
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GUILHERME GROCHAU AZZI

Semantics and Proof Calculus for
Communicating Unstructured Code

Monografia apresentada como requisito parcial para
a obtenção do grau de Bacharel em Ciência da
Computação

Trabalho realizado na Technische Universität
Berlin dentro do acordo de dupla diplomação
UFRGS - TU Berlin.

Orientador brasileiro: Prof. Dr. Rodrigo Machado
Orientadora alemã: Prof. Dr. Sabine Glesner
Co-orientador alemão: Dipl.-Math. Nils Jähnig

Porto Alegre
2015

CIP — CATALOGAÇÃO NA PUBLICAÇÃO

Azzi, Guilherme Grochau

Semantics and Proof Calculus for Communicating Uns-
tructured Code / Guilherme Grochau Azzi. – Porto Alegre:
CIC da UFRGS, 2015.

11 f.: il.

Trabalho de conclusão (graduação) – Universidade Federal do
Rio Grande do Sul. Curso de Ciência da Computação, Porto Ale-
gre, BR–RS, 2015. Orientador: Rodrigo Machado.

1. Linguagens não-estruturadas. 2. Semântica operacional.
3. Semântica axiomática. 4. Cálculo de processos. 5. Assistente
de provas. I. Machado, Rodrigo. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisboa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

RESUMO

Software tende a se tornar cada vez mais onipresente e complexo. Seu uso em aplicações críti-

cas, onde defeitos podem causar grandes danos materiais, ambientais ou até mortes, exige um

alto grau de confiança em sua corretude. Para garantir tais níveis de confiança, a verificação

formal é uma boa ferramenta, dado que pode provar propriedades do sistema ou de seus mode-

los. Métodos formais já são frequentemente empregados na verificação de hardware e software,

sendo o software normalmente implementado ou modelado em linguagens com alto nível de

abstração, cuja análise é mais simples. Tais linguagens são, no entanto, bastante diferentes do

código de máquina que é efetivamente executado. A formalização de código não-estruturado

pode, portanto, ser necessária para algumas aplicações, como a verificação de compiladores.

Enquanto a verificação de programas sequenciais e estruturados já foi extensivamente explo-

rada, programas concorrentes ou não-estruturados ainda são um problema em aberto. Além

disso, a maioria das abordagens existentes lida apenas com um dos dois aspectos, e não com a

sua combinação.

Neste trabalho é definida uma semântica formal para a linguagem Low-Level Do (LLDO), uma

linguagem não-estruturada pequena e flexível que permite a especificação de processos comu-

nicantes. A semântica operacional é apresentada tanto em estilo Small-Step quanto Big-Step.

Além disso, um cálculo é proposto para a verificação de corretude de tais programas. Tanto

a semântica Big-Step quanto o cálculo são definidos de maneira composicional ao combinar

técnicas existentes que lidam individualmente com concorrência ou código não-estruturado. A

aplicabilidade do cálculo é testada em alguns exemplos, e todo o trabalho é formalizado no

assistente de provas Isabelle/HOL.

Palavras-chave: Linguagens não-estruturadas. semântica operacional. semântica axiomática.

cálculo de processos. assistente de provas.

RESUMO ESTENDIDO

Este é um resumo estendido em português para a Universidade Federal do Rio Grande

do Sul. O trabalho de conclusão original, em inglês, foi apresentado na Technische Universität

Berlin através do programa de dupla diplomação UNIBRAL II entre as duas universidades.

1 Introdução

O Capítulo 1 introduz o tema geral deste trabalho, o tratamento formal de linguagens

não-estruturadas (“assembly-like”) para processos comunicantes. O objetivo é combinar técni-

cas existentes de forma a lidar de maneira composicional com ambas as características. Para

isso, definem-se as semânticas operacional e axiomática da linguagem Low-Level Do (LLDo),

uma linguagem simples e flexível.

2 Conceitos Básicos

O Capítulo 2 introduz brevemente os conceitos básicos empregados neste trabalho.

2.1 Semântica Formal

São apresentados os três principais estilos para a definição de semânticas formais. No

estilo operacional, define-se uma máquina abstrata como modelo de execução da linguagem,

geralmente através de um sistema de transição. Há duas variantes para esse estilo: na variante

small-step, cada transição é uma ação atômica, utilizando-se o fecho transitivo do sistema para

expressar execuções mais longas; na variante big-step, as transições representam execuções

completas. O estilo denotacional promove o uso de objetos matemáticos para representar a

semântica, utilizando uma função de interpretação que mapeia programas da linguagem para

objetos de um domínio semântico. Tal estilo não é utilizado neste trabalho. O estilo axiomático

define regras para analisar programas da linguagem, e seu uso como cálculo de inferência para

demonstrar a corretude de programas é introduzido com mais detalhes.

2.2 Cálculo de Corretude

Uma maneira comum de especificar o comportamento de programas é através de pré- e

pós-condições, sendo tal especificação satisfeita por um programa se sua execução, sempre que

iniciada em estado que satisfaz as pré-condições, atinge apenas estados que satisfazem as pós-

condições. Dado que a análise direta da semântica operacional ou denotacional do programa

pode ser bastante trabalhosa, define-se um conjuto de regras de inferência para deduzir a cor-

retudo de programas em relação a pré- e pós-condições — uma técnica proposta por (HOARE,

1969) que serve de base para muitas abordagens de verificação formal.

2.3 Eventos e Traços

Ao lidar com sistemas concorrentes, é necessário formalizar a comunicação entre pro-

cessos. Para isso, a abordagem utilizada pelos diversos cálculos de processos — como CSP,

CCS e cálculo pi — é tomada como base. Nestes cálculos, os processos se comunicam através

de ocorrências sincronizadas de eventos. A execução de um sistema concorrente pode então ser

entendida através de um traço dos eventos ocorridos. Uma técnica comumente empregada é o

uso de eventos formados por pares (c, x) de um canal e um valor. Nesse caso, um dos proces-

sos geralmente aceita eventos de um canal com qualquer valor, enquanto outro processo aceita

apenas um valor específico. Nesta situação, pode-se interpretar que o segundo processo envia

um valor através do canal, enquanto o primeiro processo o recebe.

3 A Linguagem LLDo

O Capítulo 3 introduz a linguagem Low-Level Do, inicialmente expondo sua sintaxe e,

a seguir, formalizando sua semântica no estilo operacional. A linguagem em si pode ser vista

como um nível intermediário de abstração entre linguagens assembly, às quais um sistema é

compilado, e modelos em cálculos de processo, utilizados para analisar tal sistema.

Como uma linguagem não estruturada, a interpretação de programas LLDo dependem

do estado de uma máquina abstrata, que é composta por um banco de registradores — que

mapeia cada registrador ao valor contido nele — e por uma tabela de processos — que ma-

peia cada identificador de processo a seu contador de programa, indicando a próxima instrução

a ser executada neste processo. É importante ressaltar que processos indivudais têm uma vi-

são mais restrita da máquina, tendo acesso apenas a seu próprio contador de programa. Além

disso, exige-se que processos operem apenas com subconjuntos disjuntos dos registradores da

máquina, evitando a presença de estado compartilhado.

Em vez de compartilhar estado, os processos se comunicam através de eventos, dos quais

são definidos três tipos. O Evento vazio τ representa a ausência de comunicação. Os atos de

envio e recebimento de um valor v através de um canal c também são representados por eventos,

denotados por c!v e c?v respectivamente — os dois eventos não-sincronizados. Já o evento de

sincronização, denotado por c.v, sinaliza que dois processos já efetuaram a sincronização de

envio e recebimento.

Os programas LLDo são definidos como conjuntos de processos (acompanhados de seus

identificadores únicos), que por sua vez são conjuntos de instruções etiquetadas. Para possibi-

litar um tratamento composicional, porém, adota-se a abordagem de (SAABAS; UUSTALU,

2007): tais conjuntos são representados por árvores binárias cujas folhas contém os elementos

do conjunto. Dessa forma, há uma estrutura a ser explorada de maneira composicional.

As instruções em si são definidas por cinco esquemas de instruções, que podem ser

utilizados para representar boa parte das instruções comuns de linguagens assembly. Além

disso, os esquemas são definidos em termos de lógica de alta ordem, utilizando por exemplo

funções definidas na sintaxe da lógica. Os cinco esquemas são:

• do f modifica os registradores de acordo com a função f ;

• br l modifica o fluxo de execução, prosseguindo com a instrução etiquetada por l;

• cbr b l modifica o fluxo de execução condicionalmente, prosseguindo com a instrução

etiquetada por l apenas quando o predicado b dos registradores é satisfeito;

• send f c envia, através do canal c, um valor extraído dos registradores pela função f ;

• recv f c recebe, através do canal c, um valor que é utilizado para modificar os registrado-

res de acordo com a função f .

3.1 Semântica Operacional

Na seção 3.4, a semântica operacional de LLDo é especificada. Duas variantes são

propostas e demonstradas equivalentes: uma em estilo small-step, a outra em estilo big-step.

A variante small-step é definida de maneira não composicional, considerando os progra-

mas e processos como conjuntos e ignorando sua estrutura. Seu objetivo é expressar de forma

intuitiva a semântica esperada. Assim, cada programa LLDo induz um sistema de transição

etiquetado cujos estados são os estados da máquina abstrata descrita anteriormente, e cujas eti-

quetas são os eventos causados pela execução de instruções. Cada transição causada por um

programa representa ou a execução não-sincronizada de uma instrução por um único processo,

ou a execução sincronizada de uma instrução por cada um de apenas dois processos. As rela-

ções de transição induzidas por processos e programas LLDo são definidas, respectivamente,

nas figuras 3.8 e 3.9. Um lema importante sobre a a semântica small-step (Lema 3.2) é que as

transições jamais modificam registradores que não são mencionados no programa.

Dado que a variante small-step não é composicional, uma variante big-step é definida

utilizando as técnicas de Saabas and Uustalu (2007) e Hooman et al. (2003) para atingir a

composicionalidade. A relação de transição big-step é definida nas figuras 3.12 e 3.13 para,

respectivamente, processos e programas. De particular interesse são as regras de inferência

BSSEQL e BSSEQR, que provêm a combinação sequencial de processos. Tais regras baseiam-

se no fato de que a execução de um processo particionado em dois subconjuntos de instruções

etiquetadas inicia sua execução em um desses subconjuntos. Após terminar a execução possível

com as instruções do subconjunto inicial, porém, não basta executar apenas as instruções do

segundo subconjunto — este pode desviar o fluxo de execução de volta ao primeiro. O restante

da execução, portanto, deve considerar o processo inteiro.

Já a sincronização de processos é, na semântica big-step, baseada na sincronização de

traços. Tal operação sobre dois traços, definida na figura 3.14, gera um conjunto de possíveis

traços sincronizados, contendo em particular todas as intercalações dos traços. Além disso,

todas as possíveis sincronizações de pares de eventos são contempladas. Como um exemplo, as

possíveis sincronizações dos traços 〈c!1, c!1〉 e 〈c?1〉 são as seguintes.

{〈c.1, c!1〉, 〈c!1, c.1〉, 〈c!1, c!1, c?1〉, 〈c!1, c?1, c!1〉, 〈c?1, c!1, c!1〉}

As execuções descritas pela semântica operacional podem conter, portanto, eventos não

sincronizados. Dessa forma, pode-se recombinar a semântica de subprogramas para obter

a semântica de um programa. Ao analisar um programa completo, porém, os eventos não-

sincronizados são indesejados: eles indicam que o programa ficou parado esperando a sincro-

nização, e que o resto do traço apenas seria alcançado se tal sincronização ocorresse. Nesse

caso, devem-se considerar possíveis apenas as execuções cujos traços contém apenas eventos

sincronizados.

Por fim, as duas variantes da semântica foram demonstradas equivalentes para execuções

terminadas. Tal restrição é necessária pois a semântica big-step não expressa execuções parciais,

nem execuções infinitas. Os passos mais importantes da demonstração podem ser expressos

como propriedades do fecho transitivo da semântica small-step. Para cada execução de um

programa composto, por exemplo, existem execuções dos subprogramas cujos traços podem

ser sincronizados de acordo com a execução original (Lema 3.11). Outro exemplo é que, para

cada transição de um programa partindo de um estado s, se há um estado s′ que difere de s

apenas em registradores invisíveis ao programa, há também uma transição partindo de s′ cujo

estado final possui as mesmas diferenças invisíveis (Lema 3.10).

4 Cálculo de Corretude

O Capítulo 4 apresenta o cálculo de corretude, ou semântica axiomática, para a lingua-

gem LLDo. Embora a semântica operacional forneça um entendimento rigoroso da linguagem,

usá-la diretamente para verificar a corretude de programas é pouco prático. Uma abordagem

para facilitar a verificação é baseada na semântica axiomática: especifica-se o programa através

de uma pré-condição P e uma pós-condição Q, denotado por {P} code {Q}, e aplicam-se as

regras de inferência da semântica para demonstrar que a especificação é satisfeita.

As asserções (pré- e pós-condições) são expressões lógicas que tratam do estado da

máquina em um determinado momento, utilizando a variável h para se referir ao traço atual, σ

para se referir ao banco de registradores, pc para se referir ao contador de programa (ao lidar

com processos) e π para se referir à tabela de processos (ao lidar com programas).

A semântica axiomática é definida na Seção 4.1 e sua corretude quanto à semântica

operacional big-step é demonstrada na Seção 4.2. As regras de inferência podem ser divididas

em três grupos: regras para processos, regras para programas e regras lógicas ou genéricas.

Os dois primeiros grupos são compostos por regras dirigidas pela sintaxe, que expressam a

semântica da linguagem. Já o terceiro grupo é composto por regras independentes da sintaxe,

expressando axiomas lógicos.

Apenas uma regra lógica é definida, HCONSEQ, e ela expressa a possibilidade de forta-

lecer pré-condições e enfraquecer pós-condições. As demais regras são baseadas na semântica

operacional big-step. De particular interesse nas regras para processos são HDO e HRECV, em

que o não-determinismo é modelado por um quantificador universal na pré-condição, além de

HAPPEND que trabalha com uma invariante, dado que qualquer conjunto de instruções pode con-

ter um laço. Nas regras para programas, HPAR deriva a pré-condição do programa composto a

partir das pré-condições dos subprogramas individuais, afirmando que existem dois traços cuja

sincronização pode resultar no traço composto, e que as pré-condições dos subprogramas são

satisfeitas pelos respectivos traços individuais. A pós-condição é derivada da mesma forma.

Além disso, é exigido que as asserções dos subprogramas sejam restritas aos processos e regis-

tradores contidos neles, garantindo sua não-interferência.

5 Exemplos

O Capítulo 5 apresenta três exemplos de verificação de programas. Dado o carater ge-

nérico da linguagem LLDo, seu uso em exemplos concretos exige que suas definições sejam

instanciadas. A Seção 5.1 provê tal instanciação, postulando que os registradores contém ape-

nas números inteiros e definindo instruções concretas com base nos esquemas de instrução da

linguagem.

A Seção 5.2 apresenta uma implementação da função de Fibonacci, demonstrando a

verificação de processos sequenciais. De particular interesse na especificação do programa é a

forma de expressar a não-modificação do traço: qualquer predicado satisfeito pelo traço inicial

também deve ser satisfeito pelo traço final. Em particular, se para um traço t temos h = t antes

da execução, o mesmo deve valer após a execução.

Quanto à verificação de programas sequenciais, demonstra-se a divisão do programa em

blocos que possuem um único ponto de entrada — sua primeira instrução — e um único ponto

de saída — sua última —, mantendo um fluxo de execução linear. A verificação é feita primeiro

para cada bloco individualmente, seguindo com a combinação dos blocos já verificados.

A Seção 5.3 formaliza parte de um padrão comum em sistemas distribuídos: “replicated

workers”. Um processo “worker” é implementado, especificado e verificado independente-

mente da tarefa que ele executa — apenas a comunicação é abordada. Tal processo pode então

ser instanciado para resolver tarefas arbitrárias. Em particular, a implementação de Fibonnaci

pode ser utilizada e sua corretude já demonstrada é suficiente para a corretude do processo

“worker”.

Por fim, a Seção 5.4 especifica um cliente simples que envia um único valor para um

processo “worker”, seguido de um pedido de terminação. A corretude da sincronização de tal

cliente com o processo “worker” definido na seção anterior é demonstrada.

6 Trabalhos Relacionados

O Capítulo 6 descreve trabalhos relacionados ao tema deste texto. Em particular, são

mencionados trabalhos lidando com vários aspectos de linguagens não-estruturadas como pro-

priedades não-funcionais e modelos de memória detalhados.

7 Conclusão

Neste trabalho, a semântica da linguagem LLDo foi definida em estilos operacional

e axiomático. A semântica operacional big-step foi definida de maneira composicional, bem

como a semântica axiomática. Isso foi possível através da combinação de técnicas já existen-

tes para código não-estruturado ou comunicante. A semântica axiomática foi utilizada para

demonstrar a corretude de três pequenos exemplos.

Dado que a semântica axiomática definida neste trabalho lida apenas com execuções

terminadas, ela não é apropriada para sistemas reativos. Uma extensão do cálculo introduzindo

invariantes, como o utilizado por Hooman et al. (2003) para linguagens estruturadas, permitiria

a verificação de tais sistemas. Para isso, porém, a semântica operacional big-step não seria

apropriada.

Dado que propriedades não-funcionais (ex. temporais) também são importantes em apli-

cações de segurança crítica, esta é outra possível extensão. Em particular, o trabalho de Bartels

and Glesner (2011) poderia ser tomado como base.

REFERÊNCIAS

BARTELS, B.; GLESNER, S. Verification of distributed embedded real-time systems and their
low-level implementations using timed csp. In: IEEE. Software Engineering Conference
(APSEC), 2011 18th Asia Pacific. [S.l.], 2011. p. 195–202.

HOARE, C. A. R. An axiomatic basis for computer programming. Communications of the
ACM, ACM, v. 12, n. 10, p. 576–580, 1969.

HOOMAN, J. et al. A Compositional Approach to Concurrency and its Applications. [S.l.:
s.n.], 2003.

SAABAS, A.; UUSTALU, T. A compositional natural semantics and hoare logic for low-level
languages. Theoretical Computer Science, Elsevier, v. 373, n. 3, p. 273–302, 2007.

Fachgebiet Programmierung eingebetteter Systeme
Fakultät IV Elektrotechnik und Informatik
Technische Universität Berlin

Semantics and Proof Calculus for
Communicating Unstructured

Code

Bachelorarbeit

im Studiengang Informatik

Guilherme Grochau Azzi
Matr.-Nr. 354249

09.01.2015

Gutachter:
Prof. Dr. rer. nat. Sabine Glesner

Prof. Dr.-Ing. Uwe Nestmann

Betreuer:
Dipl.-Math. Nils Jähnig

Abstract

Software becomes ever more ubiquitous and complex. Its use in safety-critical envi-
ronments, where errors may harm people or cost great amounts of money, requires
a high level of confidence in its correctness. In order to ensure such levels of con-
fidence, the use of formal verification methods to prove properties of the systems
is an important tool. Such formal methods are widely applied to verify hardware
and software, the latter usually written or modelled in high-level languages which
are much easier to reason about. Such languages are, however, very different from
the machine code which is actually executed. Therefore, the formalization of un-
structured code may be necessary for some applications, such as the verification of
compilers. Formal verification of sequential, structured programs has been exten-
sively explored, but the techniques for concurrent or unstructured code are still an
open problem. Furthermore, most approaches contemplate either concurrency and
communication or unstructured code, not supporting the combination of the two.

In this thesis, operational semantics in small- and big-step style and a proof cal-
culus are defined for Low-Level Do (LLDo), a small and flexible unstructured lan-
guage for communicating processes which should be general enough to model more
complex languages. The big-step semantics and the proof calculus are defined in
a compositional way, unifying techniques already used for dealing with communi-
cating or unstructured code individually. The applicability of the calculus is tested
on some simple examples.

Zusammenfassung

Die Korrektheit von Software ist besonders bei sicherheitskritischen Anwendungen
von entscheidender Bedeutung, wenn Fehler das Leben von Menschen gefährden
können oder großen finanziellen Schaden anrichten. Um die Korrektheit sicherzu-
stellen, sind formale Verifikationsverfahren wichtig, da sie Eigenschaften der Syste-
me mathematisch beweisen können. Für die Verifikation von Programmen, die in
höheren, strukturierten Programmiersprachen geschrieben wurden, werden diese
Verfahren schon häufig in der Praxis angewendet. Strukturierte Programmierspra-
chen unterscheiden sich allerdings sehr von unstrukturiertem Maschinencode, in
den sie übersetzt werden und der anschließend tatsächlich durchgeführt wird. Die
Formalisierung unstrukturierter Sprachen ist also in gewissen Fällen notwendig,
beispielsweise für die Verifikation von Compilern. Obwohl einige Verfahren für die
Verifikation von unstrukturiertem Code schon existieren und weitere für nebenläu-
fige, kommunizierende Programme, können sie mit beiden Eigenschaften umgehen.

In dieser Arbeit wird eine operationale Semantik im Small-Step- und Big-Step-
Stil sowie ein Korrektheitskalkül für Low-Level Do (LLDo) entwickelt. LLDo ist
eine kleine, flexible und unstrukturierte Programmiersprache, die nebenläufige und
kommunizierende Prozesse beschreibt. Um unstrukturierte und kommunizierende
Programme kompositional behandeln zu können, werden existierende Ansätze für
die jeweiligen Problemstellungen kombiniert. Die Anwendbarkeit des Kalküls wird
mit einigen einfachen Beispielen gezeigt.

Acknowledgements

I would like to thank my advisor Nils Jähnig for always promptly and patiently
helping whenever the need for guidance presented itself, and my supervisor Prof.
Dr. Sabine Glesner for the lessons which motivated me to pursue the field of
formal verification. I am also deeply thankful for the opportunities I’ve been given
to study both at UFRGS1 and at the TU Berlin. Without their inspiring and often
challenging lessons, my life would be much duller. Prof. Ana Bazzan, I thank you
for introducing me to research, taking me as a research assistant in my second
semester at UFRGS. The experience I got by working with you goes much beyond
the field of multiagent systems.

I also owe my deepest gratitude to my family and friends, which support and
motivate me to keep studying and improving. I thank my father, who warned me
from his own experience about the problems of a career in Computer Science and
accepted my choice to follow it anyway. I thank my mother, who reminds me it is
possible to get through every semester if I focus on one task at a time. I thank my
brother, who often demonstrates that life must not just be about studying. I’m
grateful for the always very informative conversations with Alexander Elvers, and
for his help with translations into German. I’m also thankful to Ana Bordignon, to
whom I can always turn when I just feel like complaining about the world. I still
have many remarkable acknowledgements, which this page is too small to contain.

1Universidade Federal do Rio Grande do Sul

iii

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Goals . 1

1.3 Approach . 2

2 Background 3

2.1 Formal Semantics . 3

2.2 Verification Calculus . 3

2.3 Events and Traces . 4

3 The LLDo Language 5

3.1 Machine States . 5

3.2 Channels and Events . 7

3.3 Syntax and Informal Semantics . 9

3.4 Operational Semantics . 12

3.4.1 Small-Step Semantics . 12

3.4.2 Big-Step Semantics . 16

3.4.3 Equivalence of the Presentations 20

4 Correctness Calculus 31

4.1 Definition . 31

4.2 Correctness . 32

5 Examples of Usage 39

5.1 Preliminary Definitions . 39

5.2 Fibonacci . 40

5.3 Worker Process . 43

5.4 Simple Client and Synchronization 47

6 Related Work 51

7 Conclusions 53

v

CONTENTS

Bibliography 55

vi

1 Introduction

Software grows ever more ubiquitous and complex. Its use in safety-critical envi-
ronments, where errors may harm people or cost great amounts of money, requires
a high level of confidence in its correctness. In order to ensure such levels of con-
fidence, the use of formal verification methods to prove properties of the systems
is an important tool.

Such formal methods are widely applied to verify hardware and software. The
latter usually written or modelled in a high-level languages, which are much easier
to reason about. They are, however, very different from the machine code which
is actually executed. Therefore, the formalization of low-level languages may be
necessary for some applications.

One such case is the verification of compilers, whose correctness is critical — their
bugs may introduce errors to innumerable programs. To assert their correctness,
however, we must compare the behaviour of the program in both source and target
language, and therefore need a formal specification of such behaviours. Another
application, Proof-Carrying Code, a technique for verifying the safety of imported
modules proposed by Necula [11] that reconciles a high level of security with the
efficiency of native machine code.

1.1 Problem

Formal verification of sequential, structured programs has been extensively ex-
plored. The techniques for concurrent or unstructured code are, however, still an
open problem. Furthermore, most approaches contemplate either concurrency and
communication or unstructured code, not supporting the combination of the two.

An important property of formalizations is compositionality, which is also harder to
achieve in a concurrent or unstructured setting. Communication-based concurrent
calculi such as CSP are compositional, but abstract and very far from low-level
programming languages. Compositionality in unstructured code has also been
achieved [14], but in the absence of concurrency.

1.2 Goals

The goal of this bachelor’s thesis is to define operational semantics and a proof cal-
culus for a small and flexible unstructured language for communicating processes
— called Low-Level Do (LLDo) and defined in the VATES project at the Technis-

1

1 INTRODUCTION

che Universität Berlin2 —, which should be general enough to model more complex
languages. The semantics shall be presented in small- and big-step style, being
the latter compositional for easing the use of traditional verification techniques.
The calculus shall also be compositional and focus on functional and partial cor-
rectness. Finally, the applicability of the proof calculus shall be tested on a few
simple examples.

1.3 Approach

We define a non-compositional small-step operational semantics for LLDo, clearly
reflecting the expected behaviour of its instructions and of the interactions between
processes. A compositional semantics in big-step style and a proof calculus are also
defined, unifying the approach of [14] for dealing with unstructured code and the
approach of [7] for dealing with concurrency. The equivalence of the semantics in
both styles and the correctness of the calculus with respect to them is proved in
the Isabelle proof assistant. The application of the proof calculus is also performed
in the proof assistant.

This thesis is organised as follows. Section 2 briefly describes the background
necessary for understanding this work. Section 3 presents the Syntax and Seman-
tics of LLDo, proving that the two presentations of the semantics are equivalent.
Section 4 contains the definition of the Proof Calculus, a proof of its correctness
regarding the previously defined semantics and simple examples of its use. Section
5 compares this thesis with related work, and section 6 presents the conclusions
and possible future work.

2An early version of LLDo without support for communication may be found in [3].

2

2 Background

In this section, the necessary background for understanding this work is briefly
described, referencing works that provide more in-depth explanations. Initially,
the usual styles for presenting formal semantics are introduced — focusing on the
operational one —, followed by the use of the proof calculi for verifying programs
and by the notions of events and traces — used for dealing with communication.

2.1 Formal Semantics

In order to formally reason about the programs, we need a precise specification
of their meaning or behaviour — a formal semantics. The formulation of such
semantics is usually given in one of the operational, denotational or axiomatic
styles.

“Operational semantics specifies the behaviour of a programming language by
defining a simple abstract machine for it” [12]. This abstract machine, which
uses the language itself as machine code, is usually given as a transition relation
between states and often specified by inference rules used to prove that a transition
is possible. There are also two styles for the presentation of operational semantics.
In the small-step style, each transition represents an atomic computation step,
and its transitive closure is used to achieve longer executions of a program. In the
big-step style, each transition represents a terminating execution of the program.
Pierce [12] provides a more in-depth introduction to operational semantics.

Denotational semantics is an alternative style, where each program is mapped by
an interpretation function to a mathematical object of some semantic domain.
Examples are the interpretation of expressions from the lambda calculus as math-
ematical functions, or of CSP-expressions as the sets of traces they may cause.
This style will not be employed on this text.

Axiomatic semantics define the meaning of programs by providing laws for reason-
ing about them, such as proving that they satisfy a given specification. Although
such laws are used in this thesis, they are not taken as a specification of the lan-
guage, but rather as a tool for verifying programs. A more detailed explanation is
provided in the next subsection.

2.2 Verification Calculus

The use of proof calculi for verifying the correctness of programs has been widely
explored, and variations of Hoare’s original approach [4] are still developed and
applied. The approach consists of specifying the behaviour of a program with

3

2 BACKGROUND

pre- and postconditions. The specification is considered satisfied if, whenever
started in a state that satisfies the preconditions, the execution of a program will
always terminate in a state that satisfies the postconditions. A set of inference
rules is thus provided for proving that programs satisfy their specification without
explicitly reasoning about the all executions of a program.

2.3 Events and Traces

For a very long time, it has been necessary to reason about concurrent compu-
tation, that is, many computations that occur in overlapping time periods and
may need to share resources or information. Two main approaches for concurrent
programming have arisen: the explicit manipulation of shared resources and event-
based or message-passing systems. While the former is closer to the way machines
work, programs written in it are hard to reason about due to the high degree of
interdependence between their concurrent parts.

A more abstract view is provided by event-based or message-passing systems.
These include process calculi — such as CSP[5, 6], CCS[8] and the π-calculus[9]
— and programming languages — such as Erlang and Go. In these systems, each
sequential process of the program may pause execution and wait for an event to
occur. Generally, an event is triggered when two processes are ready for it. By re-
stricting the points in which the processes may interfere with each other, reasoning
about these systems is simpler.

Events may be atomic or composite values, and a common pattern is the use of
pairs (c, x) of a channel identifier and a transmitted value. In this case, one of
the processes will generally wait for any event of a given channel, while another
will synchronise only with a specific value. The latter process may then be seen as
sending a value through the channel, with the former process receiving it. This is
the idea of message-passing, as commonly implemented in programming languages.

When reasoning about the behaviours of programs, it is often necessary to specify
the sequence of events that may happen during their execution. This is the notion
of a trace: a list of events that happened during a particular execution of a program,
in order of occurrence.

This thesis is mostly based on the CSP model of computation. In [13], its semantics
are presented in various styles, each focusing the verification of different properties.
These approaches are adapted in [7] for imperative programming languages, with
a focus on the composability of the semantics.

4

3 The LLDo Language

This section introduces the syntax of the LLDo language and the states of its
abstract machine. A description of their goals is also provided, as well as an
informal introduction to their semantics. The formal semantics will be defined in
the following sections.

The primary goal of the LLDo language is to help fill the gap between low-level
implementations in assembly language and high-level models in calculi that em-
phasize communication, such as CSP. It should also be general enough to model
many variants of assembly languages. Furthermore, the language should allow the
definition of a compositional semantics.

The language itself is composed of three syntactic categories: programs, processes
and instructions. Programs are collections of processes that run concurrently,
processes are collections of labelled instructions and instructions are atomic units of
computation. In order to enable compositional semantics, processes are not allowed
to share state. They therefore operate on disjoint sets of registers, communicating
only through channels.

LLDo is defined by a shallow embedding in Higher Order Logic. That is, instead
of defining instructions that explicitly mention the registers and whose semantics
are given by an interpretation function — e.g. an instruction add rd r1 r2, whose
interpretation assigns to rd the sum of the current values of r1 and r2 —, the
instructions explicitly mention such an interpretation function — e.g. do f , where
f modifies the machine state as intended.

This way, we only need five instruction schemes that are able to model most usual
assembly instructions, greatly reducing the number of cases we need to analyse
when reasoning about the language. On the other hand, reasoning about each
instruction becomes more complex due to their generality. The application in
concrete cases is also more complex, since the concrete instructions must be defined
in terms of the general ones. Furthermore, properties such as which registers are
affected by the instruction must be proven. Nevertheless, the gain in generality
seems to outweigh the added complexity.

3.1 Machine States

The LLDo abstract machine contains two components: a register store and a
process table. The register store maps each register to its value, while the process
table maps each process identifier to its current Process Counter (PC), which
indicates the next instruction to be executed. The machine is also polymorphic on
the type of data that its registers store. This allows the modelling of many actual

5

3 THE LLDO LANGUAGE

machines, including those which have registers of varying types by using a disjoint
union.

The LLDo machine doesn’t strive to closely model existing machines, since they
don’t provide good primitives for communication and concurrency. Those tasks
are usually fulfilled by operating systems. The machine model, therefore, models
both machine and operating system.

The formal definition of a machine state in Isabelle may be seen in Figure 3.1.
The register store is modelled by the type regstore, a function from registers
to their contents. The record type conc state models the complete state of the
machine, as already described. This is the state as perceived by a concurrent
program, composed of multiple processes. In order to reason about each sequential
process independently, seq state is used, containing the register store and a single
PC, which corresponds to the process. This is the state as perceived by a single
process. Both process identifiers (pid) and labels (label) are represented as natural
numbers. In order to improve the readability of the text, seq states will often be
written as pairs (σ, l) of the register store σ and PC value l , and conc states as
pairs (σ, π) of register store σ and process table π.

A common operation is the “projection” of a concurrent state, to obtain the state
as viewed by a particular process. This is the function procState, also defined in
Figure 3.1.

type synonym pid = nat
type synonym label = nat

type synonym ′val regstore = (reg ⇒ ′val)

record ′val seq state =
PC :: label
Rs :: (′val regstore)

record ′val conc state =
PCs :: (pid ⇒ label)
Rc :: (′val regstore)

procState((σ, π), p)
def
= (σ, π(p))

Figure 3.1: Formal definition of machine states in Isabelle.

Although processes are not allowed to share registers, a global register store is
used. This decision was taken to ease future work that does allow shared regis-

6

3.2 Channels and Events

ters. In order to reason about concurrent processes we must now, however, prove
non-interference. Therefore, a notion of framed differences is useful — i.e. the
differences between two states or register stores are restricted to a given set of
registers and possibly PIDs, that is, to a frame. This notion is formally defined
in Figure 3.2. The predicate framedChange refers to two functions of the same
domain, asserting that every member of their domain not contained in the frame
is mapped by both of them to the same value. Such functions may represent, for
example, process tables or register stores. The predicates framedChanges and
framedChangec refer to states of sequential processes and concurrent programs,
respectively. They both assert that the changes on register stores are framed,
while the latter also asserts that the PCs of all processes not contained in the
frame remain the same.

∀ x . x /∈ A −→ f (x) = g(x)

framedChange(f , g ,A)

framedChange(σ, σ′,R)

framedChanges((σ, l), (σ
′, l ′),R)

framedChange(σ, σ′,R) framedChange(π, π′,P)

framedChangec((σ, π), (σ′, π′),R,P)

Figure 3.2: Definition of framed changes.

Since we represent register stores and process tables as functions, we often need
operators to modify functions. These are defined in Figure 3.3. We denote the
modification of the value associated with a single member x of the domain by
f [x := z]. The function update(f ,A, g) simultaneously changes the values associ-
ated to all members of A, obtaining their new values from g. We use syntactic
sugar to denote multiple, sequential modifications.

3.2 Channels and Events

The LLDo processes communicate through channels, of which there is an arbitrar-
ily large set. The two possible communicating actions are sending a specific value
or receiving any sent value. The use of channels is not restricted: every process
may use any channel, and may both send and receive values through it. In or-
der to reason about the communication, we use the notions of events and traces,
formalized in Figure 3.4.

We consider four kinds of events. Internal events, denoted by τ , indicate that
some internal change without communication has occurred. Sending and receiving

7

3 THE LLDO LANGUAGE

f [x := z](y)
def
=

{
z ify = x
f (y) ify 6= x

f [x1 := z1, x2 := z2, ..., xn := zn]
def
= f [x1 := z1][x2 := z2]...[xn := zn]

update(f ,A, g)(x)
def
=

{
g(x) ifx ∈ A
f (x) ifx /∈ A

update(f ,A1, g1,A2, g2, ...,An , gn)
def
= update(... update(update(f ,A1, g1),A2, g2)...,An , gn)

Figure 3.3: Operators used for modifying functions.

events — evSend and evWait, denoted on this text by c!v and c?v , respectively
— contain the channel c through which communication should occur and the
value v that should be communicated. These two are the unsynchronized events
(unsyncede), since they indicate the need for synchronization. Finally, the syn-
chronization events evComm — denoted in this text by c.v — are analogous but
indicate that both a sending and a receiving occurred.

type synonym channel = nat

datatype ′val event =
τ |
evSend channel ′val (infix (!!) 65) |
evWait channel ′val (infix (??) 65) |
evComm channel ′val (infix (!?) 65)

primrec unsyncede :: (′a event ⇒ bool) where
(unsyncede τ = False) |
(unsyncede (ch!!) = True) |
(unsyncede (ch??) = True) |
(unsyncede (ch!?) = False)

Figure 3.4: Formalization of events and traces.

The behaviour through time of a process or program is described by a trace of
such events. Traces arising from single processes can clearly only contain internal
and unsynchronized events, since no communication can occur without a second
process. Valid traces of complete programs, on the other hand, may not contain
unsynchronized events — which is expressed by a predicate defined in Figure 3.11.

8

3.3 Syntax and Informal Semantics

Furthermore, in order to reason about traces, we need a few more operators. The
projection operator t �c1c2...cn “filters” a trace, allowing only events that occurred
on the specified channels. We also denote by length(t) the number of events that
occurred in a trace; by t [i], the i -th event of the trace (assuming i < length(t));
and last(t) = t [length(t) − 1], assuming length(t) > 0. We also denote by val(e)
the value contained in an event, assuming the event isn’t τ .

3.3 Syntax and Informal Semantics

The language itself is composed of three syntactic categories: programs, processes
and instructions. Programs are collections of processes that run concurrently, each
of them associated with a unique process identifier (PID). Processes are collections
of labelled instructions, which are supposed to be run in sequence until an unde-
fined label is reached. There exists, therefore, a notion of “incrementing” a label,
provided by its representation as a natural number. The instructions themselves
are atomic units of computation. Although they explicitly mention labels and
channels where needed, the handling of registers is defined by functions — written
in the syntax of HOL — that directly manipulate the machine state as perceived
by the sequential process.

The syntax of the language is shown in Figure 3.5. Both programs and processes —
conc code and seq code, respectively — are defined as binary trees, an approach
introduced by [14] that is key to the compositionality of semantics. Due to the
shallow embedding, we may only define five instruction schemes, described in the
next paragraphs.

The do f instructions are those that simply modify the values of registers, such
as adding the value of two of them and storing the result in a third. The actual
modification of the register store is defined by the function f . The fact that the
result of applying f is a set of stores allows the expression of failure — by resulting
in an empty set — and non-determinism when needed.

Two usual branch instructions are also provided. The unconditional branch br
proceeds the execution from the given label, instead of from the successor of the
current PC. The conditional branch cbr b only branches when the predicate b
holds for the current register store.

In order to provide communication between processes, two communicating instruc-
tions are provided — send and recv. Both communicate through a single specified
channel. In send f c, the sent value is determined by a the function f of the cur-
rent register store. In recv f c, the modified register store is determined by the
function f of the original store and of the received value.

In order to enforce the restriction that no register is used by more than a single

9

3 THE LLDO LANGUAGE

datatype ′val instruction =
do (′val comm) |
br label |
cbr (′val bexp) label |
recv (′val ⇒ ′val regstore ⇒ ′val regstore) channel |
send (′val regstore ⇒ ′val) channel

datatype ′val seq code =
none ((∅)) |
one label (′val instruction) (infix (::s) 53) |
append (′val seq code) (′val seq code) (infixr (⊕) 52)

datatype ′val conc code =
sequential pid (′val seq code) (infix (::c) 51) |
parallel (′val conc code) (′val conc code) (infixr (‖) 50)

Figure 3.5: Syntax of LLDo as defined in Isabelle.

process, we need to be able to retrieve the set of registers that affect or are affected
by a process or instruction. While the set of registers used by a process is clearly the
union of the sets obtain from each of its instructions, the case of the instructions
is complicated by their generality. The simple notion to define is however that
of registers not being used. Concretely, the predicate notUsed(i ,P), defined in
Figure 3.6, asserts that no element of the set P of registers is used by the instruction
i .
Registers are not used by do or recv when the modification of their values may
occur before or after executing the instruction, leading to the same results (NUdo,
NUrecv). A register is not used by cbr when changing it or not doesn’t affect
the validity of the predicate (NUcbr). Analogously, a register is not used by send

when the sent value is independent of changes to the register (NUsend). The
instruction br uses no registers (NUrecv).

The set regsi(i) of registers that affect or are affected by the instruction i is the
least set such that all its members are not used by i .
Given the generality of the instructions, we can’t define a procedure for obtaining
the registers used by any arbitrary instruction. It is, however, easy to define trivial
procedures for the instructions used in practice, proving they satisfy the definition.
A simple example is the instruction for adding the values of two registers and

10

3.3 Syntax and Informal Semantics

storing the result in a third:

add rd r1 r2
def
= do (λσ. σ[rd := σ(r1) + σ(r2)])

regsi(add rd r1 r2) = {rd , r1, r2}

∀σ ρ. f (update(σ,R, ρ)) = {update(σ′,R, ρ) |σ′ ∈ f (σ)}
notUsed (do f ,R)

NUdo

notUsed (br l ,R)
NUbr

∀σ ρ. b(σ)←→ b(update(σ,R, ρ))

notUsed (cbr b l ,R)
NUcbr

∀σ ρ x . update(f (x , σ),R, ρ)) = f (x , update(σ,R, ρ))

notUsed (recv f c,R)
NUrecv

∀σ ρ x . f (σ) = f (update(σ,R, ρ))

notUsed (send f c,R)
NUsend

mayBeUsed (instr ,R)
def⇐⇒ ∀ S . S ∩ R −→ notUsed (instr , S)

regsi(instr) = R def⇐⇒ mayBeUsed (instr ,R) ∧ (∀ S .mayBeUsed (instr , S) −→ R ⊆ S)

regss(proc)
def
=

⋃
(l ,instr)∈proc

regsi(instr)

regsc(prog)
def
=

⋃
(p,proc)∈prog

regss(proc)

Figure 3.6: Sets of registers used by an instruction, program or process.

A few well-formedness properties, defined in Figure 3.7 are needed in order for the
definitions above to make sense. Well-formed instructions must use a defined set
of registers. Well-formed processes are composed only of well-formed instructions
and may only define a label once — this is ensured by demanding that, in any
concatenation of processes, the sets labels defined by each subprocess are disjoint.
In well-formed programs, all processes are well-formed and each register is used
by at most one process — which is ensured by demanding that, in any parallel
composition, the sets of used registers of the subprograms are disjoint.

11

3 THE LLDO LANGUAGE

wellFormedi(instr)
def⇐⇒ ∃R.R = regsi(instr)

wellFormeds((l , instr))
def⇐⇒ wellFormedi(instr)

wellFormeds(proc1 ⊕ proc2)
def⇐⇒ wellFormeds(proc1) ∧ wellFormeds(proc2) ∧

dom(proc1) ∩ dom(proc2) = ∅

wellFormedc((p, proc))
def⇐⇒ wellFormeds(proc)

wellFormedc(prog1 || prog2)
def⇐⇒ wellFormedc(prog1) ∧ wellFormedc(prog2) ∧

regsc(proc1) ∩ regsc(proc2) = ∅ ∧
pids(proc1) ∩ pids(proc2) = ∅

Figure 3.7: Well-formedness predicates.

3.4 Operational Semantics

In order to formally reason about the LLDo language, a formal semantics for it is
required. The most intuitive style for presenting it is arguably in the small-step
operational style, which clearly describes the behaviour of each instruction and
the interleaving and synchronisation of processes. Compositionality is, however,
not ensured. Therefore, we also define a compositional semantics in big-step style,
which is also more appropriate for reasoning about the verification calculus.

3.4.1 Small-Step Semantics

The main goal of the small-step semantics defined in this section is providing an
intuitive specification for the language, not necessarily compositional. Therefore,
the transition relations ignore the structure of processes and programs, treating
them as sets of labelled instructions or processes.

Formally, the semantics of a process or program are defined by a ternary transition
relation of the original state, the event associated to the transition and the state
following the transition. It may therefore be seen as a labelled transition system,
where events are the labels. We denote a transition of program or process p from

12

3.4 Operational Semantics

state s to state s ′, producing event e, by:

s e−→
p

s ′

The transition relation for a single process, defined in Figure 3.8, depends mainly
on the current instruction to be executed — the instruction that is associated to
the PC of the initial state. Three of the instructions — do, br and cbr — require
no communication and are therefore always labelled by τ .

The rule SSdo describes all possible transitions for a do f instruction — which
all increment the PC, having as final register store a member of the set f (σ),
where σ is the original register store. Unconditional branches are defined by the
rule SSbr and have a single possible transition: the PC is changed to the label
indicated by the instruction. Conditional branches have two possible transitions —
SScbr t and SScbr f. If the predicate is true for the original register store, the
instruction behaves like the unconditional branches; if the predicate is false, the
PC is simply incremented. In any case, all branch instructions leave the register
store unchanged.

Both communicating instructions transition into a state where the PC is incre-
mented. Sending instructions (SSsend) will not modify the register store, and are
labelled by the sending event of a specific value — obtained from the original reg-
ister store by the specified function — through the specified channel. Receiving
instructions (SSrecv), on the other hand, may be labelled with the receive event
of any value through the specified channel. The resulting register store is then the
result of applying the specified function to the original store and to the received
value.

(l , do f) ∈ proc σ′ ∈ f (σ)

(σ, l) τ−→
proc

(σ′, succ l)
SSdo

(l , br l ′) ∈ proc

(σ, l) τ−→
proc

(σ, l ′)
SSbr

(l , cbr b l ′) ∈ proc b(σ)

(σ, l) τ−→
proc

(σ, l ′)
SScbr t

(l , cbr b l ′) ∈ proc ¬b(σ)

(σ, l) τ−→
proc

(σ, succ l)
SScbr f

(l , recv f c) ∈ proc

(σ, l) c?x−→
proc

(f (x , σ), succ l)
SSrecv

(l , send f c) ∈ proc

(σ, l)
c!f (σ)−→
proc

(σ, succ l)
SSsend

Figure 3.8: Small-Step transition relation for sequential processes.

13

3 THE LLDO LANGUAGE

An important property of the small-step transition relation is that the only regis-
ters modified by it are those in the set of registers of the process. This is expressed
by the following lemma, which was formalized in Isabelle.

Lemma 3.1. s t−→
proc

s ′ =⇒ framedChanges(s , s ′, regss(proc))

Proof. Let s = (σ, l) and s ′ = (σ′, l ′). By the definition of framing, we need to
prove the following fact.

r /∈ regss(proc) =⇒ σ(r) = σ′(r)

We therefore assume r /∈ regss(proc) and proceed by induction on the derivation
of the transition. We only prove the case for SSdo. The other cases are analogous.

Assume (l , do f) ∈ proc and σ′ ∈ f (σ). Since r is not in the set of registers used
by the program, it must also hold that:

r /∈ regsi(do f)

=⇒ notUsed (do f , {r})
=⇒ ∀ ρ. f (update(σ, {r}, ρ)) = {update(σ′, {r}, ρ) | σ′ ∈ f (σ)}
=⇒ f (update(σ, {r}, σ)) = {update(σ′, {r}, σ) | σ′ ∈ f (σ)}
=⇒ f (σ) = {update(σ′, {r}, σ) | σ′ ∈ f (σ)}
=⇒ σ′ ∈ {update(σ′, {r}, σ) | σ′ ∈ f (σ)}

Clearly, all members of the set {update(σ′, {r}, σ) | σ′ ∈ f (σ)} must have the same
value on register r as σ. In particular, this holds for σ′.

The semantics of programs, presented in Figure 3.9, are defined abstractly in terms
of the transitions of individual processes. There are, then, two possible types of
transition: the transition of a single process may be promoted to a transition
of the whole program (SSone), or two processes may synchronize and transition
simultaneously (SSsync).

Since processes and programs have different views into the state of the machine,
care must be taken when integrating the two. The PCs are easy to handle: the PC
viewed from a process is simply the entry from the process table that corresponds to
its PID. The register stores, on the other hand, must be implicitly partitioned into
the regions — or frames — that are accessible by each process. Since we require
that no register is used by more than one process, these frames are disjoint, and
we therefore need only assert that the changes causes by each process are confined

14

3.4 Operational Semantics

(p, proc) ∈ prog (σ, π(p))
e−→

proc
(σ′, l)

(σ, π)
e−→

prog
(σ′, π[p := l])

SSone

(p1, proc1) ∈ prog (p2, proc2) ∈ prog
(σ, π(p1))

c!x−→
proc1

(σ1, l1) (σ, π(p2))
c?x−→

proc2
(σ2, l2)

p1 6= p2 regsi(proc1) ∩ regsi(proc2) = ∅
σ′ = update(σ, regss(proc1) , σ1, regss(proc2) , σ2)

(σ, π)
c.x−→
prog

(σ′, π[p1 := l1, p2 := l2])
SSsync

Figure 3.9: Small-Step transition relation for concurrent programs.

to their frames and only modify the original store within the frames of processes
that transitioned.

Analogously to the transitions of sequential processes, small-step transitions of
concurrent programs are also framed. The following lemma was also proved in
Isabelle.

Lemma 3.2. s t−→
prog

s ′ =⇒ framedChangec(s , s ′, pids(prog), regsc(prog))

Proof. We prove by induction on the derivation of the transition. We only prove
the case for SSsync. The other case is very similar.

In this case, we have the following assumptions:

(p1, proc1), (p2, proc2) ∈ prog

(σ, π(p1))
c!x−→

proc1
(σ1, l1) ∧ (σ, π(p2))

c?x−→
proc2

(σ2, l2)

σ′ = update(σ, regss(proc1) , σ1, regss(proc2) , σ2)
π′ = π[p1 := l1, p2 := l2]

The changes caused by the transition are all caused by either of the sub-transitions,
which are framed to the registers of their respective processes. Since these are all
contained in the registers of the program, all the changes must also be framed by
the registers of the program.

Furthermore, the only changes from π to π′ are on registers p1 and p2. Since they
are both members of pids(prog), the framing of the process table also holds.

15

3 THE LLDO LANGUAGE

s
〈〉, 0
−→∗
prog

t
MSzero

s e−→
prog

s ′ s ′
es, k
−→∗
prog

t

s
eaes, k+1

−→∗
prog

t

MSstep

Figure 3.10: Step-indexed multi-step transition relation. The non-step-indexed
version is defined analogously.

In order to reason about complete executions of processes and programs, we use
a multi-step transition relation — essentially a reflexive and transitive closure of
the transition relations, where the events are accumulated into traces — and its
step-indexed variant, the latter defined in Figure 3.10. A multi-step transition of
program or process p from state s to s ′, producing the trace t in i steps, is denoted
in step-indexed and otherwise form as follows:

s
t , i
−→∗

p
s ′ s

t
−→∗

p
s ′

Not all multi-step transitions are valid executions of a program, since they neither
ensure that termination was reached, nor that all necessary synchronizations oc-
curred. This presence of“incomplete”executions will be necessary when comparing
the small-step and big-step semantics.

Since a notion of terminating execution is still needed, we define it in Figure 3.11
as a two predicates. States of terminating executions are stuck, which means that
its PC is not in the domain of the process. In the case of concurrent programs, the
PCs of all its processes are not in their respective domains. In terms of traces, they
must be fullySynced, which means they doesn’t contain unsynchronized events.

3.4.2 Big-Step Semantics

Since the small-step semantics is not compositional, we provide an alternative
definition in big-step style. This is defined as an inductive relation of the program
or process, the original state, the trace associated to the transition and the final
state. We denote the execution of program or process p from state s to state s ′,
producing trace t , by:

s
t
�
p

s ′

The big-step relation for a single process is defined in figure 3.12. Since a process
can only act when the PC is defined by it, the rule BSnop provides the non-

16

3.4 Operational Semantics

stucks((σ, l), proc)
def⇐⇒ l /∈ dom(proc)

stuckc((σ, π), es , prog)
def⇐⇒ ∀(p, proc) ∈ prog . π(p) /∈ dom(proc)

fullySynced(〈〉) def⇐⇒ >

fullySynced(eaes)
def⇐⇒ ¬ unsynced(e) ∧ fullySynced(es)

Figure 3.11: Predicates defining termination of the execution.

execution of a process when the PC is not in its domain. Every other inference
rule is only applicable when the PC of the starting state is defined by the process.

The inference rules for singleton processes (BSdo, BSbr, BScbr t, BScbr f,
BSrecv, BSsend) define the behaviour of each instruction, and are analogous to
the small-step transition rules.

The behaviour of composite processes is defined by the rules BSseql and BSseqr.
These rules are based on the observation that any execution of the composite
process will begin on one of the two subprocesses, proceeding within the subprocess
until the PC is no longer defined in it. The PC may now be in the domain of the
other subprocess, and execution will continue from there and may jump back into
the first subprocess. The execution of a loop between two subprocess can, therefore,
be inferred by alternating BSseql and BSseqr until the PC is no longer defined
in either subprocess.

An important property of the big-step transition relation is that the only registers
modified by it are those in the set of registers of the process. This is expressed by
the following lemma, which was formalized in Isabelle.

Lemma 3.3. s
t
�
proc

s ′ =⇒ framedChanges(s , s ′, regss(proc))

Proof. By induction on the derivation of the big-step transition.

The case for BSnop is trivial, since no modification occurs.

The cases of singleton programs are analogous to the proof of framing for the
small-step relation.

The cases for BSseql and BSseqr are very similar, we proceed by only proving
the former.

From the induction hypothesis, we have an intermediate register store σ′′, such that

17

3 THE LLDO LANGUAGE

l /∈ dom(proc)

(σ, l)
〈〉
�
proc

(σ, l)
BSnop

σ′ ∈ f (σ)

(σ, l)
〈τ〉
�

(l ,do f)
(σ′, succ l)

BSdo
l 6= l ′

(σ, l)
〈τ〉
�

(l ,br l ′)
(σ, l ′)

BSbr

b(σ) l 6= l ′

(σ, l)
〈τ〉
�

(l ,cbr b l ′)
(σ, l ′)

BScbr t
¬b(σ)

(σ, l)
〈τ〉
�

(l ,cbr b l ′)
(σ, succ l)

BScbr f

(σ, l)
〈c?x〉
�

(l ,recv f c)
(f (x , σ), succ l)

BSrecv

(σ, l)
〈c!f (σ)〉
�

(l ,send f c)
(σ, succ l)

BSsend

l ∈ dom(proc1) (σ, l)
t1
�

proc1
(σ′′, l ′′) (σ′′, l ′′)

t2
�

proc1⊕proc2
(σ′, l ′)

(σ, l)
t1
at2
�

proc1⊕proc2
(σ′, l ′)

BSseql

l ∈ dom(proc2) (σ, l)
t1
�

proc2
(σ′′, l ′′) (σ′′, l ′′)

t2
�

proc1⊕proc2
(σ′, l ′)

(σ, l)
t1
at2
�

proc1⊕proc2
(σ′, l ′)

BSseqr

Figure 3.12: Big-Step relation for sequential processes.

both the changes from σ to σ′′ and those from σ′′ to σ′ are framed as required.
Clearly, the changes between σ and σ′ must also be framed — if they weren’t,
then they either would already be present in σ′′ and the first changes wouldn’t be
framed, or the second changes wouldn’t be framed.

The big-step semantics of programs is presented in Figure 3.13. The rule for
singleton programs (BSone) is similar to the small-step semantics, and merely
promotes the execution of the process into an execution of the program. The rule
for a composite program (BSpar) combines the executions of both subprograms,
as long as the traces generated by them can be synchronized with each other. Since
the only means of communication between processes (and subprograms) is through
events, the traces provide all necessary information to ensure the two executions
interact correctly, and the changes to PCs and registers may be simply combined.

Analogously to the transitions of sequential processes, small-step transitions of

18

3.4 Operational Semantics

(σ, π(p))
t
�
prog

(σ′, l)

(σ, π)
t
�

p::cprog
(σ′, π[p := l])

BSone

(σ, π)
t1
�

prog1
(σ1, π1) (σ, π)

t2
�

prog2
(σ2, π2)

pids(prog1) ∩ pids(prog2) = ∅
regsc(prog1) ∩ regsc(prog2) = ∅ t ∈ t1 || t2

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2)
π′ = update(π, pids(prog1), π1, pids(prog2), π2)

(σ, π)
t
�

prog1||prog2
(σ′, π′)

BSpar

Figure 3.13: Big-step relation for concurrent programs.

concurrent programs are also framed. The following lemma was also proved in
Isabelle.

Lemma 3.4. s
t
�
prog

s ′ =⇒ framedChangec(s , s ′, pids(prog), regsc(prog))

Proof. We prove by induction on the derivation of the transition. The case for
BSone is a trivial consequence of the fact that big-step transitions for sequential
processes are framed.

In the case of BSpar, we need to show that changes to both the process table and
to the register store are framed. We have the following assumptions:

prog = prog1 || prog2

(σ, π)
t1
�

prog1
(σ1, π1) ∧ (σ, π)

t2
�

prog2
(σ2, π2)

σ′ = update(σ, regss(prog1) , σ1, regss(prog2) , σ2)
π′ = update(σ, pids(prog1), π1, pids(prog2), π2)

The changes caused by the transition are all caused by either of the sub-transitions,
which are (by the induction hypothesis) framed to the registers of their respective
subprograms. Since these are all contained in the registers of the complete pro-
gram, all the changes must also be framed as required.

The argument for the framing of process tables is analogous.

19

3 THE LLDO LANGUAGE

In order to combine the traces of both executions we define the set of traces that
may result from the synchronization of two others, denoted by− || − in Figure 3.14.
It is defined as an inductive predicate and essentially allows arbitrary interleavings
and synchronizations between the original events, ensuring the synchronization is
correct via the partial function − || − : event× event −→ event.

The synchronization function for events is only defined when one of the events
sends and the other receives, and they agree on both channel and value. The
result is then the synchronization event with the same channel and value.

The synchronization predicate for traces allows the occurrence of empty traces
(SYNCSempty), and allows independent steps on either side (SYNCSleft and
SYNCSright). It also allows synchronization of single events, as long as they
occur at the same time and (SYNCSsync). Note that interleaving may occur even
when synchronization was an option (e.g. 〈c!v , c?v〉 ∈ 〈c!v〉 || 〈c?v〉). This is
necessary since multiple processes may communicate through the same channel
and therefore, when analysing a subprogram, we cannot know if the event should
synchronize within this subprogram or with another part of the program. The big-
step transition of a program may therefore not represent a terminating execution,
since the resulting traces may contain unfulfilled communication.

c.v = c!v || c?v c.v = c?v || c!v

〈〉 ∈ (〈〉 || 〈〉)
SYNCSempty

zs ∈ xs || ys
〈x 〉azs ∈ (〈x 〉axs || ys)

SYNCSleft
zs ∈ xs || ys

〈y〉azs ∈ (xs || 〈y〉ays)
SYNCSright

z = x || y zs ∈ xs || ys
〈z 〉azs ∈ (〈x 〉axs || 〈y〉ays)

SYNCSsync

Figure 3.14: Synchronization predicates for traces and events.

3.4.3 Equivalence of the Presentations

It is important the the two presentations of LLDo’s semantics are, in some sense,
equivalent. The small-step semantics is more general, since it allows reasoning

20

3.4 Operational Semantics

about executions that did not yet terminate, while the big-step semantics only
specifies the stuck executions. In this section, we prove Preservation and Reflec-
tion lemmas, stating that big-step transitions are equivalent to stuck multi-step
transitions. All programs in this section are assumed well-formed, and all proofs
were formalized in Isabelle.

Most of the important steps for proving the equivalence are properties of multi-step
transitions, which we now provide in the following lemmas.

Lemma 3.5 (Singleton Transition).

s e−→
p

s ′ =⇒ s
〈e〉
−→∗

p
s ′

A small-step transition may be promoted to a multi-step transition. This holds for
both sequential processes and concurrent programs.

Lemma 3.6 (Concatenation of Transitions).

s
t
−→∗

p
s ′ ∧ s ′

t ′

−→∗
p

s ′′ =⇒ s
tat ′

−→∗
p

s ′′

Two multi-step transitions may be “concatenated” when the final state of the first
transition and the initial state of the second coincide. This holds for both sequential
processes and concurrent programs.

Lemma 3.7 (Transitions of Subprocesses).

s
t
−→∗
proc1

s ′ ∨ s
t
−→∗
proc2

s ′ =⇒ s
t
−→∗

proc1⊕proc2
s ′

If a multi-step transition may occur in a process, adding more instructions to it
does not invalidate the transition.

Lemma 3.8 (Transitions of Subprograms).

s
t
−→∗
prog1

s ′ ∨ s
t
−→∗
prog2

s ′ =⇒ s
t
−→∗

prog1||prog2
s ′

If a multi-step transition may occur in a program, adding more processes to it does
not invalidate the transition.

Lemma 3.9 (Transitions of Singleton Programs).

(σ, π)
t
−→∗
(p,proc)

(σ′, π′) =⇒ (σ, π(p))
t
−→∗
proc

(σ′, π′(p))

A multi-step transition of a singleton program can only be caused by a multi-step
transition of its single process.

21

3 THE LLDO LANGUAGE

Lemma 3.10 (Transition from an Invisibly Different State).

R ∩ regsc(prog) = ∅ ∧ P ∩ pids(prog) = ∅ ∧

(σ, π)
t
−→∗
prog

(σ′, π′)

=⇒ (update(σ,R, σ′′), update(π,P , π′′))
t
−→∗
prog

(update(σ′,R, σ′′), update(π′,P , π′′))

Changes to the initial state of a transition that are framed outside of the registers
used by the program do not affect the transition.

Lemma 3.11.

(σ, π)
t
−→∗

prog1||prog2
(σ′, π′) =⇒ ∃σ1 σ2 π1 π2 t1 t2.

(σ, π)
t1
−→∗
prog1

(σ1, π1) ∧ (σ, π)
t2
−→∗
prog2

(σ2, π2) ∧

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2) ∧
π′ = update(π, pids(prog1), π1, pids(prog2), π2) ∧
t ∈ t1 || t2

A multi-step transition of a parallel composition may be split into the transitions
of each subprogram.

Proof. By induction on the derivation of the multi-step transition.

• If the last step was an application of MSzero, we have σi = σ, πi = π and
ti = 〈〉, for i ∈ {1, 2}. Both multi-step transitions for prog1 and prog2 may
be obtained by MSzero, the synchronization of the traces by SYNCSempty,
the remaining goals are trivial.

• If the last step was an application of MSstep, we have t = 〈e〉at ′ and the
following transitions.

(σ, π)
e−→

prog1||prog2
(σ′′, π′′) (σ′′, π′′)

t ′

−→∗
prog1||prog2

(σ′′, π′′)

Furthermore, we have the following induction hypothesis.

(σ′′, π′′)
t ′1
−→∗
prog1

(σ1, π1) ∧ (σ′′, π′′)
t ′2
−→∗
prog2

(σ2, π2) ∧ t ′ ∈ t ′1 || t ′2

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2)
π′ = update(π, pids(prog1), π1, pids(prog2), π2)

22

3.4 Operational Semantics

We proceed by cases on the derivation of the small-step transition of prog1 ||
prog2.

– If the last step was an application of SSone, the transition occurred in
a single process, which is either part of prog1 or of prog2. Without loss
of generality, we assume the former, obtaining the following.

(σ, π)
e−→

prog1
(σ′′, π′′)

The complete transition for prog1 is obtained by MSstep, and the syn-
chronization of the traces by SYNCSleft. The transition for prog2
may be started from (σ′′, π′′), since any differences are framed to prog1
(lemma 3.10). Also because of this framing, the merged state remains
the same.

– If the last step was a application of SSsync, the transition occurred
in two processes. If those processes are both part of prog1, or both
part of prog2, the proof is analogous to the previous case. If each of
the subprograms contains one of the executing processes, we obtain the
following.

(σ, π)
c!v−→

prog1
(σ′1, π

′
1) ∧ (σ, π)

c?v−→
prog2

(σ′2, π
′
2) ∧ e = e1 || e2

σ′′ = update(σ, regsc(prog1) , σ
′
1, regsc(prog2) , σ

′
2)

π′′ = update(π, pids(prog1), π′1, pids(prog2), π′2)

The complete transitions for each subprogram are obtained by MSstep.
We note that the multi-step transitions may be started from (σi , πi)
instead of from (σ′′, π′′), for i ∈ 1, 2, since any differences are framed
to the opposite subprocess (lemma 3.10). Also because of this framing,
the final merged state remains the same. The synchronization of the
traces may be obtained by SYNCSsync.

Having those lemmas, we may now prove the Preservation and Reflection lemmas.

Lemma 3.12 (Preservation of Big-Step Semantics for Processes). If the big-step

transition s
t
�
proc

s ′ of the sequential process proc is valid, then the multi-step tran-

sition s
t
−→∗
proc

s ′ is also valid.

23

3 THE LLDO LANGUAGE

Proof. By induction on the derivation of s
t
�
proc

s ′. We have the following cases.

• The last rule of the derivation is BSnop. The small-step transition may be
trivially obtained by MSzero.

• The last rule of the derivation is one of BSdo, BSbr, BScbr t, BScbr f,
BSsend, BSrecv. The small-step transition may be trivially obtained by
using an analogous inference rule and by lemma 3.5.

• The last rule of the derivation is BSseql or BSseqr. Without loss of gener-
ality, we assume it was BSseql. By the induction hypothesis, the following
transitions are valid.

s
t
−→∗
proc1

s ′′ s ′′
t ′

−→∗
proc1⊕proc2

s ′

The transition on proc1 is also valid for the combined process (lemma 3.7).

s
t
−→∗

proc1⊕proc2
s ′′

The two transitions may be combined to obtain our goal (lemma 3.6).

s
tat ′

−→∗
proc1⊕proc2

s ′

Lemma 3.13 (Reflection of Big-Step Semantics for Processes). If the step-indexed

multi-step transition s
t , i
−→∗
proc

s ′ of the sequential process proc is valid and the eval-

uation is stuck, i.e. stucks(s , proc), then the big-step transition s
t
�
proc

s ′ is also

valid.

Proof. We begin by observing that if i = 0, the only possible multi-step transition
is the empty one. In this case, s ′ = s and PC (s) /∈ dom(proc), therefore the
big-step transition is trivially obtained by BSnop.

We proceed the proof with the case where i > 0, by structural induction on proc.

24

3.4 Operational Semantics

• When proc = ∅, the only possible multi-step transition is the empty transi-
tion, i > 0 cannot occur.

• When we have a singleton process proc = (l , instr), we consider two cases
for the number of steps i taken on the multi-step transition.

– When i = 1, the multi-step transition corresponds to a single small-step
transition, which is derived by one of SSdo, SSbr, SScbr t, SScbr f,
SSsend, SSrecv. The big-step transition can be obtained by the anal-
ogous big-step inference rule.

– We cannot have i > 1. In all inference rules of the small-step relation
but SSbr and SScbr t, the PC of the second state is l + 1, which is
not defined by (l , instr) — there can be no second step. In the two
other rules, the PC of the second state is some l ′. If l ′ 6= l , the PC
of the second state is not defined by the process and there can be no
second step. If l ′ = l , the PC of the following states will always be l ,
and in particular PC (s ′). This would contradict the hypothesis that
the multi-step transition was stuck.

• When proc = proc1 ⊕ proc2, we obtain the following induction hypothesis.

∀ s t s ′ k . s
t , k
−→∗
proc1

s ′ ∧ stucks(s ′, proc1) =⇒ s
t
�

proc1
s ′

∀ s t s ′ k . s
t , k
−→∗
proc2

s ′ ∧ stucks(s ′, proc2) =⇒ s
t
�

proc2
s ′

The proof follows by strong induction on the number i of steps taken in the
multi-step transition. We further obtain the following induction hypothesis.

∀ s t s ′m. m < i ∧ s
t ,m
−→∗

proc1⊕proc2
s ′ ∧ stucks(s ′, proc1 ⊕ proc2)

=⇒ s
t
�

proc1⊕proc2
s ′

Since i > 0, there must exist a small-step transition on proc starting with
state s = (σ, l), therefore l ∈ dom(proc). Since each label may only be
defined in one of the subprocesses, we have two cases, l ∈ dom(proc1) or
l ∈ dom(proc2), and assume the former without loss of generality.

At least one step must have been executed in proc1, followed by another
multi-step transition on the combined process. Therefore, there must exist

25

3 THE LLDO LANGUAGE

j1, j2, s ′′, t1, t2 such that j1 > 0, j1 + j2 = i and the following multi-step
transitions are valid.

s
t1, j1
−→∗
proc1

s ′′ s ′′
t2, j2
−→∗

proc1||proc2
s ′

A big-step transition on proc1 may then be obtained by applying one of the
outer induction hypothesis, whereas the transition on the combined program
may be obtained by applying the induction hypothesis from the strong nat-
ural induction, noting that j2 < j1 + j2. The resulting big-step transitions
may be used with BSappendl to obtain the goal.

Lemma 3.14 (Preservation of Big-Step Semantics for Programs). If the big-step

transition (σ, π)
t
�
prog

(σ′, π′) of the concurrent program prog is valid, then the multi-

step transition (σ, π)
t
−→∗
prog

(σ′, π′) is also valid.

Proof. By induction on the derivation of the big-step transition.

• If the last step of the derivation was an application of BSone, we have the
following assumptions:

prog = (p, proc) (σ, π(p))
t
�
proc

(σ′, l ′) π′ = π[p := l ′]

By preservation for processes, an equivalent multi-step transition can be
inferred.

(σ, π(p))
t
−→∗
proc

(σ′, l ′)

We now need to “promote” this transition of the process to a transition of the
complete program, proceeding by induction on the derivation of the multi-
step transition.

– If the last step of the derivation was an application of MSzero, we have
σ′ = σ and l ′ = π(p), therefore π′ = π. The equivalent transition of the
complete program can be derived by MSzero.

– If the last step of the derivation was an application of MSstep, we have

t = 〈e〉at ′ and the following transition, which may be made into a
transition of the complete program via SSone.

26

3.4 Operational Semantics

(σ, π(p))
e−→

proc
(σ′′, l ′′)

Furthermore, we have the following induction hypothesis.

(σ′′, π[p := l ′′])
t ′

−→∗
(p,proc)

(σ′′, l ′′)
This and the small-step transition may be combined via MSstep into a
transition of the complete program.

• If the last step of the derivation was an application of BSpar, we have the
following induction hypothesis.

(σ, π)
t1
−→∗
prog1

(σ1, π1) (σ, π)
t2
−→∗
prog2

(σ2, π2)

Furthermore, the following facts were necessary for the application of BSpar.
prog = prog1 || prog2 t ∈ t1 || t2

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2)

π′ = update(π, pids(prog1), π1, pids(prog2), π2)

We proceed by induction on the derivation of t ∈ t1 || t2.

– If the last step of the derivation was an application of SYNCSempty,
we have t1 = t2 = t = 〈〉. The only possible multi-step transition with
empty trace is the empty transition, therefore we have σ′ = σ1 = σ2 = σ
and π′ = π1 = π2 = π. The multi-step transition of the combined
program is obtained by applying MSzero.

– If the last step of the derivation was an application of SYNCSleft or
SYNCSright, we assume the former without loss of generality. We

have t1 = 〈e〉at ′1, t = 〈e〉at ′, t ′ ∈ t ′1 || t2 and the following induction
hypothesis. It states that, if there exist two multi-step transitions on
prog1 and prog2 from the same original state, that yield the traces t ′1
and t2 respectively, then there exists a combined transition yielding the
trace t ′.
∀σ σ′ σ1 σ2 π π′ π1 π2.

(σ, π)
t ′1
−→∗
prog1

(σ1, π1) ∧ (σ, π)
t2
−→∗
prog2

(σ2, π2) ∧

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2) ∧
π′ = update(π, pids(prog1), π1, pids(prog2), π2)

=⇒ (σ, π)
t ′

−→∗
prog1||prog2

(σ′′, π′′)

27

3 THE LLDO LANGUAGE

In order to apply the induction hypothesis, we need to find the indi-
vidual multi-step transitions. We note that the only way to obtain the

trace 〈e〉at ′1 is if the multi-step transition on prog1 was obtained from
the following transitions.

(σ, π)
e−→

prog1
(σ′′, π′′) (σ′′, π′′)

t ′1
−→∗
prog1

(σ1, π1)

Noting that the transition for prog2 may also be started on (σ′′, π′′)
(lemma 3.10), since any differences are framed by prog1, we apply the
induction hypothesis to obtain the following.

(σ′′, π′′)
t ′

−→∗
prog1||prog2

(σ′, π′)

Since the small-step transition on prog1 is also valid for the whole pro-
gram (lemma 3.8), we may use MSstep to combine it and to the multi-
step transition above, proving our goal.

– If the last step of the derivation was an application of SYNCSsync, we
have the following assumptions.

t1 = 〈e1〉at ′1 t2 = 〈e2〉at ′2 t = 〈e〉at ′ t ′ ∈ t ′1 || t ′2 e = e1 || e2
Furthermore, we have the following induction hypothesis. It states that,
if there exist two multi-step transitions on prog1 and prog2 from the
same original state, that yield the traces t ′1 and t ′2 respectively, then
there exists a combined transition yielding the trace t ′.

∀σ σ′ σ1 σ2 π π′ π1 π2.

(σ, π)
t ′1
−→∗
prog1

(σ1, π1) ∧ (σ, π)
t ′2
−→∗
prog2

(σ2, π2) ∧

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2) ∧
π′ = update(π, pids(prog1), π1, pids(prog2), π2)

=⇒ (σ, π)
t ′

−→∗
prog1||prog2

(σ′′, π′′)

In order to apply the induction hypothesis, we need to find the indi-
vidual multi-step transitions. We note that the only way to obtain the

traces 〈e1〉at ′1 and 〈e2〉at ′2 is if the multi-step transitions of prog1 and
prog2 were obtained from the following pairs of transitions.

(σ, π)
e1−→

prog1
(σ′1, π

′
1) (σ′1, π

′
1)

t ′1
−→∗
prog1

(σ1, π1)

(σ, π)
e2−→

prog2
(σ′2, π

′
2) (σ′2, π

′
2)

t ′2
−→∗
prog2

(σ2, π2)

28

3.4 Operational Semantics

We will now obtain a joint small-step transition into the state (σ′′, π′′),
constructed as follows.

σ′′ = update(σ, regsc(prog1) , σ
′
1, regsc(prog2) , σ

′
2)

π′′ = update(π, pids(prog1), π′1, pids(prog2), π′2)

We note that, since e = e1 || e2, one of e1 and e2 must be a sending event
and the other, a receiving one. Therefore, the small-step transitions that
trigger them cannot have been inferred with SSsync, only with SSone.
The following must hold.

(p1, proc1) ∈ prog1 ∧ (σ′1, π
′
1(p1))

e1−→
proc1

(σ1, l1) ∧ π1 = π′1[p1 := l1]

(p2, proc2) ∈ prog2 ∧ (σ′2, π
′
2(p2))

e2−→
proc2

(σ2, l2) ∧ π2 = π′2[p2 := l2]

The combined small-step transition may be obtained from SSsync,
since it is also clearly true that (p1, proc1) ∈ prog1 || prog2 and that
(p2, proc2) ∈ prog1 || prog2.

(σ, π)
e−→

prog1||prog2
(σ′′, π′′)

Noting that the remaining multi-step transitions may also be started
on (σ′′, π′′), since any differences are framed by the opposite program
(lemma 3.10), we apply the induction hypothesis to obtain the following.

(σ′′, π′′)
t ′

−→∗
prog1||prog2

(σ′, π′)

We may use MSstep to combine the small- and multi-step transitions
above, proving our goal.

Lemma 3.15 (Reflection of Big-Step Semantics for Programs). If the multi-

step transition (σ, π)
t
−→∗
prog

(σ′, π′) of the concurrent program prog is valid and

stuckc(σ, prog), then the big-step transition (σ, π)
t
�
prog

(σ′, π′) is also valid.

Proof. By structural induction on prog . We have the following cases:

• When the program consists of a single process, prog = (p, proc), the transi-
tion may only be introduced by BSone. It remains to show that the following
big-step transition of the process is valid.

(σ, π(p))
t
�
proc

(σ′, π′(p))

29

3 THE LLDO LANGUAGE

The equivalent multi-step transition of the process may be obtained, from
the multi-step transition of the program, by the lemma 3.9. We conclude
this case by applying the reflection lemma for processes.

• When the program is composite, prog = prog1 || prog2, we have the following
induction hypothesis.

∀σ π t σ′ π′. (σ, π)
t
−→∗
prog1

(σ′, π′) ∧ stuckc(σ
′, prog1) =⇒ (σ, π)

t
�

prog1
(σ′, π′)

∀σ π t σ′ π′. (σ, π)
t
−→∗
prog2

(σ′, π′) ∧ stuckc(σ
′, prog2) =⇒ (σ, π)

t
�

prog2
(σ′, π′)

The big-step transition for prog1 || prog2 will be introduced by BSpar. Two of
its premises, the big-step transitions for prog1 and for prog2, may be obtained
from the induction hypothesis. We need, therefore, to prove the validity of
the following independent multi-step transitions, for some resulting state
(σ1, π1) and some (σ2, π2).

(σ, π)
t1
−→∗
prog1

(σ1, π1) (σ, π)
t2
−→∗
prog2

(σ2, π2)

Furthermore, the other premises of BSpar must hold. The disjointness con-
ditions are ensured by the well-formedness of the programs, but the following
also remain to be proved.

t ∈ t1 || t2
σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2)
π′ = update(π, pids(prog1), π1, pids(prog2), π2)

All these are obtained by applying the lemma 3.11

30

4 Correctness Calculus

Although the formal semantics provides a rigorous understanding of a program-
ming language, it does not suffice for verifying the correctness of programs. One
of the many approaches for doing it is by specifying the behaviour of the program
with pre- and postconditions.

Such a specification is written as the Hoare triple {P}code{Q}, where P is an
assertion that is assumed to hold before the execution of the code, and Q an
assertion expected to hold after the terminating execution. Such assertions are
simply predicates of the state and trace from a given moment.We write them as
usual logical expressions, using the variable h for referring to the current trace, σ
for referring to the current register store, pc to the current PC (when reasoning
about sequential processes) and π to the current process table (when reasoning
about concurrent programs). We also denote by P [e/x] the replacement of the
free occurrences of a variable x , within the assertion P , by the logical expression
e.

Although using the operational semantics directly to prove the validity of a Hoare
triple would be possible, it is not practical. Instead, we define a set of inference
rules for proving that the program satisfies the specification without explicitly
reasoning about all its possible executions. In this section, we provide such a
set of inference rules for LLDo and prove its correctness regarding the big-step
semantics.

4.1 Definition

The inference rules of the correctness calculus may be classified in three groups:
those reasoning about sequential processes, those reasoning about concurrent pro-
grams and general rules that are independent of the code being analyzed, express-
ing rules of the logic itself. In the case of this thesis, there is only one general rule,
which may be seen in Figure 4.1. The rule Hconseq postulates that preconditions
may be strengthened and postconditions may be weakened without invalidating
the correctness of a Hoare triple.

P =⇒ P ′ ` {P ′} code {Q ′} Q ′ =⇒ Q
` {P} code {Q}

Hconseq

Figure 4.1: The general rule for the correctness calculus.

31

4 CORRECTNESS CALCULUS

The inference rules that deal with sequential processes may be seen in Figure 4.2.
The rule for empty programs states that the precondition is preserved, since noth-
ing can be executed. All rules for single instructions follow the same pattern,
having their precondition determined by the postcondition: either the PC points
to the current instruction and the postcondition will hold in any of the states that
may be caused by the execution of the instruction, or the PC does not point to the
current instruction and the postcondition holds in the original state, since nothing
will be executed.

The rule for the union of processes must account for possible loops that may
repeatedly alternate the execution between the two subprocesses. Therefore, it is
based on an invariant: we require that both subprocesses of proc1 ⊕ proc2, when
started in a state that satisfies the invariant, result in a state that also satisfies
it. Thus we may safely alternate between executing proc1 and proc2 and, when
we are done, we know the invariant holds and we are outside the domains of both
subprograms.

The inference rules that deal with concurrent programs may be seen in Figure 4.3.
The rule Hone for singleton programs is a simple “lifting”: the assertions remain
the same, except they now refer explicitly to an entry of the process table.

The rule Hpar for the parallel composition is more complex. The pre- and post-
conditions of the conclusion are derived from those of the premises. The resulting
precondition states that there are two traces whose synchronization results in the
current trace h, and that the preconditions of both subprograms hold regard-
ing their respective traces. The postconditon is constructed in the same manner.
Furthermore, we require that the postconditions are framed to their respective
subprograms — that is, they refer only to registers and processes used by the
subprogram they specify.

4.2 Correctness

Since explicitly reasoning about all possible executions of a piece of code is not a
practical way to verify that it satisfies a specification, we provided a proof calculus
for inferring the validity of Hoare triples. In this section, we prove that inferred
triples are indeed semantically valid. All proofs described in this section were
formalized in the Isabelle theorem prover.

We begin by defining the semantic validity of a Hoare triple in Figure 4.4. It is
essentially a formalization of the intuition behind pre- and postconditions: when-
ever the precondition holds in the initial state of execution, the postcondition holds
after the execution. In terms of the traces, we ignore any τ events.

The following lemmas prove the correctness of the proof calculus for Hoare triples.

32

4.2 Correctness

` {P} ∅ {P}
Hempty `

{
(pc = l ∧ Q [l ′/pc])

∨ (pc 6= l ∧ Q)

}
l ::s br l ′ {Q}

Hbr

`

{
(pc = l ∧ ∀σ′ ∈ f (σ).Q [σ′/σ, pc + 1/pc])

∨ (pc 6= l ∧ Q)

}
l ::s do f {Q}

Hdo

`


(pc = l ∧ P(σ) ∧ Q [l ′/pc])

∨ (pc = l ∧ ¬P(σ) ∧ Q [l ′/pc])

∨ (pc 6= l ∧ Q)

 l ::s cbrP l ′ {Q}

Hcbr

`

{
(pc = l ∧ Q [pc + 1/pc, ha〈c!f (σ)〉/h])

∨ (pc 6= l ∧ Q)

}
l ::s send f c {Q}

Hsend

`

{
(pc = l ∧ ∀ v .Q [f (v , σ)/σ, pc + 1/pc, ha〈c?v〉/h])

∨ (pc 6= l ∧ Q)

}
l ::s recv f c {Q}

Hrecv

` {pc ∈ dom(proc1) ∧ P} proc1 {pc /∈ dom(proc1) ∧ P}
` {pc ∈ dom(proc2) ∧ P} proc2 {pc /∈ dom(proc2) ∧ P}
` {P} proc1 ⊕ proc2 {pc /∈ dom(proc1 ⊕ proc2) ∧ P}

Happend

Figure 4.2: The rules of the correctness calculus for reasoning about sequential
processes.

Lemma 4.1 (Correctness of Calculus for Processes).

` {P} proc {Q} =⇒� {P} proc {Q}

Proof. By induction on the derivation of the Hoare triple.

• If the last step was an application of Hempty, we have the same assertion as
precondition and postcondition. Since the program is empty, the initial and
final state of execution must be the same, therefore the triple is semantically
valid.

33

4 CORRECTNESS CALCULUS

` {P} proc {Q}
` {P [π(p)/pc]} p ::c proc {Q [π(p)/pc]}

Hone

` {P1} prog1 {Q1} ` {P2} prog2 {Q2}
framedAssn(Q1, regsc(prog1) , pids(prog1))
framedAssn(Q2, regsc(prog2) , pids(prog2))

`

{
∃ t1 t2. h ∈ (t1 || t2) ∧

P1[t1/h] ∧ P2[t2/h]

}
prog1 || prog2

{
∃ t1 t2. h ∈ (t1 || t2) ∧

Q1[t1/h] ∧ Q2[t2/h]

} Hpar

framedAssn(Q ,R,P)
def
= ∀R′T ′ σ′ π′. R ∩ R′ = ∅ ∧ P ∩ P ′ = ∅ ∧

framedChange(σ, σ′,R) ∧ framedChange(π, π′,P) ∧
Q =⇒ Q [σ′/σ, π′/π]

Figure 4.3: The rules of the correctness calculus for reasoning about concurrent
programs.

• If the last step was an application of Hdo, we have the following assumptions.

(pc = l ∧ ∀σ′ ∈ f (σ).Q [σ′/σ, pc + 1/pc]) ∨ (pc 6= l ∧ Q)

(σ, pc)
t
�

l ::sdo f
(σ′, l ′)

It remains to show that the postcondition holds in the final state, that is,
Q [σ′/σ, l ′/pc].

If pc 6= l , the only big-step transition possible is the empty one, therefore we
have σ′ = σ, l ′ = pc and t = 〈〉, therefore the our goal is Q [σ′/σ, l ′/pc, h/h] =
Q , which is also provided by the precondition when pc 6= l .

If pc = l , the only big-step transition possible is derived from BSdo. There-
fore, we have σ′ ∈ f (σ), l ′ = pc + 1 and t = 〈τ〉. Again, our goal is to
prove Q [σ′/σ, pc + 1/pc, h/h] = Q [σ′/σ, pc + 1/pc], which is implied by the
precondition when pc = l .

• If the last step was an application of Hbr, Hcbr, Hsend or Hrecv, the proof
is analogous to the case of Hdo.

34

4.2 Correctness

� {P} proc {Q} def
=

∀σ σ′ pc l ′ h t . P ∧ (σ, pc)
t
�
proc

(σ′, l ′) =⇒

Q [σ′/σ, l ′/pc, havisibleTrace(t)/h]

� {P} prog {Q} def
=

∀σ σ′ π π′ h t . P ∧ (σ, π)
t
�
prog

(σ′, π′) =⇒

Q [σ′/σ, π′/π, havisibleTrace(t)/h]

visibleTrace(〈〉) = 〈〉

visibleTrace(〈e〉at) =

{
t if e = τ

〈e〉at if e 6= τ

Figure 4.4: Definition of the semantic validity of a Hoare triple.

• If the last step was an application of Happend, we have the following induc-
tion hypothesis.

� {pc ∈ dom(proc1) ∧ P} proc1 {pc /∈ dom(proc1) ∧ P}
� {pc ∈ dom(proc2) ∧ P} proc2 {pc /∈ dom(proc2) ∧ P}

Furthermore, we may assume that P holds and that the following transition
is valid.

(σ, pc)
t
�

proc1⊕proc2
(σ′, l ′)

Since the final state of a big-step transition always has the PC outside the
domain of the process, only the following fact remains to be shown.

P [σ′/σ, l ′/l , havisibleTrace(t)/h]

We proceed by induction on the derivation of the transition.

– If the last derivation step was an application of BSappendl or BSappendr,
we may assume without loss of generality that it was BSappendl. We

35

4 CORRECTNESS CALCULUS

assume the premises of the rule.

(σ, pc)
t1
�

prog1
(σ′′, l ′′)

(σ′′, l ′′)
t2
�

prog1⊕prog2
(σ′, l ′)

We get the following induction hypothesis:

∀ t .P [σ′′/σ, l ′′/pc, t/h] =⇒ P [σ′/σ, l ′/pc, tavisibleTrace(t2)/h]

From the outer induction hypothesis and the big-step transition on

prog1, we get P [σ′′/σ, l ′′/pc, havisibleTrace(t1)/h]. Now the inner in-
duction hypothesis suffices to prove our goal.

– If the last derivation step was an application of BSnop, the proof is
trivial: since the state doesn’t change, the invariant is maintained.

– No other rule could have been applied.

• If the last derivation step was an application of Hconseq, we get the following
induction hypothesis.

� {P ′} proc {Q ′}

Furthermore, we assume the following premises of the rule.

(P =⇒ P ′) ∧ (Q ′ =⇒ Q)

The proof is now trivial: if P holds in the first state of the execution, then
P’ holds as well. Therefore, Q’ must hold in the final state of the execution,
which implies that Q holds in the final state.

Lemma 4.2 (Visible Trace preserves Synchronization).

t ∈ (t1 || t2) =⇒ visibleTrace(t) ∈ (visibleTrace(t1) || visibleTrace(t2))

Lemma 4.3 (Concatenation of Synchronized Traces).

t ∈ (t1 || t2) ∧ t ′ ∈ (t ′1 || t ′2) =⇒ tat ′ ∈ (t1at ′1 || t2at ′2)

36

4.2 Correctness

Lemma 4.4 (Correctness of Calculus for Programs).

` {P} prog {Q} =⇒� {P} prog {Q}

Proof. By induction on the derivation of the Hoare triple.

• If the last step of the derivation was an application of Hone, the proof is a
simple consequence of the correctness for processes.

• If the last step of the derivation was an application of Hpar, we obtain the
following induction hypothesis.

� {P1} prog1 {Q1}
� {P2} prog2 {Q2}

We assume the following precondition and big-step transition, for some t1, t2.

h ∈ (t1 || t2) ∧ P1[t1/h] ∧ P2[t2/h]

(σ, π)
t
�

prog1||prog2
(σ′, π′)

The only way to infer the big-step transition was with BSpar, so its premises
must hold.

(σ, π)
t ′1
�

prog1
(σ1, π1) ∧ (σ, π)

t ′2
�

prog2
(σ2, π2) ∧ t ∈ (t ′1 || t ′2)

σ′ = update(σ, regsc(prog1) , σ1, regsc(prog2) , σ2)
π′ = update(π, pids(prog1), π1, pids(prog2), π2)

From the induction hypothesis, the following postconditions must also hold:

Q1[σ1/σ, π1/π, t1avisibleTrace(t ′1)/h] ∧ Q2[σ2/σ, π2/π, t2avisibleTrace(t ′2)/h]

Since both postconditions are framed to their respective subprograms, they
also hold for (σ′, π′) instead of (σ, π). It only remains to be proven that

havisibleTrace(t) ∈ (t1avisibleTrace(t ′1) || t2avisibleTrace(t ′2)), which can
be achieved with the lemmas 4.2 and 4.3.

37

5 Examples of Usage

In order to show the applicability of the proof calculus, we provide three exam-
ples. The first one is an implementation of the Fibonacci function, showing the
verification of sequential processes. The second example is a generic “worker pro-
cess” which runs a given computation over the values received through a channel,
sending the results through another one. The third example is the synchroniza-
tion between the worker process and a simple client that sends a single value to
be analyzed, then obtains the result. All examples presented in this section were
formalized in Isabelle.

In order to effectively reason about concrete examples, however, we must have
concrete instantiations of LLDo’s instruction schemes. We therefore begin by pro-
viding these concrete instructions, as well as important lemmas that are used in
the examples that follow.

5.1 Preliminary Definitions

Since the definition of LLDo and its instruction schemes are very generic, the
definition of concrete instantiations of the schemes is very useful when dealing
with concrete examples. Furthermore, LLDo is generic regarding the type of values
contained in the registers. For all examples, we postulate that registers contain
only integer values.

The following definitions instantiate the instruction schemes to resemble instruc-
tions of usual unstructured languages. The members of their regsi sets may be
computed by syntactical analysis, simply collecting all registers that occur in the
instruction. This definition of their regsi sets has been verified in Isabelle, as well
as their well-formedness. Furthermore, it was proven that regsi(br l) = ∅, and
therefore this instruction is well-formed.

• Jump to l when the value of r is zero:

bz r def
= cbr (λσ. σ(r) = 0) l

• Jump to l when the value of r is negative:

bn r def
= cbr (λσ. σ(r) < 0) l

• Jump to l when the value of the two registers is the same:

beq r1 r2
def
= cbr (λσ. σ(r1) = σ(r2)) l

• Jump to l when the value of the first register is less that the value of the
second:
blt r1 r2

def
= cbr (λσ. σ(r1) < σ(r2)) l

39

5 EXAMPLES OF USAGE

• Store the constant value v in the register:

loadi v r def
= do (λσ. {σ[r := v]})

• Increment the value of the register:

inc r def
= do (λσ. {σ[r := σ(r) + 1]})

• Store the value of the second register in the first one:

copy rd r
def
= do (λσ. {σ[rd := σ(r)]})

• Add the value of the two registers, storing the result in another:

add rd r1 r2
def
= do (λσ. {σ[rd := σ(r1) + σ(r2)]})

• Subtract the value of the two registers, storing the result in another:

sub rd r1 r2
def
= do (λσ. {σ[rd := σ(r1)− σ(r2)]})

• Multiply the value of the two registers, storing the result in another:

mul rd r1 r2
def
= do (λσ. {σ[rd := σ(r1) · σ(r2)]})

• Send the value of the register through the given channel:

sendr r c def
= send (λσ. σ(r)) c

• Receive a value through the given channel and store it in the register:

recvr r c def
= recv (λ v σ. σ[r := v]) c

5.2 Fibonacci

In this subsection, a program computing the Fibonacci function is verified, indi-
cating that the correctness calculus for LLDo is capable of proving the correctness
of sequential processes. In particular, it is an example of how a loop may be ex-
pressed with unstructured code, and how its correctness may be verified using a
loop invariant. The LLDo program for calculating the Fibonacci function may be
seen in Figure 5.1.

The specification of the program may be seen in Figure 5.2, reflecting the expected
behaviour of the program: if as it starts execution the register rn contains the
natural number n, then as it stops the register rc will contain fib(n). Furthermore,
the trace is not modified. Instead of simply specifying that the trace remains the
same, we state something stronger: any predicate that holds for the initial trace
will also hold for the final trace. In particular, if for some trace t we have h = t
before execution, the same will hold after the execution — the trace remained
the same. We also use a function n : int trace −→ N instead of a simple natural

40

5.2 Fibonacci

fibonacci(l) def
=

l ::s loadi 1 ri ⊕
1 + l ::s loadi 1 rc ⊕
2 + l ::s loadi 1 rp ⊕
3 + l ::s br (8 + l) ⊕
4 + l ::s copy rt rc ⊕
5 + l ::s add rc rc rp ⊕
6 + l ::s copy rp rt ⊕
7 + l ::s inc ri ⊕
8 + l ::s blt ri rn (4 + l)

Figure 5.1: Implementation of the Fibonacci function in LLDo. The parameter is
received in register rn , the result is given in rc . The registers are assumed distinct.

number. This allows us to reuse the proof of correctness in a context where the
initial value of rn depends on previous communication.

{σ(rn) = n(h) ∧ n(h) ∈ N ∧ l = l0 ∧ P(h)}
fibonacci(l0)
{σ(rc) = fib(n(h)) ∧ n(h) ∈ N ∧ l = l0 + 9 ∧ P(h)}

fib(n) =

{
1 if 0 ≤ n ≤ 1
fib(n − 1) + fib(n − 2) if n > 1

Figure 5.2: Specification of the Fibonacci implementation.

In order for us to verify the correctness of this implementation, it is useful to
define the expected preconditions Pl for each of the instructions l ::s instr of the
program. These will also often be used as postconditions during the verification.
Furthermore, we denote the postcondition as P9. These assertions are defined in
Figure 5.3. We also denote disjunctions like I1 ∨ I2 ∨ I9 by I129, and the part
of the fibonacci program whose instructions are defined with labels l such that
l1 + l0 ≤ l ≤ l2 + l0 by fibonaccil1−l2(l0).
For proving that the specified triple is valid, we will divide the program in three
blocks: the initialization, from l to l + 3; the loop body, from l + 4 to l + 7;
and the loop test, at l + 8. These blocks are chosen so that they have a single
point of entry — the first instruction — and a single point of exit — the last

41

5 EXAMPLES OF USAGE

I ≡ σ(rn) = n(h) ∧ n(h) ∈ N ∧ P(h)

P0 ≡ I ∧ pc = l0
P1 ≡ I ∧ pc = 1 + l0 ∧ σ(ri) = 1

P2 ≡ I ∧ pc = 2 + l0 ∧ σ(ri) = 1 ∧ σ(rc) = 1

P3 ≡ I ∧ pc = 3 + l0 ∧ σ(ri) = 1 ∧ σ(rc) = 1 ∧ σ(rp) = 1

P4 ≡ I ∧ 0 < σ(ri) < σ(rn) ∧ pc = 4 + l
∧ σ(rc) = fib(σ(ri)) ∧ σ(rp) = fib(σ(ri)− 1)

P5 ≡ I ∧ 0 < σ(ri) < σ(rn) ∧ pc = 5 + l
∧ σ(rc) = fib(σ(ri)) ∧ σ(rp) = fib(σ(ri)− 1) ∧ σ(rt) = fib(σ(ri))

P6 ≡ I ∧ 0 < σ(ri) < σ(rn) ∧ pc = 6 + l
∧ σ(rc) = fib(σ(ri) + 1) ∧ σ(rp) = fib(σ(ri)− 1) ∧ σ(rt) = fib(σ(ri))

P7 ≡ I ∧ 0 < σ(ri) < σ(rn) ∧ pc = 7 + l
∧ σ(rc) = fib(σ(ri) + 1) ∧ σ(rp) = fib(σ(ri))

P8 ≡ I ∧ pc = 8 + l0
∧ ((σ(rn) = 0 ∧ σ(ri) = 1) ∨ (σ(ri) ≤ σ(rn) ∧ σ(ri) > 0))

∧ σ(rc) = fib(σ(ri)) ∧ σ(rp) = fib(σ(ri)− 1)

P9 ≡ n(h) ∈ N ∧ P(h) ∧ pc = 9 + l0 ∧ σ(rc) = fib(σ(rn))

Figure 5.3: Assertions for verifying the Fibonacci implementation.

instruction —, maintaining a linear flow of execution within them. To prove the
correctness within each of these blocks, we follow the pattern shown in Figure 5.43.
We essentially use Happend to divide the block into the first instruction and the
rest of the block, prove the individual instruction with the appropriate rule then
proceed subdividing until we reach the last instruction.

When using Happend, however, the proved triple is based on an invariant. We
always choose it to be the disjunction of the block’s postcondition and the of pre-
conditions for the first and second instructions of the block. Since the precondition
for the first instruction is the precondition of the block itself, and since only the
postcondition accepts a PC outside the domain of the block, We can clearly use
Hconseq to obtain the required triple.

When using the rules for single instructions, on the other hand, it is easiest to

3Note that on the figure we omit parts of preconditions when applying Hdo, namely those
that assume the PC does not point to the instruction. The proofs for these cases are usually
trivial.

42

5.3 Worker Process

prove a triple with a single pre- and postcondition. This can also be adapted with
Hconseq, since the precondition is the only part of the block invariant that accepts
the current PC and since the postcondition implies a disjunction that contains it.
The only parts left to prove are the premises of the instruction rules, i.e. Hdo,
which are quite trivial. An example is the proof for the first instruction of the
program:

P0 =⇒ ∀σ′∈{σ[ri := 1]}. P1[σ
′/σ, pc+1/pc]

≡ P0 =⇒ P1[σ[ri := 1] /σ, pc+1/pc]

≡ I ∧ pc = l0 =⇒ I [σ[ri := 1] /σ, pc+1/pc] ∧ pc + 1 = 1 + l0 ∧ σ[ri := 1](ri) = 1

≡ I =⇒ I [σ[ri := 1]/σ, pc+1/pc]

≡ σ(rn) = n(h) ∧ n(h) ∈ N ∧ P(h) =⇒ σ[ri := 1](rn) = n(h) ∧ n(h) ∈ N ∧ P(h)

≡ σ(rn) = n(h) =⇒ σ(rn) = n(h)

≡ >

In order to combine the proofs for the single blocks, we use a similar pattern,
which may be seen in Figure 5.5. The implications that need to be proven for the
application of Hconseq are, again, rather trivial.

5.3 Worker Process

It often occurs, in distributed systems, that an algorithm has to be frequently
executed with different inputs. It is the case, for instance, of search engines that
must respond to thousands of requests per second. In order to deal with a heavy
load, many worker processes are often employed. Each worker is tasked with
receiving the inputs for the algorithm, computing the result and sending it back.
In this subsection, a generic worker schema is implemented in LLDo. The schema
is defined in terms of the implementation impl : lab −→ int seq code of a function
f : Z −→ Z. We assume that the implementation is well-formed and that its
instructions occupy d labels. Furthermore, when we begin executing impl(l0) at
label l0, its execution should terminate at l0 + d .

The implementation of the worker may be seen in Figure 5.6. The worker consists
of a loop in which it receives a value and, if it is a negative number, stops. If
it received a natural number, the worker proceeds by running the computation
over the number and communicating the results. Usually, such worker processes
would run indefinitely, but since the proof calculus can only handle terminating
executions, the termination upon receival of a negative number was introduced.

The specification of the worker may be seen in Figure 5.7. It basically states that,
if started correctly and with a trace that doesn’t contain any events on both its

43

5 EXAMPLES OF USAGE

pc
∈
{l0 }
∧
P
0
1
8

=⇒
P
0

P
1

=⇒
pc

/∈
{l0 }
∧
P
0
1
8

P
0

=⇒
∀
σ
′∈
{
σ

[r
1

:=
1]}.P

1 [σ
′/σ
,pc

+
1/pc

]

`
{P

0 }
l0

::s
l
o
a
d
i

1
ri {P

1 }
H
d
o

`
{pc
∈
{l0 }
∧
P
0
1
8 }

l0
::s

l
o
a
d
i

1
ri {pc

/∈
{l0 }
∧
P
0
1
8 }

H
c
o
n
se

q

P
0

=⇒
P
0
1
8

pc
/∈
{l0 ...l0 +

3}
∧
P
0
1
8

=⇒
P
8

...

`
{pc
∈
{l0 }
∧
P
0
1
8 }

l0
::s

l
o
a
d
i

1
ri

{pc
/∈
{l0 }
∧
P
0
1
8 }

...

`
{pc
∈
{l0 +

1...l0 +
3}
∧
P
0
1
8 }

fibonacci1−
3 (l0)

{pc
/∈
{l0 +

1...l0 +
3}
∧
P
0
1
8 }

`
{P

0
1
8 }

fibonacci0−
3 (l0)

{pc
/∈
{l0 ...l0 +

3}
∧
P
0
1
8 }

H
a
p
p
e
n
d

`
{P

0 }
F
ibonacci0−

3 (l0)
{P

8 }
H
c
o
n
se

q

F
ig
u
re

5
.4
:

S
im

p
lifi

ed
p

a
ttern

of
th

e
p
ro

of
tree

for
th

e
verifi

cation
of

sin
gle

b
lo

ck
s

w
ith

in
fibonacci.

44

5.3 Worker Process

. . .

`
{P

0
}
fib
on

ac
ci

0
−
4
(l
0
)
{P

8
}

`
{l
∈
{l

0
..
.4

+
l 0
}
∧
P
0
8
9
}

fib
on

ac
ci

0
−
4
(l
0
)

{l
/∈
{l

0
..
.4

+
l 0
}
∧
P
0
8
9
}

H
c
o
n
se

q

. . .

`
{l
∈
{5

+
l 0
..
.8

+
l 0
}
∧
P
0
8
9
}

fib
on

ac
ci

5
−
8
(l
0
)

{l
/∈
{5

+
l 0
..
.8

+
l 0
}
∧
P
0
8
9
}

`
{P

0
8
9
}fi

bo
na

cc
i(
l 0

)
{l
/∈
{0
..
8}
∧
P
0
8
9
}

H
a
p
p
e
n
d

P
0

=
⇒

P
0
8
9

l
/∈
{l

0
..
8

+
l 0
}
∧
P
0
8
9

=
⇒

P
9

. . .

`
{P

0
8
9
}fi

bo
na

cc
i(
l 0

)
{l
/∈
{0
..
8}
∧
P
0
8
9
}
H
a
p
p
e
n
d

`
{P

0
}
fib
on

ac
ci

(l
0
)
{P

9
}

H
c
o
n
se

q

F
ig
u
re

5
.5
:

P
a
tt

er
n

of
th

e
p

ro
of

tr
ee

fo
r

th
e

co
m

b
in

at
io

n
of

th
e

b
lo

ck
s

w
it

h
in

fib
on

ac
ci

.

45

5 EXAMPLES OF USAGE

worker(l) def
=

l ::s recv rin cin ⊕
1 + l ::s bn rin (4 + d + l) ⊕

impl(2 + l) ⊕
2 + d + l ::s send rout cout ⊕
3 + d + l ::s br l ⊕
4 + d + l ::s send rin cout

Figure 5.6: Implementation of a worker process in LLDo. Values are received
through channel cin , results are sent through cout . As soon as a negative value is
received, the worker stops and sends the same value through cout .

channels, the resulting trace contains a series of receiving events of natural numbers
on cin , followed by a last receiving event of a negative number. It also contains
a series of sending events of the results on cout , followed by a last sending event
of the received negative number. Furthermore, the number of events with cin and
with cout is the same.

∀ l0 P n. ` {pc = l0 ∧ P(h) ∧ σ(rin) = n(h) ∧ n(h) ∈ N}

impl(l0)

{pc = d + l0 ∧ P(h) ∧ σ(rout) = f (n(h)) ∧ n(h) ∈ N} =⇒

` {pc = l0 ∧ h �cincout = 〈〉}

impl(2 + l)

pc = 5 + d + l0 ∧ length(h �cin) = length(h �cout)

∧ (∀ i < length(h �cin)− 1. ∃ n ∈ N.(h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout)− 1. (h �cout)[i] = cout?f (val(cin [i])))

∧ (∃ n.n < 0 ∧ last(h �cin) = cin?n ∧ last(h �cout) = cout !n)


Figure 5.7: Specification of the worker process.

The proof that the specification of the worker holds is done with the same approach
as in the fibonacci example. The definitions of the preconditions Pi for each
instruction in label i + l0, as well as of the postcondition P5+d , can be found in

46

5.4 Simple Client and Synchronization

Figure 5.8.

With this example we can see the advantages of a composable proof calculus:
the actual algorithm executed by the worker may be implemented and verified
separately. We may, in fact, use the implementation of the fibonacci function,
and its specification we already proved correct suffices for the correctness of the
worker.

5.4 Simple Client and Synchronization

Although the last two examples only involved single sequential processes, the proof
calculus may also be employed for the verification of concurrent programs. For
that, we specify a simple client for the worker process. This client sends a single
value to be processed and, after receiving the result, sends −1 to terminate the
execution of the worker. The specification of the combined program may be seen
in Figure 5.9.

The proof that the program is correct follows by straightforward application of
the rules Hconseq, Hpar and Hone. The correctness of the individual processes,
necessary for Hone, is obtained from the assumption of the lemma and from the
verification of the worker. The framing of the assertions, necessary for Hpar, is
trivial to verify. The important parts of the proof are the following two lemmas.

Lemma 5.1.

π(0) = 0 ∧ π(1) = 0 ∧ t = 〈〉 =⇒
∃ t1 t2.t ∈ (t1 || t2) ∧ (π(0) = 0 ∧ t1 = 〈〉) ∧ (π(1) = 0 ∧ t2 �cincout = 〈〉)

Proof. We take t1 = t2 = 〈〉. The equalities of the PCs and traces are trivially
verified. The synchronization of the traces is provided by SYNCSempty.

47

5 EXAMPLES OF USAGE

P0 ≡ pc = l0 ∧ length(h �cin) = length(h �cout)

∧ (∀ i < length(h �cin). ∃ n ∈ N. (h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout). (h �cout)[i] = cout?f (val(cin [i])))

P1 ≡ pc = 1 + l0 ∧ length(h �cin) = 1 + length(h �cout)

∧ (∀ i < length(h �cin −1). ∃ n ∈ N. (h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout). (h �cout)[i] = cout?f (val(cin [i])))

∧ (∃ n. last(h �cin) = cin?n) ∧ σ(rin) = val(last(h �cin))

P2 ≡ pc = 2 + l0 ∧ length(h �cin) = 1 + length(h �cout)

∧ (∀ i < length(h �cin). ∃ n ∈ N. (h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout). (h �cout)[i] = cout?f (val(cin [i])))

∧ σ(rin) = val(last(h �cin))

P2+d ≡ pc = 2 + d + l0 ∧ length(h �cin) = 1 + length(h �cout)

∧ (∀ i < length(h �cin). ∃ n ∈ N. (h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout). (h �cout)[i] = cout?f (val(cin [i])))

∧ σ(rout) = f (val(last(h �cin)))

P3+d ≡ pc = 3 + d + l0 ∧ length(h �cin) = 1 + length(h �cout)

∧ (∀ i < length(h �cin −1). ∃ n ∈ N. (h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout). (h �cout)[i] = cout?f (val(cin [i])))

∧ (∃ n. n < 0 ∧ last(h �cin) = cin?n) ∧ σ(rin) = val(last(h �cin))

P4+d ≡ pc = 4 + d + l0 ∧ length(h �cin) = 1 + length(h �cout)

∧ (∀ i < length(h �cin −1). ∃ n ∈ N. (h �cin)[i] = cin?n)

∧ (∀ i < length(h �cout −1). (h �cout)[i] = cout?f (val(cin [i])))

∧ (∃ n. n < 0 ∧ last(h �cin) = cin?n ∧ last(h �cout) = cout?n)

Figure 5.8: Assertions for verifying the worker implementation.

48

5.4 Simple Client and Synchronization

`{pc = 0 ∧ h = 〈〉}
client
{(∃ n ∈ N. h �cin = 〈cin !n, cin !− 1〉) ∧ (∃ n1 n2. h �cout = 〈cout !n1, cout !n2〉} =⇒
` {π(0) = 0 ∧ π(1) = 0 ∧ h �cincout = 〈〉}

0 ::c client || 1 ::c worker(0)
{fullySynced(t) =⇒ ∃ n ∈ N. h �cin = 〈cin .n, cin .− 1〉 ∧ h �cout = 〈cout .f (n), cout .− 1〉}

Figure 5.9: Specification of the combined worker and client.

Lemma 5.2.

t ∈ (t1 || t2) ∧

(∃ n ∈ N. t1 �cin = 〈cin !n, cin !− 1〉) ∧

(∃ n1 n2. t1 �cout = 〈cout !n1, cout !n2〉 ∧

length(t2 �cin) = length(t2 �cout) ∧

(∀ i < length(t2 �cin)− 1. ∃ n ∈ N.(t2 �cin)[i] = cin?n) ∧

(∀ i < length(t2 �cout)− 1. (t2 �cout)[i] = cout?f (val(cin [i]))) ∧

(∃ n.n < 0 ∧ last(t2 �cin) = cin?n ∧ last(t2 �cout) = cout !n) ∧

fullySynced(t) =⇒

(∃ n ∈ N. t �cin = 〈cin .n, cin .− 1〉 ∧ t �cout = 〈cout !f (n), cout .− 1〉)

Proof. We begin by proving that t �cin = 〈cin .n, cin .−1〉 ∧ t2 �cin = 〈cin?n, cin?−1〉.
We note that t � cin ∈ (t1 � cin || t2 � cin) (lemma ??). The last step of the derivation
of this fact must have been an application of SYNCSsync — SYNCSempty cannot
be applied because t1 � cin is not empty, SYNCSleft and SYNCSright because
any events coming from t1 or t2 are unsynchronized and would contradicting the
assumption that fullySynced(t).

Therefore, we have t �cin = 〈e〉at ′, with e = cin !n || cin?n = cin .n. The following
also hold.

t1 = 〈cin !n〉at ′1 ∧ t2 = 〈cin !n〉at ′2
t ′ ∈ (t ′1 || t ′2)

49

5 EXAMPLES OF USAGE

We proceed with the same kind of case analysis on the derivation of the synchro-
nization of the subtraces, obtaining the following.

t ′ = 〈cin.− 1〉at ′′ ∧ t1 = 〈cin !− 1〉a〈〉 ∧ t2 = 〈cin !− 1〉at ′′2
t ′′ ∈ (〈〉 || t ′′2)

The only way have to derived this synchronization of traces is with SYNCSempty,
therefore t ′′ = t ′′2 = 〈〉. We thus have the following, and analogous equalities for
t2 �cin .

t �cin = 〈cin .n〉at ′

= 〈cin .n〉a〈cin.− 1〉a〈〉
= 〈cin .n, cin .− 1〉

The remaining goal of t �cout = 〈cout !f (n), cout .− 1〉 can be shown by an analogous
sequence of case analysis.

50

6 Related Work

The semantics of sequential unstructured languages have already been explored.
Myreen [10] defined a similar but more detailed framework than the one used as a
basis for this thesis. This framework is defined independently of a machine model,
allowing multiple real architectures to be modelled and reasoned about.

Another active research area deals with non-functional properties of unstructured
code. In [2], for example, the timing behaviour of LLVM IR4 is modelled by the
given operational semantics.

Concurrency has also been studied in the context of low-level languages, although
with a different focus than this thesis. Several features of modern processors —
such as out-of-order execution and independent caches for multiple cores — highly
impact the behaviour of concurrent programs with shared variables. Therefore, the
current approaches are usually tied to specific architectures. Operational semantics
for the POWER and ARM architectures are defined in [1], and for Intel’s x86 in
[15].

4An assembly-like intermediate language; part of the LLVM framework, which is used by
many compilers.

51

7 Conclusions

In this thesis, the operational semantics and proof calculus for the Low-Level Do
(LLDo) language was provided. A small-step presentation of the semantics was
provided to ensure the formal specification matches the informal, intuitive under-
standing of the language. Existing techniques for compositionally dealing with
either unstructured or communicating code were combined on the big-step presen-
tation of the semantics, which was proven equivalent to the small-step presentation
for terminating executions5.

Furthermore, a proof calculus for verifying the correctness of LLDo programs was
also defined. The calculus is also compositional and was proven correct with respect
to the big-step semantics. The applicability of the calculus for verifying single
processes was shown through three examples: an implementation of the fibonacci
function; a generic“worker process”which executes some specific computation over
the values it receives through a channel, which is a common pattern in distributed
systems; a simple client for this worker, which requests the computation of a single
value. The advantages of the composability were shown by instantiating the worker
with the implementation of the fibonacci and proving its correctness by reusing the
previous proofs. The applicability of the calculus for verifying the synchronization
of concurrent programs was shown by proving the correctness of the syncronization
between a worker process and the simple client.

Since the proof calculus provided in this thesis only deals with terminating pro-
grams, it cannot be applied non-terminating, so-called reactive systems. A possi-
ble future extension is therefore dealing with specifications that, besides pre- and
post-conditions, contain invariants. This approach for verifying non-terminating
programs was already explained by Hooman [7] in the context of structured code.
Another compositional presentation of the formal semantics would have to be
developed, since the big-step semantics only specify terminating executions of pro-
grams.

Since non-functional properties such as timing are also important in many classes of
safety-critical systems, such as real-time systems, this is another possible extension.
In particular, the approach of Bartels and Glesner [2] could be extended to work
with communicating, unstructured code in a compositional way.

5The big-step semantics can only specify the behaviour of terminating executions, while the
small-step semantics may also express unfinished executions.

53

7 CONCLUSIONS

54

References

[1] Alglave, J., Fox, A., Ishtiaq, S., Myreen, M. O., Sarkar, S.,
Sewell, P., and Nardelli, F. Z. The semantics of power and arm mul-
tiprocessor machine code. In Proceedings of the 4th workshop on Declarative
aspects of multicore programming (2009), ACM, pp. 13–24.

[2] Bartels, B., and Glesner, S. Verification of distributed embedded real-
time systems and their low-level implementations using timed csp. In Soft-
ware Engineering Conference (APSEC), 2011 18th Asia Pacific (2011), IEEE,
pp. 195–202.

[3] Bartels, B., and Jähnig, N. Mechanized, compositional verification of
low-level code. In NASA Formal Methods, J. Badger and K. Rozier, Eds.,
vol. 8430 of Lecture Notes in Computer Science. Springer International Pub-
lishing, 2014, pp. 98–112.

[4] Hoare, C. A. R. An axiomatic basis for computer programming. Commu-
nications of the ACM 12, 10 (1969), 576–580.

[5] Hoare, C. A. R. Communicating sequential processes. Communications of
the ACM 21, 8 (1978), 666–677.

[6] Hoare, C. A. R. Communicating sequential processes. Prentice-Hall, 1985.

[7] Hooman, J., de Roever, W.-P., Pandya, P., Xu, Q., Zhou, P., and
Schepers, H. A Compositional Approach to Concurrency and its Applica-
tions. 2003.

[8] Milner, R. A calculus of communicating systems.

[9] Milner, R. Communicating and mobile systems: the pi calculus. Cambridge
university press, 1999.

[10] Myreen, M. O. Formal verification of machine-code programs. University
of Cambridge, Computer Laboratory, Trinity College, 2008.

[11] Necula, G. Proof-carrying code. Springer, 2011.

[12] Pierce, B. C. Types and programming languages. MIT press, 2002.

[13] Roscoe, A. W., Hoare, C. A., and Bird, R. The theory and practice of
concurrency, vol. 169. Prentice Hall Englewood Cliffs, 1998.

55

REFERENCES

[14] Saabas, A., and Uustalu, T. A compositional natural semantics and
hoare logic for low-level languages. Theoretical Computer Science 373, 3
(2007), 273–302.

[15] Sewell, P., Sarkar, S., Owens, S., Nardelli, F. Z., and Myreen,
M. O. x86-tso: a rigorous and usable programmer’s model for x86 multipro-
cessors. Communications of the ACM 53, 7 (2010), 89–97.

56

	Resumo
	Resumo Estendido
	1 Introdução
	2 Conceitos Básicos
	2.1 Semântica Formal
	2.2 Cálculo de Corretude
	2.3 Eventos e Traços

	3 A Linguagem LLDo
	3.1 Semântica Operacional

	4 Cálculo de Corretude
	5 Exemplos
	6 Trabalhos Relacionados
	7 Conclusão

	Referências
	Contents
	1 Introduction
	1.1 Problem
	1.2 Goals
	1.3 Approach

	2 Background
	2.1 Formal Semantics
	2.2 Verification Calculus
	2.3 Events and Traces

	3 The LLDo Language
	3.1 Machine States
	3.2 Channels and Events
	3.3 Syntax and Informal Semantics
	3.4 Operational Semantics
	3.4.1 Small-Step Semantics
	3.4.2 Big-Step Semantics
	3.4.3 Equivalence of the Presentations

	4 Correctness Calculus
	4.1 Definition
	4.2 Correctness

	5 Examples of Usage
	5.1 Preliminary Definitions
	5.2 Fibonacci
	5.3 Worker Process
	5.4 Simple Client and Synchronization

	6 Related Work
	7 Conclusions
	Bibliography

