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ABUIRACT

The 'surface of constant association' was introduced by Pearson
(1913) and termed 'Contingency-type distribution', or briefly 'C-type'
by Mardin (1967(). Members of Lhe C=type family may be used as
underly g dichribulions For binary daloo and relabed Tconbingreney =Ly e
correlalion coelficienls! my be deriveds We shol Dopenerndl ize Lhins
idean Lo polytomous variables and derive Lhe miaoximum Likel ihood
eslimitor of Lhe parameter of associalion off Lhe C-Lype disLribul.ion
for datn pgiven in an BxC table, from which conbingency=Lype correlalion
coefficients will be obLained.

Latent variable models with Lhe assunption of an underly i
logistic distribution for the manifest and/or latent variables have
been proposed by Bartholomew (1980). LIt we consider Lhe C-type
logistic distribution we have a bivariate distribution with marginal
logistic disbributions nnd wilh correlation coeflficienl in Lhe roangeo
1—],11. We sibudy Lhe correlalion in Lhe C=Lype logistic disberibubion
and also compare Lhis disbribubion with Lhe C=Lype norml aond bivierinbe
normal distributions. Other members of the C-type 'amily are
considered such as Lhe C=type sum=of-Lwo loprisLics disbribulion.

Assuming: Lhe C=Lype distribution s an underly ingg model for
categorical data we consider a factor analysis model not restricted to
the traditional assumption ol normality. Contingency-type correlation
matrices for binary and polytomous data are used as input Lo factor
analysis methods. This approach leads to an alternative method of
factor analysis for categorical data with the practical advantage of a

preat reduction in computing time, allowing the model to be applied to
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larpge data sets. Numerical applications are presented and resal ts
compinred wilh oertholomew s Pnelor aniclysis For caleporicnl daln
models.

Finally, the improper solutions in factor analysis are considered
and we sbudy Lhe occurrence of leywood ciies s oo funelion of somple

sive, number o variables wod megesni Lade o Lhe parmmeLers g Lhe o mode] .
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CHAPTER 1 : INTRODUCTION

1.1 Basic Ideas

Most manilest (observed) variables in Lhe socinl seilences are
cateporical varinbles, thal is, wilh nominal or ordinal level of
measurement.  ‘'The categorical variables may be either dichotomics, with
only two calepories ol responses (yc.-;;/lm, riphbl /wrong:, clae) or
poly Lomics, wilh more Lhan Lwo caloeporios (ngrec/no opinion/disngeree,
cle)e Mhe binary (or dichobomous) variables are penceal ly coded 'O or

1" and the polytomous variables are penerally labelled as !

G [ERC B (e
where ¢ is Lhe number ol enlegorios.

The recognition that catepgorical variables are {requent in [ields
such ns Sociology, Psycholopy or Peonomie:n b bed Lo Lhe deve Lopemen b
ol" o variely ol speciinl models and mebhods For Lhe anadysis ol Lhese
variables. A class ol Lhese models incorporates the iden of o latent
variable, which is not directly observed. 'lhis class of models is
known as Iabenl, Variable Models or Coleporical b,

tne ol Lhe best known models where Lhe presencee ol Labent
variables (Lhe factors) is ol tfundamental importance is Faetor
Analysis. PFor this reason, recent literature on latent variable models
includes factor analysis as a special case (see Iveritt, 1984 and
Bartholomew, forthcoming).

Bartholomew (1983) presents various latent variable models
according to the cross classification of the manifest and latent
variables, each being classified as either categorical or metrical
variables. Metrical variables are measured in an interval or ratio

level and may be discrete or continuous. According to Bartholomew,

G RO AN
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ractor anulysis is defined for metrical latenl variables and mebrical
munifest virinbles.  Iuebor analysis For caleporical daba and latent
trait analysis are appropriate for mebrical lLatenh variables and
categorical manifest variables. Latent structure analysis models may
aluso involve 1atent and manifest ealeporical variables,  Obher models
miyy be e lassilicod using Lhis Lypolopy, bul we prive only cxiomplen.

The models and methods for facbor annlysis of enbeporien! data and
latent Lrait analysis arce presented in Bartholomew (fortheoming) from o
new point of view. le considers two miin appronches Lo the
construction ol Lhe models:  Lhe "Kesponse Muncbion Approach® wilh
origins in the theory of educational testing and the 'Underlying
Variable (UV) Approanch', in the faclor analysis Leadibion, whore Lhe
ciabeporicid observed variables soee sappossed o beingg produced by
underly ing conbinuous variables.  Hoerbholomew also shows Lhoots Lhe Lwo
approaches are cgquivalent Cor bhinry variables bab o aoee geneead ly nol,
cquivalent for polyLomows viriables.

We shall consider the underlying variable approach in this study

and in the next scebtion we present its pencral lormulalion.
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1.2 'The Underlying Variable Model for Cateporical babta

Consider the linear factor analysis model given by
q
Xx. = ) A, % LN i=1, 5050 { e

=

where xi(iZI,H,...,p) in the maunifest (observed) varinble, =z, (j=1,..,q)
|

i

is the latenl variable (factor), lij is the factor loading: and “L 10
the error term. We suppose M(zj)=0 5 H(ei)=U and Vur(xi)=l.

L in angumed Lthat the pomaniFest variables, x EREE 'Kl' depend
upon y<p Labenb variables Z‘] and Lhat Lhe seb ol q Unelors showld

explain the whole pattern of dependence among the x's, so that

II
elxlz) =0 g (x,|2) f Eog)
~ i 1 LA
i=1
This is the assumption of conditional (or local) independence that
is basic for all latenl variable models. As we cin only obuserve the
x'u, onny infercnce about Lhe paramebor:s of bhee model mist be biesed on

Lhe Joinl distribubion given by

f(ﬁ) = fg(§|§) h(f)dﬁ {1a3)

It is, also, usually supposed thal the z's are independent continuous

variables with zero mean and unil variancee, such Lhol

q
h(z) = 1 h.(2.) (1.04)
-~ J:l lJ

and that each ey is independent of all the olher e¢'u und ol all #'s.
With the specifications piven above, the dependence structure off
the model is given by

I,= Mty (1.5)

where zx is the dispersion matrix of the x's, A is the pxq matrix of
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factor loadings and P is Lhe dispersion matric off Ghe o'y which i oo
~

pxp dingonal mbriz wibkh diagona! o lements I.Ill(i g aveyp)e The diagronad
clements ol Lhe mabrix AA', ’!li?, wre known ey commugel iLies and
2 T8 2=L—| ..
1 pl
Since by model (1.1), X, is assumed to be a weighted sum ol
continious variables, the assumplion of x. as enteporicnl variable
1

would be itnconsistent wilh the model. o avoid Lhis we suppose Lhnd,

what, is actually observed is not X, but, Lhe enbegoricnl variable xi*
with cy categories labelled l,L’,...,ci (any other 'labels' could be
used, as For example: {J,l,L’,...,t:i—l); whon ui=1‘, 1=1,2,c00e,p W havoe
Lhe binary variables cases We also suppose Lhal Lhe distribabion off 2
is underlying that of 5* and that the multinomial distribution for the
categorical vector 5* can be deduced by integration aver e (This
formilation is similar to that ot Mulnen and Kaplien (198%), but here we
are supposing, Lhato o oarithmetic operntion can e perPformed wi b Ll
Labals ol Lhe eabeporios, Lherelore Chere b no o omesacimeg Vot oguan bl Gies
such as Lhe mean and varianee of caboporic] varinblens or covarianee:s
between them).

Now 11" Lhe x's oare ecach eelaboed Lo one or wore ol Lhee 2's by Lhe
factor analysis model (1.1), there will be correlations among the x's.
Therefore, given a pair of observed categorical variables (xzi*,x.%), we
have o Lwo-way contingeney table that we suppose has been tormed from
the underlying bivariate continuous distribution. A measure of
association for the two-way table, as for example the tetrachoric
coefficient or other similar measure will be an estimate of the
correlation coetticient of the bivariabe continuous distribubion.

Thus we will say that the association sbructure given by ¥ ox = AA + o

~ Lot ~
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holds or x*.

i~

Normal Variables

I in Lhe Caelor andysis model (1ol) we suppose Lhat coand o
variables wilbh normel disbribubions, X will be noemecl sued wee ean Uil
Lhe model i we eslimnble Lhe correlation cocellUicicenbs aning, Lhe
Letrachoric or polychorice correlation cocllicicenbs: For Lhe ciue ol
binary or polylLomous variables respeclively.

e tetrachorice correlation coefticient is o well known measure of
associnbion inbroduced by Pearson in Lhe bepinnimg of Lhis cenbuary
wilh Lhe purpose o easbimbin Lhe corvrelabion cocl ficient o Ll
bivarialte normil distribution or daba priven in o 2% conblingreney
table.  Computer roulines are available in Lhe BEDP packiyie, for
example (sce also, Divgi, 1979).

The polychorie correlabion coctlUicienl Lo mwemure ol aanoe ialion
For polybomows vieriables when we sipposie an o danderly g bivariabe normed
distribution wilh parameter p. ‘the polychoric coel'l'icienl wiss
introduced by lancaster and Hamdan (1904) as a peneralization of the
tetrachoric. OUlsson (197Y) proposes u maximum likelihood method to
estimate p. A computer routine is available in the LISREL package.

Given the correlation matrix with tetrachoric or polychoric
correlation coeftficients, these can be used as input Lo a standard
factor analysis program.

Bartholomew (forthcoming) points out that the method of factor
analysis for categorical variables using tetrachoric or polychoric
coefficients hus the disadvantage that the correlation matrix may nob

be positive definite, bul as Lord & Noviek (108 p.3h9) comment, this
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is an empirical difficulty rather than o theoretical objection Lo Lhe
use ol betrachoric (polychoric) correlations. Alternablive and more

el ficient methods for Lhe Facbkor analysis of cabeporicn! voariables have
been suggested in the literature both for binary and polytomous

vicriables and we shall roview some ol Lhe mebhods in Chaploer .

Non-normil variables

The assumplion off a normil distribulion for z and ¢ and hence For
X in the underly i variable model piven in seebion lod 1o mobivibed by
Lhe desire Lo maike Lhe model consistent with Lhe standiared Lheory For
continuous variables, as Irtholomew (lorthcoming) points out. As we
are observing catepgorical variables it may be argued whether this
assumption can be expected to hold with any pgenerality.

Do Lecuw ot )l (1983) point out that moulbivariate norml ity i
Lhe excoplbion rabher Lhan Lhe o eale o in socind sedenee gibaabions angl
Lhal in the linewr sbrucbural model conbext Lhiis g Ted Lo Lhe
consbruction ol asympLotically distribution free models (see Browne,
1982, 19ih).,

tbenl variable models For eaboporien] data wilbh Lhe assumplion of
an underlying logistic distribution lor the manitest and/or luatent
variables have been proposed in the literature. As cxamples we huave
Birbaum's logistic test model (Lord and Novick, 1968), the Logit model
(Bartholomew, 1980), the multivariate logistic latent trait model
(Bock, 1972). It is known that there is no bivariate logistic
distribution with logistic margins and unconstrained correlation
coef'ficients, us Muthen (1983) points out. “therelore the assumption of

an underlying bivariate logistic distribution for the observed cross
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Lables would be of no praclicnl sudviaanbiogge.

Bartholomew (Frortheoming) considers diflerent dizteibabionnl Forms
for the latent variables (E) and or Lhe error Lerm (:) in Lhe
underly ing variable model (1o1). e considers Lhe loginbic
disbribution 'or ¢ and normal Copr 4oor beysislie For 2 amd ey or even

one special case where ¢ has Lhe Iype | exbreme value distribubion. 10
R

ra

and e are non-normal and if the number q of factors is not too small,
X oaoa linear combination ol independent random variables will Lo
approximebely normel by Lhe cenbeal Timil Lheorem. I, however, woand
¢ are non-normil and g=1l, we should clearly consider other
distributional Torms as underly bog marpginal disbribution tor Aa

As we have seen in section 1.2 we should concentrate on procedures
which use the marginals up to the second order, that is, which use all
cross—Lables. 'The olemenbs ol Lhe digpersion mabeix in Lhe Poelor
analysis model shonld mdke sense s measures ol association.  We know
that multinormility is o sul'ficient condition for correlalions
(tetrachorics and polychorics) to make sense as association measures.
Is there any other correlation coefficient or association measure that
would be used in situnations where Lhie Lelbrachorices and polychorics are
not appropriate?  In Lhe nexl sceebtion we will consider Lhe problem Cor
binary data and inbtroduce the mailn Lople of the thesis Lhat io Lhe

C-type distribution as an underlying model f{or categorical variables.
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1.3 'The C-type distribution as an underlying model for cateporiend
variables

P, o unul.im_',l-m?y Lables cane

Viippose Lhab Lhe observed G Labbes Por binaey vaeiables have
been tormed from an underlying continuous bivariate distribution and
Lhal, Lhe dichobomices are 'ormed by enbbings Lhe morpinnl disbritmbions
in some point of dichotonmy (Lhreshold). Sinee Lhese poinbs are ol'ben
arbiteary, we should have @ bivariabe disbribubion Fonebion wiblls Liee
property that when it is cut anywhere by lines parallel to the axes Ki
and Kj, the probiabilities in Lhe Lour quadranbs viowol s s Pl
conbingency table would imply o consbant associntion.  'The agsocialion,
in Lhis case, is measured by Lhe cross product ribio b = ;’l!"i"'/i’i'lpl.'
whiere Lhe |-i ,#';: arce Lhe probabibibies in Ly Poue opendeanbes.

Pesvesion ad Heron (L9 3) showed Lhat it i Wiy potsii bl L
construct o surthcee lor which Lhe parnmeler ol associalbion ) is
constant for every Tourfold division. 'his disteibution was cilled Ghe
surlice ol constant associnbion.  Plackett (190%) reinbroduced Lhe some
distribution as i one-parameter class of bivariate disbributions {'rom
given margins. Mardia (1967, 1970) gave the distributional properties
of Lhis class and termed it the Contingency-type distribution or
briet'ly , "C-type". lPFor reasons that will be clear later, we choosue
Mardia's nomenclature, as the best way to refer to this distribution.

In Chapter 2 we shall present the C-type distributions in detail,
including @ hislLorical nole.

The parametoer off associnbion, ¥, o' Lhe C=Lype distribution ia

estimated, in a 2x2 contingency table, by the cross product ratio (odds
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ratio). For any member of the C-type distribution family, the
correlation coefticient 1u o function ol P only.

Chambers (1082) poinbs oul Lhat Lhe C=type disbribution (nr‘, n he
vl b ib, consbant odds=distribution) underlics ol the corrcelation
cocl{licients Lhal are tuncbions of H. Uy an analopy with the noame of
Lhe disbribution, we shall call all correlation coetflicicents Lhal. are
functions of the cross—-product ratio as "Contingency-type correlation
coellicients".

Mardia (L9OT7) presents the moment formilace Cor Lhe C=type unilorm
ind Lhe C=Lype normal distribubions, having uniCorm aoed normad meergpins
respectively .

We have seen in section 1.4 that the logistic distribution
plays an important role in latent Variable Models.  1In Chapler 3 we
compare the C-type logistic distribution with Lhe C-type normal and
bivieriabe norml disbreibabions.  We ndso sbudy Lhe correlabion in Lhe
U—Lype logistic disbribubion. We present, the disbribubion ol Lhe s
of two lopgistic random variables and use this distribution as the
margins for the C-type, getting one more member of the family: the
C-type sum-of-two logistics distribution. Using numerical methods we
obtain the distribution of the sum of Lhree logistic random variables
and the sam ol o normel plus oo lopdisbic random voriables. The U=Ly e
distributions with Lhis mixture of distribubions to Che meeeprinals e
compiared with the bivariante normal.  'lhe resulbs are presented in
Chapter 3.

The assumption of an underlying C-type distribution for data given
in 2x2 contingency tables lead us not only to estimates of the

correlation coefficients that are muich easier Lo caleculate than the
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Letrachoric corrclabion cocl'licient bul nlao provides oo convenionl

approximition Lo Lhe normal mode L.

RxC contingency tables case

Consider Lhe pencoral canse when Lhe dabie aore piven o oan 1!
conbingency Lable, having marginal varilables with Roand C ordered
calbegories respeclively , thal is, when Lhe manilost variables ore
poly Lomows: rabher than dichotomous.  How should we eobimbe thie

parameber ool Lhe C=Lype disbribubion?  Mor Lhe bBiney coe, we

3 hirye:

seen in Lhe Insh secbion Lhal g is o esbimabed by Ghie sample crons
product rabio rom Lhe %2 Lable.

n Chapler 3 we present Ghe neeccimuan Dikel Dhood mebhod ol
estimating the parameter ¢ for data piven in an HxC table. 'The
Likelihood cquations are derived and Fishor's seovings mebhod Boouged Lo
obtain an ibernbive solubione e aoymplobie shondard cervors of Lhe
esbimaite are also presenteds A compubler program or Lhe method is
enclosed.

The maximum likelihood estimate of P is then used to obtaln
contingency-type correlation cocfficients for polytomous variables.

Numerical examples are given and related methods compared.
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1.4 The Underlying Variable Model based on C=Lype distributions

Assuming the C-type distribution as an underlying model for the
# *
manifest variables Xy and xj, introduced in Section 1.2, we obtain
simple methods for estimiating the parameter of association of the
underly ing disbribution for variouws lorms ol Lhe mivrging
distributions.

A Facebor anndysis model coan be PibLed wevings Lhies el imabed
conbingency =Ly pe corrclabion coetlicienbs For binary or poly Lomous
variables as inpul f'or a slandard Faclor analysis progran,

This approach leads to an alternabtive method of factor analysis
for calbeporical datic with Lhe pracbical advanbogee ol o poeeals pedoebion
in computing time compared with other methods of factor analysis for
categorical data. 'lhis fact allows the method Lo be applied Lo larpe
e et

In Chapter 4 we give a brief account of the models and methods
developed for factor analysis of cateporical data.

in Chapler 5 we annldyse several daba sebs wilh binorey moni lest
vicriables wsingg Lhe correlabion mebhods basod on Lhe =Ly e
distribution and compare the results with Bartholomew's I'nctor analysis
for categorical data models.

In Chapter & numerical applications are prescnted Cfor polytomous
ditive Mo compare Lhe factor analysis resulls Cor Lhe conbingeney =Ly poe
correlation coelticients versus 'nclor analysis resalbs asingg as inpul
the Pearson product moment correlation coefficients.

lefore the ndvent of methods for polylomouns data Lhese
variables were handled by transforming them into binary variables and

then using one of the methods for binary data. This may lead to a loss
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of information that can be serious if the number of catepories is

relabively larpe.s  Usingg Lhe conbingency=Lype correlation cocllicionls,
both l'or polytomous dabn and tor Lhe binary version ol Lhe gome dibn
sel, woe compare Lhe resulbs in Chopler !

e

On usingg Lhe standord melhods ot Pacbor Anaclysis Por ansdyssing: Lhe

data we notice a high frequency of Heywood cases, not only tor
conLingency-Lype correlialion coetllicients bul wlso for other
correlnbions malrices.

The oceurrence ol Lhe jmproper solubions in

ncbor analysis is nol a4 rare evenbt, nob only in our exiunmples bul,

in
nany other netor analysis examples in Lhe Literntures  In Lhe ool
chapter of the thesis we review what is known about lleywood cases in
Lhe literature and we study the probability of an improper parameter
esbimite for diftferent values ol the sample sise, number ol manilest
viariablbes and nomber ol faclors. sy svimu o boesed dabinn wee Ly Lo
idenbily Lhe situabiom: where Lhe ocenrrence ol

improper solubions in

factor analysis is more probable and how Lhey can be avoided.
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CHAP'TER 2 ¢ THE C="UYE DLSTRIBUL LON

2el  Detinilion

By developingg an analogy wilh Lhe cross product ralio, one off Lhe
measures ol associabion in a %2 conbingency Lable, Plackett (1965) hs
presented ooelass of bivariate distribubions Cor given marping and just
one parnclor Lo measure Lhe degree ol associalions  Mardia (1067 ,1970)
has Lermed Lhis class ol distributions, Lhe Conbinpgency =Ly pe
distribobion or C=Lype disteibubions  Fooedin logs adoo derived Lhe
momenb=rorm L appropriabe Lo Lhiis e lass ond Lhe disbribabionad
properties.

The origins of the C-type distribution can be Lraced back Lo Lhe
beginning of the century in a study about theories of association by
Pearson and Hepron (LO13) and Penrson (1013) where Lhe disbribulion wis
el besd "Lhee sueCoee of constant s b iom™. Medamsuon (l.‘Jl 4}
consbrucbed Lhe distribution For Lhe eopecial ease o normal omaoepings
and constant Yulean coefficient of association. Photographs of the

1
v

surface, the regression Lines and the contours were also shown by

Penrson (LUls).

Uuppose we hive Lwo random variables X oand Y wibh disbribabion
tunction M(x) und G(y) respectively, with joint distribution lunction
H(x,y). Any bivariate distribution with d.t.l and marginad do s Foand
G can be dichotomized at an arbitrary point (x,y), giving o @xi2
contingency table.

Let, i’i.]‘ i,j=1,2, be the probability that an observation falls

into cell (i,J) as determined by the dichotomics ol polnt (x,y).

Putting Py = i, P1o = F=il, Py = G-l and F’:32 = 1-l-G+H, we have the

CXCAAL



26

data summarized in a 2x2 table as shown below:

J
1 =1l I
X
G-l 1=l'={ill 1=
G [

The cross product ratio, P, for Lhis table is priven by

(1 =P=GHI)

V= (=) (G=11) (2.1)

and from (2.1) we have the equation:
(p=1) 2 1 + (¥-G)(yp-1)} 0 + G = O , >0 (2.2)
Plackett (L965) has shown Lhat when M oand G oare given, ¢ in
a monotonic increasing function of H, taking the value zero when
Ho= max (U, 040=1) nnd the value o, when B o= min(M,0)e Henee for piven
PG and Uy Lhere coreespormds o singde B Lo sabisty
max (U +6G=1) < U < min (I',U) (2.3)
Merdin (1907) considering (2.2) and (2.5) has shown Lhat, Lhe only
possible root of Lhe quadralic cquation (2.0) iq priven by
b — {88 e l|.p(l|:—1)l"{'.}|'f'l {oCn=1) ) (prd)
= (2.0
FG (p=1)
where S=1+(F+G)(p-1).
The expression given by (2.l) defines the C-type distribution. when
X and ¥ are normal variables, the distribution pgiven by this expression
is a C-type normal distribution and when F(x) = x and G(y) = y we have

the C=Lype unilorm distribution.

Mosteller (1068) also ol lowing Plackelt (1965) b derived o
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similar eoxpression or whoalo he el led Lhe inviariant disbeibabion,
becmeie Lhal disbribabion b Lhe properly Lhol, wherever L
dichobomie:s are mude, Lhe probabi LiLies in Lhe Pone gquadeanto, vicwed
as o conbingeney Lable, have Lhe invarianee property.  Consogquently Lhe
crons produch o eabion aore Lhe some,  Dndependently o Lhe poinh ol
dichotomy .

Using this idea we can suppose an RxC contingency Lable which we
imyine Lo have been Cormed Crom o C=Lype disbtribubion wilhe paorameber
ol associalion p.  low should we cstimebe @ from Lhe doba griven inoan
od! continpgency Lable? o Lhe next chaplor we st b presents Lhe
maximum Likelihood method ol estimation ol Lhe parimeler ¢ Lor U
Lables.  'The resulbs are Lhen used Lo obbain simple method: of
estimation of the correlation coeflicient for polytomous dili.

In Lhiis chaplor we present an account o Lhe coarlicr reaeareh
relicbed Lo Lhe C=type distribntion (Becbion @o2)e In Vesbion 0.4 we
review Mardia's resulls abonl Lhe correlation for Lhe C-Lype unitorm
and C=Lype normel distributions, obher correlation cocllMicicenls or
data piven in a 2x2 contingency table are also reviewed. A new membor
ol Lhe C=Lype amily Lo studied sond Lhe correlabion in Lhe C=Lype
logisbic disbribution is presented in Decbion ol

The distreibabion ol Lhe sum ol Lwo logisbic random variables i
obtained and wsing Lhis resull we oblain Lhe C=Lype sum=ol'=Lwo lopislic
distribution in Section 2.5. Comparison of the C-type distributions
with the bivariate normal distribution are presented in Seclions 2.6

and 2.7.
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2.2 lIkarlier Research

O nddy sbngy conbingeney Lables we oy disbinsnish Lwo Kinds or
problems. IMirst we may be interested in analysing Lhe Lables according
to the pattern of association between Lhe Lwo sobs ol enteporios.
vevondly o owe mny bee inberesbed oo enbimabing Lhe ansocinbion ap
corvelabion parmumeecLler Crom Lhe Lable.

In an KxC contingency table Lhe associabion paramelber could be
esbimited by any of Lhe (r=1). (¢=1) cross product ratios Formed by
dividing up Lhe Lable in 2x¢ sublables. P Lhe anderlying disbribution
is the C-type distribution we should expect approximately equal values.

Wahrendorr (L980) deriving Lhe asymplolic disbLribulion lor
(r=1)(c=1) cross product rabios, pives o stabistic For Lesting: Lhe
equality of the estimates of the parameter of association in an KxC
table. 'This test is also useful to determine whether the hypothesis of
one porameber consbunl associnbion model io pliacsibles Wihirendor !t aloo
propose:s o "weiphtod averagee oobimmtor” ol Lhe paraaeLer hased on Lhe
(r=1)(ec=1) entimtors.,

Goodman (Lof) presenbs o olass ol nusociabion modelss Une ol
these models, namely the uniform association model was subsequently
called the distribution with "constant local assoc intion" (Goodmun,
1981) as Lo distinguish 1L Cfrom Lhe constanl associalion model
introduced by Pearson (1913). Goodman (1981) shows that the constant
local association model apgrees closely with the bivariate normal
distribution and he proposes a polychoric correlation coelticienl based
on his constant local association model. Goodman's models form a class
of log linear models.

Ogborn (198h) compares Goodman's local associntion model with the
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cumulative odds-ratio model of uniformity of associabtion presented by
Withrendort (1980). I hiis pavpery Ueborn shows Lhool Lhe comua ok ive
model can be adapted to the deletion of cells, in order to improve the
it of the model in some special cases, as for example, For soeind
mobility dabie  Opborn alao proposes compubational aolporithm: For hobh
models.

bale (1984) also compares Lhe local versus pglobal or cumulabive
models for bivarialbe ordered responses wilh emphasis on Lhe dilference::
between the tLypes of associations rather tLhan the paramcterizations.
As Dale poinbts out, local association parameters are cross ratios of
a2x2 subtables of adjacent cell probabililics, while plobal ansocintion
paramebers are crosg=ralion ol quaddenanl probabibibiess Feobe pednbes
in passing, the pglobal and loecal models wilh univariate responsos
models such as the pgencralized logistic model described by HeCul Lagsh
(1980) which miy be considered uu an univariate speclalization ol Lhe
plobal association wodels.  According Lo e (198h), Lhe loend
innocinbion model b5 npproprinte only iF maeinal eabeporion are wel |
delined.

As we observe, several names for Lhe same model have been used in
Lhe literaturce: surtiace ol constanl association (Pearson, LYl 3); class
of bivariate distribulions with parameter of association P (Plackett,
1965); Contingency-type (or C-type) distribution (Murdia, 1967);
invariant, distribution (Mosteller, 1968); constant-odds distribntion
(Chambers, Ly82); cumulative odds=riatio model of unilormity of
association (Ogborn, 1984); islobal association model (Dale, 198h).

We shall prefer Mardia's nomenclature as it has the advantape of

specitying completely Lhe members ol Lhe hamily ol distribubtions in
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this class, as for example when we uuse Lhe names C=Ly pe normil
distribution, U=Lype unilform disberibulion, cle.

Moul ol Lhe above ciled work gives emphasis Lo Lhe analysis ol Lhe
pattern of associalion in Lhe contingency Lable. 1In Lhis thesis we
shall use the C-type distribution as an underlying model lor
cateporical data and emphasis will be given to the estimation of
correlation or associnlion parmnmeters Urom Lhe conbingency Lables,
Corrclabion coctticients as funcbion o Lhe aassociabion peorineber off
Lhe C=Lype disbribubion, which we shnll coll conbingeney =Ly pe
correlation coefficients, will then be used as inpul for lactor
analysis methods.

If the bivariate normal distribution is supposed ws an underly ing
model for categorical data, earlier research concerning the estimation
ol the latent correlation may be summarized as follows.

For binary dati, Lhe Letrachoric corrvelabion cocl'l'icionl,
introduced by Pearson (190l) as a measure of bivariate normal latent
correlation is a well-known measure ol correlation. An alporithm for
iLs canlenlation hag been desceribed by Digvi (LO79) and o e ly
accessible computer routine is available on the BMDP statistical
analysis system based on the method discribed by Brown and Benedetti
(1977).

A peneralization of the arpuments behind the tebrachoric
coel'ticient Lo polylLomous variables has been presenbed by lameasber and
Hamdeun (LU0H) o O using Lhe Lheory of orthonormi!l functions, Lhe
correlation between latent variables under Lhe normality assumplbion in

estimated I'rom a pgeneral HxC contingency tables
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Olsson (1979) has nsed Lhe moegiman Vile b ihood mebhod for
esbimibing Lhe polychoric corrclabion From dichie piven fnoan Kxt? Lol
also with Lhe normuliby uspecilication on Lhe lalent response varinbles.
Olason's mebhod o oo preneralization ot Lhe mebhod presented by el i
(1902) ror ¢x2 and 3x3 conbLingency bLables.

Olsson hivs derived his polychorie correlabion esbhimebens nsingg Lwo
mebhoda: Ghee Palbomox b Like lihood esbimabion mebthod, when Lhe
correlation coefticient and the thresholds are cstimited
simultaneously, and the "two-step maximum likelihood" estimation, when
Lhe Lhresholds are compubted rom Lhe observed morpina] proportion:.

The comparison ol Lhe esbimubes, asing, Lhie Lwo mebhods , For penereichesd
sopletiy an i s presented in Olason (P9fo, paisi=liny) ) shows Lhole Lhe
Lwo mebhods are practically equivalent.  le alvo poinls oul Lhat Lhe
full maximum likelihood esbimite may lend Lo difterent threshold
estimates for variable x when pxy is estimated than when P is
estimibed.  The "Lwo-step maximun 1ikelihood" eabimd.ion mebhod has Lhe
advienboge ot reducing Lhe compubalionnl work.

bancasler and Hamdam's method and Ulsson's method are equivalent
for 2x2 tables when the telrachoric correlation coefficient is being
estimated. The method proposed by Olsson (1979) is utilized by Muthén
(1983) in his three stage estimation method for structural equation
modelling with cateporical variables. A computer roubtine for
evaluabing Lhe polychorice correlation coefticient i available in Lhe

LISREL package.
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2.3 Contingency-type correlation coefficients

For ox conbingency Lables various measures ol correlnlion have
been suyprpesbed in Lhe Literabure and most ol Lhe measures are
funclions ol Lhe crons productl ralio o) ]'liii;':'/l‘l;‘lll'l Z

Yule's cocllicienl of associabion Y and his cocllicienl of

collipation 1-y are given by

(p=1)/Cp+l)

(lb ’i—-l) / (!IJ 'ﬁ'l',l.)

L

i

r-.Y

Poarson's Qg which in an approximblion Lo Lhe Lelrachorice
correlation coellicient is

Q3 = coz;[ﬂ/(lb!'&l)]

Mardia (1967) studies the correlation coefficient for the C-type

uniform distribution and obtains

p () = (p2-1-2plogp)/(p-1)?

1l
The corvelation in Lhe C=type norma] distribabion s aloo considered by
Mardia (1967) and he presents the values of the coefticient p“(rja) for
various values of § (see section 2.4).

Chambers (1982) also considers tLhe correlation coctficient of the
C=type uniform and C-type normil distributions and observes that
severil ol Lhese measures ol associalion can be closely and
convenlienbly approximited by a generalizabion of Yule's cocllicients
given by

by = (wv -1) /(v +1)

According to Chambers for v = 2/3, we obtain an approximilion ol

the correlation coetticient of Lhe C-type unitorm distribution to

within 2 per cent,

pu(w) ® T3
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and tor v = 0.0, we obLain an approzimation of Lhe correlation
coclticient of the C-Lype normel distribalion
=
{}N{lb) 0.6h4
Chambers coel'ficionl ¢ io very nuefnl nolb only o providing,
v
reasonable esLimabes Lor Lhe Labenl correlabion coel'l'icicent, ol Lhe

underly ing, C-Lype disbribubion bul also 'or Lhe bivoariabe noemol

distribution. In this case,

I

ro.y = 0T /% ¢ 1)
where ¢ is Lhe observed cross—product ratio for Lhe 2x2 table, is o
reavonitbly unbinsed esbimabe ol p or Lhe bivariabe norml
distribubion, accordin, Lo Chambers (1O82) .

Bishop, Fienberg and Holland (LY'fY, Chapter L) pive basic
properties of the cross-product ratio and also consider measures of
associntion based on the cross—-product ratio, riven by Lhe generil

formula

( ) = “(lb)_.l-
e )+l

As Chambers (L982) points oul, Lhe C-type distribubion underlics
all the coetficients determined by the parameter i and by an analogy
with the name of the distribution we shall call all correlation
coefficients that are function of the parameter of association W as

"contingency-type correlation coetfficient”.
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2.4 Correlation in the C-type lopgistic distribution

The logistic curve was first used as a description of population
growth in 1920 and was called the "logistie function” (see Ashbon,
1yT72). ‘'fhe logistic distribution function is given by

R s sl L (2.5)
l+0—(ﬂ+ﬁx)
Lifferentiation yields the form
r(x) = ar(x)(1=r(x)) —n L X D (+:.t)

Bivariate logistic distribabions hoave been sbhadicd by Gomlbe ]
(1961) motivated by the fact that the logistic distribution closely
resembles Lo Lhe normal, bolh being symmebricol.  'Two ditrCoerent,
bivarinte lopistic distribution were considered by Gumbely bul For bobh
distributions Lhe correlation coel'l'icient is either constanl or
restricted Lo Lhe interval (=0.3045 0,400),

I Lhiis section we shall sbudy Lhee correlabion in bRl U=lLyjoe
logistic distribution, which is a member of Lhe C=type Lamily with
logistic marginal distributions.

Mardia (LY(0) has shown Lhat for any conbinuous distribution

core(X, 1) :TJ{@ { {m(]l—i-'l:] dxdy (2. 7)
where 5,0, are the standard deviation, H is the joint distributlion
function of x and y and I and G are the marginal distribution
functions. Consider the standard logistic distribution with «=0 and
8=1 in (2.5) which has the standard deviation given by a/V/3 (sce
Gumbel, 1961). 'lhen

F(x) = [l+e—x]"1 and G(y) = [1+e"3]_l

Using the fact that for the logistic distribution
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A =lnl - In(l=F) and y = 1nt - In(1=G)

the integral (2.7) becomes
1 1
o 3 [ ] (H=rc) _aF e . (2.8)
corr(X,Y) =<5 7 7, Fl=ry  GlL=)

where I i Lhe C=bype distreibntion function piven by (CuJh)o Namericend
intepration of (2.8) was pertformed using the NAG subrouatine DO LB
which evaluates double inteprals wilh Lhe Guoss=lependere formla o0 e
program uses 2h nodes in cach dimension.  'The numerical values ot Lhe
correlation coellicient plt(lb) ol' the C=Lype lopistic distribution are
Lhen Labulabed for various values ol Lhe parameber ol associnbion o and
presented in table 2.1.

In order to compare the values of the correlation coefficients ol
the C-type logistic distribution pL('(b), obtained by numerical
integration of (2.8) with those of the C-type normal distribution,
ONH') and C=Lype unitorm distribation, p”(lb), obbivined by Wodin

(o), we alao present F,N(‘ju) nnd pU(‘[r) Vi el 27 &
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Table ?.1 - Correlation cocf{ficienls Dir( 1) s p Lip) nnd f’l,.(._'l’.)_

i P J(II!) pN(!D) n“('l'?)
1.0 0.0000 0.0000 0.0000
1.l L0290 L0303 L0318
st L0550 L0580 L0060
| LU0 L0833 LOHY3
1.4 . L0220 OO LA
l.Y <1227 .LoBh o1 3k
1.6 L1h20 1H86 + 1555
Lt L1600 LBTY LArue
1.5 LLTT0 1852 1937
Loy L1929 L2018 1L
el SO e 1) P i
e arn Jir35r3 AL
2ap 23506 Gy L0
2a3 L2hih 2507 21k
2.4 2600 2723 L2800
2.5 L2722 L2844 29771
2.6 2833 <2960 L3091
ZT 2939 3070 « 3206
AR L3040 2TS 3305
2] 338 3 b
3el) < 560 AL a TS
Yoy - sho LY | « 0
3.0 o o METATR I
40 o S < Ugy ol
3.8 L3806 L0532 Loy
b0 LLool J1ht Ji3h
Yo 127 1300 il
bl J2h6 Jhes L 60k
h.6 4358 539 Jiper
h.Y Lih65 L6648 L4835
50 L4566 A752 okl
%5 RV 989 518k
6.0 5004 5201 5h00
6.5 5189 .5390 +5592
T.0 <5357 5561 SO0
TeSH 5509 5716 0923
8.0 5609 .5858 L6067
8.5 STT8 .5989 6199
9.0 5897 .6110 .6320
Gub L6008 6221 6433
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10,0 MR -0 35y Lt
81 [P 0 a1 3 ™ 01 (599
Fate ) LOh Lab' SO
1h.0 O rho 005 J6G0
1640 LO96Y ol 183 390
18,0 o159 O SILTH
O, Wi S o 350
290 L0k 3 JBhy L0 30
0.0 ST88e 080 3003
3900 LB068 L2260 L33Y
i, 0 210 Lhoh 53
LU0 JShhy Gy Q)
THel) 80l Loulh L0088
LUV L0 Jibhh PG e G
150.0 RORRIY L0360 Lhyy
SO0 3y Lol L 0Y
300.0 .95 3h RPN 96BN
hOw.0 L0 L6 Ly
GOV O RN 2L LY
1200,0 98306 L9870 NFIT]
2000.0 989k .991Yh 993k
“a 1.0000 1.0000 1.0000

Cheambers (1980) hs presenbed oo pencrad ibaabion off Yole's
coefficient ol association Lhat is a4 simple {function of the parameter
of association 4, as we have seen in Section 2.3. Chambers' formula is
given by

e,= (Y =1/ +L).
FoLlowing Chinbers, we observe Lhal Lhe correlabion coelricicnl, for Lhe
C=Lype Logistic distribution can be conveniently approximited by r
for v = 0.61, that is pL(w) * Ty 61 to within 2 per cent over the whole
range -1 < pL($) < 1.

A belLter approximation, however, is obtained by obscrving
that pbiw), obtained by numerical intepration yields values a ew per

cent smaller than pl(¢) and that, for given y,

pL(¢) - putw) [0.954 + U.Ohb]pﬂ(m)|3] (2.9)
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..... WiLis
vaalid for relating pN(l[J) with pU(rb)s Lhat is
pu(w) = pylw) [0.954 + 0.046[p (y)]3] (2.10)

On substituting (2.10) in (2.9), we obtain
DL(¢) ~ 0.910|p“(¢)|+n.032|p“(¢)|u+0.uuT|p”(¢}|7+U.uu|1p”(¢)|10
(1)
The approximabion given by (2.01) piven viduen for Lhe correlabion
coefficient ol the C-type logistic to within t0.008 of p]‘(ﬂJ} {or all
vitlues ol .

The expression (2.010) has Lhe advantopge Lhal, iL @0 o elosed Corm
I i

for pL(w) if we consider that

Pl - 29eny
pylw) = s T s (2.12)

Therefore, substituting (2.12) in (2.11) we obtain a very good
approximation to ph(w) without using numerical integration routines.
In able 2.2 we present the values ol Lhe correlation cocllicicenl
for the C-type logistic distribution obtained by the approximation
formulae r

QL and f)L(IIIJ given by (2.11) for several values of {. The

Lrue values ol pl(lb) are also presented for comparison.
1
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Table 2.2 - Correlation coefficients for the C-type logistic
distribution obtained by approximite formulae

Iixact value Approximate value Approximale vilue
of ziven by given by
cxpresslion r -

b P (¥) (2.11) ank
1.0 L0000 0. 0000 0. 0000
i .l‘_;',lh JA¥a Sty
Lh L1020 W N T5T8
1.0 BRI NEREE Ak
1.4 P Y Aroh LT
20 UMY L L0
2.8 <2350 23N 2359
2ol L2006 S50 608
2.6 2833 2821 283
2.8 . 30h0 3027 30h1
3:0 W 323L oI w3231
W0 ool 39873 « 3993
by ) AiH06 Jisht Luhy
Gl . H00k Lol iy
Tl T g 5 3ho .9 3
8.0 .H0hY H03YH L5010
Y0 5897 LH 886 841

1L0.0 o 31 Il 0 L0103 RS
12.0 L6h62 .6h6o 6398
14.0 Lotho LOThG LG6H6H
1G. O LHOGH OY(Y LY
1.0 s L L A L ST
0L SR UL i)
50.0 (08 (923 SOy
HO,0 21y LBl LB09 3
0.0 LB8hhg 8508 B316
100.0 L9007 L9079 8863
200.0 <9379 <Ohky 920
300.0 953k 95971 SOho2
L00.0 9621 967Y LOhY6
600.0 LUT1Y L9768 960k
L200.0 L0836 L0869 9739
2000.0 9894 L9915 L0808
o0 1.0000 1.0000 1.0000
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2.5 'The C-Iype Sum-of-two Lopgistics Distribution

The underlying varinble facLor analysis model, presenbed in
section l.2 is given by

x = A

bS]

+e {2.13)
where x is the continuous response variable underlying Lhe cateporical
manifest variable.  '1his model can be (itted nsing only the correlation
coollicients (measures of aasocinbion) of Lhe bivirinbe disbeibalions
(Xi, xj) estimted from Lhe observed RxC conbingency Lables which we
are supposing have been formed by the underlying continuous bivariate
distribution.

Ir Z and e are both normal, the joint distribution of (xi,x_) 1eg
bivariate normal, which is not the same as the C-type distribution.
However, since Lhe pioneer work aboul Lhe C-Lype distribution, or
surtace ol constant associntion, by Pearson (F013), he sl many obher
witl e (1;1':‘, PFor ecxmploy Dlackebb, 1005 Mosbel Ler, 1908y Mardia,
LY6() have shown Lhat Lhe C=type normal and Lhe bivarianbe normul ree
similar.

In the next sccetions we shall review Lhe wiy Lhe bwo distributions
were compared, suppgest o new form ol conniderin:s the equivadence
between Lhe parameters of both distribubions and compare Lhe hivariobe
normal with some other members of the C-type family as, for example,
the C-type logistic, the C-type sun-of-two logistic distribution. The
reason for choosing such distributions is explained below.

We have seen, in Chapter 1, that Hartholomew's response function
(K1') models, which include the logit/logitl model, the logit/probit mode!
and the probit/probit model are equivalent to the underlying variable

(UV) model for the binary variables case. (Partholomew, forthcoming).
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Bartholomew's models will be reviewed in Chapter b, but now we
consider, l'or simplicily, Lhe binary coase and Lhe one=Coaclbor model.

The response function version of the model is given by

G2 = o, +oa,, HTL(, 121,200 2.1k
() = ey + ey HMY) i=1,2,000,p (2.14)
where G=1and =) are inverse distribution functions of symmebricnd

random variables wilh zero mean and nnil varinnce. Iii(y) = l’r'il(i:lf,‘{}

i5 Lhe response funchion and y is unitorm on (O, 1)
The cquivalent UY model Cor bhinaey doba and ondy one nebor o
K. = N o e, Lemliprths e oy (el 5y)
i i i

where = and ”i arce independent with zero mean, v hs anit varianee and
i = o & - * v
Var(ei) = ¢i. I'me binary manitest variable X, may be def'ined as
%* e % g ;
. = 1 if x., € 1. and x_. =0 otherwise
1 1 i &

where Ti is a threshold value.

he distribution of * Lo Lhe UV model corresponds Lo Lhe
distribubion G in Lhe BIY mode!l and Lhe disbribubion ol » (1.!“ 1'.‘!|'1,Hi')
corresponds to bLhe choice of H in the R model. (We will present
lartholomew's lormal proof of the ecquivalence of the models in Chapter 4).

In Lhe Logit/ Llogit model o Barbtholomew (LOHO), G oand =1 ape
both logit functions, so this is equivalent to taking the distribulion
of » and ey in (2.1%) as logistic distributions. In the logit/probit
model (G-1 is lopgit and H=1 is probit), we have z normal and the error
(ei) logistic. If we use the logit/logit model or the logit/probit
model what distribution should be supposed for the variable xi? Given
thalt, we assume that the distribution ot x. 1ls Lhe distribulbion ol Lhe

L

sun~of-two lopistics or the distribution of the sum of a normal plus o

logistic random variable, how close is Lhe bivariate C-type sum-of-two
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logistic, for example, to the bivariate normal distribution? 'The
answer to these questions is the main purpose of this chapter.
Betore comparing Lhe C=Lype disbeibabion we shal b obboia Lhe
distribution of the sum of Lwo logistic random variable:s.

The distribulbion ol Lhe sum ol Lwo independent
logivtic random varinbles

Let Xi, i=1,2 be i.i.d.r.v's with standard logistic distribution.

Then
— j —ta )
¥(x.) —l_—}i-—- By
* (L+™"1)
-X .
£(x,) = F(x, ) {1=F(x,)] = ———
1, i 1 (l+C_Xi)2
E(X.) = 0 and Var(X. ) = Hzfq
o 1

The Loginbic distribulbion aind iLs propercLics are complelely
deseribed in Johnson and Kotz (1970, Chieprtae 255
The disbtribution of Lhe sum of Lwo independent random viriables
cun be obLained by Lhe distribution l'unction method, Lhat is:
Let ¥ = Xl + X2

then

(y )

1l
—

l"x?(.y-xl) Uy l(x,) dx,

= | 1 . e
—tn [l+e-(y_x1)] (1+e—-x 1)2

Substituting = = 1 , we have
1.'I'(.’-x1
1
¥ly) = [ i, dz
0

[1+e 2/ (1-2)]
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1
I'(y) = f . O dw
9 14(e ™V -1)z
1 1
ik
= f duo - f
0 1+(eV-1)x 9

intoprabion tor ralionnl

Lubhy Vol.ll) we have
1

1+l =1)z (¢™¥=1)

Fanebiong (e,

L

dz (2 .16

l+(n—‘y-—l)?.

ey I'}(:l”]!'ll'.‘

Log|l + (e=y=1)z|

The second integral in (2.16) muy be solved considering Lhe idenlily

Therefore

oar

which i
standard
The

Lhoen

The
is given

function

CXC AAP

7 = 1 ]
(e ™oy (Ve (Vo)1 (e™ =1)2)
I"(_y) = (—,k) - 1 4 1 - (".‘/)
fe™=1) (™1} (e V=i} (Vi)
w(y) = k - yn_‘y —0ly <m (2.17)
(1)  (1-e™)2

Lhe distribution unclion ol® Lhe
logistic random variables.
corresponding density function is

t(y) = ye Y (1+e™) s

(1-e™¥)3

,
2e

(1-e7™)2

-.n<3( < m

sum ol Lbwo independent

obtained by differentiation,

(2.18)

characteristic function of the standard logistic distribution

by H(ultxJ = Mt cosech Iit.

of the sum of two independent logistic r.v.

E(elty) = (1t cosech mt)2

Therefore, the characteristic

is given by

UrzGs
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T™e mean and variance of Y = Xy + X, are
; ) ‘ n?
FEY) = O rned Ve (Y) =g
The disbribution o Y is symmebricil aboul, ¥ = 0 and ol ) momenls ol

order odd are sero.

The momenl, peneraling funchion o Lhe sum ol Lwo logisbics 1o

piven by

My

2(0) = MX1+X2(G) = (N0 cosee M8)2 = [F(H+1)F(1—0)]2

Using Lhe expression

Tow
n(yr) = | 2 lOIBGM (8)
8=0

we obtain

4y
pyh) = i
I

therelore the first Ltwo moment-ratios ol Lhe distribution ol Lhe sum of
Lwo lopintics are

0]

i
1

/81 0.3
r(X%)
o'

3.5062Y .

i

1

Bz = a4

Finally, on using results of hyperbolic functions it can be shown
that the density lunction of the sum ol Lwo independent standard
logistic random variables can be wriltten as

t(y) = (1/2)cosech2(y/2)[(y/2)cosh(y/2)cosech(y/2)- 1] =—e<y<e

The distribution of the sum of three or more
independent. lopgistic random variables

Yet ¥ =X X % X, = + X
et 3 1 AE 3 YH 3
where Y2 = Xl + Xg

and Xi i=1,2,3 are standard logistic it.i.derav’ss

CXCAAP



Then, using: Lthe Munetion distributbtion method, we hove

l"_;(.k') / II‘Y?(y-x_i)[.}(.!(x*.)']x1

—tay

I
—
8
|
©
! s
=
I
S
ol
I
—_—
et
(0]
—
=
|
b
w
|
=
d
—
i
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Using a numerical intogralion rouline we can obbain the disLeibulion
runction ol Lhe sum ol Lhree logisbics (Me have ased NAG roubine
Gauss=Hermite yuadrature with 46 nodes).

The mean and variance of Y3 can be easily oblained:

3
E(Yj) =.§IE(X1) =0

V:u'('fj} ) VLI'(X = 12

The ehnracberistic funetion off Lhe s of Lhroo or morre

independent logistic random variables is also easily obLadined.

Lhen
it
k(e n) = (Mt cosech ft)N

and the moment generating function is given by
0 r
(e Vn) = My () = (10 cosec mo)" = [r(o+1)r(1-0)]".

Comparison of the distribution of the sum of two lopistics and sum of
three logistics with the univariate normal distribution

In order to compare the distribution of sum of logistic variables
with the normal distribution function we need to rescale the variables

such that in each case we have mean zero and variance one. We shall
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use Y/Uy when comparing the distributions.

lart, l"“(_\,') be the distribution funclion off Lhe sam ol noindependent
logistic random variables. So 1"l(,y) is Lhe d.f. of Lhe logistic, f"z(y)
1s Lhe dot'e of Lhe sum ol Lwo Llogintics, I 5{y] is Lhe dele 0 Lhe sium
ol Lhree lopisbic:.

In 'able 2.3 we present the values ol the distribultion funection

I"”(y)., n=1,,3 for some values of Y:/u together with Lhe correspond-
] I

ing, vidlues o Lhe norm ] distribobion.

TABLE 2.3 @ Comparison of some values of the distribution functions
for normal, logistic and sum of logistics.

X/UX logistiec D.F. Sum of two Sum of three Normal D.F.
logistics D.I. leyristics D.l.
0.0 OO0 HOO0L LuOon Lo
(e Lt HUh T HEh 300 O
. h O3l GOYY DY 30,000
0.6 ThE06 ‘t 3184 YRUISY T
0.8 L1016 80033 Torot THHLY
1.0 LH9be Hul'1y Bhoyyy B3y
19 LV § B Hyeyo S0 RUE:
L.h L2085 922360 bl DL
L6 RO gl ghory Ohbin
L.b LHb 320 o3l golinh ouhoy
2.0 LOTh1L 9TH2h 91619 a2y
2.2 U8 18h 98343 oBhy e GBo 10
2.0 U130 83902 99011 99 180
2ol LuLl3 QY278 9I3Y DU Sk
2.8 .99381 99529 99615 99'(hS
3.0 99569 99695 99765 99865
3.2 «99699 9980k 99858 99931
3.k 99791 998Th 99915 99966
3.6 .99854 99920 99950 99984
3.8 -99899 99949 99971 99993
L.0o .99929 99968 99983 99997

The logistic distribution has a shape similar to that of Lhe

normal. According to Johnson & Kotz (LU(0), if the cumulative
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disLribuLion unelion:s

1 =
plx) = 7T f e M du

and

p—

o
M 7% = Taclaais

of" the standardized normal and logistic distribution respectively., are
compared, we have

| 1 93 ) = o(x)| < 0.0228

the maximim value of the difference attained when x=0.T7. Also it is
shown thab Lhis maximam may be reduoced Lo oo vicloe less Lhan 00010 Ly
changimg Lhe seale ol x in Iy Lhol is
[¥[L5/16(n/V3)x] - #(x) | < 0.01
Comparing now Lhe cumulative distribution function of Lhe sam of

Lwo logistics () with Lhe normal we observe Lhind,

b, [(Ven/v3)x] = a(x)] < 0.012y

the maximum difference, d = 0.012h04, attained also when x = 0.77. 'his
result shows that the distribution of the sum of two Logistiec is more
similar to Lhe normal distribution than the logistic distribution.
Actually , when compared in a praph Lhe dil'lerences are imperceplible.
We then show in Figure 2.1 the difterences IFp(xv2n/V3)=p(x).  'The
dit'l'erencoes ]"?(x(\/:fn/‘/j)l')/l(n) = p(x) are also shown in Fipgure ol

In PFipgure 2.2 we show the diflerences between the cumulative
distributions of the sum of three logistics and the normal distribution
function ¢(x). In this case

le(nx) - $(x)] < 0.009034 for all x
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the maximum attained at x = 0.7. '"his shows Lhe expecled result that

the sum of three logistics has Lhe distribution more similar Lo the
normal than the sum of two logistics or the logistic.

The differences between the normal and the sum of lopgistices
incrense when Lhe geale of x is chanpged by mulbiplying Lhe elor
L/ 16 'Therelore Lhis procedure o nob recommended when we have sam ol
logistiecs (observe Lhe ineremsing difforences aronnd Lhe point, x = 1.8

in Migures 2.1 and 2.2,
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FIGURS 2,1 < COMPANLUOR OF TH SIM=0P=190 LOGETTTE DaFL WETIE TN HOUMAL boe,

Y omoxdmim A erenen hatween Lhie loglalie

Af. nnd the normal o1 0.0228(Tor x=.7)

2 -maximen dif{erence between the pum-ol-
s two loglntien d.t. Aand normal d.f .1
1
. 0,0124 (lor x=,7)
i S -maximum difference bebtween Lhe pom of
three logialicn d.f, and the normanl d.t.
0.0090 (for x=.7)
7
5
L]
o g
= e — e
~ e .
5
i S T"?{Jzﬂ /5!}-‘1’()()
] b 2 . ‘ T Y
~ . e __ R,009/16 ou'/s5 x) = (ix)
Flauies 2.2 — ONPARTZON OF THS SUM 00 THR o8 L0S10Tes Doit. WEITH THE HORMAL D.P.
P (o) ATED)
P (I8/16 T x) —P(x)
MAY={) 1y
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2.0 Comparison of the C-Lype normil with Lhe bivariale nornil
distributions

bince the C-type distribution or surface of constant association
witts; proposod by Pearson ol Lhe bepinningg off Lhe cenbury , severnl
sugpasbions o how Lo relate Lhe pariueber p o of Lhis disbribubion wilh
the correlation parameter p ol Lhe bivariate normal, have appeared in
Lhe Liberalaree.

Pearson (1913) compares bhe surface of constant nssocintion for
normal margins and Q = 0.6, where ( is Yule's coeflicient of
association, @ = (¢-1)/(y+1), with the bivariate normzl distribution
with parameber p = 0.9, 'Thal means Lhal he compare:s Lhe C-Lype normel
with ¢ = 4 with the normal surface with p = 0.5.

Plackett (1965) shows that the C-type normal and the normal
surface qyree well on relatingg ¢ and p by

p = cos{n/(1+/y)] {ely)
which also gives p = 029 Tor ¢ = h {(or p = =09 tor @ = L/},

Murdiie (LOOGT) sweprests L Lhe mont nabuenl wiy ol comparison
between Lhe two distributions should be relabing p wilh pN($) whe e
pN( P) is Lhe correlation coetlicient o Lhe C=Lype normel disbribution,
but he concludes that this method is nol so pood ng Placlketbt's melhod.
Mirdia proposes, then, anobher expression tor relating p and p which i

p = :;in{ % putqp)} (2420)
where pU(¢) i the correlation coefficient of the C-type uniform
distribution and is given by

pyle) = (92-1-2¢ log ¥)/(y-1)?

Mardia (1YGf) concludes that this method is better Lhan Plackell's

except for the points in the neighbourhood of (0,0). Using (2.19) for
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p = 0.5 we have §p = 5 or p = =0.% Lor = 0.20.
We hiave already discussed in Ueclbion 2.3 thal Lhe Chambers
coefficient (thunhl:r’, 1982) riven by

0.7h 4
] i (2.21)

r -~ -
Th
rpO.Th+

1

Paoin very pood cabimbor ol Lhe correlabion cocllMicient ol Lhie norme |
bivariate normel disteibulion. We, Lhercelore, propo:sie relabimgg o and p
by using the cxpression p = r..(h. For p = =0.5 we have § = 0.2266,

In 'ble 2.0 we present Lhe cumulative distribulion funelion of
the normal bivariate with p = =-0.5 for some values of x and y. We
compare Lhe normal probabilibics wilh Lhiose o Lhe C=Lyper normd
distribution tunction H{x,ys;¥) for three dilferent values ol ¢

¢

0.20 obtained by using expression (2.20) for relating p and P;

fuod
—
=

1l

0.2200, using expression (2.21) and

=

S

=
1

¢) = V.Y oblained by expreszion (CL19) for p o= =005,
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Table 2.4 : Comparison of Lhe bivariate normil d.f. with Lhe C=type
normal deof. for different pauramelers of ascocialion.

First entry @ Bivariate norml dof. with p = -0.%
vecond entry @ C-type normal d.{. with p = 0.20
Third entry : C=type normal d.f. with p = 0.22606

FourLh entry : C=type normal d.0. with p = 0.4

¥ Wb e ot sty
L0092 L0200 030 L0L85
e <OLE0 JO2eh SR <UL
2 L0132 L0l L0389 L0508
SO00h g S5 L0l 3 S0 5T
0313 L0012 L0461 PG
L0 RER RS 0L LOu6h L2
' L3N0 L0035 L0990 RELL
3T, L0665 Jdoze L1321
L0817 1452 2111 2617
~0.5 LOThT L1376 2096 L2642
2 L0801 L33 2133 659
L08h) R e L2160 2659
Loty 031 o 3 [ ik
[ Y} “y gt :.' 409 .‘ﬁ‘,ll.‘

0.0 Pl oLl ) Frdd$ 67 = f ‘ll.
L3 wto AL . 3100 Jihioh
. LOGYT 27HY « 385 ey
3l Lo T O
0.t 000! Jitto it 506
e LD Jieeu Slg a3l
2759 428 5513 .6318
« 31206 LHhG2 LOU6S SIS
1.0 I e LShe LO80L ATTL
) . 3760 Hhol 001 S
<364 <513 LOD0Y sl U
1.8 Jhs2 L6306 STTL LB6Th
e RRISH L6312 TN B6T5
s .6318 ST LB6T76
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Observims Mble 20h we cone hindes Lheel, eepoed Loz o8 Lhe me Llod
chiosen For relabing Lhe parimeborsy Lhe bivariabe normal aoaed Lhe =Ly pe
normil are similar. Our suggestion (Lhird entry in 'able 2.4) using
the expresision p = r..{,i for relating Lhe paramelers of Lhe
distributions has Lhe advanbige of pgiving better vadues (more similar
Lo those of the normal surface) in the neighbourhood of (0,0) compared
with Mardia's swrpresbion (second enbry) and Mardia's method is betber
Lhan PlackelU's method (Fourth entey) everywhere czecpl For Lhe points

around (0,0),

2. Comparison of Lhe C=type logisbic, C=Lype sum=of=two lopgistics and

C-type sum of three logistics with the bivariate normal distribution

LG L been shown in Lhe Tash scecbion Ghal Lhe C=Lype norml

distribution is very similar Lo the bivariate normicl and we have
sugeested using p = l".,{h for relating the parameters. We also have
shown Lhat Lhe marginal distribotions, logisbic, sum—ol=Lwo logistics,
sum of three lopgistics are very similar Lo the normal distribulion (see
Table 2.h4). We now compare the C-type distributions with Lhe bivariale
normils We shall use the same paramcber ) = 0.2266 for all members off

the C~type family.
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PTable 2.Y9

Comparison ol some members of

Liws C=Ly e

dintribubion

Crunily (p = 0.2200) with Lhe normal bivariate distribution
tunction (p =

First entry
Second entry
Third entry
Fourth entry
Filrth entry

: Normal bivariate d.f.
: C=type
¢ C-Lype
: C=type
: C=Lype

el

normal d.f.

sum ol 3 lopgistics d.f.
sun of 2 logistics d.f.

lopisltic dol.

yfﬂy 0.0 00 .0 oL
L0y L0200 030 L0h8y
L0L3h 022 L0389 L0528
~1le5 L0127 0239 .0 384 J0512
L0120 L0239 L0380 L0500
313 L010 L0901 < L2he
Lushy L6 3Y L0 L 1ani
-1.0 L0328 0613 L0904 «12hy
L0321 L0607 0953 J1227
L0301 05806 L0918 LG
L8 1Y Ly 2111 PO
| .obol Ly 21 4h S0
-0. 5 U0 RN % 13 OOk
L6 thio 2006 2513
( LSO 1390 200 L chot -
1 GG A (| 500 Lok
Ll 3 A4 B fol Ilih
0.0 1613 2765 1819 itk
L6403 2B 3834 hhisr
1613 2852 3899 ool
2731 192 Bah 6279
2716 220 Shat 6312
0.5 2765 h3hT 5638 64009
27849 Lhot Lo Ohlvy
2852 Y 51 LELH [FRS1SN |
3720 HLuye (ST515) Thvh
2761 549y 6901 Cerh
1.0 3819 5638 T0L9 (1 P)
3839 5695 7100 TQ05
3899 5856 7253 8004
Lol 6279 TT5h 8665
LLoh 6312 TTTY 86715
a5 LL8L 6409 1875 8725
LL8T 6Ll 7905 8733
L50h 6501 800k ah
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In Table 2.5 we show the values of the cumilative distribution
Tuncbions ol Lhe C=Lype i ly and Lhe hivierinbe novmnl dote For vicloes
ol x/(Ix cquinl Lo 05 0.%5 1035 1.Y% and Cor values ol y/nl.T from =1.% Lo
1.5 (Wa9)s Obsierving the Lable we conelude Lhat Lhe C=bype
distributions are similar Lo Lhe bivariate normal.  PFor o beblor
approximilion o' Lhe C=Lype logisbic we conld mulbiply Lhe viclue ol Lhe
marpginal random variables by 15/10 as it is done in Lhe univiariste
CiLlit e

We have compared other members ol Lhe C=Lype Camily considered s
marginal distributions, mixture of distributions such as the sum of the
logistic plus normal random variables, the sum of two logisbics plus
normil and Lhe sum of two normnls plus logisbic.  ALD Lhese maorpeinal
distribulion:s were oblained asing numericidl inbegralion ronbines in Lhe
same wiyy s we obbained Lhe distritmbion of Lhe sm ol Lhroo lopishici.
Comparing the various members of the C—type family, considering the
mixture of distribution above described, with the bivariate normal, we
have observed similar results.

Our cone lusions in Lhis seebion provide arpmanenbs For wsings Lhe
C-Lype distribubtion as an underling model For Paelor Anadysis ol

Catepgorical Dauta to be discussed in Chapter h.
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CHAPTER 3 - MAXLIMUM LIKELLHOOD EOSTIMATION OF 'WHE PARAMEL IR

OF ASSOCIATION OF THE C-TYPE DISTRIBUTION FOR DATA GIVEN IN AN RXC TARLE

3.1  InbtroducbLion

Suppose we observe two ordinal variables U and V, that are classified
in R and C catepories respectively. A cross-tabulation of U'and V' glives
Lhe observed [requencies as denoted in 'able 3.1, We further assume that
underlying Utand V'there are some latent conbinuous varinbles X and Y with n

Joint bivarinbe C=Lype disbribalion.

- - . - L . .
Table 3.1 = A cross tabulabtion ol U and V: observed Croguenciods

) Y
\ v
U. N l l. h {
1 ”ll 1112 th ”lt: ‘lll.
_— A ¥
2 ne M. Ny, N, |[ n.
- L] L] -
: n n n n
v ¥ al w? Lh Ll
- - - - -
1 n n 1 1" He .
i r2 rb ' !I
.l N2 Nnb n.¢ hn

Suppose that F(x) and G(y) are the distribution functions of X and Y
respectively and H(x,y) is their joint distribution function. Suppose that
the forms of the F(x) and G(y) are known.

Let Pi.j be the probability that an observation falls in cell (i,j),

i = lognissry 3= daiveCo
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Let 1‘,1, i = 1,2,.4,1 and ,r,i, J = 1l,...,0 be the marginal probabilities

in the contingency table, such that

a
F = 1§ 1. = pPU< a) & ® Y0 =l
a @ i
i=1
b
5 L
G, = I & = BV <) I A S |
b v |]
a=x ¢

where a and b are the catepgories determined by the cut of the distribution
by lines parallel to the axes X and Y. In other words, we are supposing a
fourfold table determined by the point (x,y) or by a dichotory ot the

variables u'and V' at categories a and b respectively. lable 3.2 presents

the probabilities supposing given margins F(x) and G(y).
a b
l‘et b = X X i]. =

. a se s =1
A i=1 j=1 b =

1
l,..-,c—l

nble 3.2 - KxU contingencey table: probibilities for g iven
margins F(x) and G(y)

1. " b
b
bE, g see By ¥R T 34, |
l}:l' '
b
2 P Pou see Po 1':3 = & ey Iy
by J=1 4
b
* Pyl Pa2 eoe Py |Fq ~ Paj a
J=1
@ b
“h1_ By l - f, -7 g i
o f21 > =i 9l 1% £,
Y HY &g b i=1
- "pll ave - }",pib ¥ b pij
i=1 i=1 i=1j=1
14}
&1 P i L= W&, 1
b j=1 J
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We are supposing that X and Y have n bivariate C-type distribution or
in other words, that the cross product ratios $a¥ 2 = lyees,r=1; b =
4

1,2,e¢e,c-1 for dichotomies at the categories a and b of the variables U and

L3
V are constant and equal to ), thus

a b " b it b

(z zp. . )A- 2t - B@g.* & L)

i=1y=1 *J i=1 ¥ g=1Y == Y =y
a a b b a b

(nre. = % mp. VM ee - 5 %p)

i=1 Y g=ly=L M gsr ) =gy

U= l,dyeee,r=1, (U

b = L, ees =1

or, using the notation pgiven above

Hab(x,y)(1 B (Fa(x) 6 () + 1 (%))

(Fa(x) 2 nah(x,y))(ti“(y) - b Gey))

7= T U= |
b= Lysasqge=1

hal

und the C-type distribution is then given by

Ve '.‘
[ = {:;"l = hply=00F (G ()17 1 TeCo=0) 1, (o)
1 l(x,.\,) = i i) i 1
ub ;. . . i )
k()6 (5, (p=1) (5.1)
where uuh = 1 4 (uy-L){L"“(x) + L;b(‘y)]; s bogenir=l

b = 1,c0s,0=1

It is our purpose to estimiate the parameter of assoclalion o of this
distribution on using the method of maximunm likelihood. Lefore proceeding,
we shall derive the expressions tor the expected proportions of' the cell
(i,3J) 1 = 1,0ee,ry J = 1,ees,c, Supposing a C-type population underlying the

data given in a HxU contingency table.
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For simplicity of notation, we shall use Il‘t t(x,_‘/) = |l L
L i

t =K, 06 = g
a{.x) la.’ b(y) and

b
“ = (L‘} — Aé )/{Z(ﬁ!“‘l)} a = l LI I‘—-l (SM.}
ab ab ab i ) e
b = l,--',(:—l
where
By ® L% ("""l)“'a“‘n)
and
2
=: '§ o - ' G
Aab ab M’(‘L‘ l)ba b

By using the expression (3.2) we can calculate the cxpected proportion

in the cell (1,1)

1
p11 = o= (8- )/ [2(e-1)) L3
where 5., =1 + (4=1) (£ +5,)
Apy =8y = bw(e=1)1 8,

For the cells (1,2) and (2,1) we have

1 L

P12 = Hyp - Hy o= [(8)5-8),) = (6 -a ) 1/ [2(e-1)]
: :

ppy = Hpp = lgy = L8, -05,) - (8 -a0 )1/ [2(e-1) ]

In general, for the cells (1,b), b = 2,.44,c-1 we have

1 1
= - = ' % - L5 A2 .r_j =1
P1v T 15,40, ("1,b-1 Jr"1,1;-1““ (#-1) ]
T 2 R 7 | (344)

and for the cells (a,1), a = 2,...,r-1 we have
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1 1
y 2 » 2 A
Poa 7 “:11 - H:L—l,l. B [(.,-'I.l_n:ll) - (-’:L-—l,l_nfl-l.,:t)l/l- Co-1)1,
i ("i-',!)
It = 0 eneat’=1]
The expected proportion in the cell (nsh)s = Biwuigr=1 and b = &, ssese=1
Pn griven by
= - - |
Pab “a-s.b “:_-L—J.,b “:L,iJ—L o 'i:L-L,h—L
- P W L | (3.6)
b = 2,.--,(}—1
where 1l i given by (3.2).
nh
The expression (3.0) can be wrillen s
w b T I =1 a=lh=1
D = E EDPeF B TPse= B OBDP.E X OE P
ab

i=lj=1 M  j=1y=1 Y  i=1j=1 M i=y=1 B

B = 2ye0e,0=1

h = ;-.,‘ .--,(:-1

Finnlly, the expected proporbions in Lhe lasth row and column of Lhe

KxC Lable are given by

Bay ¥ 8y Feaya
= T ! = + = I3 s E _“!
I)I‘h Hl'h 1I'HL,L\ Hr‘,ls—l “r'-l,l:-l t, 1:'—l,l: ir‘—l,::—l
Iy = Ly wegG=il
i’lc = fl - Hl,c—l
Pac 7 1(1 - Ha.,c:—-l o l[cx—l,r:--l
L,-oc,!—l
i L}
P B R FE- T, FH “1.e=l {2273
& = b oge1d RO
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I'he expected frequencies in the cells (1,i) of an KxC contingency

table are given by npi where n is the sample size and p

J iy I = lasiee 5T

J = 1,...,c are given by the expressions (3.3) to (3.7) and are function of
e The marginal proportions rn, a4 = lyee.,r=1 and By, b= l,ee.,c=l are
estbimted by cequating observed nnd expocted morpinal proporbions. The
observed murginal proportions wre Lhe pauximum likelihood estimntes ol Lhe
expected marginal proportions (see Kendall and Stuart, 1979, Vol.2, pp 4h9).
Considering the results presented by Olsson (1Y79) us explained in section

2.0y we shall follow here  the "two-step moximuan Likelitood" estimtion

approach.
In order to estimate the parameter # by the maximum likelihood method
we shall now consider the derivative ol It " with respect to o). From (3.2)
E3 N B

wWe jve

1
1+(a=1) (F +G )={[1+(w=1)(F +G )] 2=4yp(w-1)F G }*
& 4] 133 8] a b

i

k =
ab G g=1)
u = 1 aes,r=l
5% Lyeeesel
so Lhat
My 1 Le(w=1) (1 4G )=i(=1)1 G ) :{
b 29-1)2 | {1l+(e-1) (5 46} 2-hg(o-1)F G 1 F

and using the simplified notation we have

C 1 Y-Liab-}_‘(ﬁ;-—l)l"aub "
4 = = L

2(p-1)2 | A::.b o b

e
I

S Lymaeg il (3.8)
l,-..,c—l

where a prime denotes differentiation with respect to i,

i3 = 1+( - © 4G
— (w l)(ba ub)
i = 52 “hpy(yp=-1)r G
ab ab 4 b
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3e¢  berivation of the Likelihood bkguation

‘lhe data are pgiven in an KxC contingency table with observed

{'requencies ni.J as given in 1able 3.1. The probability pl

[t

Lhatl an

obuervation I'nlly into cell {i,']) nroe piven in section .1 ttbove.

Theretore Lhe likelihood of Lhe sample is
r C t

1,
iJ

where © is a constunt which does not depend on Lhe parancber o Lo be

cuitimted and % ¥p, = 1.
; L)
l .]
Tauking logaritims, we have
R U
g = wmL = ¢mmC+ § & n,, enp,.
i=1j=1 1Y 1

and differentiating with respect to % we obtain

dL 13 S o SR > N
=y oy AT (3.9)
A i=lj=1 Py | a

AlLhough we hiave Lhe required formulne Gor deriving: Lhe Log LikeLihood

equation, we shall need a computationally more menapgeable form. In vrder

to obtuin & general expression for the likelihood cquation for the KxC table

case, we shall show how it is obtained from tables of dimensions Dx 3, x4

lor example. The general expression for the maximim likelihood equation

tor estimating W irom data given in a KxC table is then obtained by direct

generalization of the expression for tables of lower dimensions.

2x3 contingency tables

''he necessary tformlae tor estimating o f'rom £x3 contingency tables are

summarised in table 3. 3.
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On using (3.9) and the expressions piven in Ltable 3.3 we have

at  ngp, K nyo : i By i "oy
— =iy A (i) (=l )+ —— (=) 4
Py P12 P21 P22

I’112 1 nzﬂa '

P2 P23

Table 3.3 = Necessary formulae for estimating o Lrom <2x3 tavles

Observed Ikxpected proportions apil
frequencies .
. T
"3 pl.J v
]
) bpp = Iy g
(] '’
"l? i)l? = “l?-“ll ”l H“l]
]
Ny Pa1 = &1ty =y,
1 L}
Nyp Poo = - pHy =t
'
nj3 P13 = =y, -y,
L
ny3 By = L=ttt iy, Hys
s0 that
an nyp nj» N1 Nap njp Npp Ny nNpz
—_— = ( - — ¥ ]“]l + ( s - + ]“1?

ab Pi1 Pi2  Pp1 o #22 Prlo Pgr P1p Py

3x3 contingency tables

The necessary formulae for estimating ¥ from 3x3 contingency table are

summarised in table 3.h.

The log likelihood function for 3x3 tables is obtained using the

expression (3.Y) and the formulae given in table 3.4, Thus
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2% n3;y Nyn

12 1 ] Nag 1 T I‘122 1 1 1 [
—— &y # (Hyp-Hyy) + —— (Hpq-Hqq) + —— (H,,-H =, Higl)
W Py P12 P21 Poa
Il]3 5 ”. i s ; ) r1.U i i
o (=) o () e (g y) b (St )
P13 B3 23 P32
n3q i
e | B
Paa
Table 3.4 - Formilae for estimabing ¢ from 3x3 contingency tablen
Ubserved lixpected proportions Bpi.
I'requencies S
. D
“1J LlJ o
]
Ny P13 =y L
1 r
nyo Py = Hyp-llyy Hya-lyy
1 I
nay Pop = -y, Hyq=tq
) ) ) )
.55 Doy = Hopa=llyo-il, HI gt =l HU 14
UNE! Py = -y, -y,
L]
Ny Py = 81-Ha) -l
1 1
r t
P Pay = Lptiggptlyy “lyptlly
" 2
L L L)
g=1 > §=1 ¢
such that
d% Dyg Dqp Uy Ugp . 4 Myg Mgp Mpz UWyz
= ( w . & Mg+ ( - - + )il12
ap P11 P12 P21 P22 P12 P22 Pia P23
by Mgy Rgy g ' Hoyo: Mapg B3z Hag 9
v _ - + Jaq + ( - = ¥ Moz
Pon  Piz B3ir P32 Pg2 P23 DPaz Pas
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n n 1 n
K ub nyb+l lfl+l,ll atl bl ’

: - - + )i
| a=1lb=1
L Pab  Pauel  Pasly  Pasl pel

|

wb

RxC contingency tables

In table 3.9 we present the necessary formilne for estimating o 'rom

KxC contingency Lables.

Table 3.9 = Necessary formmlac for estimating o rom HxC tables
Ubserved Expecled proportions o . -
'requencies —bl

. > 5 ihily
213 Py ok
]
ny) P = iy Wy
1 1
Ny Pip = Hp-ly, Hyp=ilyy
1 1
Ny Ppp = g =iy Hpyrtya
a = ’L’,.-o.’r—‘L ?‘ip' L
Bili b= B sveatel Fp S 2 b S
ath
L] ]
n =l ;=i Hoy=d
a1 B e T T8 T D
1 ]
b . I 1 ' = 1 '
n ) = H <k ~il +H 1 =it -H +1
ab Pab ab a-1,b a,b-1 a-1,b=1 “ab a-1b a,b=1 a=1,
. x ' S |
= L =i +1i - +i
"ac Pae = Ta™Ma,e-1Manlond a,c~1 a-1,c-1
. . 1 i
) = po=H +i -l +H
Yrp Prp = By r=4, r-1,c-1 r-b,b r-l,e-1
1
Nle By, By wad ~H1,e=1
L]
ooy Bo1 = apeH. g ) B 3.4
X I r- r-1,
a b '
= . [, - r  +H ba
Ure B ™ & .2_11 L S5 Tr=l,e-l r-1,c=-1
i=j J=1
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Since the probabilities pj_‘j’ L = Lg@ymea gy & Lpeesse wre given in
op .
table 3.% and also — &l s 1 = 1, suigpy J = Lyewésts Croim (3.2) and (3.6)
Jl'l
we have
I (5 - AZ)/(2(4-1)) ! -
wb “ab T Tab A = :’”"r“l
h = 1, eue,0=1
o =1 — d G
] | i (i l)lu b
iuh - i 2 l\1"' l
L wh

Lhe loglikelihood equalion given by (3.9) can be determined From Table 3.5

by mulbiplying appropriale elemenbs aond summing over ©oed oo The pooraomeLer

P can then be estimated using an iterative method for solving the likelihood

equation and by eyuating the observed and cxpected marginal proportions.
However, as we have seen in examples for small contingency Lables, o

more convenient expression can be obtained by observing thal in the expansion

r
of the expression (3.9) the elements H‘Lh appears only in the terms

corresponding Lo i fourfold table formed by cells (a,b) (a,bel), (vl n),
(a+l,b+1l); u=1,ce.,r=1, b=l,.ee,c~1. "here are (r-1)(c-1) such fourtold

Lables in an RxC contingency Litble, 5o we have alter pabbings in cevidenes Lhe

element “a.b":'l' peneral term piven by

n 1 n n
( b a,b+l atlp % at+lph+ !l ) '

" I
p b AP

Pab a,b+l Parly a+l b+l

Summing over a and b and equating to zero we have the likelihood equation

at r-le-1 n n 3y, Boog s n_ .1 1 i
NP 5 b [ ( -:.i.b o d.-_,b"' . at+ ,l} * at ,}J‘f' J”Lb | & 0 ( 3.1_(
o a=1lb=1 p 1 :

ab p'r:s. Jsh+ 1 Ju.+ I,b Pavl— 1 Shk 1
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3.3 SYolution of the likelihood equation

The solulion ol the likelihood equabion is oblidined by Lhe iLeralive
method known as 'the method of scoring for parameters' (Kendall and Stuart

(1979), pe.b?). "The iLeralive procodure

. denL 32gnl agnl R
b = 1,—( ]L/[l‘;[ ]]L = 'l.l-( ]L(V.‘LI' l[})l | G5 I
1] a2 2 .
where var  is bLhe asymplotic variance. The process starbs Crom some tLriol

viclue L and can be repested unbil no farther correetion in nehicoved Lo Lhe
desired degree of accuracy.

Differentiating (3.10) with respect Lo P we have

E_Z_E = r‘;lc;l[[ n&b _ nu.,b+1 . ne.l.+1,l) i nwi-l,bi-l az}l:mh
a‘pz aslb=l pub p51.,b+ 1 p:s.+ 1 ,b p:_l.+ 1,h+ 1 31!;2
N E__ I 1, n;_tb ap:!.'n g Ifl.zi.,lﬂrl ali:t,b"'l
v vk, o vl W
n-‘i.+1,b apu+l,£ _ na+ b+l ?”I:t+1,b+1

)] (3.12)

2 2
Par1,p W Pa+l, b+l L
aZe
The expected value of is Lhen easily obtained obusereving Lhat Lhe
Blb?
Firsl Lerm ol Lhe expression (3.1 @0 reducod Lo zero. Vo
32¢ r=le-l | L ap L op
2 - +1
¥ ~—)=af £[8.[ AR -k
32 oy = - e
o a=1b=1 Pa.b B pa,b'l'l b
1 ap 1 dp
A+l a+l pel .
" b LR 1) (3.13)
Paslpy Paslpsel O
O
The required formilae for p,. and are sel oult in Table 3.5,
B 22 3
then the expressions 3-&;- and i‘l[ —— ] can be caleulated and aliso the

a2
iterative method given by (3.11).
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The numerical process for estimating » must start f'rom some trial value
0 A simple estimate of ) can be constructed supposing that the joint
distribution is divided into four quadrants by lines X=x and Y=y. Let
A,B,C,D be the frequencies ot pairs (ui,vi) in the RxC contingency table in
the quadrants (X<x,Y<y), (X<x,Y>y), (X>x,¥Y<y) and (X)x,‘{:'y] reapeclbively .
A natural estimate ot o iy plven by L o= ADJIK, The I'requencies AGH G D
depend on the point ot dichotony (x,y). Mardia (1970) points out Lhat
an optimum choice tor (x,y) is that which minimizes var(Ll) and shows that
the variance is minimized with respect to X and Y it (x,y) is the population
median vector, ie., when F(x) = Gly) = In the numerical process we can
start from some dichotomy point as near as possible to's. ‘'he particular
choice of the starting value is not so important in this iterative process
because the process converges rapidly in the tirst few iterations. (We
have observed empirically, that for a starting value t = 0.5, the iterative
process pgives the same result as for L = AUL/BC with approximately the sime

number ot iterntions.)

3.4 A Series Giving lhe C-lype Distribution lMunction

In this section we shall present an alternative expression for the
C-type distribution function H = l(x,y), obtained by using a binomial
expansion of the oripgiunal tormula. 'he main reason tor searching tor an
alternative expression for ll is to avoid the numerical problems arising from
evaluating the maximum likelihood estimate for values ot ) in the
neighbourhood of 1. (v=1 where X and Y are independent r.v.'s).

let a = ¥-1. The C-type distribution function, H, becomes

I;

H = — !l + alF+G) -~ 1(1+u(F+U))7 = hq(u+l)rus;i {Z.kh )

et
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or
1 [ ]
H= — (F6) + — {1 = [1+2a(F+G-2rG) + a?(F=G)?]" }, a>=1 (3.19)
2 2ot
On using the binomial expansion for Lhe term (1+H)5 where
o

ol FHG=21'G) + a?(F=G)7, we have, atfler some reducbion Lhe Following

expression, where I = 1-I']

<

=1 -G and |2a(F46=2FG) + a2(F-G)?]| < 1

Siss i st o
o= MG + alGFG = «? [F2GFG" + MG2F G

it ]

+ a3 [FIGFGS + IK2G2FGT + KGIFIG)

sk i I, =
- o [FUGIG" + OFIG?F G+ OF?GIFGT + KGN 'Gl

s o - i 5.
+ uslb‘sul-u5 + 10K4G2FG" + 20K3G3F0° + 10K2GYF G2 + ¥ SF7G)

6 3=h

+ 15K5G2FSG?2 + SoReGIFSG 3

. . ol
- af|K6GFG + SUF3IGHF GO +

i —6=
+ 15F2G5F2G° + FGSFOG)

+ aﬂb"’(jﬁ?f + 211-'6u217'356 ¥ lU‘)b'5G3FjC") +

3

—h-l ) P
+ LISKWGUE G o+ LOSKIGOFZG. + 2UR2GOF G+

+ FU?FrG]

* e s (3.10)
In order to simplify notation let
U = FKGFG and V = FG + FG = p+0-2KC.

After expanding the above series until the term of the order al3 and

after tedious algebra we have
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alUvo)

a2(uvl)

a3(UV2 + u2vo)

a"(UV3 + 3u?vl) (Bl
a(UVH + uUve 4 puivoe)

ab(UVS + 10U2v3 + 1oudvl)

aZ(UVE + 15U2VH + 30U3V2 + sUHVO)

a(UV7 + 21025 + roudv3 4 35ytyl)

a?(UVE + 28U2ve + 1LOU3VY + 1LOUYV2 + LLUSVYO)

alO(UVY + 36U2V7 + 25203V5 + L2ousv3 + 126U5V1)

al LUV IO & B5U2v3 4 hooudve 4 10L0UMV 4G 30USY 2+ Lieybhyo)
al2(UVIL + 5502V9 4+ GOOU3V7 + 2310UMV5+2310U5V 3446206y 1)
al3(UV 1246602V 10+ 990U 3VB+L620U4Y 64069 30U SV 4427 2U6Y 2

+ 132U7V0) = s esas

In addition we know that

(l+uV)‘1

1

L = aV + q?2VZ2 - q3V3 + 4V " —1l<nV<l
(L4aV)=3 = 1 - 3av + 0a?V? - 1oady3 + 1oalvh - ..,  —l<aV<l
(1+aV)=5 = 1 = 5aV + 1542V2 - 3543V3 + .., w1 Vel
(3.18)
Combining (3.17) and (3.18) we obtuain
nlU adu? 20503 HalUb Lho9U5
H o= FG + + + + + +
I+aV  (L+aV)3  (1+aV)S  (1+aV)7?7  (1+qv)®
Lhonllyb 132q 1307
+

+ R (3.19)

(L+av) Ll (14qVv )13
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"his is the series giving H, where U = FGFG and V = FG + FG. We shall

prove now Lhat the serices (3.19) converpes to the expression (4.1h).

h?U 1
lart ' = ————— | on using Lthe binominl ecxpansion ot (1=T)
(Ltav)?
we huve
o) YU S’ R I Y U PR L B
[1_ _— = o - - - 5
(1+aV) ? (L+aV)? (L4nv)™ (L+av)® (L+av) B
2.l l0ys
(l+mV)l“
202l a’U 2a"U? HabU3
=1 - [1+ + + , |
(L+aVv)? (L+aV)?  (1+aV)®  (1l+qv) 6
Then
ha?U i 202U a?U 2a"U? HabU3
1l = [l=e —— ]2 2 ——— (1 + + + el
(14av)? (L+av)? (L+aV)?  (LagVv)® (L+av)®
and we huve
a?U 2a4U2 5abU3 (L+aV) 2 b0
1+ + + + gon = = 1 = 1 &« ——
(L+aV)? (1+av)™ (L+aVv)® 2ol (L+av)?
(3.20)
Un the other hand, expression (3.19) may be written as
aU a?U 2a"u? Habud  1hgPub
H =G + (1 + + - + + ...]
1+aV (1+aV)2  (L+aV)" (1+aV)® (L+qv)®

or, on using (3.20)

aU (1+aV)? La2U ;
h = FG + 5 [1 -1 «———1%}
1+aV 2a2U (L+aV) 2
1+aV = ha?U
= KG + (L o [ s P
da (L+aV)?
l+aV 1 :
= G+ | - — [(1+aV)2 - La2U]?}

2a 2o

and finally, returning to the I and G notation, remcmbering that U = MGG anad
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V=I+TF:="F+G - 2FG, we have

1 1.
Ho= 16+ — {1+ a(l6-216) = [(1 + a(F+G-21G)) 2 - Lg2KGiG)?)
dot
L L
= — {1 + ali+6) - [(1 + a(F+G))2 - bala+l)FG]|?)
nt
which i Lhe expression (3200) piven above.

Theretore, Ghe serica giving, Lhe C=Lype disnbribnbion Panebion Hy i

isiven by expression (3.19), which in Lhe I oand G nobalion is
al'GFG a3 (FGFG) cad(WGFG)
H=FG + + +
1+a(FG+IFG) [1+q(FG+Fu)]3 [1ta(KGeFa) )5
—_ P -
Sa? (FUFG)" Lha?(FGFG) 7 el 1(!-'t:|"(:)"

“+ + + = +
[Lta(EGeiG) |7 +lea(GeiG) |9 [1ra(rGeiG) |1
132a13(FeFG) 1

& + 2% |a] ¢ —— (3.21)
[1+a(rG+Fc) |13 (1FC+FG)

The expression (3.21) may be very useful in situations where we want to
avoid numerical problems, as for example, using the C-type distribution

function for a = 0.

Because of the numerical advanliyres ol Lhe expression (3.21) we have
decided to include this alternative expression in the computer program for
the maximum likelihood method described in section 3.5 when 0.98 < ) < 1.02,
Belfore compiringg LChe numericol values Cor 0L piven by cxpressions (4.10)
and (3.21), we present the derivative of H with respect Lo a, which is nluo

necessary in the maximum likelihood estimation method for values of i near

1. From (3.21) it is easily seen that

== - -
aH FGFG 3a2(FGFG) lOa“(FGFG)j
”‘l =TI + ¥ R +..l
da  [1+a(FG+FG)]2  [1+a(FG+FG)]%  [1+a(FG+FG) 6
C (3.22)
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In uble 3.0 we present some numerical values ror Lthe C-Lype
distribution function lor some vitlues of Lhe purameter ot associantion

Y = a+l and for some values of I' and G. Vie observe thal Lhe approximablion

tiven by the expression (3.21) is very good indeed, even for large vaelues

TABLE 3.0 = COMPARLSON OF NUMBRICAL VALUES OF 'THE C=TYPL
DIGTRIBULION FURCLTLION WY 'THE APPROXIMATLIVE FORMULAL
GLVEN BY T EXPRESGLONGS (30) AlD (3.16) FOR SR
VALUES OF = o+l AND MOK SOME VALUES OF I ANL G.

C=UYPl Lol b GIVEN BY H GIVEN BY

13 G 0] 1 (3..0) (3 otis)
0.9 0.1000000 0.120127 0. le0%0 O.L317762
0.5 0. 5000000 0.207107 Q.20r107 U207 104
0.9 U.98000U0 U.2h8738 O.2h8T37 U.2htsT 37
05 0. 9999999 0. 26h°tV06 0. 2250000 0. 250000
U.b 1.0Ul0VLVL V.2H008Y U.2H000 4 0.250006 3
UeH 1.0200000 V. 2951237 U 291238 0251238
Uoh 2 29289 3 0.2920693 0.29585%3
UeY 10 0. 37798(h 0. 379490 *
0.9 10U 0.454544 OU.lisrHl3 *
Uah 200 U. bhuo9s0 0. hhi2h2y *
{35 0.9 U.10000UL 0.UHBLhU 0 080 DLOGh U
U.l V.Y 0. H000VUO 0. U8 3094 V. 083094 0.OB31L S
O.l 0.9 0.9500000 0. 080835 0.0898 44 U088 3y
0.1 UeY 0.99999499 0.086235 0. 090000 0. 0Y0000
6 L 0.9 1.00610000 0.090000 0.090006 G.090008
G 0.9 1.0200000 0.090161 0. 090159 0.09015Y
Qs 0.9 2 0. 05hho1 0. 0uyhkol 0.045619
Dl 0.9 10 .0y 8L 0. 08182 *
(6% | 0.9 100 0.09906(Y 0.099675 *
5 1 0.9 200 0.099937 U. 099937 *
U.Y 0.9 0.100000 0.801218 0.801218 0.801218
V.9 0.9 0. 500000 0. 80%H 36 U. 8054 38 0. 8055 34
U.Y U.9 U.98uu0L 0800 3 UGB 3T 0BG 3
V.Y 0.9 U. 499999 0.823%29 0.t 100V U. 810000
0.9 0.9 1.001000 0.8100hY 0410008 0.810000
0.9 0.9 1.020000 0.810162 0. 810161 0.510161
0.9 0.9 2 0.81690% 0.81690% 0.810905
U.Y 0.9 10 0.641160 0.841158 *
0.9 0.9 100 0.8 Thl Ty 0.872070 *
0.9 0.9 200 0.881099 0.876235 *
values preater than one.
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of § (or a). 'he approximation given by (3.16) is valid only for small
values of a. For values of ¢ very necar 1, the approximition (3.21) should
be used instead of the expression (3.14) (see for example the case

po= 0.999999 in Lhe tible). Table 3.6 is presented here for illustrabive
purposes only .

In Fig. 3.1 we present, Lhe depivabive ol Lhe Lop=1ike Lihood FaneLion
als

(— ) in Lhe ne ighbourhood ot p = 1, betore and alber wsingg Lhe
A

approximation given by cxpression (3.22) oblained trom serics cApansion ol
H. In this example, the table analysed is pgiven by the 3x3 table:

H2Y LOY 653

Lo 3 (510)

131 29 172
the row marginal proportions are 0.7295; 0.0826 and 0.1879 and the column
marginal proportions are O.hOlH; 0.0979 and 0.5008. The derivative of the
ML function is plotted for values of % in the interval 0.98 < ¢ < 1.02, it
is eclear from lig. 3.1 that the series giving the C-type distribution
function is very useful in situations where Lhe ML estimate of ¢ is in or
near this interval. Before using the approximation nonconvergence of

the iteration process was observed in this example. The figure shows the

numerical problems near the point of singularity of the function (a = O or

1)

¥
On using the maximum likelihood method designed to estimate P for o seb

of empirical data where several variables are practically independent

(p = 1) we observed a high proportion of cases of either a large number of

iterations or no convergence. After including the approximation lor |

given by expression (3.19) the problem was solved, leading to an improvement

of the method. The test was performed for several contingency tables. In
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table 3.7 we present some of the results showing the estimate of y, the
derivative of the loglikelihood function and the number ot iterations of the
iterative process for the maximum likelihood method before and atter using
the series given by (3.19) in the interval 0.98 < ¢ < 1.0, We point out,
Lhat no numerical problem: were observed wilth Lhe nlpgorithm for Lhe method

outside this interval.

Table 3. - Parameter estimate, derivative of the loplikelihood
functiopn - number ot ilerations lor a sel ol zero correlnbed
variables\®) vefore and after the inclusion ol Lhe series giving i

BEFORE AFTEK
2 oL 5 aL
U - N ot lterationsg ] S N of iterations
o A
1.00008 100281 40O 0.990 ~-0.0028 2
0.99997 -439308 3 U. 997 0.0012 3
U942 0 L6 VIRY 0002 Y
L.00u08 300553 LT VBT 0.00%0 h
V.98b38  0.0118 of 0.9919 0.005%1 3
1.00034T7 © 140 0.9960  U.000k 2
0.9Y128 -0.0160 8 U.uuh0 v.0062 2
1.02211 -0.0048 63 1.O1TS  -0.005%7 P
0.9737T =0.0102 14 0.u802 0.00LU T

(=) 'he data used in this table are from the bata Uet No.4 (Greek bata)
to be described in chapter 6.

Finally, we might consider that in some cases, the alternative
expressions for H, may be useful for evaluating the correlation coetticient

for given margins. As an example we have used the series given by (3.16)
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for evaluating an approximate expression for the correlation coefficient of
the C-Lype logistic distribution.
On using the expression given by Mardia (1907):
1 l (L [
corr(x,y) = — — [ [ (#I=-1G)dxidy
Ul \J? SN Ssee
and putling I = 1/(1ee=X); G = I/ (Lre=Y) and il plven by (3.10) we have after
integration Lhe following expression for Lhe correlation coetl'icient of the

C-type logistic distribution

3a a 1la? 5 137
0((‘1) =—[.l.-""+ - — gt g -
L : 1
n? 2 30 wh YOO
1 303 ol
e e “b + “" ———— ﬂ? k - ‘ = (1.!‘5)
6O 3920 10080

lal < 1

Formila (3.23) gives a very good approximation for smull values ol a,
even i1’ we use o usmell number of terms. However, for values of o > 1, the

tauble .1 presented in chapter 2 should be uscd.

3.5 Contingency-type correlation coefficients for
polytomous data

In the preceeding sections we have presented the maximum likelihood
method tor estimating the parameter  of the C-type distribution for data
given in an RxC contingency table. ‘he parameter of association % is the
constant cross-product ratio for the (r-1)(c-1) rourrold tables in Lhe Hxu
table and may be defined as the global cross-product ratio when the
underlying model is the C-Lype distribution. Therefore, the measures of
correlation as function of the cross-product ratio presented in section 2.3

for 2x2 contingency tables may be used in the same way as estimators of the
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latent correlation coefficient for RxC contingency tables. We then have
contingency-type correlation coefficients for polytomous data.

Altham (1Y70) points out that it would be convenient to have a single
expression for the measure ol aussociabion ol Lhe rows and column:s ol a
Lable, rather Lhan Lhe whole et ol (r=1)(2=1) cross=rabios, and she
proposes Lhe detrinition off o mebric on egquiviclence ¢lassen as e possible wiy
ol finding o single coelTicienl of nssocialion.

Assuming the C-type distribution as an underlying model for Lwo-wiy
contingency tables, we have i single measure ol associnbtion ol Lhe rows il
columns ot Lhe Labley which i griven by Lhe porameber ol associnbion .
Contingency-Lype correlabtion coelficients are Lhen delined accordimgg Lo
the formulae chosen to transform the associalion measure into a correlation
coefficient. For uniform margins we shall use Mardia's coefficient given
by

1p+]. 2P 2o

o) = - (3.0h)
=1 (l]:—|)2

presented in section 2.3 (see also Mardia, 1907).

Chambers' coefficient given by

r,o= - 1) /(v + 1) (3.25)

can also be used for estimiting the Latent correlation cocllicient. Au owe
have seen in chapter 2 a4 nunber ol' olher measures ol correlation can be

conveniently approximated by (3.25) for some values of v. For example, for

<
n

2/3 we obtain an approximation to Mardia's coefficient pU($)§ for

<
n

0.64 we have rg ¢, = pN(¢) where pN(w) is the correlation coefficient

Tor the C-type normal distribution. We have shown in section 2.4 that for
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¥ = Dbl ro g1 = ph($) where DL(¢) is the correlation coefficient for the
C-type logistic distribution.

Plackett (1965) compares the bivariate normal distribution with the
C-type normal and, uas we have seen in section 2.6, he shows Lhat the two

distributions apree well relabing ¢ and p by
1 L
rfy = - cos[mp?/ (L + )] (3.26)

In Plackett's formula, % is the cross producl ratio for 2x2 tables.

On taking the MLE of ¢, @, Plackett's coefficient can also be regarded as u
contingency type correlation coefficient Cor WxC tables. Nevertheless, we
shall show in Lhis seclion Lhal Lhe Chamber:s coellicienl

given by
ro gy = (@0.9n _ 1)/(@0.7h v 1) Lgom)

where @ ia Lhe MLE ot @ Por KxC conbimaeney Lables, ison bebber cabimabe orf
Lhe correlation coelticient of an underlying bivarialbe normeal distribubion,

for data given in KxC tnbles,

Asymptotic variance of the correlation coefficient estimates

One of the advantages of the maximum Likelihood method of estimation
presented in this chapter is that we obtain the asymptotic variance of i,

which is given by the expression

& 1
var(yp) = =
32gnL

[Bf— )14

w2
32 gnL

where E( = ] is given by (3.13).

2

”~

For a general function f(y), the asymptotic variance of f£(y) is given

CUGAAL
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var{r(p)] = [£'(v)]2var(y)
where {'(y) is the derivative of f with respect to . (Kendall and Stunrt,
1979, volsll, ppe 53)s

Therelore we can easily derive the expressions for Lhe nsymptotic

variance for each ol the estimators presented in the beginning of this

section. Thus, on using the notation r for the estimate, we have
. 2(p2-1) enp - h(p-1)? :
var[ruiw)] = | J2var(y)
L
(p-1)

which is the asymptotic variance o! the contingency-type correlation
coefticient using Mardia's formula |expression (3.24)].

The asymptotic variance of the contingency-type coefficient using
Chambers' ftormula |expression (3.25)] is given by

a Ev;u il 2

var(r (y)] = [ —— ]2 . var(y)
v '
(5¥+1)°

1he asymptotic variance ot the contingency-type coefficient estimate using

Plackett's formula [expression (3.26)] is
~
= " N Al =
vurlrl,(ilr)l = [n sin( —— /2o’ (L + o7 ) ?] 2var(p) .
14y °

3«0 HNumerical examples

In this section we present some numerical examples of the contingency-
type correlation coefficients for polytomous data and we compare the
estimates of the correlation coefficients as function of the maxirum

likelihood estimate of ¢ with other methods available in the literature.
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Pearson and Heron (1913) in their study about theories of association
used Pearson's Family Lata and arranged 1000 cases according to the
magnitude of the stature of father and son in a Tx[ contingency table. We
present the doata in 'Inble 3.8, part (1), (see Pearson and Heron, 1904, 'able
XV, p.220).

Pearson and Heron (1Y13) also present two tables obtained by dividing
up a bivariate normal distribution with correlation parameters p = 0. and
p = 0.3 into the same group as the Eye-Lolour grouping used for Pearson's
Family Data. We present these artificial data in part (a) of table 3.9
(p = 0.9) and table 3.10 (p = 0.3). MWe notice that the tables were
modified to give whole numbers In the cells.

We have thus three tables, one with empirical data where the assumptlion
of an underlying bivariate distribution is plausible and two, that for
practical purposes, are artificial data from normal surfaces. We shall
apply our method to these three tables and present the various estimates of
the correlation coettficients. 'The results can be compared with the product
moment correlation coefticient as calculated by Pearson and lieron (1913)
from the original data in the case of the empirical data or with the
parameters in the case of the theoretical tables. The expected frequencies
under the C-type distribution model are also presented for illustrative
purposes, in part (b) of the tables above cited. We shall present the
tables rollowed Ly the analysis, where we show the bkl ol ¢ and, where
relevant, the standard error and the chi-square statistic of goodness of it
(part (c) of tables 3.8, 3.9 and 3.10). The estimites of the contingency
type correlation coetfficients are also presented, with the standard error
for the case of empirical data (part (d)).

‘'he chi-square (y2) statistic used in the examples is the usual
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statistic
roc (ni - )2
- M = 0 258
xz = L 2 L
=li=l
i=l) eiJ

with the degrees of freedom given by
b = (r-1)(c-1) - 1
(one degree of treedom is lost because we are estimibing Lhe parameter ).

The numerical examples cont'irm that the coetticient r, . defined by

(3.26) is a very good estimate of the correlation coefficient of the
underlying bivariate normal distribution estimated f'rom an RxC contingency
table. The coefficient ru(w) would be more appropriate when a C-Lype
uniform distribution underlies the data. ‘lhe coetr'ticient r i(np) over-
estimates Lhe correlation coefficient and we have always lr'p( w)| >
|r0.7“(¢.~)]. Un the other hand, the coefticient r0'7|‘(¢,) is u simpler

alternative for the polychoric correlation coefficient.

Table 3.8 - (a) Empirical lata: Utature ot Father and Son in
kye-Colour Groups for Pearson's Family ata
(Pearson and lleron, 1913)

SON'S FATHER'S STATURE CLASS
STATURK
CLASS i 2 3 N 540 i o Total
1 b 22 T - 1 - - Bl
2 23 154 84 26 ¢} 6 - 301
3 o 87 5 66 a2 24 2 204
L 1 29 30 37 14 14 & L3'f
546 = 16 21 20 11 1d 5 10Y
i = 9 26 19 2 29 o} Y
Y - 3 Y (§) L 10 I L1
fotal 36 322 20k 180 Y 101 28 1000
CUGAAB
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(b) Expected f'requencies for tuble (a) under the
C-type distribution using Maxlmum likelihood meLhod

GON 'S FATHIERTS STATURE CLAGG
STATULE
CLAGS i 2 3 I L0 ( t Totnl
1 by 1Y, Yol 2.2 0.7 0.8 0.2 4l
2 20.3 156.0 (3.7 29.6 8.5 104 2.5 301
3 O 89.4 9L,y 53.3 16.1 19.4 4.6 264
i 1.9 26.3  Lo,2 35.0 12,9 16.7 4,0 137
H+6 Ll 15.2 2h.y 27T 12.6 18.6 L.y 109
T 0.9 11.% 15 239 12.9 23.5 T.h 03
) 0.h .1 6.5 8t B3 11.6 bl L1
Total 30 42 204 180 LY 101 24 1000

(c) MLE of the pglobul cross-product ratio for table (a) and
Chi-syuare poodness ot t'it statistic

MLE of Chi-square statistic Significance

4.833 + 0.505 x2 = 49.60 (LF=35) p = 0,05

(d) Estimate of correlation coefticients and standard errors
for table (a), using the value of y given in (c)

Contingency type coefficient r (w)_ 0.k85 + 0.025
Contingency type coeftficient ry(w) . 0.555 + 0.027
Contingency type coefticient rq ?“(¢) 0.%2h + v.02€
Product moment correlation : 0.923(*)

(*)  From Pearson and leron (1913).
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Table 3.9 - (a) Artificial Data I:

Bivariate Normal Distribution for
p=0.5 adjusted to give whole units in cells (from Pearson and
Heron, 1Yl3, p.220)

i 2 3 1 H540 i t "LOLAL

I T 20 5 2 - - - 3ih

4] 21 145 19 30 10 Y 1 301

3 0 Yyl 8y Hh 19 0 i aHh

i 2 32 39 31 1y Lf I 14
H46 = LG AL Y L1 1t ) 1Y

i - 11 22 2k iy oy i !

4] - 2 O 6} 5 13 K I |
Total 30 322 26l 160 LY 101 20 1000

(b) Expected Frequencies for table (a) under the C-type
distribution model
1 2 3 l 5+6 T 13} ToraL

i b.5 19.4 5.9 2.4 T 0.9 Qs 5k

2 20.0 193.3 Tu.h 3047 8.9 L1.0 2.7 301

3 ({0 89.9 92,7 53.2 16.4 20,0 hob 260

y 2.0 20xl 49:9 a3 12.8 16.8 el 137
5+6 1.2 15.9 25.2 27.2 12.3 18.3 4.9 105

T 0.9 2.0 1951 23.5 12.6 22.8 Tl 94

8 0.4 L.y 6.8 d.7 5.3 11,2 L,2 L1
Total 36 322 264 180 69 101 28 1000

(¢c) Global cross-product ratio tor table (a) using

maximin likelihood method

v_=

RS

(d) MLL of the correlation coetticient for table (a)

supposing a underlying C-type diistribution

Contingency type Coefficient r (i)
Contingency type Coetficient r (y)
Contingency type Coefficient rh ,,(v)

Correlation coefficient parameter
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Table 3.10 - (a) Artificial Data Il: Bivariate Normal Distribution
with p=0.3 adjusted to pive whole units in cells

(rrom Pemrson and Heron, 1913)
T S Y S A S 1117 Y1
1 L 7 8 3 1 1 0 3h
2 17 123 80 L5 15 18 3 301
3 9 93 T8 52 19 20 7 284
Iy 3 38 37 2 Il L6 h 3'f
L0 2 25 28 22 J) 5 Jl LOY
! i 20 2l 2] L0 16 O 98
] 0 3 9 Y h Y h I
TOTALS 30 322 20N 180 6y 101 28 1000
(b) Expected Frequencies under the C-type distribution
for table ()
1 2 3 L 5+6 i 8 TOTALS
- 2.6 16. 4 7.9 3.8 1.2 1.6 0.k 3h
& 16.6 128.9 8.3 h1.1 13.6 1T+9 4.6 301
3 9,2 92.0 80.48 H51.4 L8,k Pl W 0.6 s
L S | 3hoy L 29.0 Ll 16,6 hot L3
5+6 < B 23.2 27.0 23.3 9.9 15.3 Lok 105
T 1.7 19,2 23.3 21.9 10.1 16.7 5.0 o8
8 0.1 [ Ye? 9.1 bl ‘1.8 2eh I
TOTALS 36 322 26l 180 09 101 28 1000
(¢) Global cross—product ratio () for table (a)
p = AW O |
(d) MLI of the correlation coefficient for table (a)
supposing an underlying C-Lype distribution
Contingency type Coefficient r () 0.278
Contingency type Coefficient r)(ﬁ) 0.325
Contingency type Coefficient rh 7h(¢} 0.306
Correlation Coeflicient parameter 0. 300
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From the anualysis of tables 3.8, 3.9 and 3.10 we observe that the data
sets fit the C-type distribution well, and we notice that the fit for the
artificial data from the bivariate normal model is extremely pood, showing
that the normal surface can be well approximated by a C-type normil
distribution.

The example which follows compares the contingency-type correlation
r0.7k(i) with oLther polychoric correlation coefficients proposed in the
literature. We take the data analysed by lancaster and Hundam (190L) and
by Goodman (1981). We shall compare our method for ExC tables with
Lancaster=-llamdam's coefticient obtained by polychoric serics method and with
two Goodman's coefficients: pS for the local uniform association model and

pS for the Goodman's model 1.

he stature of fathers and daughters data were originally analyced by
Pearson and as in our previous examples the assumption of bivariate normal
distribution is plausible; it wus actually tested by lancaster (see
lancaster and liamdam, 1Y6L). We shall consider here only the 3x3 table
based on a natural grouping of rows and columns (neighbouring classes being
pooled) from the original 18x18 contingency table. In table 3.11(a) we
present the observed frequencies for the 3x3 tuble, in part (b) Lhe expected
frequencies under the C-type distribulion model, obtained by the maximum
likelihood method are presented. tart (c) of the table shows the muximum
likelihood estimate of the parameter ¢ with standard error and the Chi-
square statistic of goodness-of-fit. Finally part (d) shows the estimates

of the correlation coefficient obtained by different methods.
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$o11 = (i) Utature off Fathers amd loaughiters = 3x3 'PABLE
(rrom bancnster and Hoandom, 1904)

DAUGHI'ER 'S
HETGH'T CLALS

PATHER G HETGHT G LA

1 o 5 TOIALL
1 TO 9y 1% 184
2 128 132 183 ™3
20 | Bl 252 hlyy
TOUTALY i 6 ol hhu 136

(b) Lxpecled Fregquenclies under C=type distreibution max bman

likelihood method for Tuble (o)

DAUGH 'l "

FATHER "G HEELGHT CLAGH

UE LG CLASS 1 2 3 TOTrALYG
1 2. yl.u 19.7 1634
2 121.4 W3, h 1'(t5.2 Thy
3 239 1 3.0 DHe0 Whe
TULALL CLY o YT} 1376

(e¢) MLk of % and Cni-square stalistic ror table (a)

MLk of

Chi-square statistic

B.T13 + OJd(h

x2 = 3.333 (bi=3)

(d) Estimates of correlation coefticient tor table (a)

Contingency type coefficient ru(w)ﬁ
Contingency type coefficient r (w) _
Contingency type coefficient rH 7q($)
Pearson contingency method :
Lancaster and Hamdan method
Goodman's coelticient (unif.assoc.)
Goodman's coefficient (MODLL I)
Product Momenti Correlation Coefticient

O.bfy + 0.026
0.548 F 0.028
0.518 * 0.027
U.361 (*)
Quligr (*)
O.byly (%)
0. byz (*)
Uuoblf (%)

(%)

laken trom Goodman (lybl).
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The analysis of the table 3.11 confirms our previous conclusion, tLhe
conbingency-Lype coel'ficient r'u--‘,,‘(qy) is an extremely good upproximalion for
the product moment correlation coefticient. Considering that the product
moment correlation is calculated from the original data and thus, the total

of informabion from Lhe sample 15 not Lhe sione as in Lhe Lable =3, Lhe

IX dy

advantapges ol Lhe coelficlent 'y veem Lo be conslderable. Mpcin, in

this example the fit to the C-type model is good. Comparing the estimate

rg 7,(¢) with the other methods, in this example, we can see that the method

o' maximum likelihood produces better results.

The next two examples have the purpose of comparing our method with the
maximum likelihood estimator of' the correlation coefticient (the polychorie
coefticient), proposed by Mallis (19062) and generulized by Ulsson (Lyfv),
supposing a normal bivariate surface as the parent dislribution. 'The first
ol these Lwo examples consists of the data, presented by Tullis and annlysed
nlso by Plackett (LYybY) where he caleulanbes Vlackelt's coet'licient as

function ol Lhe cross-product ratio ol n =" Lable, In tuble .10 we

present the resully.

TABLE 3.12 - (a) Empirical data taken from Tallis (1962)

1952
1953 lio lambs 1l lamb 2 lambs Total
Ko lambs Hi 59 1 111
1 lamb 26 58 3 N
2 lambs o] 4 B4 ] 249
TOTAL Yye 122 13 227
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(b) Expected Frequencies under the C-type
distribution model

RYAST
19%3 Moo 1ol » '"I_ _l_erh ik 1ty '_':_:_1_:1|_ o
No  Liunbs OGlob hi,y L) | (N
1 lamb 25l 55.9 6.0 e N
2 lambes 543 10.6 h.i 0
TOLAL Y2 Le2? 13 R ¢

(c) ML of

¥ = 3.521 + 0.907

(d) Estimates ol Correlation coell'icicnt

Tallis' MLK supposing Normal Bivariate distribution
Plackett method (2x2 Lable)

ML method supposing C=Lype distribubion:

~

Contingency-type coefticient ru(w)ﬂ
Contingency-type coefficient r,(w) %
Continpgency-type coefficient rh 74()

0420
043065

0.308
0.460
0.3k

0.076(*)
0.006(*)

0.073
0.081
0.0f

(%) From Plackett (Luoh).

From table 3.12 we can concelude

that Lhe contingency-type coefllicient

rp(¢) as a function of the MLE of ¢ is better than Plackett's method of

estimating ¢ by the cross product ratio of the 2x2 table.

Secondly , the

estimates obtained by Tallis' method and by the contingency-type coefficient

ro 74{¥) are similar, the difference being 0.01h.

Olsson (1979) analyses artificial data using a multinomial routine

for generating samples of size 500 for various sets of parameters.

these penerated cross—-Lables is presented

the sample estimbes asingg Olsson's maximum Likelihood mebhod

shown.

CUGAALE
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coetficients, computed as tunctions of MLE of . The data and comparisons
are presented in table 3.13.

TABLE 3.13 - (o) Artiticial data taken from Olsson (1979))

x/y 1 P 3 Total
1 {75 £ 0 19
2 6y 113 22 20k
3 1 132 1Ok Sali
Total 123 251 126 500

(b) kxpected frequencies under the C-type distribution model

x /[y 1 2 3 Total
1 10.83 6.76 1.b1 19
2 T6.52 103.20 2h .2 204
3 35:65 141.04 100.31 27f
Total 1123 251 126 500

(C) MLE of 1]

U = h.361 + 0.763

(d) Estimates of correlation coefficient

Ulsson's polychorie coefticient 0. hy A 0.0ty (%)

MLE method supposing C-type distribution:

Contingency~-type coeftricient ru(m) 0458 + 0.0k48
Contingency-type coetticient ry -, () 0.9 + V.ULU
Value of the correlation parameter 0.50 (*)

(*) from Ulsson (Ly7Yy, pe.bbho).

The comparison ot the results in table 3.13 shows that the coefficient

rg 7h(¢), as function ot the MLE ot ¢ is a very good estimate ol the true

CUGAAB



91

correlation parameter of the tuble and it is similor to Olsson's polychorie
coetticient.

The numerical exwnples presented in this section show that: first, the
method of maximum likelihood for estimating the parameter o of the C-type
distribution can provide us with 2 new correlation coefticient for
poly tomous data, gilven by r'”.v;.‘(:b) which is a pood estimtor off the
correlntion coel'ticlent ol an underlying bivariate normal distribution.
decondly, the C-btype distribution aprees very well with the normnl bivariate

distribution in the examples presented in this section.

Computer progrum for the maximum likelihood method
of estimating the parameter

A computer propram for the maximun likelihood estimator ot | using the
method presented in this chapter is available in FURTRAN. The program has
as input the dimensions R and C of the contingency table and the observed
frequencies ol the table in {ree format.

Given the input, the starting value for @ is computed and the scoring
method for parameters is used wus Lhe ilerative method tor obtaining the
maaximum Likelihood estimate of . he oubtpul of Lhe program consisls ol
final estimate, variance ot the estimate and the function value at the
maximim. ‘he number of iterations and the expected proportions of the cells
4t convergence are also printed in the output.

''he program also computes the contingency-type correlation coettlicients
presented in section 3.5 with the respective standard errors. As
additional intormation the output contains the row and column marginal

proportions for the KxC table and also the sample size k.

CUGAA
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A listing ol Lhe program is presented in Appendix L and in Figuee 3.2
in this section we present an example of Lthe input and outpubl of” Lhe

progrun.
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Gllal BE T

ENTER MATRIX DIHENSION - & X
3 a

17

ENTER MATRIX:
5% 4L 37 18
19 25 a5 25
12 17 53 812

pl= 425

THE ROW MARGINAL T
1959..0 114,
0.4 Q.

THE COLUMM MARGINAL TOTALS 3} RROPARTIANMNG afpi
4,0 82,9 1%
Qo2 n.2 0 -; i

i A L

B R LD 0D

EXFECTED FREQUENCIES ASSUMING E-TYPE ODISTRTIIT IOM"

65.24 40.6? 713 15
18.72 + 15 45,01 __.13
12.03 17'-, 52,94 30,
CHI-SQUARE
Gi Q1179
LIKELIHOOD RATIOD CHI-3QUARE
Q.,01189
DEGREES OF FREEDON
of

NER LOG L= 1,

nLn

072413E-04

MAXIMUM LIKELIHOOD EZTIMATE OF THE GLOR&L
RATIOD

FINAL FSI VALUE= 5.971%44

Vakr FSI=  0.3024502%

NDO OF ITERATIONS=

i

COMTINGENCY TYFE C LATION COEFFICIENT
RUFFCI)- 0.52165:0
STD ERROR 0OF RU(PSI)= 4,0217033E-02

R+74= 0,5618734

STDh ERR 0OF R.74= 4,070901°E-C2
FORTRAN STOF

$

FIGURw 3.2 = INPUT AND OUTPUT OI* PROGRAM PGIO
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CHAP'LER b oz FACTOR ANALYSGLS MEPHODG

.1 JFactor analysis for categorical data : a historical note

Since the early stages ol factor analysis in Lhe fflirst half or
this century, the nced for methods of I'nielor analysis for quail ihalive
datic has been evidenl.  However, L secms Lhal, L was nol, belaore 1950
that the Cirst poper desling explicibly with Lhe sabjecl appeared in
Lhe Literature. 'he paper, enbibled "he Facborial analysis ol
quitlitative data by Burt (L950) deals ool ondy wilh Paelor anolysis
for dicholomous dala bubt also with variables with "mwnitold
classification" (polytomous variables). Burt suggested that for
dichotomous variables, the following correlation matrices conld he
factored: Phi-coeflticienb; Yule's collipation coetlicienl; Yule!
association coelflicienl; Pearson's coellicient of conbingency,
corrected for degrees of freedom by lchuprow's formila ;3 Pearson's
Lebrachoric coelficienl and Lhe corrclabion ralio.

For binary variables, Lhe Lebrachoric cocl'Uiciont, sevms Lo ey
been used carlicr and also melhods nol based on Lobeachoric wepe
sugpested, as for example, by Slaler (Lub'() in the piper entitled "he
factor analysis of a matrix of 2x2 tables'.

For polytomous variables, Burt (1950) surpested fncbor analysing o
symmelrical positive-definite matrix ol relative {requencies. ‘'hiyg
suggestion is similar, in principle, to latent structure analysis,
where the matrix of the joint occurrence proportions for pairs of items
is factored.

The relationship between latent trait theory and factor analysis

was explicitly formulated by Green (1952) and by lord and Hoviek (1968,
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Ch.2h). ‘'lhe former compares factor analysis with latent sbrucbure
anadysia whieh was Formalabed and developed by lacarstCeld (1950) ror

binanry items and with applications in Sociology «  lord and Novick show

the similaritics between factor analysis and latent trait theory (also
For binary mani Cent, variables) in Lhe Lest Lheory conbext.

The pencereal mlLiple=racbor model For eabeporical varinbles heos
been studied by Christoffersson (1975) and Muthen (1978), Cor binary
variables; McDonald (1969) and Bartholomew (1980) for polytomous
variables. Deveral oLher contributions have been made asing Lhe
"response funclion approach™ as for example, Uwmmejima (1909), bock and
Lieberman (1970).

Mulnik (1986) emphasizes Lhe tondency in Lhe dircebion of
peneralizing the ideas of common factor analysis to the analysis of
covicriance sLructures and he gives o complebe acconnt. ol Lhe recenl
developments in Lhe anndlysis of covarianee sbracburen g ani Mied wilh
linear structural equations modeling (sec also Bentler, 19806).
According Lo Mulaik the contemporary developments ol Lhe subject are
leading Lo a "synthesis ol Linear sbructurial cquation models with
Latent trait models” and Lhen he makes reference Lo the work by Mubhien
(1984) who proposes a structural equation model with a generalized
measurement part, allowing for dichotomous and ordered categorical
variables in addition to continuous ones. Muthen's work generalizes
the J;reskog—-‘dc';rbom (1984) LISKEL methodology for structural equation
models, to deal with categorical variables. In particular, Lhe paper
also extends the Muthén-Christoffersson methodolgy for factor analysis
ot dichotomous variables (Muthén, 1978, Muthen and Christoffersson,

LYBl) to handle ordered categorical and continuous doabia. According Lo
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Muthen (1984%) his method is computationally heavy and it is limited for
practical use Lo small sized problems (15-20 varisbles), bul it pives .
possibility lor o debidiled analysis.

Lveritt (198h4) gives a brief account of the recent work about
factor analysis for binary daba. sirtholomew (forthceoming) review:s tLhe
developmenbs in labent variable models aoaed also give an aceount oft Lhe
recent, methodological conbributions for lnctor annlysis for cabegoricnl
data.

In Lhe next section we shill review, bricelly, Brbholomew's mode s
and methods. In Chapter 5 and 6 comparisons of numericnl resulbs
using the underlying variable model based on Lhe C=tLype disbribubion
will be made with Bartholomew's models. In Section h.3 we review the
traditional factor analysis methods and in Seclion h.h, we present Lhe
computer program for using the underlying variable model based on Lhe

C-type distribution as a factor analysis for catepgorical data method.
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4.2  Bartholomew's factor analysis for cateporical data models

As we pointed ont in Chapter 1, lwrtholomew (forthecoming)
presents the models and methods of factor analysis lor catepgorical data
using two approaches Lo the construction of models: Lhe Response
Function (RF) approach and the Underlying Variable (UV) model approach.

Bartholomew (1980) introduced his model for factor analysis for
categorical data using the response function approach. ‘The extension
o' Lthe model Crom Lhe binary cnse Lo Lhe polyLomons varinbles ense o
well as Lhe peneralizabion Por Lwo or more Tabenl variabbes (Coebors)
wis also proposed in Bartholomew (L980). 1In a sequence of papers,
Bartholomew (1981, 1983, 198k, 198hb, 1985) prescnts different
nspeets off Lhe model, ibs genernlizabions sind ibs relabionship will
oLher latenl variable models.

Iln Lhin sceebion we present Porbbholomes s omode b For binay
variables according to Bartholomew (forthcoming) where also methods Lor
fitting the model are considered.

Suppose we have a set of p dichotomous variables (item:)

X = (xl’XE""xp)' kach row of this matrix is called & response
pattern. lor p binary variables, we have P dirterent respon:se
patterns.  Let r(i) denole the associaled probabililty funclLion of 3 and
m (y) = Pr{x. = 1/y} denote the response function giving the
probability of a positive response for an individual with latent
position y . Buppose y\}(.]=[,}_’,...q) independent and uniformly

distributed on (0,1).

A general class of linear models is then defined by

G=ln. (y)} = gy +

~1 121,20 eeunT 4.1
10 ulJH (y‘]) 5 L 1-;), W P ( )

I ~10

j=1
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where the functions G-l and =1 are arbitrary bul such Lhab Lheirp
inverses G and Il are distribubtion functions of random variables
symmetrically distributed aboul zero; I and aij (i=1, cee,p) are ilem

parameters. Irom the general model (4.1) three particular cases are

considered.

(1) 'Mie logit/logit model = when we Lake Goand I as Lhe Lopgisbic
distribution rfanction. In Lhis cone we have
=) = U~llu) = lopit{a) = lu;:[u/(l-—u)]
and Laking
A5 = logity : = log ["j,/(l_"i)l I=L 2yl
and
z, = logit(y.) =1
i 6 (yJ J=1, eeeq
wer hiwve
i .
ni(-r.) - i=1,:
; :

"i + (l-[]i) exp (—]lexi'_}‘:’.,)

which is the response function for the logit/logit model (or simply
logit model). 'The parameter Hi has the following interpretation:
Suppose that yJ =% for all j, thus ZJ: 0O for all j and ”i= ﬂitf)‘
Therefore “i is the probability of a positive response for an

individual at the median position on each latent dimension.

(b) 'e logit/probit model - when G is the logistic
distribution function and H is the normal distribution function. In
this case we have

G=1{u) = togit(u) and =u) = o+=1(u)
where ¢ is the cumulative distribution funection of a standard normal

variable.
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It we make the transtormabion z, = o~ My.) and a., = logil 0

J J (§V]

Lhe response funcbion for Lhe logit/probit model i given by

.
n(z) = A 1=1,2, <o op
q
”I r (I-Ili) exp (- !‘xp.)_lzni’,]v..})
A=

(¢) 'The probit/probit model - when G and Il are taken as the
normal distribution function. In this case G=1(u) = H=1(u) = ¢~ Hu).
Iff we make the following tLransformation

w, = ¢"(yJ) J=leeey
we have
q
m(z) = ¢(aln + Z uijzj)
N

It is shown by Bartholomew (forthcoming) that for binary observed
variables, the response function approich and Lhe underlying variable
model npprouch are cquivalent becnuse Lhey lend Lo Lhe siune Joinl,

probabilibty distribulions off X under the conditions staled below.

he underly ing variable model (UV) is given by

|
E. = % *F ): N & @, (]I.i.')
i T =1 1) J i
1 if E.> T.
i i
where xi =

The equivalence between the RF and the UV approach exists if the

y . 4 L . . .
distribution function of ei/¢i (where b; is the variance of ei) is
the same as G and if

2 ’
aj0 = (ny = 7)/w and ag = A /0y

¥
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Uipponbgs Lhnl wn‘{f,i) = 1y wee hawve 'rom Lhe UV mode ] Lol
0w
P, =1 =Y Al
i j=1 1
therefore
i .
31 = ' or . L)
1 ‘l __.._____(_.,_.._._ 1 .} B —
L oo L, g B ook
.. - + i
(- Y a%) (1) o))
Jd=1 =1

The Ai,j nre Lhe factor Londings In Lhe Cfoclbor annlysis mode |

piven by (L.2), thercefore the paramabers a,, can also be interpretoed

L
as "lactor loadings" or weights. 1In Lhe Lest Lheory conbexl usually

the latent variable space is one-dimensional (q=1) and Lhe paranclers

of' Lthe model have specianl inberpretations.  'The poornmelor = .,

(i=lyeeep) is Lhe "diseriminabing power™ ot Lhe DLem, becnuse Lhe
bigger the absolute value of s the pgreater Lhe difference in Lheir
probabilibics of piving o positive response, Lherelore Lhe easicr Lo
diseriminate between Lhem (see lartholomew, Cortheoming) . M
parameter . (or "i) are related to the "difficully level" of" item i.
In test theory, the curve ni(y) is referred to as the "item
charnceteristic curve (LCC)™.

We have seen that the function G in (4.1) plays the same role as
the distribution of e in (4.2). Therefore the probit/probit model, for
binary variables, is precisely equivalent Lo the "underlying normal"
factor analysis model pgiven by (4.2) with 2 and ¢ both standard  normal
variables. Hence, fitting the model using tetrachoric correlation
coefficients as input to some standard factor analysis program will
provide estimates of I and a;, in (bel). Te threshold value

estimate T is obtained by the expression
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pp = Prelxg=l) = br(g> 1) = ov,)

or 1y = @'l(vi)
where by Ly Lhe observed proporbion ol posilive responses Cor ibem i
in Lhe sample.

Brtholomew (LY80) has proposed an approximibe method lor
estimting the parameters of the model (4.1) when G=1 is the logit
function and the items are dichotomous. 'he method wivs molivated by
the et thal one nnbural meuwsure of associalion for o @< Lable is Lhe
cross producl ralbio, which should conbain most ol Lhe inlormelion aboul,
the ussociations (or covariances) bebween Lhe munifest viriables.
Observing thal

q

= 2 Iy 3
lbi,j 1l +o0 kzlaiku*}k + 0(a") isl

where q;i'} is the cross product ratio and o2 ig I'I(ll—l(‘y.i))? = i':('{ﬂ._ 2)
for all J, Burtholomew proposes an iberabive mebhod asiing Lhe Pirslh Pew
Lerms of Lhe nbove serics s an approximabion Lo Lhe astsociation
between the variables, if the a's are small. 'lhe approximation is good
if q = 1. "The program for the method, for one-~factor logit model is
cal led MODIAC,

More ctticienl mebhods ol CitLing Lhe peneral model pgiven by
(4.1) has been described by Bartholomew (forthcoming). One recent
approach is based on the E-M algorithm, and it is similar Lo Lhe melhod
presented by Boek and Aitkin (1981) tor the probit model. A progrium
for the method, using the E-M algorithm for the maximum likelihood
estimation method and fitting any of the following models: logit/logit
model; logit/probit model an probit/probit model at the user's option,

is called FACONE (see Shea, 198h4). The program is designed for the
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one~-factor model and for binary variables.

The factor score (y-score) of an individual for a given score
pattern Xk from the 2F possible score patterns is computed by Lhe
FACONE program, as the posterior mean E(ylfk)' 'he "components" given

Ly

are also provided by the program. For a complete description of the
"components" see urLholomew (Lo8hh) .
The FACONE program can be used for H0-00 variables bl iL i

computationally heavy, even for powerful mainframe computers (see Shen,

1984) .

Goodness-ot'-1'it

A test of goodness of fit of the models presented in this section
can be carried out using the Likelihood rabio sbabistic tiven by
A= ;ek);lok In 0, /¥,
where Uk and Ek are the observed and expected frequencies of the score
patterns, in the usual way. A has, approximbely, a )(2 distribation
wilh (Bl'—}?p—l) degrees off Urecdom.  'Mhis Lest s appropriabe i Lhe
number of the manifest variables (p) is not very large. 1If p is large,

oP

will be larpge and the expected frequencies of the score pattern
will be very small, making it necessary to pool adjacent score
patterns; 's' in the above expression is then the number of score

patterns (e.g. s = 2P if the pooling of the score patterns is not

necessary ) .
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ho3d UYraditional raclor anlyuis melhods

For continuous manifest variables X, (i=1l,...p), the factor
analysis model is given by

X = Az + e (h.;ﬂ)

~r.

where 5' = [xl,...,xpl, B [AiJ] Ly Lhe pxq mabrix ol UacLor Loading:;

! = " 0 . a EIETE] . a vl . N ': + 13 7 2 = v W b

% [él,ag,...aq] represent. the vector ol actors and o {LL,LE,-.L“]
is the vector of residual terms, or error Lerms. With the usual
specifications of the model, as piven in Bection 1.2 and asswning
orthogonal factors (¢ = 1 in the usunl notabtion) we have Ghe

dependence stracture ol Lhe model given by

L = AA" v
- . (h.h)

where W is the dispersion matrix of Ce

Beveral methods for estimating the parameters of the traditional
factor analysis model have been presented and discussed in the
literature. AL the present stapge of computing development, almost all
methods are available in the most popular computer packages, such as
BP3B-X (Statistical Package for Social Sciences; X series), BMDP
(Biomedical Computer Programs; P-series) and SAS (Statistical Analysis
System). A brief description of the methods available in the programs
is pgiven in this section. We also consider two of Lhe main practical
problems faced by the user of factor analysis programs: the number of
factors problem and the criteria for judping the adequacy of o faclor

analysis solution.

Factor Analysis methods

The maximum Likelihood factor analysis mebhod (ML or MLIFA) is Lhe
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best method for esbimnling Lhe pueametoers ol Lhe model From Lhe point,
of' view ol' stabistical properties, when Lhe underlying disbtribulbion of
the variables 1s Lhe multivariate normal distribubion. 16 was
introduced by Lawley (1940) (sce also Lawley and Maxwell, 1971) and it
produces estimates with the properties of asymplolic efticiency and
invariance under changes of scale of the variables.

The generalized least-squares (GLS) method minimizes the swn of
Lhe squares ol the dilferences bebween Lhe observed and reprodoced
dispersion matrices (ignoring the diagonals).  In this method the
covarinnces are weiphbed inversely by Lhe error variance (uniguencs:s)
ol Lhe variables, Lhal s, corvelabions involving variables wilh high
error variance are given less weight than correlations involving
variables with low error variance.

The unweipghted least squares (ULS) method also minimizes the sum
of the squared residuals, but the dispersion matrix is unweighted.

One of the computational procedures for the MLFA, GLS and ULS
methods are described by Joreskog and van Tillo (1971). In general,
the methods attempt to it a dispersion matrix z fiven by the model
(h.h) Lo Lhe observed dispersion matrix 5 by the minimizition ol a
function F(5,2(A,p)). ‘'lhis function is different for each of bhe
three methods. The conditional minimum of F for given v is found,
giving a function f(y). Using the Newton-Raphson procedure, r(y) is
then minimized numerically. Function values and derivatives of first

and second order are given in terms of the eigenvalues and eigenvectors

1 L
of a matrix A, say. For the MLIFA and GLS methods, & = E'§“{g ., for
ULS, 5 = B-g. GLS and MLFA yield estimites wilh Lhe same asymplobic

properties, when multivariate normality is assumed. GLS is also scale
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freec.

The maximum likelihood factor analysis method has an associnted
Chi-square stalistic for testing the number of 'ncbors of Lhe model.
Given the ML estimates of A and ¢ it is possible to btest the hypothesis
Lhtil Lhe g=ractor model accounlbs sabisfacborily lor Lhe covariances ol
the observed variables. The likelihood ratio test statistic is given by

W= pitmin l"(i\i,z(ﬁ,m)) (het)

where £(S,Z,(A,p)) is the likelihood criterion minimized and

n' = n-1-(2p+5)/6-2q/3. The statistic T given in (4.YH) is tested as a
chi-square variable with %[ (p=q)2-(p+q) | degrees of rrecdon.

Usually the test is used as a sequential procedure for determining .

For the miltivariate asymptotic distribution of sequential chi-square

Lest stabisbics see SLeiger, Vhapiro and Browne (1984).

Kro's canonienl factor analysis (RAO method in GPSS) was
introduced by hao (1955) and provides one of the possible solutions to
the maximum likelihood equations of lawley (1940). lo's factors are
derived {rom the latent vector of Lhe malrix {\; = y:;l’*'iiﬁl‘ A program for
the method is available in earlier versions of the 5P55 package and it
is no longer available in S5PSS-X.

Principal factor analysis (PFA) or principal axis factoring (PAF),
one of the popular methods of factor analysis, employs an iterative
procedure for improving the estimates of the commnalities. 'he
initial trial for the communalities is, usually, the well-known
Guttman's greatest lower bound for the comminality given by the
square multiple correlation of each variable on the remaining p-1l. 'The

main reference for the method is Harman (1976). PFA determines the
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factor matrix (matrix of factor loadings) from the eigenvectors of bhe
matrix 8-, the reduced correlation matrix.

Alpha factor analysis (ALPHA) was suggested by Kaiser and Caffrey
(LY6YH) nnd iL i based upon Lhe poyehomebric concepl, of peneral iz-
ability, the measure ol which iu known as Lhe Knder=Richardson
reliability coefficient (or Crombach's :1]_1;l|u.). The factors detbermined
by this method have maximum "generalizability" and only tnctors with
positive generalizability are retained. It is equivalent to saying
that the factors associated with the eigenvalues greater than one of
the matrix A = [diag(ﬁ-y)]‘% ES_[dir;tg(ﬁ-y)]-!ﬁ are retained. This method
has the property of invariance under change of scale of Lhe variables
and operates in the metric of the commniilities. In ALPHA faclor
analysis, the variables included in the analysis are considered a
sample from the universe of variables. 'This involves a psychomebric
inference, nol i statistical infercence Lo Lhe asitel sense,

Image lactor analysis (IMAGE) and Little Jitty (LJIFFY) method:s
are based in the image theory introduced by Guttman. The methods were
developed by Kaiser (1963, 1970). The Little Jiffy method is
essentially Image analysis with some modifications on the rule of
decision about the number of factors. In Image analysis, the number of

factors are determined by the eigenvalues greater than one of the Image

—

, L .
3 [ci'liq', g*l] . lor Lhe LiLtle

covariance matrix, given by [ding 5-1]
Jiffy method, the number of factors is debermined Crom Lhe unil beroed
correlation matrix. This number is usually smaller than for Image
analysis. 'The estimates of the factor loadings for the factor that are

retained are the same in both methods, but the communalities are

different.
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Alpha factor analysis resulbs are difrerenl, in pencral, from Lhe
Imnge or Little Jit'fy results. 'These Lhree methods yield considerably
different results from MLFA, GLS5, ULS or PFA and are not recommended
for general use unless the user has specific reasons for doing so.
Principnl Component  Analdysis (PCA) is Lhe well known mebthod
developed by Hotelling, where the cipgenvalues and cipgenvectors ol Lhe
unaltered correlation matrix are obtained. It is not properly a Cactor
analysis method, anlbhowsh Lt ean be used wilh Lhe siune parposes o
factor analysis, in which case, only components (fnctors) associnted
with eipgenvalues preanber Lhan one are recommended Lo be rebained.  'The
mebhod is availlable in all three pockigoes in Lhe taclor anndysis chaplor,
In Table hol we compnre the methods with relation Lo Lhe dilferent,

matrices, from which the eigenvalues (eipgenvectors) are cialculated.

Table U4.1 - Matrices from which the eigenvalues are calculated
for each different factor analysis method.

Method Matrix

[P N
MLIA prn o

1, =1 !
Glas e e
RAO s
ULS S=1
PItA/ PAR U=

- g

ALPHA [diag(S-v) | 2(S-yp)diag(s-y)]?
_ 2 s . =
IMAGE/LJIFFY |diag 8|2 6 [diag 8™ ]°
HCA 5

Note: 5 is the observed dispersion matrix.
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The number of faclors problem

One Lmporbant Luasue Por o soceesalal Faebor anndyais solublon io
the decision rule about the number of factors. Several criteria have
been suggested in Lthe literature and Lhe problem is nol yel complelely
solveds  The DA (1985) User's puide poinbs onl, properly, Lhat "no
compuber progrmwn i oeapable o relinbly debermining Lhe opbim] mumber
of factors since the decision is ultimately subjective.  You should nol
anccept blindly the number of factors obtiined by delnlt. Use your own
Judgment Lo omeke an intel Ligent deciston™s This cilabion PFrom Lhe SAD
manunl shows very well how Lhe emphasis on bhe 'number ol faetor!
problem  his changed in Lhe lasl Cew yenrs in Lhe user prides
instrucbions. A tew yeurs mpo Cew oplbions oLher Llin Lhe defaalt
criterion of the packages - usually retaining the factors associated
with the eigenvalues (of the correlation matrix) greater than one -
were available. DNow, if nol completely solved the problem, the user is
advised to try different decision rules, what is becoming easier with
each new version of Lhe factor analysis proprams. (he BPSS=X progran
allows more Lhan one Kind of facbor analysis solubion ecach Lime we use
the program).

The criterion of retaining the factors that have eigenvalues
greater than one is known as Lhe "Kaiser criterion"” (Kniser, 1960).
This criterion has an intuitive appeal in the sense that only factors,
that account lor at lenst as much variance as doos o singgle variable,
are retained.

Cattell (1966) proposed a test based on the fact that the
magnitude of the eigenvalues would cease to change very much after the

nontrivial common variance had been removed from a correlation matrix.
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[t is called the "scree test" and consists in observing Lhe plot ol Lhe
cigenvalues (seroe pl.tJL) Looking ffor "breaks" in Lhe curve.  'The noune
"scree" comes 'rom Lhe resemblance ol such o plot Lo Lhe rock slope of
a mountiin with o mass of rubble called Lhe seree or Lolus al, Lhe
botLome Experimental evidence indicnbes Lhat Lhe seree bheginsg ol Lhe
q=Lh 'neLtor, where g would be Lhe Leae nomber ol Pnclors. Goalbel |
sueestls Lhal Lhe scree teslh can be obJeclbified by Lakings Lhe Firost
differential of the curve and finding al whal point it departs
signilicantly from zero (Catlell and Jaspers, 1967, pJil).  Althougsh Lhe
scree test may be very useful in many cases, it is still a subjective
decision rule as we have no adequate definition of what a "break" is.
As we shall see in Chapter T, the occurrence of improper solutions in
CaclLor analysin is sbromgly related wilh an inappropriate decision
nbout Lhe number ol facbors.  'Therelore eanllingg abbenbion Lo Lhe number
of factors problem as the BAS manual does and including several options
in a lfactor analysis program will certainly lead Lo more successtul
analysis by the increasing number of users of the statistical analysis
pickayres,

The number of factors problem is discussed in some detail by
several authors as, for example, Thorndike (1978), Gorsuch (1983),
Cureton and D'Agostino (1983) among others. Thorndike also reviews
several criteria to detine the adequacy of a factor analysis solution.
The eriteria l'or tacLtor solubions: are relabed Lo Lhe number ol Unelors
problem and it is another of Lhe practical problems Chaced by Lhe nser

of factor analysis programs.
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Criteria for Judging the adequacy of a lactor analysis solution

One of' Lhe most uned criterin for Lesting Lhe ndequaey ol o
factor anulysis solution in Lhe Goodness-olf=Uit Lesl ausoclabed wilh
the maximum likelihood factor analysis method (sece expression Uh.5).

The Lest wan derived under resbricbed condiLions, Lhnt i, 'or
conbinuous variables, mulbinormnlly disbribubed and analysis

based on the sample covariance matrix as opposed Lo the sample
correlation matrix. 'lhese conditions are seldom met in practice. Uome
authors (e.g. Gorsuch, 1983) have pointed out that because the test is
dependent. upon sample size, for large samples, a model that is
trivially false is likely to be rejected.

According Lo 'Thorndike (1978), a potentinlly useful way Lo Judge
whether an additional factor adds enough information Lo the previous
solution is to compare the matrix of residual correlations obtained
with the extra factor to the matrix obtained without it. 'the residual
correlation matrix is tLhe difference belween Lhe reproduced correlalion
matrix by the model and the observed correlation matrix. 'this matrix
is now available as an option in all Lhree factor analysis packapes.
The 8AS program prints also the root mean square residual (RMS) given
by

RMS = [ § (r

-~ 1
)22
i< 1

137"
where k is the number of off-diagonal elements of the residual matrix,
which is p(p-1)/2; rij are tLhe observed correlation coefficienbs and
1"]._‘j are the correlation coefficients reproduced by the model. This

measure is not available in the other programs, but SP38S-X prints the

proportion of elements of the residual mitrix that are greater, in
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absolute value, than 0.05. 'This clearly is not an appropriate
criterion becnuse Lhe mgnitude ol Lhe residundls depend on o somple size.
Thurstone (1947) has used the criderion ol' insignificanl residuals ns
an index of the adequacy of a factor analysis solution. McNemar (1942)
has discussed the theory of residual distribution in an effort to
provide a statistical test of when the residuals are sufficiently small
(cf. Thorndike, 1978). Under McNemar's proposal, factors should be
extroncted unbil the distribubion of Ghe residunls had a5 boandired
deviation no grenter Lhan Lhe standard error ol o zero-order
correlation. We agree with Thorndike when he says that "although Lhis
approach would seem to merit consideration, it has not been widely
used",

The root-mean-square residual (RMS) is appropriate for comparing
different solutions (different number of factors) from the same
correlation matrix, although the eriteriin may lead Lo the inclusion of
too many factors because the residuals approximate to zero, as the
number of factors increase.

Finally, we shall gquote here a comment made by Johnson and
Wichern (1982) - unfortunately, they say, "the criterion for jJudging
the gquality of any factor analysis has not been well quantified.

Rather it seems to depend on a 'WOW criterion'. If while scrutinizing
the factor analysis, the investigator can shout: 'Wow! I understand
these factors - the application is deemed successful'". This shows
that the adequacy of a model mist be Jjudged by multiple criteria.

To avoid the subjective element two relatively new criteria have
been introduced in the factor analysis program of the SAS package. The

criteria are associated with the maximum likelihood factor analysis
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meLhod:

Akaike's Informilion Criterion (AIC) Cor Ghe MLEA mmebhod (Alcike,
1973, 1983) is a general criterion for estimating the best number of
parameters to include in a model if MLIFA is used.  ‘The number of
factors that yields the smallest value of AIC is considered best.
According to the SAS (1985) user's guide, the Aknike's criterion like
the chi-square test, "tends to include factors that are statistically
gignificant bul inconsequential for praclienl purposes',

Schwarz's Buyesian eriterion (BBC) ror Lhe MLFA method (see Guelke
and Singleton, 1980) is also a criterion for determining the best
number of parameters of a model if MLFA is used. The number of factors
that yields the smallest value of SBC is considered best. According to
BAS instructions, SBC seems to be less inclined to include bLrivial

factors than  cither AIC or Lhe chi-square Lesh.

Methods and options available in factor analysis routines

A comparative study of the factor analysis programs in three
packages: SPSS, BMPD and SAS was presented by MacCallum (1984),
therefore we only sumnmairize Lhe comparisons in terms ol options
available in the most current available versions of the packapges, us
for example the new SPS5S-X, which was not included in MacCallum's
study. 'The versions considered here are as follows:

BMDP, April 1985 version Dixon et al, 1983]

SAS, Version 5, 1985 SAS Institute Inc, 1989

5PSS-X Release 2.1, 1986 [spPssX Ine, 1986; Norusis, 1985 |

SPBS-X seems superior to the other two packages with relation to
the limitation problem. In SPS5-X there is no limitations to the

number of variables, the number of analysis, the number of extractions
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or the number ol rotollons, IL i Lhe only progrean ol Lhe momenl, where
more than one extraction method for a given 'ANALYSLS' subcommind can
be specified. The user can also specify more than one rotation method
for a given extraction or even more than one analysis for each problem.
GPBB-X now accepts a4 correlation matrix in lower Criangular form ws
BMDP does, bul BAS sLLLL only accepls o correlation malriz in square
symmetric form. BSP55-X does not accept a covariance matrix as input
and this is a disadvantage of the puckage. The flexibility in BMDP
with respect to 'input is then one point in favour of BMDP, but the
Limitations in Lhe number of extraction mebhods in one analysis makes
BMDEP and SAS inferior Lo GPLU5-X ol Lhe momenl.  OLher comparisons coan
be made from the options available in each package. Table L.2 presents

the methods and options available in enach package.
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Table 4.2 - Options available in the current versions of the

BMDP, GAS and SPHUS=X 'nebLor analysis progrions
BMDP DAL SPHB5-R

Maximum number of 100 variables 250 variables No Limit
variables in the analysis (60 with MLIA)
Forms of input:
Raw data Y ¥ Y
Correlation Matrix Y ¥ %
Covariance Matrix ¥ Y N
Prior solution i Y 23
Factoring methods: Y Y Y
Principal factor analysis ¥ Y Y
Maximum likelihood N N Y
Generalized least squares N Y Y
Unweighted least sqguares { Y Y
Alpha factor analysis ] Y Y
Image factor analysis N Y it
Kaiser's Little Jiffy 4 N N
Harris component analysis N b N
Principal component analysis Y ¥ ¥
Communality estimates:
Square multiple correlation (SMC) Y Y Y
Adjusted SMC N X i
Maximum absolute correlation Y ¥ N
A list of values (input) Y Y Y
Random no. (unitorm distr.) N Y iy

Number of fuactors criterin
Maximim number (input)
minimum eipgenvialue
proportion of variance

=< <
< =< =<
= < =<

Rotation methods

Varimax Y Y ¥
Quartimax Y o Y
Equimax Y Y Y
Orthomax Y ¥ I
Promax N Y N
Orthoblique Y X V]
Direct oblimin Y N Y
Direct Quartimin Y N N
Procrustes N 53 N
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Adequacy of IFA criteria

goodness-of-fit (y4) (ML) N Y Y
Likelihood criterion (ML) s N Iy
Hes ldual correlntlon ¥ ¥ Y
Root mean square residual N Y N
Akaike's Information criterion(ML)N ¥ N
Schwarz's Baysian criterion (ML) N Y N
Measure of sampling adequacy N Y Y
'Loly
Seree plol (cigenvalue:s) N Y b
Mnclor loadings b b b
Rotated Cnclor Londings Y Y Y
I'ncltor scoreg Y N N
l'nctor scores method
Regression method Y )i
Bartlett method i N Y
Anderson-Rubin melhod N I Y
Note: Y = Yes ; N = No.
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4.4  Factor analysis for categorical data: the underlying variable
model based on C-type distributions

In this seclblion we pregsent Lhe CneLbor nmudysis for enbegorienl
data method, introduced in Chapter 1, which we call the underlying
variable factor analysis method (UVI'A) based on the C-type
distribution. '"he theoreticul framework for the method is given in
Beeltion 1.2, for any underly ing distribution of the manifest varinable.
We Lhen suppose Lhat the C-type distribution is the underlying
distribution and contingency type correlation coeflficients (functions
of the parameter of the association of the C-type distribution) are
then obtained. A maximum likelihood method for estimating the parameter
of the association of the C-type distribution (the global cross product
ratio from RxC contingency tables) is presented in Chapter 3. We then
swrest usingg Lhe conlingency =Ly pe correlabion coellicienbs an inpal Lo
Lhe Cactor exbraction mebhods available in Lhe compinber ronbines. A
computer propgram Lhal yields Lhe conlingency-Lype correlabion mibriz
for using ns inpul in Lhe stabisbical prekages 1o now described.

A FORTRAN program, call CROSBUGPS, wis designed For Lhe max imam
likelihood method of estimating the parameter of association (§) of
the C-type distribution and contingency-type correlation coefficients.
The program reads the raw data and cross—-tabulates Lhe p variables.

The parameter iy for each of the p{p-1) /2 crosstables is estimated by
the ML method using the iterative method of scoring. 'The correlation
coefficients using Mardia's formula , ru(¢), and Chambers' formula ,
‘"o.*rh('” (see Section 2.3) are then calculated. 'he output of the
CROSBPSL program consisls of the contingency-type correlation

matrices in lower triangular form, in appropriate format for subsequent
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use in factor analysis programs. The input system of the CROSGPSI
program is described and the output is illustrated with an example.

The input for CROSSPSI consists of the data file and some simple
informition about Lhe data file:

1) Title of Lhe problem

2) Number ol ciuses (::um]:l.t: sive)

3) Mumber of variables

4) Number of categories of each variable
5) Input format of the raw data.

Input format for the CROSSPSI program

1) The title of the problem should be input using the following

Formt:
(Lo, "rirne)

where "I'I'ILE" is the title of the problem to be analysed and should
contain al most 20 characters.

2) Number of cnses - (ree Formel,

3) Number of variables — Cree format

h) Number of categories of each variable: (ree Uormit, bul one
integer number (Ci) should be input for each of the p variables.

5) The input format of the data to be read in should conform
with a FORTRAN format as for example (kX, pIw) where k means the number
of spaces (if any) at the beginning of cach data file linej p is Lhe
number of variables and Iw implies the variable to be read in is of
type INTEGER and occupies a field of width w in the current data line.
(The format specification Fw.0 may be used instead of Iw).

The program is written in FORTRAN 77. ‘The input channel number is
assumed to be 5 for the input items 1 to 5 given above and the input

channel number T should be used for the data file (raw data). 'Mhe
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®

* DEFINE FOROOZ I'TACHELICIVIL.DAT
* DIFINE TOROOA RESIN T.0118
®
L]

RUN CROSSIG1

ENTER TIVLE OF FILF-USING THE FOLLOWING FORMAT! (1IN0 "TITLE")

(1He'CIVIL.DAT )

ENTFR N OF CNASES=
515

ENIFR N OF VARINRI ES~
7

ENTER N OF CATEGORIES NIF FACH VARIANARLE
S5 555895

ENTER INFUT FORMAT AS IN THE EXAMFPLE? (IXL1312)
(3X,712)

FORIRAN ST1OP
L)
* 1YPE RESULT.LILIS

CIVIL . D]

N OF HIAGOING DAl OF UnR 1 18 0
N (F MISSINO Dialn i var 2 19 109
N OF MIESING DATn OF VAR 3 18 a7
N OF MISSING DATINA OOF VAR 4 IS5 1
N OF MISSING DATA OF VAR S5 IS 106
N OF HISSING DATA OF VarR & 1S 105
N OF HISSING DATA OF VAR 7 IS 193X

MHARDTIA CORRFIATION COFTFTICTENT MATRIX
1.000
0.473 1.000
0.344 0.530 1.000
0.244 0.%577 0.A22 1.000
0.2n 0,399 0.419 0, 3004 1.000
0.425 O.an9 0.472 0.A430 O.3485 1.000
0.353 0.211 0.282 0V.272 0,170 0.2a42 1.000

R.74 CORRELATION COEFFTCTIFNT MATRIX
1.000
0.512 1.000
0.377 0.570 1.000
0.2%1 0.617 0.6462 1.000
0.309 0.430 0.454 0.357 1.000
0.4643 0.528 0.513 0.4467 0.3299 1.000
0.38464 0,241 0.310 0.300 0.18H 0.247 1.000

THE TOLLOWING CODE 1S valL T FOR THF CIORRFIATION MAIRTICES!?
an.0RAN - EXPFCIFD PROCORTION FQUAL 1N Z7FRND
77.777 - PSI HAS 1 ATILED 10 CONVUERGE

THE OUIrUT FORMAT OF THE CORRELATION MATRICES 151 (1Xe1LF7.3)
]

FIGUKS 4.1 = INPUT AND OUTPUT OF PROGRAM CHOGSPSI
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output is printed in a new file using the output channel number 8.
Observation: Using the program on the VAX computer at LSE, the
commands for defining the input and outputs files before running the
CROSSPSI program should be:
DEFINE FOROOT DATA FILE NAME

DEFINE FOROOB OUTPUT FILE NAME

Example

The Civil Service I data (sce Chapter 6, Section 6.2) are used Lo
illustrate the input and output of Lhe program CROSSPS L. In Migare bl
we show the sequence of commands to be used.

In the example we use only the seven first variables of the Civil
Service I data for illustrative purposes. The raw data file called
CIVIL.DAT consists of seven categorical variables, each one with five
categories and the data file format is (3X, TI2). 'lhe input items are
ansvwered iteratively in a computer terminal session as illustrated in
Figure 4.1. The output file, which in the example is called RESULT.LIS
is printed and it contains:

L) Number of missing data for cach variable. CROSSBPSL uses
puirwise deletions ol missing data; that is, LI the value of any
variable in a case is missing or out of range, the case is omitted from
the computation of the correlation coefficients of this variable with
any other variable.

2) Rutw) correlation matrix, or Mardia correlation matrix which is
formed by the contingency type correlation coefficients using Mardia's

formula ru(m) given in Section 2.3.
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3) HO.Th correlation matrix which is formed by the contingency
type correlation coefficients using Chambers' formuila ro.?h(w) given
in Section 2.3.

The outpul Corml of Lhe correlation matrices is in Lhe lower
Lrinngulor Corm and Lhe sbandard FORTRAN Format is used (DXL 3) .
The format is appropriate for using as input for the factor analysis
program of the BMDP and SPSS-X. (The current version of the SAS factor
program requires the square correlation matrix and a special SBAS format

for this program, Lherefore the whole malrix should be input).

Portability of the CROSSPSI program

No auxiliary routine is used in the CROBSPSI program. As a
FORTRAN program, it can be used in any machine with a FORTRAN compiler,
including the microcomputers. The limitations of the program depends
on the available memory space of the machine. A listing of Lhe program
is included in Appendix Lo 'The dimension parameters ol Lhe progrom arc
def'ined as follows:

MAX]1 - the maximum value of the sample size to be used for any

particular user

MAX2 - the maximum number of variables

MAX3 - the maximum number of categories for the variables

MAXY4 -~ the maximum number of elements of the lower triangular

correlation matrix (P(P-1)/2). Tt should be calculated as
MAXY = MAX2 (MAX2-1) /2
For the particular listing of the program presented in Appendix I,

these limits are: MAX1 = 1800; MAXZ2 = 50, MAX3 = 10; MAXL = 1225,
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If the machine Lo be used by Lhe user allows an increase in the
cupnelly ol Lthe program, Lhls Lo cnndly done by el ing Lhe porameloer:s
on the first Line of the miin program and in the first line of the
subrontine PSI10, where MAX = MAX3.

We hiwve deseribed how Lo use Lhe program (CROBUIPGL) for oblaining
contingency ULype correlation matrices, which may thus be used as input
to the traditional factor extraction methods. This method allows us to
obtain factor analysis resulls for categorical variables without
restrictions on the number of variables. The limitations on the number
of variables for the underlying variable factor analysis method based
on the C=type distribulion, as deseribed in Lhis seclion nre,
therefore, Lthe same Limitabtions ns for Lhe Lrenddibionndl faclor analysis
methods (see Section 4.3). lxamples of the use of the UVI'A method lor
categorical data will be presented in the next two chapters, for binary
and for polytomous variables. Comparisons with Bartholomew's model

will be made.

B R UFRGS

: \ nZ EBBLIOTECAS
i apisl DE M TEMATICA
BIBLIOTECA Scitenias



122

CHAPTER 5 @ NUMBRICAL, APPLICATIONDG I'OR BINARY DAT'A AND

COMUAILEONS WP BAIEPIOLOMEW 5 MODELS:

[l

HYel Introduction

In this chapter we shall make a comparative study of diflCerent
factor analysis methods, including the Bartholomew's factor analysis
For categoricnl dabic models, Lhe underly ing variable model based on Lhe
C=type distribution and Lradibional faclor analysis mebhods.s We ahedl |l
apply the methods Lo six dobio sels rom cmpircical experiments Lhat
have been used in Lhe Literature relabed wilh Lhe sabjecl.  PMor ol
cases Lhe manilest variables are dichoLomous. ‘'lhe data sels are

summarized as follows:

et Numbers Nevme Ho ol varinbles Saumple size
| Woelnreich Ikl ) o
Ped AborbLion Dt 6 186
3 Andersen It ) 00
l Lombard Lata & 1729
5 McHugh Data L 137
6 Goodman Data i 1000

We shicl Lo desceribe and analyse cieh dobo sel sepenbely s Mo cneh
dicta sel, Cour different correlation mabrices are sed as inpul Lo Lhe
Lraditional facbor analysis mebhods.  The Lour cases are described

below.

CASE I - INPUT : TETRACHORIC COEFFICIENTS. In this case we shall
assume that the underlying distribution of the variables are really
continuous nnd normal. 'The Pearson tetrachoric correlation
coefficient is calculated using a computer routine from BMPD, In this
program the bivariate normal integral is approximated by an infinite

series and the coefficient is found implicitly by iteration. If the
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series does not converge within 100 terms, Gaussian quadrature is used

to evaluate the intepral (Brown and Benedetti, 1977).

CASE [I - INPUTL' : CHAMBERS CORRELATION COEFFICLENTS. 'lhis is

I B
conbingency Lype cocllicienb, Lhall in, o funcebion off Lhe pooriaeboer off
association of the C-~type distribution. The coefficient was introduced
by Chambers ns an estimite of the latent coefficient of Lhe bivariate
normul.

The underlying variable model approach, with normel marginal

distributions, is assumed in this case. 'The coefficient is given by

Po.ru”™

CASEH [LL - INPUT : MARDLIA CORRELA'N'TON COEFIIC LENTS. ‘This
coolliciont wais inbreodueod by Maedia (1O07) abady ing, Bheo momenbes o Lle
C=type uniform distribution. [n Lhis ecase we asswne Lhal Lhe
underlying marginal distribution functions correspond to the uniform
distribution on (0,1). It is given by

r‘U(!b) = -:F_P—i = M
(p-1)2
where § is the cross product ratio estimated from the 2x2 observed

tables. (See Chapter 2, Section 2.3).

CASiH IV - INPUT : PHI COEFFICIENTS. As a comparative study we
shall also use the familiar Phi-coefficient, an acceptable measure of
correlation when the variables are purely two-valued qualitative
abtributes (see UI‘I;LHI}-JUI‘.:B, 1982).  'he Phi-coeflicient corresponds Lo Lhe

product-moment correlation coefficient evaluated from the binary data.
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We: hiwve already poinbed ol Lhal on noing eLrachoric, Chambers or

Murdin coefficienbs s inpul Lo the factor analysis methodsg Ghe
correlation matrices may not be Gramian, but in all examples Lo be
shown in this chapter, the correlation matrices are positive definite.

The estimated parameters, comparisons and lurther consideralions
about pgoodness of it of the models will be presented for each data
set. The comparisons wil be made directly on basis of the factor
loadings. We have reparameterized the parameter estimates of
Bartholomew's models in order Lo compare wilh Lhe heurisbic estimbes
(see Section h.2).

The determinabion of Lhe number ol common faclbors oo difCiealt,
and often controversial problem of fiactor analysis. Again, for
comparing with Bartholomew's models we have decided to use the
one-=factor model [or all methods, but we shall consider and comment. on
Lhe solubions in which Lhe number off facLkors ol Lhe model i ot bed
by the "default criterion" of each factor analysis program. 'Inis number
generally corresponds to the number of eigenvalues greater than one
from appropriate matrices.

For a deseription of the Bartholomew models see Section h.Z2.

In this chapler we shall use btwo different estimation methods and Lwo
models: lor Lhe logit modely we use Lhe approximabion mebhod asingg s
input the cross product ratio (Bartholomew, 1980) which program is
called MODFAC. For the probit/probit model we shall use the maximum
likelihood method and the program FACONE (Shea, 1984).

With respect to the traditional factor analysis methods, we shall
analyse the dota sels using the methods available in Lhe BMDF and S5PGS

packages. As was pointed out in Section 4.3, the RAO method (SPSS)
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yields the same results as MLFA (BMDP) provided we use the RAO program
with an additional input card allowing v greater number of iterations
than the default eriterion (25 iterations). We have used @ "N of
ITERATION = 1000" eard ns ingub, and Cor all doaba sels anadysed in Lhis
chiapler we obtained identical solutions with KRAO and MLFA mebhods.  'The
common solubion will be presenbed as Lhe maximom Likelihood Faetorp
wneely sis method (MLIA).

PFA (BMPD) and PA2 (SPSS) are also equivalent methods with small
differences between them. However, for all data sets of this chapter
the two methods yielded the same results and only PIFA will be
presented in Lhe Lables off resulls.  We also include Lhe resalbls Por
two other factor analysis methods : ALPUA (SPSS) and LJLFFY (BMDP). Ve
observe that IMAGE (SPSS) method is equivalent to LJIFFY. For
illustrative purposes we also include the FCA (Principal Component
Analysis) method.

Although the SASB package has some advantages compared with the
BMDP and BPGS nelor nanalysis programs s poinbed oul by MacCal Lum
(1983), we shall not use SAS because it uses a more complex input
system which is inconvenient for dealing with too many different data

sets and various correlation matrices as in this study.
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5.2 Weinreich data

The Welinreich datn consists of five items concerning nllergic
reactions and it is tiken from Weinreich (1982). "The resull For cach
item was "no reaction” or "positive reaclLion” from an allerpy Lest of
802 patients wilh Five sorts of grasses; (1) Onion Couchs (2) Fescue
grass; (3) Couch grass; (U) Cock's ool grass and (5) Rye A S (ISIEIN

The cross product ratios for this set are presented in Table 5.1

and the correlation matrices in Iable 5.2,

Table 5.1 - Cross-Product Ratios; Weinreich Data

Items 1 2 3 h
2 3h.9l
3 29.54 32.20
Iy L6.63 29,81 28.66
5 17.92 31.59 22,68 16.25

Table 5.2 - Correlation Matrices for Weinreich Data (%)

Tetrachoric Coefficients Chambers Coefficients
Items 1 2 3 h 1 2 3 i
2 .90 BT
3 .88 B9 5 86
h 91 O .88 .89 L85 89
5 .81 87 .85 81 .79 B85 L8 S
Mardia Coefficients Phi-Coefficients
Items 1 2 3 h 1 2 3 ly
2 B4 il
L2 RirL ] O LO8
L BT IR0t B2 .70 .65 60
5 g6 W83 T8 L7h .58 6L 6L .60

(¥) The diagonal is omitted
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Table 5.3 - Weinreich data: Factor loadings obtained by different
factor analysis methods for various correlation malrices
and the reparameterised factor loadings oblained by
Bartholomew's mebhods.  One=ractor model. (%)

CABI L = INPUL: TETRACHORIC CORKBELATLON CORIPIC RN sorLho Lomew '
metbhods
['1'Ind MEA ' A ALTHA Ll LIIY IR MODIAL IFACON S
1 9Y 9l ok 93 9y 90 Ol
2 99 95 95 93 96 96 95
3 9l 9l 9l 02 Ol Ol Oh
y 9 93 93 92 94 9Y ol
L 519 Bo 8o e 00 00 Ho

CASE II - INPUT: CHAMBER COLFWIC LENTS (r -“')

ITEM MLFA PFA ALPHA LJIFFY FCA MODFAC FACONE
1 93 93 93 91 9Ok 96 9
2 9l 9k 9l 91 95 96 95
3 92 92 92 90 9k 9h 9k
b 92 92 92 90 93 95 Yl
5 87 o Y 86 91 90 39

CAGLI LIL - LNPUT: MARDLA COEFELC LISN'DS

ITEM MLFA PFA ALPHA LJTFRY FCA MODFAC  FACONE
L e 92 02 89 973 06 Ol
P Y3 93 3 90 oh U6 uY
3 90 9l 91 38 93 Uh 9“
Iy 91 90 90 88 92 95 9l
5 85 35 85 3h 89 90 89

CASLE IV - INPUT: PHI-CORFIFLCLENLS

ITEM MLIPA PRA ALPHA LJIFFY FCA MODIFAC FACONL
i 83 83 83 TT 86 96 Ok
2 83 83 83 il 87 96 95
3 83 83 83 Vil § B 9h Ol
h 2 (62, 8 6 806 0y Oh
5 ‘th ‘th ‘h 0 i Do i

(*) Decimal point is omitted
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In Table 5.3 we present the factor loadings obtained by different
Factor anulynis melhods and Por different correlation mabeices ased n
input to the mebhods, according Lo the description in Lhe last section.

One facLor wis extracted by all faetor annlysin mebhods by Lhe
delaull eriterion.  'he eigenvalues for Lhe difterent correlabion
matrices show a large value associated with the first factor and small
values for Lhe remainder. ‘Iable S.h shows Lhe cipenvalues ror Lhe

unaltered correlation mitrices in ench ense under considerntion.

Table 5.4 - Bigenvalues of the unaltered correlation
maibrices for Weinrich dicha

Correlation Matrix Iigenvalues

Tetrachoric Lkt 0.22 032 k12 D08
Chambers 4,36 0.26 0.15 ©0.12 0.11
Mardia h,26  0.30 0.18  0.1h 0.12
Phi 3.62 0,45  0.34  0.31  0.26

Bock and Lieberman (1970) suggest that when there is a
well-defined "jump" between the value of the first eigenvalue and taat
of the remaining, the result would be taken to justify the
unidimensionality ol the latent space. Althoush Lhis rule is very
subjective, it seems to be useful to help in the determination of the
number of factors of the model. Also the homogeneity of the items
together with high values of Lhe correlation coefficients as ib is
shown in 'able 5.2, lead to the assumption of unidimensionality of Lhe
latent space in this example.

We see in Table 5.3 that the agreement between the factor loadings

obtained by the factor analysis methods: MLFA, PFA ALPHA and
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Bartholomew's model is very close for the Lebrachoriec coelficienlbs and
for Chambers coefficient cases. 'The agrcement is reasonable for Mardia
coellicients and it is poor for Lhe Phi—cocl(licient cease.  We also
observe that for each of the four cases considered the solution for
MLIA, PI'A and ALPHA are the same for Lhe Weinreich dato. LT TIY
osbimbes are lower Lhan Lhe MELIPA enbimabes and TUA colimabes are
higher for nll cases connldered.,  We nobe, however, Lhal Lhe soame
relative order bebween Lhe [Lems 1o observed Por almost all mebhods in
Lhe four cases. 'The items show approximately the same magnitude
concerning the factor loadings, although Lhe Cifth iLem presents
systematically the smallest. In other words, we can say that the items
have approximitely the same discriminabting power lor Lhe Weinreich
data.

Weinreich (1982), analysing the same data set, concludes that the
data are well desceribed by the Rasch model which assumes equal
discriminating power for all items.

We shall now present some additional considerations about Lhe
roodness o LG and Lest ol sipniliennce ol Lhe number o PacLor:s
provided by the traditional factor analysis methods and also the
goodness of fit test for the Bartholomew's models. As was pointed ont
in Section h.3, two factor analysis methods, MLFA and RAO provide Lesbs
of significance for testing the number of factors.

We should note, however, thal bhe test of tLhe number of [(nctors
provided by the factor analysis methods is designed for the case of
continuous normal manifest variables and covariance matrices and is not
meaningful when the assumptions are not satisfied, as in the case of

the heuristic approach. 'Therefore, we shall not consider in Lhis

CXCAAT



130

chapter the results of the chi-square tests and our analysis of the fit
of the fnclor nnualysis models will be based on Lhe residund correlabion
motrix.

The goodness-of-fit test for Bartholomew's logit model (MODIAC),
given by the log-likelihood ritio is A=60.9h with 21 d.t'. (p<0.0V01).
For Lhe probit/probit model we oblained A=I'f028 with h dor. (p<0.00l).
bBee Seclion bl for Lhe deseripbion ol Lhe poodness—ol =il Lenbs Cor
Bartholomew's model.  lPoth models are rejecbed for Lhe Weineeich b,
Tis resull is probably crused by Lhe hipgh observed Ceequencics o Lhe
Low and high scorcgroups (see Weinreich, 108:7).

Next, we shall compare bLhe methods reparding Lhe residund
correlation matrix. ‘his matrix is supplied by the methods available
in the BMDP package. [From the residual correlation mibrix we obtain
the root mean square (RMS) of the off-dingonal elements of this matrix.
(Mis eriterion is avidlable in Lhe SAS Pacbor anslysis mebhods bat
only the residual matrix is presented as oubput in Lhe BMDP packigre).
In Table 5.5 we present the RMS values for each correlation matrix eanse
and for each factor analysis methods. MLIFA and PFA shows the best fit
compiaring the methods and Lhe Letrachoric correlation mibrix is GLhe
mosl perfectly reproduced by the factor analysis model.

Table 5.5 = The root mean square (RMS) of the residual
correlation matrices for the different factor
analysis methods.

Weinreich data

Correlation Matrix MLF A Pt L LIPY HoA
Tetrachoric 0.018  0.018 0.036 0.03h
Chambers coetficient 0.0 1 0.0:21 0.0hk (J.039
Mardian coefficient 0. 02N 0.02h 0.05H0 0.0hYy
Phi-coetficient 0.021 0.021 0.08°7 0.073
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From Lhe discuassion nbove, we con cone binde Lhinl Lhe hieariat e

appronch o corbndnly Junbi Cled when we use Lhe Lelbeochoric coreelabion
coellicients and Lhe mebhod MLIA Por Lhe Welinreich diba.

Although the apreement bebween Lhe CacLlor londings estimbes for
Chambers' coeflicienl and Mardia's coefl'icients is nob so good, Lhe
resulls are only slightly poorer. I'inally, in case of the Phi-

coefl'icients, the agreement between Lhe mebthods is nobt pood, Lhe

results being systemabically lower.
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5.3 Abortion dobn

The Abortion data sel is taken Crom Cloge and Sawyer (L981) and it
is related with attitudes towards legal abortion. It contaings six
items concerning different attitudes, each with 'ves' or 'no' responses
for 1286 individuals. Respondents were asked if abortion should be
legally available:
(L) It the womun's own henlth 1u seriously endinpgered by Lhe
pregnancy ;
(2) Ir there is a strong chance ol serious defecl in Lhe baby g
(3) If she becomes pregnant as i resull of rape;
(L) It the family has a very low income and cannot al'lord more
children;
(5) 1 she is not married and does not wint Lo mivrrey Lhe g
(b) Lt she o maericd and does not wanl more ehi Ldren.
The cross-product ratios and the correlation matrices used as

input to factor analysis methods are presented in Table 5.6 and 5.7

respectively
Table H.0 — Abortion Data: Cross=produacel ralion
Item 1 2 3 4 >
2 29.9
3 2h.2 23.0

)y 19.7 15.4 bzl
5 L8.0 TS 10,9 hi3.9
6 14.8 15,2 Lo, 2 60.0 W5

CXCAAU



133

Table 5.7 = Abortion Data: Correlation Matrices

Tetrachoric coel'l'icienls Chambers cocef Uie ienl,

Item 1 2 3 Iy 5 Ibem 1 2 3 i 5
2 B9 2 91

3 o (4 b } o33 A3

h R o b 43 h Ao < Y

Ol afl? L0 L1 Y V] e i) Ll AT

(B L0h i) B0 .03 Sk t L0 L6 L TN Y

Mirdia coefficients Mhi-coeflicients

Item 1L 2 3 N 5 Item 1 ) 3 L 5
s B0 9 L0l

3 80 D) 3 .50 S

Iy VET <13 86 h .32 Lo A6

5 06 W75 83 W8T 5 29 38 A3 T3

6 P W 13 86 .89 BT 6 27 .36 U1 15 oTh

(the diaponal is omitted)

In 'nble 5.8 we present the factor loadings obLained by varions
foncLbor analysis mebhods and Lhe reporeameberizsed esbimcben Crom MODRAC
progriun ('In;-_il, model) o e Four coeses according Lo Live coreclabion
matrix used are presented. One-factor model is used for all melhods.

lable H.8 -~ Abortion Dauta : factor loadings obtained by ditterent

facLtor analysis methods (one=actor mode 1) s
Bavrbholomew s MODIAC method.

CAGI 1 = [NPUl: "TIIRACHORIC CORKELATLON MATRIZ sLrbho Lomow 's

mebLiod

Item ML A PFA ALPHA LJTRFY BCA MODIAC

1 15 81 82 79 86 95

2 78 85 86 83 89 | 93

3 89 93 93 90 g3 i 8h

4 96 93 92 93 93 | 96

5 96 93 92 93 9l 96

6 95 90 89 92 92 | 95
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CASE IT - INPUT: CHAMBERS CORRELATION MATRIX Bartholomew's
mesLhodd
ILoem MLIA P A ALIMIA Ll LIIY 1A MO DI A
1 80 818} By B a9l 9y
2 ) oY 87 a7 Yo 93
3 96 96 96 9l 96 8h
h 93 93 93 92 9h 96
P 9h uh 9h Ol 90 06
6 93 9 9l gl 93 a4

CAGIS TLL - INPUT @ MARDIA CORRELATNLON MATRIX

Item MLIA PFA ALPHA LJ L'WY PCA MODIAC
1 83 86 87 85 89 05
2 83 84 86 Hh 8 03
3 00 99 L) 93 94 B
I 92 O ;) 90 934 O,
y, 99 93 93 93 9h 96
6 91 90 90 90 92 | 99

CALE TV = INPUT: 'PRPBACHORLIC CORRELATLON MATRIX

———— e e ——

Item MLIFA PIA ALPHA Lo LY UA | MO DIFAC
1 50 52 60 L6 62 | 95
2 61 62 Tl 5 55] T 073
3 61 65 o 5'( T3 | 84
) Bh Y1 T8 0 83 96
5 B2 9 6 76 81 | 96
6 8h4 78 16 16 80 95

(decimal point omitted)

The results obtained by MODFAC method are repeated in each case to
tacilitabte comparisons.  lFor Lhis daba set Lhe MODIAC mebLhod docs nol
converge and aetually two solutions were obbained alLer 2L iLeralions.
We considered the best solution with respect to the log-likelihood

ratio. The FACONE program could not be applied to this data set
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becnuse Lhe program ases an inpul, Lhe seore pnlbern, which woes nol
vl lble o Lhe eciled refereoncen.
In able 5.9 we present the eigenvalues of the unaltered

correlation miLrix l'or each cuse.

Table Ha9 = Aborbion daba: Kigenvaloes ol L
unaltered correlation matrix

TETRACHORIC MATRIX hoo8  0.60 0.7 0.1 0.07 0.006
CHAMBERSG MATRLX 5.20 00 0.1% 0.1 007 0400
MARDIA MA'TRIX 5.08  0.46  0.18  0.13  0.08 0.06

PHI-COBMFICIENT MATRIX 3.43 1.20 0.48 0.37 0.27 0.2h

In this example it is not clear whether a single factor explains
the data sufficiently well or more factors are required. 'The
cigenvalue rule depends on which cane we are regarding.  For Lhe
Letrachoric, Chambers and Mardia cocllicient cases, Lhe one=factor
model clearly emerges, but using phi-coeftiecients two nelors seem
NEeCeHHUrY .

Observing Table 5.8 we can see that the loadings, comparing Lhe
methods are more heterogeneous than in the previous example. ‘There is
no close agreement between the first Lhree loadings for the logit model
and those obtained by traditional factor analysis methods. Within ench
case there is nol much difference between Lhe various Leaditional
methods .

The goodness of fit test for the Bartholomew's logit model is
19.33 with T degrees ol {reedom (P < 0.00%). Next we proesent Lhe

comparison between the methods of traditional factor analysis regarding
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the residual correlation matrix. ‘'he root mean square of Lhe

off=dingonal elements ol Lhe residunl correlabion mabrix are proscnbed

in Table .10 'or ecach cose.

Table 5.10- Abortion Data: Root mean square off-diagonal
residual correlation for the one-faclor model

Correlation Matrix MLIFA PICA L LI HOA

T'e Lrachoric 0. 097 0.076 0.082 0. 087
Clhiunbers 0.051 0.0l 0.05%0 0.0
Mard in 0. 0%t 0.053 O P L 0,003
Phi 6 P e L [ % 0] O.l62

It is seen in 'able 5.10 that the best it between Lhe obuerved
correlabion mibrix and Lhal reproduced by Lhe facbor anndlysis mebhod:s
is obtained using Chambers' coellicienl.

The aborbion doba b been stuadied o Lhe i Lerscbonere by ditfferenl
authors. Clogg and Sawyer (1981) analyse Lhe data with models which
nasume Lhat Lhe latent variable is o discrete variable. In Lhis sbudy,
Lhe models used are response cerror models for assessing, Lhe sealability
ol' a set of dichotomous items. ''hey conelude that Lhe aborbion
attitudes depart from the Guttman model in important ways, although
this model provides an acceptable summary of the attitude in question.
Some other models such as Lazarsfeld's latent distance model and others
that are generalizations of the Guttman model were used.  None of bLhe
response error models have filted the data Lo an acceptable degree,

The authors conclude that the assumption of a unique ordering of items

for the entire population needs to be carefully examined.
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A different class of models is considered under Lhe factor
analytic approach, which assumes that the latent variable(s) is
continuous. Hartholomew's model used here starts Urom Lhis assumplion
as well as the underlying variable model approach.

] 1

MuLhen (19i1) iy sen Lhe sne dicbas asing b mode ! (Mabhen
19(8). In this model normality of Lhe lalent variables is assumed and
the estimation is carried out using generalized least squares and
information from the first and second order proportion. In this factor
analytbic formulation Lhe two-lactor model wis considerced.  'lesbs of
the number of factors for the one-lactor model and for Lhe Lwo-Caclor
model are provided. ''he results show that a single factor is clearly
insufficient for this data set and thal Lhe two=laclor 15 more

1

suitable, giving a good overall fit. Muthen's Lwo-factors solution iu
therefore rotated by the Promix method as in traditional Cactor
annlysise  The Lwo ncbors were inlerpreted. Mhe Pirsl Cuelor,
according Lo F»‘]lll.llt':n':'. solnbion s measared by iLems whero Lhe sormmnenl:s
in favour ol abortion are for 'medical' reasons, (items I.,:_’) and the
second facltor is measured by items of social nature (items 4,5 and 6).
The item 3 is related to both factors (see Muthe'an, 1981, p.206).

1
Muthen also analyses Lhe dalia on aborbion abbitudes sbudy tngr Lhe
development of Lhe (nclors over Lime (rrom Lhe General Social Siarvey
1972-78). Our analysis is restricted to the 1975 survey.

Returning to our analysis, we had obtained two factors (by the
default criterion of eigenvalues greater than one) when using the
Phi-coefficients. 'The rotated factors were interpreted, the first

factor showing high loadings for the three last items (abortion for

socinl reasons) nnd Lhe sceond faclor high loadings for Lhe Fiest Lhroe
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items (abortion for medical rewsons plus ‘rapa) .

It is interesting to note that if the object of the analysis is to
determine the dimensionality of the latent space and to interpret these
dimensions, then the heurisbic approach, awing Phi-coelficienbs seoms

1
Lo produce more realisbic resulbs according Lo MuLthen's aniclysis,
albhogsh Lhe Lesbs ol slpgnitlieance ol Lhe number ol taclors For Lhe

other correlation mabtrix cases had showed an evidenl rejection off thee

hypothesis of the one-factor model.
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5.4 Andersen Data

We shucl b now anndlyse Lhe Andersen dobes whieh consiabs of 5 0 Lems
from n study ol consumer complivining behaviour and it is Laken 'rom
Andersen (1982). ‘'The original data are responses by 600 individuals on
Lypileal consumer situations Lo six items.  The individuals were asked
to state whether they, under the given circumstances, would complain or
not. We shall use only 9 variables, the 5 last items from the original
datn sebs We have decided to exclude Lhe Cirsh iLem bhocmse it
presenbs o overy high percentoge ol positive cesponses (Q0%) .

The cross~-product ratio and the correlation coefficients for

Andersen dala are presented in Qables S.L1 and .12 respeclively .

Table 5.1l = Andersen ta: Cross—product, ralios
Item 1 2 3 b
2 239l
3 122 Lo 2l
b 2.H0 2.0 254
5 2.03 3.95 2,08 416

Table 5.12 - Andersen Data: Correlation coefficients

Tetrachoric coefficients Chambers coel''icientbs

Item 1 2 3 L Tt em 1 2 3 i

2 .3h 2 .38

3 07 .08 3 07 .08

L 32 «3k L3 l R R - S,

5 23 43 .27 .5k 5 BE LA JBE 52
Mardia coefficients Phi-coeftficients

Item il 2 3 k Tt em 1 2 3 Iy

2 3k ) 18

3 07 07 3 .04 L0l

L 30 «32 .30 L AT Iy W22

5 23 43 24 RIS 5 § 1 22 el T .3k
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In Table 5.13 we consider the factor loading estimates according
Lo Lhe various rfactor anndysis mebhods For Lhe four correlallon
matrices.Me ropuramelerized osbimabes For Lhe Togil model (MODEAC) nnd
probit/probit model (FACONE) are presented and repented in ench cisse Lo

Faetlitobe compirisons.

Table 5.13 - Andersen Data: Factor loading estimates for different
facltor analysls mebhods (one=ractor model)

CABI L = LNPUT @ TIIRACHORIC CORRELATLION e rLho Lomew ' s
< method:s
Ttem MLFA PI'A ALPHA LJLFFY FCA MODFAC FACONE
1 Lo Wi 39 36 56 h1 Lo
2 53 53 53 45 67 54 59
3 36 3k 27 30 L6 33 3
L Th Th 85 57 80 75 16
5 13 T2 75 57 T9 Th T1

GAGES LU = TNPUT o CHAMBIS CORPPTC TN

1tem MLIPA PIA ALPHA L) LI Y LA MODIAC FACONL
1 L5 hs L2 39 59 L1 40
2 54 58 56 hy 10 5k 4
3 3h 32 26 2y hy 5 33 3
I T0 T2 8k 56 (CT ‘s 16
5 ™ 3 76 57 19 T T1

CASE ITII - INPUT : MARDIA COBFIICIENTS

Item MLFA PFA ALPHA LJIFFY FCA MODFAC FACONE
1 L1 L3 Lo 36 5T L1 Lo
2 56 56 53 46 69 Sk 52
3 32 30 25 26 43 33 37
b 67 68 80 52 6 15 16
5 T, T0 73 53 f i Th 1
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CASE IV - INPUT : PHICOLFFICIENTS l
Item MLIA PIMA ALPIHA L LIty FCA | MODEAC FACONIS
{ 21 (%) 28 20 Iy ! ! h0
2 35 3 20 bY { Hh pY
] 30 i 21 I 33 3f
Iy Gy (> 3 Hie ' [
Y L Y 39 0 ‘th il

* 2 P : 3 . 4
(") No solution: the eigenvalues of Lhe reduced correlation matrix
are all too small.

We observe in 'Iible S5.13 Lhat there is o close agreement, bebween
the loadings of MLIFA, PFA, MODFAC and FACONE, when we use the

Lebricchoric matrixe  ALPHA, LJTEFY and TUA yiclded dirtferenl resal b,

For the Chamboers and Mosdia cooticients Lhe aperecmentl, boebweoen MEPA

PA, MODIAC and IFACONL is also good although slightly poorer than for

the Lelrachoric cuse. lFor Lthe Phi—coefllicient cogse, Lho eslimwben aree

considerably lower Lhan Bartholomew's models esbimates.  The profile of

the loadings is approximately the same for all cases. LJIFIPYY method

underestimates the loadings compared with the other factor analysis

melthods for all correlation malrix cases.

The eigenvalues of the unaltered correlation mabrix (with ones in
the diagonal) are presented in Table 5.14 for Andersen Data.

Table S5.14 - Figenvalues of the unaltered correlation matrix

Tetrachoric matrix e 1:02 O h 0. 58 ol
Chambers matrix 2.28 IO 2 D2 0.56 042
Mardia maltrix 2,17 1.02 O.7Th 0. 60 0.b7
Phi-coefficients s 1.03 0.85 0.76 0.64
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Using the cigenvalue rule, two faclors were exbraclbed for nll
cases by the default criterion. With the two-factor solution we
obtained improper solutions: a Heywood case (a loading equal to one for
item 2) was observed for the tetrachoric matrix, Chambers matrix and
Mardia matrix cases using the MLFA method. Using the Phi-coefflicients
we observed a very hipgh loading for itLem @ with Lhe MLEA meLhod
(:’:12=U.‘)j) and no solution was obtLained wilh Lhe PFA melLhod 'or Lhe
Lwo=fnebors solution because Lhe eigenvilues ol Lhe reduced molrix were
all Loo small. 'The same occurred wilh Lhe one=tiwlor solabion s shown
in Table 5.13.

For the one-factor solution we now analyse Lhe residunl
correlation matrices. 'The root mean square for each case is presented

in Table 5.15.

Table HolYb = Andersen el rool mean soquecee o e o C=d §rgeonid
| A

elements ol Lhe residunl correlabion miwlricoes

'or
each factor analysis method
Correlation Matrix MLIMA PI"A LJTIMRY FoA
Telriwchoric 0.070 0.070 0. 031 0.1hy
Chrumboers 0.07h 0.073 0. 1373 0. 13h
Mevrd i 0.060 0.053 S 0.1hy
Phi 0.041 = Ol 13 0. 162

The fit between the observed correlation matrix and that
reproduced by the factor analysis methods is reasonable for MLFA and
PI'A methods, showing that the one-factor model fits the data very well.

For the same dala, the values of goodness-of-I'it. Lest Lfor the
MODFAC method was A = 30.56 for 21 d.f. (p<0.100) and for the FACONE

method, A = 19.42 for 10 d.f. (p<0.025).

CXC AAV



1473

Andersen (L982) annlysing Lhis dala set, applies Lhree difforenl
models: the Rasch model, the Rasch model with a normal latenl densily
and the latent cliss models  'he Riseh model consisbs of Lhe Lopginbic
latent trait model where Lhe paramebers @ (tLhe item diseriminating
power) are assumed Lo be equal for all i, and Lhe individual Toealion
in the Latent space is Lreated as o paramcter.  'The second model ia one
of Lhe latenl variable models with Lhe Llatent densily normil wilh
parameters p and 0!. The parameters a; are again considered constant.
Finally , Lhe Lhird model applicd by Andersen in Lhe Labenb e lass model
where o discrete distribubion is assumed For Lhe labenl viriables  or
a complete description of these models see Andersen (1L982). Andersen
concludes that the Rasch model as well as the latent class model with
three latent classes give a relatively good fit to the observed data.
The poodness-ol-fit test for the three-latent elass model, however,
provides the best results. 'The model with a4 latent normel densiby was
clearly rejected.

To make comparisons possible, we shall now present the goodness-
of-fit test result for Bartholomew's one-factor logit model considering
the original 6 variables. In this case a value A = 238,46 for 51 d.f.
(p<0.001) was obtained, giving a poor fit when 6 items are considered.
Excluding the [irst item, we obtain a mich better 'it. Comparing Lhe
probubility Levels, Lhe FLL off Lhe Lopil model is sLill bebler Lhan
those found by Andersen (1982).

We conclude for the Andersen data that the heuristic approach is
Justified, giving equivalent resulbs to those obtained by the lopgil

model for praclical purposes.

CXCAAV



L44h

5«H  Lombard and Docring Dnta

The Lombard and Doering daba relates Lo general knowledge of

cuncer and conuists of b items. It is taken Crom Lombard and Docering

(Lol and « sample of U729 individonls woas sbudicds Thias ael was wlso
presented in Kurtholomew (1980).  'The b items, concerning sources of
goeneral knowloedpee ol enncer, have Lwo caleporics: (L) radio/no rmdio, s
(2) newspaper/no newspaper; (3) solid reading/no solid reading;

(4) lectures/no lectures.

n 'fble Ha L6 and Yo U'f we presenl Lhe crost=prodocl eatios aond Lhe

correlation coellicienls Lor Lombaord divbhiv,

Table 5.16 - Lombard Data: Cross-product ratios

Item 1 & 3
2 2.81
3 1.68 5:05%
i 2.30 2.0 205

Table 5.17 - Lombard Data: Correlation coefficients

Tetrachoric coefficients Chambers coefficients
It em 1 2 3 Tt em 1 ] 3
2 .36 2 .36
3 19 0 .56 3 .19 .54
I «25 .26 27 h 30 «32 «32
Mardia coefficients Phi-coefficients
Item 1 2 3 Item 5 2 3
2 s 35 2 .20
3 1 .50 3 sl .38
i 2T »29 .29 l o1l oo .12
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The ecipgenvalues of the unaltered correlation matrices are shown in

Table 5.18.

Table H.18 - Lombiard Duta: Migenvalues ol Lhe
unialbered correlabion mibrices

Tetrachoric mulrix Lataif 0. 86 ectf .l
Chivmbers molrix 23 (.80 ULl 0.
Mardia matrix 1.9h 0.85 O.'fh O
Phi matrix 155 0.95 0.89 0.61

One factor was extracted by all factor analysis methods with the
various correlation matrices used as input. 'The factor loadings for
Lhe one-lactor model are presented in 'ible H. 19,

Table S.19 = Lombard Dabla: Factor loading: obbiined by dilf'l'erent,

Factor nnalysis mebhods and by eetho lomew s me Lhod:.
Une-tmetor model.

CAGI T = TNPEE: TITRACHORIC COEFRFLC TN levrLholomew '

et o

Item MLIA PIA ALPIA L TIRY 10 A MODIAC FACON
1 ho Wl hh 3h 60 W 34

4 "y i ‘(9 N i B 3

4 O 0l O e 6 () fh3

l 35 ) hYy 54 59 W 40

CASE II - INPUT: CHAMBERS COLFFICIENTS

Ttem MLIA PI'A ALPHA LJ LY FCA MODIAC PACONE
1 L3 ik hy 3 62 bl 39
o Bl 9 i) 51 81 B B
64 63 56 51 ‘Th 05 63
I Iyly b8 55 39 66 1 46
C XCAANW UFPGS
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CAGE ITIT - INPUT: MARDIA COEMFICIENTS

ILem M ' A ALHIA Lok LIUY TON MODIAC MACONIG
| h Wy 4 3 () i 40
2 Q) rf o 5yl 3o B 3
3 (e 60) Hh N 3 OY 64
i hp W H2 306 Ol 1 30

CABE 1V — INPUT: PHICORFPLC TEN'TS

Item MLieA PI'A ALPHA LJ IRy FCA | MODI'AC FACONT
1 21 (%) 33 20 51 | m 39
2 72 61 36 1t 8h 88
3 5e 't 33 12 6HY 63
) 14 25 15 O 1 36

(*) no solution: eigenvalues of the reduced matrix, all too small

Comparim:s Lthe results in Table 5.19 we observe agiiin close
agrecment bebween MLFAS PIFA, MODIFAC wnd FACONE For Cose [ oand Gase T,
For all cases LJIFFY yields underestimates and PCA yields
systematically higher loadings. ALPHA method yields different
solutions from the MLIFA and PFA method in Lhis example, ot least for
the two last items. In the Mardia coefficients case, we obtained lower
estimates for the second item, compared with Bartholomew's model
esbimatbes.s Finally , Lhe solubion usingg Phi-cocticionbs undereshimubon
the leadings comparing with MODFAC and FACONE or comparing with Case I,
Ld and TIT,

The poodness—-ol'=rit test for the lopgit model oblLained by Lhe
MODFAC melhod, is A = 19O.30 on [ degrecs ol Ureedon (|:<U.UU';) and l'or
Lhe probit/probit model (FACONE) we obbLained A = Ll.3h on 6 deprees of

freedom (p<0.075). As we can see the fit of the probit/probit model is
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necepbnble.

Table 5.20 - Lombard Data: Root mean square of the off-diagonal
elements of the residual correlation mabtrices

Correlabion mobeix MEA (RO L LIy (VA

Tebrachorie 0.059 0. 0599 0. Lho 0.8
Chaumbers 0,001 0.0%9 (.13 [ i
Mivrdia 0.003 0. 056 OalYH3 U 17O
Phi 0.031 S 0.21h 0.1

In 'Mble 5.20 we observe that the it between Lhe reproduced
correlation mitrix from the parameler estimibtes and the observed
corrclation mubrix Ls reasonable For Lhe MLEFA and PEA meLhod ond

it Ls poor for LJIFFY and [UA.
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5.6 Mcllugh Data

The Mellgh dibie sel s Lnken Prom Mverith (1080 pa81) and
consists of U items, which are four michine—desipn subbesbs given Lo
L3 enginecers.  'the items are dicholomized into posilive (above Lhe
subtest mean) and nepative (below the subtest mean).  The data were
also analysed by Mcllugh (1956) using a latent class model with two
classes.  Mveribt applied Lhe FM alpgorithm Lo Lhe dala wsing Lhe sione
model. In Lhis secbion we shoal b oannly e Lhe dabos usings TeoeLho lomew '
models nnd Leadibional FaclLor nnaldysis methodas applicd Lo ovierion:
correlation matrices appropriate to binary data.

The cross-product ratios and the correlation coeflficients Lor

the data are presented in Tables 5.21 and 5.22.
ible 5.21 — Mellugh ditar Crosa-product, rilios
Itemn 1 ” 3
2 8.06
3 305? 2-90
I 2232 237 LL:9

Table He22 = Mcllupgh data: Correlabion cocllicients

Tetrachoric coefficients Chambers coefficients
Ltom L 2 & 1, eom 1 ! 3
2 0.68 2 0.65
3 0.46  0.39 3 0.4 0.38
4 0.32 0.33 0.76 L 0.30 0.31 0.72
Mardia coetticients Phi-coel't'icienls
Item 1 2 3 Lem 1 e 3
2 0.61 2 0.h8
3 0.4h0  0.3h4 3 0.3L  0.26
i 0.27 0.28 0.69 i 0.21 0.21 0.55
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Table 5.23 - McHugh data: eigenvalues of the
unitltered correlabion mabrix

TeLrachorie mabrix 248 0.9 0.33 0.22
Chambers mabrix 2.40 0.98 0.37 0.2%
Mardia matrix 2.30 101 0.h0 0.29
Phi-malrix 2.00 1.02 0.53 0.k

The cigenvalues ol Lhe unaltered correlabion mulrix or cach case

are presented in 'lable 5.23. Using the "default criterion" of number

of eigenvalues greater than one, Cor deciding Lhe number off Cncelors, we

have one aclor 'or Lhe Lebtrachoric and Cluunbers moaleix coses and Lwo

faclors for Lhe Murdian and Phi-cocllicient cnses.s Inoorder Lo compare

with Bartholomew's one factor logit model and probit/probit model we

present the one-factor solution for all methods. 'the factor loadings

estimates are presented and repeated in each correlation maitrix input

case 'or comparisoni.

Table 5.24 - McHugh Inta: Factor loadings estimates for various
facLbor annlysis mebhods. One=aclor model.

CABE L o= LNPUT: TIPRACHORIC COBIMFIC LN BeorLholomew s
mebhods
Item MLIA PI*A ALPHA LdJ LIy A MODIAC PACONL
1 51 o' 0 6O '8 ‘0 L8
2 Lo 63 66 51 (6 O 5
3 93 82 82 T3 84 85 9l
I 80 69 62 68 71 19 78

CAGE LL - INPUT: CHAMBERS COBEFEIC LENTS

Item MLIA PFA ALPHA LJIFFY FCA MODKAC FACONE
hY 50 65 68 571 T 70 58
2 L5 61 64 54 h 67 55
3 91 80 81 T0 83 - 85 91
i T8 67 61 64 16 | 9 ‘8
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CASE III - INPUT: MARDIA COEFFICIENTS
Item MLIA PIA ALPHA L) LIMIY [UA MO DI AC FACONI
| IV (5. GY 53 h o LH
Pl hs HY 3% H1 %) Of HY
3 ) ‘8 '8 OO B B 01
I 6 6Y) yt O ‘th Q) Vil
CASE LV = INPUT: PHI-COLFFICIENTS
Item MLIF'A PIA ALPIIA LJIFPY FCA \ MODI'AC I'ACONI
1 43 53 58 43 69 | 0 58
> b0 50 5h W1 67 ‘ 67 55
3 TT TO 69 52 6 85 91
L 66 59 52 e 70 j 79 78

A1l methods yicld o high factor loading for iLem 3, Cfollowed by
Lhe Loadimg lor item hoand Lower loadingr: for item L oand 2.0 'This
pattern or profile ol' items 15 observed f'or all methods, butb Lhere is
no close agreement between the absolute values of the loadings. 'The
solutions for Case I, tetrachoric coefficients and Cause LI, Chamber:s
coef'ficients are similar.

We now present bthe rootb mean square of Lhe ofC=dingzonal olements

of the residual correlation matrix for each factor analysis method and

input correlation matrix case in 'lable 5.25,

Table 5.25 - McHugh Data: RMS of the residual correlation
matrices for factor analysis methods

Correlation matrix MLFA PI*A LJIFFY FCA

Tetrachoric 0.188 0.158 0.182 0. 207
Chambers 0. 177 0. 155 0.181 0.22006
Mardin 0.173 0. 152 0. L8Y O.210
Phi 0.133 0.124 0178 0.208
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The results in Table 5.25 show a poor it of Lhe reproduced
correlation mbrix with the observed correlation mabrix for nll
methods. 'lhis would indicate that one more factor is needed in the

models  The poodness of it stabistic obtained for the probit/probil,

mode | (FACONL |||':;,t.-;t':|.m) wiss A= 1010, b deprees o Frecdom and p<Oa001

indicating that the it to the one-faclor model is poor.
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YT Goodmin Data

The Goodman data sel Ls taken Urom Goodman (L978) and consists of
four items of the Lazarsfeld-Stouffer gquestionnaire for noncommissioned
ol'licers on abbitude Loward Lhe Arny «  'The sample sive o 1000, and Lhe
items are dichotomices: favorable (L) or untavorable (0).

The cross=produchk ratios and the correlation coefticients for the

Goodman data set are presented in lables H5e26 and H.27.

Table 5.26 - Goodman data: Cross—product ratios

I oem 1 P 3
2 Skl
3 Jahe e
) hohy 2o 3259
Table S = Goodmen doata: Correlabion coel Mieionbn
Tetrachoric coefficients Chambers coet'f'icients
Item L o 3 1, em 1 2 3
P 392 2 388
3 ek .368 3 i3k . 359
b ATy .360 439 L .503 357 37
Mird i coelf'ieienls Ihi-coelrficients
Item 1 2 3 Item L 2 3
2 354 2 238
3 .398 «32T 3 2L .229
L L6k .326 401 b .259 218 270
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Table 5,28 = Goodmuin dula: eigpenvalues of Lhe
unaltered correlabion mibrix

Tetrachoric mitrix 2:23 0.66 0.98 0.52
Chambers mabrix 2.2h 0.67 0.59 0.h9
Mevrd boe meelrix 201h A Out! [ BISE TS
Phi-matrix 1.3 0.79 0.'(Y V.2

In Mble H.28 we present Lhe eipgenvalues of Lhe unallered
correlabion milrizx lor coch mebrix used as inpuls Lo Lhe MEFA meLhod,
One mebLor cmerges PFrom Lhe nnadysis ol Lhe cipgenvaloe:s: For ol ] ensen.
The factor-Loadings for Lhe one=racltor model are presenbed in 'ible H000,
In order Lo compare Lhe factor loadings obtained by the MLIA meUhod
wilh Lhe repoarametorized Coclor loadings: For Paoebholomew s

probit/probit madel (ACONT ;u'n;'_r‘:u.m)., wee presenl and erepesct Lhee PACONTS

loadings in each part of the Table H.29.

Table 5.29 - Goodman data: factor loadings estimates for various

factor analysis methods and the reparameterized factor
loadings from FACONL method.

1AL I8 UL L L Y L CR S UAI{'II“()I'“["”"IW':‘:
CASE 1 = INPUL : 'T'EIRACHORIC COEFILC LENTS ey
1tem MLIA I A L TIIY ICA FACONL:
(probil model)
)] 69 69 Hh 1 68
2 56 56 L6 69 56
3 Hh 6l 51 5 Ol
N 68 68 53 T 68
CASE II - INPUT : CHAMBERS COEFFICIENTS
Ttem MLIA PI'A Ld LY FCA FACONT
1 T1 T1 59 79 68
2 54 54 L5 68 56
3 63 63 51 h 3
L 69 69 54 78 68
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CASE IIT - INPUT : MARDIA COEFFICIENTS

Item MLI'A PI'A LJIFFY FCA FACONE
1 68 68 51 T 68
2 51 52 L2 66 56
3 60 60 W T 6l
Iy O'f 6O 51 6 (13}

CAGE LV = INPUT @ PHLCOEMEFLC LN

Ltem MLI'A PI'A L LIMY [CA ACON I
1 50 (*) 33 66O | 6
2 Ly 30 (3 | L)
3 H1 33 Of | (0
I 51 33 O'f ‘- 6

(*) eigenvalues of the reduced correlation matrix are all too small
(no solution)

We observe, in Table 5.29 that for the Goodman data, similar factor
Losd ings are oblivined with Lhe PACONE method (probit/probit model)
Lhe MLFA meLhod for Lhe Lebrachoric mabriv inpul case.  Sim ilar
resulls are also observed bebween FACONK and MLFA For Gaese 1L ondd THES
The profile of the loadings using MLFA is similar for all cases. MNo
solution was obLained with Lhe PFA melhod Cor Lhe phil correlalion
matrix case.

In 'Mible 5030 wir present Lhe rool menn saquiere o Lhe residond
correlation matrices for the factor anilysis methods.

Table 5,30 - Goodman data: Root-mean-square of tLhe residual
correlation matrices for factor analysis methods.

Correlation Matrix MLFA PFA LJTFFY FCA

Tetrachoric 0.012 0.012 0.15%h 0.148

Chambers 0.012 0.012 0.153 O. Ll

Mardia 0.013 0.012 0.1%h 0.15%

Phi 0.009 - 0.139 U. L8B9
CXCAAX '
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For Lthe MLIFA methody we observe noovery pood Ui Cor ol

correlation matrices, and also for PIFA, but a bad fit for LJIFIFY and

PCA.

The poodness=of=rit statistic for Lhe probit/probit model (FACONI)

is A= 6006 bused on T depgrees o Crecdom, indiealing o very pood il

of BarLholomew's model.
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5.8  Final Comments

We have presented in this chaplter several examples of empirical
comparisons belbween fnelbor annlysis models For binary dobo asing Lhe
logit model (Bartholomew, 1980), the probit/probit model (Bartholomew,
forthcoming) and the underlying variable model approach assuming:

a) first order marginals with normal distribution (tetrachoric
coellicienl and Chambers' correlabion coellicient canes);

b) tirsl order murpginals with underly ing conbinuous unilorm

distribubtion {(Mardia's coefllicient case)

o
—

the heuristic solution using the Phi-coefficients as input Lo
Lraditionnl factor analysis methods.  We have compared, Cor ench
correlation mitrix cnse, various laclor annlysis melhods avid lable
in BMDP and 5PSS.

Concerning Lhe Pacbor analysis progroons aviel lable in Lhe
statistical packages, ALPHA factoring method (8PSS) should be used only
if the items included in the analysis are considered as a sample from a
population of items. Otherwise, the MLIFA or even the PIMA methods give
more consisbenl, resulbs. e mebhod LJIEFY shonld nol beoasedy o il
produces systematically lower estimaltes [or the lactor loadings
compared with the other methods and no consistent results considering
the profile of the loadings. We have also included in our comparative
study , the principal components analysis method, for illnsbrative
purposes only. As expected it yields different results and, in
general, higher component coefficients than the loadings for the same
number of factors.

With the above considerations in mind, we shall concentrate our

attention for comparisons between the factor loadings obtained by MLFA
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and PIFA factor analysis methods versus the reparameterized paramcter
estimates for Bartholomew's models.

Be fore procecding wilh our comparalive conclusion: belween Lhe
meLhods, we shall poinl onl, some congiderabions aboul, Lhe correlabion
mibrices nsed as inpub Lo Lhe PacLbor analysis mebhods.  We by
observed, Tor all six doba sels ased as exoamples in Lhis chapler, Lhal
the phi-coefflicients malrix yields laclor loadings considerably lower
than the correspondent estimates for the other correlation matrices
cases. 'Theoretically, we had already concluded that the heuristic
method using phi-coefficients, should not be applied, becausec there is
no plansible bivarinte distribubion underlyims Lhis cocllicienl.

For all data sets, we observed close agreement between Lhe MLIMA
results using tetrachoric coefficients and Bartholomew's probit/probit
model (FACONE). The only exception was with Abortion Data, in which
case Lhere were some dissimi laoriLies bebween Ghie Tosdingese T sl
be considered, however, Lhal nccordingg Lo obher sbuadices of Lhe oo
data sel, Lhe Lwo-I'niclLors model s omore approprinbe Cor desceribingg Lhe
correlation structure.

We also observed, in general, similar results between the Chambers
coefficients case and the tetrachoric coefficients case for all faclor
analysis methods. 'The results for the Mardia matrix input case are o
few percent lower than for the Chambers malrix case following Lhe
tendency observed between the correlation coefficients, but the profile
or pattern structure of the loadings are the same for Chambers and
Mardia coefficients input cases.

Finally , we nolice that there is no appropriate poodness-of=1it

test for the traditional factor analysis methods applied to binary

CXCAAY



data. PFor this reason, we include in Lhe analysis the rool menn
square criterion for the residual corrclabion mbrix. 'his eriterion,
if not completely satisfuctory cither, at least identilies if therce arc
considerable differcences bebween Lhe reproduaced corvelabion malreix by
Lhe Factor analysis model and the observed matrix. When no comparative
study is necessary, a simple observation of the residual correlation
matrix should give a first idea about the goodness-of-fit of the flictor
model. ‘'l'he chi-square test, on the other hand, is not appropriate for
tesbing Lhe dimensionnlily ol Lhe model when the assumplions of Lhe
normality and interval scale for the variables are not satisfied, as in
Lhe cnse ol factor nnilysis For binary dibli. WL should be nobed Lhnd,
the test of Lhe dimensionnlity of Lhe latenl spnee in oo conbroversin
area in factor analysis also for continuous variables. Seber (1984)
points out that a satisfactory method for determining the number of
factors does nobl scem Lo be avied lable, andd Piebibious Paelbors aee ol
too readily generated. Seber's conclusion is based on a simulation
study by Francis (19Th4), which shows that the goodness-of-fit test for
the number of factors, even if the assumptions of the model are met,
may not lead to the correct number of factors in the model.

In this chapter all data sets contain binary items and, for the
three first input cases, we assume Lhat there is some latent variable
underlying each dichoLony , as cxplained belores  Neverbheless, from Lhe
observed marginals, it is impossible to infer the form of the latent
continuous distribution. Consequently, we may suppose difl'erent
underlying distributions for these manifest responses, and the analysis
of the data using the underlying variable model for binary data based

on the C-type dislribution is one ol' Lhe possibilitieon.
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6.1 Introduction

In this ehapler we shall presenl some numerical applicabions of
FacLor analysis mebhods For poly Lomous dobie, nsing s ingab,
corrclabion coclicienbs obloined s Fanebiom:s ol Lhe pooeameber of
associnlion ol' Lhe C=Lype distribution, which is esbimaibted by Lhe
maximum likelihood method presented in Chapter 3. 'Iwo contingency Lype
correlation coefficients will be used: Lhe coefficient ru(w) using:

Mardia's formila [expression (3.2h)] and the coefficient Ty Th(qﬂ

using Chambers' formula [exprcssion (j.ET)].
Four data sets with different numbers of variables (p), different
sample sizes (n) and different number of catepories of Lhe

variables are used. 'lhe datn sets can be summrized as follows:

Db st Wivime Mo ol vieriables Viunple e
| Civil berviee | Db 13 LIRS LY
Pl BooLy Data Y LI
3 Civil Yerviee D Dala I Lhé
h Greek nba HO Lrish

The description and analysis ol each dati set will be presented
separately. A more complete analysis will be presented for the first
data set, in which case the data are analysed, {irst as binary data and
then as polytomous data. Comparisons between factor analysis methods
with Bartholomew's logit model (MODE'AC) will be presented l'or Lhe
binary version of the Civil Service I data. For all data sets, factor
analysis results using the underlying variable approach based on the
C-type distribution, will be compared with traditional factor analysis

methods using as input the product moment correlation coefficient. All
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data sets in this chapter contain polytomous ordered variables with

viilues X, =

i 'l,i-‘,...,(),l, whoere (!| it the number of eabeporices off Lhe iLh

variable and the product moment correlation iLs evialuated rom Lhe raw
data. ''he factor analysis method used in this chapler is the maximum
Likelihood Facbor analysis (MLEA) method From BMDI.
In Appendix T we present al b correlabion mabeices aoed s inpal
for each data sebt analysed in this chapler.
For all examples we shall use the following notation:
lurl, Iiu(-jn) denote Lhe corrclabion moberix Formed by Lhe
contingency-type coefficients using Mardia's formla r‘u(lIr) as [unction
ol' the MLE of p, assuming an underlying C-Lype distribmbion, where
. _ Y=1 - 2iplny
s 5y Teip
lart, I{U..“'{tji) denobe Lhe correlabion mabriz Cormed by Ll
conlingency-type coell'icients wiing Chiunbers' formalia r'U'.{“(rp) a
function of the MLE of ¢, assuming an underlying C-type distribution,

where

()
Uol" i

TEOH T (v L)

And finally, let R denote the product moment correlation matrix,

as usual.
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6.2 Civil Service I bata

The: Civil Service | daba sel consisbs of L3 variables (i bems)
related Lo aspecls ol perlformuamee obbained on S1Y individuals. The
vierinables are calegorical, wilh ordercd ealeporics | Lo G, where Lhe
rabing 1 is relabed Lo oubstanding performance and Lhe eabing O menn:s
unsatisfactory performance. UBriefly, the variables are:

1. loresight (anticipates problems and develops soltions in advance)

2. Penetration (gets straight to the roots of a problem)

3. Judpment (proposals or decisions are consistenlly sound)
« Ability Lo produce construclive ideas
e Ixpression on paper

L. Oral expression

Te Numerical ability

8. Helations wilh colleapues

. lkelations with others

1O, Acceplance ol responsibilily

Ll Muagemenl ol st

Lite  Beliability under pressare

13, Drive and determination

Using the computer program CROSSPSI described in Chapter b, which
evaluates the maximum likelihood estimate of the parameter of
association P ol the C-type disbtribution for ench pair of variables of
the data set, from the observed two-way cross tables, we obtained the
two contingency-type correlation matrices: l{u(lp) and HU‘.”‘(-;:).

We then analysed the Lwo matrices asingg Uhe MEMA - (BIDP) progeivm.  We
also obtained the factor analysis results for Civil Service 1 data

using the Pearson product moment correlation coefficient. In Table 6.1
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we summarize some information about the tLhree correlation matrices used

an bnpul Lo Ghie MLGIA meLhod.

lable 6.1 - Civil Service I Data: some numerical aspects
ol' the corrclation matrices

Correlation matrix

|<u(.p} HU-.“l(lb) It

Miux | Tiy | 0.908(V8xVvYy) 0. 020(VExVY) O (VX))
Yo
Minlrij | 0.167(VrxVLll) 0. 185(V(xV1L) 0. LIB(VHXVT)
i,
determinant 0.7 x Lo~-3 0.2 x LO™3 Teld x 1O™3
cigenviclues > 1 He9YH (.36 i b

[ o Lo i3 bas BN

1.0l .03 .01

For Lhe Givil Oervicee L odobae we hoove Lhree oipenvalues pgrealor
than one, as we see in Table 6.1, and the first eigenvalue of the
correlation mibrices is very hiph compared with Lhe obLhers. Usings Lhe
"seree Lest"™ tor Lhe pumber o faebors, Lhe one=Paebor model shoald be
chosens  PFven Lhough we dueilyse Lhe doati wilth Lhree fnclorsg Lwo
factors and finally with one factor. Some features of the results are
summarized in Table 6.2. As in the last chapter, the chi-square test

for the MLFA method will not be considered here because the test is

designed for continuous normal variables.
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Table 6.2 - Civil Service I Data :
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Comparison of some factor

analysis features for different correlation mabLrices

(n) hree-tactors solution; MLIFA method

Correlabtion milrix ml(w) HU.Th(w) it
% var expliained 3.9 OO SO0
Communality: Min 0.167(VT) 0.192(V7) 0.137(VT)
Moy x 1.000(V1;V8) 1. 000(V13;v8) 0.866(vH)
(*) (*)

(*) lmproper solubtion:

(b) 'I'wo-factors solution;

Heywood eases For variables 1 oand 8.

MLI'A method

Correlation matrix Hu(m) HU.Th(w) R
% vear explicined 5548 Hi. Yla3
Communality: Min 0.150(VvT) 0.169(Vv'() O.L37¢(vr)
Ma x 1.000(Vv8) 1.000(Vv8) 0.856(v8)
(%) (#)

(*) Improper solution:

Heywood cases for variable 8.

(¢) One=ractor solution; MLEA meLhod

Correlation matrix Hu(q;) HU.Th(IIJ') K

% var explained L5, 7 8.9 h1.2

Comminality: Min 0.146(VT) 0.16h(VT) 0.180(VT)
Miux 0.510(v1L) O.5h0(vLl) OhGI(1 L)
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We observe in 'lable 6.2 that improper solutions were obtained for
Lhe Lhree and Lwo factors solubions using Lhe conbingency Lype
correlation matrices as input to the MLIA method. No improper solulion
was observed for the Pearson correlation matrix casc. 'The occurrence
of an improper solution for Lhree and Lwo facelors soggreal, Lhal, Lhese
models are nol appropriabte and Lhal Loo mny faclors are ine baded in
the solution. The one-factor model is clearly the correct factor
analysis model for the Civil Service I data. The factor loadings for
the one-factor solution are presented in 'lable 6.3 for each correlation
mabtrix.

Table 6,3 = Civil Yervice | Dnba: facltor loading: for Lhe
one=Icetor solubion for Lhe Lhreo correlalion

mabrices used as Lnpul = MLIFA mebhod

VAR k (w) By 0y K

1 0.65 0.6 0.6
2 0.67 0.70 0.63
3 0.70 0.73 0.66
Ly 0.65 0.68 0.62
5 003 0.h6 O.hh
6 0.68 0.70 0.62
T 0.38 0.k4o 0.42
8 0.65 0.67 Ghh
9 0.68 0.°70 D=5y
10 0.66 0.69 0.62
11 0.71 0.(h 0.66
Iz 0.71 0.(h 0.68
13 0.770 O.7(3 0.3

For a better comparison of the loadings, we present in lMigure bl
the profile of the factor loadings for each correlation matrix case are

presented.
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The factor loadings for the input case using HO.TH('D) are i f'ew
per cenl higher Lhin Lhe Lloadings Cor Lhe lnpul cnse using: Lhe
correlation matrix Hu(m), but the profile is the same. A slightly
dif'f'erenl, proflile s obLlnined with Lhe prodocl momenl correlnlion
mihrix cases An explained boelore, Lhe one=Coclor model i chosen anel
we cone lude thal one dimension is cnouph Ffor mensuring, Lhe perlormnee
of the individuals analysed, and that the most important aspects of the
performance are Judgement (Var3), Management of staff (Varll) and
Kelinbility under pressure (Varl?)o AL Lhe other exbreme, wilkh Lowor
factor loadings, appear Lhe ilLems: Expression on paper (Varb) and
Numerical ability (Varf). ALL obher items have Coactor londing:
approximibely equiel Lo Lhe Lhree highest factor lowdings, showings Lhel,
all items are cqually important, excepl items Y and (. e proflile
resulting from the product moment correlation matrix input case shows
lower londings for item 8 and Y comparing with Lhe Lwo conbingency Lype
correlation matrix input cases.

As nocomparative study we have also used obher correlalion
milrices as inpul Lo faclLor analysis and althougsh we are nol showing,
the details of the solution here, we shall comment briefly on the
results for Civil Uervice 1 data. We have used Goodmin and Kroskol's
gammy coellicient, Kendall's Lau b and Lau co 'the resulls of Unctor
analysis using the gamma coefficients are similar (although a few per
cent higher) than those using the contingency type correlation
matrices. We also obtained an improper solution (Heywood case) for the
two and three factor models using the pgamma coefficients as input. On
the other hand factor analysis resulls using tau b and tau c

coeflicients as input yicld profliles similar Lo Lhe produacl momenl
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mabrix inpul cases  'he facbor loadings For Lhe inpoal ecase aoinge Lhe
Litn ¢ coellicients are congiderably Tower Lhinn Lhe Paebor Tond b

for the product moment matrix. No improper solubion was obtained for
factor annlysis using Lou b oand Lauw ¢ cocl'licients. 1L Lo worbhwhi Le
Lo point oul tLhat had we analysed Lhe data using only Lhe product
moment, correlation coefficient, a Lhree=rnctor solution (by the
eriterion of eigenvalues greater than one) would appear appropriate and
attempls would then be made to interprel Lwo more factors erroncously.
On using contingency type coefficients, we oblained correctly tLhe
one—-factor solution for the items measuring performance for Lhe Civil

Service 1 data.
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Polytomous versus binary version of Lhe Civil bervice | odnbn

Most of the available methods ol actor analysis for categorical
variables are designed for dealing with binary variables. One possible
approach to treating categorical data is to dichotomize the variables
and apply one of the methods available for binary data. In this
secbion we dichotomize Lhe Civil Service Dodaba and apply etholomew s
MODIFAC metLhod.  We also evalunbe Lhe correlation coellicienls an
functions ol Lhe cross producl rabion For Lhe < Lables Cormed by
dichotomization of the variables and use Mardia's correlation
coefficients, ru(w) as input to factor analysis methods. 'The faclor
analysis results tor the binary version of Lhe Civil Serviee L odabla are
then compared with the factor analysis results for the polytomous
version of the same data. 'The results for tLhe polytomous version of
the data were already shown in the last section. We repeat them here
to facilitate comparisons. It is known that when we dichotomize the
datis we lose informbtion.  'he gquestion s "Are actor anoalysis resualls
for the binary version ol Lhe diabic considerably dilterenl from Lhe
factor anulysis resulbs for the original polytomous data? ''he answer
to this question cannot be conclusive with only one example. Our
purpose in this section 1is to show the differences between both
approaches for the Civil Service I data.

In 1ble 6.4 we present some informition :aboul, Lhe correlabion
matrix Hu(¢) I'or the dichotomous and polytomous version ol the Civil

bervice I data.
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fable 6.4 - Comparison between some aspects of the correlation
milrices !{u(lp) for the dichotomous and polytLomou::
version ol" Lhe Civil Bervice L data.

Feuture Dicholomous dala Poly Lomous dala

Corrclation cocl'l'icienbs

min lriJI 0.102 (V5xV9) 0.167 (VxV1l)

X |r”1 0.857 (V8<vY) 0.908 (V8xv9)
Determinant 1.56 x 10-3 0.1 x 10-3
Iigenvalues 5.60; 1.40 He95: L.31; 1.04

preater than one

We first analysed the data using the "default criterion" of number
of factors associated to eipgenvalues greiate r than one (Kaiser
criterion).  'Theretore Lwo Fwebors were exbraeted for Lhe binary
version ol Lhe dala and Lhree acLors For Lhe poly Lomou:s versions  Dome
aspects of the factor analysis results using four different factor

analysis methods are presented in Table 0.5 using the Kaiser criterion

'or Lthe number ol UacelLors.
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Table 6.5 - Comparison between some aspects ol bhe Factor Analysis methods
using as inpul the correlation malrix liu(ub) for Lhe dichotomou:s
and polytomous version of the Civil Service 1 data.

Dichotomous data Polytomous
I'A method MLIA RAOQ AR 1A MLI'A [AO AL I'A
No ot l'elors o
by the default 2 2 2 2 3 3 3 3

criterion

% of variance

explained by L8.7 a3 54.3 - STk 63.9 63.9 -
the factors

Commnality

min SL38(Vr) L1306(vr) LLs8(vr) - LLOTCVY)  JtOh(vy) Jnlvyr) -

(v1)

X L5 (VE) JB90(VE) LoB2(v8) = 1.000(V8)  Looh(vE) Juno(vl) -
No of
iterations 3 >25 L >25 8 >25 16 >24
Comment, (*) (%)  (xxx) (*xxx) (*) (*%)  (wxx)
(*) More than 25 iterations is required by RAO method (no final solution)
(*%) PA2 method Lerminates when comminalily ol one or more variable cxeeod one
(*%%) Communalities failed to converge. Program stLops

(*%%%) Commnality of one or more variables exceeded one.

Table 6.5 is useful for illustrating the different approaches of the
various factor analysis methods from BMPD (MLFA and PFA) and SPSS (RAO and
PA2) for dealing with Heywood cases. As we can see in ‘lable 6.9, improper
solutions were obtained for either version of the data with the PAY and PI'A
methods.  'The RAO factoring method stops ab ileration 2Y and, LI no oLher
instruction is given to the program allowing a greater number ol iterations
a misinterpretation of the results is easily obtained. The MLIFA factoring
method shows o lleywood case for variables L oand 8, s owe have alreondy seen
in the last section for the polytomous version of dila, showing Lhat Lh e

three factors-solution is not appropriate for this data set. For the

CXKAAJ



171

dichotomousn version ot Lhe daba, we oblained appirenbly o proper solublion,
although a very high communalily is obscrved lor variable 8.

When too many factors have been included in o solubtion, Lhis muy cause
improper solutions (sce Chapter 7). Occurring improper solulions we should
examine more carefully the eigenvalues, their differences of'ten provide
un excellent evidence ol the correcl number ol Pnebors o Lhe modely s owies
pointed oul in Heetion he3e  From Tbile O we obneryve Lhal, Lhere is o
substantial dif'ference between Lhe Cieslh and sceond cipenvalaes For boll
version ol Lhe data. ‘'his fuct suppests Lhal Lhe number ol faclor Lo be
included in the analysis is only one. We Lherefore reanalyse the data with
a one-factor model. In Table 6.6 we present some aspects of the factor

analysis results for the one-factor model.

Tuble 6.6 - Compiarison bebween some apecls ol Lhe Fuoebor Anslysis
results using as inpul Lhe correlation mebrix Hu(up) for Lhe
dichobomous and poly Lomous version off Lhe Civil Service | odabio.
Une-ractor model.

Dichotomous data Polytomous data

I'A method MLICA RAQ A PI'A MLIFA RAO RIVE PIea
% ol var
explained 39.2 43.6 h3.6 ‘8.4 L1, 48 WSt hs.f 8eh
Communality:

min S115(VYH) L115(VYH) L120(VY) L1200v) | LLHO(VY) LhO(VY) LLler(ver) Ll

mex  [582(VLIL) J582(VLL).HTo(VIL) o) | Lhio(Vin) hrtovin)sie(vie)ani st
No of
iterations 6 15 5 5 5 10 5 5

i

We now present the factor loadings of the one-factor model for bolh
versions of the data. In Table 6.7 we also present the reparameterized

factor loadings of the one-factor logit model (MODFAC) for binary data.
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Table 6.7 - Factor loadings obtained by different factor analysis
methods using as input the correlation matrix R (y) for
the dichotomous and polytomous version of Civil'Service I
daba nnd metor loadings obLuined by Horbholomew 'in MODISAC
me:Lhod For binney dalia.

Dichobomons dicka P'oly Lomonz: dala
1L em MODIAC MLICA KAD 1A 1A MLIA KA 1A 1A
1 10 (815] 68 O O GY 6o 6 OY
2 O 63 63 6Y OY O'f Of O O
3 O o 0 gk 0 O U 0 0
h 5 oY oY HY Hi LY (1t bY 0l
5 35 3h 3h 35 3H h3 h3 h3 W3
6 68 65 65 66 66 68 o8 68 6B
T 36 36 36 36 37 38 38 38 38
8 85 66 66 65 65 66 65 65 69
9 82 6h 6h 63 63 68 68 Y o
10 Gh 63 63 63 63 66 66 O GY
11 8 16 16 16 76 Tl Tl il il
12 69 67 67 68 68 71 TL (P T2
13 69 68 68 68 68 T0 70 TO 10

(decimil point is omitlLed)

he analysis of the factor loadings of 'able ol shows Lhat Lhe
agreement between the methods is very close. 'The greabtest dif’l srence
between the MODAC method and the others appears for the loadings of
the items 8 and Y. Comparing the dichotomous and polylomous version of
data we find, in general, greater factor loadings for polytomous data
with the exception of items 1 and 11. 'The loadings for items 3 and B
are approximately the same. lor a visual comparison ol Lhe loadings
for dichotomous and polytomous data, we present in Figure 6.2, the
profile of the factor loadings for the MLFA method and for the MODFAC
method. ‘The other methods are not presented because of the similarity

o!" the rosults wilh Lhe MLFA mebhod in Lhiis ciese.
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Compreebng, Cinal ly 3 Lhe facbor anadyoids reanl Ly Cor Ghe b hobomeons
und polytomous version ol Lhe Civil Uervice | dalba il is relevanl Lo
note that Lhe grentest diftercnce between leebholomew s meLhod (MODICAC)
and the traditional factor analysis is observed for items with high
factor loadings (items 8 and 9). ‘e comprrison belween Lhe resul Ls
for dichotomous and polytomous version ol data Lor the one-factor model
shows only small differences, but when using the Kaiser criterion for
the choice of number of factors, different number of facltors resulted

for each version.

6.3 Bools Dutn

The Bools data seb consiuts ol nine iLems (Scelected Crom o Lol
of 50 items) from a biographical background survey and it is part of a
graduate selection improvement projecl carriced oul by the loots
Company . "The somple size Lo HIBL individuals and Ghe iLemss heove

vary ing nunbers ol categories, as summarized in ble G0,

Table 6.8 = Number of catepgories of cach ibem

Boots Data
ltem V1 V2 V3V V5 V6 VY v Vo
No of categorics 6 5 H 5 2 2 H T 6

A bricl’ deseriplion ol variables is an ol lows.

V1 - Extra curricular activities [ (Summer school, professionil
conference, etc.)
V2 - Number of part-time jobs during academic term
V3 - Extra curricular activities II (sport, debates, choral, ete)
Vh -~ Participation in clubs or societies
V5 = klected office in a club or society
V6 - Prize for a competition
VT - Organization of activities (sports competition, charity campaipgn, etc.)
V8 - Kind of holiday taken
V9 - Number of countries visited
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Conlingency=Lype correlation coeflicients were used or each pair
of variables from the Boots data set. 'lhe global cross product ratio
For RxC conbingency Lobles was esLimibed using and Lhe prograom
CROSSP5I. 'Iwo contingency type correlation matrices: Hu(¢) and
HU..r“(lb) were used as before.  'These matrices were taclLor analysed
wing Lhe maxinmm kel ihood e bor analysis mebhod (MEIA=EMDT)
Comparisons ol Lhe factor analysis resualbs usingg Lhe new meLhod will bee
made with the factor analysis results using the Pearson moment product
correlation mitrix (R) as input.

In mble 6.9 we present some relevant aspecls of Lhe correlatiion

mitrices used as inpul bto the factor analysis melhod.

Table 6.9 — Boots data: Extreme values of the correlation
coefficients and eigenvalues prealer Lhan one
for each correlation matrix.

Correlation matrix

Hu(q;) Ho."rh(‘{’) i
lnaxlr‘i]| 0.312(V3xVr) 0.3h 3(V3xVT) 0250 (V3xVT)
isd :
mi”lri.]l . OWh(VxvE) 0. 0Oho(Voxv) 0. 05OV Vi)
1,
eigenvalues > 1 2275 2. 407 2.040

1.1k L. 157 1.120

In this case the numbers of factors in the factor analysis model
is two, using either the Kaiser criterion (number of eipenvilucs
greater then one) or the scree test. In Table 6.10 we present some

features of factor analysis outputs for the various correlation

coefficients.
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lnble 6.10 - Boots data: Comparison of some aspecls ol fnelor
nnalysin outpuls Cor Lhe varioun correlalion malreice:n
used s inpul Lo Lhe MLIFA mebhod.

Correlation Mubrices

uu{w) I () N
0.7h
% Var explained 22..3% OO 1°f N %
Commnalily: min 0.006h 0.071 0. 081
max 0.507 0.56% 0.278
No ol iterations T t )

The Varimax rotated factor loadings lor Lhe two laclors for each
correlation malrix used as input are presented in 'l'able 6.11.  'lhe
Varimax rotation method provides, in this case, a factor pattern

easily interpretable.

Table G.L1L = Boobs Data: Varimax robabed Pacbor loadingns
two-fauctor model, MLIA method.

Correlation matrix used as input

Hu(¢) MO.T“(m) It
Item Fl F2 Fl F2 Fl F2
1. x33 .25 .35 .26 .28 .28
2 21 .1k 22 18 .18 .22
3 Al .18 46 .19 46 12
L L5 15 Lt .15 0 T N
5 3  J05 .45 .05 .29 .10
6 37 .03 «39 .03 .30 .06
T A g 58 .18 b 12
8 .08 e[k .09 <09 JLh 5
9 A2 W37 12 39 L8 52

From Table 6.11 we see that there are differences between the

factor loadings estimates for each correlation matrix used as input,
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but nll three caues scem Lo lead Lo Lhe game inberprelalion ol Caclors.
The fnctor londings or Lhe mabrix H”(zp) are similar Lo Lhe LTomding:

for the matrix I{U _rh(q;), although a few per cent lower. In f{ipure 6.3

we present Lhe profile of the rolated Faclor loadings for cach melor
separately. Although the loadings are not equal in magnitude, if the
oscillatory movement of bLhe "curve" is similar, we can say Lhal, Lhere
is an equivalence in the results, in the sense that, the order of the
londings is Lhe smme.  'hat is Lrue for Lhe resulbs obtained for Lhe
Lwo conbingency Lype mbrix cases, bul o differenl movement. s observed
for the loadings of the Pearson correlation mitrix case.

Table 6.12 shows the items with the highest aclor loadings for
each factor. ''he order of the loadings for GLhe contingency Lype matrix
cases are the same and are presented Logelher. A slightly different
order was observed for Lhe Pearson case. 'The inLerprebalion of Lhe
factors is Lhe sime or Lhe Lhree cases.  ‘The Fiest faclor could be
interpreted as a factor of "Lxtra curricular activities" and the second

factor is related to "Travel".
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Table 6.12 - Boots data: Items with the highest factor Loading:
for cench ffactor and ench inpul enses MEFA mebhod =
Varimix rotalion.

Contingency type matrices Product-moment matrix
Item lactor 1 [t em Factor 1
T Orpganization of aclivilies 4 MxLra curricular acltiviliesn
b Participntion in ¢lubs T Orpanizabion ol aclbivilbicens
or socicliey W Pueticipation in elubs or
3 IkxbLroocurrvicunlar anclivities Ll socielion
H  Blecled ol'l'ice in ¢lub or O Prize for o compelibion
socicely H Mlecbed olffice in club or
O Prize for o compelition socicely
L IExUra curricular activitien L L bxLra curricular

activities 1

Factor 2 I'ctor 2
8 Kind of holiday 9 Number of countries visited
9  Number of countries visited 8 Kind of holiduwy

As a comparative and complementary analysis we have compared the
factor analysis results for Lhe loobts dabta using the Lhree correlalion
mibrices: Hu(lp), HU.'[‘JI('I') and K with oLher mctor analysis renults
using dit'terent measures ol nossociabion s tnpube  We hove anadysed Lhe
data using gamma, tau b and tau c coefficients. Although the results
are not presented in detail, a comment on the results is now presented.

The profile of the rotated factor loadings are very similar for
all coefficients, although the loadings for the pgammi coefficient case
are systematically hipgher than the others and the loadings for tau b,
systematically lower for all items. An improper solution was observed
for the two-factors model when using the tau ¢ coefficients as input to
the MLFA method. For all correlation matrices used as input we

obtained two eipgenvalues greater than one and the same interpretation
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for the rotated lactors, with the excepltion of Lhe Lau ¢ case (iml:ropt:r'
solution) and of Lhe Pearson producl momenl correlation milrix, in
which ecnne o aliphtly dilCerent profile woer oboerved e ahown b Pguree
Ga3.  lor Lhe Penrson ense we observe o considerable dillference in Lhe
loadings lor items % and 6 in Mretor Lo Analysing Lhe conlenbls of

these items, 1t seems Lo us thabt the prof'ile of Lhe irst aetor, for

Lhe Lwo conbingency Lype mabrix coases Lo omore "reasonnble!.
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6.4 Civil Service 1I Data

The Lhird data sel Lo be analysed in Lhis chapLer is also relaled
Lo aspects ol performance.  'lhe items are similar Lo Lhe Civil Service
I dibig, bul now we have 19 tLems and oo difrerent sumple with S5h
individunls.  'he variables are cabeporical wilh caloporices 1 oLo O,

where rabing | represenbs onbsbandingg performuee and O shands o

unsalistnctory performnce.  'The Llems are described ng ol lows:

Foresight

Penetration

- Judgment

- Construclive ideas

- Ixpression on paper

- Oranl expression

-~ Numerical ability

Relations with colleagues

- Relations with public

- Relations with official and other bodies
- Responsibility

12 = Use ol stal'l’ and olher resources
13 = Manngzement ol st

L = Reliability

lH = brive

16 - Ability to organise own work

17 - Knowledge of work on which engaged
18 - Knowledge of own unit generally

19 - Knowledge of Ministry/Poard

=
FOoOLCE_NCwSWwn e
I

The same method of analysis is used for Lhe Civil Serviee 11 dola.
We shall compare Lhe facebor analysis resulls usims Lhe conlingrency Ly pee
correlation matrices: Hu(q;) and RU.'fh('p) as input with the traditional
factor analysis results using the product moment correlation
coefficients. For obtaining the contingency type correlation matrices
for polytomous data we have used the program CROSSPSI. The factor
analysis method used in this section is the maximum likelihood method
(MLIA ).

Table G.13 shows some relevant informbion aboul. Lhe Lhree
correlation matrices for the Civil Service LI data.

CXKAAL

UFRGS
D% DISLIOTECAS

SUOTECA SETORIAL DE MATEMATICA



I8

Table 6.13 - Extreme values of the correlation coefficients and

eigenvalues greater than one for three correlation
matrices. Civil Service I1 data.

Correlnbion Malriz

1’ () Ik () Ik
" 0.75

max [rijl 0.817 (V9xV10) 0.842 (V9xV10) 0.626 (V9xV10)
min |r.1J| 0.054 (VTxV1Y) 0.060 (VxVL1Y) 0.046 (V'(xV1Y)

eigenvalues > 1 8.05 8.65 6.75

1.55 1457 Ll

1432 1.30 1.26

LAL L1l L. O

L.0Y 1.03 1.03

Using the Kaiser criterion, five factors were extracted in the
first analysis. Improper solutions = three Heywood cases for Lhe
conbingency Lype mbrix enses and one lleywood cnse For PVearson melrix
cise = woere observed.  lookingg ol Lhe maygrni Lbade ol Lhe eipgenvidlues, Lhe
seree Lest shows clearly Lhillh Lhe one=fanclLor model should be chosen Por
the Civil Service II data. 'lhe first eigenvalue, as shown in Table
6.13, is considerably greater than the others. 'Therefore we reanalyse

the data using a one-factor model. 'The main aspects of the MLIA

outputs for the three matrices used as input are shown in Table 6,1h.
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Table 6.14 - Civil Service II data: Main features of the factor

analysis results for three correlation matrices used as
input to MLFA,

Correlation Matrix

R (9) R () R
1 =
0.7h

No ol 'nclors | | |
% Vare explained Y. 39 U 3% 16
Communality .

mix 0.59h (V1) 0.636 (V1) 0.500 (V1)

min 0.111 (V1Y) 0.12h (V1Y) 0077 (V19)
[Lerations O O h

The factor loadings for the one-factor model are presented in
Table 6.15 for each input case. 'There is in this case a great
similarity between the lactor analysis results for the three
correlalion mabtrices. Ad in Lhe previous cximples; faclor anndly:sis
resulls using Lhe conbingency Lype mabrices are equivalent, ol Lhomgsh
the loadings lor Lhe l{O.Th(tj;) cuse are o l'ew per cenl higher Lhan tor
the Ru(m) case. In this example, the Pearson case results are also
similar Lo the contingency Lype correlabion matrix inpul cases, but
lower factor loadings are observed. Also a small difference in the

order o' Lhe loadings is observed for Lhe Pearson malrix case,
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lnble 6415 = Civil Bervice L1 dabtn: Factor Loadings tor
one={nctor model 'or Lhe Lhree correlalion
matrices, MLI'A melLhod.

Correlation Matrix Item

Ttem Hu( W) HU..{ h(lp) IR
l ok 0 ST
! <[V 1'% L0
{ S AT e
ly Ol W03 HY
Y i Avf A2
O ST .60 51
i D3 i .34
8 .58 .01 o5l
9 .6l 06 2.3
10 .60 .62 «50
X .69 SR .66
2 62 .06Y R0
L3 LOY e Lh
Lh ils o0 .6y
1Y o2 < S
16 <13 S0 .68
17 .63 .66 .56
18 b Al .38
LY +33 <39 o8

The inLerpretabion off Lhe resulb:s leads us Lo cone lude Lhat, we
have one genceral Faclor of perlormance, wilh hipgh loads Cor i Lemgs:
Foresight, HKeliability, Judgment, Ability Lo orpganize own work, Drive
and determination, Penetration, Responsibility and Management of staff.
At the other exlreme we have the following items with low weipght:
Numerical ability, Bxpression on paper, Knowledge of own unil,
generally , Knowledpe of Ministry/bBoard. 1L is interesbing Lo note Lhed
there are some similarities between the analysis for the Civil Service
IT data and the Civil Service 1 data, although a more complete set of
items was analysed for Civil Service II.

In Figure 6.4 we present the profile of the loadings Cor Lhe Civil

bService II data.

CXKAAL



185

LA G
1.0
G
H\/
I
¢5

m X o

3 4 5 6 1 8y 0 1112 13 14 15 16 1T 18 19
VARIABL S

FIGUHE 6.4 = PROFILE OF THe PACTOR LOADINGS. ONE FACLOR SOLUTION
CIVIL S.AnvVICH 11 DATA
COUHETATION MATHIX ¢

M- Il"(‘l’}
€= i)

r- R



186

6.5 Greek Data

The last data set to be analysed in this chapter consists of the
Greek translation of a children's version of the "C-Scale, a scale for
measuring socinl abbibudes. e seale connisbs ol Y0 ibems, cneh
requiring no/neutral fyes responses nccording Lo agreement, wilh (or
approval ol'y or belicl in, as appropriate) Lhe items  'he Conservalive
Scale (C-Scale) for adults was developed by Wilson and Pelicrson (1908)
and the children's version was constructed by Insel and Wilson (1971).

The sample size for the Greek data is 1784, 'he sample consists
of 1h yeum-old boys and girls Crom Greek hipgh schools.  'he 50 items of
the Children's Seule of Socinl AtLLitudes andministered Lo Greek chiLdren
are reproduced in Table 6.16. The C-Scale for adults has been reported
in the literature as a robust scale. According to Joe (1984), the
factor structure that emerged in the original studies in Mngrland io
hipghly similar to that reported by studics employing samples rom
Australin, South Africa, Korea, New Zealand and United States (see also

Wilson, 1973).
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ble 6.16 = 'The Children's Seale of Socinl ALLitude:
administered to Greek children

Which of the following do you prefer (like, agree with
or believe in)?
Circle Yes or No. If' you can't decide, circle (?2).

l. Dealh Lo Lhieves 200 Compuler:

2. Bpace Lravel 2. Pruyers

3+ School uniforms 28. Going barefoot

h. Bikinis 29. Roynlly

He Dundny Hehool 3040 Femle doctors

Go Men with benrd 3l telenco

To Honouring Lhe 1"l e Hoorp

8. Modern Art, P Momic bomb:s

9. Obodience she Nude bhalhing

10. Comics 3. Church

1l. Miracles 30. Chinese l'ood

12. Dancing 37. Politeneuss

13. Military service 38. Telling fibs

14, Mixed schools 39. Corporal punishment for
15 'l'en commandments criminals

Lb6. Russians ho. Germons

Lfe While supremicy hl. SLricl rulos

LY. Kissing b2, Rock-nnd=roll or the Fealle:s
19. Beating children h3. Death Lo our encmices
20. Blasphemy hh, Laaghing in class
2l. Servants Wy, lHunting
22. Short skirts 46, Divorce

23. Baving money L7, Confession

2l. Playing pranks L48. Blacks

25. Police 49. Bible reading (Religious books)

50. Playing doctors

Using: the CROBBPSI program we obLiined Lhe conblingency Lype
correlabion matrices - l<u(|p) and HO.Th(w) « 'The facltor analysis
results using these Lwo matrices as input will be compired with the
results for the Pearson product moment correlation matrix. Some

aspects of the matrices are summirized in Thible 6017,
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Table 6.17 = Lxtreme valu es of Lhe correlation matrices
nnd eipenvalucy preater Lhan one.
Greck dobin = S50 varinbleos

CorrcelabLion Mubrix

k() R () i
0.7h
Comment (%) (*) -
min |riJl 0.000 0.000 0.001
max lrigl 0.80T(V35xvaT) 0.834(V35xv2T) 0.626(V35xv2T)
eipgenvalues > 1 8.27 8.91 531
.03 h.32 2.42
3.32 350 2.0Y
2.7 2.8 .68
2.06 2,16 L.61
1.69 1.0 LG
1.38 1.h1 1.26
1.34 137 L.24
1.16 13T 1.156
1.15 1.16 1.8
1.13 1.14 1.09
1.07 1.08 1.05
1.0% 1.0 .02
- % 1.0l

_(*) Mibrix nol posibive semi=delinibe

For the Greek data, the correlation matrices using ru(¢) and
HU-TH(¢) mabrices are nol positive scemi-delinites  'The MLFA progeaon
prints a message and no iterative solution is carried out. ‘lhe
solution printed in the outpul corresponds to the solution without
iteration. ‘The main features of the factor analysis solutions for the
three correlation matrices used as input to the MLFA program are

sunmarized in Table 6,18,
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Table 6.18 - Greek data: comparison of some aspects of factor
analysis results for different correlation matrices.
MLFA method.

Correlation Matrix

R () I} () K
1l
0.1 h o )
No. of fnclors L3 L3 1h
% Var explained 59.5 62.6 29,2
Communality: min 0.39h (v32) 021 (vi2) 0.103 (VL0)
i x 0.916 (V37) 0. 066 (V37 0675 (V3Y)
No. ol iterabions () () !r

The number of facbors in 'Inble 6.18 corresponds Lo Lhe number of
eigenvalues greater than one. 'The scree plot of the eigenvalues shows
that three factors should be chosen (see Table 6.17). llowever, as all
analysis ol Lhe C=seale reported in Lhe Titernbore are corvicd oul, wilh
Lhie number ol tacbors eqguiel Lo Lhe number o Tabent roobs preaber Lhon
one, we have decided Lo maintain Lhis ceriterion in onr anitlysis, or
eventual comparisons.

Comparing the results in Table 6.18 it is interesting to note Lhe
grent diflerence bebween Lhe cumalabive percenbogse ol variance in Lhe
data space associated with the respective number of factors [or Lhe
Pearson case. In this case 14 factors account Lor only 29.2 per cent
of the total variance. Yor the MLIFA method, tobal variance Ls delined
as the sum of the positive eigenvalues of the matrix. This fact - a
lowest percentage of the variance explained by the factors when using
the product moment correlation matrix - was also observed in the other
examples of Lhis chapter.  We also observe Lhat the mopgnitude ol Lhe

product moment correlation for polytomous data, is in general, lower
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than for the contingency type correlation matrices.
In 'able 6.19 we present Lhe sorted unrolabed ractor Lomdingg (and

respective items) for the three correlation matrices.

Table 6,19 - Dorted unrobabed facbor Llondings For Lhe Pirst
factor = MLIA method. Greeck dala.

Correlation Matrix Hu(¢) “O.Thtw) it
Rank Item loading londing [Lem Pl iy
1 Church .82 R Church &5
2 Prayers .79 81 Prayers <70
3  Bible reading <76 S8 Bible reading <70
Politeness s < Sunday School .62
5 Ten commandments .T1 13 fen commandments .61
6  Sunday school .69 A Confession .58
T Saving money .66 .68 Short skirts -.38
8 Confession .64 .66 Laughing in class =37
9  Blaspheny -.62 -.6h Obedience 25
10 Loughing in elass =50 =57 UiV ingg money .36
LL Sulubing Lhe Clag G54 LHb Play ing prank:s . 30
12 Obedience Hh 1) vehool uanitform: o
13 Shorl skirts -.50 -3 Made babhiing, - 3h
14 Playing pranks -.50 -H2 Politeness 32
15 Mude bathing =.50 -.52 Blaspheny =30

In Table 6.19 only the fifteen highest factor loadings are
presented. 'There is no difference in the order of the items for Lhe
contingency type matrix cases. Although the order of the factor
loadings for the Pearson matrix case is not the same, almost all Lhe
fifteen items are the same Crom the set of 50 items, wilh exception of
the item "School unitorms" that do not appear among the first items for
the contingency type matrix cases. To provide i better interpretation
of the factors, the Varimax robated fuactor Lloadings for bLhe irst Lhree

factors are presented in able 06.20. We present only the hipghest
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londings In decronsing order (sorted rolnbed fnelbors)e Mie Fourebh
factor for the tLhree cases consisted of relatively low loadings, and
could not be inLerpreled.

Comparing Lhe bhree first rotated factors, or Lhe difreront,
correlalion mibricen we conelude Lhal, Lhe Lhree mebhods lead Lo Lhe
same interpretation of the factors, although different factor loadings
were observed - the loadings for the Pearson case are systematically
lower.  'lhere Lo also some diflerence in Lhe order ol Lhe iLem:.  'The
interpretaLbion using Lhe conbingency Lype mabrix columns in 1able 6.0
is rather clearer than the Pearson case. [actor 1 has a definite
religious theme. Factor 2 has a predominantly sexual theme and Iactor
3 is related to punitiveness.

The three rotated factors and their themes are similar to those
reported in previous studies of the Children' Ueale ol Cocind ALLILudes
(0.1.;. Nims, L973) and also are similar Lo Lhose reported or Lhe
Adults' C scale (e.g. Joe, 198L4). In the study presented by Nias the
scale was administered to 217 boys and 224 girls at an nglish
comprehensive school.  'The analysis was carried oub separanbely 'or boys
and girls and Lhe method appliecd was Principal Componenl Analynin
followed by a Promax rotation. ''he Uirst four factors were idenbilied
as relating to religion, ethnocentrism, punitiveness and sex. For the
Greek data the factor related to "ethnocentrism" could not be
identified among the first four factors, but the factors "religion",
"sex" and "punitiveness'" are basically the same though the order is
not the same. 'The correlation coefficiennt used in other studies was
the Pearson coefficient. Furthermore, looking at the items with the

highest loadings for the first unrotated factor, presented in
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Table 6.20 - Greek Data: the highest loadings for the first three
rotated factors (decr‘easing order) for the three
correlation matrices used as input to the MLFA method.

Hu ()

[Lem

Lond ing

Correlation Coeflficient

R oo ()
]
LL e e

Lo iongs

[Lem

Pl s

Church A8 0 Chureh A0 Chineeh A i
Bible reading o2 Bible rending W3 Bible remding: ali
Prayers B2 Prayers U3 Prayers 00
Ten commundments L6 Ten commandments L8 Ten commandmenb:s 39
Confesysion « [ Conless ion L8 Conlention i3
sunday school (3 Sunduy school o i) bunday school i)
Politeness .61 Politeness LT Miracles 2
Honouring the lny; .61 Honouring the {lay, .66 Saving money 22
vaving money Jiy ruvingg money SHh Honouringg Lhe Clogs 00
Obedicnee il Ubedicnee 6 Obedicnee o™
Miracles .30 BLasphemy -.ho Politencsss « LY
Blasphemy -. 30 bchool unilorms <39 Police < LY
School uniforms «35 Miracles .38 Blasphemy -1
Short skirts .78  Short skirts .19 Short skirts .60
Kissing .76 Kissing .79 Kissing 55
Bikinis .60  Bikinis 62 Mixed schools A2
Nude bathing 59  Nude bathing 60 Bikinis i
Mixced schools .56 Mixed schools «HY Nude bathing i
lBeer i3 lror Jiy Boor . 30
Blasphony «34 Bl pheny o Levgrliings in el ardty
Rock=-and=-Koll « 37T Hock=und=roll <39 Blasspheny o2t}
Corporal punishment .80 Corporal punishment .82 Corporal punishment .69
Death to thieves .80  Death to thieves .82  Death to thieves .66
Deiath to enemies « 1 Death Lo enemies i 8 & Death Lo cnemies )
Beating children .67 Beating children .70  Beating children A8

fable 6.19, and comparing with the knglish data reported by Nias

(1973), we notice that eleven out of the fifteen items are the same,

although in a different order.
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6.6 Final Comments

In this chapter we have applied factor analysis methods using as
input contingency Lype correlalbion coellicienbs which are Nunclions ol
the estimted parameter of associabion of Lhe C=type distreibabion: Lhe
global cross-product ratio for RxC contingency tables. 'This approach
g JJustilicd using Lhe underly ing variable model based on C=Lype
distributions ns explained in Chapter he o The main advantoge ot Lhe
method compared with other mebhods ol faclor analysis lor cateporical
dite is Lhe pgreal reducbion in compumbing Limeg ol lowingg Lhie meLhod Lo
be applied to large data sets, as in some examples of Lhis chapler.
Before the advent of specific factor analysis methods for categorical
data, the great majority ol Lhe anilysis were carried out using the
product momenl correlation coollicient s inpul Lo LeadilLionnd faclor
analy sis mebhods.  Por Lhis reason, we hove compicrod Lhe resal b asioge
the new approach with the Lraditional faclbor anilysis resulbs, In the
first example ol Lhis ehapler = Civil dervice | odaba, nsing Lhe
Pearson milrix as input, the three-factor model would have beon chosen
by the Kaniser criterion (which is widely used by less expericnced
investipgnbors).e  Usingg Lhe conbtingency Lype correlalion mabricen, Lhe
three-factor model was rejected because it yielded improper solutions.
A more careful analysis of the magnitude of the eigenvalues and a more
consistent interpretation of the results showed thal the one-factor
model is more appropriate for the Civil Uervice 1 data. For Bools
data, the second example in Lhis chapter, we observed a different
proflfile ol' Lhe factor loadings for Lhe Pearson mabrix eose compiored
with the contingency type correlation matrix cases. 'lhe third example,

Civil Service II data, resulted in a remarkably stable solution
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compared with the Civil Service I data, for the same items. In this
exumple Lhe prolile ol Lhe faclor Loading: showed similar resualla for
Lhe Lthree correlalion maobrices.  Finally , Cor Lhe Loash dabo el
similar results were also obtained, but, apain, a more satisfaclory

definition of the number of factors (using the scree test) is obtained

Ffor the contingency type correlation matrices.
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CHAPTER 7 :  HEYWOOD CASES IN UNRESTRICTED FACTOR ANALYS1S

T.1 lHeywood cases and improper solulions: an inbroduclion and related
research

A Heywood solubion is Known in Lhe LiLeralbure of Faclor annlysin
s Lhe occurrence of o nepgabive or sero eosbimbe of Lhe crror varinnee
for one or more variables In any factor analysis solution. Occurrences
ol' Heywood cases have been reported in Lhe Literabure sinee Lhe Cirsl
observation of Lhis kind ot parbicular solubion by Heywood (1931).
Heywood cnses may occur in any factor analysis method, Lhey also ocenr
in confirmatory factor analysis and there is some evidence in Lhe
literature that the maximum likelihood factor analysis method is
particularly prone to the occurrence of Heywood cases. The causes for
such occurrences are still not clearly understood and some few studies
have Lried Lo show, through empirical evidence, in which situabions Lhe
pecurrence of lleywood casen are more Froequenb.

We shall disGinguishy in Lhis chapber, Heywood solubions and
improper solutions in lactor annlysics.  'The improper solubions  in
factor analysis that occur frequently are lHeywood solutions, but not
all Heywood solutions are improper solutions, and not cvery improper
solubion in a lleywood solutions  Suppose we have o one=Pacbor modde ]
with one or more ol the factor loading paramelers very high or,
conversely , suppose one or more of the error variance paramelers in Lhe
factor analysis model are positive but very near zero. A solution
that reproduces this pattern, that is, a factor analysis solution that
yields an exact (and no negzttive} soero error variance estimnte, when

Lhe corresponding parameter is approximately zero, eannol be considered
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an improper solution.  lo Lhis parbicular case, the only canse for Lhe
zero variance is the sampling variation and any small difference
between the estimate and the parameter is only to be expecbed.  From
the practical point of view we can have situations in which the
one=factor model rFits the dali and one of Lhe variables Qs porfoclly
correlated with the single facbor, meaning Lhal Lhis variable ibsell
could be a good indicator of the factor. Buppose i situabion whoere Lhe
corresponding factor loading parameter for that variable is 0.98, soy.
A solution thal yields a factor Loading estbimate e LoOO e nol an
"improper solution”. IL will be a lleywood case because Lhe viriance
estimate of the error term for that variable is zero. Jut. this ia a
proper solulbion, given the model.

There are also improper solutions in Fonelor analysis Lhil are nol,
lleywood cases. L Lhe Lrue number of faclors Lo known, any taclor
analysis solubion, that has nob Lhe same number of Uactors as i
assumed in the model, is an "improper solution". Unless we know Lhe
model for a particular factor analysis solution (as is the case in
simulation studies), we cannot distinguish, in practical work, an
improper solution from a lleywood solubion, bub, very trequently, when
the number of factors is not that of the hypothesized model, a Heywood
case will indicate an improper solution, as we shall see in a
simulation study to be presented in this chaplter.

Al thourh we shall consider only unresbricbted factor analysis in
this study, @ review of the earlier resecarch aboul leywood ecases will
be made, considering also confirmatory lactor analysis.

Martin and McDonald (1975) distinguish two types of Heywood

solution: an exaclt Heywood solution when at least one unique variance
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Ly zero bub none are negnlbive and an ulbra=leywood solulion where ol
least one unique variance is nepative. Ultra-lleywood cases are,
obviously , improper solulions, becinse we cannol, have noepndive
vicrianeen.s  Pul oan exacl lHeywood solulion mwy not be an improper
solubion anowe explained helore,

MosL ol Lhe factor analysis programs available in Lhe slabisbicnl
analysis pnckages, do not allow Lhe commmnnlitics of the variablen Lo
exceed one. That is the case lor Lhe BMDP and BPSS packages.  Uome ol
the factor analysis programs in the BAS package have the option for
ultra-Heywood cases, that is, they allow commnalitics Lo excoed one.
Therelore on wsing cilher BMDP, SIS (or SPSG=%) an ulbrea=ley wood coese
will not be observed, although BPSS will print "the commnility is
greater than one" and will stop the iteration process.

In the next section, we shall present a simulation study, using
Lhee BMDEY progeam Poromax b L ike b ihood Caebor apeclysin, where wee wil |
identify some of the possible causes for Heywood cases.

In past research, there are some simulation studies relevanl Lo
the present study, although some of them are concerned with the
confirmatory factor analysis model. We now review these studies.

Tumura and Fukutomi (1970) have presented some numerical
experiments to investipgate the occurrence of Heywood ciases in six
different cases, where the uniqueness o Lhe solution is considered and
also where the given number of factors (m) for the solution is
different from the true number of factors of the model. Jn;r(::skog‘s
unrestricted maximum likelihood factor analysis method wis considered
in the study, which is Llimited in the sense that only one or Lwo

experiments per case was analysed.  Nevertheless, Lhe authors cone lade
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that for the case where A is unique and m=k, lleywood cases "ocenr
ocensiond ly 110 A conbiving some row veclbor willy Lheie Teogbh cqual Lo
nearly one" (sece also Tumura, Fukulomi and Asoo, 1968).

A Monte Carlo study is presented by Boomsma (1985) to assess the
problems ol nonconvergence, improper solulions and starbing values in
LLISREL maximum Likelihood estimntion for confirmilory nelor anlysis.
Results on the likelihood ratio chi-square statistic for goodness-of
-rit are also presenbeds.  'Pwelve Facbor anonlysis models were sboadied,
all having two 'ncetors (correlated and nol corrclabed Caetors) . e
ractor pattern A (px2), where  pois Lhe number of observed vireiahles,
was chosen such that half of the observed variables had a non zero
loading on the first factor and a zero loading on Lhe second one, and
Lhe reverse tor the other halt (p=6 or 8). ‘'he size of Lhe faelor
Londings were chosen as smill (043 0.60); medium (0.03 0.8) and Large
(0.8; 0.9). 'he sample sizes were 25, 50, 100, 200 and 400 (wilh 300
replications of each). In this study, Boomsma considers only the
ultra-Heywood cases (negative estimates of the error variance). She
concludes Lhat "Lhere Lo o real dinygrer ol improper solubions™ with
smvll simple sizes In Lhe simbiabion resalls, Lhe oceurrence of
improper solubions increased as L) sample size decreived; 2) Lhe nanber
of variables in the model was six rather than eight and 3) the
population values of the error variance were close to zero.

Anderson and Gerbing (198k4) also present a Monte Carlo study for
the LIBREL confirmatory factor analysis method. 'They analyse 5l
models, with 2, 3 or 4 factors, for sample sizes of 50, (Y, 100, 150
and 300 (with LOU replications of each). 'lhe proportion of

nonconvergent and improper solutions that occurred in obtaining 100
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pood solulions per cell in presenteds 'They conelude Lhalo ooosample sise
of' 150 for models with three or more indicators per faetor (6 or wnore
variables in Lhe model) will usually be sal'ficient for o converpgenl wand
proper solubion.  In Lhis sbudy Lhe solubions are deflined as improper
when one or more of Lhe unique variances is less Lhan o pousitive,
arbitarily small, prescribed number such ns 0.00%. Anderson and
Gerbing nlso observe Lhal Lhe oceurrence ol improper solul ions
increased ns 1) sample size decrensed; ) Lhe number ot indicabors per
tactor (and consequently Lhe number of variables in Lhe model)
decreased; 3) corrclation between taclors were O3 ealher Lhin OJb.
For the models analysed, they also observe that with Lwo indicators per
factor (small number of variables), loadings of 0.9 prive Lhe larprost
proportion ol improper solulions, wherens lor Larger numbers of
viariables no improper solulions occurred for models wilkh loadingg: 0.9,
Results on goodness-of-1'it indices are also presented in this Monte
Carlo study.

Seber (1984) reports some results from a simlation study by
Francis (1973, 19(h). Francis' analysis is based on exploratory or
unrestricted factor analysis models with two or Lhree factors. 'The
sample size is 50. 'Iwelve models were gencerabed with different faclor
patterns. Again in this case the solution is said to be improper if
the error variances are less than an arbibrary smill positive number
(C.g;., 0.00%). Several coses of improper solulbions were observed when
Lhe number ol facbors or o parbicalar solubion wies ppreater Lhan Lhe
true number ol factors of the model.

Other researchers have proposed methods to avoid the occurrence of

Heywood cases or for detecting the causes of Heywood cases. We now
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review brief'ly these methods.

.J:;r‘t':'.knp, (1907) proposes o procedure Lo odeal wibhe imporoper
solubions for Lhe maximom ikelihood Paebor analysis mebhods e
defines Lhe problem ot improper (Heywood) solubion as follows: "Since
Lhe diagonal elemenls ol ) are variasnce:s Lhe unebion J'k(q,) Paode Cined
in the region where all the diagonal elements of @ are posilive™ (k is
the number of factors). "We have no puarantec, however, Lhal ol |
partial derivabives ol l'k vanish ol o point where all Lhe dingonal
clements ol are positives  'This sogrests Lhoal we shod 1odetine l‘h(rp)
in the region ne s Where ¢ii » € for all i = 1,2,.cs5p and where g iy
a positive, arbitrarily small, prescribed number. 'lhe problem, tLhen,
is to find the minimum of I'R('I?) in the repgion 1(‘: . wince 1\"_ inon
closed repgion, the minimum is found either in Lhe inberior ol R or
on  the boundary. It Lhe minimim is found in Lhe inberior ot Ky, we
shill sy that Lhe minimam is oo proper solution. LU on Lhe obher
hand, the minimam is found on Lhe boundary ol i\'}_' ., Lhe solulion is
improper".

We have transcribed d;;r‘t'::;ko;;':: Lext beenuse L6 secems Lo be Lhe
origin of the term "improper solution”, which e been nsod Crequenbly .
J;t'ezskog (1967, phli3) also says that "such improper (lleywood)
solutions occur more often than is usually expected". ''he procedure
that he proposes to avoid such improper solutions is to eliminate
partially the variables with unique variances equal to e and the
analysis continues from Lhe conditional dispersion matrix.  'he
solution r'inully accepled in Lhis process is combined wilh Lhbe

principal components of the eliminated variables, to give a complete

solution for all the oripginal variables.
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Martin and McDonald (1975) propose i Bayesian procedure for
estimation in unrestricted ractor analysis.  'The procedure has as one
of its obJectives to avoid inadmissable estimates of unique variances.
A choice of the form of Lhe prior distribution is Jjustified and
empirical examples are shown.

Finally , we will review the paper by Van Dricl (1978) which his
been cited in almost all studies about lleywood cases. Van Driel his
idenbilicd some of Lhe couses ol Heywood solubions, by droppings Lhe
consbLrainbs of posibive delinibencss o Lhe mbrice:s conbaining, Lhe
parameters of the factor analysis model. le proposes a method, which
he calls "the nonclassical approach” and analyses some artilicinl dila
drawn from 5 populations, corresponding to five factor analysis models.
The models are called: "Close to zero" (one ol the unique variances is
close to zero and the others are all equal to 0.%); "Close to one"
(one of Lhe unique varinnees is close Lo one and Lhe obher:s e cgquald
to 0.5); "bwart" (all unique variances are equal Lo 0.9 and Lhe second
factor has loadings very small comparing with the first factor);
"Heywood" (the classical one-factor model example where one of the
unique variances is supposed negiutive) and "Anderson and Rabin® (n
three-factor model with unique variances equal to 0.5; the factor
matrix for this population is in accordance with the Anderson and
Kubin identification condition). In this study five samples are drawn
from each population, cach with sample size 800, and each sample is
analysed with the classical and non-classical approach for every
appropriate number of faclors.

Van briel (1978) referring to Jt.:;re:;kog':; paper calls attention to

the "subtle" difference between the terms "improper solution" and
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"Heywood cases", but he uses Lhe Lerm improper ns meaning Heywood
solutions (that is, at least one unique variance negative or zero -
small values of the variance, such as 0.00h are considered proper by
Van Driel, as for example in the "close to zero" example). Van Driel
idenbilies Lhree ciuses for Heywood civsen:

1) siup lings Cluctoations combined wilh Leae violoes o close Lo zerog

2) Lhere does nol exisb any Facbor anadysis model Lhal Cits Lhe dabog

3) indefiniteness of the model (e.g,. Loo many Lrue laclor loadinggs

are zero).

Starting from the results of the previous studies two main
yuestions arise:

1) liow "close to zero" should be the unique variance paramcters in
the factor analysis model to cause Heywood cases?

2) low often do Heywood cases occur as a consequence of chosing i
gpiven number of faclors different from Lhe Lrue number of factors of
Lhe mode LY

The irst question is approached by Boomsma (L98Y) when she
generates models with "large'", "medium" and "small" factor loadings
leading to different magnitudes ol Lhe unigne variances ol Lhe model.
Boomsma's results are, however, for confirmaitory factor analysis using
the LISREL program. We shall present some results for unrestricted
factor analysis.

Concerning the second question, suppose m is Lhe glven number of
factors for a particular factor analysis solution and q is the true
number of factors of the model. We observed that Tumura and Fukutomi
(1970) did not obtain Heywood cases when m>q in their numerical

experiments, but on Lhe obher hand seovernl ecncen o Heywood soluliions:
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are reported by Heber with reforence Lo Franeis® resulbs when meq (see
Seber, 1984, p.232, Table 5.20). We also obscrved Lhat several
numerical examples presented by -I;rrr:;kn'u{ show Lhe occurrence ol lleywood
solutions when increasing the number of tuwclors for w parbicalar
example (sece J;reskog, 1967, p.iiTh, lable 8). We then suppose that
another possible cause of Heywood cases is the inappropriatencess of® Lhe
solution for a given number ol aclor:s.

To assess Lhe el'l'ecel ol sampling variabkion and model {:h:l..l‘-'l.c:l-r'l‘—
istics on the occurrence ol Heywood cascs Lor unresbricted nctor
analysis using the maximum likelihood method, a Monte Carlo study was
designed. As a by-product of the study some results about the poodness-—
of-fit test of the model are also obtained. 'This simlation study is

deseribed in Lhe nexl seclion.
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T2 The elfect of sampl ing varintion and model chaornclberisbics on Lhe

occurrence ol Heywood cagses for muximum likelihood fnelor
anulysis: a simulabion study.

Our irst objecbive 1s Lo study how Lhe normel theory eshimalor:s
for maximum likelihood unrestricted faclor analysis perlform regarding
Lhe occurrence of lleywood cases For models wilth specilfiod charaelor-
istics.  MEnbimabes o Lhe MLEA model are provided by Lhe BEDE Paebor
analysis program using an algorithm developed by Jenrich and Sampson
(see Dixon et al, 1983).

'he normal random varialbes are crealbed using Lhe Random Namber

Generator of the BMDP package.

Simulation design

For this Monte Carlo study three one-factor models were chosen [or
different magnitudes of the first fuctor loading. The one-factor

model for variables with mean zero is piven by

X = N ¥ N, i=l, s eaayp
i i i
such that var(x,) = 1L, va.r‘(r:.t) =9, , 4 and e, are Lhe normal pgenericled
i i i

variables and
[5)

where h; is the comminality of the i-th observed variable, and "’i.
unigque variance or error variance. ‘'lhe Cirst factor pabbern A (pxl),
where p is the number of observed variables wis chosen such Lhat Lhe
first observed variable had a "close to zero" unique variance or a very
high loading (kl= 0.98) and all other loadings equal to 0.5 ()\J‘—' 0.5,
j#1). This model will be called Model I.

The other models are similar, but. Lhe idea was Lo vary Lhe

first loading in such a way that we hod Lhree ditferent deprees of
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[ -~ P — " ; . .
close Lo zero" varinnces. 'he Last model havings Uare Crom z2ero bl nol

" H .
close Lo one™ unique variance.  The Lhroe models arees
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Model 111

——
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]
c
.
-
=3
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>~
n

Mg = 04077 (isl)} or

bipg = { b= 0515 0.8 (j21)]

For each model three different numbers p of observed variables
were anidlysed so as Lo represent i rangge ol vicloes Lypileadl ly
encountered in practice (p=95; p=10 and p=20). vample sizes were chosen
according with the ceriterion: smell (N=%0); medium (N=100) and loarge
(N=500). Por cach cell of Lhis desipgn, 20 replicalions were prenerabod.

Finally, Lo assess Lhe elTecl ol havingg m>qg on Heywood cnses
where m is the given number of factors in one solution and q is the
true number of factors of the model (q=1 in this case), we chose to
analyse the correlation matrices generated by Model I1I (where the

occurrence of Heywood cases is assumed to be very small or zero) with a

two-fractor solution.

Although the above desipn produced 100 separate anilyses,
admittedly, Lhis i3 a very Limited Monle Carlo study, with respecl Lo
different models studied, different sample sizes and number of

replications. Nevertheless, the study should give a good deal of
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important information related to the occurrence of Heywood cases,
standard errors off Lhe MLEA esLimabor:s, resullbs on Lhe Tikel ihood
criterion piven by Lhe MLEA (BMDE) progeam aoond resid Lo aboul, Lhe
cmpiricnl requency disbribubion off Lhe eipenvidluesn.  thare resal b e

however, limited to the cases here studied, no generalizations beyond

Lhese models will be mwdoe.

Kesults

The MLFA/BMDP program produces Cactor lowdings esbimblos and
unique variances within the parameler spoee or o on Lhe boundary . No
ultra Heywood cases can be observed, because of the constraints in Lhe
program. In obtaining the T20 convergent analyses, we observed only 2
nonconvergent cases, for Model III and when forcing a misspecification
of the model with 2 factors and 20 variables. 'The results to be
presented in this section are related to Lhe proportion of exact
Heywood cases for each model.

In Table T.1l we present the percentage of Heywood solutions in
eich cell ol Lhe simalation desipn for Models |oand Ll For coch eell
we observed 20 replications.

Table 7.1 - Proportion of Heywood solutions for Models I and LI
in the Monte Carlo study (20 replications per cell).

Sample Size

Model No of var 50 100 500

5 B0 o .10
MODIL 1L L0 « 30 + L0 .00
[Al= 0.98] 20 50 AL .00

') witl) ol 'y L)
MODIL L1 10 .00 .00 .00
[x,= 0.90] 20 .00 .00 .00

CXKAAT



207

No more Lhan one zero variance esbimebe wies observed For Models |
and L1 although within n single replicalion more Lhan one variance cin
be zero. 'he proportion of lleywood solulions decrenses s Lhe soample
increases, in peneral. A preaber proporbtion ol Heywood solabions o
observed or o small nunber of variables in the model.  For Model |oand
smwal L osample sizes o greater proporbion ol lHeywood solabions: i
observed when Lhe number ol variables s 20 rabher Lhan 100 A prrenlor
number of replications per cell would be necessary to confirm this
tendency. 'The results in 'l'able 7.1l are in accordance with the (indings
of Van Driel (1978), that is the "close to zero" population is one of
the causes for Heywood cases combined with sampling variation. At this
point, we call attention Lo the fnct that for small sample size, N=50,
siy , Lhe proportion of Heywood solulions in very high (B0%).  For Model
I the Heywood cases were observed walways for the irst variable ("close
to zero" case), therefore these solutions are very similar to the true

~

model (we observe a Cactor Loading AL = l.0 where Lhe parameber o

AJ_ = 098, bue Lo smmpling variabion, solulions wilh Lhe Ciest loiding
equal to one (and consequently unique variance equal to zero) are
expected Lo occur and such o solution cinnot be el led "improper'.
They are exact lleywood cases, but the solution is proper.

In Table 7.2 we present the proportion of Heywood solutions out of
20 replications for Model I1L for different sample sizes. We also show
the proportion of Heywood solutions that occcur as a result of a
similated misspecilication of Lhe model, Lhal is, woe knew Lhal, Lhe
model had one factor, bul we asked the program Lo produce the
two-factor solution. We then observed a very high proportion of

Heywood solutions for two factors and even more than one variable with
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zero variance. 'lhe lleywood cases were obscerved for any variable, not
always for the l'irst as in the case ol Models | and 11. In Lhig cuse
we have lmproper solutions. We Lhen conelude Lhab anobher cause l'or
Heywood cases is Lhe inclusion ol Loo many Cactors in Lhe solution.  We
believe Lhal many ol Lhe Heywood solutions observed in Lhe Literabure
arc due Lo Lhe Pnel Lhl Lhey e over=ie bored (opre Loo meny
fuctors) . When anndysing cmpirical dala, iL is imponsible Lo know Lhe
Lrue number ol ncbors ol Lhe mode L. In Lhe similabion sbadics we know
the model, but this is an artificial situation. We suggest Lhat, in
empirical situations, when the researcher is using Laclor analysis and
obtains a lleywood solution, he should reanalyse Lhe dita decrewsing
the number of factors by one. U the poodness-ol'=t'iL indices are pood,
that should be the best solution for factor analysis.

Table T.2 - Proportion of leywood solutions tor Model LIT using:

one-factor solution and two-factor solution ( 20
replications per cell).

Bample SBize

No of° Var 50 10O HL00

51 «1t) L0 00

Une=raclor solubion LO LO0 LOU Lt
20 00 LU0 L0

5 .90 S 50

Two-factor solution 10 -3 55 <35
20 .30 45 .30

As can be seen in Table 1.2, the proportion of lleywood solutions
indicating an improper solution for two factor solutions is very high
even for large sample size. The proportion seems to decrease as the

number of variables increases. bPModel I1I is a one-factor model with
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the following error variances [wl = O.Sl'und wi = 0.80, itl]. It is
interesting to observe ‘that for the one—fuétor solution and for sample
size 50, we observe cases with communality very near zero, or variances
very near one, producing negative estimates of loadings, which could be
considered as another kind of impfoper solution; the proportion of
“these cases was very small (1 case for p=5 and p=20 and two cases for
p=10, all for N=50).

As a by-product of this simulation study we shall now present
results about the Chi-square test which can be obtained from the
likelihood criterion (LC) to be minimized. (The BMDP/MLFA p;ogram only
prints the likelihood criterion). The Chi-square statistic can then be
obtained by x2 =n LC, where n' is given by

n' = N-1-(2p+5) /6-2q9/3
The )(2 statistic for the unrestricted factor analysis model is teslted
as a chi-square variable with degrees of freedom given by

ar = 15[(p—q)2 - (p+q)].

In Table T.3 we present the proportion of significant éhi-square
values fér a = 0.05, for 20 replications in each cell for the three
models analysed. We also include in Table T.3 the fesﬁlﬁs for the

two-factor solutions for Model III.
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Table 7.3 - Proportion of significant chi-square statistics
for a = 0.05, for the three models (20 replications

per cell).

vrnp bes e

Mode ] Mo ol vare Ho) 100 L0

Y L) a1 210

Model 1 10O L0 L) U

20 wl L0 LY

Y 00 .00 LY

Model 1L L0 LU0 05 <05

0 .30 L0 L0

Y 05 .00 .00

Model L11L 1o .00 00 AL
(one=fnctor solution) 0 Mol LY 00
5 .00 0 .00

Model LLL 10 .00 .00 .00
(two-factor solution) 20 .00 .05 .00

We observe in 'lable (o3 Lhal for small samples Lhe observed

proportbion ol sipgniticanl ehi=mqeore shalislics

in hiphoer Lhoan Gae

expeclted proportion ol 0.05% For Lhe one=aebor models  When analy sing

the two-factor solution the test accepts the model with two factors,

which should not be accepted. But Lhis is a

known fact of Lhigs

goodness—-of'—fit test, because it depends on the residual correlations,

if we include more factors in the model the residuals become smaller,

and consequently, the chi-square stabtistic.

The taclor analysis user

should, for this reason, use more than one goodness-of-fit indice,

including in the analysis other criteria such as Akaike's Information

Criterion and Schwarz's Bayesian criterion (see Section U4.3).

Another interesting result tfrom Lhis

similation study o Lhoe

empirical U'requency disbLribution ol Lhe number ol elgpenvidlues prrenlor
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than one (y>1l) of the correlation maitrices. In 'Inbles T.h to T.6 we
present. Lhese cmpiricnl Crequencies, For oeach o Lhe one=tnebor mode ] s

studied, nccording Lo sample sizne and number of variables o Lhe model.

Tble (0 = Fmpirienl distbribabion off Lhe numbers ol eipenvilies
prenler Lo one in 20 preplicalkions of Lhe simlablion
slhudy s Model .

N =150 N = LOO N = %00
No of y>1 % No ol” y>1 “% No ot y>L %
1 ™ L 00 | 100
P =25 2 2hH & LO
- 1 20 L 100
0 30 2 0
P = 10 3 LO 3 04
h LO
1 —_— 1 - 1 Lo
2 = 1 2 _ 2 Wy
P = 20 o - 3 05 3 15
h i l 20
') {IJ I} IJ
() H t 30
{ 1O { 1)
¢4 (315
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Table T.5 = Empirical distribution of the number of eipgenvalues
greater than one for different sample sizes and number
of variables of the model - Model 1L (20 replicntions

per cell).
N =50 N = 100 N = 500
No of y>1 % llo of y>1 % No of ¢>1 %
1 35 1 55 1 LO0O
P =3 2 60 0 e
3 0YH 3 0YH
1 -- | 0Y 1 100
2 - ol 35 Py 1Y
R= 10 3 HY ; 50
h WY h L0
1 - 1 S - o
2 = 2 s 2 20
N == 3 = 3 55
P = 20 h —— 11| P I 24
pJ - b 0%
) Y (B h
' O [ N
4 10

Table (.6 = Empirical distribution of the number of eipenvalues
L IIL (20 replicalions per aell)

grealer Lhan one.

Mode

N = 50 N = LOO N = 500
No of .>1 % No of >1 9 No of >1 %
T To 1 90 L 100
P=5 ) 30 2 1.0
1 - 1L 1.0 Tk 1.O0O
2 35 2 60
P =10 3 HH 3 30
L 10
| —s 1 S | 30
=] s 2 - 2 l)[)
3 - 3 - 3 10
P = 20 L _ l 15 I 0%
> 15 2 55
6 ) & 20
T 10 T 10
CXKAAU o
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The ibles T.h Lo (.0 show Lhitl, wilh smad Lo sample size and Pfor o
number of variables in Lhe model such as 20, several cigenviluen ol Lhe
correlation are preater Lhan one for Lhe one=tracltor models 1, L1 and
1Hle  IF Lhe Paelor annlysis aser chooses Lhe number o Paelors by Lhis
criberion, ns i sbLill very common, wilh sma D somp Dess and oo by
ol variables, the inclusion of bLoo many factors in Lhe solubion wonld
occur. liven lor a moderate sample size such as 100, Lhat would be
the case. On the other hand, for all modols and cases, Lhe seree Lesl
would be more appropriate since Lhe maupgnitude palblern of Lhe oipgoen=
values always shows a very high irst eipgenvalue compared with Lhe
others.

Finally, as another by-product of the similation study we now
present the results related to the parameter estimates of the models.
In ''able T.T we present the mean and standard deviation of the first
factor Loading for Lhe Lhree models, for cach coll ol Lhe simlalion
desipgn, biused on 20 replicabions. We have ineluded Lhe Heywood
solutions in all enlceulations.  In 'ibles (W8 and (.9 we present. Lhe
mean and standard deviation ot the second and third 'actor loading for
each model, respectively. The small number of replications in this

MonbLe Carlo sbudy should be kept in wmind when consideringg Ll resnl L

for the cases studied.

CXKAAU



214

Table (.0 = Mean sl sbandaord deviabion of Lhee Viesh Paebor boading

estimates in each cell of the simulabion design (20
replications per cell).

Mumber of Sample Size

Model variables 50 100 200
iy 0. 986 S TP O,
(V.034) (O.0h:) (O.010)

Model 1 L0 U.9(0 U6 0. 900
(true value = 0.98) (0.031) (0.020) (0.009)
0 0.993 OPRSTLLY .91
(0.010) (O.010) (0.004)

Y a1 0. 38 .90
(0.00Y) (0.058) (0.0:8)
Model II 10 0.89h 0.895 0.882
(true value = 0.90) (0.039) (0.026) (0.017)
20 0.913 0.900 0.9 1Lh
(0.0306) (0.0L7) (0.0L0)

5 0.7ho 0.1 (' 0 TRY
(0.198) (O.LL6) (0.0%1)
Model 111 Lo .61 (R Y| 0. (1o
(Lrue value = 0.70) (0.1229) (0.00622) (0.04:2)
20 0.6hY 0,081 0.1 L
(0.09h) (0.049) (0.028)

Note: ksbimates are based in averaping the eshimebes in each colls  In

parenthesis s Lhe empiricnl standiosd deviabion.
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Lhe second Mmetor

Loading estimates in each cell of Lhe simalalion design
(20 replications per cell).

Number ol

ceump bes G e

Moder L vierinbles HU) 100 00
i U ol TRITE Oy
(0.062) (0.121) (0.02:)

Model 1 10 0.569 05N 0.H 1Y
(true value = 0,50) (0.089) (0.058) (0.029)
20 0.500 0.hto 0. hat
(0.089) (0.05%%) (0009

5 0.hdp 0.0 31 0. 480
(V.083) (0.111) (0.030)

Model I1 10 0.567 0.506 0.573h
(true value = 0.50) (0.096) (0.070) (0.028)
20 0,486 0.479 0.9y
(0.090) (0.070) (0.033)

5 U. 30 U 399 O.h 31
(O.16:0) (0.0ul) (O.0h)

Model 111 10 0.507 Oy 0. hh1
(true value = 0.447) (0.166) (0.069) (0.042)
20 U329 0.35h 0070
(0.150) (0.099) (0,04k)
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Table (.9 = Mean and standard deviabion ol Lhe Lhirrd Mraelor
Lowding esbimbens Tn ench coll ol Lhe simlabion desipn

(20 replientions per cell).

Number off Uample Dive

Model variablesg 50 100 200
2 0.5 38 0oy 0,511

(O.109) (0.08:0) (0.008

Model I 10 O b3 0. 492 0.509
(true value = 0.5) (0.086) (0.056) (0.028)
20 0.527 0.496 0.50h
(0.111) (0.066) (0.035)

5 0.5Th 0.535 0.511
(0.117) (0.076) (0.033)

Model L1 10 0.h50 0.h673 0. 500
(Lrue vitlue = 0.9) (0.111) (0.068) (0.0:8)
20 0. 580 0.9 30 0.4500
(0.081) (0.055) (0.028)

5 0.3h8 0.392 0. 02
(0.150) (0.07h) (0.031)

Model 111 L0 Oy U. 48h EIRIY
(Lrue value = 0Jhhy) (0J161) (0.084) (0.0h6)
20 0.522 0.436 0.437
(0.099) (0.073) (0.03h)

Discussion

In this simulation study the effect of sampling variation and
model characteristics on the occurrence ol Heywood causen wies il ysad.
Two main causes of lleywood solutions in factor analysis were observed
for the models analysed:

1) sampling variation combined with unique variance parameters

close to zero, which is in accordance with Van Driel (Lo73);
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2) misspecilication ol Lhe model = Loo many Cacbors e
included in one particular solution causing improper solutions.

The occurrence ol Heywood casnes inomuch more Frequent. For sml |
sample sizes.  Pactor mnalysis based on FifLy or less observalions
should corbaninly be avoided, nol only because of i higher possibility
ol Heywood cnte:s g bul becnnse Lhe samplingg Clocbunbions may  Lemd Lo
solubions Lhal difter gsubsbtanbinlly Prom Lhe Leae model,

It was observed, penerally, that the occurrence of leywood cases
increnses ng Lhe number of Lhe variables ot Lhe model decronson,

Our resulbs, Tor unrestricted melor annlysis, are in accordance
wilh the rindings ol Poomsma (198%) and Anderson and Gerbing (LoBh) ror
conl'irmitory Inclor analysis, concerningg Lhe oceurrence of Heywoodd
cases.

For normal theory, the chi-square test has been shown to behave
well, althouph i hipgher proporbion than Lhe cxpecled rejectLs Lhe model
For small sample sizes and moderabe number ol variables (p=r0).

The results Crom the simulation sbudy also show Lhal, Lhe Kaiser
criterion lor choosing the number ol factors shonld nol be used s LG
may lead to the occurrence of Heywood cases, caused by the inclusion
of too many factors in a solution, miinly il Ghe sample size s small
and the number of variables large. With large sample sizes and small
number of variables, the criterion may be useful if used topgether with
other criteria.

As a final recommendation, we strongly advise that sample sizes of

100 or more are needed for reasonable factor analysis results,
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Ted 'The probabilily ol oceurrence ol Heywoodl cnsen
—— - S I S —

A simulnbion sbudy wilbh Lhe purpose ol aosessiogg Lheomadn eonsen
ol' Heywood enses wis presenbod in the lash seclbion. Heywood cases
occurred even when a factor model with large residual variances
eneraboed Lhe diabas In Lhis seclbion we comgider Lhe e of
one=nclLor models and we show how Lhe probabilily ol oceurrence may hoe
citleulated. We also show thut this probability lor Lhe one-factor
model depends on sample size, poroameber vecbLors and number ol veeeiob ben
in the model. We shall consider tLhe Minres method of CitLing lor
factor analysis, that is, we shall suppose that the factor loadings are
estimated under Lhe condition that the sum of squares of Lhe o=
dingonul residunls is minimizsed.

The minres method was introduced by Harman and Jones (1966)
although, as they point out, the idea of getting a factor solution by
minimizing off-diagonal residunl correlations wis Uirst posed by
Thurstone (1954). They do not consider the minimization of the tolal
residual matrix (including dingonal terms), which would lead to the
principal-factor solution. We do not consider the numerical procedures
for obLaining Lhe minres solulion. [, is on Lhe principle ol Lhe
method that we shall base our method for obtaining the probabilities of
occurrence of Heywood cases.

Consider Lhe one=faclor model given by

X, = A1+ e, 5 PR T e k)
g L L

with E(f) = k(e.) 0 3 E(I'ei) = 0. Suppose Var(f) = 1, ke ) = 0y

e
1J

i2) and Val"(&i) P2 O, i=l,...,p. Suppose the xi's are standardized

Il

so that var(xi) 1. lence,

A T = Ly AL B (7.2)
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Then, we have
o € by Bl (s 3)
For Lhis model

{:t)rl‘(xi,x_) = ph = AN, e (rah)

J i i

bBuppouse, Lheretfore, we CFiL Lhe model by minimizingg

I I N
. :lll i-—.)i‘-l—[(rit] - Al‘\.}) (I'- ,}

where r, 0 1o Lhe observed correlalbion belbween variables ®, el x .

i) i J

(Actunlly, as x, nnd x| are standardized variables, v and o omay be
X J ! L
considered as covariances).

From a purely mathematical point of view, the problem of finding «
minimum f'or Lhe nonlinear funclion U is well defineds 00 ia o Funelion
ol Lhe p(p=1)/2 orr=dingonal residual corrcelabions, which are dependent,
upon the p elements ol the factor mabrix A(pxL).  'The minimum vidue Cor
S occurs at the point where its partial derivatives with respect to
the p elemenls o A are zero and DL mabrix ol second derivalives i

positive delfinite.  'Thus,

3 | A
I 11 o 3 ) ; , !
BN ) == ) AP . FA YA EELPoeccgis ('fa1r)
i = }.i J=} o R J_Jz%d
J#l J#l
we also have,
p
1 3% = § a, 50
22 g Y
i J#l
123% = x4 20 (7.7)
2 ox, oA J J

If the system of equations

= 0 i=1’2’...,p
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(]

his o solulion wilth hi' < by Lhen i is elenrly oominimoam by (7.7).

However, Lhere may nol, be sach o snolubion.s For Mixed Apse 'Ai-l Ay kp,
S'(Ai) is o linear increasing function ol J\i. We are interested in Lhe
behaviour ol Lhe l‘unlv.!.'mn al, Lhe point, )\i = 1 and connsequently q,} = 0
I Lhe minimum of Lhe funcbion oceurs al X, = Ly o exnel Heywood e

vceltie  lel ws o comsider Lhe ol lowingeg coeen:

1) bBuppose Lhal, Lhe derivative ot B wilh respect Lo '\i ol Lhe

point A, = 1 is negative, that is gt(L) < 0.

At Ai =1, from (7.6) we have

A1 = =Y aAr,. * A
[ 5 ] Jll 3 1 Jl[ J
% in J#l J#l

It 5'(1)<0, this would imply that $'(0)<0 and that there will be no

intermediate value of Ai for which it is zero. The minimum of S will

thus occur at li=l, because 5' is a linear increasing function of },.
L
A proof of Lhin is priven below:

Suppose $5'(1)<0 Lhen

v B
- Non s A <0
jzl J i le J
j#l j#l
thus P P 5
T YAT >0
gl d M 51 d
Therefore
w1l a5 = - I .20
s'(o) = | T ] J\JrlJ
5 li=

We recall that we are assuming O(liél. It is known that for the

one-factor model, A reduces to a column vector of p elements that is
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unique apart from o possible chamze o Sign ol all LLs clemenbs, which
corresponds merely to changing: Lhe sipn of Lhe factor.  According Lo
Lawley and Maxwell (1971), such changes are merely trivial.

2) Suppose now that $'(1) is positive. Therefore G'(0) my be
negative or positive and the minimum of 8 will not occur at the point

A =1,
i

3) Finally, if 8'(1)=0, the minimm of § will occur at, A,I:l sand o
Heywood cnse ocenr.

We are interested in evaluabting Lhe probabilily of an occurrence
of a Heywood case for variable xi. Thereflore we need consider only

cases 1) and 3) above. 'lhat is

P P .
Pris'(1)<0} = Pr{ § A.r.. > ¥ 2%}  i=1,2,...,p (7.8)
" =

3= J
i ]

For evaluating Lhis probability we need to know the distribation

D
ol 5 Ao 1 An approximalion miy be obliined aes ol Lows .

IR

Since the x's have zero means and unit variances

1 n
o T ™ y xihx'h
i nay MR

where h indexes the sample members. (The terms of this sum are
independent for h=1,2,...,n; for sufficiently large n, this will be
approximately normal by the central limit theorem).

Consider

p , 0

W, = ¥ R, == ¥ VR X

i 351 gL noy g 1.I1JH Jh)
Jj#l

Let us denote Jzixjhkj by ‘yi‘n say. 'Therefore
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%
in’in
We shall now (ind the moments of xl“ and y . DBy definition we have
i

h

l-:(xi ) =0 5 var (x%..) = 1

h ih
Thus
l'j(yih) = 0 and
) £ p P
v:u'(y, Yi= ymr( pie A ) = S‘ I ; }‘ y A, covix = T
ih Ptk U LR Ik
Jri Jri ki ('r.9)
J7k
Now
mw(xjh_‘xkh) = A.j'\k ('r.10)
thus P, P p .
covl(y }) =y ,\a 5 3 .\215 CF-14)
j=1 9 y=1 k=1 Y
J#i 0 j#1 kAL
J#k
b B
. =% 31 g = “ = I ;
covln oy ) = L X, covla,, ox ) =a ) T T
il 8 J=1
in J‘f:j_ (.r.l‘(.‘)

Let us suppose that Lhe observed variables xi, i=l, «..p have a
P
multivariate normal distribution. Thus, yik = 5 XJP A., which is the

J#1
sum of p=-1 dependent normal variables, is also normal with mean and

vierianee piven by (f.9). Henee xiln el "'!ilt have: to normiel bivar i
distribution. Irom Kendoll and Stuart (LU7f, Vol.l, p8Y) it i known

i
that if (x_lh,,y ) are normal bivariate we have, using Lhe tael Lhat o, =

Lh ih
L, 2 2 2 o 2 P 2
Blx: -¥5.) =1 +2p ) o e =g ®2 [k e )]
LR *1wWin *inYin Yin LB
Thus B %
Var(xg voy) = Blgyt) = [EGgy 0 =
s ] £y i |
= oy o+ 2[Bxgy I17 [R0eg w01
ih
2 S 2 ;
W ¥[8l ) (7.13)
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Now
, D
e SN hzlxahyill
where hh Xind iy B independent for h=l,...,n. ‘lhercfore, using ((.12)
n n .
| s = = if ) e}
( :) h ((1llylll Ai‘]z'il] Cr )
Jobi
and using: ((.11) and ((.13) we have
F ow B OB @
Var(z,) = | }' & T x .\ + J\'. ( } N, J ] (T.1%)
* j=1d g1 k=1 d K L g
J#i J#i k#i J#i
j#k

For n sufficiently large

Ly RN
Z2, == ) X
i St lh ih 1 J LJ
J#i

is approximately normal, by the central limit theorem, with mean and
variance piven by (fa1h) and (7.1%) respectively.  'Therelore (F.8) may

be cilenlabed approximtely

.

i=1,2, eusp

5 2
. , i1 ) 1
- 1 c 2 g2 v g2 2.2
- +
Jv J# A JJL KM
K (t.10)
where $(z) is the normal distribution function.

The above expression gives the asymptotic probability of
occurrence of a Heywood case for variable Ky in function of the sample
size, magnitude of the factor loading parameters and the number p of
variables in the model. As can be seen, if nse, the expression (7.16)

converges to uero. I A +1, Lhe probability of leywood ense converjes
1

to 0.H for any valucs ol J\j(,] fl).
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Wee now precent,

Heywood crnuse

considering

1) A, = 0.98 and A, = 0.5 (Jri) b ol i)
2) At = 0.90 and )\‘j_ = 0.5 (je#i)
3) x; = 0.80 and AY = 0.5 (J#i)
ll
W) A, = x.= 0.50 : B T
1 - l}—- 3 . R i )
5) &, = xJ- 0.90 15551,2, vued

lor

Lables of

224

Lhe probabililty ol ocaurrence of

severnl viclues ol sample size, dilfTerenl voloes ol by,

Table T.10 = Asymplobic probabilily of oceurrence ol Heywood enes
ror various sample sizes (n), dirrferent nonber of
variables (p) and different magnitude of Lhe factor
loading parameters (cases 1 to 5)

1) A.=0.98
i

A&=U'5 (J#i)

13J2L, caup

11
P 50 10O 200 oo 00 1 000 RIBIRIY HO00
5 4658 L5166 4318 JLoho L3929 .350h 2935 L1952
10 628 ety Jbhoss . 3958 L3838 .3380 R 7 L7580
L5 618 RITGY] J2ho L3030 L3380y L33 L2 L1689
20 613 RIYUR! Jiirsn EUIN <303 o 440 SO, .
30 L1608 iy ) L300k L3O . 5300 “o0to ity
Lo RITTHD bl ety RN < S A1 0N Y LdGLO
50 460k bl L4211 3892 L3766 L3283 200 L1600
100 L4601 h38 207 3887 L3159 <327h .263Y 14586

2) A,=0.90 Aj=0.5 (it} 4. 051.ssap

n
P 50 100 200 400 500 1000 2000 5000
5 W 3293 L2660 .1884 L1057 L0812 L0kl L0026 L0000
10 L3146 2413 1671 L0860 L0623k L0155 001y L0000
15 .3097 L2h11 1602 L0800 .0580  .0131 000y L0000
20 « 3070 2380 L0 00 L0555 L0221 OO0 0000
30 J30hr L2shy aush o Lotho o L0y 5l CON L, 000 L0000
Lo .303h L2330 BN i | L L0518 Lo LO00 L0000
50 <3020 2324 1508 LMLy L0510 LOLOk L0004 L0000
100 3012 .2306 L1hyr 003 LOhoT L0099 L0005 L0000
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3) A= 0.80 AJ= 0:5 (J#i) 4.5=1.2,ee.p

n
p 50 100 200 00 500 1000 2000 5000
5 1o D98O L0339 L0008 L0019 L0000 L0000 L0000
10 Y s O3 YA 4 01 Bld L0000 L0001 L0010 0o
LY LLhoy L0710 L0189 LU0 L L0004 L0000 L0000 L0000
20 RN L0079 L0Lth LO0LY 000N L0000 L0000 L0000
30 LLht L0650 L0161 L0013 L0003 L0000 L0000 L0000
Lo J1hoY L0634 L0155 L0011 L0003 L0000 L0000 L0000
50 .1392 0626 L0151 JORER L0003 .0000 L0000 L0000
100 .1370 .0609 .0143 .0010 .0003 .0000 .0000 .0000

h) Ai=A}: 0.50 T = T
11 N e
P Ho LUO SO0 hoo L0 1000 SOun LN
Y L0007 L0002 LU0 L0000 L0000 LO000 L0000 L0000
10 002y .0000 .0000 .000O .LOVO .00V 00UV NUSI8I0]
15 L00LT L0000 L0000 L0000 L0000 L0000 L0000 L0000
20 L0015 .0000 .0000 0000 L0000 0000 L0000 L0000
30 .0012  .0000 .0000  .0000 .0000 .0000 L0000 .0000
) 0011 L0000 L0000  .0000 L0000 L0000 L0000 L0000
50 .0010 .0000 .0000 .0000 .0000 .0000 .0000 .0000
100 .0009 .0000 .0000 .0000 .0000 .0000 .0000 .0000
5) A ®h = 090 T 3Bl Baeweyh
:

Il
P 50 100 200 400 500 1000 2000 5000
Y . 3025 L2322 L1507 LOTLf L0510 L0103 L000Y LO00Y
10 . 3009 2303 LLh3 MO0 L0k L0yl LU00Y L0000
15 . 300L 2297 SAHTT L0694 L0490 L0097 .000% L0000
20 3002 .229) Wtk L0692 L0L8S .0096 .0005 L0000
30 .3000 2292 LhTL L0690 LOhB6 L004Y .000Y 0000
Lo « 2999 L2290 OV L0068Y LOWBY L0009 L0005 L0000
50 L2998 L2290  JLh5Y L0688 048k .00yl .000Y L0000
100 2997 .2288 SLh L0687 Lohih L000h .000Y L0000
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Final comment s

Comparing Lhe proporbion of oceurrcence ol lleywood enses in Lhe
simulation study of SBection T.2 with the probabilily of UHeywood chases
as obtained in Table T7.10, we must note that the simulation study wis
bivised on Lhe mooxim am Likelihood Faelor annlysis mebthod asings Lhe
lporithm o Lhe BMDE poelogaes e Labiles o probabi Py ol Hey woond
case are oblained from considerabions aboul, Lhe principle ol Lo minees
method, that is, minimizing the sum of squares of Lhe of f'=diagonnl
residunl correlations.  We also believe thal some of Lhe conslrainls in
the algorithm for the MLIMA method, as for cxample slopping Lhe
iteration for any parbicular variable which s];,L=U, could Leiud Lo on
different proportion ol lleywood cases in some sibunlions, becnuse ol o
possible bias in the method.

For large sample sizes, the probability of Heywood cases is very
small. We observe in Table T.1l0 that the probability of Heywood cases
decrenses ns 1) Lhe smumple size inerensess; 2) Lhe mmber of variables
in Lthe model increases but oo smal b variabion i observed Prom p=h Lo
p=L00 l'or all Lables.  Relabed Lo Lhe mognitode ol the factor Tomding:
parameters, we observe that when only one factor loading increases (Lhe
others being equal to 0.5), Lhe probability of lleywood cases alio
increases. Finally, it is interesting Lo note, comparing cases ¢) and
5) in Table 7.10, that when only one loading is equal to 0.90, the
probabilities of Heywood cases are slightly higher than when all
loadings are cqual to 0.90.

'he approximate probability of the occurrence of Heywood cases for

different parameter vectors for the one-factor model may be easily
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cvaluated usin: exprasaion (F.10).
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