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Resumo

Provamos resultados sobre a geometria de hipersuperf́ıcies em diferentes
espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada
para uma hipersuperf́ıcie Mn−1 ⊆ Nn, onde N é um espaço simétrico de
dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms
e apresentamos aplicações. Em seguida, estudamos superf́ıcies em espaços
de dimensão 3: estudamos a equação da curvatura média em um produto
semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos
mı́nimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade
hiperbólica de dimensão 3, nós apresentamos condições suficientes para que
um mergulho completo de uma superf́ıcie Σ de topologia finita em N com
curvatura média |HΣ| ≤ 1 seja próprio.

Palavras-chave e frases: Superf́ıcies mı́nimas, curvatura média constante,
aplicação de Gauss, espaços simétricos, variedades homogêneas, grupos de Lie
métricos, produtos semidiretos, operadores eĺıpticos quasilineares, variedade
hiperbólica, função raio de injetividade, superf́ıcies de topologia finita.
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Abstract

We prove results concerning the geometry of hypersurfaces on different am-
bient spaces. First, we define a generalized Gauss map for a hypersurface
Mn−1 ⊆ Nn, where N is a symmetric space of dimension n ≥ 3. In partic-
ular, we generalize a result due to Ruh-Vilms and make some applications.
Then, we focus on surfaces on spaces of dimension 3: we study the mean cur-
vature equation of a semidirect product R2 oA R to obtain height estimates
and the existence of a Scherk-like minimal graph. Finally, on the ambient
space of a hyperbolic manifold N of dimension 3 we give sufficient conditions
for a complete embedding of a finite topology surface Σ on N with mean
curvature |HΣ| ≤ 1 to be proper.

Key words and phrases: Minimal surfaces, constant mean curvature, Gauss
map, symmetric spaces, homogeneous manifolds, metric Lie groups, semidi-
rect products, quasilinear elliptic operator, hyperbolic manifold, Calabi-Yau
problem, injectivity radius function, finite topology surfaces.
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Prologue

This Prologue is to give the basic definitions and to fix the conventions used
throughout the work, which is divided into three independent chapters as
follows:

Chapter 1: The generalized Gauss map on symmetric spaces presents the
results on the joint work of the author with his academic advisor J. B. Ripoll
[54] for immersed hypersurfaces on symmetric spaces. It is defined a geo-
metric Gauss map for a hypersurface Mn−1 of a symmetric space Nn that
takes values on the semi-Riemannian sphere of the Lie algebra of the isom-
etry group of N . An extension to a well known theorem of Ruh-Vilms [58]
in the Euclidean space is then obtained to symmetric spaces and this is ap-
plied to extend Hoffman-Osserman-Schoen Theorem ([35]) to 3−dimensional
symmetric spaces.

It is also shown that the holomorphic quadratic form induced by the
Gauss map coincides (up to a sign) with the Hopf quadratic form when the
ambient space is H3, R3 and S3 and with the Abresch-Rosenberg quadratic
form when the ambient space is H2 × R and S2 × R providing, then, an
unified way of relating Hopf’s and Abresch-Rosenberg’s quadratic form with
the quadratic form induced by a harmonic Gauss map of a CMC surface in
these 5 spaces.

Chapter 2: The mean curvature equation on R2 oA R is based on [53],
developed by the author under the supervision of J. Pérez, during his stay
on the University of Granada. It concerns the mean curvature equation on
a semidirect product R2 oA R: by considering a domain Ω ⊆ R2 oA {0}
and vertical π-graphs over Ω, the partial differential equation that a function
u : Ω → R must satisfy in order to have prescribed mean curvature H is
deduced. Using techniques from quasilinear elliptic equations we prove that
if a π−graph has non-negative mean curvature with respect to the upwards
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ix Prologue

pointing orientation, then it satisfies some uniform height estimates that
depend on diam(Ω) and on a parameter α ∈ R, given a priori and that is
necessary. When trace(A) > 0, these estimates imply that the oscillation of
a minimal graph assuming the same constant value n along the boundary
tends to zero when n→ +∞ and goes to +∞ if n→ −∞.

We also apply the results about the mean curvature operator, in con-
junction with techniques from Killing graphs in order to generalize the result
of A. Menezes [50] to obtain families of Scherk-like minimal graphs on the
ambient space R2 oA R for any matrix A ∈M2(R).

Chapter 3: Finite topology surfaces on hyperbolic 3-manifolds is based on
the joint ongoing work of the author with W. Meeks III [46]: using the
existence of short geodesic loops on surfaces with bounded injectivity radius
and non positive sectional curvature, it is proved that every complete, non
compact annulus E (properly or not) embedded in H3 with bounded absolute
mean curvature |HE| ≤ 1 has unbounded injectivity radius function. As a
consequence it is proved that a complete embedding of a surface Σ of finite
topology in a hyperbolic 3-manifold whose injectivity radius function of each
end goes to zero at infinity must be proper, provided its mean curvature
function satisfies |HΣ| ≤ 1.

As a main bibliography, we recommend the book of M. do Carmo [22] for
the basic concepts on Riemannian geometry, the work of W. Meeks and J.
Pérez [44] to metric Lie groups of dimension 3, specially for a comprehensive
approach to semidirect products R2 oA R. For more general Lie groups,
homogeneous manifolds and symmetric spaces, we recommend the book of
S. Helgason [34]. For a very general and reasonably up-to-date view on the
classical theory of minimal surfaces, the book of T. Colding and W. Minicozzi
[11] or the survey of Meeks and Pérez [45] are recommended. For the subject
of elliptic partial differential equations the classic book of D. Gilbarg and N.
Trudinger [32] is the main reference. The reference we suggest when dealing
with hyperbolic manifolds is the book of R. Bendetti and C. Petronio, [4].
Finally, for aspects on semi-Riemannian geometry, we recommend the book
of B. O’Neill [52].

Acknowledgements. I would like to thank Jaime Ripoll for all the support
from the beginning, Joaqúın Pérez for his valuable advice and hospitality
during my stay at Granada, William Meeks for his shared enthusiasm and
energy to solve many interesting questions, Harold Rosenberg for his impor-
tant comments and suggestions and also for his invitation to spend time at
IMPA, where the third part of this work took place. Finally, I thank CNPq,
for the financial support both in Brazil and in Spain.
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x Prologue

Notation

We use this section to give a brief overview about some basic concepts of
Riemannian geometry, focusing on those who can be found in different ways
on the literature.

Let N be a Riemannian manifold. We denote by X(N) the Lie algebra of
smooth vector fields on N , and by∇ : X(N)×X(N)→ X(N) the Riemannian
connection on N . We define (cf. do Carmo [22]) the curvature tensor R of
N as

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z, (1)

and the sectional curvature of a plane σ ⊆ TpN generated by two orthogonal,
unitary vectors u, v ∈ TpN as

KN(u, v) = 〈R(u, v)u, v〉. (2)

If {e1, e2, . . . , en} is an orthogonal basis of TpN , the Ricci tensor of N
at p is defined as

Ric(u, v) =
n∑
i=1

〈R(u, ei)v, ei〉, u, v ∈ TpN, (3)

and the Ricci curvature of N on the direction of v ∈ TpN is

Ricp(v) = Ric(v, v). (4)

If Y ∈ X(N) is a Killing field of N and ϕ : R × N → N is it flux, for
each t ∈ R we consider the isometry ϕt = ϕ(t, ·) : N → N . Then, given
a subset Ω ⊆ N such that Y is everywhere transversal to Ω and a function
u : Ω→ R, we let the Y−Killing graph of u be GrY (u) given by

GrY (u) = {ϕu(p)(p); p ∈ Ω}. (5)

We also let the Y−Killing cylinder over Ω be

CylY (Ω) = {ϕt(p); p ∈ Ω, t ∈ R}. (6)

Concerning the geometry of submanifolds, if N is a manifold of dimension
n and Σ ⊆ N is a hypersurface2, oriented with respect to an unitary vector
field η normal to Σ, we let the shape operator of Σ at a point p be the map
Aη : TpΣ→ TpΣ given by

2Hypersurfaces are assumed to be immersed and orientable, unless otherwise stated.
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xi Prologue

Aη(v) = − (∇vη)T ,

where (·)T denotes the projection on TpΣ. We let the mean curvature of Σ,
HΣ be given by

HΣ =
1

n− 1
trace(Aη).

Whenever the function HΣ is constant, we say that Σ has constant mean
curvature, usually abbreviated as CMC, and on the particular case of HΣ ≡ 0
vanishing identically we say that Σ is a minimal surface of N .

For the case of arbitrary codimension Σm ⊆ Nn, we let the second funda-
mental form B of Σ, at a point p, be the bilinear form B : TpΣ×TpΣ→ TpΣ

⊥

given by

B(x, y) = (∇XY )⊥ ,

where X and Y are extensions of x and y, ∇ is the Riemannian connection
of N and (·)⊥ is the projection on (TpΣ)⊥. It is not difficult to see that
B does not depend on the extensions considered and that it is symmetric
B(x, y) = B(y, x) (see, for instance, Chapter 1 of [11]).

We let the trace of B be the mean curvature vector of Σ, ~H, given by

~H =
m∑
i=1

B(ei, ei),

where {e1, e2, . . . , em} is an orthogonal basis to TpΣ, and, we define the
mean curvature of Σ by

HΣ =
1

m

∥∥∥ ~H∥∥∥ .
On the special case of m = n−1 (Σ is a hypersurface), the two definitions

above for the mean curvature of Σ coincide. To see this, just notice that the
following relation between B and Aη holds:

〈Aη(u), v〉 = 〈B(u, v), η〉.
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CHAPTER 1

The generalized Gauss map on symmetric spaces

This chapter follows the joint work of the author and J. Ripoll [54] and has
two main purposes: First, to extend a well known theorem of Ruh-Vilms
[58] in the Euclidean space to symmetric spaces and, secondly, to apply this
result to extend Hoffman-Osserman-Schoen Theorem (HOS Theorem, [35]))
to 3−dimensional symmetric spaces.

1.1 Introduction

A well known theorem due to Ruh-Vilms [58] establishes that an orientable
immersed hypersurface S in Rn, n ≥ 3, has constant mean curvature if and
only if the Gauss map N : S → Sn−1 ⊆ Rn of S is harmonic1. This result
also applies to submanifolds of arbitrary codimension, with the Gauss map
assuming values in a Grassmannian manifold, but on the special case of
hypersurfaces it can be easily obtained from the fact that N satisfies the
equation

∆N = −grad(H)− ‖B‖2N , (1.1)

where B is the second fundamental form of S and H is its mean curvature.
Here, as Sn−1 ⊆ Rn, the Laplacian of N is considered as taken on each
coordinate of its image on Rn,

1A smooth map ϕ : M → N between two Riemannian manifolds M and N (of any
dimensions) is said to be harmonic if its tension field (which can be interpreted as the
divergence of its differential) vanishes.
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2 Introduction

∆N =
n∑
i=1

∆ (〈N , ei〉) , (1.2)

then the result follows from the fact (see (4.13), [24]) that a map ϕ : M →
Sn−1 ⊆ Rn is harmonic if and only if ∆ϕ = λϕ, for some λ : M → R.

In [5], F. Bitttencourt and J Ripoll defined a Gauss map of an orientable
hypersurface on ambient spaces of the form N = G/K × Rn, n ≥ 0, where
G/K is a compact symmetric space. The Gauss map is defined by taking the
horizontal lift of the unit normal vector field of the hypersurface to G×Rn

followed by a translation to the unit sphere in the Lie algebra of G × Rn.
Ruh-Vilms Theorem is then extended to hypersurfaces of N , that is, they
prove that a hypersurface of N has CMC if and only if this Gauss map is
harmonic (Corollary 3.4 of [5]).

In the present work we extend the construction of the Gauss map done in
[5] to any symmetric space, not necessarily reducible nor compact and of any
dimension, obtaining an extension of Ruh-Vilms Theorem to these spaces
(Theorem 1.2.4 and Corollary 1.2.5).

We recall that an application of Ruh-Vilms theorem in the Euclidean 3-
dimensional space is a theorem of D. Hoffman, R. Osserman and R. Shoen
(HOS Theorem for short, [35]), which reads:

Theorem (Hoffman-Osserman-Schoen). Let S be a complete surface of con-
stant mean curvature immersed in R3. If the image of the Gauss map of S
lies in a hemisphere, then S is a plane or a cylinder.

Sketch of the proof. Let N be the Gauss map of S. By hypothesis, there is
V ∈ S2 such that u := 〈N , V 〉 ≥ 0; from (1.1) it follows that the lift ũ of u

to the universal covering S̃ of S is a bounded superharmonic function on S̃.
If S̃ has the conformal type of the plane then u must be constant and then
S is a plane or a cylinder. If S̃ has the conformal type of the disk then, by
the maximum principle, either ũ > 0 everywhere or ũ ≡ 0. But from (1.1)
we see that ũ satisfies the PDE ∆ũ− 2Kũ+ P = 0 where K is the sectional
curvature of S and P = 4H2 ≥ 0 which is in contradiction with Corollary 3
of [30] that asserts this PDE has no positive solutions if S̃ is conformal to
the disk.

J. Espinar and H. Rosenberg in [26] remarked that in product spaces
M2 × R the condition of the Gauss map being contained in a hemisphere
can interpreted as the angle function ν = 〈η, ∂t〉 having a sign, where η is an
unit vector field normal to the surface. They then classified all these CMC
surfaces in terms of the infimum c(S) of the sectional cuvature at the points
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3 Introduction

of M that are in the projection of the surface S. Precisely, they proved that
if c(S) ≥ 0 and H 6= 0 then S is a cylinder over a complete curve with
curvature 2H. If H = 0 and c(S) ≥ 0 then S must be either a vertical plane,
a slice M×{t}, or M = R2 with the flat metric. We note that when M = R2

these results recover HOS theorem. When c(S) < 0 and H >
√
−c(S)/2,

then S is invariant under the group of isometries generated by the Killing
field ∂t and is a vertical cylinder over a complete curve on M of constant
geodesic curvature 2H.

In Bittencourt-Ripoll [5], using the extension of Ruh-Vilms theorem to S3

and to S2 ×R it is obtained an extension of HOS theorem to these ambient
spaces. Here, with the extension of Ruh-Vilms theorem to any symmetric
space, we are able to extend HOS theorem to include the ambient spaces
H2 × R and H3 as well, this is Theorem 1.5.1 below. We note that an
extension of HOS theorem to the hyperbolic space, despite all these previous
results, had not been obtained via a geometrically defined Gauss map so far.

We think it is important at this point to remark that our work and the
one of Espinar and Rosenberg both extend HOS theorem to H2 × R, and
both require a lower bound for the mean curvature. In [26] it is H > 1/2
which is better than the one that follows from our result, namely, H ≥ 1/

√
2.

The lower bound of [26] is indeed optimal among CMC surfaces in ambient
spaces of the form M2 × R. Our case is optimal among CMC surfaces in
3-dimensional symmetric spaces since in H3 the lower bound is 1, which is
optimal (see the last remark of this chapter, Remark 1.2).

Another application of Ruh-Vilms theorem in R3 is the well known clas-
sical Hopf Theorem ([37]), namely:

Theorem (Hopf Theorem). The round sphere is the only CMC topological
sphere in R3.

Sketch of the proof. If S is a CMC surface in R3, then Ruh-Vilms theorem
implies that the Gauss map N of S is harmonic. In particular, it induces
a quadratic holomorphic form q in S (see 10.5 of [24]) which coincides with
the so called Hopf differential. Then, if S has zero genus, q must be zero
everywhere which implies that S is totally umbilic and then a round sphere.

Concerning Hopf’s Theorem, U. Abresch and H. Rosenberg in [1] ex-
tended it to CMC surfaces in S2 × R and in H2 × R, defining a quadratic
formQ in these spaces, presently well known as Abresch-Rosenberg quadratic
form:
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4 Introduction

Q = 2HA− T , resp. Q = 2HA+ T , (1.3)

where H is the mean curvature of the surface, A is the Hopf differential and
T = (dh⊗ dh)2,0, with h standing for the height function. They prove that
Q is holomorphic when the surface is CMC. In particular, Q ≡ 0 holds if S
is a CMC topological sphere and, from this fact, they obtain that a CMC
sphere is rotationally symmetric.

Abresch and Rosenberg result raised a natural question of whether their
quadratic form Q could be induced by a geometric Gauss map for surfaces in
the spaces H2×R and S2×R, this Gauss map having the property of being
harmonic if (and only if hopefully) the surface has constant mean curvature.

This question has been answered in the affirmative first in the space
H2 × R and for CMC 1/2 surfaces by I. Fernandez and P. Mira in [27].
They introduced the hyperbolic Gauss map G : S → H2 for any surface
S ⊂ H2×R nowhere vertical and show that if S has CMC H = 1/2, then G
is harmonic. Moreover, its induced holomorphic quadratic differential in the
surface coincides (up to a sign) with the Abresch-Rosenberg form. But they
go further and use these previous results to obtain another quite interesting
part of their work: to prove the existence of CMC 1/2 surfaces in H2 × R
with prescribed hyperbolic Gauss map and to show that any holomorphic
quadratic differential on an open simply connected Riemann surface can be
realized as the Abresch-Rosenberg differential of some complete surface with
H = 1/2 in H2 ×R.

The above question in the space S2 × R, as far as the author is aware,
was answered by M. L. Leite and J. Ripoll in [38], where it is proved that
the quadratic form induced by the Gauss map defined in [5] coincides with
the Abresch-Rosenberg form on CMC surfaces in S2 × R. Moreover, they
used this Gauss map to motivate an ad hoc construction of a Gauss map in
H2 ×R and obtain the same result.

With the Gauss map constructed here and with Theorem 1.2.4, we have
the following unifying result: the quadratic form induced by the Gauss map
in a surface immersed in a space of constant sectional curvature coincides
with the Hopf’s quadratic form and in a suface immersed in H2 × R or in
S2×R it coincides with the Abresch-Rosenberg quadratic form (this is Section
1.4); moreover, the surfaces have CMC and these forms are holomorphic if
and only if their Gauss maps are harmonic.

To close this introduction, we observe that generalizations of the Gauss
map have been defined in many different spaces and in many different ways.
These generalizations have been proved to be particularly useful in describing
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5 The Gauss map of a hypersurface on a symmetric space

and understanding CMC surfaces in the 8 models of Thurston’s geometries
and more recently in a broad class of 3-dimensional simply connected Lie
groups endowed with a left invariant metric. Quite interesting and deep
results have been obtained in a series of papers by B. Daniel [18], by B.
Daniel, I. Fernández and P. Mira in [19], by B. Daniel and Mira [21] and
its generalization by W. Meeks III in [40]. We finally mention joint works
of W. Meeks III, P. Mira, J. Pérez and A. Ros [44, 41, 42], where using the
left invariant Gauss map on a metric Lie group the authors are able to show
strong results concerning CMC spheres on these ambient spaces.

Our results are organized as follows: in Section 1.2 it is introduced a
Gauss map N for hypersurfaces of a symmetric space and it is proved that
an orientable hypersurface M ⊆ N has CMC if and only if N is harmonic
(Corollary 1.2.5). In Section 1.3 we obtain explicit expressions for N when
the ambient space is Rn, Sn and Hn.

In Section 1.4, we study the particular case when N has dimension 3 and
we analyse the quadratic complex form induced by N , denoted by QN . We
then obtain that QN coincides with the Hopf differential when N is H3, R3

or S3 and with the Abresch-Rosenberg quadratic form when N is H2 ×R or
S2 ×R.

Finally, in Section 1.5, we use the Gauss map N to extend HOS theorem
when M is a surface immersed in a symmetric space of dimension 3.

1.2 The Gauss map of a hypersurface on a

symmetric space

In this section we introduce and discuss some aspects of the Gauss map
N of a hypersurface Mn−1 immersed in a symmetric space N . We use the
same construction of [5] for hypersurfaces in a homogeneous space G/H but
instead of asking for a bi-invariant Riemannian metric on G (which, up to
an abelian factor, implies that G is compact), we show, in §1.2.1, that any
symmetric space N is a quotient G/K of a group G acting transitively on
N via isometries and K, the isotropy subgroup of G at a fixed point of N .
Such G admits naturally a bi-invariant semi-Riemannian metric (Proposition
1.2.1).

We relate the Laplacian of N and the mean curvature of M and, as a
consequence, we obtain that N is harmonic if and only if M has constant
mean curvature. Throughout the text a hypersurface is always understood
as being immersed and oriented, and we will refer to the generalized Gauss
map simply as the Gauss map.
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6 The Gauss map of a hypersurface on a symmetric space

1.2.1 Symmetric spaces N = G/K
A symmetric space is a Riemannian manifold N such that the geodesic re-
flection at any point is an isometry. Precisely, N is a symmetric space if for
every x ∈ N there is an isometry sx : N → N (called a symmetry) such that
sx(x) = x and

d(sx)x(v) = −v, ∀v ∈ TxN.

It is not difficult to see that every symmetric space is also a homogeneous
space (thus it is complete) and, conversely, every homogeneous space that
has a symmetry around a point is a symmetric space. For further details, see
[34].

We use this section to prove that any symmetric space N is isometric to
a quotient G/K, where G is endowed with a semi-Riemannian metric and
the metric on G/K is the push forward of the metric of G via the projection
π : G→ G/K, which is a submersion.

We recall that, if g is the Lie algebra of G and u ∈ g is a left invariant
vector field, then the adjoint action related to u is the linear map adu : g→ g
given by adu(v) = [u, v]. From the composition of two adjoint actions it is
defined the Killing form of G, a bilinear symmetric form K : g× g→ R

K(u, v) = trace(adu ◦ adv).

When the Killing form is non degenerate, it can be extended to the group
G via left translations to induce a left invariant semi-Riemannian metric on
G. On this case, the Lie algebra g is called semisimple. This is the basic
element on the proof of next proposition, that states that the metric of a
symmetric space N comes (up to a multiplicative constant) from the descent
of the Killing form of the isometry group of N via the projection.

Proposition 1.2.1. Let N be a Riemannian symmetric space. Then there
is a Lie group G, endowed with a bi-invariant semi-Riemannian metric and
a subgroup K < G such that N is isometric to que quotient G/K, where the
metric in G/K is the one induced by the projection π : G → G/K in such
way it becomes a Riemmanian submersion.

Proof. We follow S. Helgason, [34] specially Proposition 5.5: assume, at first,
that N is an irreducible symmetric space. Let G = ISO(N)0 be the connected
component of the identity on the isometry group of N and set K as the
isotropy group of some fixed point on N . Then N is isometric to G/K,
where the metric on G/K (up to a multiple factor) is the descent of the
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7 The Gauss map of a hypersurface on a symmetric space

(a) G, K and xK = π−1({π(x)}). (b) TxG = TxxK⊕ (TxxK)⊥

Figure 1.1: G is foliated by left translates of K

Killing form of the Lie algebra of G, which is a bi-invariant semi-Riemannian
metric.

Now, if N is not irreducible, it decomposes as the Riemannian product
of irreducible symmetric spaces with a Rm factor

N = N1 ×N2 × . . .×Nl ×Rm,

so each Ni = Gi/Ki can be written as above. Then, if we set G = G1× . . .×
Gl ×Rm and K = K1 × . . .×Kl × {0}, it follows that N is isometric to the
quotient G/K. Since the metric of Rm is bi-invariant and the Riemannian
product of bi-invariant metrics is also bi-invariant, the proposition is proved.

Herein we will assume that G is endowed with a bi-invariant semi-Riemannian
metric that comes from the Killing form, and that this metric descends onto
G/K as a Riemannian metric via the projection π. We also assume that
dim(G) = n+k where n = dim(N) and k = dim(K) and denote by g the Lie
algebra of G. These assumptions on G and G/K will be assumed throughout
the chapter.

1.2.2 Construction of the Gauss map

On this section, we follow the construction of [5] to obtain a Gauss map
for a hypersurface M of a symmetric space N = G/K, by lifting tangent
vectors of TN to TG and then right translating them to g. As the projection
π : G → G/K is a submersion whose fibres are left translates of K, we can
make the following definition:

Given x ∈ G, a vector u ∈ TxG is called vertical if u ∈ TxxK and it
is called horizontal if u ∈ (TxxK)⊥ (see figure 1.1, right). It follows that a
vector u ∈ TxG is vertical if and only if its projection dπx(u) is 0. We set
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8 The Gauss map of a hypersurface on a symmetric space

`x := dπx|(Tx(xK))⊥ : (TxxK)⊥ → Tπ(x)G/K
v 7→ dπx(v).

By definition, `x is a linear isometry between horizontal vectors of TxG
and Tπ(x)(G/K). We then define Γ : T (G/K)→ g by

Γp : TpG/K → g
u 7→ d (Rx−1)x `

−1
x (u),

(1.4)

where p ∈ G/K, x is any point on π−1 (p) and, for g ∈ G, Rg denotes the
right translation by g, Rg(h) = hg.

Proposition 1.2.2. For each p ∈ G/K, the map Γp is well-defined, is linear
and preserves the metric.

Proof. Consider x, y ∈ π−1(p). There exists h ∈ K such that x = Rh(y).
Then, for any u ∈ TpG/K, we have

u = dπy`
−1
y (u) = d(π ◦Rh)y`

−1
y (u) = dπxd(Rh)y`

−1
y (u).

Since h ∈ K and the metric of G is bi-invariant, Rh is an isometry of
G that additionally preserves horizontality, in particular d(Rh)y`

−1
y (u) is a

horizontal vector, so, from the previous equation we obtain that `−1
x (u) =

d(Rh)y`
−1
y (u) and hence

d(Rx−1)x`
−1
x (u) = d(Rx−1)xd(Rh)y`

−1
y (u)

= d(Rx−1 ◦Rh)y`
−1
y (u)

= d(Ry−1)y`
−1
y (u),

what proves that Γp is well defined. That it is linear and preserves the metric
follows directly from the definition of `x and from the fact that the projection
is a Riemannian submersion, so it preserves the metric for horizontal vectors.

We may now define the Gauss map of an oriented hypersurface M of N
by setting

N : M → Sn+k−1 ⊆ g
p 7→ Γp(η(p)),

(1.5)

where η is a fixed unit normal vector field on M . In particular, we notice
that N coincides with the usual Gauss map when M is a hypersurface of the
euclidean space Rn.
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9 The Gauss map of a hypersurface on a symmetric space

1.2.3 Orthogonality and invariancy

On this section we prove Proposition 1.2.3, which relates invariant hyper-
surfaces of N = G/K with respect to a subgroup of isometries H < G and
the hypersurfaces of N whose image of the Gauss map is contained in a Lie
subalgebra of g. This proposition will be the key to prove the analogous to
HOS theorem, Theorem 1.5.1 on Section 1.5.

The group G acts transitively on G/K via isometries: for each element
g ∈ G and p = π(x) ∈ G/K, we let

g(p) = g(π(x)) = π(Lg(x)) = π(Rx(g)), x ∈ G, (1.6)

where L and R are the left and the right translations on G. Using this action,
we notice that any vector V ∈ g defines a Killing vector field on G/K, here
denoted by ζ(V ), given by

ζ(V )(p) =
d

dt

∣∣∣∣
t=0

[
(exp tV )(p)

]
, p ∈ G/K, (1.7)

where exp : g→ G is the Lie exponential map.

Let p ∈ G/K and x ∈ π−1(p). By (1.6) we have

exp(tV ) (p) = exp(tV ) (π(x)) = π(Rx(exp(tV )))

and then

ζ(V )(p) = dπx(d(Rx)e(V )). (1.8)

This equation allows us to relate ζ and Γ: let p ∈ G/K, u ∈ TpG/K and
V ∈ g. If x ∈ π−1(p), we have

〈ζ(V )(p), u〉 = 〈dπx(d(Rx)e(V )), u〉
= 〈d(Rx)e(V ), `−1

x (u)〉 (1.9)

= 〈V, Γp(u)〉.

The next result gives a characterization of the Lie subgroups of G that
preserve M in terms of the Gauss map of M . This proposition comes to
generalize Proposition 3.4 of [5]:

Proposition 1.2.3. Let Mn−1 be an orientable hypersurface of G/K and let
N : M → Sn+k−1 ⊆ g be its Gauss map. Then

h = (N (M))⊥ = {w ∈ g; 〈w, N (p)〉 = 0∀ p ∈M} (1.10)
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10 The Gauss map of a hypersurface on a symmetric space

is a Lie subalgebra of g and M is invariant under the Lie subgroup H of G
whose Lie algebra is h. Conversely, if M is invariant under a Lie subgroup
H of G, then h ⊆ (N (M))⊥, where h is the Lie algebra of H.

Proof. First we notice that if w ∈ (N (M))⊥, (1.9) implies that, for all p ∈M ,

0 = 〈w, N (p)〉 = 〈ζ(w)(p), η(p)〉,
so ζ(w) is a vector field tangent to M . Now if v, w ∈ N (M)⊥, then ζ(v), ζ(w)
are two vector fields on M , thus [ζ(v), ζ(w)] is also a vector field on M . Since
[ζ(v), ζ(w)] = ζ([v, w]), for p ∈M we have that

0 = 〈ζ([v, w])(p), η(p)〉 = 〈[v, w], N (p)〉, (1.11)

proving that [v, w] ∈ N (M)⊥. Hence h, defined by (1.10), is a Lie subalgebra
of g.

Now let H be a subgroup of G that leaves M invariant and let h be the Lie
algebra of H. Then h acts on M as Killing fields and therefore 〈ζ (h) , η〉 = 0.
It follows that

0 = 〈ζ(h), η〉 = 〈h, N〉,
proving that h ⊆ N (M)⊥.

1.2.4 Harmonicity of N and the mean curvature of M

A hypersurface S on the Euclidean space Rn has its Gauss map defined
via the translation of its normal vector field to the origin, thus it is a map
N : S → Sn−1, taking values on the n− 1 sphere centred at the origin of Rn.
It is a result of Ruh-Vilms, [58], that S has constant mean curvature if and
only if its Gauss map is harmonic. This is a direct consequence of the well
known formula

∆N = −gradH − ‖B‖2N , (1.12)

where ‖B‖ is the norm of the second fundamental form of S.
The formula (1.12) was extended to hypersurfaces in a Lie Group endowed

with a bi invariant metric by N. Esṕırito-Santo, S. Fornari, K. Frensel and J.
Ripoll on [25]. Then, F. Bittencourt and J. Ripoll [5] generalized the results
to a homogeneous space G/H where G admits a Riemannian bi-invariant
metric and H is a closed subgroup.

We present a more general formula for the Laplacian of the Gauss map
given by (1.5), that comes to extend the ones obtained on [25] and [5] to
a broader class of ambient spaces, namely the symmetric spaces treated on
Section 1.2.1.
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11 The Gauss map of a hypersurface on a symmetric space

Theorem 1.2.4. Let M be an immersed orientable hypersurface of G/K and
let N : M → Sn+k−1 ⊆ g be the Gauss map of M , where g is the Lie algebra
of G. Then

∆N (p) = −nΓp(gradH)−
(
‖B‖2 + Ric(η)

)
N (p) (1.13)

for all p ∈ M , where η is an unitary vector field normal to M , Ric(η) is
the Ricci curvature of G/K with respect to η, ‖B‖ is the norm of the second
fundamental form B of M in G/K and H is the mean curvature of M .

Proof. Fix V ∈ g and define the function

fV : M → R

p 7→ 〈N (p), V 〉. (1.14)

For any p ∈ M we have fV (p) = 〈N (p), V 〉 = 〈η(p), ζ(V )(p)〉. As ζ(V )
is a Killing field on G/K, it follows from Proposition 1 of [31] that

∆fV = −n〈gradH, ζ(V )〉 −
(
‖B‖2 + Ric(η)

)
fV . (1.15)

Using (1.9) we obtain 〈gradH, ζ(V )〉 = 〈Γp(grad(H)), V 〉, and then

〈∆N (p), V 〉 = ∆fV =
〈
−nΓp(gradH)−

(
‖B‖2 + Ric(η)

)
N (p), V

〉
.

(1.16)
As (1.16) holds for any V ∈ g we have (1.13), proving the theorem.

The main consequence of this Theorem is an equivalence, that comes to
generalize the result of Ruh-Vilms and the ones on [25] and [5].

Corollary 1.2.5. Let M be an orientable hypersurface of G/K and let N :
M → Sn+k−1 ⊆ g be the Gauss map of M . Then the following alternatives
are equivalent:

i. M has constant mean curvature.

ii. The Gauss map N : M → Sn+k−1 is harmonic

iii. N satisfies the equation

∆N (p) = −
(
‖B‖2 + Ric(η)

)
N (p). (1.17)
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12 The Gauss map on spaces of constant sectional curvature

1.3 The Gauss map on spaces of constant sec-

tional curvature

On this section, we present explicit expressions for the Gauss map on the
case of N = G/K to be a space form. In the Euclidean case, our Gauss map
coincides with the usual one, as the horizontal lift is simply the identity. We
then pass to consider the spherical and hyperbolic cases.

The Gauss map of Mn−1 immersed in Sn.

Let O(n + 1) be the orthogonal group of isometries of Rn+1 that fixes the
origin, and consider it as the matrix group

O(n+ 1) =
{
x ∈ GLn+1(R); xT = x−1

}
.

The Lie algebra o(n+ 1) of O(n+ 1) is given by

o(n+ 1) =
{
u ∈Mn+1(R); u+ uT = 0

}
,

and we consider the inner product on o(n+ 1)

〈u, v〉0 =
1

2
trace(uvT ).

We can then extend 〈 , 〉0 via left translations to O(n + 1) defining the
following left invariant metric on O(n + 1): for x ∈ O(n + 1) and u, v ∈
TxO(n+ 1), we let

〈u, v〉x = 〈x−1u, x−1v〉0 =
1

2
trace(x−1uvTx) =

1

2
trace(uvT ), (1.18)

and we have that the metric given by (1.18) is bi-invariant.
Let {e1, e2, . . . , en+1} be the canonical base of Rn+1 and let O(n) be the

subgroup that fixes e1,

O(n) = {x ∈ O(n+ 1); xe1 = e1},

then the quotient O(n + 1)/O(n), endowed with the metric induced via the
projection π : O(n+ 1)→ O(n+ 1)/O(n) is isometric to the unit sphere Sn

centred at the origin of Rn+1.
Next, we obtain an explicit expression for Γ : TSn → o(n + 1): choose

p = (x1, x2, . . . , xn+1) ∈ Sn and let {v2, v3, . . . , vn+1} be an orthogonal
basis of TpS

n ⊆ Rn+1, so the matrix (p v2 v3 . . . vn+1) is in O(n + 1). Then
we define
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13 The Gauss map on spaces of constant sectional curvature

x =


x1 v12 . . . v1n+1

x2 v22 . . . v2n+1
...

...
. . .

...
xn+1 vn+1 2 . . . vn+1n+1

 ,

where vj =
∑n+1

i=1 vijei ∈ Rn+1, and it follows that x ∈ O(n+ 1) and π(x) =
x(e1) = p.

Now, let u = (u1, u2, . . . , un+1) ∈ TpSn ⊆ Rn+1 and write u =
∑n+1

i=2 (u ·
vi)vi where ( · ) is the inner product of Rn+1. Let Z ∈ o(n)⊥ be given by

Z =


0 −(u · v2) . . . −(u · vn+1)

(u · v2) 0 . . . 0
...

...
. . .

...
(u · vn+1) 0 . . . 0


and set ũ = d(Lx)eZ ∈ (TxxO(n))⊥. In coordinates, ũ = x.Z is the usual
matrix multiplication and is represented as

ũ =


U1 −x1(u · v2) . . . −x1(u · vn+1)
U2 −x2(u · v2) . . . −x2(u · vn+1)
...

...
. . .

...
Un+1 −xn+1(u · v2) . . . −xn+1(u · vn+1)


where

Ui =
n+1∑
j=2

vij(u · vj).

We claim that ũ = `−1
x (u) is the horizontal lift of u. To see this, just

apply the projection:

dπx(ũ) =
n+1∑
i=1

Uiei =
n+1∑
i=1

n+1∑
j=2

vij(u · vj)ei =
n+1∑
j=2

(u · vj)
n+1∑
i=1

vijei

=
n+1∑
j=2

(u · vj)vj = u.

This equation shows not only that ũ is the horizontal lift of u on TxO(n+
1), but also that Ui = (u·ei) = ui, as it was expected. Then, it becomes simple
to find an expression for Γp(u) = d(Rx−1)x(ũ) = ũ.x−1. As x ∈ O(n + 1) we
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14 The Gauss map on spaces of constant sectional curvature

have that x−1 = xT . Using again that Ui = ui, the matrix expression for
Γp(u) is

Γp(u) =


0 u1x2 − u2x1 . . . u1xn+1 − un+1x1

u2x1 − u1x2 0 . . . u2xn+1 − un+1x2
...

...
. . .

...
un+1x1 − u1xn+1 un+1x2 − u2xn+1 . . . 0

 .

If we let Φ1 : Rn+1 ×Rn+1 →Mn+1(R) be given by

Φ1(x, y) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn+1




1 . . . 1
1 . . . 1
...

. . .
...

1 . . . 1




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn+1



=


y1x1 y2x1 . . . yn+1x1

y1x2 y2x2 . . . yn+1x2
...

...
. . .

...
y1xn+1 y2xn+1 . . . yn+1xn+1

 , (1.19)

then we can write

Γp(u) = Φ1(u, p)− Φ1(p, u). (1.20)

We then obtain an explicit matrix expression for the Gauss map of a
hypersurface of Sn:

Proposition 1.3.1. Let Mn−1 be an orientable hypersurface of Sn oriented

with respect to a normal unit vector field η. Let N : M → S
(n+1)n

2
−1 ⊆ o(n+1)

be the Gauss map of M . Then

N (p) = Φ1(η(p), p)− Φ1(p, η(p)) (1.21)

where Φ1 is given by (1.19).

Using such expression and some properties of the map Φ1, we relate the
derivative of the Gauss map of a surface M in Sn with the shape operator of
M .

Proposition 1.3.2. Let M be an orientable surface in Sn oriented with re-

spect to a normal unitary vector field η and let N : M → S
(n+1)n

2
−1 ⊆ o(n+1)

be its Gauss map. Then, for any p ∈M and X, Y ∈ TpM it holds
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15 The Gauss map on spaces of constant sectional curvature

〈dNp(X), Γp(Y )〉 = −〈Aη(X), Y 〉,

where Aη is the shape operator of M .

Proof. LetM be as above. Let p ∈M andX, Y ∈ TpM and let α : (−ε, ε)→
M be such that α(0) = p and α′(0) = X. Set N (t) = N (α(t)) and η(t) =
η(α(t)). From Proposition 1.3.1 we have

N (t) = Φ1(η(t), α(t))− Φ1(α(t), η(t)).

Hence

dNp(X) = −Φ1(Aη(X), p) + Φ1(η(p), X)− Φ1(X, η(p)) + Φ1(p,Aη(X)),

as η′(0) = ∇Xη = −Aη(X). On the other hand, we also have Γp(Y ) =
Φ1(Y, p)−Φ1(p, Y ). An useful (and easy to check) identity concerning Φ1 is
that, for every x, y, u, v ∈ Rn+1 it holds

trace (Φ1(x, u).Φ1(y, v)) = (x · v)(y · u). (1.22)

Then, as the metric of Sn (and consequently the metric of M) is the one
induced by ( · ), (1.22) implies the identities:

trace(Φ1(p,Aη(X))Φ1(Y, p)) = 〈Aη(X), Y 〉 = trace(Φ1(Aη(X), p)Φ1(p, Y ))

trace(Φ1(X, η(p))Φ1(Y, p)) = 0 = trace(Φ1(η(p), X)Φ1(p, Y ))

trace(Φ1(η(p), X)Φ1(Y, p)) = 0 = trace(Φ1(X, η(p))Φ1(p, Y ))

trace(Φ1(Aη(X), p)Φ1(Y, p)) = 0 = trace(Φ1(p,Aη(X))Φ1(p, Y )).

Then, it follows from the expression (1.18) for the metric of O(n+1) that

〈dNp(X), Γp(Y )〉 = −1

2
trace(dNp(X)Γp(Y ))

= −〈Aη(X), Y 〉.

An immediate consequence of Proposition 1.3.2 is a generalization of the
result for the classical Gauss map, which derivative coincides, up to a sign,
with the shape operator: here it is shown that the projection of N back to
the sphere coincides with the shape operator. Precisely, we have proved:
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16 The Gauss map on spaces of constant sectional curvature

Corollary 1.3.3. Let M be a hypersurface in Sn oriented with respect to η

an unitary vector field normal to M and let N : M → S
n(n+1)

2
−1 ⊆ o(n + 1)

be its Gauss map. Then, for any x ∈ O(n+ 1) such that π(x) ∈M it holds

dπxd(Rx)edNπ(x) = −Aη.

The Gauss map of Mn−1 immersed in Hn.

Consider the pseudo inner product ( ∗ ) on Rn+1 given by

(x ∗ y) = −x1y1 + x2y2 + . . .+ xn+1yn+1,

and let us introduce the following notation: For i = 1, 2, . . . , n + 1, let
ξ1 = −1 and ξi = 1 otherwise. Then we can write ( ∗ ) as

(x ∗ y) =
n+1∑
i=1

ξixiyi.

In the Lorentz space Ln+1 = (Rn+1, ( ∗ )),

Hn = {x ∈ Ln+1; (x ∗ x) = −1 and x1 > 0},
endowed with the metric of Ln+1 is the hyperbolic space with constant sec-
tional curvature −1. We consider

O(1, n) = {g ∈Mn+1(R); (gx∗gy) = (x∗y), ∀x, y ∈ Ln+1 and g (Hn) = Hn}.
In terms of matrices, the property that characterizes O(1, n) is

O(1, n) = {x ∈Mn+1(R); x−1 = ĨxT Ĩ},
where

Ĩ =


−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


.

The Lie algebra of O(1, n), denoted by o(1, n), can be written as

o(1, n) =




0 a1 . . . an
a1
... A
an

 , A ∈ o(n), a1, a2, . . . , an ∈ R

 ,
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17 The Gauss map on spaces of constant sectional curvature

and we notice that u = (uij)ij ∈ o(1, n)⇔ uij = −ξiξjuji.
We introduce a pseudo-Riemannian bi-invariant metric 〈 , 〉 on O(1, n)

by extending the non degenerate bilinear form 〈u, v〉 = 1
2
trace(uv) on o(1, n)

to O(1, n) via left translations.
With such metric, setting O(n) = {x ∈ O(1, n); x(e1) = e1}, Hn is

isometric to the quotient O(1, n)/O(n). In the next result we obtain an
explicit expression for Γ : THn → o(1, n):

Lemma 1.3.4. Let p ∈ Hn.Then, if u ∈ TpHn, it holds

Γp(u) = Φ−1(p, u)− Φ−1(u, p), (1.23)

where Φ−1 : Ln+1 × Ln+1 →Mn+1(R) is given by

Φ−1(x, y) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn+1



−1 1 . . . 1
−1 1 . . . 1
...

...
. . .

...
−1 1 . . . 1




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn+1



=


−y1x1 y2x1 . . . yn+1x1

−y1x2 y2x2 . . . yn+1x2
...

...
. . .

...
−y1xn+1 y2xn+1 . . . yn+1xn+1

 . (1.24)

Proof. The proof is similar to the spherical case. We write down some steps
of it. Set p = (x1, x2, . . . , xn+1) ∈ Hn and u = (u1, u2, . . . , un+1) ∈ TpHn.
Let {v2, v3, . . . , vn+1} be an orthogonal basis of TpH

n in such way that the
matrix (p v2 v3 . . . vn+1) ∈ O(1, n). Write each vj in coordinates as vj =
(v1j, v2j, . . . , vn+1 j) and define

x =


x1 v12 . . . v1n+1

x2 v22 . . . v2n+1
...

...
. . .

...
xn+1 vn+1 2 . . . vn+1n+1


.

Then we have x ∈ O(1, n) and π(x) = p. As in the spherical case, define
Z ∈ o(n)⊥ by

Z =


0 (u ∗ v2) . . . (u ∗ vn+1)

(u ∗ v2) 0 . . . 0
...

...
. . .

...
(u ∗ vn+1) 0 . . . 0

 .
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18 The Gauss map on spaces of constant sectional curvature

Then d(Lx)eZ ∈ (TxxO(n))⊥, dπx(xZ) = u and hence `−1
x (u) = xZ. It

follows that Γp(u) = xZx−1. In terms of matrices,

Γp(u) =


0 u2x1 − u1x2 . . . un+1x1 − u1xn+1

−u1x2 + u2x1 0 . . . un+1x2 − u2xn+1

−u1x3 + u3x1 u2x3 − u3x2 . . . un+1x3 − u3xn+1
...

...
. . .

...
−u1xn+1 + un+1x1 u2xn+1 − un+1x2 . . . 0


= Φ−1(p, u)− Φ−1(u, p).

Proposition 1.3.5. Let M be a hypersurface of the hyperbolic space Hn

oriented with respect to an unitary normal vector field η. Let N : M →
S

(n+1)n
2
−1 ⊆ o(1, n) be the Gauss map of M . Then it holds

N (p) = Φ−1(p, η(p))− Φ−1(η(p), p), (1.25)

where Φ−1 is given on (1.24).

This explicit formula for the Gauss map of a hypersurface M on Hn also
implies that the derivative of N on this case is the lift of the shape operator:

Proposition 1.3.6. Let M be an orientable hypersurface in Hn oriented by

a normal unitary vector field η and let N : M → S
(n+1)n

2
−1 ⊆ o(1, n) be its

Gauss map. Then for any p ∈M and X, Y ∈ TpM it holds

〈dNp(X), Γp(Y )〉 = −〈Aη(X), Y 〉.
Proof. The proof to this proposition is analogous to the proof of Proposition
1.3.2, with the difference that here one uses (p ∗ p) = −1 and the equation

trace(Φ−1(x, u)Φ−1(y, v)) = (x ∗ v)(y ∗ u) (1.26)

instead of (1.22).

As a consequence, similarly to the spherical case, we reobtain the shape
operator of M from the derivative of its Gauss map:

Corollary 1.3.7. Let M be an orientable surface in Hn oriented by an uni-

tary vector field η normal to M and let N : M → S
(n+1)n

2
−1 ⊆ o(1, n) be its

Gauss map. Then, for any x ∈ O(1, n) such that π(x) ∈M it holds

dπxd(Rx)edNπ(x) = −Aη.
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19 The quadratic form induced by N

1.4 The quadratic form induced by N on sur-

faces immersed in symmetric spaces of di-

mension 3

It is a classic result due to Heinz Hopf [37] that in the Euclidean three
space, the Hopf differential A of a surface M (that is, the complexification
of the traceless part of the second fundamental form of M) is holomorphic
if and only if M has constant mean curvature. This result is also true in
H3 and S3 (S.-S. Chern, [8]), but it is false in general. In [1] U. Abresch
and H. Rosenberg “perturbed”the Hopf differential and defined a quadratic
differential form Q = 2HA− cT of a surface M immersed inM2(c)×R (H
is the mean curvature of M , A is the Hopf differential and T = (dh⊗ dh)2,0,
h standing for the height function), and extended Hopf’s theorem for CMC
spheres to these ambient spaces using Q instead of A.

In R3 the differential of the Gauss map N : M → S2 coincides (up to
a sign) with the shape operator of the surface, and the complex quadratic
form induced by g is, up to a constant, the Hopf differential A. In [38], M.
L. Leite and J. Ripoll used the Gauss map N of a surface M in S2 × R, as
defined in [5], to show that the quadratic form induced by N was actually
the Abresch-Rosenberg quadratic form Q. They also defined an “ad hoc”
Gauss map N , which they called twisted normal map, for a surface M in
H2×R and again obtained that the quadratic form induced by N coincided
with the Abresch-Rosenberg quadratic form Q of M .

In this section we will consider a surface M immersed in a 3-dimensional
symmetric space N = G/K satisfying the assumptions of Section 1.2. It will
be shown that the complex quadratic form induced by N on M is the Hopf
differential when N is H3, R3 or S3. Moreover, we show that the Gauss map
N coincides with the twisted normal map defined in [38], when N = H2×R,
in particular the quadratic form induced by N on the product spaces H2×R
and S2 ×R will coincide with the Abresch-Rosenberg quadratic form.

1.4.1 The quadratic form on H3 and on S3

Let M = M3(c) be S3 when c = 1 and H3 when c = −1. Consider the
bilinear form on R4 given by

(x, y) = cx1y1 + x2y2 + x3y3 + x4y4.

When c = 1, we obtain (R4, ( , )) = E4 is the Euclidean 4-space with its
usual flat metric and when c = −1 (R4, ( , )) = L4 is the Lorentz space. We
will consider M⊆ R4 as the set
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20 The quadratic form induced by N

M3(c) = {x ∈ R4; (x, x) = c}.
With the metric induced from (R4, ( , )), M3(1) becomes isometric to S3

and M3(−1) is isometric to H3, and herein we will treat both cases using
such notation. The metric on M will be denoted by 〈 , 〉 and we let D the
Riemannian connection of (R4, ( , )) and ∇ the connection of M. In order
to ease the notation, we will denote (R4, ( , )) = R4.

Let F : Σ →M be a conformal immersion of a Riemann surface Σ ⊆ C
intoM and let z = x+ iy to be the conformal structure on Σ induced by F .
Then, we have

〈Fx, Fx〉 = 〈Fy, Fy〉 = λ > 0 and 〈Fx, Fy〉 = 0,

which implies that

〈Fz, Fz〉 = 〈Fz, Fz〉 = 0, 〈Fz, Fz〉 = λ/2,

where 2Fz = Fx− iFy and 2Fz = Fx+ iFy is the complexification of the basis
{Fx, Fy}.

Let η be an unitary vector field normal to F on M. We define the
quadruple σ = {Fz, Fz, η, F} and notice that in each point of F (Σ), σ is a
basis for R4 (σ is called a moving frame for R4), satisfying:

(Fz, Fz) = 0 (Fz, Fz) = λ/2 (Fz, η) = 0 (Fz, F ) = 0
(Fz, Fz) = λ/2 (Fz, Fz) = 0 (Fz, η) = 0 (Fz, F ) = 0

(η, Fz) = 0 (η, Fz) = 0 (η, η) = 1 (η, F ) = 0
(F, Fz) = 0 (F, Fz) = 0 (F, η) = 0 (F, F ) = c.

Using the same approach as the one of I. Fernández and P. Mira [27], we
obtain the structure equations for σ:

Lemma 1.4.1. The moving frame σ satisfies the differential equations:

σz = Uσ, σz = Vσ, (1.27)

where U and V are matrices given by

U =


(log(λ))z 0 α 0

0 0 Hλ
2
− cλ

2

−H −2α
λ

0 0
1 0 0 0

 , V =


0 0 Hλ

2
− cλ

2

0 (log(λ))z α 0
−2α

λ
−H 0 0

0 1 0 0

 ,

H is the mean curvature of the immersion F and α = −〈∇Fzη, Fz〉 is the
coefficient of the Hopf differential of F .

PPGMat – UFRGS 20 A. Ramos



21 The quadratic form induced by N

Proof. On this section, the interest of this Lemma is simply to compute
DFzη = ηz in order to obtain an expression for the form induced by N . As
all other equations follow analogously, we will explicit only the computations
to obtain ηz.

First, we write, for some constants A, B ∈ C and C, D ∈ R

ηz = AFz +BFz + Cη +DF.

Now, we observe that

(ηz, Fz) = 〈∇Fzη, Fz〉 = −α,
thus B λ

2
= −α, and then B = −2α/λ. It also holds that

(ηz, Fz) = −〈η, ∇FzFz〉 = −1

4
〈η, ∇FxFx +∇FyFy〉

= −Hλ

2
,

thus A = −H. The equation (η, η) = 1 implies that (ηz, η) = 0, so C = 0
and finally the equation (ηz, F ) = −(η, Fz) = 0 implies that D = 0 and we
obtain that

ηz = −HFz −
2α

λ
Fz. (1.28)

Now we will use equation (1.28) to obtain an expression to the quadratic
form induced by N , QN = 〈Nz, Nz〉dz2.

Proposition 1.4.2. Let A = 2αdz2 be the Hopf differential of F . Then the
quadratic form induced by N satisfies

QN = HA,
where H : Σ→ R is the mean curvature of F .

Proof. Denote by oc = o(4) when c = 1 and o(1, 3) when c = −1. Then the
metric on oc is given by 〈X, Y 〉 = − c

2
trace(XY ). Recall from (1.21), (1.25)

that the Gauss map of a surface immersed on M is given by

N (p) = Φc(η(p), p)− Φc(p, η(p)),

where Φc : R4 → oc is either Φ1 of (1.19) or Φ−1 of (1.24), and satisfies the
relation
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22 The quadratic form induced by N

trace(Φc(x, u)Φc(y, v)) = (x, v)(u, y). (1.29)

In particular, for each p ∈ Σ, we have

N (p) = Φc(η(F (p)), F (p))− Φc(F (p), η(F (p))),

and it follows that

Nz = Φc(ηz, F )− Φc(F, ηz) + Φc(η, Fz)− Φc(Fz, η),

thus

〈Nz, Nz〉 = − c
2

trace(NzNz)

= − c
2

trace
[

Φ(ηz, F )
(
Φ(ηz, F )−Φ(F, ηz)+Φ(η, Fz)−Φ(Fz, η)

)
− Φ(F, ηz)

(
Φ(ηz, F )−Φ(F, ηz)+Φ(η, Fz)−Φ(Fz, η)

)
+ Φ(η, Fz)

(
Φ(ηz, F )−Φ(F, ηz)+Φ(η, Fz)−Φ(Fz, η)

)
− Φ(Fz, η)

(
Φ(ηz, F )−Φ(F, ηz)+Φ(η, Fz)−Φ(Fz, η)

)]
= − c

2

(
2(F, ηz)

2 − 2(F, F )(ηz, ηz)
)
.

But (F, ηz) = 0 and (F, F ) = c, so last equation becomes 〈Nz, Nz〉 =
(ηz, ηz). Now, recall the expression (1.28), to obtain that

(ηz, ηz) = 2H
2α

λ
(Fz, Fz) = 2Hα.

Finally, it follows that

QN = 〈Nz, Nz〉dz2 = 2Hαdz2 = HA.

We then have the following two theorems, 1.4.3 and 1.4.4:

Theorem 1.4.3. Let M be a surface immersed in S3 and let N : M → S5 ⊆
o(4) be its Gauss map. Then the following alternatives are equivalent:

i. M has constant mean curvature;

ii. N is harmonic;
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23 The quadratic form induced by N

iii. The complex quadratic form QN induced by N on M is holomorphic.

Theorem 1.4.4. Let M be a surface immersed in H3 and let N : M → S5 ⊆
o(1, 3) be its Gauss map. Then the following alternatives are equivalent:

i. M has constant mean curvature;

ii. N is harmonic;

iii. The complex quadratic form QN induced by N on M is holomorphic.

Proof of Theorems 1.4.3 and 1.4.4. It follows from Proposition 1.4.2 that the
quadratic differential form induced by N , QN coincides, up to a constant
with the Hopf differential A of M , either on S3 or on H3. Therefore, the
work of Chern [8] gives us that QN is holomorphic if and only if M has con-
stant mean curvature. The equivalence between CMC and harmonicity of
the Gauss map had already been obtained in Corollary 1.2.5, and this proves
Theorems 1.4.3 and 1.4.4.

1.4.2 The quadratic form on H2 ×R and on S2 ×R
In this section we prove a result analogous to Theorems 1.4.3 and 1.4.4 for
a surface M immersed in a product space S2 ×R or H2 ×R. We will prove
that if M has constant mean curvature, then the quadratic form induced
by N is holomorphic. In order to prove this result we will show that the
complex quadratic form induced by the Gauss map of M coincides with the
Abresch-Rosenberg quadratic form. When N = S2 ×R, our construction of
the Gauss map coincides with the one in [5], therefore Theorem 3.1 of [38]
shows this result. Thus, we focus when M is a surface immersed in H2 ×R,
and we relate N with the twisted normal map of M , introduced in [38].

For an orientable surface M in H2×R oriented with a vector field (η, ν)
normal to M , the twisted normal map of M is defined by (see [38]):

N : M → S3 ⊆ L3 ×R
(p, t) 7→ (J(η(p)), ν),

(1.30)

where J is the operator acting on tangent planes of H2 as the clockwise π/2
rotation. Next proposition is an analogous to Proposition 2.3 of [38] to the
case of H2 × R and shows that, if p ∈ H2, then Γp = J . In particular, the
Gauss map given by the expression (1.5) coincides with the twisted normal
map defined by (1.30).
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Proposition 1.4.5. Let p ∈ H2 and let v ∈ TpH2 ⊆ L3. Let {v2, v3} be an
orthogonal basis of TpH

2. If u = av2 + bv3, then Γp(u) = −bv2 + av3, via the
identification  0 −r s

−r 0 −t
s t 0

 ∈ o(1, 2)↔ (t, s, r) ∈ L3.

Proof. Let p = (x1, x2, x3) ∈ H2 and u = (u1, u2, u3) ∈ TpH
2. Then, by

equation (1.23), it follows that

Γp(u) =

 0 u2x1 − u1x2 u3x1 − u1x3

u2x1 − u1x2 0 u3x2 − u2x3

u3x1 − u1x3 u2x3 − u3x2 0

 .

Writing vj = (v1j, v2j, v3j) and making the substitution ui = avi2 + bvi3
on the previous equality it becomes

Γp(u) = a

 0 v22x1 − v12x2 v32x1 − v12x3

v22x1 − v12x2 0 v32x2 − v22x3

v32x1 − v12x3 v22x3 − v32x2 0



+ b

 0 v23x1 − v13x2 v33x1 − v13x3

v23x1 − v13x2 0 v33x2 − v23x3

v33x1 − v13x3 v23x3 − v33x2 0



= a

 0 −v33 v23

−v33 0 −v13

v23 v13 0

+ b

 0 v32 −v22

v32 0 v12

−v22 −v12 0


= av3 − bv2.

Then, we obtain

Corollary 1.4.6. On the ambient space H2 ×R, the Gauss map defined by
(1.5) coincides with the twisted normal map of [38] given by (1.30).

This corollary implies (together with Theorems 3.1 and 3.3 of [38]) the
following result:
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25 HOS theorem in symmetric spaces of dimension 3

Proposition 1.4.7. Let M be an orientable surface in M2(c)×R oriented
with respect to an unitary vector field (η, ν) normal to M . Let N be the
Gauss map of M and let QN be the complex quadratic form induced by N .
Then

QN = Q,
where Q = 2HA− cT is the Abresch-Rosenberg quadratic form of M ([1]).

Now, using Theorem 1 of Abresch-Rosenberg [1], we can use our con-
struction of the Gauss map to obtain:

Theorem 1.4.8. Let M be a surface immersed either in S2×R or in H2×R.
If N is the Gauss map of M , then there is an equivalence between

i. M has constant mean curvature;

ii. N is harmonic.

Moreover, both imply

iii. QN is holomorphic on M .

Remark 1.1. The converse of this theorem is false. It was shown by I.
Fernández and P. Mira in [28] the existence of certain rotational surfaces
in H2 × R with holomorphic Abresch-Rosenberg differential that fails to be
CMC.

1.5 HOS theorem in symmetric spaces of di-

mension 3

On [5], Theorem 4.9 proves HOS theorem for a complete CMC surface M
immersed in a 3-dimensional homogeneous space G/H where G, up to an
abelian factor, is compact. In particular, this result apply for M immersed
in S3 and in S2×R. We now extend HOS theorem for surfaces immersed in a
symmetric space N = G/K as in the preliminaries of Section 1.2, extending
Theorem 4.9 of [5] to other spaces with non-compact irreducible factors, such
as H3 and H2 ×R.

Theorem 1.5.1. Let N = G/K be a 3-dimensional symmetric space as in
Section 1.2. Let H ≥ 0 be given and assume that 2H2 + RicN ≥ 0, where
RicN = min|v|=1 RicN(v). Let M be a complete orientable surface immersed
with CMC H in N . Assume that N (M) is contained in a hemisphere of the
unit sphere in g determined by a nonzero vector V ∈ g, that is, 〈N (p) , V 〉 ≤
0 for all p ∈M. We have:
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26 HOS theorem in symmetric spaces of dimension 3

a) If M has the conformal type of the disk, then M is invariant under the
1-parameter subgroup of isometries of N determined by V ;

b) If M has the conformal type of the plane and ζ(V ) is a bounded2 Killing
field on M , then M is invariant under the 1-parameter subgroup of
isometries of N determined by V or M is umbilical and Ric(η) = RicN .

Proof. Suppose that N (M) is contained in a hemisphere of g determined by
V . Let π : M̂ → M be the universal covering of M and consider M̂ as an
immersed surface in N . Write f as f ◦π. Set f(p) = 〈ζ(V )(p), η(p)〉, p ∈ M̂,
where ζ(V ) is the Killing field on N defined on (1.7). Since 〈ζ(V )(p), η(p)〉 =
〈N (p), V 〉 ≤ 0, we have f ≤ 0. Assume first that M̂ is conformal to the
disk. We will then show that f vanishes identically and thus Proposition
1.2.3 implies that M̂ is invariant under the group of isometries generated by
V .

As H is constant, we have that grad(H) = 0, so we can compute the
Laplacian of f as on the proof of Theorem 1.2.4 to obtain

∆f +
(
‖B‖2 + Ric(η)

)
f = 0. (1.31)

Then, as ‖B‖2 ≥ 2H2 and f ≤ 0, it follows from the hypothesis 2H2+RicN ≥
0 that

∆f = −
(
‖B‖2 + Ric(η)

)
f

≥ −
(
2H2 + Ric(η)

)
f ≥ 0, (1.32)

Therefore, f is a subharmonic function on M̂ . If f vanishes at some point
p ∈ M̂ then, by the maximum principle, f ≡ 0 and the theorem is proved on
this case. So, let us suppose f < 0 and get a contradiction. From the Gauss
equation we have ‖B‖2 = 4H2 − 2(KM̂ − KN) where KM̂ is the sectional

curvature of M̂ and KN is the sectional curvature of N on tangent planes of
M . Using this equation on (1.31), we obtain

∆f − 2KM̂f +
(
4H2 + 2KN + Ric(η)

)
f = 0. (1.33)

Considering an orthonormal basis E1, E2 of TM̂ we observe that

Ric(η) + 2KN = 〈R(η, E1)η, E1〉+ 〈R(η, E2)η, E2〉+ 2〈R(E1, E2)E1, E2〉
= 〈R(E1, η)E1, η〉+ 〈R(E1, E2)E1, E2〉

+〈R(E2, η)E2, η〉+ 〈R(E2, E1)E2, E1〉
= Ric(E1) + Ric(E2) ≥ 2 RicN .

2On the sense that it has bounded norm ‖ζ(V )‖ on M
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Then, it follows that

P = Ric(η) + 2KN + 4H2 ≥ 2 RicN +4H2 ≥ 0,

thus f is a negative solution to the equation ∆f − 2KM̂f + Pf = 0, with

P ≥ 0, which contradicts Corollary 3 of [30], as M̂ has the conformal type
of the disk. It follows that f ≡ 0 and the first part of the theorem is proved.

Assume now that M̂ is conformal to the plane and that ζ(V ) is bounded
in M . Then, it follows that f is a bounded function on M . However, follows
again from (1.32) that f is subharmonic, so it is constant. In particular,
∆f = 0, and this, together with (1.31), implies that(

‖B‖2 + Ric(η)
)
f = 0.

It follows that either f ≡ 0 (and then M is invariant under the 1-parameter
family of isometries given by V ) or (‖B‖2 + Ric(η)) ≡ 0. On this case the
inequality on (1.32) would be an equality, and we would have

‖B‖2 = 2H2 and Ric(η) = RicN ,

and from ‖B‖2 = 2H2 it follows that M is umbilical as it is easy to see.

Remark 1.2. Since an equidistant surface of H3, that is, a surface which is
at a constant distance to a totally geodesic surface of H3, has the conformal
type of the disk and is orthogonal to a hyperbolic Killing field (that is, the
Killing field which orbits are hypercycles equidistant to a fixed geodesic) we
see that the hypothesis 2H2 + RicN ≥ 0 which, in the hyperbolic space, is
equivalent to H ≥ 1, cannot be improved.
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CHAPTER 2

The mean curvature equation on semidirect products

R2 oA R

On this chapter we study the mean curvature equation of π-graphs on semidi-
rect products R2 oA R, following the paper by the author [53], under super-
vision of J. Pérez. The semidirect product R2 oA R is the set R3, endowed
with a group operation and a left invariant metric, depending on a matrix
A ∈ M2(R). Its precise definition in given on Section 2.2, and follows the
construction of Meeks-Pérez [44].

2.1 Introduction

The subject of minimal surfaces is among the most beautiful – and also most
studied – objects in Differential Geometry, and many times minimal graphs
play an important role on the field. Many deep results may be obtained from
looking to a minimal surface as a local graph and bringing techniques from
partial differential equations to help solve geometric questions.

On a series of papers ([40, 42, 43, 44]), W. Meeks, P. Mira, J. Pérez
and A. Ros studied constant mean curvature spheres on three-dimensional
homogeneous spaces and semidirect products of the form R2 oA R came
to play a very important role on their proofs. This is because any simply
connected metric Lie group of dimension 3 is either SU(2) or P̃SL(2,R)
endowed with a left invariant metric or it is isomorphic and isometric to a
semidirect product R2 oA R with its canonical left invariant metric, where
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A ∈ M2(R) is some 2 × 2 square matrix (see the work of W. Meeks and J.
Pérez [44] or Section 2.2 below).

Although a lot has been done in the last years on the ambient space of
semidirect products (or, more generally, on simply connected homogeneous
spaces of dimension 3), the theory of minimal π−graphs on semidirect prod-
ucts is still on development, and many interesting questions on this field
remain open. For instance is it true that a minimal π−graph on R2 oA R

is stable?1 This question is equivalent to Problem 1, stated on Section 2.4,
which asks about the uniqueness of a minimal π−graph with prescribed
boundary. Unfortunately, this (thus both) question remains open, although
the results presented on this chapter help us to have a better understanding
on the behaviour of the mean curvature operator.

There are two main difficulties when dealing with minimal π−graphs
on semidirect products R2 oA R: the first one is that vertical translations
(x, y, z) 7→ (x, y, z + t) are not isometries of the ambient space, and this
affects the mean curvature operator so its high order coefficients depend on
the solution (see Section 2.3), and the comparison principle (for instance
Theorem 10.1 of [32] and its generalizations) does not apply. The second
one is that, unless trace(A) = 0, constant functions do not provide minimal
graphs, so there is no maximum principle.

On this chapter, we consider a convex domain Ω ⊆ R2 oA {0} with piece-
wise smooth boundary and exhibit the differential equation some function
u : Ω→ R must satisfy for its π−graph

graph(u) = {(x, y, u(x, y)) ∈ R2 oA R; (x, y, 0) ∈ Ω}

to have prescribed mean curvature function. Depending on the trace and
on the determinant of A such PDE has a different behaviour. For instance,
when trace(A) = 0, if u : Ω → R is a function whose π−graph has non
negative mean curvature H ≥ 0 with respect to the upwards orientation,
then it satisfies the maximum principle

sup
∂Ω

u = sup
Ω
u. (2.1)

This property was first observed by W. Meeks, P. Mira, J. Pérez and A.
Ros ([43], stated on its generality as Lemma 2.4.2 below), and we remark
that (2.1) does not hold on the case of trace(A) > 0, even for H ≡ 0: a
minimal graph that is constant along its boundary necessarily assumes an
interior maximum and it is not constant, as horizontal planes (representing

1More generally, if the left invariant Gauss map of a surface Σ ⊆ R2 oAR is contained
on a hemisphere, does it imply Σ is stable?

PPGMat – UFRGS 29 A. Ramos



30 Introduction

constant functions) are no longer minimal. It becomes a natural question to
ask if there is a maximal jump these minimal graphs that are constant along
the boundary can attain, and this question is answered via height estimates
of partial differential equations.

Let us describe some of the main results of this chapter: Section 2.3 is
where we deduce the mean curvature equation for a π−graph and define the
mean curvature operator Q, on equation (2.22). Theorem 2.4.3 on Section 2.4
is to obtain the height estimates: given Ω ⊆ R2 oA {0} and a parameter
α ∈ R, we obtain a constant C = C(diam(Ω), α) such that if u : Ω → R is
a function satisfying {

Q(u) ≥ 0 in Ω
u ≤ α on ∂Ω,

(2.2)

then u satisfies

u ≤ α + C(α) in Ω. (2.3)

Still on Section 2.4 it is proved that the dependence on α to the constant
C of (2.3) is essential (Theorem 2.4.4) for the validity of the result, on the
sense that it is not possible to obtain some constant C = C(Ω) such that
every u : Ω→ R with Q(u) ≥ 0 satisfies the uniform height estimate

sup
Ω
u ≤ sup

∂Ω
u+ C.

We also use the freedom on the parameter α in order to obtain that (on
the case trace(A) > 0, see Theorem 2.4.6 for details) the oscillation of a
family of solutions to the problem{

Q(u) = 0 in Ω
u|∂Ω = c ∈ R

converges to zero when c approaches +∞ and goes to infinite, if c→ −∞.
We finish the chapter on Section 2.5, where we bring techniques from

Killing graphs, in addition to the estimates on the coefficients of the mean
curvature operator obtained on Section 2.4, to generalize an argument of A.
Menezes [50] to any semidirect product R2 oAR, and obtain the existence of
minimal π−graphs which are similar to the fundamental piece of the doubly
periodic Scherk surface of R3, on Theorem 2.5.1.
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2.2 Semidirect products R2 oA R

This section is to give a brief review on semidirect products R2 oA R. We
follow the notation and construction of W. Meeks and J. Pérez, [44].

Let H, V be two groups and let ϕ : V → Aut(H) a group homomorphism
between V and the group of automorphisms of H. Then, the semidirect
product between H and V with respect to ϕ, denoted by G = H oϕ V , is the
cartesian product H × V endowed with the group operation ∗ : G×G→ G
given by

(h1, v1) ∗ (h2, v2) = (h1 · ϕv1(h2), v1v2).

With this group operation, then both H and V can be viewed as sub-
groups of G and moreover, H /G is a normal subgroup of G. This construc-
tion comes to generalize the notion of direct product of groups, where the
operation on the cartesian product H × V would be the product operation
(h1, v1)∗ (h2, v2) = (h1h2, v1v2). It is clear that this notion can be recovered
from the one of a semidirect product, when considering the automorphism
ϕ(v) = IdH being the constant map into the identity of the group H.

Even on the particular case of H = R2 and V = R being two abelian
groups, it possible to obtain a great variety of groups via the semidirect prod-
uct of R2 and R, depending uniquely on the choice of the (now 1-parameter)
family of automorphisms of R2. Precisely, with the exceptions of SU(2) (not

diffeomorphic to R3) and P̃SL(2, R) (has no normal subgroup of dimen-
sion 2), it is possible to construct all three dimensional simply connected Lie
groups using the following setting: fix a matrix A ∈M2(R),

A =

(
a b
c d

)
(2.4)

and, for each z ∈ R we consider the automorphism of R2 generated by the
exponential map of Az, eAz : R2 → R2. Then, we let

ϕ : R → Aut(R2)
z 7→ eAz,

and we define R2 oA R = R2 oϕ R as the semidirect product between R2

and R with respect to the automorphisms generated by eAz. Explicitly, the
semidirect product R2 oAR is the set R3 = R2×R endowed with the group
operation ∗ given by

(x1, y1, z1) ∗ (x2, y2, z2) =

((
x1

y1

)
+ eAz

(
x2

y2

)
, z1 + z2

)
. (2.5)
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Using the properties of the exponential map, it is easy to see that if A
and B are similar matrices (that is, A = PBP−1 for some P ∈ GL2(R)),
then the group structure of R2 oA R is isomorphic to the one of R2 oB R.
On the next section we will introduce the canonical left invariant metric of
a semidirect product, and a similar result is going to hold: if P as before is
an orthogonal matrix, then R2 oA R and R2 oB R will also be isometric.

2.2.1 The canonical left invariant metric

Using the notation of [44], we denote the exponential map eAz by

eAz =

(
a11(z) a12(z)
a21(z) a22(z)

)
, (2.6)

and observe that the vector fields defined by

E1(x, y, z) = a11(z)∂x + a21(z)∂y, E2(x, y, z) = a12(z)∂x + a22(z)∂y, E3 = ∂z
(2.7)

are left invariant and extend the canonical basis {∂x(0), ∂y(0), ∂z(0)} at the
origin of R3. Analogously, if we let

F1 = ∂x, F2 = ∂y, F3(x, y, z) = (ax+ by)∂x + (cx+ dy)∂y + ∂z, (2.8)

they are right invariant vector fields (therefore they are Killing fields with
respect to left invariant metrics) of R2 oA R.

The metric to be considered on R2 oA R is the canonical left invariant
metric (cf. [44]), that is the one given by stating that {E1, E2, E3} are
unitary and orthogonal to each other everywhere. In particular, as it holds

∂x(x, y, z) = a11(−z)E1 + a21(−z)E2

∂y(x, y, z) = a12(−z)E1 + a22(−z)E2,

we can express the metric of R2 oA R in coordinates as

ds2 =
[
a11(−z)2 + a21(−z)2

]
dx2 +

[
a12(−z)2 + a22(−z)2

]
dy2 + dz2

+
[
a11(−z)a12(−z) + a21(−z)a22(−z)

]
(dx⊗ dy + dy ⊗ dx).

Now, we remark that e−Az =
(
eAz
)−1

, so, as det(eAz) = ez trace(A), we have
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(
a11(−z) a12(−z)
a21(−z) a22(−z)

)
= e−z trace(A)

(
a22(z) −a12(z)
−a21(z) a11(z)

)
.

Finally, we introduce the notation

Q11(z) = 〈∂x, ∂x〉 = e−2z trace(A)
[
a21(z)2 + a22(z)2

]
Q22(z) = 〈∂y, ∂y〉 = e−2z trace(A)

[
a11(z)2 + a12(z)2

]
(2.9)

Q12(z) = 〈∂x, ∂y〉 = −e−2z trace(A) [a11(z)a21(z) + a12(z)a22(z)]

and obtain that the metric ds2 is expressed by

ds2 = Q11(z)dx2 +Q22(z)dy2 + dz2 +Q12(z)(dx⊗ dy + dy ⊗ dx). (2.10)

We notice that, if A, B ∈ M2(R) are two congruent matrices, on the
sense that there is some orthogonal matrix P ∈ O(2) such that B = PAP−1,
then the groups R2 oA R and R2 oB R, endowed with the canonical left
invariant metrics are isomorphic and isometric, and the map that makes the
identification is a simple rotation on horizontal planes induced by P :

ϕ : R2 oA R → R2 oB R

(x, y, z) 7→ (P (x, y), z).
(2.11)

We also remark that the Lie brackets of R2 oA R satisfy

[E1, E2] = 0, [E3, E1] = aE1 + cE2, [E3, E2] = bE1 + dE2, (2.12)

then Levi-Civita equation implies that the Riemannian connection of R2oAR

is given by

∇E1E1 = aE3 ∇E1E2 = b+c
2
E3 ∇E1E3 = −aE1 − b+c

2
E2

∇E2E1 = b+c
2
E3 ∇E2E2 = dE3 ∇E2E3 = − b+c

2
E1 − dE2

∇E3E1 = c−b
2
E2 ∇E3E2 = b−c

2
E1 ∇E3E3 = 0.

It is important to notice two properties of planes on R2 oA R: first, we
observe that the metric ds2 is invariant by rotations by angle π around the
vertical lines {(x0, y0, z); z ∈ R}, so vertical planes are minimal surfaces
of R2 oA R. Moreover, horizontal planes {z = c} have E3 as an unitary
normal vector field, so they have constant mean curvature (with respect to
the upward orientation) given by H = trace(A)/2. In particular, horizontal
planes of R2 oA R are minimal if and only if trace(A) = 0.
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(a) A foliation of R2 oA R by vertical
(minimal) planes

(b) The foliation of R2 oA R by hori-
zontal (CMC) planes

Figure 2.1: On semidirect products R2oAR every vertical plane is a minimal
surface. Horizontal planes have constant mean curvature H = trace(A)/2
and the subgroup H = R2 oA {0} (highlighted on the figure above) is normal
on R2 oA R.

The difference between the cases trace(A) = 0 and trace(A) 6= 0 go
further than horizontal planes being minimal: concerning the classification
of simply connected Lie groups of dimension 3, we notice that W. Meeks
and J. Pérez, [44] proved that any non unimodular 2 Lie group of dimension
3 is isomorphic and isometric to a semidirect product R2 oA R, endowed
with its left invariant metric, where A ∈ M2(R) is such that trace(A) 6= 0
(Lemma 2.11, [44]). Moreover, they also prove that, with the exceptions

of SU(2), which is not diffeomorphic to R3, and P̃SL(2, R), which has no
normal subgroup of dimension 2, all other unimodular metric Lie groups are
isomorphic and isometric to a semidirect product R2oAR, with trace(A) = 0
(Section 2.6 and Theorem 2.15, [44]). Herein, we shall make references to
the cases trace(A) = 0 or trace(A) 6= 0 respectively as the unimodular and
non unimodular case.

Let us give some examples of semidirect products in order to illustrate the
manifold of groups that are isometric and isomorphic to R2 oA R endowed
with its canonical metric. The main examples are R3, Sol3, Nil3, H

3 and
H2 ×R, which we resume on the table below:

R2 oA R R3 Sol3 Nil3 H3 H2 ×R

A

(
0 0
0 0

) (
−1 0
0 1

) (
0 1
0 0

) (
1 0
0 1

) (
1 0
0 0

)
2A group G is said to be unimodular if det (Adg) = 1 for all g ∈ G
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2.3 The mean curvature equation

On this section, we consider a smooth open domain Ω ⊆ R2 oA {0} and a
function u : Ω→ R. We define the π−graph3 of u by

Σ = graph(u) = {(x, y, u(x, y)) ∈ R2 oA R; (x, y, 0) ∈ Ω},

and deduce the partial differential equation that u must satisfy for Σ to be
a minimal surface (Theorem 2.3.2). This equation is a quasilinear elliptic
PDE, and it will be used on Section 2.4, together with some techniques from
[32], to obtain the main results of this chapter.

We begin with some preliminary calculations with the left invariant vec-
tors Ei. We extend u to a function ũ : Ω oA R → R given by ũ(x, y, z) =
u(x, y, 0). In order to ease the notation on next proposition, we let

ui = Ei(ũ), uij = Ej(Ei(ũ)).

Then, we orient Σ with respect to the unitary normal vector field η point-
ing upwards given by

η =
E3 − grad(ũ)√

1 + u2
1 + u2

2

, (2.13)

and on this setting, we prove the following:

Proposition 2.3.1. Let A ∈M2(R) be given by (2.4) and let R2 oA R be a
semidirect product with its canonical metric. Then if u : Ω→ R is a smooth
function and Σ is its π−graph, oriented with respect to η as in (2.13), its
mean curvature HΣ is given by

HΣ =
1

2W 3

[
u11(1 + u2

2) + u22(1 + u2
1)− 2u12u1u2 (2.14)

+ (2a+ d)u2
1 + (a+ 2d)u2

2 + (b+ c)u1u2 + trace(A)

]
,

where

W =
√

1 + u2
1 + u2

2.

3The nomenclature of π−graphs comes from the projection π : R2 oAR→ R2 oA {0},
π(x, y, z) = (x, y, 0), and is used on this work in order to avoid any conflict with the notion
of Killing graphs, that are studied on Section 2.5.
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Proof. First, we remark that {E1, E2E3} are such that Div(E1) = Div(E2) =
0 and Div(E3) = − trace(A), thus

Div(η) = Div

(
1

W
E3

)
−Div

(u2

W
E2

)
−Div

(u1

W
E1

)
= E3

(
1

W

)
− 1

W
trace(A)− E2

(u2

W

)
− E1

(u1

W

)
.

Now, it is just a simple computation. We begin with, for i = 1, 2

Ei

( ui
W

)
=

1

W 2

[
uiiW − uiEi(W )

]
(2.15)

=
1

W 3

[
uii(1 + u2

1 + u2
2)− ui(u1iu1 + u2iu2)

]
.

For i = 3, although ũ does not depend on the z−coordinate, its derivatives
do. Precisely, it follows from the Lie brackets (2.12) that u13 = au1 + cu2

and u23 = bu1 + du2, so we have that

E3

(
1

W

)
= − 1

2W 3
E3

(
W 2
)

= − 1

W 3

[
u13u1 + u23u2

]
(2.16)

= − 1

W 3

[
au2

1 + (b+ c)u1u2 + du2
2

]
.

From (2.15) and (2.16), it follows that

2H = −Div(η) = −E3

(
1

W

)
+

1

W
trace(A) + E2

(u2

W

)
+ E1

(u1

W

)
=

1

W 3

[
u11(1 + u2

2)− 2u12u1u2 + u22(1 + u2
1)

+ (2a+ d)u2
1 + (b+ c)u1u2 + (a+ 2d)u2

2 + trace(A)

]

Now, we write each Ei in coordinates using (2.7) to obtain the main
equation:
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Theorem 2.3.2. Let A ∈ M2(R) be a matrix given by (2.4) and let X be
the semidirect product R2 oA R with its canonical metric. Then, for Ω ⊆
R2 oA {0} a smooth open domain, the π−graph of a function u : Ω→ R, if
oriented upwards, has mean curvature H given by

H=
e2u trace(A)

2W 3

[
uxx
(
Q22(u) + u2

y

)
+ uyy

(
Q11(u) + u2

x

)
− 2uxy (Q12(u) + uxuy)

+G1(u)u2
x +G2(u)u2

y +G3(u)uxuy + (a+ d)e−2u trace(A)

]
,

where Qij are defined as on (2.9), Gi : R→ R are the functions given by

G1(z)=e−2z trace(A)
(
(2a+ d)a11(z)2 + (a+ 2d)a12(z)2 + (b+ c)a11(z)a12(z)

)
G2(z)=e−2z trace(A)

(
(2a+ d)a21(z)2 + (a+ 2d)a22(z)2 + (b+ c)a21(z)a22(z)

)
G3(z)=e−2z trace(A)

(
(4a+ 2d)a11(z)a21(z) + (2a+ 4d)a12(z)a22(z)

+ (b+ c)(a11(z)a22(z) + a12(z)a21(z))
)
, (2.17)

and W is

W (z, p) =
√

1 + (a11(z)p1 + a21(z)p2)2 + (a12(z)p1 + a22(z)p2)2

=
√

1 + e2z trace(A)
(
Q22(z)p2

1 − 2Q12(z)p1p2 +Q11(z)p2
2

)
.

Proof. From (2.7), it follows that

u1 = a11ux + a21uy

u2 = a12ux + a22uy

u11 = a2
11uxx + 2a11a21uxy + a2

21uyy (2.18)

u22 = a2
12uxx + 2a12a22uxy + a2

22uyy

u12 = a11a12uxx + (a11a22 + a12a21)uxy + a22a21uyy

where we are denoting aij = aij(z), and z = u(x, y). Now we divide (2.14)
in first and second order terms, by setting

Hf = (2a+ d)u2
1 + (a+ 2d)u2

2 + (b+ c)u1u2 + trace(A), (2.19)

Hs = u11(1 + u2
2) + u22(1 + u2

1)− 2u12u1u2 (2.20)
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thus H = 1
2W 3 (Hs +Hf ). Now using (2.18) on (2.20) we obtain directly that

Hs = uxx
(
a2

11 + a2
12 + (a11a22 − a12a21)2u2

y

)
+uyy

(
a2

21 + a2
22 + (a11a22 − a12a21)2u2

x

)
+2uxy

(
a11a21 + a12a22 − (a11a22 − a12a21)2uxuy

)
,

and now we just point out that a11(z)a22(z) − a12(z)a21(z) = det
(
eAz
)

=

ez trace(A), then

Hs = e2u trace(A)uxx
(
e−2u trace(A)(a2

11 + a2
12) + u2

y

)
+e2u trace(A)uyy

(
e−2u trace(A)(a2

21 + a2
22) + u2

x

)
+e2u trace(A)2uxy

(
e−2u trace(A)(a11a21 + a12a22)− uxuy

)
,

and we can use the functions Qij of (2.9) to obtain that

Hs = e2u trace(A)
(
uxx
(
Q22(u)+u2

y

)
+ uyy

(
Q11(u)+u2

x

)
− 2uxy (Q12(u)+uxuy)

)
.

(2.21)
Now, to complete the proof, simply use the expression (2.18) on (2.19) to

obtain the first order terms

Hf = (2a+ d)(a11ux + a21uy)
2 + (a+ 2d)(a12ux + a22uy)

2

+(b+ c)(a11ux + a21uy)(a12ux + a22uy) + trace(A)

=
(
(2a+ d)a2

11 + (a+ 2d)a2
12 + (b+ c)a11a12

)
u2
x

+
(
(2a+ d)a2

21 + (a+ 2d)a2
22 + (b+ c)a21a22

)
u2
y

+
(
(4a+ 2d)a11a21 + (2a+ 4d)a12a22 + (b+ c)(a11a22 + a12a21)

)
uxuy

+ trace(A).

By defining Gi as in (2.17), we find from last equation that

Hf = e2z trace(A)
(
G1(u)u2

x +G2(u)u2
y +G3(u)uxuy + (a+ d)e−2z trace(A)

)
,

obtaining the promised expression for the mean curvature of Σ.

With the mean curvature equation of last theorem, we finally define the
mean curvature operator :
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Q(u)=uxx
(
Q22(u) + u2

y

)
+ uyy

(
Q11(u) + u2

x

)
+ 2uxy (Q12(u)− uxuy)

+G1(u)u2
x +G2(u)u2

y +G3(u)uxuy + (a+ d)e−2u trace(A), (2.22)

and we notice that Q is a quasilinear elliptic operator, as the matrix

Q =

(
Q22(z) + p2

2 −Q12(z)− p1p2

−Q12(z)− p1p2 Q11(z) + p2
1

)
(2.23)

is positive definite for every z ∈ R and p = (p1, p2) ∈ R2, as it is easy to see
using the relation

Q11(z)Q22(z)−Q12(z)2 = e−2z trace(A).

We would like to remark that the minimal graphs equation Q(u) = 0
admits a divergence form:

Proposition 2.3.3. Let Q be the quasilinear elliptic operator given by (2.22).
Then the equation Q(u) = 0 admits an equivalent divergence form

∂

∂x

(
A1(u, Du)

)
+

∂

∂y

(
A2(u, Du)

)
+B(u,Du) = 0, (2.24)

where Du = (ux, uy) is the Euclidean gradient of u and A1, A2 are given by

A1(z, p) =
Q22(z)p1 −Q12(z)p2

W (z, p)
,

A2(z, p) =
−Q12(z)p1 +Q11(z)p2

W (z, p)
,

and W is

W (z, p) = e−2z trace(A)
√

1 + e2z trace(A)(Q22(z)p2
1 − 2Q12(z)p1p2 +Q11(z)p2

2).

2.4 Height estimates and lack of height esti-

mates

On this section, we study some properties of minimal graphs on semidirect
products. The main problem we would like to solve on this subject is the
uniqueness of minimal graphs given a prescribed boundary:
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Problem 1. Let A ∈M2(R) be a matrix and consider the semidirect product
R2oAR endowed with its canonical left invariant metric. Let Ω ⊆ R2oA{0},
be a bounded, convex and smooth domain and let Γ be a simple closed curve
such that the projection π : R2oAR→ R2oA{0} monotonically parametrizes4

∂Ω. Show that there is an unique function u : Ω → R such that Σ =
graph(u) is a minimal surface of R2 oA R and ∂Σ = Γ.

The question concerning the existence of a function u as on Problem 1 was
already solved by W. Meeks, P. Mira, J. Pérez and A. Ros on [43]. Using
the existence of many foliations of R2 oA R by vertical planes, which are
minimal, they solve the Plateau’s problem and prove the solution is a graph
over Ω. Precisely, they prove:

Theorem 2.4.1 (Theorem 15.1, [43]). Let X = R2oAR be a metric semidi-
rect product with its canonical metric and let π : R2 oA R → R2 oA {0}
denote the projection π(x, y, z) = (x, y, 0). Suppose Ω is a compact convex
disk in R2oA{0}, C = ∂Ω and Γ ⊆ π−1(C) a continuous simple closed curve
such that π : Γ→ C monotonically parametrizes C. Then:

(1) Γ is the boundary of a compact embedded disk D of finite least area.

(2) The interior of D is a smooth π− graph over the interior of Ω.

However, the uniqueness part of Problem 1 still remains open, even for
some simple cases. For instance, if trace(A) 6= 0, even on the case of u being
constant along the boundary the uniqueness is not known, although it is
expected.

We remark that an approach for proving uniqueness that could be con-
sidered is to prove that every minimal graph is stable, and then it would
follow that every minimal graph is strictly stable, from where we could ob-
tain uniqueness with the usual techniques. However, proving stability of a
minimal graph is not a trivial matter on this ambient space, as there is no
good candidate for a Jacobi function (there is no ambient Killing field Y with
the guarantee that the function 〈Y, η〉 has a sign, η being the normal unit
field to the graph).

Some work has been developed in order to understand minimal graphs on
semidirect products. We notice that the fact that R2oAR admits a foliation
by parallel horizontal planes of constant mean curvature H = trace(A)/2
determines much of the structure of those graphs. For instance, using this
property and the mean curvature comparison principle, Meeks, Mira, Pérez
and Ros prove that

4This means that π(Γ) ⊂ ∂Ω and π−1({p}) ∩ Γ is either a single point or a compact
interval for every p ∈ ∂Ω.
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Lemma 2.4.2 (Assertion 15.5, [43]). Let D ⊆ R2oA{0} be a convex compact
disk and let C = ∂D be its boundary. Consider π(x, y, z) = (x, y, 0) the
vertical projection. If Γ ⊆ π−1(C) is a closed simple curve such that the
projection π : Γ → C monotonically parameterizes C and h : Γ → R is the
height function, let c0 = infΓ h and c1 = supΓ h. If Σ is a compact minimal
surface with ∂Σ = Γ, it follows:

1. If trace(A) ≥ 0, then Σ ⊆ π−1(D) ∩ {z ≥ c0};

2. If trace(A) ≤ 0, then Σ ⊆ π−1(D) ∩ {z ≤ c1}.

On the particular case of graphs, Lemma 2.4.2 implies that a minimal
graph over some smooth domain Ω ⊆ R2 oA {0}, compact and convex, sat-
isfy the maximum principle if trace(A) ≤ 0 and satisfy the minimum principle
if trace(A) ≥ 0, satisfying both only on the unimodular case. However, when
trace(A) > 0 no uniform upper bound is obtained, neither a lower bound
when trace(A) < 0. This motivates the search for height estimates for mini-
mal graphs, obtained on the next result. Perhaps, the proof of Theorem 2.4.3
is as important as the result itself, as it gives some light on the behaviour of
the operator Q, given by (2.22), on the many possible settings for the matrix
A. Such properties will be used on the proof of Theorem 2.4.6, and also on
Section 2.5 to obtain the existence of minimal Killing graphs that converge
to the Scherk-like fundamental piece of Theorem 2.5.1.

Theorem 2.4.3. Let A ∈ M2(R) be a matrix as in (2.4) and let R2 oA R

be a semidirect product endowed with its canonical left invariant metric. Let
Ω ⊆ R2 oA {0} be a bounded, convex domain and let α ∈ R be any given
constant. Then, there exists a constant C = C(diam(Ω), α) such that for
every u satisfying {

Q(u) ≥ 0 in Ω
u ≤ α on ∂Ω,

it holds that

sup
Ω
u ≤ α + C(α). (2.25)

The proof of Theorem 2.4.3 uses techniques from quasilinear elliptic par-
tial differential equations, mainly the comparison principle. However, the
operator Q given on by (2.22) does not satisfy the hypothesis of the com-
parison principle (for instance Theorem 10.1 of [32] and its generalizations
therein), so we define a quasilinear operator R related to Q, for which it
holds the comparison principle. Then, we find an ad hoc positive function
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v : Ω → R, whose construction will depend only on Ω and α such that
R(v + α) ≤ R(u), and our constant C will be simply given by C = supΩ v.

Proof of Theorem 2.4.3. First, we notice that when trace(A) ≤ 0, the result
is trivial with C = 0 and without the need for an α, by Lemma 2.4.2. Thus
we will suppose that trace(A) > 0 and focus on the non unimodular case.
Without loss of generality, after a homothety of the metric we may assume
that trace(A) = 2 and that A is given by

A =

(
1 + a b
c 1− a

)
, (2.26)

for some a, b, c ∈ R. Now, we will divide the proof in two cases, starting
when A is not a diagonal matrix:

Case 1. First, we suppose that A is not a diagonal matrix. We begin by
proving the following key claim:

Claim 2.1. Let the functions Qij be the ones defined on (2.9) with respect
to the matrix A of (2.26), where either b 6= 0 or c 6= 0. Then, there is some
λ > 0 such that at least one of the following holds, for every z ∈ R:

i. Q22(z)e2z > λ;

ii. Q11(z)e2z > λ.

Moreover, if a2 + bc ≤ 0, both i. and ii. hold, and if a2 + bc > 0, then
b 6= 0 is equivalent to i. and c 6= 0 is equivalent to ii.

Proof of Claim 2.1. We prove Claim 2.1 in each of three (family of) possi-
bilities to the exponential of A. First, we write A = I + A0, where I is the
identity matrix and A0 is the traceless part of A given by

A0 =

(
a b
c −a

)
.

As I and A0 commute, we obtain that eAz = eIz+A0z = eIzeA0z, thus

eAz = ez
(
a0

11(z) a0
12(z)

a0
21(z) a0

22(z)

)
,

where we denote by a0
ij(z) the coefficients of the exponential eA0z. In partic-

ular, we obtain that aij(z) = eza0
ij(z), and it follows that

Q11(z)e2z = e−4z
[
a21(z)2 + a22(z)2

]
e2z = a0

21(z)2 + a0
22(z)2,
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and analogously

Q22(z)e2z = a0
11(z)2 + a0

12(z)2.

Now, we just observe that the characteristic equation of A0 is given by
0 = det(A0 − tI) = t2 − (a2 + bc), so if we denote by d =

√
|a2 + bc|, the

exponential of A0 is given by5

eA0z =

(
cos(dz) + a

d
sin(dz) b

d
sin(dz)

c
d

sin(dz) cos(dz)− a
d

sin(dz)

)
, when a2 + bc < 0,

(2.27)

eA0z =

(
1 + az bz
cz 1− az

)
, when a2 + bc = 0, (2.28)

eA0z =

(
cosh(dz) + a

d
sinh(dz) b

d
sinh(dz)

c
d

sinh(dz) cosh(dz)− a
d

sinh(dz)

)
, when a2+bc > 0.

(2.29)
Now we let f(z) = a0

11(z)2+a0
12(z)2 and g(z) = a0

21(z)2+a0
22(z)2 and prove

that there is some λ > 0 such that either f(z) > λ or g(z) > λ. First, we
notice that both f(z) and g(z) are always positive, as the existence of some
z0 ∈ R such that f(z0) = 0 or g(z0) = 0 would imply that det(eA0z0) = 0, an
absurdity. Then, we just need to check the behaviour of f and g at ±∞.

First, if a2 + bc < 0, the existence of λ as claimed follows directly from
the fact that both f and g are periodic and positive, by (2.27). If a2 +bc = 0,
then we have that f and g are given by

f(z) = (1 + az)2 + (bz)2 = (a2 + b2)z2 + 2az + 1

g(z) = (1− az)2 + (cz)2 = (a2 + c2)z2 − 2az + 1,

both strictly positive at infinity for any choice of a, b, c, so we also have the
existence of λ on this case. Finally, if a2 + bc > 0, f and g would be given by

f(z) =
(

cosh(dz) +
a

d
sinh(dz)

)2

+

(
b

d
sinh(dz)

)2

g(z) =
(

cosh(dz)− a

d
sinh(dz)

)2

+
( c
d

sinh(dz)
)2

.

5We remark that the constant a2+bc is linked with the Milnor D−invariant of R2oAR,
which is (following [44]) defined by D = det(A) = 1 − (a2 + bc). So each case a2 + bc >
0, a2 + bc = 0 and a2 + bc < 0 is in correspondence with D < 1, D = 1 and D > 1,
respectively.
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If i. was not true, either limz→−∞ f(z) = 0 or limz→+∞ f(z) = 0, so it
would follow that b = 0. Analogously if limz→−∞ g(z) = 0 or limz→+∞ g(z) =
0, we would have c = 0. As A is not a diagonal matrix, at least one between
i. and ii. is true, finishing the proof of the claim. ♦

Now we proceed with the proof of the theorem by proving the existence
of Λ > 0 such that G1(z) ≤ ΛQ22(z) and G2(z) ≤ ΛQ11(z). Just observe
that, by definition,

G1(z)

Q22(z)
=

e−4z [(3 + a)a11(z)2 + (3− a)a12(z)2 + (b+ c)a11(z)a12(z)]

e−4z [a11(z)2 + a12(z)2]

= 3 + a
a11(z)2 − a12(z)2

a11(z)2 + a12(z)2
+ (b+ c)

a11(z)a12(z)

a11(z)2 + a12(z)2

≤ 3 + |a|+ |b+ c|
2

= Λ, (2.30)

and, mutatis mutandis, the same estimate holds for the quotientG2(z)/Q11(z).

Using the existence of λ and Λ, we can finish the proof of the theorem
on this first case. First, we assume that i. holds and let u : Ω → R be
any function that satisfy Q(u) ≥ 0. Then we define the quasilinear elliptic
operator R as

R(w)=wxx

(
Q22(u) + w2

y

Q22(u)

)
+ wyy

(
Q11(u) + w2

x

Q22(u)

)
+ 2wxy

(
Q12(u)− wxwy

Q22(u)

)
+
G1(u)

Q22(u)
w2
x +

G2(u)

Q22(u)
w2
y +

G3(u)

Q22(u)
wxwy + 2

e−2u

Q22(u)
e−2w, (2.31)

and notice that R(u) = Q(u)/Q22(u) ≥ 0.
Now, as Ω is a bounded domain, after a horizontal translation (which is

an isometry of the ambient space) we may suppose without loss of generality
that it is contained in a strip

Ω ⊆ {(x, y, 0) ∈ R2 oA R; 1 < x < M},
for some M > 1. We let v(x, y) = ln(lx)/L, where l, L > 0 are constants yet
to be defined. Then, if α ∈ R is any a priori chosen number, we have that

R(v + α) = vxx +
G1(u)

Q22(u)
v2
x + 2

e−2u

Q22(u)
e−2(v+α)

< vxx + Λv2
x +

2

λ
e−2ve−2α.
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Then, using that vx = 1
Lx

and vxx = −1
Lx2 , we obtain

R(v + α) < − 1

Lx2
+ Λ

1

L2x2
+

2

λe2α
(lx)−2/L (2.32)

=
1

Lx2

[
− 1 +

Λ

L
+

2L

λe2αl2/L
x(2L−2)/L

]
.

Now, take L = 1 + Λ. As 1 < x < M , follows that

R(v + α) <
1

(1 + Λ)x2

[
− 1

1 + Λ
+ 2

1 + Λ

λe2αl
2

1+Λ

M
2Λ

1+Λ

]
, (2.33)

and then we just choose l big enough (in particular we may assume l ≥ 1, so
v > 0) such that

− 1

1 + Λ
+ 2

1 + Λ

λe2αl
2

1+Λ

M
2Λ

1+Λ < 0, (2.34)

so R(v + α) < 0. We remark that the choice of l and L as above depends
only on λ,Λ, α and M , but not on u. Now, assume u ≤ α on ∂Ω and let

v0 = v + α.

It follows from the definition of R (and from the fact that v0 − v = α is
constant) that

R(v0) = R(v + α) < 0 ≤ R(u),

then, as R satisfies the hypothesis of the comparison principle (Theorem 10.1
of [32]) and u ≤ v0 on ∂Ω, follows that supΩ u ≤ supΩ v0. Finally, we set
C = supΩ v, and the theorem follows when A is not diagonal and i. holds.

If i. was not true, then we assume ii. and define

R(w)=wxx

(
Q22(u) + w2

y

Q11(u)

)
+ wyy

(
Q11(u) + w2

x

Q11(u)

)
+ 2wxy

(
Q12(u)− wxwy

Q11(u)

)
+
G1(u)

Q11(u)
w2
x +

G2(u)

Q11(u)
w2
y +

G3(u)

Q11(u)
wxwy + 2

e−2u

Q11(u)
e−2w. (2.35)

From here, the proof follows analogously as above, by letting v(x, y) =
ln(ly)/L.

Case 2. Now, let us assume that A is a diagonal matrix (then neither i. nor
ii. hold), and we set
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A =

(
1 + a 0

0 1− a

)
,

then a11(z) = e(1+a)z, a22(z) = e(1−a)z and a12(z) = a21(z) = 0, and the
operator Q is given by

Q(u) = uxx
(
e−2(1−a)u + u2

y

)
+ uyy

(
e−2(1+a)u + u2

x

)
− 2uxy (uxuy)

+(3 + a)e−2(1−a)uu2
x + (3− a)e−2(1+a)uu2

y + 2e−4u.

If a ≥ 0 we define R as the operator

R(w)=wxx
(
1 + e2(1−a)uw2

y

)
+ wyy

(
e−4au + e2(1−a)zu2

x

)
− 2wxy

(
e2(1−a)zwxwy

)
+(3 + a)w2

x + (3− a)e−4auw2
y + 2e−2(1+a)w, (2.36)

and, if a < 0, R is defined as

R(w)=wxx
(
e4au + e2(1+a)uw2

y

)
+ wyy

(
1 + e2(1+a)uw2

x

)
− 2wxy

(
e2(1+a)uwxwy

)
+(3 + a)e4auw2

x + (3− a)w2
y + 2e−2(1−a)w. (2.37)

Now, we just set v to be again v(x, y) = ln(lx)/L when a ≥ 0 and
v(x, y) = ln(ly)/L when a < 0 and, as the term on both operators which
contains no derivative terms in decreasing on u, the proof follows as in the
previous case, using Λ = 3 + |a| and λ = 1.

On the next theorem we prove that the dependence on α cannot be re-
moved, on the sense that the existence of a constant which does not depend
on α is not possible. Precisely, we prove:

Theorem 2.4.4. Let A be a matrix as in (2.26) and let R2 oA R be the
non-unimodular semidirect product endowed with its canonical left invariant
metric. Let Ω ⊆ R2 oA {0} be a bounded, convex domain. Then, for every
constant C > 0 there exists some function u : Ω → R satisfying Q(u) = 0
and also

sup
Ω
u > sup

∂Ω
u+ C. (2.38)
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The proof of Theorem 2.4.4 above is by contradiction and consists in
using the vertical translation that rises from the group structure to translate
a family of solutions tending to −∞, all to height 0. We prove that if
Theorem 2.4.4 was false, such family would be uniformly bounded, and this
would generate a contradiction with the following theorem, due to Meeks,
Mira, Pérez and Ros [43]:

Theorem 2.4.5 (Theorem 15.4, [43]). Let X be a non-unimodular metric
Lie group which is isomorphic and isometric to a semidirect product R2oAR,
A ∈M2(R). Suppose that Γ(n) ⊆ R2oA{0} is a sequence of C2 simple closed
convex curves with e = (0, 0, 0) ∈ Γ(n) such that the geodesic curvatures
of Γ(n) converge uniformly to 0 and the curves Γ(n) converge on compact
subsets to a line L with e ∈ L as n → ∞. Then, for any sequence M(n)
of compact branched minimal disks with ∂M(n) = Γ(n), the surfaces M(n)
converge C2 on compact subsets as n→∞ to the vertical half plane π−1(L)∩
[R2 oA [0, ∞)].

Proof of Theorem 2.4.4. We begin by proving the following claim:

Claim 2.2. Let S1 = {(x, y) ∈ R2; x2 + y2 = 1} be the unit circle centred
on the origin of R2. Let A ∈ M2(R) be a matrix with trace(A) = 2, as in
(2.26), and let eAz be its exponential map. Then there is a point p ∈ S1 and
an increasing sequence zn ∈ (0, +∞) such that Γn = eAzn

(
S1 − p

)
satisfies

the hypothesis of Theorem 2.4.5 at the origin, i.e., as n→ +∞ the geodesic
curvature of Γn at 0 converges to zero and Γn converges to a line L on compact
sets, with 0 ∈ L.

Proof of Claim 2.2. We again denote by A0 the traceless part of A and
observe that eAz = ezeA0z. Then we have that eAzS1 = ez

(
eA0zS1

)
is a

homothety by ez of the curve eA0zS1. Now we let d =
√
|a2 + bc| and divide

the proof on the three aforementioned cases given by equations (2.27), (2.28)
and (2.29).

First, if a2 + bc < 0, we let p ∈ S1 be any point and define zn = 2nπ
d

.
Then eA0zn = Id, so eAznS1 is a circle of radius e2zn centred at the origin, and
Γn = eAzn(S1−p) is a circle through the origin with radius e2zn . As zn →∞,
Γn will converge to a line L through 0 and the claim is proved on this case.

Secondly, if a2 + bc = 0, then eA0z is given by (2.28) and eA0zS1 is an
ellipse and the homotheties of an ellipse by en admits a point where its
geodesic curvature converges to zero and, after a translation, it converges to
a line on compact sets, proving the claim on the second case.

Finally, if a2 + bc > 0, eA0z is given by (2.29). If bc 6= 0, then d 6= |a|, and
if z is big enough we have that cosh(dz) ' edz/2 and sinh(dz) ' edz/2, so
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eA0z ' edz

2d

(
d+ a b
c d− a

)
,

and eAzS1 is asymptotic to a homothety of e(d+2)z of an ellipse, which has the
desired properties. The last case to be treated is when d2 = a2 +bc = a2 > 0,
then

eA0z =

(
edz b

d
sinh(dz)

c
d

sinh(dz) e−dz

)
' edz

d

(
d b
c de−2dz

)
,

and, for z large enough it follows that eA0zS1 is asymptotic to a line segment,
with multiplicity 2. Now, it depends on the two possible cases 0 < d ≤ 1
or d > 1 to understand what is the convergence of eAzS1: if d ≤ 1, then the
homothety of ez on eA0z will open the segment and make it asymptotic to
an ellipse again, which again admits a point p as claimed. If d > 1, then the
action of ez still makes eAzS1 converge to a line. ♦

Now we continue the proof of Theorem 2.4.4, arguing by contradiction.
Suppose that for some smooth bounded domain Ω ⊆ R2 oA {0} there is
C > 0 such that for every solution of Q(u) = 0, it holds that

sup
Ω
u ≤ sup

∂Ω
u+ C. (2.39)

In particular, the same estimate holds for any bounded, smooth domain
contained in Ω. Now, let r > 0 be such that an euclidean ball Br with radius
r is contained on Ω. Let S1(r) = ∂Br be the circle that bounds Br and let
p ∈ S1(r) and (zn)n∈N be the ones given on by Claim 2. We consider, for
each n ∈ N, the problem {

Q(u) = 0 in Br

u = −zn on ∂Br.
(2.40)

Theorem 2.4.1 ([43]) implies that (2.40) has a solution un : Br → R, and,
from equation (2.39), follows that, for every n ∈ N, the function un satisfies

sup
Br

un ≤ −zn + C.

Now, we will translate the functions un vertically using the left translation
of the group L(0,0,zn). If Σn = graph(un), we notice that
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L(0,0,zn)Σn =

{
L(0,0,zn) (x, y, un(x, y)) ; (x, y) ∈ Br

}
=

{(
eAzn

(
x
y

)
, un(x, y) + zn

)
, (x, y) ∈ Br

}
=

{(
x̃, ỹ, un

(
e−Azn

(
x̃
ỹ

))
+ zn

)
, (x̃, ỹ) ∈ eAznBr

}
.

If we let vn : eAznBr → R be the function given by

vn(x, y) = un

(
e−Azn

(
x
y

))
+ zn,

it follows that the graph of vn is a left translate of the graph of un, in
particular it is a minimal graph Σn = L(0,0,zn)Σn. But we notice that these
graphs Σn satisfy the hypothesis of Theorem 2.4.5, thus they should converge,
in compact sets, to a vertical half plane. However

sup
eAznBr

vn = sup
Br

un + zn ≤ C,

so the sequence vn is uniformly bounded, generating a contradiction.

We notice that, on last proof we showed more than the existence of a
function u as on (2.38) for a fixed constant C. We actually proved that
any sequence of functions with values along the boundary converging to −∞
should have unlimited oscillation. We state this, together with a consequence
of the proof of Theorem 2.4.3 on the following result.

Theorem 2.4.6. Let A ∈M2(R) and let R2 oA R be the semidirect product
endowed with its left invariant canonical metric. Let Ω ⊆ R2 oA {0} be some
open, bounded, smooth domain, k ∈ Z be given and let uk denote a solution
to the problem {

Q(u) = 0 in Ω
u = k on ∂Ω.

(Pk)

Then:

• if trace(A) = 0, uk ≡ k is the constant function;

• if trace(A) > 0, uk > k in Ω, lim
k→−∞

oscΩ(uk) = +∞ and lim
k→+∞

oscΩ(uk) =

0;
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• if trace(A) < 0, uk < k in Ω, lim
k→−∞

oscΩ(uk) = 0 and lim
k→+∞

oscΩ(uk) =

+∞,

where oscΩ(u) = supΩ(u)− infΩ(u) denotes the oscillation of a function u in
Ω.

Proof. If trace(A) = 0, it is clear that uk ≡ k is the unique solution to (Pk),
by Lemma 2.4.2. Also, as the change A 7→ −A corresponds to a simple
change of orientation z ∈ R2 oA R 7→ −z ∈ R2 o−A R, we can simply prove
the case of trace(A) > 0, and, as previous, it is without loss of generality
that we assume that trace(A) = 2, so A is written as on (2.26).

From Lemma 2.4.2, it follows that uk ≥ k on Ω, and, if at an interior
point x ∈ Ω the function uk attains its minimum uk(x) = k, then the mean
curvature comparison principle, applied to Σk = graph(uk) and to the plane
{z = k} will imply that the mean curvature of Σk is at least as big as the one
of the plane, which is 1 > 0, a contradiction that proves that, on the interior
of Ω, it holds uk > k.

The second part of the claim follows as on the proof of Theorem 2.4.4:
if the oscillation of uk was not going to +∞ when k → −∞ then we could
translate all the minimal surfaces Σk = graph(uk) to height zero and obtain
a contradiction with Theorem 2.4.5.

In order to obtain the last part of the Theorem, that the oscillation
of uk goes to zero when k approaches +∞, we recall the proof of The-
orem 2.4.3: we obtained a constant C depending on many parameters,
C = C(l, L, λ,Λ,M, α). However, the constants λ and Λ depend only on
the ambient space, as they come from estimates of the coefficients of the
operator Q. The constant M depends uniquely on the diameter of Ω, so it
was fixed from the beginning, together with Ω. The free parameters we could
work with were l and L, depending on the previous ones and on the a priori
constant α. Using an appropriate choice of l and L, we obtained that the
constant claimed on the Theorem was

C =
ln(lM)

L
.

The key steps to chose l and L were between equations (2.32), (2.33) and
(2.34), but the way we proceeded was thinking on the worst case, where the
number α was a negatively large number, so we began by choosing L and
then got to the definition of a l big enough, in order to compensate e2α, close
to zero. Now, we are taking αk = k to be positive and very large, so we
follow a different approach. We begin letting L = Λ + j, where j ∈ N is yet
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to be chosen, and take immediately l = 1, to obtain, similarly to (2.33), the
inequality

R(v + k) <
1

(Λ + j)x2

[
− j

Λ + j
+ 2

Λ + j

λe2k
M(2− 2

Λ+j )
]
. (2.41)

Then, we proceed as before, and try to find some j ∈ N such that the
right hand side of (2.41) becomes negative. Such j exists if and only if

(Λ + j)2

jM
2

Λ+j

<
λ

2M2
e2k. (2.42)

If k is small, maybe there is no j ∈ N such that (2.42) holds, but for
some k0 ∈ N big enough it is possible to find some j ∈ N satisfying (2.42)
(therefore also (2.41)). As the right hand side grows with k, for every k ≥ k0

there will exist such j, and we denote j(k) the largest j ∈ N such that (2.42)
holds (as the left hand side is unbounded with j this is well defined). By
taking L = Λ + j(k), we use (2.41) to obtain the existence of a constant
C(k) = C(Ω, k) given by

C(k) =
ln(M)

Λ + j(k)

such that supΩ(u) ≤ max{sup∂Ω u, k} + C(k), for every u : Ω → R with
Q(u) ≥ 0, the same result as on Theorem 2.4.3 but for a different constant
C, and only for k ≥ k0. It follows, in particular, that the functions uk satisfy,
for k large enough, that

sup
Ω
uk ≤ k + C(k),

so, as infΩ uk = k, we obtain that oscΩ(uk) ≤ C(k).
Finally, as the right hand side of (2.42) is unbounded with respect to k and

the left hand side is also unbounded with j, follows that limk→∞ j(k) = ∞,
so C(k)→ 0 when k →∞, and so it does the oscillation of uk.

We can apply the same argument as above for functions which are not
constant along the boundary, to estimate the maximum height it can attain
with respect to its maximum along the boundary:

Corollary 2.4.7. Let R2 oAR be a non unimodular semidirect product with
trace(A) > 0. Let, for L > 0, uL : Ω→ R be a function satisfying{

Q(u) ≥ 0 on Ω,
sup∂Ω u = L.
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Then

lim
L→+∞

(
sup

Ω
uL − L

)
= 0. (2.43)

2.5 Scherk-like fundamental pieces

On this section, we use the tools developed on this chapter together with
some Killing graphs techniques to obtain an existence result of what we call
Scherk-like fundamental pieces, which are minimal π-graphs on R2 oA R

assuming the value 0 along a piecewise smooth curve γ ⊂ R2 oA {0} and
having γ ∪ ({p1} × [0, ∞)) ∪ ({p2} × [0, ∞)) as boundary, where p1 and p2

are the endpoints of γ.

On the ambient space of an unimodular group R2 oA R A. Menezes [50]
proved the existence of complete (without boundary) minimal surfaces, sim-
ilar to the singly and to the doubly periodic Scherk minimal surfaces of R3.
We would like to take a moment to give the main steps of the proof of Menezes
to the existence of a doubly periodic example:

Sketch of the proof of Theorem 2, [50]. Let ∆ ⊆ R2oA{0} be a triangle with
vertexes

o = (0, 0, 0), p1 = (a, 0, 0), p2 = (0, a, 0),

for some a > 0. Let Pc be the polygon given by the union of segments

Pc = op1 ∪ p1p1(c) ∪ p1(c)p2(c) ∪ p2(c)p2 ∪ p2o,

where p1(c) = (a, 0, c) and p2(c) = (0, a, c). Then, use Theorem 15.1 of [43]
(here stated on Section 2.4 as Theorem 2.4.1) to obtain the existence of a
minimal π−graph Σc with ∂Σc = Pc.

Then, one key property was observed: Σc is a Killing graph over the
vertical domain Ωc = {(t, a− t, s); 0 ≤ t ≤ a, 0 ≤ s ≤ c} with respect to the
horizontal Killing field ∂x +∂y, thus it is unique. This implies it is stable and
also that the variation c 7→ Σc is continuous. Then, making c→∞, and using
curvature estimates due to Rosenberg, Souam and Toubiana [56] for stable
surfaces on homogeneous manifolds, it is possible to show the convergence of
Σc to some surface Σ∞, nowhere vertical and with boundary

∂Σ∞ = P∞ = op1 ∪
(
{p1} × [0, ∞)

)
∪ op2 ∪

(
{p2} × [0, ∞)

)
.

Finally, use the ambient isometries to rotate Σ∞ along the two segments
op1 and op2 to obtain a complete minimal π−graph on R2 oA R, which can
be extended periodically by horizontal translations.
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On this subject, our contribution is an extension of the above result to any
semidirect product R2 oA R. Although on the general case it is not possible
to find examples with no boundary, on the above special case treated by A.
Menezes we reobtain the same result with a different technique when taking
limits. Precisely, we prove:

Theorem 2.5.1. Let R2 oA R be a semidirect product, where A ∈M2(R) is
any matrix with trace(A) ≥ 0. Then, there is L0 = L0(trace(A), det(A)) > 0
(and L0 = ∞ when trace(A) = 0) such that if p1, p2 ∈ R2 oA {0} satisfy
d(p1, p2) ≤ L0, then for any piecewise smooth curve γ ⊆ R2 oA {0} with
endpoints p1, p2 which is a convex graph over the segment α = p1p2 and
meets α on angles less than π/2, there exists a minimal surface Σ which is a
π−graph and with boundary

∂Σ = γ ∪ ({p1} × [0, +∞)) ∪ ({p2} × [0, +∞)).

Moreover, Σ is nowhere vertical, it is the unique minimal surface in R2oA

R with such boundary and it is a Killing graph over the vertical domain
Ω∞ = α× [0, +∞).

Remark 2.1. Our construction works in particular for the product space
H2×R, which is isometric and isomorphic to the semidirect product R2oAR,
when we choose

A =

(
1 0
0 0

)
.

On this space, Scherk-like graphs have been already studied, and even more
general results were obtained (for instance, on the work of B. Nelli and H.
Rosenberg [51] and on the work of L. Hauswirth, H. Rosenberg and J. Spruck
[33]). However, the isometry between R2 oAR and H2×R maps R2 oA {0}
not to H2 × {0}, as it could look on the first sight, but to a horocylinder
(that is, the product of a horocycle of H2 with R).

The proof of Theorem 2.5.1 is given on Section 2.5.2. If trace(A) >
0, when considering polygons as Pc above, there is a minimal π−graph Σc

with boundary Pc. However, as the maximum principle does not hold, there
is no reason for it to be a Killing graph over Ωc and we do not have the
tools to ensure the continuity of the family Σc, which makes it impossible to
use geometric barriers. It becomes clear that, when trace(A) 6= 0, another
sequence of surfaces Σc should be constructed, or other tools (such as stability
of minimal π−graphs) developed.

Our approach will be as follows: instead of considering minimal π−graphs
over a domain on R2 oA {0}, we will look to the problem horizontally, and
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Figure 2.2: The horizontal domain ∆ and the exhaustion of Ω∞ by sub-
domains Ωc whose Killing cylinder have mean curvature vector pointing in-
wards.

consider an exhaustion of the half-strip Ω∞ = α × [0, +∞) by subdomains
Ωc in which it is possible to find a family of minimal Killing graphs with pre-
scribed boundary. Then, we use techniques from Killing graphs and elliptic
partial differential equations to ensure the convergence of such family to an-
other minimal Killing graph Σ∞. Then, we go back to the problem vertically
(as the intermediate Killing graphs are also π−graphs, by a result of Meeks,
Mira, Pérez and Ros), and then we apply the geometric barriers developed
by A. Menezes to see that the surface Σ∞ is, as claimed, a π−graph, nowhere
vertical.

2.5.1 A good exhaustion of Ω∞

The next proposition will be of fundamental importance on the construction
described on last section, as it will give the exhaustion of Ω∞ by domains
Ωc where it is possible to solve the existence of minimal Killing graphs with
prescribed boundary (see Figure 2.2).

Proposition 2.5.2. Let R2oAR be a semidirect product where trace(A) ≥ 0.
Let p1, p2 ∈ R2 oA {0} and α = p1p2 be the segment joining p1 and p2. We
define the vertical domain

Ω∞ = α× [0, +∞). (2.44)

Then, there exists some L0 = L0(A) > 0 such that if L = length(α) < L0,
Ω∞ admits a continuous exhaustion {Ωc}c>0 by domains Ωc with boundary
given by α, a graph over α, called αc, and the two vertical segments joining
the endpoints of α and αc and this exhaustion is such that the Killing cylinder
over ∂Ωc with respect to the horizontal Killing field Yθ = sin(θ)∂x + cos(θ)∂y
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has mean curvature vector pointing inwards, where θ is such that Yθ is per-
pendicular to Ω∞ at z = 0.

Proof. First, we notice that, after a rotation on A as on (2.11) and a horizon-
tal translation on R2oAR, which is an ambient isometry, we assume without
loss of generality that p1 = (0, 0, 0) and p2 = (L, 0, 0) for some L > 0, then
α becomes the segment α = {(x, 0, 0); 0 ≤ x ≤ L} and Ω∞ is the half-strip

Ω∞ = {(x, 0, z) ∈ R2 oA R; 0 ≤ x ≤ L, z ≥ 0}, (2.45)

transversal to the Killing field Y = ∂y. Such assumptions will be kept until
the end of the chapter.

If trace(A) = 0, then the result is trivial (and without the need for an
upper bound L0) by taking αc to be the translate of α to height c, αc =
{(x, 0, c); 0 ≤ x ≤ L}, as horizontal planes are minimal. Then, until the
end of the proof we will treat the non-unimodular case and again we assume
without loss of generality that trace(A) = 2, so A is a matrix as on (2.26).
We will exhibit the curves αc explicitly, then we prove they have the desired
properties.

First, we treat the case where A is not diagonal and either a2 + bc ≤ 0 or
b 6= 0: let λ, Λ the constants related with the matrix A via i. of Claim 2.1
and (2.30). We let

L0 =

√
λ

2Λ

π

2
(2.46)

and let f : [0, L]→ R to be given by

f(x) =
1

Λ
ln

 cos
(√

2Λ
λ
x
)

cos
(√

2Λ
λ
L
)
 . (2.47)

First, we notice that f is well defined, as 0 ≤ x ≤ L < L0 implies

cos

(√
2Λ

λ
x

)
≥ cos

(√
2Λ

λ
L

)
> 0,

so the quotient on (2.47) is larger than (or equal to) 1, in particular f ≥ 0,
with f(x) = 0 ⇐⇒ x = L. We let, for c > 0, fc = f + c and let
αc = graph(fc) ⊆ Ω∞. When we set

Ωc =
{

(x, 0, z) ∈ R2 oA R; 0 ≤ x ≤ L, 0 ≤ z ≤ fc(x)
}
, (2.48)
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it follows that {Ωc}c>0 is an exhaustion of Ω∞. Now we show that the Killing
cylinder of the boundary of Ωc with respect to ∂y has mean curvature vector
pointing inwards.

The ∂y-Killing cylinder of ∂Ωc has four smooth components (see Figure
2.2, right): one is a subdomain of a horizontal plane, so it has mean curvature
1 pointing upwards, two are contained on vertical planes, thus are minimal.
The last component is the one corresponding to αc, and it is a π−graph of
the function uc(x, y) = fc(x), and Theorem 2.3.2 will imply that its mean
curvature is given by

H =
e4fc

2W 3

[
Q22(fc)f

′′
c +G1(fc) (f ′c)

2
+ 2e−4fc

]
, (2.49)

when oriented upwards.
Now, we follow the steps on the proof of Theorem 2.4.3: as b 6= 0, Claim

2.1 implies that Q22(z) > λe−2z, and G1/Q22 ≤ Λ. These relations imply
that (as the derivatives of fc coincide with the ones of f)

H ≤ e4fc

2W 3
Q22(fc)

[
f ′′ + Λ (f ′)

2
+ 2

e−2fc

λ

]
, (2.50)

whenever A is not diagonal and satisfies either b 6= 0 or a2 + bc ≤ 0. In
particular, since fc ≥ 0 we have

H ≤ e4fc

2W 3
Q22(fc)

[
f ′′ + Λ (f ′)

2
+

2

λ

]
. (2.51)

Now, we observe that f was chosen in such a way it satisfies the ODE

f ′′ + Λ (f ′)
2

+
2

λ
= 0, (2.52)

so, by applying (2.52) on (2.51), we obtain that H ≤ 0, with respect to
the upward orientation, so the mean curvature vector of the Killing cylinder
around αc is mean convex, as promised.

This finishes the proof on the case where A is not diagonal and either
a2 + bc ≤ 0 or b 6= 0. Now, we treat the simpler case of A being given by

A =

(
1 + a 0
c 1− a

)
. (2.53)

On this case, we have that Q22(z) = e2(a−1)z and G1(z) = (3 + a)e2(a−1)z

(as, from (2.29) we obtain a11(z) = e(1+a)z and a12(z) = 0). Thus, the mean
curvature of a π−graph to a function u(x, y) = f(x) is given by
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Figure 2.3: The surface Σc (on the right) is both a π−graph over ∆ and a
∂y−Killing graph over Ωc, with ∂Σ = Γc (the curve the left).

H =
e2(a+1)f

2W 3

[
f ′′ + (3 + a) (f ′)

2
+ 2e−2(1+a)f

]
,

and we can proceed the proof as done on the previous case.

2.5.2 Existence of Scherk-like graphs: Proof of Theo-
rem 2.5.1

On this section we prove Theorem 2.5.1. The proof is an standard argument
of convergence, with the difference that we are look at the graphs sometimes
vertically (as π−graphs), to have geometrically defined barriers, and some-
times horizontally (as Killing graphs), so we can use techniques of Killing
graphs and elliptic partial differential equations.

Proof of Theorem 2.5.1. Let A ∈ M2(R) be any matrix with trace(A) ≥ 0
and let L0 > 0 be the one given by Proposition 2.5.2. Let p1, p2 ∈ R2 oA {0}
be such that d(p1, p2) = L < L0 and without loss of generality assume
p1 = (0, 0, 0) and p2 = (L, 0, 0).

Let α = {(x, 0, 0); 0 ≤ x ≤ L} be the segment joining p1 and p2 and
let g : [0, L] → R be a convex, piecewise smooth function, with g(0) =
g(L) = 0, meeting α on angles smaller than π/2 at 0 and L, defining a curve
γ ⊆ R2 oA {0},

γ = {(x, g(x), 0) ∈ R2 oA {0}; 0 ≤ x ≤ L},

a curve smooth by parts with endpoints p1, p2 such that α ∪ γ bounds a
convex domain ∆ ⊆ R2 oA {0} (as on Figure 2.3, left).
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We also let Ω∞ = α × [0, +∞) and, following the notation of Proposi-
tion 2.5.2, let, for each c ≥ 0,

Ωc = {(x, 0, z) ∈ R2 oA R; 0 ≤ x ≤ L, 0 ≤ z ≤ fc(x)},

and αc = {(x, 0, fc(x)); 0 ≤ x ≤ L} to be the graph of fc, in such a way
that its ∂y−Killing cylinder

Cyl∂y(αc) = {(x, y, fc(x)); 0 ≤ x ≤ L, y ∈ R}

has mean curvature vector pointing downwards. We also denote by

p1(c) = (0, 0, fc(0)), p2(c) = (L, 0, fc(L))

the endpoints of αc, and we let, for c ≥ 0, Γc be a simple closed curve on
R2 oA R given by (see Figure 2.3, left)

Γc = γ ∪ p1p1(c) ∪ αc ∪ p2p2(c). (2.54)

Claim 2.3. The curve Γc as above bounds an unique minimal π-graph Σc

over ∆, which is also a ∂y−Killing graph over Ωc.

Proof of Claim 2.3. First, we notice that Γc monotonically parametrizes ∂∆,
then we can use Theorem 2.4.1 to obtain a minimal, least area, π−graph Σc

with boundary ∂Σc = Γc.
Next, we show that Σc is a ∂y−Killing graph, on the sense that there

will exist a function gc : Ωc → R, smooth up to the boundary, such that
R(gc) = 0 (here R will stand for the elliptic operator of minimal ∂y-Killing
graphs) and

Σc = Gr∂y(gc) = {(x, gc(x, z), z); (x, 0, z) ∈ Ωc}. (2.55)

To begin with, as Σc is a π−graph, there exists a function uc : ∆ → R

such that

Σc = graph(u) = {(x, y, uc(x, y)); (x, y, 0) ∈ ∆}. (2.56)

We remark that Σc is contained on the ∂y-Killing cylinder over Ωc, so 0 ≤
uc(x, y) ≤ fc(x). Indeed, that u > 0 on the interior of ∆ follows directly
from the maximum principle. If there was an interior point (x0, y0, 0) ∈ ∆
such that uc(x0, y0) > fc(x0), then we could consider the family Cyl∂y(αt),
for t > c, and obtain a last contact point, interior for both Σc and Cyl∂y(αt),
so the mean curvature of Cyl∂y(αt) would point upwards, in contradiction
with Proposition 2.5.2.
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Let q = (x, 0, z) ∈ Ωc be an interior point and consider O(q) to be
the orbit of q with respect to the flux ϕt of the Killing field ∂y, which is
the horizontal line O(x, 0, z) = {(x, y, z); y ∈ R}. Then we notice that
O(x, 0, z) ∩ Σc is never empty, otherwise Σc would not be simply connected
and then it could not be a π−graph over ∆.

Moreover, the intersection O(x, 0, z)∩Σc must be always a single point: if
it contained two (or more) points qi = ϕti(q) ∈ Σc, with 0 < t1 < t2, then for
t0 = t2 − t1 > 0, ϕt0(Σc) ∩Σc 6= ∅. Now, as ϕt(∂Σc) ∩Σc = ∅ for all t 6= 0 by
construction, we can consider the last contact point between ϕt(Σc)∩Σc, and
it will be interior for both Σc and ϕt(Σc), a contradiction with the maximum
principle.

We denote (x, gc(x, z), z) = Σc ∩ O(x, 0, z). This implies that Σc can be
written as (2.55), but we still do not have the regularity on gc. In order to
prove that gc is smooth, we begin by proving that grad(gc) is bounded.

Let q ∈ Ωc be any interior point and consider a small ball B = BΩc(q, r) ⊆
int(Ωc) such that Cyl∂y(∂B) has mean curvature vector pointing inwards.
Consider the following problem on B:{

R(w) = 0, on int(B)
w|∂B = gc|∂B,

(2.57)

where R is the mean curvature operator for ∂y−Killing graphs. In other
words, we are looking for a minimal ∂y−Killing graph over a small ball on
Ωc that coincides with Σc on its boundary.

If Φ = gc|∂B was of class C2, α, we could simply use the existence result
due to M. Dajczer and J. H. de Lira, Theorem 1 of [16]6 to obtain a solution
to (2.57). However, at this point we can only guarantee that Φ is of class C0,
so we need to use an approximation argument. Let (Φ±n )n∈N ⊆ C2, α(∂B) be
two sequences of C2, α functions, converging to Φ and such that

Φ−n ≤ Φ−n+1 ≤ Φ ≤ Φ+
n+1 ≤ Φ+

n , (2.58)

for every n ∈ N. By Theorem 1 of [16], there are functions w±n ∈ C2, α(B)
with minimal ∂y−Killing graph and such that w±n |∂B = Φ±n . From (2.58) we
obtain that the sequences w±n also are monotone, w−n is non-decreasing and
w+
n is non-increasing, both uniformly bounded. To obtain the convergence

of the sequences w±n to a solution of (2.57), we use some recent gradient
estimates for Killing graphs obtained by J.-B. Casteras and J. Ripoll on [6].

6We note that the hypothesis on the Ricci curvature on [16] is used uniquely to obtain
an a priori estimate for the height of the graph, which is satisfied on our setting by the
maximum principle.
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Theorem 2.5.3 (Theorem 4, [6]). Let M be a Riemannian manifold and
let Y be a Killing field. Let Ω be a Killing domain in M and let o ∈ Ω
and r > 0 such that the open geodesic ball BΩ(o, r) is contained in Ω. Let
u ∈ C3(BΩ(o, r)) be a negative function whose Y−Killing graph has constant
mean curvature H. Then there is a constant L depending only on u(o), r,
|Y | and H such that ‖grad(u)(o)‖ ≤ L.

All functions w±n have uniform bounds on the C0 norm, thus Theorem
2.5.3 above implies that there are uniform gradient estimates on compact
subsets of B. This implies that both sequences will converge on the C2−norm
to a function w ∈ C2(B)∩C0(B), which is a solution of (2.57). Now, just use
the flux of ∂y and the same translation argument as before to obtain that w
coincides with gc on B, in particular the gradient of gc is bounded on interior
points of Ωc, as claimed.

Now we use the relation (x, gc(x, z), z) = (x, y, uc(x, y)) to prove that gc
is actually smooth up to the boundary, with the unique exceptions of p1, p2,
p1(c), p2(c), where ∂Ωc is not smooth, and the finite number of points where g
is not differentiable. Just notice that uc is smooth up to the boundary (except
on the points where ∂∆ is not differentiable) and that the gradient of uc is
never horizontal on ∂∆, by the boundary maximum principle. Moreover, it
follows from last argument that grad(uc) never vanishes on interior points of
∆, so gc is also smooth up to the boundary, with the exceptions above.

Finally, we remark that this argument proves that any minimal π−graph
S with ∂S = Γc is a Killing graph, then we obtain that Σc is unique, which
proves Claim 2.3. ♦

Now, we notice that the uniqueness of Σc, given by Claim 2.3, implies
that the correspondence c 7→ gc is continuous, and, as defined, the functions
gc satisfied, on the boundary of Ωc:

gc(0, z) = gc(L, z) = 0, gc|αc = 0, gc(x, 0) = g(x).

Again, as Σc is a π−graph over ∆, it is contained on the π−cylinder over
∆, and this can be translated to the horizontal setting as the inequality

0 ≤ gc(x, z) ≤ g(x), (2.59)

for every (x, 0, z) ∈ Ωc. Moreover, the usual argument using the translations
given by the flux of ∂y shows that the sequence gc is monotonically increasing
on c, that is gc(x0, z0) ≤ gc′(x0, z0), for every (x0, 0, z0) ∈ Ωc and for every
c′ ≥ c. In particular the sequence will converge (as it is bounded) pointwise
for some function g∞ : Ω∞ → R, such that 0 ≤ g∞ ≤ g. Next claim will
show that the convergence is actually on the C2−norm, so Gr∂y(g∞) = Σ∞
is a minimal surface of R2 oA R.
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Figure 2.4: Ω∞ ⊆ P viewed horizontally: on each compact set K ⊆ Ω∞ there
are uniform gradient estimates.

Claim 2.4. When c → ∞, the functions gc converge on the C2, α−norm to
g∞ : Ω∞ → R.

Proof of Claim 2.4. We use the same argument of Claim 2.3, via gradient and
height estimates for Killing graphs. Let K ⊆ Ω∞ be a compact set contained
on Ω∞ with C2, α boundary, as on Figure 2.4. As it holds gc(x, z) ≤ g(x),
follows that the height of gc is uniformly bounded on K, so we can use
Theorem 2.5.3 to obtain an uniform bound for the norm of the gradient of
every gc on interior points of K.

Now, we remark that (2.59), together with the assumption that the angle
γ makes with α at p1 and p2 is less than π/2, implies that every gc satisfy a
uniform gradient estimate also along the boundary of K, as g(0) = g(L) = 0.
As gc|K ∈ C2, α(K) is smooth up to the boundary, this implies an uniform
(not depending on c) estimate for the gradient of gc on K.

Now, we just take an exhaustion of Ω∞ by compact sets and, by using an
standard argument via the theory of partial elliptic equations, we obtain that
a subsequence of the gc converges to g∞ on the C2−norm. In particular, as the
sequence is monotone and converges pointwise, follows that the convergence
is smooth on the whole Ω∞. ♦

From this claim we obtain that Σ∞ is a minimal surface of R2 oAR, and
that its boundary is

∂Σ∞ = Γ∞ = γ ∪
(
{p1} × [0, ∞)

)
∪
(
{p2} × [0, ∞)

)
,

as, on the convergence of gc we had gc = 0 on the horizontal segments of ∂Ωc

and gc = g on α, with gc smooth up to the boundary.
Now, in order to finish the proof of the theorem, it remains to show that

Σ∞ is nowhere vertical and that it is unique. The uniqueness comes directly
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from the fact that it was built as a Killing graph, and that every other surface
with such boundary is contained on the ∂y-Killing cylinder over Ω∞.

To show that Σ∞ is nowhere vertical, we go back to analyse the problem
using π−graphs. First, if there was an interior point p ∈ Σ∞ such that
TpΣ∞ was vertical, we observe that Σ∞ and TpΣ∞ would be two minimal
surfaces of R2 oA R tangent to each other at p. Then, there are at least
two curves, meeting transversely at p on the intersection TpΣ∞ ∩Σ∞, so Σ∞
cannot be a π−graph on a neighbourhood of p, so it is a π−cylinder over
some line segment7 β contained on ∂∆. Also if the point p ∈ ∂Σ∞ was a
boundary point, then the boundary maximum principle would give the same
conclusion. Next claim is to show that Σ∞ meets π−1(γ) uniquely on γ, so
Σ∞ ⊇

(
β × [0, ∞)

)
is a contradiction.

Claim 2.5. Σ∞ ∩ π−1(γ) = γ.

Proof of Claim 2.5. We use the same barrier technique that A. Menezes, [50]:
Let γi be a smooth component of γ and let p ∈ γi be any point. Consider L
the vertical plane of R2 oA R containing the tangent line to γi at p (this is
well defined even for p ∈ ∂γi, as γi is smooth). As γ is convex, this implies
that ∆ is contained on the same connected component of R2 oA R defined
by L, so also does Σ∞.

Recall the functions uc : ∆→ R defined via (2.56). Let c0 = sup∆ u0 and
let c2 > c1 > c0 be any two numbers. We consider a rectangle R ⊆ L with
boundary ∂R = r1 ∪ r2 ∪ s1 ∪ s2 given by two parallel horizontal segments
r1 and r2 and two vertical segments s1 and s2, such that s1 ⊆ {z = c1}
and s2 ⊆ {z = c2} (see Figure 2.5). Moreover, we assume that R projects
into R2 oA {0} in a compact segment r 3 p with endpoints q1 = π(s1) and
q2 = π(s2), contained on the same half-space determined by {y = 0} (the
vertical plane containing α) and with q2 outside ∆.

Let q3 ∈ π(R) be a point interior to the projection of R but that lies
outside ∆. Then, q̃3 = π−1(q3) ∩ r2 divides r2 into two compact segments
r3 ∪ r4, r3 projecting entirely outside of ∆ and with p ∈ π(r4).

We remark that L is stable, as it is transversal to a (horizontal) Killing
field, and in particular, it follows from the useful criteria due to D. Fischer-
Colbrie and R. Schoen, Theorem 1 of [30] (also proved on Proposition 1.32 of
the book by T. Colding and W. Minicozzi, [11]) that R is strictly stable, thus

7If β ⊆ R2 oA {0} is a smooth curve, the π−cylinder β× [0, ∞) is minimal if and only
if β is a line segment: to see this, just use the foliation of R2oAR by vertical planes which
are parallel to the vertical plane generated by the endpoints of β. It also follows from the
more general formula H(x, y, z) = kg(x, y)e−z trace(A), where kg(x, y) denotes the geodesic
curvature of β on the point (x, y, 0). The proof of this formula is a simple computation.
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Figure 2.5: The construction of the barrier R̃, by deforming the boundary of
R over r3.

small perturbations of ∂R give rise to minimal surfaces with the perturbed
boundary.

We change r2 by making a parallel translation of r3 on the direction of
the half-space that contains Σ∞, whose projection still does not intersect
∆, joined by two small segments and denote such curve r̃3, in such a way
that r3 ∪ r̃3 bounds a small rectangle on the horizontal plane {z = c2}. We
assume this perturbation is small in such way that its projection does not
intersect ∆. Let R̃ be a minimal surface of R2 oA R whose boundary is the
perturbed rectangle r1∪ r̃3∪r4∪s1∪s2. Such surface is nowhere vertical and
its contained on the convex hull of its boundary, in particular it is contained
on {z ≥ c1} and on the same half space that Σ∞ with respect to the plane
L.

Now, it is easy to see that π(R̃) ∩ ∆ 6= ∅, as otherwise R̃ ∩ R would

have an interior contact point. Moreover, R̃ is above u0 in π(R̃) ∩ ∆, by

the construction of R̃. Then, if Σ∞ ∩ π−1(γi) 6= γi, we would have that

Σ∞ ∩ R̃ 6= ∅, thus, for some ` > 0 there would be a first contact point
between Σ` and R̃. As ∂Σ` does not intersect the convex hull of ∂R̃, it does
not intersect R̃. Moreover, neither ∂R̃ can intersect Σ`, as this would imply
such point would be on the plane L, so Σ` would have a vertical tangent
plane. Then this contact point is going to be interior for both, reaching to a
contradiction that proves the claim. ♦

From this claim and from the argument previously done, we obtain that
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Σ∞ is actually more than a Killing graph, it is also a π−graph, nowhere
vertical, which finishes the proof of the theorem.
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CHAPTER 3

Finite topology surfaces on hyperbolic 3-manifolds

This chapter is based on the joint (ongoing) work of the author with W. H.
Meeks III, [46]. Using the existence of short geodesic loops on surfaces with
bounded injectivity radius and non positive sectional curvature, we prove that
a complete embedding of an annulus E ≡ S1 × [0, +∞) in the hyperbolic
space H3 has unbounded injectivity radius function, provided |HE| ≤ 1. As
a consequence, we obtain that any complete surface Σ of finite topology
embedded on a hyperbolic 3-manifold whose injectivity radius of each end
goes to zero must be proper if its mean curvature function is bounded |HΣ| ≤
1.

3.1 Introduction

To understand under which circumstances the embedding of a surface Σ into
a Riemannian 3-manifold N is proper1 is a fundamental question in surface
geometry and has been a source of many interesting and deep results, espe-
cially when the ambient space is the Euclidean space R3. In a celebrated
paper [10], T. Colding and W. Minicozzi proved that complete minimal sur-
faces of finite topology embedded in R3 are proper. Based on the proof of
this result, W. Meeks and H. Rosenberg proved on [47] that complete min-
imal surfaces embedded in R3 with positive injectivity radius are proper.
Recently W. Meeks and G. Tinaglia [49] extended both results by proving

1that is, for every compact set C ⊆ N , the intersection C ∩ Σ is also compact on Σ.
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that complete surfaces embedded in R3 with constant mean curvature are
proper if they have finite topology or positive injectivity radius.

It is natural try to answer the same question for more general ambient
spaces, but it turns out that this result is not always true on such generality.
On [14, 55], examples of minimal (topological) planes embedded but not
properly embedded respectively in H3 (by B. Coskunuzer) and H2 × R (by
M. Rodŕıguez and G. Tinaglia) are presented. Also, on [15] it is shown by
B. Coskunuzer, W. Meeks and G. Tinaglia that for each H ∈ [0, 1) there
is a plane embedded in H3 but not properly embedded with constant mean
curvature H. As the plane is the simplest non compact topological type, it
becomes clear that, at least on the ambient space H3, some other hypothesis
is needed in order to ensure properness.

In this work we find sufficient conditions for an embedding of a finite
topology surface Σ into a hyperbolic 3-manifold N (that is a complete man-
ifold with constant sectional curvature KN = −1) to be proper, under an
assumption on the injectivity radius on each end of Σ. Precisely, we state
our main theorem as follows:

Theorem 3.1.1. Let N be a complete hyperbolic 3-manifold and let Σ ↪→ N
be a complete embedded surface on N , orientable and with finite topology
whose mean curvature function HΣ satisfies |HΣ| ≤ 1. Then:

A If N is simply connected (i.e. N = H3), then each end of Σ has unbounded
injectivity radius function.

B If N has positive injectivity radius IN = δ > 0, Σ has positive injectivity
radius.

C If Σ has bounded injectivity radius function, then it has finite total cur-
vature and i∗ : π1(Σ) → π1(N) is non trivial. In particular, if Σ has
genus zero, it has at least two ends and is π1− injective.

D If the injectivity radius function of Σ converges to zero at infinity, then
the embedding is proper.

We would like to make a few remarks about Theorem 3.1.1 and some
related results. First, we notice that our hypothesis on the mean curvature
of Σ being |HΣ| ≤ 1 (not necessarily constant), on the ambient space of
a hyperbolic manifold implies that the intrinsic sectional curvature of Σ is
non-positive (see Section 3.3), which is of fundamental importance on the
application of our technique. Also, |HΣ| ≤ 1 allows us to use geometric
barriers of H3 such as distant spheres, cylinders and hyperbolic Delaunay
surfaces, all with mean curvature larger than 1.
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Concerning proper immersions of surfaces of finite topology into finite
volume hyperbolic 3-manifolds, we would like to mention the work of P.
Collin, L. Hauswirth and H. Rosenberg [13], where it is proved (Theorem
1.1) that a minimal surface Σ of finite topology, properly immersed in a
hyperbolic manifold of finite volume N (i.e. a hyperbolic cusp manifold) has
finite total curvature ∫

Σ

KΣ = 2πχ(Σ), (3.1)

where χ(Σ) = 2 − 2g − n is the Euler characteristic of Σ (g is the genus of
Σ and n is the number of ends). Moreover, they prove that if Σ is a proper,
minimal immersed surface of finite topology in N , then each end of Σ is
asymptotic to a totally geodesic 2-cusp end in an end C of N . In particular,
it follows that any minimal surface of finite topology, properly immersed on
a hyperbolic cusp manifold has injectivity radius function converging to zero
at infinity. Such remark, together with item D of Theorem 3.1.1, allows us
to obtain

Corollary 3.1.2. Let N be a hyperbolic manifold of finite volume. Then a
complete minimal surface Σ embedded on N with finite topology is proper if
and only if the injectivity radius function of Σ converges to zero at infinity.

Moreover, on [12], P. Collin, L. Hauswirth, L. Mazet and H. Rosenberg
prove the existence both of a compact, min-max minimal surface on N and of
a non compact, properly embedded minimal surface of finite topology2 Σ on
N . Using Theorem 1.1 of [13], it follows that the injectivity radius function
of such Σ is bounded, and we obtain that item A of Theorem 3.1.1 above
does not hold on hyperbolic cusp manifolds.

We also remark that (3.1), together with Gauss formula, implies some
topological restrictions for the existence of proper minimal embeddings of
finite topology surfaces on a hyperbolic manifold of finite volume N . For
instance, if a minimal surface Σ properly immersed on N is homeomorphic
to a sphere (g = 0) with n punctures, then necessarily n ≥ 3,3 as it is easy
to see. In particular, this implies that there are no minimal planes properly
immersed on a hyperbolic cusp manifold. Item C above shows that any

2To obtain the non compact example they extend - with a different proof -Ruberman’s
minimization result ([57], every properly embedded, non compact, incompressible, non
separating surface in N of finite topology is isotopic to a least area embedded minimal
surface).

3On the n = 3 case, P. Collin, L. Hauswirth, L. Mazet and H. Rosenberg prove, on
[12], that a minimal 3-punctured sphere properly immersed on N is totally geodesic.
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(non proper) example of a minimal plane embedded on N necessarily has
unbounded injectivity radius function.

We prove Theorem 3.1.1 in Section 3.3. The proof is via two propositions
that analyse properties of embedded annuli on hyperbolic manifolds with
absolute mean curvature bounded by 1, Propositions 3.3.3 and 3.3.5. We
use Section 3.2 to give basic definitions and fix the notation used on this
chapter, finishing on 3.2.1 with the statement of two theorems used on the
proof of Proposition 3.3.3: Theorem 3.2.1 is a result of D. Chen [7] and gives
an isoperimetric inequality for surfaces of bounded curvature on H3 which lie
on a bounded domain of H3, while Theorem 3.2.2 can be found on [9] (in a
more general context, here we present the statement adapted to our setting)
and is an area growth estimate. The chapter is then finished on Section 3.4,
where some generalizations of the results of this chapter are obtained to the
case of a ambient space with negatively bounded sectional curvature.

3.2 Preliminaries

This section is to give some basic definitions and fix the notation used on the
chapter and to present some results needed for the proof of Theorem 3.1.1.
We begin with some intrinsic properties of surfaces, as the notion of cut locus
and injectivity radius. Henceforth, Σ will always denote a finite topology
surface, on the sense that it is homeomorphic to a compact Riemann surface
Sg of (finite) genus g with a finite quantity of punctures,

Σ ≡ Sg \ {p1, p2, . . . , pn}.

Each one of the points {p1, p2, . . . , pn} is in correspondence with an end
of Σ, which has the topology of an annulus E ≡ S1×[0, +∞). We assume that
Σ inherits the metric induced by the ambient space N , via the embedding,
and that it is complete with respect to it.

For a Riemannian manifold M and for p ∈M we let the injectivity radius
of M at p (denoted IM(p)) be the maximal (possibly infinite) radius such
that the exponential map restricted to the open ball B(0, r) ⊆ TpM is a
diffeomorphism.

For instance, if M has non-empty boundary, we notice that, if d(p, ∂M) =
r0 and r > r0, the exponential map is not defined on the whole B(0, r),
thus IM(p) ≤ r0. This remark allows us to extend IM continuously to the
boundary points as being null and we obtain a function IM : M → [0, +∞],
called the injectivity radius function of M .
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Figure 3.1: Injectivity radius is the maximum radius where expp |B(0,r) is a
diffeomorphism

When M is complete and has no boundary, we let the injectivity radius
of M to be the infimum of the function IM : M → (0, +∞]. By an abuse
of notation, we also denote the injectivity radius of M by IM ∈ [0, +∞]. If
M is not complete, or has non empty boundary, then automatically IM = 0,
but the converse does not hold, a complete surface M with empty boundary
could be complete and have IM = 0, as it happens, for instance, on hyperbolic
cusps.

If p ∈ M and γ is a radial geodesic parametrized by arc length γ(t) =
expp(tv) for some unitary vector v ∈ TpM , then, at least locally it holds that
d(p, γ(t)) = t. If this property does not hold for some t1 > 0, then the same
happens for every t > t1. By continuity it is clear that the set

{t ≥ 0; d(p, γ(t)) = t}

is either a closed interval [0, t0] or the half line [0, +∞). Whenever the first
case happens, the point γ(t0) is called a minimal point with respect to p along
γ. We denote by Cut(p) the cut locus of p the set of all minimal points with
respect to p. It follows that a point p has empty cut locus if and only if
its injectivity radius is infinite. Moreover, if IM(p) = δ ∈ (0, +∞), then
there is at least a point q ∈ Cutp with d(q, p) = δ and this point minimizes
the distance between Cutp and p. It is a well known result (for instance
Proposition 2.12, Chapter 13 of [22]) that if p, q ∈ M are two points such
that q ∈ Cut(p) and d(p, Cut(p)) = d(p, q), then either p and q are conjugate
points or there are two geodesics γ1, γ2 : [0, `] → M from p with the same
length ` = d(p, q) such that γ1(`) = γ2(`) = q and γ′1(`) = −γ′2(`).

This previous observation is of particular interest when M has non-
positive sectional curvature, as in this case M has no conjugate points. If
p ∈ M is a point where the injectivity radius IM(p) = δ ∈ (0, +∞), then
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there is a closed geodesic loop4 around p with length 2δ (which is the case
depicted on Figure 3.1). The existence of such geodesic loops is used on this
work to prove properties of annuli of non positive sectional curvature and
bounded injectivity radius on Section 3.3.

3.2.1 Isoperimetric inequality and area growth

The proof of Theorem 3.1.1, given along Section 3.3 via Propositions 3.3.3
and 3.3.5, uses area estimates to obtain properness. We would like to recall
two results for surfaces embedded in H3, the first one (Theorem 3.2.1) is an
isoperimetric inequality for surfaces with absolute mean curvature function
bounded by 1, obtained by Dechang Chen on his doctoral thesis [7], Theorem
3.2.3.

Theorem 3.2.1 ([7]). Let Ω ⊆ H3 be a bounded open subdomain of the
hyperbolic 3-space H3. Then there is a constant C = C(diam(Ω)) such that
for every compact surface Σ ⊆ Ω with compact boundary and bounded mean
curvature function |HΣ| ≤ 1 it holds

Area(Σ) ≤ C length(∂Σ).

We will present the proof of a generalization of this result on Theo-
rem 3.4.1 of Section 3.4.

The second result we want to present on this section is an area growth
estimate obtained by L. Cheung and P. Leung, [9], Corollary 2.2. The authors
obtain actually more than what stated on Theorem 3.2.2, under the same
hypothesis they show that the area growth of a surface as below is at least
linear, but this is not used on this work. For the reader’s convenience we
write the main steps to the proof of this particular result.

Theorem 3.2.2 ([9]). Let Σ ⊆ N be a complete, non compact, oriented
surface on a Hadamard manifold N of dimension 3 with KN ≤ −a2 ≤ 0.
Then, if the absolute mean curvature function of Σ is bounded, Σ has infinite
area.

Proof. Let us assume that Σ ⊆ N is a complete, non compact, oriented
surface on N with bounded mean curvature |HΣ| ≤ α, for some α > 0. Let
q ∈ Σ be a given point and let Γ be a geodesic ray of Σ from q5. Then

4Let us not mistake geodesic loops with closed geodesics: the first one is not smooth at a
single point, called the base point of the loop, while the second one is smooth everywhere.

5We denote a geodesic ray as a complete geodesic γ : [0, +∞)→ N that minimizes the
distance between any two points γ(t), γ(s).

PPGMat – UFRGS 70 A. Ramos



71 Preliminaries

the isoperimetric inequality of Hoffman-Spruck, Theorem 2.2 of [36], gives us
that, for every compactly contained subset Ω of Σ, it holds

Vol(Ω)
1
2 ≤ C(Vol(∂Ω) + αVol(Ω)). (3.2)

In particular, if we assume that

Vol(Ω) ≤
(

1

2Cα

)2

, (3.3)

then (3.2) can be rewritten as

1

2
Vol(Ω)

1
2 ≤ CVol(∂Ω). (3.4)

Now, we observe that, for some small radius rq ≤ 2/α, we have that the
ball centred at q with radius rq has small volume Vol(BΣ(q, rq)) ≤ (1/2Cα)2,
satisfying (3.3). Let q1 ∈ γ be a point such that dΣ(q1, q) = 2rq and consider
B1 = BΣ(q1, rq). We claim that Vol(B1) ≥ (rq/4C)2. First, either one of the
two hold:

a. Vol(B1) >
(

1
2Cα

)2
;

b. Vol(B1) ≤
(

1
2Cα

)2
.

If it was a. to hold, then the hypothesis on rq implies directly the claim
on Vol(B1). If it was b., then we can apply (3.4) for balls centred at q1 with
radii r ≤ rq Br to obtain

1

2
Vol(Br)

1
2 ≤ CVol(∂Br).

Observing that Vol(∂Br) = d
dr

Vol(Br) and defining f(r) = Vol(BΣ(q1, r)),
we arrive in a differential inequality

f ′(r)

f(r)
1
2

≥ 1

2C
,

which we can integrate from 0 to rq (observing that f(0) = 0) to obtain

2f(rq)
1
2 =

∫ rq

0

f ′

f
1
2

dr ≥ 1

2C

∫ rq

0

1dr =
rq
2C

from where it follows the claim. Now, we can proceed inductively with this
process, by choosing points qn ∈ Γ with dΣ(qn, q) = 2nrq and noticing that
the balls Bn = BΣ(qn, rq) are pairwise disjoint from each other and have
volume bounded by below by an uniform constant (rq/4C)2, which implies
Σ has infinite volume.
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3.3 Finite topology surfaces in hyperbolic

3-manifolds

On this section, we consider N to be a hyperbolic 3-manifold, that is a com-
plete Riemannian manifold with constant sectional curvature KN = −1, and
let Σ ↪→ N be an embedding of a finite topology surface Σ onN with bounded
mean curvature |HΣ| ≤ 1. We prove that if the injectivity radius function
of each end of Σ converges to zero at infinity, then the embedding is proper.
In order to do so, we begin by studying some properties of embeddings of
S1 × [0, +∞) in N .

Let E ≡ S1× [0, +∞) be an annulus embedded on N with bounded mean
curvature function |HE| ≤ 1. Then it follows from Gauss equation that E
has non positive intrinsic sectional curvature KE. Indeed, it holds that

KE −KN = λ1λ2, (3.5)

where λ1, λ2 are the eigenvalues of the shape operator of E in some point
p ∈ E. Then, as KN = −1, we have that

KE = λ1λ2 − 1 = λ1(2HE − λ1)− 1 = −(λ1 −HE)2 + (HE)2 − 1 ≤ 0.

This property is important mainly to obtain the existence of geodesic
loops on points away from the boundary of E, ∂E ≡ S1 × {0}, where the
injectivity radius is bounded, as on Section 3.2. If p ∈ E has intrinsic distance
to the boundary ` = d(p, ∂E) and injectivity radius IE(p) = L < `, then
there is a geodesic loop γ on E with base point p and length 2L.

First, we notice that geodesic loops on surfaces of non positive curvature
cannot be trivial, as it is easy to see using Gauss-Bonnet equation. In par-
ticular a geodesic loop γ ⊆ E as above must generate the fundamental group
of E, π1(E). Furthermore, it divides E into two components, one compact
(with the topology of S1 × [0, 1]) and one non compact (with the topology
of S1 × [0, +∞)). We are use such property to prove the two next results,
Lemma 3.3.1 and Lemma 3.3.2. The first one was obtained by T. Colding
and W. Minicozzi on the proof of Lemma 4.2 of [10], but we present here its
proof due to its simplicity and also for the sake of completeness.

Lemma 3.3.1. Let E ≡ S1×[0, +∞) be a complete annulus with non positive
sectional curvature KE ≤ 0 and bounded injectivity radius function IE ≤ L.
Then E has finite total curvature.

Proof. Take a divergent sequence of points (pn)n∈N ⊆ E such that d(p1, ∂E) >
L, d(pn+1, pn) > 2L, for every n ∈ N and that the sequence of distances to
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Figure 3.2: Short loops on E ≡ S1 × [0, +∞) with KE ≤ 0.

the boundary d(pn, ∂E) is increasing. Such sequence exists, as E is complete
and non compact. By assumption we have that KE ≤ 0, so at each pn there
exists a geodesic loop γn with length 2IE(pn) ≤ 2L, forming an exterior angle
θn ∈ (−π, π) at pn.

As previously stated, each loop γn is non trivial and divides E in two
annuli, one compact and one non compact. We let E0 to be the region
bounded between ∂E and γ1 and, for n ∈ N, En the one bounded between
γn and γn+1, as in Figure 3.2.

To prove that E has finite total curvature, we apply Gauss-Bonnet theo-
rem on each region En, obtaining that∫

En

KE + θn − θn+1 = 0,

and, by fixing a n0 ∈ N and making the sum for all n ≤ n0, we have∫
E\(∪n>n0En)

KE =

n0∑
n=0

∫
En

KE =

∫
E0

KE + θn0+1 − θ1, (3.6)

so the left hand side of (3.6) is uniformly bounded for every n0, what implies
that E has finite total curvature.

Another interesting application of the short loops to annuli with non
positive sectional curvature is that the convergence of the injectivity radius
function at infinity must be uniform. Although it seems like a very natural
result, its proof, as far as the author is concerned, had not been obtained
yet.

Lemma 3.3.2. Let E ≡ S1×[0, +∞) be a complete annulus with non positive
sectional curvature KE ≤ 0 and let IE : E → [0, +∞) be the injectivity radius
function of E. Admit there is a sequence of points (pn)n∈N ⊆ E diverging on
the intrinsic distance of E such that

lim
n→+∞

IE(pn) = L ∈ [0, +∞].
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Then every other sequence of points qn that diverges on E will also satisfy
limn→+∞ IE(qn) = L.

Proof. Every geodesic loop γ ⊆ E divides E not only in one compact and
one non compact part, but it also divides the annulus E in one convex part
and a non convex part, except when γ is smooth (i.e. it is a closed geodesic),
when it divides E into two convex pieces.

Fix a point p ∈ E and let γ be a geodesic loop with base point p. Let α
be a geodesic segment with endpoints p1, p2 ∈ γ but not contained in γ, so
it is contained in one convex part of E with respect to γ, which we denote
by E0 (see Figure 3.3).

We claim that p 6= p1, p2. In particular, {p1, p2, p} separate γ into three
components, which we denote as γ1, γ2 the geodesic segments joining p and
p1, p2, respectively and γ3 the segment joining p1 and p2. Moreover, we also
claim that

i. α ∪ γ3 generates the fundamental group of E;

ii. α ∪ γ1 ∪ γ2 bounds a disk D, contained in E0;

iii. There is a closed curve α̃, contained on E0\D and homotopic to α∪γ3,
such that length(α̃) < length(α ∪ γ3).

Let us prove the claim: first, we prove that p 6= p1, p2. Assume, for instance,
that p = p1. Then we would have γ = γ2 ∪ γ3 as previously described, so
either α∪γ2 or α∪γ3 would be trivial on E, bounding a disk. But there is no
disk bounded by two geodesic segments on surfaces of non positive sectional
curvature, then γ ⊆ α. As we are assuming this does not happen, we obtain
that p 6= p1, p2. The same argument also gives us that α ∪ γ3 must generate
π1(E), proving i.

As γ also generates π1(E), follows that γ = γ1 ∪ γ2 ∪ γ3 is homotopic to
α∪γ3, in particular α∪γ1∪γ2 shall be trivial, bounding a disk D ⊆ E0, and
this proves ii.

Now, in order to construct the curve α̃ of iii., we take any interior points
x ∈ α and y ∈ γ3 and consider the geodesic segment β joining x and y.
By the convexity of E0 it follows that β ⊆ E0. If β ∩ int(D) 6= ∅, the
intersection between β and ∂D should have at least two points x and x̃. This
second point x̃ could not lie in α, as we would find a disk bounded by two
geodesic segments. But neither x̃ ∈ γ1∪γ2 is possible, because it would imply
transversality between β and ∂E0, so β would leave E0, a contradiction that
shows that β ⊆ E0 \D.

In order to ease the notation, we let, for any two points q1, q2 ∈ E0, q1q2

to be the geodesic segment joining q1 and q2, for instance xy = β, pp1 = γ1,
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Figure 3.3: If the geodesic segment α meets the geodesic loop γ, the length
of the non trivial curve formed by α and γ3 may be decreased.

etc. Now, we will consider two closed curves, each one given by three geodesic
segments. We let

α̃1 = xy ∪ yp1 ∪ p1x

α̃2 = xy ∪ yp2 ∪ p2x.

One between α̃1 and α̃2 is homotopically trivial, and the other generates
the fundamental group of E. Let us assume α̃1 bounds a disc. Then, the
triangle inequality implies that

length(xy) < length(yp1) + length(p1x),

and in particular length(α̃2) < length(α), obtaining the desired curve on iii.
and proving the claim.

Now, the proof of the lemma follows easily. Let us assume, by contra-
diction, that there are two divergent sequences of points in E, (pn) and (qn)

with lim IE(pn) = L ∈ [0, +∞) and lim IE(qn) = L̃ ∈ (L, +∞].
For n sufficiently large, over each point pn there is a geodesic loop γn of

length 2IE(pn) ' 2L, and also a large geodesic loop Γn with base point qn,
on the sense it has length 2IE(qn) > 2L. Without loss of generality we may
pass to a subsequence and assume that every Γn is contained in between the
region bounded by γn and γn+1. We let En be the region of E bounded by
Γn−1 and Γn, so γn ⊆ En.

Now, in each region En we claim it is possible to obtain a closed geodesic
αn contained on the interior of En, then Gauss-Bonnet Theorem implies that
the region between every two such geodesics is flat, so the injectivity radius
function is constant, which is a contradiction.
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To find such αn we use a standard minimization technique, together with
the claim proved above. We let Λ = {α ⊆ En; α ∈ [γn]} to be the homotopy
class of γn on the annulus En. We define

` = inf{length(α); α ∈ Λ} > 0

and take (αk)k∈N a sequence of curves on Λ whose lengths converge to `.
By the compactness of En it follows that αk converges to a curve α with
length ` on the homotopy class of γn. It is clear that α 6= Γn−1, Γn and it is
a composition of geodesic segments, and the possible points where it is not
smooth are the ones where α meets the boundary of En. But the above claim
shows us that in such setting, the length of α could be decreased keeping the
homotopy class, so it would not be a minimizing curve. This implies that the
limit curve α lies on the interior of En, and then it is smooth everywhere, a
closed geodesic.

So far, the properties obtained about annuli with non-positive sectional
curvature are intrinsic. Now, we begin using geometric properties of H3

together with the short loops technique presented to prove next proposition,
that gives item A of Theorem 3.1.1 and is of fundamental importance on the
proof of its remaining items.

Proposition 3.3.3. Let E ≡ S1 × [0,+∞) be a complete embedding of an
annulus in H3 with bounded mean curvature function |HE| ≤ 1. Then there
is a sequence of points (pn) ⊆ E such that IE(pn) → +∞. In particular,
limx→∞ IE(x) = +∞.

Proof. We divide this proof into the two cases of whether the embedding of
E is proper or not, as the proofs use different approaches. On the proper case
the proof is mainly geometric, and when dealing with non proper embeddings
we use analytical tools, namely the results on Section 3.2.1.

Claim 3.1. Let E ↪→ H3 be a complete embedding of an annulus on H3 with
bounded mean curvature |HE| ≤ 1. Then, if E is not properly embedded, the
injectivity radius function of E must be unbounded.

Claim 3.2. Let E ↪→ H3 be a complete annulus properly embedded in H3

with bounded mean curvature |HE| ≤ 1. Then the injectivity radius of E
must be unbounded.

Proof of Claim 3.1. Assume that E is not properly embedded in H3 but has
bounded injectivity radius function IE ≤ L. Then there is an intrinsically
divergent sequence (qn)n∈N ⊆ E such that qn → q ∈ H3 and geodesic loops
γn over qn with length strictly less than 2L. In particular, there is some
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n0 ∈ N such that for every n ≥ n0, qn ∈ BH3(q, L), in such a way that
γn ⊆ BH3(q, 2L).

For m > n0 we let Σm be the region of E bounded between γn0 and γm,
so ∂Σm = γn0 ∪ γm ⊆ BH3(q, 2L). As the absolute mean curvature of Σm

is bounded by 1 and the mean curvature of geodesic spheres of radius r in
H3 is Hr = coth(r) > 1, it follows that Σm ⊆ BH3(q, 2L). Then we can
apply Theorem 3.2.1 to obtain a constant C > 0 such that every compact
surface Σ ⊆ BH3(q, 2L) with |HΣ| ≤ 1 satisfy Area(Σ) ≤ Clength(∂Σ), and
in particular it holds for every m > n0 that

Area(Σm) ≤ C length(∂Σm) ≤ 4CL, (3.7)

where last inequality follows from

length(∂Σm) = length(γn0) + length(γm) ≤ 4L.

From (3.7) we obtain that the area of Σm is uniformly bounded for every
m > n0, which implies that E has finite area. On the other hand, we can use
Theorem 3.2.2 to obtain the contradiction that E has infinite area, proving
Claim 3.1. ♦

Now, we recall [23], Theorem 4.1, where R. Sa Earp and H. Rosenberg
use the existence of families of Delaunay surfaces in R3 to obtain a maximum
principle inside the Delaunay surface D. Precisely, let D be a Delaunay sur-
face of R3 with mean curvature 1/2a > 0 and let Σ be a properly embedded
surface, complete and non compact, with compact boundary ∂Σ that lies
on the region of R3 inside D and with mean curvature |HΣ| ≤ 1/2a, then
Σ = D.

The same proof of [23] is used on [39], Lemma 6.3, using families of hy-
perbolic Delaunay surfaces, to obtain that if Σ is complete and non compact,
properly embedded in H3 with constant mean curvature and compact bound-
ary, then, if Σ is cylindrically bounded, its mean curvature is at least as big
as the one of the cylinder containing it. Here, we adapt these proofs in or-
der to show that a cylindrically bounded surface with mean curvature less
than 1 cannot extend beyond the maximal period of a family of hyperbolic
Delaunay surfaces (see Lemma 3.3.4 below). In particular, if E satisfies the
hypothesis of Proposition 3.3.3 and has bounded injectivity radius function,
it cannot be properly embedded, and this will prove Claim 3.2.

Proof of Claim 3.2. This proof is also by contradiction, so we assume that
there is a divergent sequence of points (pn) ⊆ E with bounded injectivity
radius IE(pn) < L. As the embedding is proper, by passing to a subsequence
we may assume the extrinsic distance between pn and ∂E is increasing, so
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Figure 3.4: The profile of the family D̃t and the planes Ht

(pn) diverges uniformly on H3. As KE ≤ 0 and the points pn are away from
the boundary of E, there is some n0 ∈ N such that for every n ≥ n0 there
are geodesic loops by pn with length less than 2L.

Let Γ be a geodesic line of H3 (to be specified later on) and let H =
coth(2L) > 1 be the mean curvature of the geodesic cylinder of radius L
around Γ, which we call D0. There is a 1-parameter deformation of D0 by
H-surfaces Dt, converging to a chain of geodesic spheres with radius 2L,
D∞, all centered at points of Γ, when t → ∞. Each one of the surfaces
Dt is of revolution around Γ and is also periodic with respect to hyperbolic
translations along Γ, with period P (t) depending uniquely on L and on t,
and uniformly bounded.

As the sequence (pn) is divergent and the embedding is proper, there is a
n1 > n0 such that the extrinsic distance between γn0 and γn1 is bigger than
the maximal period of the family Dt, P = sup{P (t)}. We let q0 ∈ γn0 and
q1 ∈ γn1 be a pair of points such that d(q0, q1) = d(γn0 , γn1) > P and we fix
Γ as the geodesic line of H3 passing through q0 and q1.

If we let C = C(Γ, L) be the open solid cylinder around Γ of radius L (so
∂C = D0), it follows that both γn0 and γn1 are contained in C, as otherwise
their lengths would be at least 2L. Moreover, as the mean curvature of a
geodesic cylinder of radius r around a geodesic is coth(2r) > 1, it follows
that the whole region bounded between γn0 and γn1 , which we denote by Σ,
is contained on C.
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We consider the deformation of the boundary of C, D0 into the chain
of spheres D∞ to obtain an interior point of contact between some Dt0 and
Σ, which will contradict the mean curvature comparison principle, but first
we need to have some control over the boundary of Σ. We consider the
foliation F of H3 by totally geodesic parallel planes perpendicular to Γ,
F = {Ht; t ∈ R}, indexed in such a way that q0 ∈ H0 and d(H0, Ht) = |t|,
for every t ∈ R. We denote R = d(q0, q1), in such a way that we have
q1 ∈ HR. We let

Σ̃ = E ∩
(
∪t∈[0,R]Ht

)
be the region of the annulus E bounded in between the planes H0 and HR,
so Σ̃ ⊆ Σ ⊆ C(Γ, L− ε).

Without loss of generality we may assume that all the surfaces Dt have a
maximum bulge precisely in H0, so all the other maximal bulges of each Dt
are contained in a sequence of parallel planes HiP (t), for i ∈ Z.

We will take D̃t as the portion of Dt contained between H0 and HP (t),

i.e. a fundamental piece of Dt. We have that D̃t is a compact surface whose
boundary lies outside of the cylinder C, as the maximal bulge radius increases
with t, we have that ∂D̃t ∩ Σ̃ = ∅. Furthermore, the boundary of Σ̃ lies on
the two planes H0 and HR, with R > P > P (t), so D̃t does not intersect ∂Σ̃
for any t > 0.

When t→ +∞, the sequence D̃t converges to two half-spheres, intersect-
ing tangentially at a single point of Γ, so these half spheres divide C, hence
they must intersect Σ̃. As D0 = ∂C do not intersect Σ̃, there will be a first
contact point between Σ̃ and some D̃t, necessarily interior for both D̃t and
Σ̃. This implies that the mean curvature of Σ̃ at such point is at least H > 1,
a contradiction with the hypothesis on the mean curvature of E. ♦

Together, the two claims above prove that the injectivity radius function
of E is unbounded, so there is a intrinsically divergent sequence of points
where IE diverges to +∞. Then we can apply Lemma 3.3.2 to obtain that
limx→∞ IE(x) = +∞.

We remark that the absurdity on the proof of Claim 3.2 above came from
assuming the existence a compact surface Σ (the topology of Σ being the one
of S1 × [0, 1] was not used) whose boundary is given by two Jordan curves
∂Σ = γ0 ∪ γ1 farther from each other than the maximal period of the family
of Delaunay surfaces Dt whose ∂Σ b D0. Precisely, it becomes proved the
following

Lemma 3.3.4. Let Σ ⊆ H3 be a compact surface embedded in H3 with two
boundary curves ∂Σ = γ1 ∪ γ2 and with bounded mean curvature |HΣ| ≤ 1.
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Let 2L = max{length(γ1), length(γ2)}, so, if P = P(L) is the maximal period
of the family Dt of Delaunay surfaces of H3 with D0 being a geodesic cylinder
of H3 of radius L around a geodesic line, then dH3(γ1, γ2) < P.

We also remark that Proposition 3.3.3 does not hold for more general
hyperbolic manifolds. Following the notation of [12], let C be a cusp-end of
a hyperbolic manifold N : it is isometric to the quotient of a horoball M of
H3 by a Z2 group of isometries G of H3 leaving M invariant. On the upper
half-space model for H3, we can assume M is

M = {(x, y, z) ∈ R3; z ≥ 1/2},

and that G = G(v1, v2) is the group of isometries generated by translations
of linearly independent horizontal vectors v1, v2 ∈ R2 × {0}. Take H as a
totally geodesic vertical plane ofH3 (thus H is isometric toH2), parallel to v1.
Then the descend of H∩M to C via the quotient E = (H∩M)/G ↪→ C ⊆ N
is a minimal annulus on N with injectivity radius function not just bounded,
but also converging to zero at infinity.

Next proposition gives us B, C and D on Theorem 3.1.1. We consider N
to be a hyperbolic 3-manifold and let E ≡ S1× [0, +∞) ↪→ N be a complete
embedding of an annulus in N with bounded mean curvature |HE| ≤ 1.
Proposition 3.3.3 implies that, if E has bounded injectivity radius function,
then the embedding does not lift isometrically to H3, the universal cover of
N . This is the key ingredient that allows us to prove:

Proposition 3.3.5. Let N be a hyperbolic 3-manifold and let E ↪→ N be a
complete embedding of an annulus E ≡ S1 × [0, +∞) with mean curvature
satisfying |HE| ≤ 1. Then

(I) If the injectivity radius function of E is bounded, the generator of the
fundamental group of E is non trivial on N . Moreover, E has finite
total curvature.

(II) If N has positive injectivity radius IN = δ, then, away from ∂E, the
injectivity radius function of E satisfies IE ≥ δ.

(III) If there is a sequence of points (pn)n∈N ⊆ E, diverging intrinsically on
E such that limn→∞ IE(pn) = 0, then E is properly embedded on N .

Proof. Let us assume that the injectivity radius function IE is bounded.
Then, as the bound on the mean curvature of E implies it has non positive
sectional curvature, it follows from Lemma 3.3.1 that E has finite total cur-
vature. Furthermore, if the generator of π1(E) was trivial on N , then the

PPGMat – UFRGS 80 A. Ramos



81 Finite topology surfaces in hyperbolic 3-manifolds

embedding S1 × [0, +∞) ↪→ E ⊆ N would lift isometrically to the univer-
sal cover of N , H3, as a complete annulus with bounded injectivity radius
function and absolute mean curvature bounded by 1, contradicting Proposi-
tion 3.3.3, and this proves (I).

To prove (II), we simply use (I): if at some point p ∈ E away from ∂E
we had IE(p) < δ, then there would be a geodesic loop around p with length
smaller than 2δ, which implies such loop lies inside an extrinsic geodesic ball
of radius δ, which is simply connected by the assumption IN = δ, contradict-
ing (I).

Finally the proof of (III) follows from (I) analogously to the proof of (II):
assume there is a sequence of points (pn)n∈N ⊆ E where the injectivity radius
function of E converges to zero. By Lemma 3.3.2, the same will happen for
every other intrinsically divergent sequence of points.

Now, by contradiction, assume that E is not properly embedded on N ,
so there is a sequence of points qn ∈ E, diverging intrinsically on E but
converging to a point q ∈ N . In particular, if we let rn = IE(qn) be the
injectivity radius function of E at the points qn, follows that rn → 0 at
infinity. Moreover, there are geodesic loops γn over each qn with length 2rn
and such loops generate π1(E). At q ∈ N we have that IN(q) = ` > 0, and
as the points qn approach q and the geodesic loops have length going to zero,
after some n0 ∈ N all the curves γn lie in the same normal neighborhood of
N with center at q, which is simply connected, and in particular they must
be trivial on N , which is not possible by (I), showing that E is properly
embedded on N and proving the proposition.

We would like to remark that item (I) on the proposition above implies not
only that N must have some topology in order to admit a complete annulus
with bounded injectivity radius and absolute mean curvature bounded by
1, but also such annulus must involve the topology of N , on the sense that
the inclusion map i∗ : π1(E) → π1(N) is not trivial, so E is topologically
incompressible on N . We apply this simple observation to the topological
type of the plane to obtain the following corollary:

Corollary 3.3.6. Let P ↪→ N be a complete embedding of a topological plane
P into a hyperbolic manifold N whose absolute mean curvature is bounded
|HP | ≤ 1. Then the set of points of P where the injectivity radius of P is
infinite is unbounded on the intrinsic distance of P .

Proof. Let us assume that the set I∞ = {p ∈ P ; IP (p) = +∞} is bounded
on the intrinsic distance of P . Then, we can choose R > 0 and q ∈ P such
that I∞ ⊆ BP (q, R). Then, if we let E = P \ BP (q, R), it is a complete
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annulus with bounded injectivity radius function, embedded on N with ab-
solute mean curvature bounded by 1. Then, Proposition 3.3.5, (I), implies
that the generator of the fundamental group of E is non trivial on N , but
this generator is trivial on P , as it is the boundary of a simply connected
set, so it is also trivial on N .

Now we can prove Theorem 3.1.1, using Propositions 3.3.3 and 3.3.5:

Proof of Theorem 3.1.1. In order to prove the theorem, we notice that, as Σ
has finite topology, then there is a compact set K ⊆ Σ such that

Σ \K = E1 ∪ E2 ∪ . . . ∪ En, (3.8)

where each Ei is an annular end of Σ.
If N is simply connected, then Proposition 3.3.3 applied to each Ei implies

that each end of Σ has unbounded injectivity radius function, so we obtain
A.

Let us prove B, so we assume IN = δ > 0. It follows from item (II) of
Proposition 3.3.5 that each Ei has positive injectivity radius function IEi

≥ δ
away from its boundary, on the sense that there is some r > 0 (which can
be chosen to be uniform) such that every p ∈ Ei with d(p, ∂Ei) > r satisfy
IΣ(p) = IEi

(p) ≥ δ.

We let K̃ = K ∪ {x ∈ Ei; dΣ(x, ∂Ei) ≤ r}, and we restrict the function

IΣ|K̃ to the compact K̃, so it attains a minimum δ̃ = minK̃ IΣ > 0, and we

obtain that IΣ ≥ min{δ̃, δ}, so it is positive, and B follows.
The third part of Theorem 3.1.1, item C, is given by (I) of Proposi-

tion 3.3.5, using again the decomposition on (3.8): each end Ei will have
finite total curvature and there is a finite number of ends. As K is compact,
it also has finite total curvature, so the whole surface Σ will have finite total
curvature. Moreover, each Ei has as boundary a simple closed curve, non
trivial on N by (I), so, in particular i∗ : π1(Σ)→ π1(N) is non trivial.

Finally, to prove that the embedding is proper when the injectivity radius
function of Σ converges to zero at infinity, item D, we let C ⊆ N be a compact
set of N . Then C∩K is compact, and (III) implies that C∩Ei is also compact
for every i ∈ {1, 2, . . . , n}. It follows that

C ∩ Σ = (C ∩K) ∪ (C ∩ E1) ∪ . . . ∪ (C ∩ En)

is a finite union of compact sets, hence compact, and this proves D, finishing
the proof of Theorem 3.1.1.
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3.4 Generalizations to manifolds with nega-

tively bounded sectional curvature

On this section, we give some partial results obtained on the intent to gen-
eralize Theorem 3.1.1 to a broader class of manifolds, namely manifolds N
with negatively bounded sectional curvature KN ≤ −a2 < 0. The universal
cover of such manifolds is a Hadamard manifold, so the first step is to ob-
tain a generalization of Theorem 3.2.1, due to D. Chen [7], for a Hadamard
manifold, on Section 3.4.1.

Then, on Section 3.4.2 we prove results that are analogous to the ones
obtained on Section 3.3, but under a stronger assumption on the mean cur-
vature function: instead of the natural hypothesis |HΣ| ≤ a (which implies
KΣ ≤ 0 and the existence of short loops that seems to be the key property to
our main results) we ask for a technical hypothesis |HΣ| ≤ a(1− ε) for some
ε > 0, so we can obtain that annuli embedded on a Hadamard manifold with
such curvature condition must have unbounded injectivity radius function.

3.4.1 Isoperimetric inequalities on Hadamard mani-
folds

In order to obtain the results on this section, we make use of a well known
tool, namely the Hessian comparison theorem. Its proof can be found, for
instance, on Chapter 1 of the book by R. Schoen and S.-T. Yau [59].

Theorem (Hessian comparison principle). Let N a Hadamard 3−manifold
with sectional curvature bounded by above KN ≤ −a2 ≤ 0. Then if p ∈ N is
any point and we denote by R = dN(·, p) the distance to the point p on N ,
then, for every unitary vector X tangent to the level sets of R, it holds

Hess(R)(X,X) ≥ µa(R) =

{
a coth(aR), if a > 0;

1
R

if a = 0.
(3.9)

An important geometric application of the Hessian comparison principle
is to compare the mean curvature of geodesic spheres and geodesic cylinders
of a Hadamard manifold with the mean curvature of the same objects on
a space of constant sectional curvature. Precisely, let N be a Hadamard
manifold with sectional curvature KN ≤ −a2 < 0, let p ∈ N and Γ be a
geodesic line of N through p. Fixed L > 0, we denote by SL = SL(p) the
geodesic sphere of N around p with radius L and CL = CL(Γ) the geodesic
cylinder around Γ, also with radius L, that is
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SL(p) = {x ∈ N ; dN(x, p) = L};
CL(Γ) = {x ∈ N ; dN(x, Γ) = L}.

Then, their mean curvature function satisfies, in every point:

HSL
≥ a coth(aL) (3.10)

HCL
≥ a coth(2aL), (3.11)

where the right hand side of (3.10), (3.11) are respectively the mean curvature
of a geodesic sphere and of a geodesic cylinder on a space of constant sectional
curvature −a2, a > 0, and an analogous inequality can be stated for the case
a = 0. Using (3.9), (3.10) and following the proof of Chen [7] to Theorem
3.2.1, we obtain:

Theorem 3.4.1. Let N be a Hadamard 3−manifold with sectional curvature
KN ≤ −a2 ≤ 0, with a ≥ 0. Then, for each geodesic ball BN(p0, R0) there
is a constant C = C(a,R0) such that every orientable compact surface Σ ⊆
BN(p0, R0) with compact boundary ∂Σ and mean curvature |HΣ| ≤ a satisfies

Area(Σ) ≤ Clength(∂Σ).

Proof. Let p0 ∈ N \ Σ be given and consider the foliation F of N \ {p0} by
concentric geodesic spheres. We denote by N the normal unitary vector field
to the leaves pointing inwards and let R = dN(·, p0) be the ambient distance
function to p0. Then, at a point p ∈ Σ, we can relate the ambient divergence
of the field N with the intrinsic divergence of Σ of the projected field N t

(see Figure 3.5):

DivΣ(N t) = DivNN + 2HΣ〈N , η〉 − 〈∇ηN , η〉. (3.12)

Integrating both sides of (3.12) over Σ and using the divergence theorem,
we obtain that

∫
Σ

(
−DivN(N )− 2HΣ〈N , η〉+ 〈∇ηN , η〉

)
= −

∫
∂Σ

〈N , ν〉 (3.13)

where ν is the outward pointing conormal vector of ∂Σ. The right hand side
of (3.13) is related with the length of ∂Σ via

−
∫
∂Σ

〈N , ν〉 ≤ length(∂Σ), (3.14)
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Figure 3.5: Representation of the foliation F of N \ {p0} and the fields N ,
N t.

so, in order to obtain an isoperimetric inequality, we just need to estimate the
function ϕ = −DivN(N ) − 2HΣ〈N , η〉 + 〈∇ηN , η〉 by an uniform constant
away from zero.

Claim 3.3. It holds that ϕ ≥ ξa(R), where R = dN(·, p0) is the distance
function to p0 and ξa : (0, +∞)→ (0, +∞) is given by

ξa(r) =

{
ae−2ar, if a > 0,

1
r
, if a = 0.

(3.15)

Proof of the claim. Decompose η = η> + η⊥, where η> is tangent to the
geodesic spheres and η⊥ is on the direction of N . We have that ∇η⊥N =
0, as curves normal to the foliation are geodesics, and it also holds that
〈∇XN , N〉 = 0 for every X tangent to the foliation, so 〈∇η>N, η

⊥〉 = 0 and
we have that

〈∇ηN , η〉 = 〈∇η>N , η>〉. (3.16)

Now, if it was η> = 0, we would have N = ±η, so

−DivNN−2HΣ〈N , η〉+〈∇ηN , η〉 = −DivNN∓2HΣ = 2Hr∓2HΣ, (3.17)

where Hr is the mean curvature of the geodesic sphere centred at p0 with
radius r = d(p, p0). The Hessian comparison principle implies that Hr ≥
µa(r), and then
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2Hr ∓ 2HΣ ≥ 2(µa(r)− |HΣ|). (3.18)

We will prove that µa(r) − |HΣ| ≥ ξa(r). Indeed, if it was a = 0, then
HΣ = 0 and µa(r)−|HΣ| = 1

r
= ξa(r), so the claim holds. If a > 0, we would

have that |HΣ| ≤ a and µa(r) = a coth(ar), so

µa(r)− |HΣ| ≥ a (coth(ar)− 1) > ae−2ar = ξa(r), (3.19)

where we used on the last inequality that coth(x) > 1 + e−2x for every x > 0,
proving that µa(r) − |HΣ| ≥ ξa(r), and the claim follows on the case where
η> = 0.

Now, we let p ∈ Σ be such that η> 6= 0 at p, and we can consider
{E1, E2, N} a local orthogonal frame of TN with E1 = η>/

∥∥η>∥∥ on points
of Σ. We let cos(θ) = 〈N , η〉, so sin(θ) =

∥∥η>∥∥, and (3.16) implies that

〈∇ηN , η〉 = sin2(θ)〈∇E1N , E1〉 = 〈∇E1N , E1〉 − cos2(θ)〈∇E1N , E1〉.
(3.20)

Moreover, as 〈∇NN , N〉 = 0, we obtain

DivN(N ) = 〈∇E1N , E1〉+ 〈∇E2N , E2〉. (3.21)

Using (3.20) and (3.21), we can find the following expression to ϕ:

ϕ = −〈∇E2N , E2〉 − 2HΣ cos(θ)− cos2(θ)〈∇E1N , E1〉. (3.22)

By simplicity, if X ∈ TpN is unitary and perpendicular to N , we de-
note f(X) = −〈∇XN , X〉, and notice that, as N = −grad(R), the Hessian
comparison principle gives us again that

f(X) = Hess(R)(X,X) ≥ µa(r) > 0, (3.23)

and we may rewrite (3.22) as

ϕ = f(E2)− 2HΣ cos(θ) + cos2(θ)f(E1)

= f(E1)

(
cos(θ)− HΣ

f(E1)

)2

− H2
Σ

f(E1)
+ f(E2)

and using that f(Ei) ≥ µa(r) > 0, we find the inequality

ϕ ≥ f(E2)− H2
Σ

f(E1)
≥ µa(r)−

H2
Σ

µa(r)
=
µa(r)

2 −H2
Σ

µa(r)
,
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from where it follows that

ϕ ≥ µa(r) + |HΣ|
µa(r)

(µa(r)− |HΣ|). (3.24)

Finally, we can proceed as previously and prove that µa(r)−|HΣ| ≥ ξa(r),
obtaining, as claimed, that ϕ ≥ ξa(r). ♦

In order to finish the proof of the theorem, we consider a geodesic ball
BN(p0, R0) ⊃ Σ, so the distance function R satisfies R ≤ R0 on Σ. From
Claim 3.3, we obtain that the left hand side of (3.13) satisfies

∫
Σ

(
−DivN(N )− 2HΣ〈N , η〉+ 〈∇ηN , η〉

)
≥
∫

Σ

ξa(R) ≥ ξa(R0)Area(Σ),

as ξa is a decreasing function. Applying this inequality on (3.13), together
with (3.14), we obtain that

ξa(R0)Area(Σ) ≤ length(∂Σ),

so we may define C = 1/ξa(R0) to obtain the theorem.

We notice that the main tool for proving the isoperimetric inequality on
Theorem 3.4.1 was actually the estimate obtained on Claim 3.3. We can
modify its proof to obtain another isoperimetric inequality, that holds for
any Σ on N without the assumption on the uniform bound to the diameter,
but with a stronger assumption on the mean curvature. We prove:

Theorem 3.4.2. Let N be a Hadamard 3−manifold with sectional curvature
KN ≤ −a2 < 0. Let Σ be a compact surface with compact boundary ∂Σ and
mean curvature function HΣ satisfying |HΣ| ≤ a(1 − ε), for some ε > 0.
Then there is a constant C = C(a, ε) such that

Area(Σ) ≤ Clength(∂Σ).

Proof. This proof is analogous to the one of Theorem 3.4.1, with a slight
modification when using Claim 3.3. Consider again the foliation of N \ {p0}
by concentric geodesic spheres, oriented with respect to N a inward pointing
vector field that is normal to the geodesic spheres. If η is an unitary vector
field orienting Σ, we can obtain, as in (3.13), (3.14), that

∫
Σ

(
−DivN(N )− 2H〈N , η〉+ 〈∇ηN , η〉

)
≤ length(∂Σ). (3.25)
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Now we can restart the proof of Claim 3.3, observing that, on (3.19), we
can obtain a stronger estimate,

µa(r)− |HΣ| ≥ a− |HΣ| ≥ aε, (3.26)

as µa(r) > a and |HΣ| ≤ a(1 − ε). As this estimate does not depend on r,
we can proceed with the proof as previously done and obtain the result with
constant C = 1/aε.

3.4.2 Finite topology surfaces in manifolds with nega-
tively bounded sectional curvature

On this section, we find an analogous to Theorem 3.1.1 on the ambient space
of a 3-dimensional manifold N with negatively bounded sectional curvature
KN ≤ −a2 < 0. The universal cover of such spaces are Hadamard manifolds,
so we begin by proving an analogous to Proposition 3.3.3 on this setting:

Proposition 3.4.3. Let N be a Hadamard manifold with negatively bounded
sectional curvature KN ≤ −a2 < 0 and let E ' S1 × [0,+∞) be a complete
annulus embedded in N with mean curvature function satisfying |HE| ≤ a(1−
ε), for some ε > 0. Then every divergent sequence of points (pn) ⊆ E must
satisfy IE(pn)→ +∞.

Remark 3.1. Here, the assumption of |HE| ≤ a(1−ε) for ε > 0 is necessary
only if E is properly embedded, as on this case there is no geometric barriers
on Hadamard manifolds that come to play the role of Delaunay surfaces as
on the proof of Claim 3.2. If the embedding was assumed to be not proper,
we could just proceed as on the proof of Claim 3.1 with the assumption
|HE| ≤ a, using the isoperimetric inequality of Theorem 3.4.1.

Proof of Proposition 3.4.3. As on Section 3.3, using the Gauss equation 3.5,
follows from the hypothesis on the mean curvature of E that E has non
positive sectional curvature. Then, if the injectivity radius function of E was
bounded IE ≤ L, this would generate (as on Figure 3.2, Lemma 3.3.1) short
geodesic loops γn with length length(γn) ≤ 2L. Proceeding as on the proof of
Claim 3.1 and using the isoperimetric inequality of Theorem 3.4.2, we obtain
that E has finite area, which contradicts Theorem 3.2.2.

With Proposition 3.4.3, we can proceed to manifolds with negatively
bounded sectional curvature. As the proof of the next result is completely
analogous to the one of Proposition 3.3.5, it will be omitted.
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Proposition 3.4.4. Let N be a 3-manifold with sectional curvature KN ≤
−a2 < 0 and let E ↪→ N be a complete embedding of an annulus E ≡
S1 × [0, +∞) with mean curvature satisfying |HE| ≤ a(1 − ε), for some
ε > 0. Then

I If the injectivity radius function of E is bounded, the generator of the
fundamental group of E is non trivial on N . Moreover, E has finite
total curvature.

II If N has positive (possibly infinite) injectivity radius IN = δ, then,
away from ∂E, the injectivity radius function of E satisfies IE ≥ δ.

III If there is a sequence of points (pn)n∈N ⊆ E, diverging intrinsically on
E such that limn→∞ IE(pn) = 0, then E is properly embedded on N .

Together, Propositions 3.4.3 and 3.4.4 imply a generalization of Theo-
rem 3.1.1:

Theorem 3.4.5. Let N be a complete 3-manifold with negatively bounded
sectional curvature KN ≤ −a2 < 0 and let Σ ↪→ N be a complete embed-
ded surface on N , orientable and with finite topology whose mean curvature
function HΣ satisfy |HΣ| ≤ a(1− ε), for some ε > 0. Then:

A. If N is simply connected, then each end of Σ has unbounded injectivity
radius function.

B. If N has positive injectivity radius IN = δ > 0, Σ has positive injectivity
radius.

C. If Σ has bounded injectivity radius function, then it has finite total cur-
vature and i∗ : π1(Σ) → π1(N) is non trivial. In particular, if Σ has
genus zero, it has at least two ends and is π1−injective.

D. If the injectivity radius function of Σ converges to zero at infinity, then
the embedding is proper.
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