos $X \in Y$, são após a divisão por dxdy:

$$\frac{\partial S_x}{\partial x} + \frac{\partial S_y}{\partial y} + p(x, y)f(t) = \rho h \partial^2 w / \partial t^2,$$
$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{yx}}{\partial y} - S_x = 0,$$
$$\frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x} - S_y = 0.$$

Eliminando $S_x \in S_y$,

$$\frac{\partial^2 M_x}{\partial x^2} + 2\frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} + p(x, y)f(t) = \rho h \frac{\partial^2 w}{\partial t^2}$$
(2.11)

Substituindo as equações (2.6) a (2.9) nas equações (2.10) e integrando com respeito a z, obtêm-se

$$M_{x} = -D\left(\frac{\partial^{2}w}{\partial x^{2}} + \nu \frac{\partial^{2}w}{\partial y^{2}}\right),$$

$$M_{y} = -D\left(\frac{\partial^{2}w}{\partial y^{2}} + \nu \frac{\partial^{2}w}{\partial x^{2}}\right),$$

$$M_{xy} = -D(1-\nu)\frac{\partial^{2}w}{\partial x \partial y};$$
(2.12)

onde

$$D = \frac{Eh^3}{12(1-\nu^2)} = \text{rigidez flexural.}$$

Substituindo as equações (2.12) na equação (2.11) obtém-se a equação de equilíbrio para um elemento da placa em termos de w e suas derivadas,

$$\rho h \frac{\partial^2 w}{\partial t^2} + D \left[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right] = p(x, y) f(t); \qquad (2.13)$$

ou de forma compacta,

$$\frac{\rho h}{D}\frac{\partial^2 w}{\partial t^2} + \nabla^4 w = \frac{p(x,y)f(t)}{D},$$
(2.14)

onde

$$\nabla^4 = \frac{\partial^4}{\partial x^4} + 2\frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}.$$
 (2.15)

2.3 Condições Iniciais e de Contorno

Para um porblema dinâmico, w(x, y, t) deve satisfazer a equação (2.13) juntamente com as condições iniciais temporais, $w(x, y, 0) = w_o(x, y)$, $w_t(x, y, 0) = w_1(x, y)$, e condições de contorno espaciais.

As condições de contorno clássicas são : simplesmente apoiada (apoiada), engastada (fixa) e livre. Considerando as bordas OB e AC da figura (2.5), as condições de contorno são expressas como:

- Simplesmente Apoiada: w = 0 e $M_x = 0$; isto é

$$w = 0 \quad e \quad \frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} = 0$$
 (2.16)

- Engastada:

$$w = 0 \quad e \quad \frac{\partial w}{\partial x} = 0$$
 (2.17)

- Livre: Para a borda ser livre de força e momento, M_x , M_y e S_x devem ser nulos. As duas últimas grandezas são combinadas em uma condição única, seguindo *Kirchhoff* [WAR 76]. Considerando dois elementos adjacentes da face OB, H1H2 e H2H3, cada de comprimento dy (figura 2.6). O momento torçor $M_{xy}dy$

Figura 2.6 Derivação da Força Cisalhante Efetiva

sobre H1H2 é trocado por forças iguais e opostas M_{xy} ; o momento torçor

$$\left(M_{xy} + \frac{\partial M_{xy}}{\partial y}dy\right)dy$$

sobre H2H3 é trocado por forças iguais e opostas

$$M_{xy} + \frac{\partial M_{xy}}{\partial y} dy.$$

Considerando o equilíbrio na direção vertical em H2,

$$\frac{\partial M_{xy}}{\partial y}dy + S_x dy = 0.$$

Assim, se

$$V_x \equiv S_x + \frac{\partial M_{xy}}{\partial y}$$

é a força cortante efetiva, as condições de borda livre são $M_x = 0$ e $V_x = 0$; isto é

$$\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} = 0$$

е

$$\frac{\partial^3 w}{\partial x^3} + (2 - \nu) \frac{\partial^3 w}{\partial x \partial y^2} = 0.$$
(2.18)

Serão encontradas as condições correspondentes às faces paralelas ao eixo X trocandose $x \in y$ nas equações (2.16) a (2.18).

Além das condições de contorno clássicas ou simples, apresentadas anteriormente, há os casos das condições de contorno não-clássicas ou especiais: restrição elástica translacional, restrição elástica rotacional e restrições elásticas translacional e rotacional. São representadas matematicamente pelas expressões abaixo:

- Restrição Elástica Translacional:

$$\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} = 0$$

е

$$w = \kappa^{-1} D \left[\frac{\partial^3 w}{\partial x^3} + (2 - \nu) \frac{\partial^3 w}{\partial x \partial y^2} \right].$$
 (2.19)

- Restrição Elástica Rotacional:

$$w = 0 \quad e \quad \frac{\partial w}{\partial x} = \left(\kappa^{\measuredangle}\right)^{-1} D\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2}\right).$$
 (2.20)

- Restrições Elásticas Translacional e Rotacional:

$$w = \kappa^{-1} D \left[\frac{\partial^3 w}{\partial x^3} + (2 - \nu) \frac{\partial^3 w}{\partial x \partial y^2} \right]$$

 \mathbf{e}

$$\frac{\partial w}{\partial x} = \left(\kappa^{\measuredangle}\right)^{-1} D\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2}\right), \qquad (2.21)$$

onde

 κ = rigidez translacional do suporte por unidade de comprimento.

 $\kappa^{\measuredangle}~=~\mathrm{rigidez}$ rotacional do suporte por unidade de comprimento.

Cabe salientar que estes casos não serão abordados neste trabalho.

3 METODOLOGIA DE SOLUÇÃO

Neste capítulo, é abordado o Método de Lévy [SZI 74], onde supõem-se que duas bordas opostas encontram-se simplesmente apoiadas, tanto com o uso da base espectral clássica quanto da base dinâmica. Esta metodologia é um caso particular da separação de variáveis, cuja limitação para uma situação geral é exposta na seção (3.2). Nos anexos (A-1) e (A-2) são considerados um caso que permite a separação de variáveis e outro que apresenta a construção de uma solução através da fatorização da equação biharmônica.

3.1 Freqüências e Modos de Vibração

Se nenhuma força externa é aplicada, isto é, p(x, y)f(t) = 0, da equação (2.13) segue que as vibrações livres são geradas pela equação

$$\rho h \frac{\partial^2 w}{\partial t^2} + D \left[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right] = 0.$$
(3.1)

Para esta equação, a procura de soluções do tipo oscilatório $w(x, y, t) = W(x, y)e^{i\omega t}$, com W(x, y) uma função não identicamente nula, equivale a resolver

$$D\left[\frac{\partial^4 W(x,y)}{\partial x^4} + 2\frac{\partial^4 W(x,y)}{\partial x^2 \partial y^2} + \frac{\partial^4 W(x,y)}{\partial y^4}\right] - \rho h \omega^2 W(x,y) = 0.$$
(3.2)

Sob a hipótese de que W(x, y) satisfaz determinadas condições nas bordas da placa, o valor ω será referido como *freqüência característica* e W(x, y) como a *autofunção* ou o *modo* associado à ω . Por simplicidade, a equação (3.2) é escrita como

$$\nabla^4 W(x, y) - \beta^4 W(x, y) = 0, \qquad (3.3)$$

onde $\beta^4=\omega^2\frac{\rho h}{D}$ e ∇^4 é o operador biharmônico definido no capítulo anterior.

3.2 Limitação do Método da Separação de Variáveis

Como primeira opção para resolução da equação biharmônica (3.3) pensa-se no método da separação de variáveis. Para tal assume-se que W(x, y) = X(x)Y(y) e substituindo na forma expandida desta equação, obtém-se:

$$\left[\frac{\partial^4 X(x)Y(y)}{\partial x^4} + 2\frac{\partial^4 X(x)Y(y)}{\partial x^2 \partial y^2} + \frac{\partial^4 X(x)Y(y)}{\partial y^4}\right] - \beta^4 X(x)Y(y) = 0.$$
(3.4)

ou

$$X^{(iv)}Y + 2X''Y'' + XY^{(iv)} - \beta^4 XY = 0.$$
(3.5)

Dividindo a equação (3.5) por XY vem

$$\frac{X^{(iv)}}{X} + 2\frac{X''Y''}{XY} + \frac{Y^{(iv)}}{Y} - \beta^4 = 0,$$

ou

$$\frac{X^{(iv)}}{X} + \frac{Y^{(iv)}}{Y} = \beta^4 - 2 \underbrace{\frac{X''Y''}{XY}}_{XY}.$$
(3.6)

Pode-se observar que a equação (3.6) possui um termo, em destaque, que não pode ser separado na sua forma clássica. Isto inviabiliza o método da separação de variáveis do ponto de vista geral. Porém, é possível obter alguns tipos de soluções separáveis, apresentados no anexo (A-1).

3.3 Solução por Lévy

Será abordada a metodologia de solução introduzida por $L\acute{e}vy$ [SZI 74], e para isso supõe-se o fato de duas bordas opostas estarem sob a condição de simplesmente apoiada, e assume-se que isto ocorre em x = 0 e x = a, conforme figura (3.1).

Figura 3.1 Caso Particular da Placa com Duas Bordas Opostas Apoiadas (A)

Sendo assim, de (2.16) as condições de contorno apresentam-se na forma:

Em x = 0:

$$w(0, y, t) = 0 (3.7)$$

$$M_x(0, y, t) = 0 (3.8)$$
$\operatorname{Em} x = a$:

$$w(a, y, t) = 0 \tag{3.9}$$

$$M_x(a, y, t) = 0 (3.10)$$

Assumindo o deslocamento transversal na forma $w(x, y, t) = W(x, y)e^{i\omega t}$ e substituindo este, juntamente com a relação para o momento fletor dada por (2.12), nas condições de contorno (3.7)–(3.10), tem-se:

 $\operatorname{Em} x = 0$:

$$W(0,y) = 0 (3.11)$$

$$\frac{\partial^2 W}{\partial x^2}(0,y) + \nu \frac{\partial^2 W}{\partial y^2}(0,y) = 0$$
(3.12)

 $\operatorname{Em} x = a$:

$$W(a, y) = 0$$
 (3.13)

$$\frac{\partial^2 W}{\partial x^2}(a,y) + \nu \frac{\partial^2 W}{\partial y^2}(a,y) = 0$$
(3.14)

Uma solução da equação $(\nabla^4 - \beta^4)W = 0$, sujeita às condições de contorno (3.11)–(3.14), pode ser obtida na forma W(x, y) = X(x)Y(y) [SZI 74], onde X(x) deve satisfazer as condições de contorno em x = 0 e x = a e Y(y) deve satisfazer as condições de contorno em y = 0 e y = b.

Como está sendo abordado o caso específico em que as bordas x = 0e x = a estão sempre sob a condição de simplesmente apoiada, pode-se assumir $X(x) = \operatorname{sen}\left(\frac{m\pi x}{a}\right)$, onde $m = 0, 1, 2, \dots$ Desta forma tem-se

$$W(x,y) = Y(y) \operatorname{sen}\left(\frac{m\pi x}{a}\right).$$
(3.15)

Substituindo (3.15) em $(\nabla^4 - \beta^4)W = 0$ e escrevendo na forma ex-

pandida, tem-se:

$$\frac{\partial^4 W}{\partial x^4} + 2\frac{\partial^4 W}{\partial x^2 \partial y^2} + \frac{\partial^4 W}{\partial y^4} - \frac{\rho h \omega^2}{D} W = 0.$$
$$\frac{\partial^4}{\partial x^4} \left[Y \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] + 2\frac{\partial^4}{\partial x^2 \partial y^2} \left[Y \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] + \frac{\partial^4}{\partial y^4} \left[Y \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] - \frac{\rho h \omega^2}{D} \left[Y \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] = 0.$$
$$\left(\frac{m\pi}{a}\right)^4 \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) Y - 2\left(\frac{m\pi}{a}\right)^2 \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) \frac{d^2 Y}{dy^2} + \operatorname{sen}\left(\frac{m\pi x}{a}\right) \frac{d^4 Y}{dy^4} - \frac{\rho h \omega^2}{D} \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) Y = 0.$$

Simplificando

$$\frac{d^4Y}{dy^4} - 2\left(\frac{m\pi}{a}\right)^2 \frac{d^2Y}{dy^2} + \left[\left(\frac{m\pi}{a}\right)^4 - \frac{\rho h\omega^2}{D}\right]Y = 0.$$
(3.16)

A solução desta equação diferencial ordinária de quarta ordem deve satisfazer quatro condições de contorno, sendo duas em y = 0 e duas em y = b. Para a solução de (3.16) pode-se assumir Y(y) de duas formas distintas: usando a base clássica ou usando a base dinâmica h(y) [CLA 90b].

3.3.1 Usando a Base Clássica

Assume-se Y(y) como sendo da forma

$$Y(y) = C_1 e^{\lambda_1 \frac{y}{b}} + C_2 e^{\lambda_2 \frac{y}{b}} + C_3 e^{\lambda_3 \frac{y}{b}} + C_4 e^{\lambda_4 \frac{y}{b}}, \qquad (3.17)$$

ou de forma compacta

$$Y(y) = \sum_{k=1}^{4} C_k e^{\lambda_k \frac{y}{b}}.$$
 (3.18)

Substituindo (3.18) na equação (3.16), obtém-se:

$$\sum_{k=1}^{4} C_k \left(\frac{\lambda_k}{b}\right)^4 e^{\lambda_k \frac{y}{b}} - 2\left(\frac{m\pi}{a}\right)^2 \sum_{k=1}^{4} C_k \left(\frac{\lambda_k}{b}\right)^2 e^{\lambda_k \frac{y}{b}} + \left[\left(\frac{m\pi}{a}\right)^4 - \frac{\rho h \omega^2}{D}\right] \sum_{k=1}^{4} C_k e^{\lambda_k \frac{y}{b}} = 0,$$

$$\sum_{k=1}^{4} C_k e^{\lambda_k \frac{y}{b}} \left\{ \left(\frac{\lambda_k}{b}\right)^4 - 2\left(\frac{m\pi}{a}\right)^2 \left(\frac{\lambda_k}{b}\right)^2 + \left[\left(\frac{m\pi}{a}\right)^4 - \frac{\rho h \omega^2}{D}\right] \right\} = 0.$$

Então:

$$\left(\frac{\lambda_k}{b}\right)^4 - 2\left(\frac{m\pi}{a}\right)^2 \left(\frac{\lambda_k}{b}\right)^2 + \left[\left(\frac{m\pi}{a}\right)^4 - \frac{\rho h\omega^2}{D}\right] = 0.$$
(3.19)

Fazendo $\left(\frac{\lambda_k}{b}\right)^2 = \sigma$ tem-se uma equação do segundo grau na forma:

$$\sigma^2 - 2\left(\frac{m\pi}{a}\right)^2 \sigma + \left[\left(\frac{m\pi}{a}\right)^4 - \frac{\rho h\omega^2}{D}\right] = 0,$$

cujas raízes podem ser calculadas, obtendo-se:

$$\sigma_1 = \left(\frac{m\pi}{a}\right)^2 + \sqrt{\frac{\rho h \omega^2}{D}},$$

$$\sigma_2 = \left(\frac{m\pi}{a}\right)^2 - \sqrt{\frac{\rho h \omega^2}{D}},$$

ou

$$\left(\frac{\lambda_k}{b}\right)^2 = \left(\frac{m\pi}{a}\right)^2 \pm \sqrt{\frac{\rho h \omega^2}{D}},$$

onde k = 1: 4, o que leva às quatro raízes.

Definindo

$$K = \frac{\omega}{\left(\frac{m\pi}{a}\right)^2 \sqrt{\frac{D}{\rho h}}},\tag{3.20}$$

tem-se:

$$\left(\frac{\lambda_k}{b}\right)^2 = \left(\frac{m\pi}{a}\right)^2 [1 \pm K].$$

Assim,

$$\lambda_k = \pm \frac{b}{a} m \pi \sqrt{1 \pm K}.$$
(3.21)

Como a freqüência de uma viga apoiada e de comprimento a é dada por [SOE 81]

$$\omega_b = \left(\frac{m\pi}{a}\right)^2 \sqrt{\frac{D}{\rho h}}\,,$$

tem-se que

$$K = \frac{\omega}{\omega_b}.$$

Assumindo K > 1, as raízes λ_k podem ser escritas como $\lambda_1 = +\varphi_1$, $\lambda_2 = -\varphi_1$, $\lambda_3 = +i\varphi_2$ e $\lambda_4 = -i\varphi_2$, onde

$$\varphi_1 = \frac{b}{a} m \pi \sqrt{K+1},$$
(3.22)
$$\varphi_2 = \frac{b}{a} m \pi \sqrt{K-1}.$$

Portanto, substituindo os resultados (3.22) em (3.17), obtém-se:

$$Y(y) = C_1 e^{\frac{b}{a} m\pi\sqrt{K+1}\frac{y}{b}} + C_2 e^{-\frac{b}{a} m\pi\sqrt{K+1}\frac{y}{b}} + C_3 e^{i\frac{b}{a} m\pi\sqrt{K-1}\frac{y}{b}} + C_4 e^{-i\frac{b}{a} m\pi\sqrt{K-1}\frac{y}{b}},$$

ou

$$Y(y) = C_1 e^{\varphi_1 \frac{y}{b}} + C_2 e^{-\varphi_1 \frac{y}{b}} + C_3 e^{i\varphi_2 \frac{y}{b}} + C_4 e^{-i\varphi_2 \frac{y}{b}}.$$
(3.23)

A solução pode ser escrita em termos de funções periódicas como seno e cosseno. Fazendo $C_1 = \frac{A+B}{2}$, $C_2 = \frac{A-B}{2}$, $C_3 = \frac{C+E'}{2}$ e $C_4 = \frac{C-E'}{2}$, tem-se:

$$Y(y) = A\left(\frac{e^{\varphi_1 \frac{y}{b}} + e^{-\varphi_1 \frac{y}{b}}}{2}\right) + B\left(\frac{e^{\varphi_1 \frac{y}{b}} - e^{-\varphi_1 \frac{y}{b}}}{2}\right) + C\left(\frac{e^{i\varphi_2 \frac{y}{b}} + e^{-i\varphi_2 \frac{y}{b}}}{2}\right) + E'\left(\frac{e^{i\varphi_2 \frac{y}{b}} - e^{-i\varphi_2 \frac{y}{b}}}{2}\right),$$

ou

$$Y(y) = A\cosh\left(\varphi_1\frac{y}{b}\right) + B\,\operatorname{senh}\left(\varphi_1\frac{y}{b}\right) + C\cos\left(\varphi_2\frac{y}{b}\right) + E\,\operatorname{sen}\left(\varphi_2\frac{y}{b}\right),\quad(3.24)$$

onde E = iE'.

Uma vez calculada a solução para Y(y) pode-se determinar a solução geral W(x, y), lembrando que é dada pela equação (3.15). Desta forma tem-se:

$$W(x,y) = \left[A\cosh\left(\varphi_1\frac{y}{b}\right) + B \operatorname{senh}\left(\varphi_1\frac{y}{b}\right) + C\cos\left(\varphi_2\frac{y}{b}\right) + E \operatorname{sen}\left(\varphi_2\frac{y}{b}\right)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right), \quad (3.25)$$

onde

$$\varphi_1 = \frac{b}{a} m \pi \sqrt{K+1},$$
$$\varphi_2 = \frac{b}{a} m \pi \sqrt{K-1},$$

 com

$$K = \frac{\omega}{\omega_b} , \ \omega_b = \left(\frac{m\pi}{a}\right)^2 \sqrt{\frac{D}{\rho h}}$$

3.3.2 Usando a Base Dinâmica

Assume-se a solução Y(y), escrita em termos da base de Claeyssen [CLA 90a], [CLA 99a], [CLA 99b] - h(y), na forma

$$Y(y) = C_1 h(y) + C_2 h'(y) + C_3 h''(y) + C_4 h'''(y), \qquad (3.26)$$

onde h(y) é determinada através de

$$h^{(iv)}(y) - 2\left(\frac{m\pi}{a}\right)^2 h''(y) + \left[\left(\frac{m\pi}{a}\right)^4 (1 - K^2)\right] h(y) = 0,$$

$$h(0) = h'(0) = h''(0) = 0, \quad h'''(0) = 1.$$
(3.27)

Resolvendo, obtém-se como solução

$$h(y) = \frac{a^3}{2Km^3\pi^3} \left[\frac{\operatorname{senh}\left(\frac{m\pi}{a}\sqrt{K+1}\,y\right)}{\sqrt{K+1}} - \frac{\operatorname{sen}\left(\frac{m\pi}{a}\sqrt{K-1}\,y\right)}{\sqrt{K-1}} \right],$$
$$h(y) = vh \left[\frac{\operatorname{senh}\left(\varphi_1\frac{y}{b}\right)}{\sqrt{K-1}} - \frac{\operatorname{sen}\left(\varphi_2\frac{y}{b}\right)}{\sqrt{K-1}} \right]$$
(3.28)

ou

$$h(y) = vb \left[\frac{\operatorname{senh}\left(\varphi_1 \frac{y}{b}\right)}{\varphi_1} - \frac{\operatorname{sen}\left(\varphi_2 \frac{y}{b}\right)}{\varphi_2} \right], \qquad (3.28)$$

onde $v = \frac{1}{2K} \left(\frac{a}{m\pi}\right)^2$.

Aqui a solução h(y) é definida como a resposta impulso ou a solução $di \hat{a} mica.$ Assim, $\{h,\,h',\,h'',\,h'''\}$ constituem uma nova base de soluções. Uma vez determinada h(y) pode-se determinar as demais funções de base:

$$h'(y) = \upsilon \left[\cosh \left(\varphi_1 \frac{y}{b} \right) - \cos \left(\varphi_2 \frac{y}{b} \right) \right],$$
 (3.29)

$$h''(y) = \frac{\upsilon}{b} \left[\operatorname{senh}\left(\varphi_1 \frac{y}{b}\right) \varphi_1 + \operatorname{sen}\left(\varphi_2 \frac{y}{b}\right) \varphi_2 \right], \qquad (3.30)$$

$$h'''(y) = \frac{\upsilon}{b^2} \left[\cosh\left(\varphi_1 \frac{y}{b}\right) \varphi_1^2 + \cos\left(\varphi_2 \frac{y}{b}\right) \varphi_2^2 \right].$$
(3.31)

Desta forma Y(y) fica bem determinada e, uma vez calculada, podese determinar a solução geral W(x, y), lembrando que é dada pela equação (3.15). Assim, tem-se

$$W(x,y) = [C_1h(y) + C_2h'(y) + C_3h''(y) + C_4h'''(y)] \operatorname{sen}\left(\frac{m\pi x}{a}\right), \qquad (3.32)$$

onde $h(y), h'(y), h''(y) \in h'''(y)$ são dados por (3.28) – (3.31), respectivamente. Cabe salientar aqui, como discutido no final do anexo (A-1), que a base dinâmica também fornecerá as expressões para o caso limite de $\varphi_2 \to 0$ pela simples aplicação do limite.

4 ESTUDO DA EQUAÇÃO $(\nabla^4 - \beta^4)W = 0$

Neste capítulo, considera-se de maneira unificada o método de obtenção dos modos de vibração W(x, y), mais precisamente de Y(y), uma vez que X(x) já está determinada quando da atribuição da condição de borda apoiada nas faces x = 0e x = a. É aplicada uma formulação que pode envolver as diferentes condições de contorno para as bordas y = 0 e y = b, dependendo do caso que está sendo analisado. Para tanto, é utilizada uma base genérica (Φ) de soluções da equação que descreve os modos. Na prática são consideradas duas bases de solução: a base espectral clássica, obtida a partir das raízes da equação característica, associada à equação diferencial ordinária linear de quarta ordem e a base dinâmica, introduzida por *Claeyssen* [CLA 90a], [CLA 90b], [CLA 99a], [CLA 99b], obtida a partir de uma solução com condições iniciais impulsivas.

A partir disso é apresentada a aplicação de tal metodologia, para ambas as bases de solução, em um caso específico onde são aplicadas as condições de contorno em y = 0 e y = b como sendo simplesmente apoiada e livre, respectivamente.

4.1 A Equação Matricial Modal

Já foi visto que $w=We^{i\omega t},$ onde W representa o modo de vibração e é dado por

$$W(x,y) = Y(y) \operatorname{sen}\left(\frac{m\pi x}{a}\right).$$

Portanto, para sua determinação é preciso encontrar a forma completa de Y(y), tanto na sua forma clássica quanto na dinâmica, que satisfaça as condições de contorno em y = 0 e y = b. De maneira genérica, as condições de contorno, consideradas neste trabalho, podem ser escritas como

$$A_{11}Y + B_{11}Y' + C_{11}Y'' + D_{11}Y''' = 0 A_{12}Y + B_{12}Y' + C_{12}Y'' + D_{12}Y''' = 0$$
 em $y = 0$ (4.1)

е

$$A_{21}Y + B_{21}Y' + C_{21}Y'' + D_{21}Y''' = 0 A_{22}Y + B_{22}Y' + C_{22}Y'' + D_{22}Y''' = 0$$
 em $y = b.$ (4.2)

Da teoria de equações diferenciais [COD 55], a solução de W(x, y) é dada por

$$W = \left[c_1\phi_1 + c_2\phi_2 + c_3\phi_3 + c_4\phi_4\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right) = \Phi \mathbf{c} \operatorname{sen}\left(\frac{m\pi x}{a}\right), \qquad (4.3)$$

onde $\{\phi_1,\phi_2,\phi_3,\phi_4\}$ é uma base de soluções. Aqui

$$\Phi = [\phi_1, \phi_2, \phi_3, \phi_4], \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}.$$

Substituindo (4.3) em (4.2) e (4.1), tem-se que para y = 0

$$A_{11}\Phi(0)\mathbf{c} + B_{11}\Phi'(0)\mathbf{c} + C_{11}\Phi''(0)\mathbf{c} + D_{11}\Phi'''(0)\mathbf{c} = \mathbf{0},$$

$$A_{12}\Phi(0)\mathbf{c} + B_{12}\Phi'(0)\mathbf{c} + C_{12}\Phi''(0)\mathbf{c} + D_{12}\Phi'''(0)\mathbf{c} = \mathbf{0},$$

e para y = b

$$A_{21}\Phi(b)\mathbf{c} + B_{21}\Phi'(b)\mathbf{c} + C_{21}\Phi''(b)\mathbf{c} + D_{21}\Phi'''(b)\mathbf{c} = \mathbf{0},$$
$$A_{22}\Phi(b)\mathbf{c} + B_{22}\Phi'(b)\mathbf{c} + C_{22}\Phi''(b)\mathbf{c} + D_{22}\Phi'''(b)\mathbf{c} = \mathbf{0}.$$

As quatro igualdades anteriores podem ser escritas matricialmente como

$$\begin{bmatrix} A_{11} & B_{11} & C_{11} & D_{11} & 0 & 0 & 0 & 0 \\ A_{12} & B_{12} & C_{12} & D_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & A_{21} & B_{21} & C_{21} & D_{21} \\ 0 & 0 & 0 & 0 & A_{22} & B_{22} & C_{22} & D_{22} \end{bmatrix} \begin{bmatrix} \Phi(0) \\ \Phi'(0) \\ \Phi''(0) \\ \Phi''(0) \\ \Phi(b) \\ \Phi'(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi'''(b) \\ \Phi'''(b) \end{bmatrix} \mathbf{c} = \mathbf{0}, \quad (4.4)$$

ou de maneira expandida

$$\begin{bmatrix} A_{11} & B_{11} & C_{11} & D_{11} & 0 & 0 & 0 & 0 \\ A_{12} & B_{12} & C_{12} & D_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & A_{21} & B_{21} & C_{21} & D_{21} \\ 0 & 0 & 0 & 0 & A_{22} & B_{22} & C_{22} & D_{22} \end{bmatrix} \begin{bmatrix} \phi_1(0) & \phi_2(0) & \phi_3(0) & \phi_4(0) \\ \phi_1'(0) & \phi_2''(0) & \phi_3''(0) & \phi_4''(0) \\ \phi_1'(0) & \phi_2''(0) & \phi_3''(0) & \phi_4''(0) \\ \phi_1(b) & \phi_2(b) & \phi_3(b) & \phi_4(b) \\ \phi_1'(b) & \phi_2'(b) & \phi_3'(b) & \phi_4'(b) \\ \phi_1''(b) & \phi_2''(b) & \phi_3''(b) & \phi_4''(b) \\ \phi_1''(b) & \phi_1''(b) & \phi_1''(b) & \phi_1''(b) \\ \phi_1''(b) & \phi_1''(b) & \phi_1''(b) \\ \phi_1''(b) & \phi_1''(b) &$$

De maneira compacta, tem-se a equação matricial

$$\mathcal{B}\Phi\mathbf{c} = \mathbf{0}$$

cuja incógnita é o vetor \mathbf{c} , sendo

$$\mathcal{B} = \begin{bmatrix} A_{11} & B_{11} & C_{11} & D_{11} & 0 & 0 & 0 & 0 \\ A_{12} & B_{12} & C_{12} & D_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & A_{21} & B_{21} & C_{21} & D_{21} \\ 0 & 0 & 0 & 0 & A_{22} & B_{22} & C_{22} & D_{22} \end{bmatrix}.$$
 (4.6)

Por conveniência, é introduzida para os valores $\phi_j(0), \phi_j(b), \phi^{(k)}(0), \phi^{(k)}(b)$ a seguinte notação abreviada:

$$\phi_j^{(k)}(0) = \phi_{1,j}^{(k)}, \quad k = 0:3, \ j = 1:4$$

$$\phi_j^{(k)}(b) = \phi_{2,j}^{(k)}, \quad k = 0:3, \ j = 1:4.$$

Assim,

Desta maneira, nos elementos Aij, Bij, Cij e Dij, o índice *i* refere-se ao ponto onde há condição de contorno, isto é, i = 1 para y = 0 e i = 2 para y = b, e o índice *j* representa a *j*-ésima condição de contorno num mesmo ponto. Nos elementos $\phi_{i,j}^{(k)}$, o índice *k* indica a *k*-ésima derivada e a ausência daquele índice denota a função, o índice i representa o i-ésimo contorno, e o índice j é a j-ésima função de base.

Por exemplo, para as condições de contorno

$$Y(0) = Y'(0) = 0, \ e \ Y(b) = Y'(b) = 0,$$

temos que

$$A_{11} = B_{12} = 1, \ B_{11} = C_{11} = D_{11} = A_{12} = C_{12} = D_{12} = 0,$$

 $A_{21} = B_{22} = 1, \ B_{21} = C_{21} = D_{21} = A_{22} = C_{22} = D_{22} = 0,$

 \mathbf{e}

$$\phi_{1,j}^{(k)} = \phi_j^{(k)}(0), \ \phi_{2,j}^{(k)} = \phi_j^{(k)}(b)$$

para k = 0: 3, j = 1: 4.

4.2 Solução Usando a Base Clássica

Agora será apresentada a solução completa para um caso específico em que também são conhecidas as condições de contorno em y = 0 e em y = b, usando a base espectral clássica. A borda y = 0 será considerada como simplesmente apoiada e a borda y = b como livre . Assim as condições de contorno, a partir das expressões (2.16) e (2.18), apresentam-se da seguinte maneira:

Em
$$y = 0$$

 $w = 0$ e $\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0.$

- Em
$$y = b$$

_

$$\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0$$

е

$$\frac{\partial^3 w}{\partial y^3} + (2-\nu)\frac{\partial^3 w}{\partial y \partial x^2} = 0.$$

De acordo com (3.25) o modo de vibração W(x, y) é dado por:

$$W(x,y) = Y(y)X(x) = \left[A\cosh\left(\varphi_1\frac{y}{b}\right) + B \operatorname{senh}\left(\varphi_1\frac{y}{b}\right) + C\cos\left(\varphi_2\frac{y}{b}\right) + E \operatorname{sen}\left(\varphi_2\frac{y}{b}\right)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right), (4.8)$$

onde as expressões das derivadas necessárias são

$$\begin{aligned} \frac{\partial^2 W}{\partial x^2} &= Y \frac{\partial^2 X}{\partial x^2} = \left[A \cosh\left(\varphi_1 \frac{y}{b}\right) + B \sinh\left(\varphi_1 \frac{y}{b}\right) + C \cos\left(\varphi_2 \frac{y}{b}\right) + E \sin\left(\varphi_2 \frac{y}{b}\right) \right] \left[-\sin\left(\frac{m\pi x}{a}\right) \left(\frac{m\pi}{a}\right)^2 \right], \\ \frac{\partial^2 W}{\partial y^2} &= \frac{\partial^2 Y}{\partial y^2} X = \left[A \left(\frac{\varphi_1}{b}\right)^2 \cosh\left(\varphi_1 \frac{y}{b}\right) + B \left(\frac{\varphi_1}{b}\right)^2 \sinh\left(\varphi_1 \frac{y}{b}\right) - C \left(\frac{\varphi_2}{b}\right)^2 \cos\left(\varphi_2 \frac{y}{b}\right) - E \left(\frac{\varphi_2}{b}\right)^2 \sin\left(\varphi_2 \frac{y}{b}\right) \right] \sin\left(\frac{m\pi x}{a}\right), \\ \frac{\partial^3 W}{\partial y^3} &= \frac{\partial^3 Y}{\partial y^3} X = \left[A \left(\frac{\varphi_1}{b}\right)^3 \sinh\left(\varphi_1 \frac{y}{b}\right) + B \left(\frac{\varphi_1}{b}\right)^3 \cosh\left(\varphi_1 \frac{y}{b}\right) + C \left(\frac{\varphi_2}{b}\right)^3 \sin\left(\varphi_2 \frac{y}{b}\right) - E \left(\frac{\varphi_2}{b}\right)^3 \cos\left(\varphi_2 \frac{y}{b}\right) \right] \sin\left(\frac{m\pi x}{a}\right), \\ \frac{\partial^3 W}{\partial y \partial x^2} &= \frac{\partial Y}{\partial y} \frac{\partial^2 X}{\partial x^2} = \left[A \frac{\varphi_1}{b} \sinh\left(\varphi_1 \frac{y}{b}\right) + B \frac{\varphi_1}{b} \cosh\left(\varphi_1 \frac{y}{b}\right) - C \frac{\varphi_2}{b} \sin\left(\varphi_2 \frac{y}{b}\right) + E \frac{\varphi_2}{b} \cos\left(\varphi_2 \frac{y}{b}\right) \right] \left[-\sin\left(\frac{m\pi x}{a}\right) \left(\frac{m\pi}{a}\right)^2 \right]. \end{aligned}$$

Pode-se observar que em W(x,y), Y(y) será dada em função da base espectral clássica. Para tanto serão definidos

$$\eta_1(y;\varphi_1) = \operatorname{senh}(\varphi_1 \frac{y}{b}), \qquad \eta_2(y;\varphi_1) = \operatorname{cosh}(\varphi_1 \frac{y}{b}),$$

$$\eta_3(y;\varphi_2) = \operatorname{sen}(\varphi_2 \frac{y}{b}), \qquad \eta_4(y;\varphi_2) = \operatorname{cos}(\varphi_2 \frac{y}{b}).$$
(4.9)

Utilizando a notação introduzida na seção anterior, tem-se

$$\eta_{11} = \operatorname{senh}(\varphi_1 \frac{y}{b}) \qquad \eta_{21} = \operatorname{senh}(\varphi_1 \frac{y}{b}) \\ \eta_{12} = \cosh(\varphi_1 \frac{y}{b}) \qquad \operatorname{em} y = 0, \qquad \eta_{22} = \cosh(\varphi_1 \frac{y}{b}) \\ \eta_{13} = \operatorname{sen}(\varphi_2 \frac{y}{b}) \qquad \operatorname{em} y = 0, \qquad \eta_{23} = \operatorname{sen}(\varphi_2 \frac{y}{b}) \\ \eta_{14} = \cos(\varphi_2 \frac{y}{b}) \qquad \eta_{24} = \cos(\varphi_2 \frac{y}{b}) \end{cases}$$

$$(4.10)$$

Feito isso pode-se construir a matriz Φ na forma apresentada em (4.7), onde as funções de base aparecem avaliadas em y = 0 e y = b. Substituindo os valores adequadamente, decorre

$$\Phi = \begin{bmatrix} \Phi(0) \\ \Phi'(0) \\ \Phi''(0) \\ \Phi''(0) \\ \Phi(b) \\ \Phi'(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi'''(b) \\ \Phi'''(b) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & \frac{\varphi_1}{b} & 0 & \frac{\varphi_1}{b} \\ \left(\frac{\varphi_1}{b}\right)^2 & 0 & -\left(\frac{\varphi_2}{b}\right)^2 & 0 \\ 0 & \left(\frac{\varphi_1}{b}\right)^3 & 0 & -\left(\frac{\varphi_2}{b}\right)^3 \\ \cosh(\varphi_1) & \sinh(\varphi_1) & \cos(\varphi_2) & \sin(\varphi_2) \\ \frac{\varphi_1}{b} \sinh(\varphi_1) & \frac{\varphi_1}{b} \cosh(\varphi_1) & -\frac{\varphi_2}{b} \sin(\varphi_2) & \frac{\varphi_2}{b} \cos(\varphi_2) \\ \left(\frac{\varphi_1}{b}\right)^2 \cosh(\varphi_1) & \left(\frac{\varphi_1}{b}\right)^2 \sinh(\varphi_1) & \left(\frac{\varphi_2}{b}\right)^2 \cos(\varphi_2) & -\left(\frac{\varphi_2}{b}\right)^2 \sin(\varphi_2) \\ \left(\frac{\varphi_1}{b}\right)^3 \sinh(\varphi_1) & \left(\frac{\varphi_1}{b}\right)^3 \cosh(\varphi_1) & \left(\frac{\varphi_2}{b}\right)^3 \sin(\varphi_2) & -\left(\frac{\varphi_2}{b}\right)^3 \cos(\varphi_2) \\ & (4.11) \end{bmatrix}$$

Agora, aplicando as condições de contorno em
$$(4.8)$$
, tem-se:

- Em y = 0:

$$W = 0 \Rightarrow [A + 0 + C + 0] \operatorname{sen}\left(\frac{m\pi x}{a}\right) = 0,$$

e para não ter soluções triviais,

$$A + C = 0.$$

Ainda,

$$\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 W}{\partial x^2} = 0 \Rightarrow \left[A \left(\frac{\varphi_1}{b} \right)^2 + 0 - C \left(\frac{\varphi_2}{b} \right)^2 + 0 \right] \operatorname{sen}\left(\frac{m\pi x}{a} \right) - \nu \left[A + 0 + C + 0 \right] \left(\frac{m\pi}{a} \right)^2 \operatorname{sen}\left(\frac{m\pi x}{a} \right) = 0,$$

e para não ter soluções triviais,

$$A\left[\left(\frac{\varphi_1}{b}\right)^2 - \nu\left(\frac{m\pi}{a}\right)^2\right] - C\left[\left(\frac{\varphi_2}{b}\right)^2 + \nu\left(\frac{m\pi}{a}\right)^2\right] = 0.$$

•

- Em y = b:

$$\begin{aligned} \frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 W}{\partial x^2} &= 0 \quad \Rightarrow \quad \left[A \left(\frac{\varphi_1}{b}\right)^2 \cosh(\varphi_1) + B \left(\frac{\varphi_1}{b}\right)^2 \operatorname{senh}(\varphi_1) - C \left(\frac{\varphi_2}{b}\right)^2 \cos(\varphi_2) + \right. \\ &\left. - E \left(\frac{\varphi_2}{b}\right)^2 \operatorname{sen}(\varphi_2) \right] \operatorname{sen}\left(\frac{m\pi x}{a}\right) - \nu \left[A \cosh(\varphi_1) + B \operatorname{senh}(\varphi_1) + \right. \\ &\left. + C \cos(\varphi_2) + E \operatorname{sen}(\varphi_2) \right] \left(\frac{m\pi}{a}\right)^2 \operatorname{sen}\left(\frac{m\pi x}{a}\right) = 0, \end{aligned}$$

e para não ter soluções triviais,

$$A\cosh(\varphi_1)\left[\left(\frac{\varphi_1}{b}\right)^2 - \nu\left(\frac{m\pi}{a}\right)^2\right] + B\,\operatorname{senh}(\varphi_1)\left[\left(\frac{\varphi_1}{b}\right)^2 - \nu\left(\frac{m\pi}{a}\right)^2\right] + C\cos(\varphi_2)\left[\left(\frac{\varphi_2}{b}\right)^2 + \nu\left(\frac{m\pi}{a}\right)^2\right] - E\,\operatorname{sen}(\varphi_2)\left[\left(\frac{\varphi_2}{b}\right)^2 + \nu\left(\frac{m\pi}{a}\right)^2\right] = 0.$$

Ainda,

$$\begin{aligned} \frac{\partial^3 W}{\partial y^3} + (2-\nu) \frac{\partial^3 W}{\partial y \partial x^2} &= 0 \quad \Rightarrow \quad \left[A \left(\frac{\varphi_1}{b} \right)^3 \operatorname{senh}(\varphi_1) + B \left(\frac{\varphi_1}{b} \right)^3 \operatorname{cosh}(\varphi_1) + C \left(\frac{\varphi_2}{b} \right)^3 \operatorname{sen}(\varphi_2) + \right. \\ &- \left. E \left(\frac{\varphi_2}{b} \right)^3 \cos(\varphi_2) \right] \operatorname{sen}\left(\frac{m\pi x}{a} \right) - (2-\nu) \left[A \left(\frac{\varphi_1}{b} \right) \operatorname{senh}(\varphi_1) + \right. \\ &+ \left. B \left(\frac{\varphi_1}{b} \right) \cosh(\varphi_1) - C \left(\frac{\varphi_2}{b} \right) \operatorname{sen}(\varphi_2) + E \left(\frac{\varphi_2}{b} \right) \cos(\varphi_2) \right] \left(\frac{m\pi}{a} \right)^2 \operatorname{sen}\left(\frac{m\pi x}{a} \right) = 0, \end{aligned}$$

e para não ter soluções triviais,

$$A \operatorname{senh}(\varphi_1) \left[\left(\frac{\varphi_1}{b}\right)^3 - (2-\nu)\frac{\varphi_1}{b} \left(\frac{m\pi}{a}\right)^2 \right] + B \operatorname{cosh}(\varphi_1) \left[\left(\frac{\varphi_1}{b}\right)^3 - (2-\nu)\frac{\varphi_1}{b} \left(\frac{m\pi}{a}\right)^2 \right] + C \operatorname{sen}(\varphi_2) \left[\left(\frac{\varphi_2}{b}\right)^3 - (2-\nu)\frac{\varphi_2}{b} \left(\frac{m\pi}{a}\right)^2 \right] + D \operatorname{cos}(\varphi_2) \left[- \left(\frac{\varphi_2}{b}\right)^3 - (2-\nu)\frac{\varphi_2}{b} \left(\frac{m\pi}{a}\right)^2 \right] = 0.$$

Feito isso, pode-se determinar a forma da matriz \mathcal{B} , que será dada por

$$\mathcal{B} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -(2-\nu) \left(\frac{m\pi}{a}\right)^2 & 0 & 1 \end{bmatrix}$$
(4.12)

Agora escrevendo a equação matricial, dada por (4.7), para este caso particular, tem-se:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ \delta_1 & 0 & \delta_2 & 0 \\ \delta_1 \cosh(\varphi_1) & \delta_1 \operatorname{senh}(\varphi_1) & \delta_2 \cos(\varphi_2) & \delta_2 \operatorname{sen}(\varphi_2) \\ \delta_3 \operatorname{senh}(\varphi_1) & \delta_3 \cosh(\varphi_1) & \delta_4 \operatorname{sen}(\varphi_2) & -\delta_4 \cos(\varphi_2) \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ E \end{bmatrix} = \mathbf{0}, \quad (4.13)$$

onde

$$\delta_1 = \left[\left(\frac{\varphi_1}{b}\right)^2 - \nu \left(\frac{m\pi}{a}\right)^2 \right] , \quad \delta_2 = -\left[\left(\frac{\varphi_2}{b}\right)^2 + \nu \left(\frac{m\pi}{a}\right)^2 \right],$$
$$\delta_3 = \left[\left(\frac{\varphi_1}{b}\right)^3 - (2-\nu)\frac{\varphi_1}{b} \left(\frac{m\pi}{a}\right)^2 \right] \quad e \quad \delta_4 = \left[\left(\frac{\varphi_2}{b}\right)^3 + (2-\nu)\frac{\varphi_2}{b} \left(\frac{m\pi}{a}\right)^2 \right].$$

Esta equação matricial apresenta soluções não triviais desde que o determinante seja nulo. Calculando o determinante, obtém-se a equação característica:

$$\sqrt{K-1} \left[K + (1-\nu) \right]^2 \tanh(\varphi_1) - \sqrt{K+1} \left[K - (1-\nu) \right]^2 \tan(\varphi_2) = 0, \quad (4.14)$$

onde K é dado por (3.20) e φ_1 e φ_2 são dadas por (3.22) . As raízes K da equação característica fornecem, em última instância, as freqüências características.

Agora as expressões para os modos de vibração também podem ser calculadas. Resolvendo a equação matricial serão determinados os valores das constantes $A, B, C \in E$. Para este caso particular obtêm-se:

$$A = 0 \quad B = \frac{[K - (1 - \nu)] \operatorname{sen}(\varphi_2)}{[K + (1 - \nu)] \operatorname{senh}(\varphi_1)}$$
$$C = 0 \qquad \qquad E = 1$$

Substituindo em W(x, y), obtém-se:

$$W(x,y) = \left[\frac{[K - (1 - \nu)] \operatorname{sen}(\varphi_2)}{[K + (1 - \nu)] \operatorname{senh}(\varphi_1)} \operatorname{senh}\left(\varphi_1 \frac{y}{b}\right) + \operatorname{sen}\left(\varphi_2 \frac{y}{b}\right)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right).$$
(4.15)

4.3 Solução Usando a Base Dinâmica

Agora será apresentada a solução completa para o mesmo caso abordado com a base espectral clássica, porém considerando a base dinâmica. Novamente a borda y = 0 será considerada como simplesmente apoiada e a borda y = b como livre . Assim as condições de contorno, a partir das expressões (2.16) e (2.18), apresentam-se da seguinte maneira:

- Em y = 0

$$w = 0$$
 e $\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0.$

- Em y = b

$$\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0$$

 \mathbf{e}

$$\frac{\partial^3 w}{\partial y^3} + (2 - \nu) \frac{\partial^3 w}{\partial y \partial x^2} = 0$$

De acordo com (3.32) o modo de vibração W(x, y) é dado por:

$$W(x,y) = \left[C_1 h(y) + C_2 h'(y) + C_3 h''(y) + C_4 h'''(y) \right] \, \operatorname{sen}\left(\frac{m\pi x}{a}\right), \qquad (4.16)$$

onde serão necessárias as expressões para as demais derivadas ainda não determinadas. Sendo assim:

$$h^{(iv)}(y) = \frac{\upsilon}{b^3} \left[\operatorname{senh}\left(\varphi_1 \frac{y}{b}\right) \varphi_1^3 - \operatorname{sen}\left(\varphi_2 \frac{y}{b}\right) \varphi_2^3 \right], \qquad (4.17)$$

$$h^{(v)}(y) = \frac{v}{b^4} \left[\cosh\left(\varphi_1 \frac{y}{b}\right) \varphi_1^4 - \cos\left(\varphi_2 \frac{y}{b}\right) \varphi_2^4 \right], \qquad (4.18)$$

$$h^{(vi)}(y) = \frac{v}{b^5} \left[\operatorname{senh}\left(\varphi_1 \frac{y}{b}\right) \varphi_1^5 + \operatorname{sen}\left(\varphi_2 \frac{y}{b}\right) \varphi_2^5 \right].$$
(4.19)

Pode-se observar que em W(x,y), Y(y) será dada em função da base dinâmica. Para tanto serão definidos

$$\psi_{1}(y;\varphi_{1},\varphi_{2}) = h(y;\varphi_{1},\varphi_{2}), \qquad \psi_{2}(y;\varphi_{1},\varphi_{2}) = h'(y;\varphi_{1},\varphi_{2}),$$

$$\psi_{3}(y;\varphi_{1},\varphi_{2}) = h''(y;\varphi_{1},\varphi_{2}), \qquad \psi_{4}(y;\varphi_{1},\varphi_{2}) = h'''(y;\varphi_{1},\varphi_{2}).$$
(4.20)

Utilizando a notação introduzida na seção anterior, tem-se

$$\begin{aligned}
\psi_{11} &= h(y;\varphi_{1},\varphi_{2}) & \psi_{21} &= h(y;\varphi_{1},\varphi_{2}) \\
\psi_{12} &= h'(y;\varphi_{1},\varphi_{2}) & \text{em } y = 0, \\
\psi_{13} &= h''(y;\varphi_{1},\varphi_{2}) & \psi_{23} &= h''(y;\varphi_{1},\varphi_{2}) \\
\psi_{14} &= h'''(y;\varphi_{1},\varphi_{2}) & \psi_{24} &= h'''(y;\varphi_{1},\varphi_{2})
\end{aligned}$$
(4.21)

Feito isso, pode-se construir a matriz Φ na forma apresentada em (4.7), onde as funções de base aparecem avaliadas em y = 0 e y = b. Substituindo os valores adequadamente, decorre

$$\Phi = \begin{bmatrix} \Phi(0) \\ \Phi'(0) \\ \Phi''(0) \\ \Phi''(0) \\ \Phi''(0) \\ \Phi''(0) \\ \Phi(b) \\ \Phi'(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi''(b) \\ \Phi'''(b) \end{bmatrix} = \begin{bmatrix} h(0) & h'(0) & h''(0) & h^{(iv)}(0) \\ h'(0) & h''(0) & h^{(iv)}(0) & h^{(v)}(0) \\ h''(0) & h^{(iv)}(0) & h^{(v)}(0) & h^{(vi)}(0) \\ h(b) & h'(b) & h''(b) & h^{(iv)}(b) \\ h'(b) & h''(b) & h^{(iv)}(b) & h^{(iv)}(b) \\ h''(b) & h'''(b) & h^{(iv)}(b) & h^{(vi)}(b) \\ h''(b) & h^{(iv)}(b) & h^{(vi)}(b) & h^{(vi)}(b) \end{bmatrix}$$

ou substituindo as formas de h(y):

Aplicando as condições de contorno em (4.16), tem-se:

- Em y = 0:

$$W = 0 \implies [C_1 h(0) + C_2 h'(0) + C_3 h''(0) + C_4 h'''(0)] \operatorname{sen}\left(\frac{m\pi x}{a}\right) = 0$$

$$\implies [0 + 0 + 0 + C_4] \operatorname{sen}\left(\frac{m\pi x}{a}\right) = 0,$$

e para não ter soluções triviais,

 $C_4 = 0.$

Ainda,

$$\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0 \quad \Rightarrow \quad \left[C_1 h''(0) + C_2 h'''(0) + C_3 h^{(iv)}(0) + C_4 h^{(v)}(0) \right] \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) + \nu \left[C_1 h(0) + C_2 h'(0) + C_3 h''(0) + C_4 h'''(0) \right] \left[-\left(\frac{m\pi}{a}\right)^2 \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] = 0,$$

ou

$$\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0 \Rightarrow \left[C_2 + (2 - \nu) \left(\frac{m\pi}{a}\right)^2 C_4 \right] \operatorname{sen}\left(\frac{m\pi x}{a}\right) = 0.$$

Para não ter soluções triviais,

$$C_2 = 0.$$

- Em y = b:

$$\begin{aligned} \frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} &= 0 \quad \Rightarrow \quad \left[C_1 h''(b) + C_2 h'''(b) + C_3 h^{(iv)}(b) + C_4 h^{(v)}(b) \right] \, \operatorname{sen}\left(\frac{m\pi x}{a}\right) \, + \\ &+ \nu \left[C_1 h(b) + C_2 h'(b) + C_3 h''(b) + C_4 h'''(b) \right] \left[-\left(\frac{m\pi}{a}\right)^2 \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] = 0, \end{aligned}$$

ou

$$\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} = 0 \Rightarrow \left\{ C_1 \left[h''(b) - \nu \left(\frac{m\pi}{a} \right)^2 h(b) \right] + C_3 \left[h^{(iv)}(b) - \nu \left(\frac{m\pi}{a} \right)^2 h''(b) \right] \right\} \ \operatorname{sen}\left(\frac{m\pi x}{a} \right) = 0,$$

pois C_2 e C_4 são nulos. Para não ter soluções triviais,

$$C_1 \left[h''(b) - \nu \left(\frac{m\pi}{a}\right)^2 h(b) \right] + C_3 \left[h^{(iv)}(b) - \nu \left(\frac{m\pi}{a}\right)^2 h''(b) \right] = 0,$$

onde h(b), h''(b) e $h^{(iv)}(b)$ são dadas por (3.28), (3.30) e (4.17) aplicadas em b, respectivamente.

Ainda,

$$\frac{\partial^3 W}{\partial y^3} + (2-\nu)\frac{\partial^3 W}{\partial y \partial x^2} = 0 \Rightarrow \left[C_1 h'''(b) + C_2 h^{(iv)}(b) + C_3 h^{(v)}(b) + C_4 h^{(vi)}(b) \right] \operatorname{sen}\left(\frac{m\pi x}{a}\right) + (2-\nu) \left[C_1 h'(b) + C_2 h''(b) + C_3 h'''(b) + C_4 h^{(iv)}(b) \right] \left[-\left(\frac{m\pi}{a}\right)^2 \operatorname{sen}\left(\frac{m\pi x}{a}\right) \right] = 0$$

ou

$$\frac{\partial^3 W}{\partial y^3} + (2-\nu)\frac{\partial^3 W}{\partial y \partial x^2} = 0 \quad \Rightarrow \quad \left\{ C_1 \left[h^{\prime\prime\prime\prime}(b) - (2-\nu) \left(\frac{m\pi}{a}\right)^2 h^\prime(b) \right] + C_3 \left[h^{(\nu)}(b) - (2-\nu) \left(\frac{m\pi}{a}\right)^2 h^{\prime\prime\prime}(b) \right] \right\} \operatorname{sen}\left(\frac{m\pi x}{a}\right) = 0,$$

pois \mathcal{C}_2 e \mathcal{C}_4 são nulos. Para não ter soluções triviais,

$$C_1 \left[h'''(b) - (2-\nu)h'(b) \left(\frac{m\pi}{a}\right)^2 \right] + C_3 \left[h^{(\nu)}(b) - (2-\nu)h'''(b) \left(\frac{m\pi}{a}\right)^2 \right] = 0,$$

onde h'(b), h'''(b) e $h^{(v)}(b)$ são dadas por (3.29), (3.31) e (4.18) aplicadas em b, respectivamente.

Feito isso pode-se determinar a forma da matriz \mathcal{B} . Como está sendo aplicada a base dinâmica para o mesmo caso resolvido anteriormente com a base espectral clássica, as condições de contorno serão as mesmas, conseqüentemente a matriz \mathcal{B} será idêntica a (4.12), obtida anteriormente:

$$\mathcal{B} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -(2-\nu) \left(\frac{m\pi}{a}\right)^2 & 0 & 1 \end{bmatrix}$$
(4.23)

Agora pode-se escrever a equação matricial, dada por (4.7), para este caso particular. Assim, escrevendo de forma geral, sem considerar os valores de C_2 e C_4 , que foi visto serem nulos, tem-se:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & [2-\nu]\left(\frac{m\pi}{a}\right)^{2} \\ h''(b) - \nu\left(\frac{m\pi}{a}\right)^{2} h(b) & h'''(b) - \nu\left(\frac{m\pi}{a}\right)^{2} h'(b) & h^{(iv)}(b) - \nu\left(\frac{m\pi}{a}\right)^{2} h''(b) & h^{(v)}(b) - \nu\left(\frac{m\pi}{a}\right)^{2} h'''(b) \\ h'''(b) - (2-\nu)\left(\frac{m\pi}{a}\right)^{2} h'(b) & h^{(iv)}(b) - (2-\nu)h''(b)\left(\frac{m\pi}{a}\right)^{2} & h^{(v)}(b) - (2-\nu)h^{(iv)}(b)\left(\frac{m\pi}{a}\right)^{2} \end{bmatrix} \begin{bmatrix} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \end{bmatrix} = 0.$$
(4.24)

Esta equação matricial apresenta soluções não triviais desde que o determinante seja nulo. Calculando o determinante, obtém-se a equação característica, que é idêntica àquela obtida usando-se a base clássica:

$$\sqrt{K-1} \left[K + (1-\nu) \right]^2 \tanh(\varphi_1) - \sqrt{K+1} \left[K - (1-\nu) \right]^2 \tan(\varphi_2) = 0, \quad (4.25)$$

onde K é dado por (3.20) e φ_1 e φ_2 são dadas por (3.22) . As raízes K da equação característica fornecem, em última instância, as freqüências características.

Agora a expressão para os modos de vibração também pode ser calculada. Resolvendo a equação matricial serão determinados os valores das constantes $C_1, C_2, C_3 \in C_4$. Para este caso obtêm-se:

$$C_{1} = 1$$

$$C_{2} = 0$$

$$C_{3} = -\frac{Kv}{2\sqrt{K^{2}-1}} \left[\frac{\sqrt{K-1} \left[K + (1-\nu) \right] \operatorname{senh}(\varphi_{1}) + \sqrt{K+1} \left[K - (1-\nu) \right] \operatorname{sen}(\varphi_{2})}{\sqrt{K+1} \left[K + (1-\nu) \right] \operatorname{senh}(\varphi_{1}) - \sqrt{K-1} \left[K - (1-\nu) \right] \operatorname{sen}(\varphi_{2})} \right]$$

$$C_{4} = 0$$

Substituindo em W(x, y), obtém-se:

$$W(x,y) = \left[C_3 h''(y) + h(y) \right] \operatorname{sen}\left(\frac{m\pi x}{a}\right),$$

ou

$$W = \left\{ -\frac{Kv}{2\sqrt{K^2 - 1}} \left[\frac{\sqrt{K - 1} \left[K + (1 - \nu) \right] \operatorname{senh}(\varphi_1) + \sqrt{K + 1} \left[K - (1 - \nu) \right] \operatorname{sen}(\varphi_2)}{\sqrt{K + 1} \left[K + (1 - \nu) \right] \operatorname{senh}(\varphi_1) - \sqrt{K - 1} \left[K - (1 - \nu) \right] \operatorname{sen}(\varphi_2)} \right] \cdot \frac{v}{b} \left[\operatorname{senh}\left(\varphi_1 \frac{y}{b}\right) \varphi_1 + \operatorname{sen}\left(\varphi_2 \frac{y}{b}\right) \varphi_2 \right] + vb \left[\frac{\operatorname{senh}\left(\varphi_1 \frac{y}{b}\right)}{\varphi_1} - \frac{\operatorname{sen}\left(\varphi_2 \frac{y}{b}\right)}{\varphi_2} \right] \right\} \operatorname{sen}\left(\frac{m\pi x}{a}\right).$$

$$(4.26)$$

5 CÁLCULO MATRICIAL DOS MODOS

Neste capítulo serão apresentados os modos relativos aos diversos tipos de placa avaliados neste trabalho, caracterizados pelas suas condições de contorno. A abordagem considera a base clássica e a base dinâmica descritas no capítulo anterior. Para tanto, cada seção deste capítulo contém um determinado tipo de placa. Para distinguir o uso da base, utilizamos superíndices: C para o caso clássico e D para o caso dinâmico. Também será introduzida a matriz

$$\mathcal{U} = \mathcal{B} \Phi, \tag{5.1}$$

que incorpora os valores associados às condições de contorno. Aqui \mathcal{B} é a matriz (4.6) e Φ a matriz definida segundo (4.5).

Uma vez definida \mathcal{U} , deve-se resolver o sitema singular $\mathcal{U} \mathbf{c} = \mathbf{0}$. Tal solução é obtida da seguinte maneira: o determinate nulo do sistema fornece a equação característica. Para as raízes desta equação, a matriz \mathcal{U} foi fatorizada na forma **LU** e obtidas as soluções para **c**, através do método de eliminação. Os cálculos foram realizados de maneira simbólica com o auxílio do *software* MAPLE V5.

Neste capítulo, serão consideradas as bases estudadas:

Base clássica:

$$\eta_1(y;\varphi_1) = \operatorname{senh}\left(\varphi_1\frac{y}{b}\right), \qquad \eta_2(y;\varphi_1) = \cosh\left(\varphi_1\frac{y}{b}\right),$$
$$\eta_3(y;\varphi_2) = \operatorname{sen}\left(\varphi_2\frac{y}{b}\right), \qquad \eta_4(y;\varphi_2) = \cos\left(\varphi_2\frac{y}{b}\right).$$

Base dinâmica: Formada pela resposta impulso (ou solução dinâmica), h(y), que é a solução da equação $h^{(iv)}(y) - \frac{1}{Kv}h''(y) + \left[\frac{1}{4K^2v^2}(1-K^2)\right]h(y) = 0$, onde $v = \frac{1}{2K}\left(\frac{a}{m\pi}\right)^2$, junto com as condições iniciais h(0) = 0, h'(0) = 0, h''(0) = 0 e h'''(0) = 1, e suas derivadas até terceira ordem;

$$\begin{split} \psi_1(y;\varphi_1,\varphi_2) &= h(y;\varphi_1,\varphi_2) = vb \left[\frac{\operatorname{senh}\left(\varphi_1\frac{y}{b}\right)}{\varphi_1} - \frac{\operatorname{sen}\left(\varphi_1\frac{y}{b}\right)}{\varphi_2} \right], \\ \psi_2(y;\varphi_1,\varphi_2) &= h'(y;\varphi_1,\varphi_2) = v \left[\cosh\left(\varphi_1\frac{y}{b}\right) - \cos\left(\varphi_2\frac{y}{b}\right) \right], \\ \psi_3(y;\varphi_1,\varphi_2) &= h''(y;\varphi_1,\varphi_2) = \frac{v}{b} \left[\operatorname{senh}\left(\varphi_1\frac{y}{b}\right)\varphi_1 + \operatorname{sen}\left(\varphi_2\frac{y}{b}\right)\varphi_2 \right], \\ \psi_4(y;\varphi_1,\varphi_2) &= h'''(y;\varphi_1,\varphi_2) = \frac{v}{b^2} \left[\cosh\left(\varphi_1\frac{y}{b}\right)\varphi_1^2 + \cos\left(\varphi_2\frac{y}{b}\right)\varphi_2^2 \right]. \end{split}$$

Serão abordados seis casos de placas de acordo com suas condições de contorno: apoiada-apoiada-apoiada-apoiada, (A-A-A-A), apoiada-fixa-apoiada-fixa (A-F-A-F), apoiada-fixa-apoiada-apoiada (A-F-A-A), apoiada-fixa-apoiada-livre (A-F-A-L), apoiada-apoiada-apoiada-livre (A-A-A-L) e apoiada-livre-apoiada-livre (A-L-A-L). É importante salientar que a ordem de indicação do tipo de condição de contorno obedece a seqüência x = 0, y = 0, x = a e y = b, respectivamente. As formas da matriz \mathcal{B} , para os seis casos abordados, estão apresentadas no anexo (A-3).

Para cada caso abordado são apresentadas a equação característica, as suas raízes, os parâmetros adimensionais de freqüências (a ser definido), e também a forma dos modos de vibração. Será usada uma convenção gráfica para identificação de cada um dos tipos de condição de contorno consideradas aqui. Através da codificação apresentada na figura (5.1) pode-se identificar qual o caso que está sendo tratado.

Na apresentação das equações características, é utilizada uma forma única, uma vez que tanto com o uso da base clássica quanto da base dinâmica, obtém-se a mesma equação característica. Conseqüentemente os valores de suas raízes são os mesmos para ambas as bases utilizadas.

Figura 5.1 Convenção gráfica das condições de contorno

Na apresentação das raízes da equação característica e dos parâmetros adimensionais de freqüência, tais grandezas foram avaliadas para diferentes tamanhos de placa; isto é, para diferentes valores da relação a/b (razão de aspecto). Serão apresentados os resultados para os casos onde a/b = 2/5, 2/3, 1, 3/2 e 5/2 e para os cinco primeiros valores obtidos pela atual formulação. Da mesma são apresentados os cinco primeiros valores determinados por *Leissa* [LEI 73], colocando-os de forma comparativa. Cabe lembrar que também foram calculados valores além daqueles apresentados, podendo servir como base para demais comparações.

Na apresentação dos modos de vibração, serão apresentados alguns daqueles primeiros cinco, assim como outros cujos parâmetros adimensionais de freqüência não encontram-se nas tabelas correspondentes. Foi observado, também, que tais modos possuem o mesmo formato tanto quando do uso da base clássica quando do uso da base dinâmica.

5.1 Placa Apoiada-Apoiada-Apoiada

Neste caso, os deslocamentos e os momentos fletores estão relacionados como segue:

$$w(x, 0, t) = 0, \quad w_{yy}(x, 0, t) + \nu w_{xx}(x, 0, t) = 0,$$

$$w(x, b, t) = 0, \quad w_{yy}(x, b, t) + \nu w_{xx}(x, b, t) = 0.$$

Essas condições de contorno implicam nas seguintes condições de contorno para Y(y):

$$Y(0) = 0, \quad Y''(0) - \nu \left(\frac{m\pi}{a}\right)^2 Y(0) = 0,$$

$$Y(b) = 0, \quad Y''(b) - \nu \left(\frac{m\pi}{a}\right)^2 Y(b) = 0.$$

Equação Característica

$$\operatorname{senh}(\varphi_1)\operatorname{sen}(\varphi_2) = 0 \tag{5.2}$$

Parâmetros Adimensionais de Freqüência

Este é o único caso em que existe uma expressão fechada para as raízes da equação característica. Tal resultado tem sua obtenção mostrada no anexo (A-4). Será introduzido o parâmetro adimensional de freqüência λ ; que aparece na literatura

[LEI 73], [SOE 81] e [MEI 67], de tal forma que:

$$\lambda = Km^2 \pi^2 = \omega \, a^2 \sqrt{\frac{\rho h}{D}}.\tag{5.3}$$

Assim,

$$\omega a^2 \sqrt{\frac{\rho h}{D}} = \pi^2 \left[m^2 + n^2 \left(\frac{a}{b} \right)^2 \right], (m, n = 1, 2, ...).$$
(5.4)

1) a/b = 2/5

Raízes K							
m n	m n 1 1 1 2 1 3 1 4 2 1						
Atual	1.16	1.64	2.44	3.56	1.04		

Parâmetros λ							
m n	m n 1 1 1 2 1 3 1 4 2 1						
Atual	11.4487411	16.18615122	24.08183475	35.13579168	41.05755432		
Leissa	11.4487	16.1862	24.0818	35.1358	41.0576		

Tabela 5.1 Raízes Ke Parâmetros λ para placa A-A-A-A ea/b=2/5.

2) a/b = 2/3

Raízes K						
m n 1 1 1 2 2 1 1 3 2 2						
Atual	1.444	2.777	1.111	5.0	1.444	

Parâmetros λ							
m n	m n 1 1 1 2 2 1 1 3 2 2						
Atual	14.25609525	27.41556779	43.86490846	49.34802202	57.02438098		
Leissa	14.2561	27.4156	43.8649	49.3480	57.0244		

Tabela 5.2 Raízes Ke Parâmetros λ para placa A-A-A-A ea/b=2/3.

3) a/b = 1

Raízes K						
m n	11	21	12	2 2	31	
Atual	2.0	1.25	5.0	2.0	1.111	

Parâmetros λ							
m n	n 11 21 12 22 31						
Atual	19.73920881	49.34802202	49.34802202	78.95683523	98.69604403		
Leissa	19.7392	49.3480	49.3480	78.9568	98.6960		

Tabela 5.3 Raízes Ke Parâmetros λ para placa A-A-A-A ea/b=1.

4) a/b = 3/2

Raízes K						
m n	11	2 1	12	31	2 2	
Atual	3.25	1.5625	10.0	1.25	3.25	

Parâmetros λ							
m n	nn 11 21 12 31 22						
Atual	32.07621431	61.68502753	98.69604404	111.0330495	128.3048573		
Leissa	32.0762	61.6850	98.6960	111.0330	128.3049		

Tabela 5.4 Raízes Ke Parâmetros λ para placa A-A-A ea/b=3/2.

5)
$$a/b = 5/2$$

	Raízes K							
m n 1 1 2 1 3 1 4 1 1 1					12			
Atual	7.25	2.5625	1.6444	1.390625	26.0			

Parâmetros λ							
m n	nn 11 21 31 41 12						
Atual	71.55463193	101.1634451	150.5114672	219.5986980	256.6097145		
Leissa	71.5564	101.1634	150.5115	219.5987	256.6097		

Tabela 5.5 Raízes Ke Parâmetros
 λ para placa A-A-A-A ea/b=5/2.

Modos

$$\frac{Clássico}{W_{mn}^{C}(x,y) = \operatorname{sen}(\varphi_{2}\frac{y}{b})\operatorname{sen}\left(\frac{m\pi x}{a}\right) = \eta_{3}(y;\varphi_{2})\operatorname{sen}\left(\frac{m\pi x}{a}\right)}$$

$$\frac{Dinâmico}{W_{mn}^{D}(x,y) = \left[\psi_{1}(y;\varphi_{1},\varphi_{2}) - \sigma_{mn,1}^{D}\psi_{3}(y;\varphi_{1},\varphi_{2})\right]\operatorname{sen}\left(\frac{m\pi x}{a}\right)}$$

$$\sigma_{mn,1}^{D} = \frac{Kv}{2} \left\{ \frac{\sqrt{K-1}\operatorname{senh}(\varphi_{1}) - \sqrt{K+1}\operatorname{sen}(\varphi_{2})}{\sqrt{K^{2}-1}\left[\sqrt{K+1}\operatorname{senh}(\varphi_{1}) + \sqrt{K-1}\operatorname{sen}(\varphi_{2})\right]} \right\}$$

Tabela 5.6 Modos Clássicos e Dinâmicos para placa A-A-A.

Linhas Nodais e Isoalturas (modo 11)

Linhas Nodais e Isoalturas (modo 12)

Linhas Nodais e Isoalturas (modo 22)

Linhas Nodais e Isoalturas (modo 24)

Modo 3D (modo 24)

Linhas Nodais e Isoalturas (modo 32)

Linhas Nodais e Isoalturas (modo 33)

Linhas Nodais e Isoalturas (modo 42)

Linhas Nodais e Isoalturas (modo 43)

5.2 Placa Apoiada-Fixa-Apoiada-Fixa

Neste caso, os deslocamentos e os giros estão relacionados como segue:

$$w(x, 0, t) = 0, \quad w_y(x, 0, t) = 0,$$

 $w(x, b, t) = 0, \quad w_y(x, b, t) = 0.$

Essas condições de contorno implicam nas seguintes condições de contorno para Y(y):

$$Y(0) = 0, Y'(0) = 0,$$

 $Y(b) = 0, Y'(b) = 0.$

Equação Característica

$$\sqrt{K^2 - 1} \left[\cosh(\varphi_1) \cos(\varphi_2) - 1 \right] - \operatorname{senh}(\varphi_1) \operatorname{sen}(\varphi_2) = 0.$$
(5.5)

Parâmetros Adimensionais de Freqüência

1) a/b = 2/5

Raízes K						
m n	11	1 2	13	14	2 1	
Atual	1.229498503	1.860736773	2.833521458	4.128839325	1.048121324	

Parâmetros λ							
m n	11	1 2	13	14	2 1		
Atual	12.13466384	18.36473585	27.96573586	40.75001079	41.37817134		
Leissa	12.1347	18.3647	27.9657	40.7500	41.3782		

Tabela 5.7 Raízes Ke Parâmetros λ para placa A-F-A-F ea/b=2/5.

2) a/b = 2/3

	Raízes K						
m n	11	1 2	2 1	13	2 2		
Atual	1.760252771	3.581146363	1.150740609	6.287422842	1.578409595		

	Parâmetros λ							
m n	11	1 2	2 1	13	2 2			
Atual	17.37299850	35.34449792	45.42941833	62.05437617	62.31311316			
Leissa	17.3730	35.3445	45.4294	62.0544	62.3131			

Tabela 5.8 Raízes Ke Parâmetros λ para placa A-F-A-F ea/b=2/3.

3) a/b = 1

	Raízes K						
m n	11	2 1	1 2	$2 \ 2$	31		
Atual	2.933334427	1.386658181	7.024295090	2.395873085	1.150740609		

Parâmetros λ							
m n	11	2 1	1 2	2 2	31		
Atual	28.95085038	54.74307076	69.32701376	94.58527820	102.2161912		
Leissa	28.9509	54.7431	69.3270	94.5853	102.2162		

Tabela 5.9 Raízes Ke Parâmetros
 λ para placa A-F-A-F ea/b=1.

4) a/b = 3/2

	Raízes K						
m n	11	2 1	31	1 2	2 2		
Atual	5.709252623	2.000677520	1.386658181	14.82001621	4.308967342		

Parâmetros λ							
m n	11	2 1	31	1 2	2 2		
Atual	56.34806483	78.98358265	123.1719092	146.2676973	170.1112122		
Leissa	56.3481	78.9836	123.1719	146.2677	170.1112		

Tabela 5.10 Raízes Ke Parâmetros
 λ para placa A-F-A-F ea/b=3/2.

5)
$$a/b = 5/2$$

	Raízes K						
m n	11	2 1	31	4 1	51		
Atual	14.74060359	4.172878932	2.276654265	1.653468402	1.386658181		

	Parâmetros λ						
m n	11	2 1	31	4 1	$5\ 1$		
Atual	145.4839261	164.7386572	202.2270927	261.1052643	342.1441923		
Leissa	145.4839	164.7387	202.2271	261.1053	342.1442		

Tabela 5.11 Raízes Ke Parâmetros λ para placa A-F-A-F ea/b=5/2.

Modos

Clássico
$W_{mn}^{C}(x,y) = \left\{ \sigma_{mn,1}^{C} \left[\eta_{2}(y;\varphi_{1}) - \eta_{4}(y;\varphi_{2}) \right] + \sigma_{mn,2}^{C} \eta_{1}(y;\varphi_{1}) + \eta_{3}(y;\varphi_{2}) \right\} \operatorname{sen}\left(\frac{m\pi x}{a}\right)$
$\sigma_{mn,1}^C = \frac{\sqrt{K-1} \operatorname{senh}(\varphi_1) - \sqrt{K+1} \operatorname{sen}(\varphi_2)}{\sqrt{K+1} \left[\cosh(\varphi_1) - \cos(\varphi_2) \right]}$
$\sigma^C_{mn,2} = -\frac{\sqrt{K-1}}{\sqrt{K+1}}$
Dinâmico
$W_{mn}^D(x,y) = \left[\psi_1(y;\varphi_1,\varphi_2) + \sigma_{mn,1}^D \psi_2(y;\varphi_1,\varphi_2)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right)$
$\sigma_{mn,1}^{D} = -\sqrt{\frac{Kv}{2}} \left\{ \frac{\sqrt{K-1} \operatorname{senh}(\varphi_1) - \sqrt{K+1} \operatorname{sen}(\varphi_2)}{\sqrt{K^2 - 1} \left[\operatorname{cosh}(\varphi_1) - \operatorname{cos}(\varphi_2) \right]} \right\}$

Tabela 5.12 Modos Clássicos e Dinâmicos para placa A-F-A-F.

Linhas Nodais e Isoalturas (modo 11)

Linhas Nodais e Isoalturas (modo 12)

Linhas Nodais e Isoalturas (modo 22)

Linhas Nodais e Isoalturas (modo 24)

Modo 3D (modo 24)

Linhas Nodais e Isoalturas (modo 32)

Linhas Nodais e Isoalturas (modo 33)

Linhas Nodais e Isoalturas (modo 42)

Linhas Nodais e Isoalturas (modo 43)

5.3 Placa Apoiada-Fixa-Apoiada-Apoiada

Neste caso, os deslocamentos, o giro e o momento fletor estão relacionados como segue:

$$w(x, 0, t) = 0, \quad w_y(x, 0, t) = 0,$$

$$w(x, b, t) = 0, \quad w_{yy}(x, b, t) + \nu w_{xx}(x, b, t) = 0.$$

Essas condições de contorno implicam nas seguintes condições de contorno para Y(y):

$$Y(0) = 0, \quad Y'(0) = 0,$$

$$Y(b) = 0, \quad Y''(b) - \nu \left(\frac{m\pi}{a}\right)^2 Y(b) = 0.$$

Equação Característica

$$\sqrt{K-1}\tanh(\varphi_1) - \sqrt{K+1}\tan(\varphi_2) = 0.$$
(5.6)

Parâmetros Adimensionais de Freqüência

1) a/b = 2/5

Raízes K						
m n	11	1 2	13	14	2 1	
Atual	1.190546947	1.741423108	2.625953350	3.833153291	1.043786617	

Parâmetros λ						
m n	11	1 2	13	14	2 1	
Atual	11.75022739	17.18715718	25.91712075	37.83170660	41.20704397	
Leissa	11.7502	17.1872	25.9171	37.8317	41.2070	

Tabela 5.13 Raízes Ke Parâmetros λ para placa A-F-A-A ea/b=2/5.

2) a/b = 2/3

Raízes K						
m n	1 1	1 2	2 1	1 3	2 2	
Atual	1.578409595	3.148288243	1.128828279	5.612444229	1.506206570	

	Parâmetros λ							
m n 1 1 1 2 2 1 1 3 2 2					2 2			
Atual	15.57827829	31.07235951	44.56435422	55.39260428	59.46265199			
Leissa	15.5783	31.0724	44.5644	55.3926	59.4627			

Tabela 5.14 Raízes Ke Parâmetros λ para placa A-F-A-A ea/b=2/3.

3)
$$a/b = 1$$

	Raízes K						
m n	11	2 1	1 2	2 2	31		
Atual	2.395873085	1.308924666	5.942118946	2.181811463	1.128828279		

Parâmetros λ						
m n	11	2 1	1 2	2 2	31	
Atual	23.64631955	51.67427459	58.64636332	86.13446410	100.2697970	
Leissa	23.6463	51.6743	58.6464	86.1345	100.2698	

Tabela 5.15 Raízes Ke Parâmetros
 λ para placa A-F-A-A ea/b=1.

4) a/b = 3/2

	Raízes K						
m n	11	2 1	31	1 2	2 2		
Atual	4.308967342	1.747869546	1.308924666	12.25941266	3.739646303		

Parâmetros λ						
m n	m n 1 1 2 1 3 1 1 2 2 2					
Atual	42.52780306	69.00312388	116.2671178	120.9955532	147.6353185	
Leissa	42.5278	69.0031	116.2671	120.9956	147.6353	

Tabela 5.16 Raízes Ke Parâmetros
 λ para placa A-F-A-A ea/b=3/2.

5)
$$a/b = 5/2$$

	Raízes K						
m n	11	2 1	31	4 1	1 2		
Atual	10.52956605	3.250845544	1.940642730	1.502404422	32.50303148		

Parâmetros λ						
m n	11	2 1	31	41	51	
Atual	103.9226515	128.3382380	172.3803843	237.2501968	320.7920626	
Leissa	103.9227	128.3382	172.3804	237.2502	320.7921	

Tabela 5.17 Raízes Ke Parâmetros λ para placa A-F-A-A ea/b=5/2.

Modos

Clássico
$W_{mn}^{C}(x,y) = \left\{ \sigma_{mn,1}^{C} \left[\eta_{2}(y;\varphi_{1}) - \eta_{4}(y;\varphi_{2}) \right] + \sigma_{mn,2}^{C} \eta_{1}(y;\varphi_{1}) + \eta_{3}(y;\varphi_{2}) \right\} \operatorname{sen}\left(\frac{m\pi x}{a}\right)$
$\sigma_{mn,1}^C = \frac{\sqrt{K-1} \operatorname{senh}(\varphi_1) - \sqrt{K+1} \operatorname{sen}(\varphi_2)}{\sqrt{K+1} \left[\operatorname{cosh}(\varphi_1) - \operatorname{cos}(\varphi_2) \right]}$
$\sigma^C_{mn,2} = -\frac{\sqrt{K-1}}{\sqrt{K+1}}$
Dinâmico
$W_{mn}^D(x,y) = \left[\psi_1(y;\varphi_1,\varphi_2) + \sigma_{mn,1}^D \psi_2(y;\varphi_1,\varphi_2)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right)$
$\sigma_{mn,1}^{D} = -\sqrt{\frac{Kv}{2}} \left\{ \frac{\sqrt{K-1} \operatorname{senh}(\varphi_1) - \sqrt{K+1} \operatorname{sen}(\varphi_2)}{\sqrt{K^2 - 1} \left[\operatorname{cosh}(\varphi_1) - \operatorname{cos}(\varphi_2) \right]} \right\}$

Tabela 5.18 Modos Clássicos e Dinâmicos para placa A-F-A-A.

Linhas Nodais e Isoalturas (modo 11)

Linhas Nodais e Isoalturas (modo 12)

Linhas Nodais e Isoalturas (modo 22)

Linhas Nodais e Isoalturas (modo 24)

Modo 3D (modo 24)

Linhas Nodais e Isoalturas (modo 32)

Linhas Nodais e Isoalturas (modo 33)

Linhas Nodais e Isoalturas (modo 42)

Linhas Nodais e Isoalturas (modo 43)

5.4 Placa Apoiada-Fixa-Apoiada-Livre

Neste caso, o deslocamento, o giro, o momento fletor e o momento torçor (força cisalhante efetiva) estão relacionados como segue:

$$w(x,0,t) = 0, \quad w_y(x,0,t) = 0,$$

$$w_{yy}(x,b,t) + \nu w_{xx}(x,b,t) = 0, \quad w_{yyy}(x,b,t) + (2-\nu) w_{yxx} = 0.$$

Essas condições de contorno implicam nas seguintes condições de contorno para Y(y):

$$Y(0) = 0, \quad Y'(0) = 0,$$

$$Y''(b) - \nu \left(\frac{m\pi}{a}\right)^2 Y(b) = 0, \quad Y'''(b) - (2 - \nu) \left(\frac{m\pi}{a}\right)^2 Y'(b) = 0.$$

Equação Característica

$$\sqrt{K^2 - 1} \left[K^2 - (1 - \nu)^2 \right] + \sqrt{K^2 - 1} \left[K^2 + (1 - \nu)^2 \right] \cosh(\varphi_1) \cos(\varphi_2) + \left[K^2 (1 - 2\nu) - (1 - \nu)^2 \right] \operatorname{senh}(\varphi_1) \operatorname{sen}(\varphi_2) = 0.$$
(5.7)

Parâmetros Adimensionais de Freqüência

1) a/b = 2/5

Raízes K						
m n	11	1 2	13	14	2 1	
Atual	1.032340059	1.378333951	2.036265742	3.001325780	1.004047881	

Parâmetros λ							
m n	n n 1 1 1 2 1 3 1 4 2						
Atual	10.18878799	13.60361083	20.09713733	29.62189814	39.63822155		
Leissa	10.1888	13.6036	20.0971	29.6219	39.6382		

Tabela 5.19 Raízes Ke Parâmetros λ para placa A-F-A-L ea/b=2/5.

2) a/b = 2/3

Raízes K							
m n	m n 1 1 1 2 1 3 2 1 2 2						
Atual	1.112024264	2.060420581	3.845666612	1.020094612	1.259719383		

Parâmetros λ							
m n 1 1 1 2 1 3 2 1 2 2							
Atual	10.97523957	20.33553604	37.95520813	40.27172110	49.73172788		
Leissa	10.9752	20.3355	37.9552	40.2717	49.7317		

Tabela 5.20 Raízes Ke Parâmetros λ para placa A-F-A-L ea/b=2/3.

3) a/b = 1

	Raízes K						
m n	m n 1 1 1 2 2 1 2 2 1 3						
Atual	1.285498307	3.350194019	1.056322214	1.596184323	7.335406801		

Parâmetros λ						
m n	m n 1 1 1 2 2 1 2 2 1 3					
Atual	12.68735975	33.06508964	41.70192950	63.01483130	72.39756327	
Leissa	12.6874	33.0651	41.7019	63.0148	72.3976	

Tabela 5.21 Raízes Ke Parâmetros
 λ para placa A-F-A-L ea/b=1.

4) a/b = 3/2

Raízes K							
m n	m n 1 1 2 1 1 2 2 3 1						
Atual	1.704472577	1.147523861	6.182391648	2.338171727	1.056322214		

Parâmetros λ							
m n	m n 1 1 2 1 1 2 2 2 3 1						
Atual	16.82247005	45.30242621	61.01775984	92.30731990	93.82934138		
Leissa	16.8225	45.3024	61.0178	92.3073	93.8293		

Tabela 5.22 Raízes Ke Parâmetros λ para placa A-F-A-L ea/b=3/2.

5)
$$a/b = 5/2$$

Raízes K						
m n 1 1 2 1 3 1 1 2 4 1						
Atual	3.103230590	1.471194618	1.188238259	15.14315297	1.096206549	

Parâmetros λ							
m n	m n 1 1 2 1 3 1 1 2 4 1						
Atual	30.62765830	58.08043552	105.5469740	149.4569292	173.1059997		
Leissa	30.6277	58.0804	105.5470	149.4569	173.1060		

Tabela 5.23 Raízes Ke Parâmetros
 $\lambda {\rm para}$ placa A-F-A-L ea/b=5/2.

\mathbf{Modos}

Linhas Nodais e Isoalturas (modo 11)

Linhas Nodais e Isoalturas (modo 12)

Linhas Nodais e Isoalturas (modo 22)

Linhas Nodais e Isoalturas (modo 24)

Modo 3D (modo 32)

Linhas Nodais e Isoalturas (modo 33)

Linhas Nodais e Isoalturas (modo 42)

Linhas Nodais e Isoalturas (modo 43)

5.5 Placa Apoiada-Apoiada-Livre

Neste caso, o deslocamento, os momentos fletores e o momento torçor (força cisalhante efetiva) estão relacionados como segue:

$$w(x,0,t) = 0, \quad w_{yy}(x,0,t) + \nu \, w_{xx}(x,0,t) = 0,$$

$$w_{yy}(x,b,t) + \nu \, w_{xx}(x,b,t) = 0, \quad w_{yyy}(x,b,t) + (2-\nu) \, w_{yxx} = 0.$$

Essas condições de contorno implicam nas seguintes condições de contorno para Y(y):

$$Y(0) = 0, \quad Y''(0) - \nu \left(\frac{m\pi}{a}\right)^2 Y(0) = 0,$$

$$Y''(b) - \nu \left(\frac{m\pi}{a}\right)^2 Y(b) = 0, \quad Y'''(b) - (2 - \nu) \left(\frac{m\pi}{a}\right)^2 Y'(b) = 0.$$

Equação Característica

$$\sqrt{K-1} \left[K + (1-\nu) \right]^2 \tanh(\varphi_1) - \sqrt{K+1} \left[K - (1-\nu) \right]^2 \tanh(\varphi_2) = 0.$$
 (5.8)

Parâmetros Adimensionais de Freqüência

1) a/b = 2/5

	Raízes K							
m n	mn 11 12 13 14 15							
Atual	1.025965630	1.322954127	1.908793699	2.792209981	3.985738479			

Parâmetros λ								
m n	11	1 2	13	14	15			
Atual	10.12587490	13.05703388	18.83903870	27.55800793	39.33766205			
Leissa	10.1259	13.0570	18.8390	27.5580	39.3377			

Tabela 5.25 Raízes Ke Parâmetros λ para placa A-A-A-L ea/b=2/5.

2) a/b = 2/3

	Raízes K							
m n 1 1 1 2 1 3 2 1 2 2								
Atual	1.081215297	1.854131629	3.414255709	1.016522618	1.226194315			

	Parâmetros λ								
m n	11	1 2	13	2 1	2 2				
Atual	10.67116726	18.29954569	33.69735318	40.13070443	48.40821125				
Leissa	10.6712	18.2995	33.6974	40.1307	48.4082				

Tabela 5.26 Raízes Ke Parâmetros λ para placa A-A-A-L ea/b=2/3.

3) a/b = 1

	Raízes K							
m n 1 1 1 2 2 1 2 2 1 3					13			
Atual	1.183891095	2.812305703	1.043523371	1.496146867	6.267790490			

	Parâmetros λ								
m n 1 1 1 2 2 1 2 2 1 3					13				
Atual	11.68453677	27.75634475	41.19665143	59.06551083	61.86061262				
Leissa	11.6845	27.7563	41.1967	59.0655	61.8606				

Tabela 5.27 Raízes Ke Parâmetros
 λ para placa A-A-A-L ea/b=1.

4) a/b = 3/2

	Raízes K							
m n	m n 1 1 2 1 1 2 2 2 3 1							
Atual	1.389223594	1.103698145	4.848942647	2.063884924	1.043523371			

Parâmetros λ								
m n 1 1 2 1 1 2 2 2 3 1					31			
Atual	13.71108730	43.57225629	47.85714570	81.47891094	92.69246572			
Leissa	13.7111	43.5723	47.8571	81.4789	92.6925			

Tabela 5.28 Raízes Ke Parâmetros
 λ para placa A-A-A-L ea/b=3/2.

5)
$$a/b = 5/2$$

	Raízes K							
m n 1 1 2 1 3 1 1 2 2 2								
Atual	1.904931605	1.280205717	1.128404084	11.16822053	3.739555775			

	Parâmetros λ								
m n	11	2 1	31	1 2	2 2				
Atual	18.80092136	50.54049593	100.2321173	110.2259185	147.6317446				
Leissa	18.8009	50.5405	100.2321	110.2259	147.6317				

Tabela 5.29 Raízes Ke Parâmetros λ para placa A-A-A-L ea/b=5/2.

Modos

Tabela 5.30 Modos Clássicos e Dinâmicos para placa A-A-A-L.

Linhas Nodais e Isoalturas (modo 11)

Linhas Nodais e Isoalturas (modo 12)

Linhas Nodais e Isoalturas (modo 22)

Linhas Nodais e Isoalturas (modo 24)

Modo 3D (modo 32)

Linhas Nodais e Isoalturas (modo 33)

Modo 3D (modo 33)

Linhas Nodais e Isoalturas (modo 42)

Modo 3D (modo 43)

5.6 Placa Apoiada-Livre-Apoiada-Livre

Neste caso, os momentos fletores e os momentos torçores (força cisalhante efetiva) estão relacionados como segue:

$$w_{yy}(x,0,t) + \nu w_{xx}(x,0,t) = 0, \quad w_{yyy}(x,0,t) + (2-\nu) w_{yxx}(x,0,t) = 0,$$

$$w_{yy}(x,b,t) + \nu w_{xx}(x,b,t) = 0, \quad w_{yyy}(x,b,t) + (2-\nu) w_{yxx}(x,b,t) = 0.$$

Essas condições de contorno implicam nas seguintes condições de contorno para Y(y):

$$Y''(0) - \nu \left(\frac{m\pi}{a}\right)^2 Y(0) = 0, \quad Y'''(0) - (2 - \nu) \left(\frac{m\pi}{a}\right)^2 Y'(0) = 0,$$

$$Y''(b) - \nu \left(\frac{m\pi}{a}\right)^2 Y(b) = 0, \quad Y'''(b) - (2 - \nu) \left(\frac{m\pi}{a}\right)^2 Y'(b) = 0.$$

Equação Característica

Para K > 1:

$$2\sqrt{K^{2}-1} \left[K^{2}-(1-\nu)^{2}\right]^{2} \left[\cosh(\varphi_{1})\cos(\varphi_{2})-1\right] + \left\{(K-1)\left[K+(1-\nu)\right]^{4}+ (K+1)\left[K-(1-\nu)\right]^{4}\right\} \left[\sinh(\varphi_{1})\sin(\varphi_{2})\right] = 0.$$
(5.9)

Para K < 1:

$$2\sqrt{1-K^2} \left[K^2 - (1-\nu)^2 \right]^2 \left[\cosh(\varphi_1) \cosh(\varphi_2) - 1 \right] + \left\{ (K-1) \left[K + (1-\nu) \right]^4 + (K+1) \left[K - (1-\nu) \right]^4 \right\} \left[\operatorname{senh}(\varphi_1) \operatorname{senh}(\varphi_2) \right] = 0.$$
(5.10)

Parâmetros Adimensionais de Freqüência

1) a/b = 2/5

	Raízes K							
m n	m n 1 1 1 2 1 3 1 4 1 5							
Atual	0.9888991641	1.118264563	1.526156909	2.199321470	3.158899246			

Parâmetros λ								
m n 11 12 13 14 15					15			
Atual	9.760043545	11.03682886	15.06256493	21.70643287	31.17708591			
Leissa	9.7600	11.0368	15.0626	21.7064	31.1771			

Tabela 5.31 Raízes Ke Parâmetros
 λ para placa A-L-A-L ea/b=2/5.

2) a/b = 2/3

Raízes K					
m n	11	1 2	13	2 1	14
Atual	0.9826455054	1.315284720	2.325675046	0.9905462274	4.088922357

Parâmetros λ					
m n	m n 1 1 1 2 1 3 2 1 1 4				
Atual	9.698322408	12.98133987	22.95349268	39.10519764	40.35604610
Leissa	9.6983	12.9813	22.9535	39.1052	40.3560

Tabela 5.32 Raízes Ke Parâmetros λ para placa A-L-A-L ea/b=2/3.

3) a/b = 1

Raízes K					
m n	11	1 2	13	2 1	2 2
Atual	0.9758633153	1.634794705	3.721085518	0.9864873279	1.183891095

Parâmetros λ					
m n	m n 1 1 1 2 1 3 2 1 2 2				
Atual	9.631384874	16.13477702	36.72564202	38.94495871	46.73814706
Leissa	9.6314	16.1348	36.7256	38.9450	46.7381

Tabela 5.33 Raízes Ke Parâmetros
 λ para placa A-L-A-L ea/b=1.

4) a/b = 3/2

Raízes K					
m n	11	1 2	2 1	2 2	13
Atual	0.9684456799	2.190482725	0.9808246773	1.389223594	6.666144982

Parâmetros λ					
m n	n 11 12 21 22 13				
Atual	9.558175747	21.61919795	38.72140622	54.84434921	65.79221387
Leissa	9.5582	21.6192	38.7214	54.8443	65.7922

Tabela 5.34 Raízes Ke Parâmetros
 λ para placa A-L-A-L ea/b=3/2.

5) a/b = 5/2

Raízes K					
m n	11	1 2	2 1	$2 \ 2$	31
Atual	0.9609445371	3.406703001	0.9717443239	1.904931605	0.9790825873

Parâmetros λ					
m n	m n 1 1 1 2 2 1 2 2 3 1				
Atual	9.484142435	33.62281094	38.36292824	75.20368543	86.96842034
Leissa	9.4841	33.6228	38.3629	75.2037	86.9684

Tabela 5.35 Raízes Ke Parâmetros
 λ para placa A-L-A-L ea/b=5/2.

Modos

Clássico				
$W_{mn}^{C}(x,y) = \left[\sigma_{mn,1}^{C} \eta_{1}(y;\varphi_{1}) + \sigma_{mn,2}^{C} \eta_{2}(y;\varphi_{1}) + \eta_{3}(y;\varphi_{2}) + \sigma_{mn,3}^{C} \eta_{4}(y;\varphi_{2})\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right)$				
$\sigma_{mn,1}^{C} = \frac{\sqrt{K-1} \left[K + (1-\nu) \right]}{\sqrt{K+1} \left[K - (1-\nu) \right]}$				
$\sigma_{mn,2}^{C} = \frac{\sqrt{K+1} \left[K - (1-\nu)^{2} \right]^{2} \operatorname{sen}(\varphi_{2}) - \sqrt{K-1} \left[K + (1-\nu)^{2} \right]^{2} \operatorname{senh}(\varphi_{1})}{\sqrt{K+1} \left[K^{2} - (1-\nu)^{2} \right] \left[\cosh(\varphi_{1}) - \cos(\varphi_{2}) \right]}$				
$\sigma_{mn,3}^{C} = \frac{\sqrt{K+1} \left[K - (1-\nu)^{2} \right]^{2} \operatorname{sen}(\varphi_{2}) - \sqrt{K-1} \left[K + (1-\nu)^{2} \right]^{2} \operatorname{senh}(\varphi_{1})}{\sqrt{K+1} \left[K - (1-\nu) \right]^{2} \left[\cosh(\varphi_{1}) - \cos(\varphi_{2}) \right]}$				
Dinâmico				
$W_{mn}^{D}(x,y) = \left[\sigma_{mn,1}^{D}\psi_{1}(y;\varphi_{1},\varphi_{2}) + \sigma_{mn,2}^{D}\psi_{2}(y;\varphi_{1},\varphi_{2}) + \psi_{3}(y;\varphi_{1},\varphi_{2}) + \sigma_{mn,3}^{D}\psi_{4}(y;\varphi_{1},\varphi_{2})\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right)$				
$\sigma^D_{mn,1} = -\frac{2\nu}{K\upsilon}$				
$\sigma_{mn,2}^{D} = (2-\nu)\sqrt{\frac{2}{K\nu}} \left\{ \frac{\sqrt{K-1} \left[K + (1-\nu)\right]^{2} \operatorname{senh}(\varphi_{1}) - \sqrt{K+1} \left[K - (1-\nu)\right]^{2} \operatorname{sen}(\varphi_{2})}{\sqrt{K^{2}-1} \left[K^{2} - (1-\nu)^{2}\right] \left[\cosh(\varphi_{1}) - \cos(\varphi_{2})\right]} \right\}$				
$\sigma_{mn,3}^{D} = -\sqrt{\frac{Kv}{2}} \left\{ \frac{\sqrt{K-1} \left[K + (1-\nu)\right]^{2} \operatorname{senh}(\varphi_{1}) - \sqrt{K+1} \left[K - (1-\nu)\right]^{2} \operatorname{sen}(\varphi_{2})}{\sqrt{K^{2}-1} \left[K^{2} - (1-\nu)^{2}\right] \left[\cosh(\varphi_{1}) - \cos(\varphi_{2})\right]} \right\}$				

Tabela 5.36 Modos Clássicos e Dinâmicos para placa A-L-A-L.

Linhas Nodais e Isoalturas (modo 11)

Linhas Nodais e Isoalturas (modo 12)

Modo 3D (modo 22)

Modo 3D (modo 24)

Modo 3D (modo 32)

Linhas Nodais e Isoalturas (modo 33)

Linhas Nodais e Isoalturas (modo 42)

Modo 3D (modo 42)

Modo 3D (modo 43)

5.7 Análise dos Resultados

A partir dos resultados apresentados anteriormente pode-se observar alguns pontos característicos com relação às raízes da equação característica e parâmetros adimensionais de freqüência, quanto a sua ordenação; e em relação aos modos de vibração, quanto a sua configuração. Tais pontos são discutidos a seguir.

5.7.1 Raízes e Parâmetros Adimensionais de Freqüência

Na avaliação das raízes e dos parâmetros adimensionais de freqüência para os diversos tamanhos de placa abordados, o ordenamento pode ser representado por um esquema. Para o caso de uma placa quadrada; isto é, razão de aspecto (a/b)igual a um, com exceção do caso da placa A-L-A-L, tem-se a seguinte configuração do esquema:

Figura 5.2 Esquema de ordenação

Analisando o esquema acima observa-se que o menor termo é aquele para mn = 11. A partir daí a magnitude dos termos cresce com m + n; isto é, os termos seguintes serão 21 e 12, os seguintes serão 31, 22, 13, etc., como mostrados separadamente pelas linhas diagonais (figura 5.2). Se a placa possui razão de aspecto menor que a unidade as linhas, que são diagonais no esquema acima, tendem a ficar horizontais e se a razão de aspecto for maior que a unidade tais linhas tendem a ficar verticais.

É observado também que dependendo da condição de contorno a ordenação dos autovalores muda, mas em todos os casos ainda é observada a tendência de horizontalização das linhas no caso de a/b < 1 e a de verticalização no caso de a/b > 1.

Esta ordenação é importante pois no caso de vibrações forçadas os primeiros termos são aqueles que terão maior importância na solução para o deslocamento. Como esta solução é dada na forma de um somatório duplo e infinito, é preciso saber quais os termos de maior significância antes do truncamento desta solução em série.

5.7.2 Modos de Vibração

Mais uma vez é salientado que os gráficos dos modos, aqui apresentados, referem-se apenas a alguns dos autovalores calculados. Com relação ao formato dos modos, de uma maneira geral, um modo corresponde a um parâmetro de freqüência específico e é descrito pelo número de meias ondas em cada direção. Assim, por exemplo, o modo 34 tem três meias ondas na direção x e quatro na direção y. Para todos os casos as formas de onda são funções seno na direção x (figura 5.3), de acordo com a equação (3.15) ou (3.25). Ainda, as formas de onda na direção yserão exatamente funções seno (isto é, A = B = C = 0 na equação (3.25)) para o caso A-A-A-A (figura 5.4), enquanto que para os outros casos as formas são apenas aproximadamente senoidais (figuras 5.5 e 5.6). Uma conseqüência deste resultado é que as linhas nodais situadas na direção y (duas para o modo 34) serão exatamente retas, paralelas ao eixo y, e igualmente espaçadas (figuras 5.7 e 5.8). Por outro lado, aquelas situadas na direção x (três para o modo 34), exceto para o caso A-A-A-A, não serão exatamente retas paralelas ao eixo x, ou igualmente espaçadas (figuras 5.7 e 5.8).

Visão 2D para o caso A-F-A-A (modo 34-fig 5.3)

Visão 2D para o caso A-F-A-A (modo 34-fig 5.5)

Visão 2D para o caso A-F-A-L (modo 34-fig 5.6)

Linhas Nodais para o caso A-F-A-L (modo 34-fig 5.7)

Linhas Nodais para o caso A-A-A-A (modo 34-fig 5.8)

6 DEMAIS RESULTADOS

Neste capítulo, serão discutidos outros resultados observados. Para um caso específico de condições de contorno (A-L-A-L) é avaliada a influência da mudança do valor da razão de *Poisson* (ν). É também apresentado um enfoque diferenciado para as equações características dividindo os casos posíveis em uma parte simétrica e outra anti-simétrica.

6.1 A Influência da Razão de *Poisson*

Para materiais isotrópicos, a razão de *Poisson* pode variar entre 0 e 0.5 [VIN 74]. Entretanto, pode-se observar que o parâmetro adimensional de freqüência (λ) não depende sobretudo de ν a menos que uma ou mais bordas da placa estejam livres. Entre os casos discutidos apenas três apresentam λ como função de ν . Para estes três casos, ν foi fixado com o valor 0.3.

Entretanto, devemos lembrar que $D = Eh^3/12(1-\nu^2)$, e assim depende de ν . Portanto, em todo os casos o parâmetro adimensional de freqüência, por definição, já depende de ν . Porém, a influência será notável apenas naqueles casos que apresentarem pelo menos uma das bordas da placa como sendo livre.

Para determinar os efeitos de ν sobre λ , são obtidos resultados numéricos para o caso da placa Apoiada-Livre-Apoiada-Livre onde são usados outros valores de ν . Este caso foi escolhido devido a presença de duas bordas livres que causarão mudanças mais acentuadas com a variação de ν .

As tabelas (6.1)-(6.3) fornecem valores de λ para $\nu = 0$, 0.3, e 0.5. Os resultados são apresentados para razões de aspecto no valor de a/b = 2/5, 1 e 5/2 e para os nove primeiros modos. Como ν varia, a ordenação dos modos pode também mudar.

			ν	
a/b	m n	0	0.3	0.5
	11	9.869604404	9.760043545	9.450591435
	1 2	11.40983465	11.03682886	10.39008424
	13	15.75314759	15.06256495	14.31597154
2/5	14	22.66104757	21.70643287	20.86501120
	$1 \ 5$	32.25114330	31.17708591	30.33340988
	21	39.47841762	39.23867135	38.37708109
	2 2	41.05206686	40.50349960	39.08260313
	16	44.74690079	43.66978486	42.87804898
	$2\ 3$	45.71556860	44.94158459	43.73180496

Tabela 6.1 Parâmetro adimensional de freqüência $\lambda = \omega a^2 \sqrt{\rho h/D}$ como função de ν para placas A-L-A-L na razão de aspecto a/b = 2/5.

			ν	
a/b	m n	0	0.3	0.5
	11	9.869604404	9.631384874	9.079276213
	12	17.88208838	16.13477702	14.35155537
	13	39.22806618	36.72564202	34.77827504
1	21	39.47841762	38.94495871	37.51915623
	2 2	48.91468038	46.73814706	43.47675326
	$2\ 3$	74.79634084	70.74010801	66.80197316
	14	77.57750287	75.28338261	73.66100096
	31	88.82643964	87.98669468	85.48987931
	$3\ 2$	98.54809960	96.04050531	91.15997940

Tabela 6.2 Parâmetro adimensional de freqüência $\lambda = \omega a^2 \sqrt{\rho h/D}$ como função de ν para placas A-L-A-L na razão de aspecto a/b = 1.

			ν	
a/b	m n	0	0.3	0.5
	11	9.869604404	9.484142435	8.7042113048
	$1 \ 2$	39.46305872	33.62281094	28.76278144
	$2\ 1$	39.47841762	38.36292824	35.87989799
5/2	$2\ 2$	84.93988101	75.20368543	66.01923137
	$3\ 1$	88.82643964	86.96842034	82.50931137
	$3\ 2$	142.1102319	130.3575561	117.3358039
	41	157.9136705	155.3211447	148.7256043
	$1 \ 3$	160.3526550	156.1247595	153.1978616
	$2\ 3$	211.9353752	199.8452489	190.8193863

Tabela 6.3 Parâmetro adimensional de freqüência $\lambda = \omega a^2 \sqrt{\rho h/D}$ como função de ν para placas A-L-A-L na razão de aspecto a/b = 5/2.

Nas tabelas (6.1)-(6.3) observa-se que λ diminui com o aumento de ν , para o caso A-L-A-L, para todos os valores de a/b. Não somente λ diminui com o aumento de ν para todos os modos da tabela, como esta diminuição se dá numa taxa crescente. Este comportamento é demonstrado nas tabelas (6.4)-(6.6) para o modo 22 com a/b = 2/5, 1 e 5/2. Nestas tabelas, λ é dado para mudanças incrementais em ν de 0.1. É observado que a variação em λ_{22} entre $\nu = 0.4$ e 0.5 é cerca de 13 vezes a variação entre $\nu = 0$ e 0.1 para o caso de a/b = 2/5, 4 vezes para o caso de a/b = 1 e 1.7 vezes para o caso de a/b = 5/2.

ν	λ_{22}	Diferença
0.0	41.05206686	
		0.06826249
0.1	40.98380437	
		0.16825618
0.2	40.81554819	
		0.31204859
0.3	40.50349960	
		0.53224037
0.4	39.97125923	
		0.8886561
0.5	39.08260313	

Tabela 6.4 Variação de λ com ν para o modo 22 e razão de aspectoa/b=2/5.

ν	λ_{22}	Diferença
0.0	48.91468038	
		0.47363359
0.1	48.44104679	
		0.70508509
0.2	47.73596170	
		0.99781464
0.3	46.73814706	
		1.37743646
0.4	45.36071060	
		1.88395734
0.5	43.47675326	

Tabela 6.5 Variação de λ com ν para o modo 22 e razão de aspectoa/b=1.

ν	λ_{22}	Diferença
0.0	84.93988101	
		2.82777786
0.1	82.11210315	
		3.22194858
0.2	78.89015457	
		3.68646914
0.3	75.20368543	
		4.2457622
0.4	70.95792323	
		4.93869186
0.5	66.01923137	

Tabela 6.6 Variação de λ com ν para o modo 22 e razão de aspectoa/b=5/2.

6.2 Simetria e Anti-simetria

Devido à simetria geométrica existente em relação ao eixo y = b/2, os modos de vibração podem ser separados entre aqueles que são simétricos e aqueles que são anti-simétricos em relação a este eixo. Tal simetria é observada somente nos casos de placa A-A-A, A-F-A-F e A-L-A-L. As novas equações características destes modos, simétricos e anti-simétricos, podem ser obtidas a partir das equações características apresentadas anteriormente, pela fatoração , ou por novas derivações em termos de um novo sistema de coordenadas, tendo sua origem no meio da placa. Para tal parte-se da forma geral da solução W(x, y), tanto para o caso da base clássica quanto da base dinâmica, e separa-se esta solução na sua parte simétrica e anti-simétrica. Feito isso as novas condições de contorno são aplicadas e, a partir da forma matricial do sistema formado, calcula-se o determinante que resultará na nova equação característica para cada um dos casos.

É apresentado, a seguir, o desenvolvimento para apenas um dos três casos possíveis. Será avaliado o caso da placa A-A-A.

<u>Usando a Base Clássica</u>:

Partiremos da solução geral dada por (3.25),

$$W(x,y) = \left[A\cosh\left(\varphi_1\frac{y}{b}\right) + B\,\operatorname{senh}\left(\varphi_1\frac{y}{b}\right) + C\,\cos\left(\varphi_2\frac{y}{b}\right) + E\,\operatorname{sen}\left(\varphi_2\frac{y}{b}\right)\right]\,\operatorname{sen}\left(\frac{m\pi x}{a}\right)$$

Esta solução possui uma parte simétrica e outra anti-simétrica em relação ao eixo y = b/2. Visando um melhor entedimento, pode-se escrevê-la da
seguinte forma:

$$W(x,y) = \underbrace{\left[A\cosh\left(\varphi_1\frac{y}{b}\right) + C\cos\left(\varphi_2\frac{y}{b}\right)\right] \, \sin\left(\frac{m\pi x}{a}\right)}_{\text{parte simétrica}} + \underbrace{\left[B\,\operatorname{senh}\left(\varphi_1\frac{y}{b}\right) + E\,\operatorname{sen}\left(\varphi_2\frac{y}{b}\right)\right] \, \operatorname{sen}\left(\frac{m\pi x}{a}\right)}_{\text{parte anti-simétrica}}.$$

Serão avaliadas as equações características para o caso da placa apoiadaapoiada-apoiada. Para tal serão consideradas as condições de contorno em y = b/2, tanto para parte simétrica quanto para a anti-simétrica. Cabe salientar que para o caso avaliado as condições de contorno são dadas por W = 0 e $W_{yy} + \nu W_{xx} = 0$ em y = b/2, como se a borda estivesse simplesmente apoiada.

Assim, para a parte simétrica tem-se:

$$A \cosh\left(\varphi_1 \frac{b/2}{b}\right) + C \cos\left(\varphi_2 \frac{b/2}{b}\right) = 0,$$
$$A \cosh\left(\varphi_1 \frac{b/2}{b}\right) \left[\left(\frac{\varphi_1}{b}\right)^2 - \nu \left(\frac{m\pi}{a}\right)^2\right] - C \cos\left(\varphi_2 \frac{b/2}{b}\right) \left[\left(\frac{\varphi_2}{b}\right)^2 + \nu \left(\frac{m\pi}{a}\right)^2\right] = 0;$$

ou

$$A \cosh\left(\frac{\varphi_1}{2}\right) + C \cos\left(\frac{\varphi_2}{2}\right) = 0,$$

$$A\cosh\left(\frac{\varphi_1}{2}\right)\left[\left(\frac{\varphi_1}{b}\right)^2 - \nu\left(\frac{m\pi}{a}\right)^2\right] - C\cos\left(\frac{\varphi_2}{2}\right)\left[\left(\frac{\varphi_2}{b}\right)^2 + \nu\left(\frac{m\pi}{a}\right)^2\right] = 0.$$

Tal sistema pode ser escrito matricialmente:

$$\begin{bmatrix} \cosh\left(\frac{\varphi_1}{2}\right) & \cos\left(\frac{\varphi_2}{2}\right) \\ \cosh\left(\frac{\varphi_1}{2}\right) \left[\left(\frac{\varphi_1}{b}\right)^2 - \nu \left(\frac{m\pi}{a}\right)^2 \right] & -\cos\left(\frac{\varphi_2}{2}\right) \left[\left(\frac{\varphi_2}{b}\right)^2 + \nu \left(\frac{m\pi}{a}\right)^2 \right] \end{bmatrix} \begin{bmatrix} A \\ C \end{bmatrix} = \mathbf{0}.$$

O determinante fornecerá a forma simétrica da equação característica para este caso. Assim tem-se

$$\cosh\left(\frac{\varphi_1}{2}\right)\cos\left(\frac{\varphi_2}{2}\right) = 0. \tag{6.1}$$

Para a parte anti-simétrica tem-se:

$$B \operatorname{senh}\left(\varphi_1 \frac{b/2}{b}\right) + E \operatorname{sen}\left(\varphi_2 \frac{b/2}{b}\right) = 0,$$
$$B \operatorname{senh}\left(\varphi_1 \frac{b/2}{b}\right) \left[\left(\frac{\varphi_1}{b}\right)^2 - \nu \left(\frac{m\pi}{a}\right)^2\right] - E \operatorname{sen}\left(\varphi_2 \frac{b/2}{b}\right) \left[\left(\frac{\varphi_2}{b}\right)^2 + \nu \left(\frac{m\pi}{a}\right)^2\right] = 0;$$

ou

$$B \operatorname{senh}\left(\frac{\varphi_1}{2}\right) + E \operatorname{sen}\left(\frac{\varphi_2}{2}\right) = 0,$$
$$B \operatorname{senh}\left(\frac{\varphi_1}{2}\right) \left[\left(\frac{\varphi_1}{b}\right)^2 - \nu \left(\frac{m\pi}{a}\right)^2\right] - E \operatorname{sen}\left(\frac{\varphi_2}{2}\right) \left[\left(\frac{\varphi_2}{b}\right)^2 + \nu \left(\frac{m\pi}{a}\right)^2\right] = 0.$$

Tal sistema pode ser escrito matricialmente:

$$\begin{bmatrix} \operatorname{senh}\left(\frac{\varphi_1}{2}\right) & \operatorname{sen}\left(\frac{\varphi_2}{2}\right) \\ \operatorname{senh}\left(\frac{\varphi_1}{2}\right) \left[\left(\frac{\varphi_1}{b}\right)^2 - \nu \left(\frac{m\pi}{a}\right)^2\right] & -\operatorname{sen}\left(\frac{\varphi_2}{2}\right) \left[\left(\frac{\varphi_2}{b}\right)^2 + \nu \left(\frac{m\pi}{a}\right)^2\right] \end{bmatrix} \begin{bmatrix} B \\ E \end{bmatrix} = \mathbf{0}.$$

O determinante fornecerá a forma anti-simétrica da equação característica para este caso. Assim tem-se

$$\operatorname{senh}\left(\frac{\varphi_1}{2}\right) \operatorname{sen}\left(\frac{\varphi_2}{2}\right) = 0.$$
 (6.2)

<u>Usando a Base Dinâmica:</u>

Partindo da solução geral dada por (3.32),

$$W(x,y) = [C_1h(y) + C_2h'(y) + C_3h''(y) + C_4h'''(y)] \operatorname{sen}\left(\frac{m\pi x}{a}\right).$$

Esta solução possui uma parte simétrica e outra anti-simétrica em relação ao eixo y = b/2. Baseando-se nas formas das funções de base, dadas por (3.28)-(3.31), pode-se, também, separar a solução em uma parte simétrica e outra anti-simétrica, da seguinte forma:

$$W(x,y) = \underbrace{\left[C_{2}h'(y) + C_{4}h'''(y)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right)}_{\text{parte simétrica}} + \underbrace{\left[C_{1}h(y) + C_{3}h''(y)\right] \operatorname{sen}\left(\frac{m\pi x}{a}\right)}_{\text{parte simétrica}}.$$

parte anti-simétrica

Serão novamente avaliadas as equações características para o caso da placa apoiada-apoiada-apoiada. Para tal serão avaliadas as condições de contorno em y = b/2, tanto para parte simétrica quanto anti-simétrica. Cabe salientar que para o caso avaliado as condições de contorno são dadas por W = 0 e $W_{yy} + \nu W_{xx} = 0$ em y = b/2, como se a borda estivesse simplesmente apoiada.

Assim, para a parte simétrica tem-se:

$$C_2h'(b/2) + C_4h'''(b/2) = 0,$$

$$C_2\left[h'''(b/2) - \nu\left(\frac{m\pi}{a}\right)^2 h'(b/2)\right] + C_4\left[h^{(v)}(b/2) - \nu\left(\frac{m\pi}{a}\right)^2 h'''(b/2)\right] = 0.$$

Tal sistema pode ser escrito matricialmente:

$$\begin{bmatrix} h'(b/2) & h'''(b/2) \\ h'''(b/2) - \nu \left(\frac{m\pi}{a}\right)^2 h'(b/2) & h^{(v)}(b/2) - \nu \left(\frac{m\pi}{a}\right)^2 h'''(b/2) \end{bmatrix} \begin{bmatrix} C_2 \\ C_4 \end{bmatrix} = \mathbf{0}.$$

O determinante fornecerá a forma simétrica da equação característica para este caso. Assim tem-se

$$h'(b/2)h^{(v)}(b/2) - [h'''(b/2)]^2 = 0.$$

Fazendo as devidas substituições e efetuando-se os cálculos necessários, obtém-se:

$$\cosh\left(\frac{\varphi_1}{2}\right)\cos\left(\frac{\varphi_2}{2}\right) = 0.$$
(6.3)

Para a parte anti-simétrica tem-se:

$$C_1 h(b/2) + C_3 h''(b/2) = 0,$$

$$C_1 \left[h''(b/2) - \nu \left(\frac{m\pi}{a}\right)^2 h(b/2) \right] + C_3 \left[h^{(iv)}(b/2) - \nu \left(\frac{m\pi}{a}\right)^2 h''(b/2) \right] = 0.$$

Tal sistema pode ser escrito matricialmente:

$$\begin{bmatrix} h(b/2) & h''(b/2) \\ h''(b/2) - \nu \left(\frac{m\pi}{a}\right)^2 h(b/2) & h^{(iv)}(b/2) - \nu \left(\frac{m\pi}{a}\right)^2 h''(b/2) \end{bmatrix} \begin{bmatrix} C_1 \\ C_3 \end{bmatrix} = \mathbf{0}.$$

O determinante fornecerá a forma anti-simétrica da equação característica para este caso. Assim tem-se

$$h(b/2)h^{(iv)}(b/2) - [h''(b/2)]^2 = 0.$$

Fazendo as devidas substituições e efetuando-se os cálculos necessários, obtém-se:

$$\operatorname{senh}\left(\frac{\varphi_1}{2}\right) \operatorname{sen}\left(\frac{\varphi_2}{2}\right) = 0.$$
 (6.4)

Para os outros dois casos apenas serão apresentados os resultados finais.

Placa A-F-A-F:

Parte Simétrica

$$\sqrt{K+1} \tanh\left(\frac{\varphi_1}{2}\right) + \sqrt{K-1} \tan\left(\frac{\varphi_2}{2}\right) = 0.$$
 (6.5)

Parte Anti-simétrica

$$\sqrt{K+1} \tan\left(\frac{\varphi_2}{2}\right) - \sqrt{K-1} \tanh\left(\frac{\varphi_1}{2}\right) = 0.$$
 (6.6)

Placa A-L-A-L:

Parte Simétrica

$$\sqrt{K-1} \left[K + (1-\nu) \right]^2 \tan\left(\frac{\varphi_2}{2}\right) + \sqrt{K+1} \left[K - (1-\nu) \right]^2 \tanh\left(\frac{\varphi_1}{2}\right) = 0.$$
(6.7)

Parte Anti-simétrica

$$\sqrt{K+1} \left[K - (1-\nu) \right]^2 \tan\left(\frac{\varphi_2}{2}\right) - \sqrt{K-1} \left[K + (1-\nu) \right]^2 \tanh\left(\frac{\varphi_1}{2}\right) = 0.$$
 (6.8)

7 CONCLUSÕES

Neste trabalho, foi abordada a determinação dos modos relativos ao modelo de *Kirchhoff-Love* para placas, diante de condições de contorno variadas.

Os modos foram obtidos de uma maneira matricial unificada, permitindo o uso da base clássica, comumente encontrada na literatura [MEI 67], [SOE 81], [TIM 59]; e da base dinâmica, recentemente introduzida, em termos da resposta impulso, [CLA 90a], [CLA 99a], [CLA 99b]. A resolução do sistema algébrico linear singular, para a determinação dos modos, foi realizada através da decomposição **LU** e com o uso do *software* MAPLE V5.

Os resultados obtidos foram apresentados através das condições de contorno, da equação característica, das raízes da equação característica (K), dos parâmetros adimensionais de freqüência (λ) e dos modos clássicos e dinâmicos.

O uso da base clássica ou dinâmica é irrelevante para a determinação dos parâmetros adimensionais de freqüência e modos de vibração. Ambas fornecem a mesma equação característica e, portanto, as mesmas raízes. Da mesma forma, fornecem os mesmos modos de vibração, embora a sua forma analítica seja distinta.

Os modos dinâmicos, em quase todos os casos apresentados, precisam de duas funções de base, excetuando o caso A-L-A-L que precisa de quatro. Os modos clássicos precisam de uma, duas ou quatro funções de base, dependendo do caso abordado. As duas funções da base dinâmica necessárias para formar o modo dinâmico, fornecem a mesma informação do que as quatro funções da base clássica para os casos A-F-A-F, A-F-A-A e A-F-A-L. Outro fato observado é que os modos, tanto clássicos quanto dinâmicos, apresentam a mesma forma analítica para os casos A-F-A-F e A-F-A-A, e a diferenciação se dá apenas nas raízes da equação característica. É observada que a ordenação dos parâmetros adimensionais de freqüência, para os casos abordados, varia de acordo com a razão de aspecto. A partir disso é possível montar um esquema gráfico para melhor compreensão de como tal ordenação se modifica. Quanto aos modos de vibração, seus formatos apresentam algumas características peculiares a cada um dos casos, possibilitando identificar comportamentos padrão para eles.

Ainda sobre os parâmetros adimensionais de freqüência, foi verificado que variam de acordo com a variação da razão de *Poisson* (ν) somente para aqueles casos que apresentam pelo menos uma das bordas livre, embora ν tenha sua influência presente em todos os casos via rigidez flexural (D).

A partir de uma inspeção visual dos modos gráficos podemos perceber a existência de alguns eixos de simetria. Tomando o eixo y = b/2 como um deles, podemos dividir alguns dos casos abordados em uma parte simétrica e outra antisimétrica. Isto facilita o trabalho de obtenção das raízes da equação característica a partir de uma nova forma simplificada.

Como trabalhos futuros podemos citar:

 - análise do caso de vibrações forçadas para as mesmas combinações de codições de contorno aqui tratadas ou outras ainda, com a inclusão da função de *Green* através de cálculo modal;

- aplicação da metodologia para casos de placas circulares, de espessura variável ou até mesmo ortotrópicas;

 tentativa de expandir a metodologia matricial, aqui empregada, para outras combinações das condições de contorno, tanto clássicas quanto nãoclássicas.

ANEXO A-1 SEPARAÇÃO DE VARIÁVEIS

Parindo da equação apresentada na forma (3.6), tem-se:

$$\frac{X^{(iv)}}{X} + 2\frac{X''Y''}{XY} + \frac{Y^{(iv)}}{Y} = \beta^4.$$
 (A-1.1)

Nesta equação observa-se que as variáveis não estão ainda separadas. Para tanto assume-se:

$$\frac{X^{(iv)}}{X} = f(x), \ \frac{X''}{X} = g(x), \ \frac{Y''}{Y} = k(y), \ \frac{Y^{(iv)}}{Y} = p(y).$$

Reescrevendo (A-1.1), tem-se

$$f(x) + 2g(x)k(y) + p(y) = \beta^4.$$
 (A-1.2)

Derivando em relação a x, obtém-se

$$f'(x) + 2g'(x)k(y) = 0,$$

ou

$$\frac{f'(x)}{g'(x)} + 2k(y) = 0.$$

Para isso ser verdade, deve-se ter f'(x)/g'(x) = cte e k(y) = cte. Assim

$$k(y) = -\alpha^2 = \text{cte.} \tag{A-1.3}$$

De maneira análoga, derivando a equação (A-1.2) em relação a y obtém-se

$$2g(x)k'(y) + p'(y) = 0,$$
$$\frac{p'(y)}{k'(y)} + 2g(x) = 0.$$

Baseando-se nisto, segue:

$$g(x) = -\gamma^2 = \text{cte.} \tag{A-1.4}$$

Consider ando $k(y) = -\alpha^2$,

$$k(y) = \frac{Y''}{Y} = -\alpha^2$$
$$Y'' + \alpha^2 Y = 0$$
$$\therefore Y = \begin{bmatrix} \cos(\alpha y) \\ \sin(\alpha y) \end{bmatrix}$$
(A-1.5)

Substituindo a equação (A-1.3) na equação (A-1.1) resulta:

$$\frac{X^{(iv)}}{X} - 2\alpha^2 \frac{X''}{X} + \alpha^4 = \beta^4,$$
$$X^{(iv)} - 2\alpha^2 X'' + (\alpha^4 - \beta^4) X = 0.$$

Assumindo $X = e^{rx}$, vem:

$$r^4 - 2\alpha^2 r^2 + \alpha^4 = \beta^4 \Rightarrow \left(r^2 - \alpha^2\right)^2 = \beta^4.$$

Portanto, calculando r obtém-se

$$r = \pm \sqrt{\alpha^2 + \beta^2}, \ \pm \sqrt{\alpha^2 - \beta^2}.$$

Decorre a base espectral geral:

$$X = C_1 \operatorname{senh} \left(\sqrt{\alpha^2 + \beta^2} x \right) + C_2 \operatorname{cosh} \left(\sqrt{\alpha^2 + \beta^2} x \right) + C_3 \operatorname{senh} \left(\sqrt{\alpha^2 - \beta^2} x \right) + C_4 \operatorname{cosh} \left(\sqrt{\alpha^2 + \beta^2} x \right).$$
(A-1.6)

Esta base é dividida em diferentes casos segundo a relação existente entre α^2 e $\beta^2.$

$\underline{\text{Casos}}$:

1) $\alpha^2 > \beta^2$: para este caso as funções de bases são aquelas dadas pela equação (A-1.6)

$$\operatorname{senh}\left(\sqrt{\alpha^2 + \beta^2} x\right), \quad \cosh\left(\sqrt{\alpha^2 + \beta^2} x\right),$$
$$\operatorname{senh}\left(\sqrt{\alpha^2 - \beta^2} x\right), \quad \cosh\left(\sqrt{\alpha^2 - \beta^2} x\right).$$

2) $\alpha^2=\beta^2:$ as novas funções de base serão

$$\operatorname{senh}\left(\sqrt{2} \alpha x\right), \quad \cosh\left(\sqrt{2} \alpha x\right),$$

 $x, \qquad 1.$

3) $\alpha^2 < \beta^2:$ as novas funções de base serão

$$\operatorname{senh}\left(\sqrt{\beta^2 + \alpha^2} x\right), \quad \cosh\left(\sqrt{\beta^2 + \alpha^2} x\right),$$
$$\operatorname{sen}\left(\sqrt{\beta^2 - \alpha^2} x\right), \quad \cos\left(\sqrt{\beta^2 - \alpha^2} x\right).$$

Observa-se que as raízes $\sqrt{\alpha^2 + \beta^2}$ e $\sqrt{\alpha^2 - \beta^2}$ serão iguais unicamente se $\beta = 0$. Neste caso tem-se a base geral

```
\operatorname{senh}(\alpha x), \quad \cosh(\alpha x),
x \operatorname{senh}(\alpha x), \quad x \cosh(\alpha x),
```

a qual pode ser modif
cada segundo o sinal de $\alpha.$

Agora pode-se construir a solução a partir dos oito possíveis produtos, para cada caso particular, lembrando que w(x, y) = X(x)Y(y) e $k(y) = -\alpha^2$.

Analogamente pode-se construir outras possíveis soluções considerando $g(x) = -\gamma^2$. A partir disso são apresentadas tabelas que resumirão os resultados aqui obtidos, tanto com o uso do parâmetro α quanto do γ .

$\alpha^2 > \beta^2$	$\gamma^2 > \beta^2$	$\alpha^2=\beta^2$	$\gamma^2=\beta^2$	$\alpha^2 < \beta^2$	$\gamma^2 < \beta^2$
$\sinh\left(\sqrt{\alpha^2+\beta^2}x\right)$	$\operatorname{senh}\left(\sqrt{\gamma^2+\beta^2}y\right)$	$\operatorname{senh}\left(\sqrt{2}\alphax\right)$	$\operatorname{senh}\left(\sqrt{2}\gammay\right)$	$\operatorname{senh}\left(\sqrt{\beta^2 + \alpha^2} x\right)$	$\operatorname{senh}\left(\sqrt{\beta^2+\gamma^2}y\right)$
$\cosh\left(\sqrt{\alpha^2 + \beta^2} x\right)$	$\cosh\left(\sqrt{\gamma^2 + \beta^2} y\right)$	$\cosh\left(\sqrt{2}\alphax\right)$	$\cosh\left(\sqrt{2}\gammay\right)$	$\cosh\left(\sqrt{\beta^2 + \alpha^2} x\right)$	$\cosh\left(\sqrt{\beta^2 + \gamma^2} y\right)$
$\sinh\left(\sqrt{\alpha^2-\beta^2}x\right)$	$\operatorname{senh}\left(\sqrt{\gamma^2-\beta^2}y\right)$	x	y	$\operatorname{sen}\left(\sqrt{\beta^2 - \alpha^2} x\right)$	$\operatorname{sen}\left(\sqrt{\beta^2 - \gamma^2} y\right)$
$\cosh\left(\sqrt{\alpha^2 - \beta^2} x\right)$	$\cosh\left(\sqrt{\gamma^2 - \beta^2} y\right)$	1	1	$\cos\left(\sqrt{\beta^2 - \alpha^2} x\right)$	$\cos\left(\sqrt{\beta^2-\gamma^2}y\right)$

Tabela A-1.1 Funções de base para os diferentes casos.

	$> 0 \qquad \alpha = 0$	$ \gamma^2 = 0 $	$\alpha^2 < 0$	$\gamma^2 < 0$
$\begin{array}{c c} \cosh\left(\alpha x\right) & \cos x \\ \operatorname{senh}\left(\alpha x\right) & \operatorname{sen} \\ x \operatorname{senh}\left(\alpha x\right) & y \operatorname{sen} \end{array}$	$\begin{array}{c c} \operatorname{h}\left(\gammay\right) & 1\\ \operatorname{h}\left(\gammay\right) & x\\ \operatorname{sh}\left(\gammay\right) & x^2 \end{array}$	$\begin{array}{c c} 1 \\ y \\ y^2 \end{array}$	$ \begin{array}{c} \cos\left(\alphax\right)\\ & \\ & \\ & \\ & \\ x\sin\left(\alphax\right)\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$ \begin{array}{c} \cos\left(\gamma y\right) \\ & \sin\left(\gamma y\right) \\ & y \sin\left(\gamma y\right) \end{array} $

Em particular, para autovalor nulo ($\beta=0):$

Tabela A-1.2 Funções de base para os diferentes casos com $\beta = 0$.

Deve ser observado que a base no caso $\alpha^2 = \beta^2$ não pode ser definida por limite dos casos $\alpha^2 > \beta^2$ ou $\alpha^2 < \beta^2$. Porém, com o uso da base dinâmica, a ser definida na seção (3.3.2), isto se torna possível.

ANEXO A-2 SOLUÇÃO ATRAVÉS DE FATORIZAÇÃO

É proposta a seguinte fatorização para resolver a equação biharmônica. Escrevendo

$$\nabla^4 W(x,y) - \beta^4 W(x,y) = 0 \Rightarrow (\nabla^2 + \beta^2) (\nabla^2 - \beta^2) W(x,y) = 0, \qquad (A-2.1)$$

onde

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

é o laplaciano, e fazendo

$$W_1 = (\nabla^2 - \beta^2)W, \qquad (A-2.2)$$

obtém-se

$$(\nabla^2 + \beta^2)W_1 = 0.$$
 (A-2.3)

Da equação (A-2.2), decorre que

$$W = W_h + W_p$$

onde W_h é uma solução homogênea:

$$(\nabla^2 - \beta^2)W_h = [\nabla^2 + (i\beta)^2]W_h = 0,$$

e W_p é uma solução particular não homogênea:

$$(\nabla^2 - \beta^2)W_p = [\nabla^2 + (i\beta)^2]W_p = W_1.$$

Esta última pode ser obtida da seguinte maneira:

Tem-se que

$$(\nabla^2 + \beta^2)W_1 = 0 \Rightarrow \nabla^2 W_1 = -\beta^2 W_1.$$

Adicionando $-\beta^2 W_1$ em ambos os lados, vem

$$(\nabla^2 - \beta^2)W_1 = -2\beta^2 W_1,$$

ou

$$(\nabla^2 - \beta^2) \frac{W_1}{-2\beta^2} = W_1.$$

Assim,

$$W_p = \delta W_1 \Rightarrow \delta = -\frac{1}{2\beta^2}$$

é uma solução particular.

Com a fatorização utilizada, deve-se resolver uma equação homogênea do tipo

$$(\nabla^2 + \zeta^2)u = 0,$$

para $\zeta^2 = \beta^2$ e $\zeta^2 = -\beta^2$.

Solução de $(\nabla^2 + \beta^2)u = 0$:

Como u = u(x, y) pode-se aplicar o método da separação de variáveis supondo que u(x, y) = X(x)Y(y). Assim, substituindo tem-se:

$$X''Y + XY'' + \beta^2 XY = 0.$$

Dividindo por XY, obtém-se:

$$\frac{X''}{X} + \frac{Y''}{Y} + \beta^2 = 0.$$

Então

$$\frac{X''}{X} = -\frac{Y''}{Y} - \beta^2 = -\alpha^2.$$
1) $X'' + \alpha^2 X = 0 \Rightarrow X = C_1 \operatorname{sen}(\alpha x) + C_2 \cos(\alpha x).$
2) Fazendo $\frac{Y''}{Y} = -\gamma^2$ tem-se
 $Y'' + \gamma^2 Y = 0 \Rightarrow Y = C_3 \operatorname{sen}(\gamma y) + C_4 \cos(\gamma y) \text{ onde } \beta^2 = \alpha^2 + \gamma^2.$

Desta forma

$$u = XY = [C_1 \operatorname{sen}(\alpha x) + C_2 \cos(\alpha x)] [C_3 \operatorname{sen}(\gamma y) + C_4 \cos(\gamma y)].$$

Portanto, $W_p = \delta u$ é da forma

$$W_p = A_1 \operatorname{sen}(\alpha x) \operatorname{sen}(\gamma y) + A_2 \operatorname{sen}(\alpha x) \cos(\gamma y) + A_3 \cos(\alpha x) \operatorname{sen}(\gamma y) + A_4 \cos(\alpha x) \cos(\gamma y), \qquad (A-2.4)$$

onde $A_1, A_2, A_3 \in A_4$ são constantes arbitrárias.

Solução de $[\nabla^2 + (i\beta)^2]v = 0$:

Pode-se fazer uma analogia com o caso anterior resolvendo a equação na forma $(\nabla^2 + \xi^2)v = 0$, onde $\xi = i\beta$, que conduziria a uma solução na mesma forma da solução para a equação anterior. Porém, será apresentada a solução passando por todos os passos da separação de variáveis. Sendo assim, supondo v(x, y) = X(x)Y(y) tem-se:

$$X''Y + XY'' - \beta^2 XY = 0.$$

Dividindo por XY, obtém-se:

$$\frac{X''}{X} + \frac{Y''}{Y} - \beta^2 = 0.$$

Então

$$\frac{X''}{X} = -\frac{Y''}{Y} + \beta^2 = \alpha_1^2.$$
1) $X'' - \alpha_1^2 X = 0 \Rightarrow X = C_5 \operatorname{senh}(\alpha_1 x) + C_6 \operatorname{cosh}(\alpha_1 x).$
2) Fazendo $\frac{Y''}{Y} = \gamma_1^2$ tem-se
 $Y'' - \gamma_1^2 Y = 0 \Rightarrow Y = C_7 \operatorname{senh}(\gamma_1 y) + C_8 \operatorname{cosh}(\gamma_1 y) \text{ onde } \beta^2 = \alpha_1^2 + \gamma_1^2.$

Desta forma

$$v = XY = \left[C_5 \operatorname{senh}(\alpha_1 x) + C_6 \cosh(\alpha_1 x)\right] \left[C_7 \operatorname{senh}(\gamma_1 y) + C_8 \cosh(\gamma_1 y)\right].$$

Portanto, $W_h = v$ é da forma

$$W_{h} = A_{5} \operatorname{senh}(\alpha_{1}x) \operatorname{senh}(\gamma_{1}y) + A_{6} \operatorname{senh}(\alpha_{1}x) \operatorname{cosh}(\gamma_{1}y) + A_{7} \operatorname{cosh}(\alpha_{1}x) \operatorname{senh}(\gamma_{1}y) + A_{8} \operatorname{cosh}(\alpha_{1}x) \operatorname{cosh}(\gamma_{1}y), \quad (A-2.5)$$

onde A_5 , A_6 , A_7 e A_8 são constantes arbitrárias.

Portanto, a solução final fica na forma:

$$W = W_h + W_p$$

$$W = A_1 \operatorname{sen}(\alpha x) \operatorname{sen}(\gamma y) + A_2 \operatorname{sen}(\alpha x) \cos(\gamma y) + A_3 \cos(\alpha x) \operatorname{sen}(\gamma y) + A_4 \cos(\alpha x) \cos(\gamma y) + A_5 \operatorname{senh}(\alpha_1 x) \operatorname{senh}(\gamma_1 y) + A_6 \operatorname{senh}(\alpha_1 x) \cosh(\gamma_1 y) + A_7 \cosh(\alpha_1 x) \operatorname{senh}(\gamma_1 y) + A_8 \cosh(\alpha_1 x) \cosh(\gamma_1 y), \quad (A-2.6)$$

onde as constantes A_k , com k = 1, 2, ..., 8, e os parâmetros α , γ , α_1 e γ_1 envolvidos devem ser determinados segundo as condições de contorno apresentadas no capítulo 2.

ANEXO A-3 MATRIZES \mathcal{B}

Serão apresentadas aqui as seis possíveis formas da matriz que incorpora as condições de contorno, de acordo com o caso a ser abordado:

Placa Apoiada-Apoiada-Apoiada:

$$\mathcal{B} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 \end{bmatrix}$$

Placa Apoiada-Fixa-Apoiada-Fixa:

Placa Apoiada-Fixa-Apoiada:

$$\mathcal{B} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 \end{bmatrix}$$

Placa Apoiada-Fixa-Apoiada-Livre:

Placa Apoiada-Apoiada-Livre:

$$\mathcal{B} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -(2-\nu) \left(\frac{m\pi}{a}\right)^2 & 0 & 1 \end{bmatrix}$$

Placa Apoiada-Livre-Apoiada-Livre:

$$\mathcal{B} = \begin{bmatrix} -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -(2-\nu) \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\nu \left(\frac{m\pi}{a}\right)^2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -(2-\nu) \left(\frac{m\pi}{a}\right)^2 & 0 & 1 \end{bmatrix}$$

ANEXO A-4 AUTOVALORES DA PLACA A-A-A-A

A partir da equação

 $\operatorname{senh}(\varphi_1)\operatorname{sen}(\varphi_2) = 0,$

pode-se reescrevê-la da forma

$$\operatorname{senh}\left(\frac{b}{a}\,m\pi\sqrt{K+1}\right)\,\operatorname{sen}\left(\frac{b}{a}\,m\pi\sqrt{K-1}\right) = 0.$$

As raízes devem ser determinadas para o caso da placa apoiada-apoiada-apoiada-apoiada apoiada e para tanto é preciso determinar os valores de K para que a equação se anule.

Como assumimos K > 1, então o termo senh $\left(\frac{b}{a} m \pi \sqrt{K+1}\right)$ nunca se anulará. Portanto para que a equação seja satisfeita é preciso que

$$\operatorname{sen}\left(\frac{b}{a}\,m\pi\sqrt{K-1}\right) = 0,$$

ou

$$\frac{b}{a}m\pi\sqrt{K-1} = n\pi$$
, com *m*, *n*=1,2, ...

Isolando K, vem:

$$K = 1 + \frac{n^2}{m^2} \left(\frac{a}{b}\right)^2.$$

Agora será definido o parâmetro adimensional de freqüência λ da seguinte

forma:

$$\lambda \equiv Km^2 \pi^2.$$

que conduz a

$$\lambda = \omega \, a^2 \sqrt{\frac{\rho h}{D}} \,,$$

onde $\omega=\omega_{mn}$ é a freqüência característica da placa. Assim:

$$\lambda = \omega_{mn} a^2 \sqrt{\frac{\rho h}{D}} = \pi^2 \left[m^2 + n^2 \left(\frac{a}{b} \right)^2 \right], (m, n = 1, 2, ...).$$

BIBLIOGRAFIA

- [BES 97] BESLIN, O. & NICOLAS, J. A Hierarchical Functions Set for Predicting Very High Order Plate Bending Modes with any Boundary Conditions. Journal of Sound and Vibration, vol 202, 633-655, 1997.
- [CLA 90a] CLAEYSSEN, J. C. R. On Predicting the Response of Non-Conservative Linear Vibrating Systems by Using Dynamical Matrix Solutions. Journal of Sound and Vibration, 140(1): 73-84, 1990.
- [CLA 90b] CLAEYSSEN, J. C. R., TSUKAZAN, T. Dynamical Solutions of Linear Matrix Differential Equations. Quarterly of Applied Mathematics, vol. XLVIII, n⁰ 1, 1990.
- [CLA 99a] CLAEYSSEN, J.C.R., CANAHUALPA, G., JUNG, C. A Direct Approach to Second-Order Matrix Non-Classical Vibrating Equations. Applied Numerical Mathematics, vol.30, 1999.
- [CLA 99b] CLAEYSSEN, J. The Matrix Impulse Response in Vibrating Systems, Nonlinear Dynamics, Chaos, Control and Their Applications to Engineering Sciences. ABCM-SBMAC-SIAM, vol.2, Ed. J. Baltazhar, 1999.
- [COD 55] CODDINGTON, E. A. Theory of Ordinary Differential Equations. McGraw-Hill Inc., New York, 1955.
- [COU 55] COURANT, R. & HILBERT D. Methods of Mathematical Physics. Vol I, II. Interscience Publishers Inc., New York, 1955.
- [DON 76] DONNEL, L. H. Beams, Plates and Shells. McGraw-Hill Inc., New York, 1976.

- [DYM 73] DYM, C. L. & SHAMES, I. H. Solid Mechanics- A Variational Approach. McGraw-Hill Inc., New York, 1973.
- [FON 99] FONSECA, J. Apostila de Mecânica dos Sólidos I. UFRGS-PROMEC, Porto Alegre, 1999.
- [GAL 87] GALLICCHIO, E. Soluções Dinâmicas, Desacoplamento e Aproximação em Equações Diferenciais Matriciais de Ordem Superior. Dissertação de Mestrado, UFRGS-CPGMAp, Porto Alegre, 1987.
- [HEA 98] HEAL, K.M. & HANSEN, M.L. & RICKARD, K.M. MAPLE V -Learning & Programming Guide. Springer-Verlag, New York, 1998.
- [HEN 72] HENNEMANN, J.C.F. Análise de Placas pelo Método dos Elementos Finitos. Dissertação de Mestrado, UFRGS-Curso de Pós-Graduação em Engenharia Civil, Porto Alegre, 1972.
- [INM 89] INMAN, D. Vibration, with Control, Measurement, and Stability. Prentice Hall, Englewood Cliffs, 1989.
- [INM 94] INMAN, D. Engineering Vibration. Prentice Hall, Englewood Cliffs, 1994.
- [LEI 73] LEISSA, A. W. The Free Vibration of Rectangular Plates. Journal of Sound and Vibration, vol 31, 257-293, 1973.
- [LOV 27] LOVE, A. E. H. A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York, 1927.
- [MAR 69] MARGUERRE, K. & WOERNLE H. Elastic Plates. Blaisdell Publishing Company, Waltham, 1969.
- [MEI 67] MEIROVITCH, L. Analytical Methods in Vibrations. The Macmillan Copany, New York, 1967.

- [MEI 75] MEIROVITCH, L. Elements of Vibration Analysis. Mc Graw Hill, Inc., 1975.
- [MIN 51] MINDLIN, R. D. Influence of Rotary Inertia and Shear on Flexural Motion of Isotropic Elastic Plates. Trans. ASME - Journal of Applied Mechanics, vol 18, 31-38, 1951.
- [MIZ 86] MIZUSAWA, T. Natural Frequencies of Rectangular Plates with Free Edges. Journal of Sound and Vibration, vol 105, 451-459, 1986.
- [MOR 00] MORELATTO, T. Cálculo de Modos Vibratórios no Modelo Estrutural de Euler-Bernoulli com Condições de Contorno Não-Clássicas. Dissertação de Mestrado, UFRGS-PPGMAp, Porto Alegre, 2000.
- [MOS 99] MOSCHEN, I. D. Cálculo Simbólico de Modos Vibratórios no Modelo de Euler-Bernoulli para Vigas. Dissertação de Mestrado, UFRGS-CPGMAp, Porto Alegre, 1999.
- [NEW 89] NEWLAND, D. E. Mechanical Vibration Analysis and Computation. Longman Scientific & Technical, London, 1989.
- [REI 88] REISMANN, H. Elastic Plates, Theory and Application. John Wiley & Sons, New York, 1988.
- [RES 45] REISSNER, E The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Trans. ASME - Journal of Applied Mechanics, vol 23, 69-77, 1945.
- [ROS 83] ROSENBERG, R. C. & KARNOPP, D. C. Introduction to System Dynamics. Reading, Addison-Wesley, Mass., 1983.

- [SOD 00] SODER, R. A. L. Modos Flexurais sob Influência de uma Força Axial.Dissertação de Mestrado, UFRGS-CPGMAp, Porto Alegre, 2000.
- [SOE 81] SOEDEL, W. Vibratios of Shells and Plates. Marcel Dekker Inc., New York, 1981.
- [SZI 74] SZILARD, R. Theory and Analysis of Plates: classical and numerical methods. Prentice-Hall Inc., New Jersey, 1974.
- [TIM 59] TIMOSHENKO, S. P. & WOIONOWSKY, S. Theory of Plates and Shells. McGraw-Hill Inc., New York, 1959.
- [TIM 74] TIMOSHENKO, S. P. & WEAVER. W. Jr. Vibration Problems in Engineering. John Wiley, New York, 1974.
- [VIN 74] VINSON, J. R. Structural Mechanics: The Behavior of Plates and Shells. John Wiley, New York, 1974.
- [WAR 76] WARBURTON, G. B. **The Dynamical Behavior of Structures**. Pergamon International Library, Oxford, 1976.