
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

JULIA CASARIN PUGET

Jezz: An Effective Legalization Algorithm
For Minimum Overall Displacement

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engeneering

Advisor: Prof. Dr. Ricardo Reis
Coadvisor: Msc. Guilherme Flach

Porto Alegre
July 2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Engenharia de Computação: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Failure is the condiment

That gives success its flavor”

— TRUMAN CAPOTE

“Walk tall

Or, baby, don’t walk at all"

— BRUCE SPRINGSTEEN

ACKNOWLEDGEMENTS

Agradeço aos meus pais pelo exemplo e investimento em mim, aos meus amigos e famil-

iares que sempre me apoiaram, especialmente, o meu co-orientador e amigo Guilherme Flach,

que investiu seu tempo no meu desenvolvimento e não desistiu, e à sempre amiga Jozeanne.

Agradeço também às funcionárias Carmem e Ângela e aos professores Liane Loder e

Marinho Barcellos, seu apoio quando precisava me ajudou a acreditar mais no meu futuro na

minha profissão.

Por fim, muito obrigada ao meu orientador, Ricardo Reis, que acreditou em no meu

potencial e me proporcionou grandes oportunidades de desenvolvimento profissional e pessoal

durante meu período como bolsista no laboratório de microeletrônica do Instituto de Infor-

mática.

A Study On Standard-Cell CircuitLegalization And Jezz: An EffectiveLegalization

Algoritm For MinimumOverall Displacement

RESUMO

Legalização é um dos três estágios em que se subdivide o posicionamento de portas lógicas na

síntese física de um circuito integrado. Esse estágio consiste na seleção de posições considera-

das válidas para as portas lógicas, ou seja, posições que estejam alinhadas às bandas divisoras

do circuito, e em que não haja sobreposições.

Além de organizar as portas lógicas em posições válidas, uma legalização bem feita necessita

prover uma transição suave entre o posicionamento global, o primeiro estágio do posiciona-

mento, e o posicionamento detalhado, o último estágio, de forma que a solução alcançada no

posicionamento global seja modificada o mínimo possível.

Neste trabalho, é feito um estudo sobre os algoritmos de legalização presentes na atualidade,

suas diferenças, e também é proposto um algoritmo de legalização chamado Jezz. Para compro-

var a eficiência de tal algoritmo, foi realizada uma comparação entre ele e outros dois algoritmos

de legalização, Tetris (HILL, 2002), que é um algoritmo clássico, e Abacus (SPINDLER; SCH-

LICHTMANN; JOHANNES, 2008), que é um algoritmo semelhante a Jezz, que havia sido pro-

posto como um algoritmo superior a Tetris no tocante ao distanciamento total das portas lógicas

em relação às suas posições originais. Jezz é um algoritmo semelhante ao Abacus, sendo a dife-

rença básica entre eles de que Jezz usa uma função linear (distância de Manhattan) para calcular

o custo de mover células, enquanto Abacus usa uma função quadrática.

Palavras-chave: Legalização, Perturbação, Posicionamento, Standard-cell, Microeletrônica.

ABSTRACT

Legalization is one of the three stages in which logic gate placement is subdivided in the phys-

ical synthesis of an integrated circuit. This stage consists of selecting positions considered to

be valid for the logic gates, that is, positions that are alligned to the rows that divide the circuit

area and where there is no overlapping among the gates.

In addition to organizing the logic gates in valid positions, a well made legalization needs to

provide a smooth transition between global placement, the first stage of placement, and de-

tailed placement, the last stage, in such a way that the solution that had been reached in global

placement is modified the least possible.

In this work, a study on the legalization algorithms is performed, covering algorithms present

today and a classic one. Also, a legalization algorithm called Jezz is proposed.

To verify the effectiveness of it, a comparison between it and two others has been made, be-

ing these two Tetris (HILL, 2002), which is a classical algorithm, and Abacus (SPINDLER;

SCHLICHTMANN; JOHANNES, 2008), which is an algorithm that is simmilar to Jezz, and

that had been proposed as an algorithm superior to Tetris when it comes to overall displace-

ment of the logic gates with respect to their original positions pre-legalization. Jezz is similar

to Abacus, being the main difference between them that, whilst Jezz uses a linear function

(Manhattan distance) to calculate the cost of displacing cells, Abacus uses a quadratic function.

Keywords: Legalization. Incremental. Disturbance. Placement. Minimum. Standard-cell.

Microelectronics. Legalization. Disturbance. Placement.

LIST OF ABBREVIATIONS AND ACRONYMS

CAD Computer Aided Design

EDA Electronic Design Automation

FURG Universidade Federal do Rio Grande

HPWL Half Perimeter Wire-length

IC Integrated Circuit

ICCAD International Conference on Computer Aided Design

ISPD International Symposium on Circuit Design

RTL Register Transfer Level

UFRGS Universidade Federal do Rio Grande do Sul

VLSI Very Large Scale Integrated

LIST OF FIGURES

Figure 1.1 Typical VLSI design flow. (MLYNEK; LEBLEBICI, 1998) 11

Figure 2.1 VLSI design flowchart (NADA, 2011) ... 14
Figure 2.2 On the left, a bad placement solution, full of congestion, and, on the right, a

good one... 15

Figure 3.1 Placement area is divided into rows and sites which define valid positions
where cells can be placed... 16

Figure 3.2 An unorganized set of cells within a circuit and full and incremental legalization.17

Figure 4.1 Histogram for the comparison of Abacus and Tetris (SPINDLER; SCHLICHT-
MANN; JOHANNES, 2008) ... 20

Figure 5.1 Cache System ... 25
Figure 5.2 Insertion of a cell in between a white-space node. ... 26
Figure 5.3 Insertion of a cell enclosed by blockage... 27
Figure 5.4 Insertion of a cell when there are other nodes in the way....................................... 27
Figure 5.5 Calculation for minimum displacement cost. ... 29
Figure 5.6 Cell insertion... 33
Figure 5.7 Cell moving away from its original position during legalization. 33
Figure 5.8 Impact vector computation ... 35
Figure 5.9 Histogram of cell displacement for a benchmark ... 39
Figure 5.10 Jezz runtime increases almost linearly with the number of cells 39
Figure 5.11 Impact vector computation for the right side.. 41

Figure 6.1 Jezz runtime increases almost linearly with the number of cells. 46
Figure 6.2 Histogram of cell displacement for ibm05 ... 49

Figure 7.1 Jezz runtime increases almost linearly with the number of cells 52

LIST OF TABLES

Table 5.1 Jezz and Tetris comparison in features... 31
Table 5.2 Information about the benchmarks... 32
Table 5.3 Comparison between Tetris and Jezz legalizers ... 32
Table 5.4 Comparison between Jezz and Tetris ... 38

Table 6.1 Runtime for Jezz, Tetris and Abacus.. 45
Table 6.2 Overall displacement for Jezz, Tetris and Abacus ... 47
Table 6.3 Average displacement for Jezz, Tetris and Abacus .. 48
Table 6.4 Maximum displacement for Jezz, Tetris and Abacus... 50

CONTENTS

1 INTRODUCTION.. 11
1.1 Outline of this thesis .. 13
2 THE PROCESS OF IC DESIGN AND PHYSICAL SYNTHESIS................................. 14
3 PROBLEM DEFINITION .. 16
3.1 Full and Incremental Legalization ... 16
4 RELATED WORK .. 18
4.1 Tetris Legalizer... 18
4.2 Abacus Legalizer.. 19
4.3 HiBin Legalizer .. 21
4.4 BonnPlace ... 21
4.5 Other Legalization Approaches.. 22
5 JEZZ LEGALIZER... 23
5.1 Data Structures .. 23
5.2 Cache Memory ... 25
5.3 Legalization .. 26
5.3.1 Node Insertion... 26
5.4 Jezz Version 1.0 .. 28
5.4.1 Impact Computation.. 29
5.4.2 Optimum Cost... 30
5.4.3 Experimental Results .. 31
5.5 Jezz Version 2.0 .. 33
5.5.1 Impact Computation.. 34
5.5.2 Optimum Shift .. 36
5.5.3 Experimental Results .. 37
5.5.4 Complexity Analysis... 39
5.6 Jezz Version 3.0 .. 40
5.6.1 Impact Computation.. 41
5.6.2 Optimum Shift .. 41
6 EXPERIMENTAL RESULTS .. 44
6.1 In Terms of Runtime.. 44
6.2 In Terms of Minimizing Displacement... 46
6.3 Further Possible Improvements.. 51
7 COMPLEXITY ANALYSIS ... 52
8 CONCLUSION .. 53
REFERENCES.. 54

11

1 INTRODUCTION

The design flow of a VLSI circuit consists of many steps, a flowchart can bee seen in

figure 1.1.

In this work, the main focus is on physical design, a very complex process which is

broken into steps, one of which is placement, when component positions are selected.

Figure 1.1 – Typical VLSI design flow. (MLYNEK; LEBLEBICI, 1998)

Physical design, as noted by (SHERWANI, 1993), is very complex, even being divided

into conceptually easier steps. Concerning nowadays market requirements, that demand quick

time-to-market, restricted design styles are used to reduce its complexity.

One of these design styles is standard-cell, a simpler style that consists of rectangular

cells of same height, which is the type of cell that Jezz handles in legalization stage, however,

the original concept of legalization is not limited to standard-cell, as all circuits with other

design styles must be legalized.

12

With physical design complexity in mind, EDA tools come in handy. These kind of tools

are CAD for electronics, in our case, microelectronics, that aid in the process of the conception

of an integrated circuit. Algorithms are produced based on heuristics for executing the steps of

the physical design. The main proposition of this work is an algorithm for EDA to execute the

legalization step.

Within the physical synthesis of an integrated circuit, the placement step is responsible

for selecting places to insert the circuit components, minimizing the wire-length connecting

them. Moreover, placement algorithms also should try to avoid creating congested areas where

the number of connections is higher than the available space to route them.

Typically, the placement step is divided into there phases: global placement, legalization

and detailed placement. During the global phase, the overlapping restriction is relaxed, and a

position for the components is first set. Although overlapping is allowed, the task of the global

placement method is to spread cells reducing it, while minimizing wire-length, among other

objectives.

The remaining overlapping is removed in the legalization step, where cells are also

moved to legal positions within the circuit area, aligned to rows. Usually, the legalization

process tries to displace the cells as little as possible as a way to preserve the initial solution

obtained from global placement. After legalization, detailed placement makes fine adjustments

to cell positions, performing optimizations that are hard to be seen during the global phase.

This work presents a legalization method called Jezz, named after the 1992 game JezzBall

(WIKIPEDIA, 2014), and its three versions, as it was improved over time. The first version of

Jezz, 1.0, was used in our placement flow, UFRGS/FURG Brazil, which took the 1st place in

ICCAD 2014 Incremental Timing-Driven Placement Contest.

Jezz can perform both full and incremental legalization, indicating the shift impact

caused by inserting a cell in a row, because other cells might have to be shifted to make room for

the new one. It intrinsically handles cell-to-site alignment and has blockage support. A cache

system is used to allow fast look-up during incremental legalization, allowing Jezz to support

detailed placement algorithms. The main contributions of this work are

• A full and incremental legalization method able to select the minimum displacement re-

quired to insert a cell in a row;

• support to incremental legalization;

• support to obstacles.

13

1.1 Outline of this thesis

This work is organized in 8 chapters. Chapter 2 emphasizes physical synthesis, for

providing a brief background on the design flow step where legalization is inserted. Chapter

3 describes the nature of the legalization problem, while Chapter 4 describes the sate-of-the-

art that we have in legalization. Chapter 5 describes the whole functioning of the legalization

approach Jezz, Chapter 6 presents the results of the comparison made between Jezz and two

other legalization approaches, Chapter 7 analyzes the complexity of the final version of Jezz

after obtaining the runtime of the experimental results and Chapter 8 finishes with a conclusion.

14

2 THE PROCESS OF IC DESIGN AND PHYSICAL SYNTHESIS

As seen in Figure 2.1, there are many steps in the design flow of a VLSI circuit. This

work focuses on legalization, which is a substage of placement, itself, a stage of physical design.

Physical design flow is also called the place and route because of its two main stages,

that are interconnected. It is the back-end process of finding the physical location for the circuit

components and interconnecting them.

Figure 2.1 – VLSI design flowchart (NADA, 2011)

First, the circuit is partitioned, to form a number of macro-blocks. Then, in the floorplan-

ning step, equivalently to making the floor plan of an apartment, the macro-blocks are placed

on the layout surface to minimize area and interconnection length.

Then, comes the placement step, in which the components’ physical locations are se-

lected, within the available area in the circuit.

It can be driven to timing, area, power, and so on. The most important thing about

placement, after selecting positions for the cells, naturally, is to reduce the wire-length of the

cell interconnections. Mostly, this is made having the HPWL in mind, a most widely used

approximation, which is half of the perimeter of the minimum bounding box that encloses all

the pins of the cell net to be connected.

A poorly made placement can lead to unfeasible routing if one does not take into account

that the cells must be nicely spread in such a way that there is little wire congestion, as shown

in Figure 2.2.

15

Figure 2.2 – On the left, a bad placement solution, full of congestion, and, on the right, a good one

After placement, global routing is performed. It determines coarsely the routes for the

interconnections between the circuit cells.

Then, in the detailed routing step, the exact routes for the interconnection wires are

determined.

The last step is the verification, to make sure everything is in agreement with the design

rules, if not, manual fixes are performed.

Iteration an backtracking can be performed until the goals are reach for each individual

step of the flow.

16

3 PROBLEM DEFINITION

Legalization is the process of aligning cells to valid positions and removing overlaps

among them, while reducing the total cell movement, providing a smooth transition between

global (rough) placement and detailed. The total cell movement, also the legalization cost,

is defined by the sum of the Manhattan distance from the original cell positions (i.e. pre-

legalization) to the final cell positions (i.e. pos-legalization) as shown in Equation (3.1).

∑

∀cell

(
|xcelloriginal − xcelllegalized|+ |ycelloriginal − ycelllegalized|

)
(3.1)

The circuit’s placement area is divided in same-height rows, and each row, in same-width sites,

as depicted in Figure 3.1. Cell widths are multiple of site widths, and only cells with height of

one row are handled in this work, which is the most common case for standard-cell designs. To

be considered at a valid position, a cell must be aligned vertically and horizontally to the sites

within a row. The position of a cell is represented by its bottom-left corner.

Figure 3.1 – Placement area is divided into rows and sites which define valid positions where cells can
be placed.

3.1 Full and Incremental Legalization

Legalization can be made either fully or incrementally. Typically the input solution for

full legalization is provided by the global placement step, whose goal is to roughly spread cells

while optimizing wirelength, among other objectives. As the solution might contain overlaps

among cells, legalization is performed circuit-wide, to eliminate all invalidity.

The output from the legalization process is given to detailed placement as an input,

which, at last, modifies the solution to reach more refined results based on what the placement

17

step was primarily driven to. For example, placement for the ICCAD 2014 contest was timing-

driven. Incremental legalization is the one that can be made during detailed placement, making

fine adjustments to the former solution, switching one cell position with another’s. Figure

3.2 shows that. The first circuit area on the upper left contains non-aligned cells in non-valid

positions. The middle one, on the right, contains cells that are fully legalized, and the lower left

one contains cells that are being incrementally legalized.

Figure 3.2 – An unorganized set of cells within a circuit and full and incremental legalization.

18

4 RELATED WORK

Tetris (HILL, 2002) is a classic greedy algorithm that legalizes one cell at a time and

does not move cells that have already been legalized.

Abacus (SPINDLER; SCHLICHTMANN; JOHANNES, 2008) is greedy and moves

cells that have already been legalized, using a quadratic function to calculate the best posi-

tion for the cell. Jezz has a similar approach to Abacus, but it uses a linear function to calculate

the cost of moving cells, which makes it simpler and more accurate, as it counts with the y po-

sition not only when comparing the cost of inserting in rows, but also uses the y position when

calculating the displacement cost, because it uses the Manhattan distance.

There are many other methods for legalizing a circuit, as the main objective in a legal-

ization is to remove node overlaps by displacing the nodes as little as possible. Two examples

of which are the HiBin Legalizer (LEE; WU; CHIANG, 2010), which is a legalization based

on bins and is greedy as well as the others, and BonnPlace (BRENNER, 2013), which is flow

based.

4.1 Tetris Legalizer

Tetris (HILL, 2002) algorithm starts by grouping the cells in a vector and then sorting

them in ascending order by their x-coordinate. After that, for each cell, it calculates the cost

of moving it to each of the possible rows in the circuit. The cost is obtained by getting the

Manhattan distance between the original cell position and the position it would occupy within

the row. The best cost is changed dynamically by iterating over all the possible rows to insert

the cell in, so it receives the smallest cost value found from iterating through the rows. After

a cell is placed in the best row, the row’s leftmost X position is increased by the added cell’s

length.

The process of legalizing a cell with this approach is outlined in algorithm 1. One

advantage of it is that it is fast, one disadvantage of it may lead to very uneven row lengths,

then, may fail to pack all components inside the placement region.

19

Algorithm 1: Tetris Legalizer
1 C = all cells to be legalized;
2 lj = left-most position of each row j;
3 for each cell i in C sorted by x-position do
4 best_cost =∞
5 for each row j in the circuit do
6 x = max{xi, lj}
7 cost = |x− xi|+ |yj − yi|;
8 if cost < best_cost then
9 best_cost = cost

10 best_row = j

11 end
12 end
13 xi = max{xi, lbest_row}
14 lbest_row = xi + widthi
15 end

4.2 Abacus Legalizer

Abacus algorithm starts by grouping the cells in a vector and sorting them just as well

as Tetris algorithm (see lines 1-2 in Algorithm 2). Sorting the cells according to their xposition

can be done either in increasing or decreasing order. Both of them should be tested, because the

results of each direction can be different. Experiments showed that the difference in the total

movement between both sort directions is about 0.5%.

After that, it legalizes one cell at a time, keeping the cell as close as possible to the

original position given by global placement, tentatively inserting the cell in certain rows until

the best one is found, and then selecting a position for the cell horizontally. Each cell does not

need not be moved over all rows, it is first moved to the nearest row according to the global

position and then moved above and below it. If the lower bound exceeds the minimal cost of an

already found legal position, then the movement of the cell over the rows can be stopped. This

improves the runtime a lot. Jezz also stops when it finds that the cost is not improving while

moving the cells to upper or lower rows.

Abacus also moves already legalized cells, which yields a lower overall displacement

than Tetris, but using a quadratic function to calculate the new position a cell should occupy.

The process of legalizing a cell with the least displacement possible is outlined in algo-

rithm 2. PlaceRow is how they call the optimization of the total (quadratic) movement of all

cells within one row, being the core of the approach, where they use dynamic programming.

20

Algorithm 2: Abacus Legalizer
1 C = all cells to be legalized;
2 lj = left-most position of each row j;
3 for each cell i in C sorted by x-position do
4 best_cost =∞;
5 for each row j in the circuit do
6 Insert cell i into row j;
7 PlaceRow j (trial);
8 Determine cost c;
9 if c < best_cost then

10 best_cost = c;
11 best_row = j;
12 end
13 end
14 Insert cell i in best_row;
15 Remove cell i from row j;
16 PlaceRow best_row(final);
17 end

Abacus is quite similar to Jezz in its approach, the main difference between them is that

Abacus uses a quadratic function.

If the circuit has macros (non-standard cells), they assume that the macros are already

placed overlap free. In addition, the rows blocked by macros are sliced in new rows (subrows),

such that they are not blocked by macros anymore. Figure 4.1 shows that, for the comparison

that they made with Tetris, more cells in Abacus move much less, whilst more cells in Tetris

move much farther from their original positions.

Figure 4.1 – Histogram for the comparison of Abacus and Tetris (SPINDLER; SCHLICHTMANN;
JOHANNES, 2008)

21

4.3 HiBin Legalizer

HiBin is a hierarchical bin-based legalizer that is said to provide minimum disturbance

that handles standard-cells and does not handle macro-blocks. For this approach, first, a chip is

divided into several bins with equal size. Then, starting with the most crowded not yet legal-

ized bin, they use a merging procedure to integrate the bins into a cross-shape or square-shape

region until cell density in that region is less than a specific threshold value. Last, legalization

is performed efficiently, preserving cell orders in each row and minimizing the weighted sum

of movement distances. In order to minimize movement, HiBin, as well as Jezz and Abacus,

moves already legalized cells. HiBin was compared to the state-of-the-art method Abacus and

was better in terms of total overall displacement of cells by an average of 48%. It also reduces

HPWL by 47%. As HPWL To accurately estimate the movement, the weighted sum of Man-

hattan distance movements of all cells is chosen as the disturbance metric instead of the Abacus

metric, the total weighted quadratic movement of all cells.

4.4 BonnPlace

BonnPlace, part of the BonnTools (KORTE; RAUTENBACH; VYGEN, 2007) is a

placement tool used in industry that has, in its legalization process, minimum cost flow and

dynamic programming algorithms. It handles standard-cells and macro-blocks. It has a com-

plex implementation, as it is also a placement tool. For legalization, it uses a sophisticated

minimum cost flow approach and dynamic programming algorithms for the multiple knapsack

problem (MARTELLO; TOTH, 1990). For macros, it legalizes small groups of up to four at a

time, attempting to put macros close to each other in common groups. It considers the legal-

ization process as part of the detailed placement, like an integrated phase, as shown in Section

VIII (BRENNER, 2013, p 8). It uses the concept of zones, which are the maximal parts of the

rows that are not blocked by fixed cells. The first phase of legalization ascertains that no zone

contains more cells than can fit into it. The second places the cells within each zone in the given

order. The third phase is the one of refining, switching positions of two given cells and doing

more complicated actions, which is the incremental optimization.

22

4.5 Other Legalization Approaches

Domino (DOLL; JOHANNES; ANTREICH, 1994) is an approach that breaks the cells

into subcells, all with same height and width, and breaks rows into places, and assigns the

subcells to places in rows by solving a min-cost max flow.

The legalization in (BRENNER; VYGEN, 2004) acts similarly, althouth it assigns sets

of modules to row regions.

Fractional Cut approach (AGNIHOTRI et al., 2003) improves recursive bisection based

placement. To handle cut lines that are not limited to the row boundaries of the circuit, they

developed a legalization algorithm based on dynamic programming. This combination lowered

the wire-lengths produced by their placement tool. Hence, legalization is a complimentary

algorithm to their fractional cut approach. The fractional cut is bisectional based and results in

an uniform distribution of cell area.

Legalization has, as well, to assign cells to rows after rough placement, because the bi-

sectional based approach, as mentioned, has cut lines that are not limited to the row boundaries.

It is done by using dynamic programming. The approach operates on a row-by-row basis. Then,

the cells of each row are packed from left to right.

23

5 JEZZ LEGALIZER

Jezz, the method proposed in this work, is a standard-cell circuit legalization approach

that minimizes overall displacement. It has been improved through time. There are actually

four versions of Jezz, but the first one is not going to be addressed here. This one, that we

may call version 0.0, was used in our winning flow for the ICCAD 2014 Timing Driven Place-

ment Contest (ICCAD. . . , 2014). This version was part of the placement tool uPlace that we

developed for this contest.

There is one thing one must bear in mind, and it is that this is a much simpler version

than the others covered here, as it does not even have the concept of calculating the best shifting

cost by sweeping left and right vectors, as we are going to show in this section.

Hence, only three versions of Jezz will be presented here. Yet, there are some imple-

mentation concepts that have not been changed since version 1.0.

In Jezz, the sites mentioned in Chapter 3, seen in Figure 3.1, are unit-wide, that is, the

sites that subdivide the rows are considered to have the width of 1 unit.

The concept of insertion of the node in a row is the same in all versions, that is, when

there are nodes in the way, they have to be shifted to make room for the new node. What

changes through the versions is the way the cost for moving the nodes and the optimum cost for

choosing the best new location is calculated. Therefore, the structures and concepts that have

not been altered are shown in separate sections.

5.1 Data Structures

The logic gates to be legalized are called nodes. Jezz defines three types of nodes: (1)

white-space, (2) blockage and (3) cell. Blockage and cell nodes have constant widths, while

white-space widths can be dynamically adjusted.

White-space and cell nodes are free to be moved, while blockage nodes are fixed, as

they are macro-blocks or nodes that somehow cannot be moved to another position in any

circumstance. Macro-blocks, actually, are not mandatorily fixed, but, generally, they have their

positions decided prior to placement, hence, they are seen as fixed during legalization.

Cell nodes model movable standard-cells, and blockage model fixed standard-cells or

obstacles (e.g. macro-blocks, uneven row widths).

A row is represented using a double-linked list of nodes. Every list has, at least, one

node, and the sum of the node widths equals the row width. An "empty" row has one and only

24

one white-space node, with the same width of the row.

By construction, no two white-space nodes can be neighbors within a row. If this hap-

pens during the legalization process, the white-space nodes are merged into one. Also, a zero-

width white-space is not allowed, so that any zero-length white-space is automatically deleted.

Jezz works only with integer positions (i.e. row and site indexes), which intrinsically

handle the cell-to-site alignment.

25

5.2 Cache Memory

All the versions count with a cache memory system that has not been changed since

version 1.0. The goal of this system was to aid in the process of looking up a certain node within

a row. For that, the row itself is divided into regions, and, to ease the process of executing the

algorithm and making shifts.

Rows are subdivided into same-width regions, to allow fast look-up to a node at certain

x position. It reduces sequential search overhead, since the original cell list does not divide

the row in regions. For each region, a pointer to a node inside that regions is stored. There is

one cache vector for each row, and they are computed during full legalization. The way Jezz

uses this system is to use the cached node as the starting point for the sequential search. Each

reagion keeps a pointer to a node that is potentially within it, and, as Jezz does not keep the

cache always consistent to avoid unnecessary overhead, this pointer may be invalid.

If the node is displaced horizontally, the cache pointer may point to a node outside of its

respective region. For little displacement, that should be fine, as we still get a node close to the

aimed region anyway.

If the node was moved to another row, the pointer gets invalid, and Jezz looks at the

pointer in neighboring regions. The cache pointer to a region is updated when a look-up at that

region is performed.

Figure 5.1 shows the cache system, pointing inside the row regions.

However this may help when an incremental legalization is being made, for a full legal-

ization, when cells are inserted by x-position, the cache system does not need to be used, as it

is easier to search nodes sequentially from the extremity of the linked list, since they are very

likely to be the last/first one.

Figure 5.1 – Cache System

26

5.3 Legalization

Jezz legalizes one cell at a time, being a greedy algorithm (SARRAFZADEH; WONG,

1996, p 21). Given a cell and a row, the impact caused by the insertion of the cell in such row is

computed. Jezz uses the impact information to select the best row to actually place the cell.

In a full legalization, all cells are processed in a specific order, in this case, from left to

right (increasing x position).

For this work, we consider only processing cells by increasing original x position, as

usually is done by legalization methods, however, Jezz could process cells in any order.

In full legalization, we only insert the cell in the rightmost position available in the row,

making shifts to the left if necessary. In incremental legalization, there might be neighboring

cells to the right as well as left.

In an incremental legalization, cells are assumed to be already legalized, and fine adjust-

ments are performed iteratively to the full legalization already made, so shifts to the right can

also be performed. This is typically used by detailed placement algorithms.

Since the cells are not necessarily inserted in any specific order of x, the impact on

already legalized cells must be computed to left and right.

5.3.1 Node Insertion

There are three main types of insertion cases that can occur during legalization. When

the cell’s new position happens to be located in between a white-space node, the white-space is

broken into two new white-spaces, and the cell is placed between them, as shown in Figure 5.2.

Figure 5.2 – Insertion of a cell in between a white-space node.

Another case is when there is a blockage node enclosing the position for the cell, as

shown in Figure 5.3. As a consequence, the length of the blockage node in the way is added to

the distance to be shifted.

27

Figure 5.3 – Insertion of a cell enclosed by blockage.

The last case is when there are movable nodes in the way, either occupying the whole

space where the cell should be inserted or just part of it, as Figure 5.4 shows.

Figure 5.4 – Insertion of a cell when there are other nodes in the way.

In that case, we divide the row between its left and right sides. The cell can be shifted to

either sides.

Jezz computes the cost of positioning the cell, because other cells may have to be shifted

by one or more sites in order to make room for the new one.

Two cost vectors (left/right) are computed. The kth element in the vector represents the

accumulated cost necessary to open k sites to such side.

The size of the side vector is always the width of the cell to be inserted plus 1, because

the vector goes from zero shifts needed to a number of shifts needed equal to the width of the

cell.

The total cost is the summation of the shifts to the right and to the left. Note that the

summation of the displacement to the left and to the right is chosen in such a way that the

number o white-space units equals the width of the node to be inserted.

The case in Figure 5.4 is the one in which the concept is still the same regarding the

room that needs to be made for the new cell to be inserted, but what changes through Jezz

versions is the way it chooses the best combination of shifts and which cells are to be moved

to make room for the new one, which will be presented in the next sections. For this case, as

we are considering movable cells, the terms cell and node will be used interchangeably, while a

white-space node will be explicitly referred to as white− space. All the versions use two cost

vectors, one for each left/right side in which the row is divided, and populate the vectors based

on different calculations.

28

5.4 Jezz Version 1.0

Version 1.0 is a simple one compared to the next two, but already deals with the concept

of combining accumulated costs for determining the best option of shifts for node insertion.

It provides a simple calculation for the costs for the case cited previously in 5.3.1, in

which one or more cells need to be shifted to make room for the new one. The new node is

supposed to be inserted in between the node that overlaps its left edge and the immediate right

neighbor (in the case of an incremental legalization, as there will be no right neighbor in full

legalization). Starting at the left and right nodes, two sequential searches are then performed to

check the cost of shifting nodes to open the required room.

This version counts with the concept of weight of the node, which means that one node to

be inserted can be of priority to move, or, prior to legalization, the designer could have decided

that the node must preferably not move, or be as close as possible to its original position, hence,

the concept of weight could come in handy, for it can be inserted in the calculation in order to

give preference to moving one node in detriment of another.

The full legalization algorithm used is outlined in 3.

Algorithm 3: Full Legalization
1 for each cell c sorted by increasing x-position do
2 r0 = nearestRow(c)
3 best_impact = computeImpact(c, r0)
4 best_row = r0
5 for each row r above r0 do
6 impact = computeImpact(c, r);
7 if impact < best_impact then
8 best_impact = impact
9 best_row = r

10 else
11 break;
12 end
13 end
14 for each row r below r0 do
15 // see lines 6-12
16 end
17 insertCell(cell, best_row);
18 end

29

During full legalization, if we sort cells in ascending order of X-positions, we will be

making legalization from left to right, so, when legalizing a node, overlaps may only be hap-

pening on the left side, as there will be no right neighbors for that node. As a consequence of

it, full legalization ends up being the process of appending new nodes and removing overlaps to

the left, hence, the cost vector for the right direction may be empty.

For each cell, the impact is first computed for the nearest row with respect to the original

cell position. Then, rows above and below the initial row are sequentially analyzed from the

closest to the farthest to the initial row. Finally, the cell is placed in the row with the least impact

on the legalization cost.

5.4.1 Impact Computation

The search algorithm sequentially sweeps the nodes seeking for white-spaces. The

search stops when the accumulated width of white-spaces is greater or equal to the width of

the new node or when there is no more space left. During the search, a cost vector is filled such

that the element at index k indicates the cost of shifting nodes by k units. The left and right cost

vectors are then used to define the optimum shifting amount for each direction. This procedure

is outlined in Algorithm 4. The term e in line 13 represents the weight of the node.

Figure 5.5 depicts the right and left cost vector computation to open room to the red

node assuming the node weights are all one. To open a single space to left, only one node needs

to be shifted. Therefore the shifting cost is one as reported by left[1]. Similarly when two

spaces are required to left, three nodes need to be shifted. However note that the first node will

shift two spaces while the last two nodes only need to be shifted one space. So that, the overall

cost is 4 as reported by left[2].

Figure 5.5 – Calculation for minimum displacement cost.

30

Algorithm 4: Cost Vector Computation
1 node = reference node;
2 disrupt[0..w] = {0, · · · , 0};
3 overflow = w;
4 e = 0;
5 k = 0;
6 while (node and overflow > 0) do
7 if node is blockage then
8 break;
9 end

10 if node is whitespace then
11 offset = width(node) > overflow? overflow : width(node);
12 for i = 0; i < offset; i++ do
13 disrupt[k+1] = e + disrupt[k];
14 k++;
15 end
16 overflow = overflow - offset;
17 else
18 e += weight(node);
19 end
20 node = previous(node);
21 end

5.4.2 Optimum Cost

Once the cost vectors are computed, one needs to choose the optimum amount to shift

left and right. This is performed by sweeping the two vectors in opposite directions as presented

in Algorithm 5. Note that, by traversing the vectors in opposite directions, the amount of open

spaces always matches the new node width. The combination of left and right shifts with the

lowest cost, plus the cost of inserting the node itself (represented by e×max(0, |overlap_left−
i|)), is then selected, as seen in line 9.

31

Algorithm 5: Optimum Shift
1 maxl = w − overflowl // maximum available space to left (up to w);
2 maxr = w − overflowr // maximum available space to right (up to w);
3 if maxl +maxr < w then
4 overflow;
5 end
6 best_cost =∞;
7 best_i = −1;
8 for i = w −maxr; i ≤ maxl; i++ do
9 cost = left[i] + e×max(0, |overlap_left− i|) + right[w − i];

10 if cost < best_cost then
11 best_cost = cost;
12 besti = i;
13 end
14 end
15 displace left cells by besti to left;
16 displace right cells by w − besti to right;
17 displace current cell by overlap_left− besti; // negative displacement means a left

displacement

5.4.3 Experimental Results

Jezz version 1.0 was only compared with Tetris in full legalization, Abacus was not

present in the work yet. Both Tetris and Jezz algorithms follow the same general premise, in

which the cells are ordered by ascending x coordinate and reinserted in the circuit one by one.

Each cell is inserted within the row that generates the lowest cost at the time.

Table 5.1 summarizes features that Jezz and Tetris have or not. Node weighting, in line

4, is the possibility to make a node more important to be place with more priority than the

others. It is represented by the weight term e in Algorithm 4.

Table 5.1 – Jezz and Tetris comparison in features
Feature Jezz Tetris

superfast no yes
incremental yes no
node weighting yes no
overflow control yes no
blockage support yes no

For the experiment, each benchmark has been primarily randomly placed and then tested

for the legalizers. This procedure has been made a hundred times for each benchmark. The

tests were performed in a machine with 64 bit processor Intel Core i7, 3.4GHz, running Ubuntu

32

version 14.04. The tool used was written in language C++. The benchmarks used were the

ones available from ICCAD 2014 Incremental Timing-Driven Placement Contest. Information

about each of the benchmarks is shown in Table 5.2. Table 5.3 shows a comparison between the

legalizers Tetris and Jezz, after the experiment, in terms of elapsed time during the execution of

the algorithm and the total displacement of the cells within the circuit for different benchmarks.

Table 5.2 – Information about the benchmarks
Benchmark #Cells #I/O Pins Has macro-blocks Dimensions (µm) Density
b19 219268 47 No 1187.2x1188 0.76
leon2 794286 700 No 2086.4x2086 0.7
leon3mp 649191 333 No 1989.2x1990 0.7
vga_lcd 164891 184 No 898.6x898 0.7

The table above shows that, even though Jezz supports fixed macro-blocks, the compar-

ison has only been done with standard-cells, because Tetris only does not provide support for

macro-blocks.

Table 5.3 – Comparison between Tetris and Jezz legalizers
Tetris Jezz

benchmark execution time (s) displacement (µm) execution time displacement
b19 50.999 2.33727e+07 10.0963 2.97269e+07
leon2 326.41 9.1051e+07 46.0866 1.13496e+08
leon3mp 250.128 6.93014e+07 32.9324 8.64554e+07
vga_lcd 30.3778 1.63691e+07 7.70431 1.95958e+07

As we can see from Table 5.3, Jezz’s performance was worse than Tetris in terms of

displacement, yet its runtime was much faster than Tetris, especially, for circuits with a large

number of cells. This may be due to the fact that Tetris searches for the best row by parsing

every possible row, not only parsing the adjacent rows. Jezz, on the other hand, only parses

the adjacent rows and it stops when it finds the best one and also it splits the available options

for placing the new cell in left and right sides. Tetris has a better displacement of all the cells

within the circuit, while Jezz has a better overall knowledge of the circuit’s available space, and

it keeps a cache memory.

One explanation for Tetris having better displacement is that it does not move cells that

had already been legalized. Jezz does, hence, when one cell is to be inserted within a row, some

other cells may be moved as well. Albeit they move by small distances, only to make room for

the new one, this counts as overhead in displacement.

Another explanation is that Tetris does not take overflow into account, while Jezz does,

displacing the cells to avoid overflow.

33

5.5 Jezz Version 2.0

In this new version of Jezz, that is in (PUGET et al., 2015), the way it populates the cost

vectors and computes the minimum shifting cost is different from version 1.0.

So far, only the distance to be shifted was taken into account. Now, if, when shifting

the blue node shown in the lowest row in Figure 5.6, it happens to be getting nearer its original

position that it had in global placement, the cummulated cost for shifting k sites is decreased

by the amount with which the distance to the original position diminishes. For example, if it

is getting two sites closer to its original position, the cost for shifting k sites is decreased by

two. On the other hand, if it is getting farther to its original position, the cost is increased by the

amount, so, in the example, if it were to get two sites farther from its original position, the cost

would be increased by two.

Figure 5.7 shows with more clarity how a node might be getting nearer or farther from

its global position pre-legalization. The green node gets to be 4 positions away from its original

position, hence, the cost of making such change ends up in increasing the cost by 4 units.

Figure 5.6 – Cell insertion

Figure 5.7 – Cell moving away from its original position during legalization.

34

5.5.1 Impact Computation

The impact is the change in the cost function due to the insertion of a cell in a row as

measured by Equation (3.1).

The node is assumed to be inserted just after the node that encloses its left edge as

shown in Figure 5.6. This assumption keeps the relative ordering of cells, which is a well

known property in terms of maintaining the placement quality. As we make the decision of

inserting the node in that certain position, it breaks the combinatorial nature of the legalization

problem. Still, multiple choices arise when inserting a cell in between two other cells. One may

shift all cells to the left or to the right or choose any combination of left and right shifts. The

main contribution of Jezz is to select the optimum combination of left and right shifts.

To do so, Jezz computes two impact vectors that indicate the impact of shifting nodes

to left (impactl) and to right (impactr), as in the previous version. The kth element of each

vector reports the impact of opening k sites to the left/right, meaning that other nodes might

have to be shifted as well to make room for the new cell. The size of the vector is the same as

the width of the cell, w, being inserted, plus one, as the maximum number of spaces required in

each direction is bounded by the cell width.

The impact computation for the right direction is outlined in Algorithm 6. A similar

algorithm is used for the left direction. Nodes are sequentially processed from the reference

node, which is the immediate neighbor of the node to be legalized. In Figure 5.8, being the

node in red border the one to be legalized, the reference node to the left would be the blue one

that overlaps with it.

Every time a cell node is visited, the impact of shifting it left by 0 up to k sites is

accumulated in the impact vector (lines 11-13). The search stops when the accumulated width

of whitespaces is greater or equal to the width of the cell being inserted, or when there is no

more space left.

35

Algorithm 6: Impact Computation
1 node = reference node;
2 impactr[0..w] = {0, · · · , 0};
3 k = 0;
4 while (node and k < w) do
5 if node is blockage then
6 break;
7 end
8 if node is whitespace then
9 k += min{width(node), w − k}

10 else
11 for i = k + 1, d = 1; i ≤ w; i++, d++ do
12 impactr[i] +=

weightnode × (|xnodeoriginal − (xnodecurrent + d)| − |xnodecurrent − xnodeoriginal|)
13 end
14 end
15 node = next(node);
16 end
17 overflowr = w − k

Figure 5.8 shows an example of the impact vector computation made in incremental

legalization, because of the neighbouring cells on the right side. In full legalization, it would be

the same concept, but there would be no cells to the right.

At the top, the original positions of the nodes, xnodeoriginal, are represented. At the bottom,

the current positions of nodes, xnodecurrent, are depicted. In the middle, the shifted position of nodes

at the right side of the cell being inserted is shown for a displacement of 4 sites.

Figure 5.8 – Impact vector computation

To open a single space to the right, only one node needs to be shifted. Therefore, the

shifting impact is one, as reported by impactr[1]. If, when shifting by one site to make room for

36

the new node, the node being shifted is approaching its original position, the cost is decreased

by one. If, on the other hand, the node is getting farther from its original position, the cost is

increased by one, and so on, that is why we see an impact of +4 when moving the green node

pointed by arrows 4 sites to the right from its previous position.

Still as in version 1.0, each index in the cost vector for each side is computed by the

summation of the costs of moving each of the cells in the way aside.

5.5.2 Optimum Shift

Again, as in version 1.0, once the cost vectors are computed, one needs to choose the

optimum amount to shift left and right. This is performed by sweeping the two vectors in

opposite directions, as presented in Algorithm 7. What differs from the previous version is the

way it is done. As explained, the algorithm now questions if a node is approaching or not its

original position, so the shifting cost can not only be increased, but also dynamically reduced.

Note that, by traversing the vectors in opposite directions, the amount of open spaces

always matches the new node width. The combination with the lowest cost of left and right

shifts plus the movement of the cell being inserted itself is then selected.

Algorithm 7: Optimum Shift
1 maxl = w − overflowl // maximum available space to left (up to w);
2 maxr = w − overflowr // maximum available space to right (up to w);
3 if maxl +maxr < w then
4 overflow;
5 end
6 best_cost =∞;
7 best_i = −1;
8 for i = w −maxr; i ≤ maxl; i++ do
9 cost = left[i] + e×max(0, |overlap_left− i|) + right[w − i];

10 if cost < best_cost then
11 best_cost = cost;
12 besti = i;
13 end
14 end
15 displace left cells by besti to left;
16 displace right cells by w − besti to right;
17 displace current cell by overlap_left− besti; // negative displacement means a left

displacement

37

5.5.3 Experimental Results

For the experiment, different benchmarks were used from the ones in the experimental

results of version 1.0. The benchmarks used were the ones available from ISPD 2002 bench-

mark suite.

These other benchmarks were chosen over the previous ones because this suite provides

18 different benchmarks, which is a good quantity of circuits for the experiment, and, most

of all, because the number of cells in the benchmarks increases almost linearly, starting from

over 12k to 210k cells. This contributes to a good knowledge of Jezz’s performance in terms of

runtime feasibility and overall displacement improvemet for smaller and larger circuits that we

would not have had we chosen the previous benchmarks.

The procedure of primarily randomly placing each benchmark and testing it has been

made a hundred times for both legalizers. The tests were performed in a machine with 64 bit

processor Intel Core i7, 3.4GHz, running Ubuntu version 14.04. Jezz was implemented using

language C++.

This comparison does not contain Abacus as well as the previous one, because the main

focus here was first to fix the bad overall displacement results and compare again with the same

algorithm to see if the new implementation worked out.

As previously remarked, all the results from all the versions have been obtained from

full legalization, not incremental. Table 5.4 shows the number of cells each benchmark circuit

has and a comparison between the legalizers Tetris and Jezz, after the experiment, in terms of

elapsed time during the execution of the algorithm and the total displacement of the cells within

the circuit for each different benchmark.

38

Table 5.4 – Comparison between Jezz and Tetris
Jezz Tetris

Bench # Cells Time Total Time Total Improv.
(s) Disp (µm) (s) Disp (µm)

ibm01 12506 0.029 1.57E+05 0.001 2.50E+05 37.47%
ibm02 19342 0.033 2.03E+05 0.001 3.29E+05 38.23%
ibm03 22853 0.046 2.76E+05 0.002 4.53E+05 39.07%
ibm04 27220 0.055 3.21E+05 0.002 5.20E+05 38.26%
ibm05 28146 0.050 2.96E+05 0.002 4.70E+05 36.95%
ibm06 32332 0.059 3.29E+05 0.002 5.55E+05 40.67%
ibm07 45639 0.089 4.92E+05 0.003 8.21E+05 40.12%
ibm08 51023 0.095 4.97E+05 0.004 8.22E+05 39.55%
ibm09 53110 0.107 5.99E+05 0.004 9.93E+05 39.67%
ibm10 68685 0.151 8.33E+05 0.005 1.33E+06 37.51%
ibm11 70152 0.147 7.77E+05 0.006 1.30E+06 40.03%
ibm12 70439 0.157 8.66E+05 0.005 1.38E+06 37.33%
ibm13 83709 0.182 9.12E+05 0.007 1.52E+06 40.11%
ibm14 147088 0.316 1.53E+06 0.014 2.54E+06 39.57%
ibm15 161187 0.319 1.61E+06 0.014 2.68E+06 39.85%
ibm16 182980 0.391 1.90E+06 0.018 3.10E+06 38.78%
ibm17 184752 0.406 2.12E+06 0.017 3.40E+06 37.74%
ibm18 210341 0.408 2.07E+06 0.020 3.39E+06 38.88%

Average 38.88%

As we can notice from Table 5.4, Jezz 2.0 has a much longer execution time than Tetris,

but it does not take more than half a second to execute, even for larger circuits. Also, the overall

displacement of cells from their original position is diminished by almost 40% comparing to

Tetris, so it performs a smooth transition between global and detailed placement, as well, if it

must shift cells, it prefers to shift the ones that will be closer to their original positions, which

is an addendum to the previous version optimum position computation.

The histogram in Figure 5.9 shows that most of the cells from one of the benchmarks are

displaced, at most, by 10 µm, so most cells are displaced by small distances with Jezz. Tetris

displaces many cells by larger distances, being up 50k displaced by at least 20 µm.

This version, consequently, seems much better than the previous one in terms of dis-

placement, though it cannot be fully asserted because different benchmarks were used for the

experimental results in the previous version.

Nonetheless, it now has a much longer runtime. Because of the improvements in the

algorithm, it has more criteria to ascertain during execution, such as the increasing of the accu-

mulated cost by approaching an original position.

39

Figure 5.9 – Histogram of cell displacement for a benchmark

5.5.4 Complexity Analysis

The problem of finding a global optimum position for each cell is very difficult. It is part

of the placement flow, known to be NP-complete. Depending on the size of a circuit, reaching

a global minimum can become unfeasible. We propose a method for reaching a good local

minimum by calculating the overall displacement that must be made in order to make room for

the new cell within a row. The nested loops that Algorithm 6 has can give us slower runtime for

some cases and a posisbility of quadtratic complexity in worst case, but, on average, as we can

notice in the graph of Figure 5.10, the runtime increases almost linearly with number of cells.

Figure 5.10 – Jezz runtime increases almost linearly with the number of cells

40

5.6 Jezz Version 3.0

The full legalization approach used in the final version is outlined in Algorithm 8. The

difference from the previous versions is noted in lines 11-16, where a tie-break criterion is

inserted. If the best impact so far is the same as the current impact, the row that gives this

impact is chosen as best row, just as would happen if its impact were smaller than the current

best impact.

To avoid analyzing too many rows, the analysis is stopped (line 19) if the impact of a

row does not improve the lowest impact found up until now. This has little influence in quality,

but improves the runtime significantly.

The impact on cells already legalized in the row is computed as shown in Algorithm 8.

If the cost of inserting the cell within a row is the same as another, Jezz uses a tie-break criterion

of choosing the one with the least maximum displacement.

Algorithm 8: Full Legalization
1 for each cell c sorted by increasing x-position do
2 r0 = nearestRow(c)
3 best_impact = computeImpact(c, r0)
4 best_row = r0
5 for each row r above r0 do
6 impact = computeImpact(c, r);
7 if impact < best_impact then
8 best_impact = impact
9 best_row = r

10 end
11 else if impact = best_impact then
12 if curr_max_disp < smallest_max_disp then
13 best_impact = impact
14 best_row = r smallest_max_disp = curr_max_disp
15 end
16 end
17 end
18 else
19 break;
20 end
21 end
22 for each row r below r0 do
23 // see lines 6-20
24 end
25 insertCell(cell, best_row);

41

5.6.1 Impact Computation

The impact computation for the right direction is outlined in Algorithm 6 in Section 5.5.

A similar algorithm is used to the left direction. It has not changed since version 2.0.

Figure 5.11 shows an example of the impact vector computation. At the top, the original

positions of the nodes, xnodeoriginal, are represented. At the bottom, the current positions of nodes,

xnodecurrent, are depicted. In the middle, the shifted position of nodes at the right side of the cell

being inserted is shown for a displacement of 4 sites.

Figure 5.11 – Impact vector computation for the right side

5.6.2 Optimum Shift

As explained before, once the cost vectors are computed, one needs to choose the opti-

mum amount to shift left and right, so, the two cost vectors are sweeped in opposite directions,

as presented in Algorithm 9.

If the full legalization is being performed, the right cost vector does not count, as it only

might be necessary to move already legalized cells to the left in order to make space for the new

one, which is always assigned to the first rightmost available position.

42

Algorithm 9: Optimum Shift
1 maxl = w − overflowl // max available sites to left
2 maxr = w − overflowr // max available space to right
3 if maxl +maxr < w then
4 exit(overflow);
5 end
6 best_cost =∞;
7 smallest_max_disp =∞;
8 for i = maxl; i ≥ w −maxr; i- - do
9 curr_cost = |(xoriginal + w)− i|;

10 cost = impactl[i].cost+ weight× curr_cost+ impactr[w − i].cost;
11 curr_max_disp = max(max(impactl[i].disp, impactr[w −

i].disp, |node_y_disp+ curr_cost× step|);
12 if cost < best_cost then
13 best_cost = cost;
14 shifts_left = i

15 end
16 if cost = best_cost then
17 if curr_max_disp = smallest_max_disp then
18 shifts_left = i smallest_max_disp = curr_max_disp;
19 end
20 end
21 end
22 displace left nodes by shifts_left to left;
23 displace right nodes by shifts_left− i to right;

43

The optimum shift calculation in version 3.0 takes into account diminishing the max-

imum cell displacement when choosing the best cost. In each circuit, there is a cell that is

displaced more than the others, so we compute the displacement for each cell and store it in the

second position of the now double impact vector (each index of the vecor stores two values).

The first value, that appears in Algorithm 9 as impact_l.cost is the one that we use to compute

accumulated cost, and the second value, that appears as impact_l.displ is the one where we

store the maximum displacement that we got so far (for each side), and it chances dynamically.

We then compute the biggest displacement by calculating the maximum one for both cost

vectors and the node being inserted itself. It is shown in line 11, and |nodeydisp + currcost ×
step| mean the node displacement in y-axis and its x-axis displacement, given by the current

cost, but multiplied by the step factor that is used in the algorithm, as all the distances that

we work with for legalization are integer ones and the row-alligned sites are unit-wide, so, for

acquiring the maximum displacement correct value, we must do this multiplication.

The maximum displacement calculation is used in the algorithm as a criterion for cost

tie-break and it helps in achieving a smaller maximum displacement. This is the main difference

of the optimum cost calculation in version 3.0, as the other ones did not have tie-break criteria

for optimum cost (version 2.0 had for the cost computation) and do not try to diminish maximum

displacement.

The experimental results are shown in the next section, as this is the final version of the

algorithm.

44

6 EXPERIMENTAL RESULTS

In order to show the effectiveness of the latter version of the algorithm Jezz, 3.0, an ex-

periment of comparing it with two other algorithms, Tetris and Abacus, was performed, using 18

benchmark circuits for comparison. The Abacus version used here is also the one implemented

for the ICCAD Timing Driven Placement Contest 2014.

Abacus was chosen because it and Jezz have a similar approach towards legalization, and

Tetris was chosen because it is a classic algorithm, whereas a study on legalization algorithms

was performed, and Tetris is sort of an historic root for legalization.

As in the other versions, the comparison was made with full legalization, as detailed

placement was not performed, hence, no incremental legalization has been made. We consid-

ered the legalization step after global placement, so the comparison only takes into account the

first two stages of placement.

For the experiment, each benchmark has been primarily globally placed using mPL6

(CHAN et al., 2005) placement algorithm, from the placement package mPL, and then tested.

The tests were performed in a machine with 64 bit processor Intel Core i7, 3.4GHz, running

Ubuntu version 14.04.

The benchmarks used were the ones available from ISPD 2002. They previously con-

tained macro-blocks (that we call blockage nodes), but not anymore after a variation of them

was made with FastPlace(VISWANATHAN; CHU, 2005), which were the ones used here, be-

cause a comparison with Tetris algorithm would be useless, as it does not provide support for

them.

6.1 In Terms of Runtime

Table 6.1 shows the number of cells each circuit from the benchmarks has and a com-

parison between the legalizers Tetris, Jezz and Abacus in terms of elapsed time during the

execution of each algorithm.

45

Table 6.1 – Runtime for Jezz, Tetris and Abacus
Benchmark #Cells Jezz Tetris Abacus
ibm01 12506 0.038755 0.000905 0.004535
ibm02 19342 0.075944 0.001409 0.007149
ibm03 22853 0.100474 0.001705 0.008749
ibm04 27220 0.140916 0.003052 0.011423
ibm05 28146 0.13774 0.002067 0.011268
ibm06 32332 0.126951 0.002347 0.013185
ibm07 45639 0.200308 0.003432 0.021171
ibm08 51023 0.23508 0.003814 0.021967
ibm09 53110 0.197032 0.004259 0.029005
ibm10 68685 0.390358 0.005276 0.033493
ibm11 70152 0.361115 0.005777 0.035308
ibm12 70439 0.333709 0.005418 0.040669
ibm13 83709 0.390846 0.006478 0.041311
ibm14 147088 0.702293 0.01374 0.10258
ibm15 161187 0.631168 0.013228 0.114065
ibm16 182980 0.877742 0.016378 0.129681
ibm17 184752 0.923253 0.016558 0.12982
ibm18 210341 1.06586 0.019803 0.144765

Although it is clear to see that Jezz takes much longer to execute than the other two, it

shows itself to take a little longer than a second to execute, even for a larger circuit, which has

around 200k cells, ibm18.

One of the main reasons why Tetris is much faster is that it does not move already

legalized cells, hence its simplicity. Jezz moves already legalized cells within a row to make

room for the new cell to be inserted by combining movements to the left and right.

Note the nesting of for loops in the algorithms of Jezz outlined in the previous section.

This gives us the almost certain possibility of having a slower runtime than Abacus, which finds

the optimum cost by solving a quadratic program which can be transformed to a fast dynamic

program.

Graph 7.1 shows an almost linear relationship between runtime and number of cells for

Jezz, the runtime scales well when the number of cells grows, yet this may not be the case for a

big number of cells used in the industry.

46

Figure 6.1 – Jezz runtime increases almost linearly with the number of cells.

6.2 In Terms of Minimizing Displacement

As previously mentioned, a good algorithm for legalization needs to provide a smooth

transition between the first and last placement stages, global placement and detailed placement,

which means that the solution reached after global placement that is given as input to the legal-

ization stage must change as little as possible during this stage.

The latter version of Jezz, 3.0, has produced the following results seen in Table 6.2 and

Table 6.3 in comparison with Tetris and Abacus in terms of displacement.

Table 6.2 shows the overall displacement of the whole, being that the summation of all

the shifts made by the cells within the circuit.

47

Table 6.2 – Overall displacement for Jezz, Tetris and Abacus
Benchmark Jezz Tetris Abacus Jezz/Tetris Jezz/Abacus
ibm01 95553 159663 102275 40.15% 6.57%
ibm02 159081 269146 160152 40.89% 0.67%
ibm03 215381 372928 224151 42.25% 3.91%
ibm04 185665 318344 196780 41.68% 5.65%
ibm05 182408 333974 183292 45.38% 0.48%
ibm06 210849 383065 220412 44.96% 4.34%
ibm07 336495 570545 351739 41.02% 4.33%
ibm08 337813 607089 336468 44.36% -0.40%
ibm09 397210 679333 414455 41.53% 4.16%
ibm10 604523 1030000 608412 41.31% 0.64%
ibm11 578916 987000 602938 41.32% 3.98%
ibm12 632063 1050000 632967 39.80% 0.14%
ibm13 745599 1240000 763361 39.87% 2.33%
ibm14 1010000 1850000 1020000 45.41% 0.98%
ibm15 1020000 1860000 1050000 45.16% 2.86%
ibm16 1260000 2320000 1280000 45.69% 1.56%
ibm17 1400000 2450000 1410000 42.86% 0.71%
ibm18 1450000 2630000 1450000 44.87% 0.00%

avg 42.69% 2.38%

As we can see from table 6.2, Jezz has been improved since the first version and now

reaches a gain of almost 43% in terms of overall displacement when compared to Tetris, and

2.38% when compared to Abacus.

The overall displacement is a good measure to verify the propensity of the algorithm

to provide the smooth transition from global to detailed placement, because a smaller overall

displacement means that the whole solution has been less altered.

Besides that, to refine even more the property of the algorithm of altering the solution as

little as possible, some other results can be verified.

Table 6.3 shows the average displacement, which means the average distance that a cell

shifts during the legalization stage. The average values show that Jezz is better than Tetris in

almost 40% and very timidly better than Abacus. Jezz is actually much better than the classical

algorithm Tetris in overall and average displacement and still manages to be better than Abacus,

even though it is by a very small factor, so Abacus’ advantage in runtime has not been overcome

by Jezz improvements in displacement.

48

Table 6.3 – Average displacement for Jezz, Tetris and Abacus
Benchmark Jezz Tetris Abacus

Benchmark Jezz Tetris Abacus
ibm01 7.64057 12.7669 8.17807
ibm02 8.22464 13.9151 8.28001
ibm03 9.42463 16.3186 9.80838
ibm04 6.8209 11.6952 7.22924
ibm05 6.48078 11.8658 6.51219
ibm06 6.52137 11.8479 6.81715
ibm07 7.37297 12.5013 7.70698
ibm08 6.6208 11.8983 6.59444
ibm09 7.47901 12.7911 7.80371
ibm10 8.80138 15.0319 8.858
ibm11 8.25231 14.0627 8.59474
ibm12 8.9732 14.9246 8.98603
ibm13 8.90704 14.8599 9.11922
ibm14 6.84717 12.584 6.94302
ibm15 6.32908 11.5336 6.537
ibm16 6.90109 12.662 7.02094
ibm17 7.5522 13.2716 7.61113
ibm18 6.87771 12.4853 6.91497
avg. 7.557 13.167 7.750

Describing the behavior seen in table 6.3, Figure 6.2 shows that most of the cells from

the benchmark ibm05 (chosen for no specific reason) are displaced no more than 10 µm, so

most cells are displaced by small distances with Jezz, which contributes to a small average

displacement. The benchmark ibm05 has 28146 cells, and more than 18k cells move up to as

much as 10 µm after full legalization. Table 6.3 shows that, for all the benchmarks, the average

displacement for Jezz is actually under 10 µm, for Abacus as well, but Tetris does not have one

average value that’s lower than 11.5 µm.

49

Figure 6.2 – Histogram of cell displacement for ibm05

Abacus has a similar performance concerning the displacement the biggest number of

cells make, being worse than Jezz by a small factor, but Tetris is much more distributed than

both of the former, as we can notice in the graph by seeing the red bars. It means that Tetris

alters the original solution locally, in cell shifts, more than the other two. Jezz and Abacus show

that more cells move less, and Tetris shows that more cells move more than in the other two

approaches.

Naturally, it happens because Tetris algorithm is focused only on the cell to be inserted

and the way it is going to disturb the solution, but it does not take into account its neighbouring

cells, whereas the neighbouring cells that have already been legalized shall not be moved. This

simpler approach helps the algorithm in being superfast, as noticed in Table 6.1.

Table 6.4 shows the maximum displacement seen for a cell in the circuit after the legal-

ization process. Despite the fact that Jezz is better than Tetris and Abacus in terms of overall

displacement and provides an overall minimum displacement, maximum displacement is a com-

parison term in which Jezz did not come out much better than the others. One justification for

that is that Jezz addresses maximum displacement in such a manner that it gives preference to

choosing the cost that comprises the smallest maximum displacement, but it might not have

been done in the most proper way, or at least in a way that reduces the values by a big factor.

What is being done is that Jezz stores the biggest maximum displacement it finds in

each vector index, changing it iteratively whenever one of the nodes in the way would give us a

bigger maximum displacement.

Then, it gives preference to choosing the combination of vector indexes (optimum cost

calculation) that gives us the smallest maximum displacement value. So, this improves maxi-

mum displacement for certain benchmarks, but may also be worse for some of them, because

50

there might be an incongruity in storing the biggest maximum displacement value and choosing

the smallest one of them all. Maybe this approach should be done differently, having some other

aspect in mind.

Table 6.4 – Maximum displacement for Jezz, Tetris and Abacus
Benchmark Jezz Tetris Abacus

Benchmark Jezz Tetris Abacus
ibm01 58.0 59.0 57.0
ibm02 57.0 60.0 63.0
ibm03 63.0 57.0 85.0
ibm04 66.0 62.0 67.0
ibm05 50.0 38.0 48.0
ibm06 61.0 55.0 57.0
ibm07 61.0 61.0 58.0
ibm08 61.0 50.0 57.0
ibm09 97.0 59.0 71.0
ibm10 64.0 70.0 57.0
ibm11 66.0 63.0 72.0
ibm12 63.0 72.0 63.0
ibm13 75.0 66.0 79.0
ibm14 60.0 61.0 57.0
ibm15 68.0 58.0 61.0
ibm16 70.0 64.0 68.0
ibm17 80.0 69.0 67.0
ibm18 71.0 59.0 56.0
avg. 66.1667 60.1667 63.5

One can think that, as Jezz is just slightly better than Abacus in overall displacement

and is far slower in runtime, it should show much better results than Abacus in displacement to

make up for the fact that it is slower. Although Jezz uses a linear function (Manhattan distance)

to calculate cost and Abacus uses a quadratic one, there is still a big disparity when it comes to

runtime, so simplicity of implementation and better displacement results might be not enough

as advantages after seeing runtime results depending on the need of the designer.

Jezz scales well with the increase of number of cells, so its runtime is still feasible, but

it is certain that Abacus leaves Jezz behind in runtime aspect. This may have to do with the

nested conditionals that Jezz uses in its algorithms, for example, in the main loop of impact

computation Algorithm 6. However, Jezz is simple to implement and still managed to show a

slightly better result than Abacus. Thus, in a matter of choosing the one with best displacement

results, Jezz could be chosen, though, if runtime is very important, Abacus would be better.

51

6.3 Further Possible Improvements

A change could be made for the tie-break criterion when there is a tie between two posi-

tions for inserting the cell, as mentioned in this section. In such way, Jezz could be even better

than both other approaches in displacement measures, however, legalization is still supposed

to be a transition stage. A full legalization algorithm does not have the task of being driven to

something such as timing, area, power, and so on. It is actually the opposite, as it receives a

solution that has been coarsely reached in global placement in order to fulfill some objectives

such as these ones, and it must not alter it while legalizing.

Hence, there is only so much one can do to improve full legalization, as, in reality, it

must change as little as possible the original solution to get it to the detailed placement, so

optimizations can be made, but one can hit a certain plateau.

When legalization is integrated to a detailed placement algorithm, incremental legaliza-

tion can be made (which, as previously said, Jezz provides) being timing-driven, for example.

As said, “In order to exploit the global placement solution, detailed placement approaches only

make local changes on the current placement.” in (SARRAFZADEH; WANG; YANG, 2003,

p. 37), being incremental legalization part of the local changes.

52

7 COMPLEXITY ANALYSIS

Graph in Figure 7.1 shows that, in version 3.0 of Jezz, runtime increases almost linearly

with the number of cells. VLSI cell placement problem is known to be NP-complete, and

legalization is a part of it. As this is a kind of algorithm based on heuristics, it reaches a good

local minimum by calculating the overall displacement that must be made in order to insert a

new cell within a row, as well as it prefers to shift cells that are reaching their original position

pre-legalization, contributing to the process of finding a good local minimum, reducing the

average displacement of cells.

On average, as we can notice in the graph shown in figure 7.1, the runtime increases

almost linearly with number of cells.

Figure 7.1 – Jezz runtime increases almost linearly with the number of cells

53

8 CONCLUSION

In this work, we proposed an approach called Jezz for legalizing cells within a circuit.

Legalization is the middle of three stages in the placement of the cells of an integrated circuit.

The first stage is global placement, which aims at generating a rough placement solution

that relaxes some design constraints, e. g. there may be overlaps among cells. The middle stage,

legalization, was the covered in this work. The last stage is detailed placement, which further

improves the legalized placement solution in an iterative manner by rearranging cells locally

while keeping others fixed. In this stage, an incremental legalization can be made.

Legalization must provide a smooth transition between the first and the last stages of

placement. For that reason, the main aim of Jezz is to provide minimum overall displacement

of cells in its legalization. The way Jezz executes the insertion of a cell in a new position is

dividing the region for positioning in its left and right sides, and searching for a better place to

insert the cell in both sides. White-spaces are considered as a type of node, as well as obstacles,

and the former are split when the cell is to be placed in the center of them. We also compared

this approach with Tetris and Abacus in terms of runtime and total displacement.

For the sake of showing the effectiveness of the algorithm, a comparison has been made

for 18 benchmarks between Jezz and two other algorithms, Tetris and Abacus, and Jezz showed

itself to be better than both in overall displacement, almost 43% better than Tetris and 2.38%

better than Abacus.

As a disadvantage, Jezz is worse in runtime, yet its runtime scales well with circuits with

larger numbers of cells. This approach has a linear complexity for runtime, because runtime

grows much close to linearity with the growth in number of cells, as shown in Chapter 6.

One can think that, as Jezz is just slightly better than Abacus in overall displacement

and is far slower in runtime, it should show much better results than Abacus in displacement (as

it did with Tetris) to make up for the fact that it is slower. In a matter of choosing the one with

best displacement results, Jezz could be chosen, though, if runtime is very important, Abacus

would be better. Also, whichever of them could be chosen over Tetris, that was worse than both

of them in displacement.

54

REFERENCES

SARRAFZADEH, M. and WANG, M. and YANG, X. 2011. Available from Internet:
<<http://www.ee.ncu.edu.tw/~jfli/vlsi21/lecture/ch01.pdf/>>. Visited 2015 Jul 5.

AGNIHOTRI, A. R. et al. Fractional cut: Improved recursive bisection placement. In: ICCAD.
IEEE Computer Society / ACM, 2003. p. 307–310. ISBN 1-58113-762-1. Available from
Internet: <http://dblp.uni-trier.de/db/conf/iccad/iccad2003.html#AgnihotriYKMOM03>.

BRENNER, U. Bonnplace legalization: Minimizing movement by iterative augmentation.
IEEE Trans. on CAD of Integrated Circuits and Systems, v. 32, n. 8, p. 1215–1227, 2013.
Available from Internet: <http://dblp.uni-trier.de/db/journals/tcad/tcad32.html#Brenner13>.

BRENNER, U.; VYGEN, J. Legalizing a placement with minimum total movement. IEEE
Trans. on CAD of Integrated Circuits and Systems, v. 23, n. 12, p. 1597–1613, 2004.
Available from Internet: <http://dblp.uni-trier.de/db/journals/tcad/tcad23.html#BrennerV04>.

CHAN, T. F. et al. mpl6: a robust multilevel mixed-size placement engine. In: GROENEVELD,
P.; SCHEFFER, L. (Ed.). ISPD. ACM, 2005. p. 227–229. ISBN 1-59593-021-3. Available
from Internet: <http://dblp.uni-trier.de/db/conf/ispd/ispd2005.html#ChanCRSSX05>.

DOLL, K.; JOHANNES, F. M.; ANTREICH, K. Iterative placement improvement by network
flow methods. IEEE Trans. on CAD of Integrated Circuits and Systems, v. 13, n. 10, p.
1189–1200, 1994. Available from Internet: <http://dblp.uni-trier.de/db/journals/tcad/tcad13.
html#DollJA94>.

Dwight Hill. Method and system for high speed detailed placement of cells within an
integrated circuit design. 2002. US 6370673 B1.

ICCAD 2014 Timing Driven Placement Contest. 2014. Available from Internet:
<<http://cad_contest.ee.ncu.edu.tw/CAD-contest-at-ICCAD2014/problem_b/results/
ICCAD2014_Contest_P2_Results.pdf/>>. Visited 2015 Jul 5.

KORTE, B.; RAUTENBACH, D.; VYGEN, J. Bonntools: Mathematical inno- vation for
layout and timing closure of systems on a chip. In: Proc. of IEEE. [S.l.]: IEEE, 2007. v. 95,
n. 3, p. 555–572.

LEE, Y.-M.; WU, T.-Y.; CHIANG, P.-Y. A hierarchical bin-based legalizer for standard-cell
designs with minimal disturbance. In: ASP-DAC. IEEE, 2010. p. 568–573. ISBN 978-1-
60558-837-7. Available from Internet: <http://dblp.uni-trier.de/db/conf/aspdac/aspdac2010.
html#LeeWC10>.

MARTELLO, S.; TOTH, P. Knapsack Problems. [S.l.]: John Wiley and Sons, 1990. Available
from Internet: <<http://www.or.deis.unibo.it/kp/Chapter6.pdf/>>. Visited 2015 Jul 5.

MLYNEK, D.; LEBLEBICI, Y. Design of VLSI Systems. 1998. Available from Internet:
<<http://emicroelectronics.free.fr/onlineCourses/VLSI/index.html>>. Cited 2015 Jul 5.

PUGET, J. et al. Jezz: An effective legalization algorithm for minimum displacement. In:
South Symposium on Microelectronics, SIM 2015. [S.l.: s.n.], 2015.

SARRAFZADEH, M.; WANG, M.; YANG, X. Modern Placement Techniques. 1. ed. [S.l.]:
Kluwer Academic Publishers, 2003.

http://www.ee.ncu.edu.tw/~jfli/vlsi21/lecture/ch01.pdf/
http://dblp.uni-trier.de/db/conf/iccad/iccad2003.html#AgnihotriYKMOM03
http://dblp.uni-trier.de/db/journals/tcad/tcad32.html#Brenner13
http://dblp.uni-trier.de/db/journals/tcad/tcad23.html#BrennerV04
http://dblp.uni-trier.de/db/conf/ispd/ispd2005.html#ChanCRSSX05
http://dblp.uni-trier.de/db/journals/tcad/tcad13.html#DollJA94
http://dblp.uni-trier.de/db/journals/tcad/tcad13.html#DollJA94
http://cad_contest.ee.ncu.edu.tw/CAD-contest-at-ICCAD2014/problem_b/results/ICCAD2014_Contest_P2_Results.pdf/
http://cad_contest.ee.ncu.edu.tw/CAD-contest-at-ICCAD2014/problem_b/results/ICCAD2014_Contest_P2_Results.pdf/
http://dblp.uni-trier.de/db/conf/aspdac/aspdac2010.html#LeeWC10
http://dblp.uni-trier.de/db/conf/aspdac/aspdac2010.html#LeeWC10
http://www.or.deis.unibo.it/kp/Chapter6.pdf/
http://emicroelectronics.free.fr/onlineCourses/VLSI/index.html

55

SARRAFZADEH, M.; WONG, C. K. An Introduction to VLSI Physical Design. [S.l.]:
McGraw-Hill, 1996.

SHERWANI, N. Algorithms for VLSI Physical Design Automation. 1. ed. [S.l.]: Kluwer
Academic Publishers, 1993.

SPINDLER, P.; SCHLICHTMANN, U.; JOHANNES, F. M. Abacus: Fast legalization
of standard cell circuits with minimal movement. In: Proceedings of the 2008
International Symposium on Physical Design. New York, NY, USA: ACM, 2008.
(ISPD ’08), p. 47–53. ISBN 978-1-60558-048-7. Available from Internet: <http:
//doi.acm.org/10.1145/1353629.1353640>.

VISWANATHAN, N.; CHU, C. C. N. Fastplace: efficient analytical placement using cell
shifting, iterative local refinement, and a hybrid net model. IEEE Trans. on CAD of
Integrated Circuits and Systems, v. 24, n. 5, p. 722–733, 2005. Available from Internet:
<http://dblp.uni-trier.de/db/journals/tcad/tcad24.html#ViswanathanC05>.

WIKIPEDIA. JezzBall. 2014. [Online; accessed 08-Nov-2014]. Available from Internet:
<http://en.wikipedia.org/wiki/JezzBall>.

http://doi.acm.org/10.1145/1353629.1353640
http://doi.acm.org/10.1145/1353629.1353640
http://dblp.uni-trier.de/db/journals/tcad/tcad24.html#ViswanathanC05
http://en.wikipedia.org/wiki/JezzBall

APPENDIX - Trabalho de Conclusão I
Jezz: An Effective Legalization Algorithm For Minimum

Displacement
Julia Casarin Puget1, Ricardo Reis1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Abstract. This work has the objective of introducing the subject chosen for the
proposed graduation work, a legalization algorithm for standard cells, present-
ing what has been implemented, which relies on constructing the algorithm Jezz
for legalizing standard cells using a linear function, and comparing it to two
other legalization algorithms, Tetris, a classic algorithm, and Abacus, an algo-
rithm that has a similar approach to Jezz, but uses a quadratic function. Jezz
showed itself to be almost 43% better than Tetris and 2.38% better than Abacus
in terms of overall displacement, although it is slower in runtime, yet, feasible,
presenting an average complexity of O(n). As this work is strongly based on the
legalization stage of a full placement step within a physical synthesis, a study
on legalization algorithms and their different approaches towards solving the
legalization problem is also presented.

1. Introduction
Within the physical synthesis, the placement step is responsible for selecting places to
insert the circuit components, minimizing the wirelength connecting them. Moreover,
placement algorithms also should try to avoid creating congested areas where the number
of connections is higher than the available space to route them.

Typically, the placement step is divided into there phases: global placement, le-
galization and detailed placement. During the global phase, the overlapping restriction is
relaxed, and a position for the components is first set. Although overlapping is allowed,
the task of the global placement method is to spread cells reducing it, while minimizing
wirelength, among other objectives.

The remaining overlapping is removed in the legalization step, where cells are also
moved to legal positions within the circuit area, aligned to rows. Usually, the legalization
process tries to displace the cells as little as possible, since the initial solution is supposed
to correlate well with the final solution. After legalization, detailed placement makes fine
adjustments to cell positions, performing optimizations that are hard to be seen during the
global phase.

This work presents a legalization method called Jezz, used in our placement flow,
UFRGS/FURG Brazil, which te ook the 1st place in ICCAD 2014 Incremental Timing-
Driven Placement Contest. Jezz is named after the 1992 game JezzBall [?]. Jezz can
perform both full and incremental legalization, indicating the shift impact caused by in-
serting a cell in a row, because other cells might have to be shifted to make room for
the new one. It intrinsically handles cell-to-site alignment and has blockage support. A
cache system is used to allow fast look-up during incremental legalization, allowing Jezz
to support detailed placement algorithms.

56

The main contributions of this work are

• A full and incremental legalization method able to select the minimum displace-
ment required to insert a cell in a row;
• support to incremental legalization;
• support to obstacles.

2. Related Work
Tetris [Hill 2002] is a classic greedy algorithm that legalizes one cell at a time and does
not move cells that have already been legalized, therefore, not fit for use during detailed
placement, a stage that often requires incremental legalization. It also iterates over all the
available rows searching for the best position for each cell. Abacus is greedy and moves
cells that have already been legalized, using a quadratic function to calculate the best
position for the cell. Jezz has a similar approach to Abacus, but it uses a linear function
to calculate the cost of moving cells, which makes it simpler and more accurate, as it
counts with the y position not only when comparing the cost of inserting in rows, but also
uses the y position when calculating the displacement cost, because it uses the Manhattan
distance. There are many other methods for legalizing a circuit, as the main objective
in a legalization is to remove node overlaps by displacing the nodes as little as possible.
Two examples of which are the HiBin Legalizer [Lee et al. 2010], which is a legalization
based on bins and is greedy as well as the others, and BonnPlace [Brenner 2013], which
is flow based. There is, as well, [Cong and 0004 2008], which handles mixed-size cell
legalization.

3. Problem Definition
Legalization is the process of aligning cells to valid positions and removing overlaps
among them, while reducing the total cell movement. The total cell movement, also the
legalization cost, is defined by the sum of the Manhattan distance from the original cell
positions (i.e. pre-legalization) to the final cell positions (i.e. pos-legalization) as shown
in Equation (1).

∑

∀cell

(
|xcelloriginal − xcelllegalized|+ |ycelloriginal − ycelllegalized|

)
(1)

The circuit’s placement area is divided in same-height rows, and each row, in same-width
sites, as depicted in Figure 1. Cell widths are multiple of site widths, and only cells with
height of one row are handled in this work, which is the most common case for standard-
cell designs. To be considered at a valid position, a cell must be aligned vertically and
horizontally to the sites within a row. The position of a cell is represented by its bottom-
left corner.

4. Data Structures
Jezz defines three types of nodes: (1) whitespace, (2) blockage and (3) cell. Blockage and
cell nodes have constant widths, while whitespace widths can be dynamically adjusted.
Whitespace and cell nodes are free to be moved, while blockage nodes are fixed. Cell
nodes model movable standard-cells, and blockage model fixed standard-cells or obstacles
(e.g. macro-blocks, uneven row widths).

57

Figure 1. Placement area is divided into rows and sites which define valid posi-
tions where cells can be placed.

A row is represented using a double-linked list of nodes. Every list has, at least,
one node, and the sum of the node widths equals the row width. An ”empty” row has one
and only one whitespace node, with the same width of the row.

By construction, no two whitespace nodes can be neighbors within a row. If this
happens during the legalization process, the whitespace nodes are merged into one. Also,
a zero-width whitespace is not allowed, so that any zero-length whitespace is automati-
cally deleted.

Jezz works only with integer positions (i.e. row and site indexes), which intrinsi-
cally handle the cell-to-site alignment.

5. Jezz Legalization

Jezz legalizes one cell at a time. Given a cell and a row, the impact caused by the insertion
of the cell in such row is computed. Jezz uses the impact information to select the best
row to actually place the cell. The impact computation is detailed in Section 6.

In a full legalization, all cells are processed in a specific order. For this work,
we consider only processing cells by increasing original x position, as usually is done by
legalization methods, however, Jezz could process cells in any order.

The full legalization approach used in this work is outlined in Algorithm 1. For
each cell, the impact is first computed for the nearest row w.r.t. the original cell position.
Then, rows above and below the initial row are sequentially analyzed from the closest to
the farthest to the initial row. Finally, the cell is placed in the row with the least impact
on the legalization cost. The impact on cells already legalized in the row is computed as
shown in Algorithm 2. If the cost of inserting the cell within a row is the same as another,
Jezz chooses the one with less maximum displacement.

To avoid analyzing too many rows, the analysis is stopped (line 19) if the impact
of a row does not improve the lowest impact found up until now. This has little influence
in quality, but improves the runtime significantly.

In full legalization, we only insert the cell in the rightmost position available in
the row, making shifts to the left if necessary, in order to move the cell as little as pos-
sible related to its position from global placement. In an incremental legalization, cells
are assumed to be already legalized, and fine adjustments are performed iteratively to the
full legalization already made, so shifts to the right can also be performed. This is typ-

58

Algorithm 1: Jezz Full Legalization
1 for each cell c sorted by increasing x-position do
2 r0 = nearestRow(c)
3 best impact = computeImpact(c, r0)
4 best row = r0
5 for each row r above r0 do
6 impact = computeImpact(c, r);
7 if impact < best impact then
8 best impact = impact
9 best row = r

10 end
11 else
12 if impact = best impact then
13 best impact = impact
14 best row = r

15 end
16 end
17 else
18 end
19 break;
20 end
21 for each row r below r0 do
22 // see lines 6-18
23 end
24 insertCell(cell, best row);
25 end

59

ically used by detailed placement algorithms. Since the cells are not necessary inserted
in any specific order of x, the impact on already legalized cells must be computed to left
and right. After that, the optimum cost for inserting the cell is computed in algorithm 3
selecting the amount of shifts to left and to right.

6. Impact Computation
The impact is the change in the cost function due to the insertion of a cell in a row as
measured by Equation (1).

The node is assumed to be inserted just after the node that encloses its left edge as
shown in Figure 2. This assumption keeps the relative ordering of cells, which is a well
known property in terms of maintaining the placement quality. As we make the decision
of inserting the node in that certain position, it breaks the combinatorial nature of the
legalization problem, which makes it become NP-complete.

Figure 2. Cell Insertion

Still, multiple choices arise when inserting a cell in between two other cells. One
may shift all cells to the left or to the right or choose any combination of left and right
shifts. The main contribution of Jezz is to select the optimum combination of left and
right shifts.

To do so, Jezz computes two impact vectors that indicate the impact of shifting
nodes to left (impactl) and to right (impactr). The kth element of each vector reports
the impact of opening k sites to the left/right, meaning that other nodes might have to be
shifted as well to make room for the new cell. The size of the vector is the same as the
width of the cell, w, being inserted, plus one, as the maximum number of spaces required
in each direction is bounded by the cell width.

The impact computation for the right direction is outlined in Algorithm 2. A simi-
lar algorithm is used to the left direction. From the reference node, nodes are sequentially
processed. Every time a cell node is visited, the impact of shifting it left by 0 up to k sites
is accumulated in the impact vector (lines 11-13). The search stops when the accumulated
width of whitespaces is greater or equal to the width of the cell being inserted or when
there is no more space left.

Figure 3 shows an example of the impact vector computation. At the top, the orig-
inal positions of the nodes, xnodeoriginal, are represented. At the bottom, the current positions
of nodes, xnodecurrent, are depicted. In the middle, the shifted position of nodes at the right
side of the cell being inserted is shown for a displacement of 4 sites.

To open a single space to the right, only one node needs to be shifted. Therefore,
the shifting impact is one, as reported by impactr[1]. If, when shifting by one site to
make room for the new node, the node being shifted is approaching its original position,
the cost is decreased by one. If, on the other hand, the node is getting farther from its

60

Algorithm 2: Impact Computation
1 node = reference node;
2 impactr[0..w] = {0, · · · , 0};
3 k = 0;
4 while (node and k < w) do
5 if node is blockage then
6 break;
7 end
8 if node is whitespace then
9 k += min{width(node), w − k}

10 else
11 for i = k + 1, d = 1; i ≤ w; i++, d++ do
12 impactr[i] +=

weightnode × (|xnodeoriginal − (xnodecurrent + d)| − |xnodecurrent − xnodeoriginal|)
13 end
14 end
15 node = next(node);
16 end
17 overflowr = w − k

Figure 3. Impact vector computation for the right side.

61

original position, the cost is increased by one, and so on, that is why we see an impact of
+4 when moving the green node pointed by arrows 4 sites to the right from its previous
position. Each index in the cost vector for each side is computed by the summation of the
costs of moving each of the cells in the way aside, as shown.

6.1. Optimum Shift
Once the cost vectors are computed, one needs to choose the optimum amount to shift
left and right. This is performed by sweeping the two vectors in opposite directions, as
presented in Algorithm 3. Note that, by traversing the vectors in opposite directions, the
amount of open spaces always matches the new node width. The combination with the
lowest cost of left and right shifts plus the movement of the cell being inserted itself is
then selected. If the full legalization is being performed, the right cost vector does not
count, as it only might be necessary to move already legalized cells to the left in order
to make space for the new one, which is always assigned to the first rightmost available
position.

Algorithm 3: Optimum Shift
1 maxl = w − overflowl // max available sites to left
2 maxr = w − overflowr // max available space to right
3 if maxl +maxr < w then
4 exit(overflow);
5 end
6 best cost =∞;
7 for i = maxl; i ≥ w; i- - do
8 cost = impactl[i] + weight× |(xoriginal + w)− i|+ impactr[w − i]
9 if cost < best cost then

10 best cost = cost
11 shifts left = i

12 end
13 end
14 displace left nodes by shifts left to left;
15 displace right nodes by shifts left− i to right;

6.2. Cache System
To allow fast look-up of the reference node, Jezz implements a cache system. Each row
is divided into same-width regions, and, for each region, a pointer to a node inside that
regions is stored. Jezz does not keep the cache always consistent to avoid unnecessary
overhead. If the node is displaced horizontally, the cache pointer may point to a node
outside of its respective region. For little displacement, that should be fine, as we still
get a node close to the aimed region anyway. If the node was moved to another row,
the pointer gets invalid, and Jezz looks at the pointer in neighboring regions. The cache
pointer to a region is updated when a look-up at that region is performed.

Note, however, that, for a full legalization, when cells are inserted by x-position,
the cache system does not need to be used, as it is easier to search nodes sequentially from
the extremity of the linked list, since they are very likely to be the last/first one.

62

Figure 4. Cache System

7. Tetris Legalizer
Tetris [Hill 2002] algorithm starts by grouping the cells in a vector and then sorting them
in ascending order by their x-coordinate. After that, for each cell, it calculates the cost of
moving it to each of the possible rows in the circuit. The cost is obtained by getting the
Manhattan distance between the original cell position and the position it would occupy
within the row. The best cost is changed dynamically by iterating over all the possible
rows to insert the cell in, so it receives the smallest cost value found from iterating through
the rows. After a cell is placed in the best row, the row’s leftmost X position is increased
by the added cell’s length.

8. Abacus Legalizer
Abacus [Spindler et al. 2008] algorithm starts by grouping the cells in a vector and sorting
them just as well as Tetris algorithm, and, after that, it legalizes one cell at a time, keeping
the cell as close as possible to the original position given by global placement, tentatively
inserting the cell in certain rows until the best one is found, and then selecting a position
for the cell horizontally. It also moves already legalized cells, which yields a lower overall
displacement than Tetris, but using a quadratic function to calculate the new position a cell
should occupy.

9. Experimental Results
For the experiment, each benchmark has been primarily randomly placed and then tested
a hundred times for both legalizers. The tests were performed in a machine with 64 bit
processor Intel Core i7, 3.4GHz, running Ubuntu version 14.04. Jezz was implemented
using language C++. The benchmarks used were the ones available from ISPD 2002.
Table 1 shows the number of cells each benchmark circuit has and a comparison between
the legalizers Tetris and Jezz, after the experiment, in terms of elapsed time during the
execution of the algorithm and the total displacement of the cells within the circuit for
each different benchmark.

As we can notice from Table 1, the overall displacement of cells from their original
position is diminished by almost 43% comparing to Tetris and it is almost 3% better than
Abacus, which uses a quadratic function , so it performs a smooth transition between
global and detailedplacement, as well, if it must shift cells, it prefers to shift the ones that
will be closer to their original positions, and by using a linear function. Also, 2 shows
that Jezz has a much longer execution time than Tetris and Abacus, but it does not take
more than a second to execute, even for larger circuits.

Figure 5 shows that most of the cells from the benchmark ibm05 are displaced, at
most, by 10 µm, so most cells are displaced by small distances with Jezz.

63

Table 1. maximum displacement for Jezz, Tetris and Abacus
Benchmark Jezz Tetris Abacus Jezz/Tetris Jezz/Abacus
ibm01 95553 159663 102275 40.15% 6.57%
ibm02 159081 269146 160152 40.89% 0.67%
ibm03 215381 372928 224151 42.25% 3.91%
ibm04 185665 318344 196780 41.68% 5.65%
ibm05 182408 333974 183292 45.38% 0.48%
ibm06 210849 383065 220412 44.96% 4.34%
ibm07 336495 570545 351739 41.02% 4.33%
ibm08 337813 607089 336468 44.36% -0.40%
ibm09 397210 679333 414455 41.53% 4.16%
ibm10 604523 1030000 608412 41.31% 0.64%
ibm11 578916 987000 602938 41.32% 3.98%
ibm12 632063 1050000 632967 39.80% 0.14%
ibm13 745599 1240000 763361 39.87% 2.33%
ibm14 1010000 1850000 1020000 45.41% 0.98%
ibm15 1020000 1860000 1050000 45.16% 2.86%
ibm16 1260000 2320000 1280000 45.69% 1.56%
ibm17 1400000 2450000 1410000 42.86% 0.71%
ibm18 1450000 2630000 1450000 44.87% 0.00%

avg 42.69% 2.38%

Table 2. runtime for Jezz, Tetris and Abacus
Benchmark #Cells Jezz Tetris Abacus
ibm01 12506 0.038755 0.000905 0.004535
ibm02 19342 0.075944 0.001409 0.007149
ibm03 22853 0.100474 0.001705 0.008749
ibm04 27220 0.140916 0.003052 0.011423
ibm05 28146 0.13774 0.002067 0.011268
ibm06 32332 0.126951 0.002347 0.013185
ibm07 45639 0.200308 0.003432 0.021171
ibm08 51023 0.23508 0.003814 0.021967
ibm09 53110 0.197032 0.004259 0.029005
ibm10 68685 0.390358 0.005276 0.033493
ibm11 70152 0.361115 0.005777 0.035308
ibm12 70439 0.333709 0.005418 0.040669
ibm13 83709 0.390846 0.006478 0.041311
ibm14 147088 0.702293 0.01374 0.10258
ibm15 161187 0.631168 0.013228 0.114065
ibm16 182980 0.877742 0.016378 0.129681
ibm17 184752 0.923253 0.016558 0.12982
ibm18 210341 1.06586 0.019803 0.144765

64

Figure 5. Histogram of Cell Displacement for ibm01

10. Complexity Analysis

The problem of finding a global optimum position for each cell is NP-complete and can
become unfeasible, but, in this paper, we propose a method for legalizing cells trying to
shift their positions as little as possible, reaching a good local minimum by calculating
the overall displacement that must be made in order to make room for the new cell within
a row. This can be performed with quadractic complexity for the worst case, but, on
average, as we can notice in the graph shown in figure 6, the runtime increases almost
linearly with number of cells.

Figure 6. Jezz runtime increases linearly with the number of cells.

65

11. Conclusions
In this paper, we presented Jezz, an approach for legalizing cells within a circuit. For
each cell, it divides the region for positioning in its left and right sides, and searches for
a better place to insert it in both sides. Whitespaces are considered as a type of node,
as well as obstacles, and the former are split when the cell is to be placed in the center
of them. We also compared this approach with Tetris and Abacus in terms of runtime
and total displacement, and Jezz showed itself to be almost 43% better than Tetris and
2.38% better than Abacus. Although being much slower than the other two in runtime,
a legalization of more than 200k cells (benchmark ibm18 in table 2) runs in about a
second, an acceptable amount of time, and the runtime increases almost linearly with the
number of cells, as seen in graph 6. For future work, we plan on implementing a detailed
placement tool using Jezz and reducing the linear search time in it, and making it handle
mixed size cells as well as standard cells.

12. Publications
Previous versions of this work have been published in [Flach et al. 2015a] and
[Puget et al. 2015], and a previous version of Jezz was part of the placement flow
that achieved the first place in the ICCAD timing driven placement contest in 2014
[Flach et al. 2015b]. The current version is in SBCCI 2015, yet to appear.

References
Brenner, U. (2013). Bonnplace legalization: Minimizing movement by iterative augmen-

tation. IEEE Trans. on CAD of Integrated Circuits and Systems, 32(8):1215–1227.

Cong, J. and 0004, M. X. (2008). A robust mixed-size legalization and detailed placement
algorithm. IEEE Trans. on CAD of Integrated Circuits and Systems, 27(8):1349–1362.

Flach, G., Puget, J., Monteiro, J., Foga¸ca, M., Johann, M., Butzen, P., and Reis, R.
(2015a). Jezz: An incremental legalizer. In Iberchip.

Flach, G., Puget, J., Monteiro, J., Johann, M., and Reis, R. (2015b). Jezz: An effective
legalization algorithm for minimum displacement.

Hill, D. (2002). Method and system for high speed detailed placement of cells within an
integrated circuit design.

Lee, Y.-M., Wu, T.-Y., and Chiang, P.-Y. (2010). A hierarchical bin-based legalizer for
standard-cell designs with minimal disturbance. In ASP-DAC, pages 568–573. IEEE.

Puget, J., Flach, G., Johann, M., and Reis, R. (2015). Jezz: An effective legalization
algorithm for minimum displacement. SIM/EMICRO.

Spindler, P., Schlichtmann, U., and Johannes, F. M. (2008). Abacus: Fast legalization of
standard cell circuits with minimal movement. In Proceedings of the 2008 Interna-
tional Symposium on Physical Design, ISPD ’08, pages 47–53, New York, NY, USA.
ACM.

66

	Acknowledgements
	Resumo
	Abstract
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Outline of this thesis

	2 The Process of IC Design and Physical Synthesis
	3 Problem Definition
	3.1 Full and Incremental Legalization

	4 Related Work
	4.1 Tetris Legalizer
	4.2 Abacus Legalizer
	4.3 HiBin Legalizer
	4.4 BonnPlace
	4.5 Other Legalization Approaches

	5 Jezz Legalizer
	5.1 Data Structures
	5.2 Cache Memory
	5.3 Legalization
	5.3.1 Node Insertion

	5.4 Jezz Version 1.0
	5.4.1 Impact Computation
	5.4.2 Optimum Cost
	5.4.3 Experimental Results

	5.5 Jezz Version 2.0
	5.5.1 Impact Computation
	5.5.2 Optimum Shift
	5.5.3 Experimental Results
	5.5.4 Complexity Analysis

	5.6 Jezz Version 3.0
	5.6.1 Impact Computation
	5.6.2 Optimum Shift

	6 Experimental Results
	6.1 In Terms of Runtime
	6.2 In Terms of Minimizing Displacement
	6.3 Further Possible Improvements

	7 Complexity Analysis
	8 Conclusion
	References

