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INBC: um algoritmo incrementai para segmentação de fluxos de dados 
baseado numa abordagem probabilística 

RESUMO 

Este relatório apresenta um novo algoritmo para a segmentação não-supervisionada 
de fluxos de dados baseado numa abordagem probabilística incrementai. O algoritmo, 
chamado de INBC (Incrementai Na"ive Bayes Clustering), assume que as variáveis 
observadas são estatisticamente independentes, seguindo uma abordagem conhecida 
como Na"ive Bayes. INBC cria e ajusta continuamente um modelo probabilístico 
consistente com todos os dados apresentados seqüencialmente. No domínio da robótica 
móvel, o algoritmo INBC detecta regularidades nos sinais sensoriais de entrada 
identificando segmentos de trajetórias correspondentes a conceitos de ordem mais alta 
como "parede à direita" ou "curva à esquerda". 

O algoritmo adota um modelo de mistura de distribuições componentes que pode ser 
expandido para acomodar nova informação fornecida por um dado de entrada, ou 
reduzido, se forem identificadas componentes espúrias ao longo do processo de 
aprendizado. Por outro lado, cada dado assimilado pelo modelo contribui para a 
atualização dos seus parâmetros, baseada na maximização da verossimilhança de todos 
os dados apresentados. O ajuste dos parâmetros do modelo é baseado na acumulação de 
informações relevantes extraídas de cada dado observado. Os valores dos acumuladores 
são limitados a um máximo regulado por um fator de desconto, tomando possível o 
aprendizado incrementai de seqüências de dados ilimitadas. 

A aproximação adotada na atualização do modelo faz com que o INBC seja 
apropriado para a modelagem de ambientes não-estacionários, mas com parâmetros que 
variam lentamente com o tempo. Para mostrar a utilidade da abordagem adotada, são 
apresentados vários experimentos com dados simulados. 

Palavras-Chave: aprendizado incrementai, modelagem probabilística. 



ABSTRACT 

This technical report presents a new algorithm for unsupervised segmentation of 
data flows based on an incrementai probabilistic approach. The algorithm called INBC 
(for Incrementai Naive Bayes Clustering) assumes that the observed variables are 
statistically independent, following an approach known as Naive Bayes. INBC creates 
and continually adjusts a probabilistic model consistent to all sequentially presented 
data. In the domain of mobile robotics, INBC detects regularities in the sensor readings 
identifying trajectory segments corresponding to higher order concepts like "wall at 
right" or curve at left". 

INBC adopts a mixture model of distribution components that can be expanded to 
accommodate new information from an input data point, or reduced if spurious 
components are identified along the leaming process. On the other hand, each data point 
assimilated by the model contributes to the sequential update of the model parameters 
based on the maximization of the likelihood of the data. The parameters are updated 
through the accumulation of relevant information extracted from each data point. The 
accumulators are limited to a maximum value controlled by a discount factor, making 
possible the incrementalleaming ofunbounded data streams. 

The approximation used by INBC to update the model parameters makes it suitable 
to model non-stationary but slowly variable environments. INBC was tested with 
simulated data representing typical environments encountered in the considered 
application domains. 

Keywords: incrementalleaming, Bayesian modeling. 



1 INTRODUCTION 

In autonomous robotics an important task is the detection of higher order concepts 
such as 'comers ', 'walls' and 'corridors' from the sequence o f noisy sensor readings o f 
a mobile robot. The detection of these regularities in dataflow allows the robot to 
localize its position in the environment and to detect changes in the environment. In the 
past, different approaches were presented to this end, but they have scarce means to 
distinguish between relevant information and noise in the data stream, a problem 
frequently encountered in unsupervised leaming known as the stability-plasticity 
dilemma. As a typical example o f these approaches, Nolfi and Tani ( 1999) proposed a 
hierarchical architecture to extract regularities from time series, in which higher layers 
are trained to predict the internai state of lower layers when such states change 
significantly. In this approach, the segmentation was cast as a traditiona1 error 
minimization problem, which favors the most frequent inputs, filtering out less frequent 
input pattems as being 'noise'. The result is that this system recognizes slightly 
differing walls, that represent frequent input pattems, as distinguish concepts, but is 
unable to detect corridors or comers that are occasionally (infrequently) encountered. 
On the other hand, focusing in change detection, Linâker and Niklasson (2000) 
proposed an adaptive resource allocating vector quantization (ARA VQ) network, which 
stores moving averages of segments of the data sequence as vectors allocated to output 
nodes of the network. New mode1 vectors are incorporated to the model if a mismatch 
between the moving average o f the input signal and the existing model vectors is greater 
than a specified threshold and a minimum stability criterion for the input signal is 
fulfilled. However, as other distance based clustering algorithm, this approach is not 
sensible to change in size and density of the clusters, producing models comparable to 
those computed by algorithms like the k-means (MACQUEEN, 1967). 

In this work, we present a new algorithm based on a probabilistic framework to 
solve the problem of dataflow segmentation. The a1gorithm, called INBC (for 
Incrementai Nai've Bayes Clustering), assumes that the observed variables are 
statistically independent, following an approach known as Nai've Bayes. The focus of 
this work is the so called unsupervised incrementalleaming, which considers building a 
model describing a data flow, where each data point is just instantaneously available to 
the leaming system. In this case, the leaming system needs to take into account the 
instantaneous data to update its model o f the environment. 

Our approach to incrementai leaming can be seen as an approximation of the 
traditional probabilistic methods that work on a fixed data set available at the beginning 
of the leaming process. The problem must then be formulated from a Bayesian point of 
view and we discuss the assumptions made and the restrictions involved in this 
approximation. 
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Cluster analysis has a long tradition in machine leaming literature, in the field of 
unsupervised leaming. The well known k-means algorithm, for instance, represents a 
cluster as a mean of a subset of data (MACQUEEN, 1967). In this case, each data point 
must deterministically belong to one cluster. The membership of a data point to a cluster 
is decided by the minimum distance to the mean o f the clusters. To compute the means, 
we average all data points belonging to every cluster, the number of clusters being fixed 
along all the leaming process. For leaming probabilistic models, the reference is the EM 
algorithm that follows a mixture distribution approach for probabilistic modeling 
explained in next section (DEMPSTER et al., 1977). This algorithm proceeds in two 
steps: an estimation step (E) that computes the probabilistic membership (the posterior 
probability) of every data to each component of the mixture model based on a current 
hypothesis (a set of parameters), followed by a maximization step (M) that updates the 
parameters o f the current hypothesis based on the maximization o f the likelihood o f the 
data (the so called maximum likelihood hypothesis). Here the number of components is 
fixed and must be known at the start of the leaming process. The parameters of each 
distribution are computed through the usual statistical point estimators, meaning that the 
complete training set must be previously known and fixed. 

As the EM algorithm, our approach also follows the mixture distribution modeling. 
However, our model can be effectively expanded with new clusters as new relevant 
information is identified in the data flow. In our attempt to solve the problem of 
unsupervised incrementai leaming, we face then two problems: how to tackle the 
stability-plasticity dilemma and how to update the values of distribution parameters as 
new data points are sequentially acquired. Next section formalizes the probabilistic 
approach followed by INBC. 

1.1 A Nai've Bayes approach for the mixture distribution model 

INBC assumes that the probability density o f the input data p(x) can be modeled by 
a linear combination of k component densities p(xl }) corresponding to independent 
probabilistic processes, in the form 

M 

p(x) = LP(X I j)p(j) (1) 
j=l 

This representation is called a mixture model and the coefficients p(j) are called the 
mixing parameters, related to the prior probability of x having been generated from 
componentj ofthe mixture. The priors are adjusted to satisfy the constraints 

M 

LP(i) = 1 (2a) 
}=! 

o sp(j) s 1 (2b) 

Similarly, the component density functions p(xiJ) are normalized so that 

Jp(x I j)dx = 1 (3) 

An important point in the INBC formulation is the assumption that the input 
variables, the components of x, are mutually conditional independent. This is the same 
hypothesis followed by the so called Nai've Bayes classifier, meaning that the 
probability of observing the conjunction of the attributes is just the product of the 



probabilities for the individual attributes. Under this assumption, the probability of 
observing vector x = (x1, ... , xi, ... , xd) belonging to the jth mixture component, 1s 
computed as the product 

p(x lj) = p(x1lj) ... p(xi lj) ... p(xdlj) (4) 

Moreover, for continuous attributes each individual component density p(xi I j) of 
distribution j is modeled by a one-dimensional normal Gaussian function that can be 
written in the form 

1 { (x. - ,u .. )
2

} 
p(x; I j) = r;;-=z exp - ' / 

'V 2tra'J; 20' Ji 

(5) 

where Jlji and a/ are the mean and the variance respectively of the ith individual 
density o f the jth mixture component. 

One o f the nice features o f considering the components o f x as mutually conditional 
independent is the fact that in (4) the individual components p(xi I j) can correspond 
either to continuous or to discrete attributes. Assume now that the discrete attribute Xi of 
vector x has one of V possible values from the set {xn, ... , Xiv, ... , xw}. For a specific 
data vector x with X; = X;v, p(xi I j) = p(x;v I j), the probability of the corresponding 
attribute value. The p(xiv I j) can be estimated as the relative frequency of X;v over the 
data, as discussed later in Chapter 2. 

Although conditional independence is rarely true in real-world applications, Na'ive 
Bayes models have been successfully used for clustering and classification (LOWD, D. 
& DOMINGOS, P., 2005). One reason for this is the fact that no matter how strong the 
dependences among attributes are the Na'ive Bayes model can still be optimal if the 
dependences distribute evenly in classes, or if they cancel each other, what apparently 
frequently occurs (ZHANG, 2004). 
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2 AN INCREMENTAL MIXTURE MODEL 

INBC adopts an incrementai mixture distribution model, having special means to 
control the number o f mixture components that effectively represent the so far presented 
data. The mixture model starts with one component with unity prior, centered at the first 
input data, with a baseline variance crbl specified by default, i. e., J.lli =X i 1, meaning the 
v alue o f X i for t = 1, and cr} = crb? for all individual components o f vector x 1• 

The baseline variance can be specified by each individual attribute as a user defined 
fraction ~ of the estimated overall variance of the corresponding attribute, computed 
from the range o f these values according to 

crb? = ~ [ max(xi) - min(xi) F (6) 

New components are added by demand. INBC uses a minimum likelihood criterion 
to recognize a vector x as belonging to a mixture component. For each incoming data 
point the algorithm verifies whether it minimally fits any mixture component. A data 
point xis not recognized as belonging to a mixture componentj ifits probability p(x [j) 
is lower than a previously specified minimum likelihood- ( or novelty-) threshold. In this 
case, p(x [ j) is interpreted as a likelihood function of the jth mixture component. If x is 
rejected by all density components, meaning that it bears new information, a new 
component is added to the model, appropriately adjusting its parameters. The novelty­
threshold value affects the sensibility of the leaming process to new concepts, with 
higher threshold values generating more concepts. By the NB assumption, however, p(x 
[ j) is computed as the product of its attribute components. Therefore, it is more useful 
to specify a novelty threshold for the one-dimensional components. In this case, the user 
specifies a minimum value for the acceptable likelihood, 'Z'nov, as a fraction of the 
maximum value o f the likelihood function. This is more intuitive for the user and makes 
the novelty criterion independent of the variance of the each attribute. Hence, a new 
mixture component is created when the values for all attributes o f the instantaneous data 
point x = (x1, ... , xi, ... , xd) match the novelty criterion written as 

p(xi I J) < rnov 2 

~27rCTji 
Vi, V} (7) 

Before explaining what happens when a new component is created, we present how 
INBC adjusts the values of the distribution parameters as new data points are 
sequentially acquired. 
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N 

LPold (j I xn)x; 
,u;ew = ..::.n=_.:,~----- (11) 

LPold (j I xn) 
n=l 

N 

LPold (j I xn)(xin- ,u;tw y 
2 new n=l 

(Jji = ..::._.:,_--:-:N------- (12) 
LPold (j I xn) 
n=l 

(13) 

These new parameters are then used to update the estimation of the posteriors (step 
E), and the process is repeated until the new parameters eventually converge to the 
desired maximum likelihood solution, i.e. enew =e*. This procedure corresponds to the 
EM algorithm, which is guaranteed to decrease the value of E(8) at each iteration, until 
a local minimum is found (DEMPSTER et al., 1977). 

For discrete attributes, the maximization step corresponds to estimate the probability 
of observing each attribute value from a component j of the mixture. For a specific 
discrete attribute value X;v, the probability p(x;v I j) can be estimated as the relative 
frequency of Xiv over the data vectors, weighted by the posterior probabilities that the 
corresponding data points were generated from that componentj. This can be written as 

LPo/d (j I xn) 

pnew(Xiv I j) = n~x;o/d (j I Xn) 

n 

(14) 

The sum at the numerator in (14) accumulates the posterior probabilities of the data 
vectors xn that have value Xiv for the discrete attribute Xi· 

INBC adopts an online approximation to (11), (12), (13) and (14) assuming that the 
model parameters change slowly over the time. The summations appearing in these 
expressions are computed recursively using the estimated posteriors and the attribute 
values of the current data point, as explained below. 

At each time step t, when a data vector x1 is presented, INBC updates at first the 
variable sp1, corresponding to the sum of posterior probabilities that ali data presented 
so far were generated from componentj, the so called Oth-order moment ofp(j I x) over 
the data, or simply the Oth-order data moment for j. The instantaneously presented data 
point x1 contributes to this sum with its posterior probability to the componentj, written 
as 



2.1 Model update by sequential assimilation of data points 

An instantaneous data point that doesn't match the novelty criterion must be 
assimilated by the current mixture distribution causing an update in the values of its 
parameters dueto the information it bears. INBC follows an incrementai version for the 
usual iterative process to estimate the parameters of a mixture model based on two 
steps: an estimation step (E) and a maximization step (M). The update process begins 
computing the posterior probabilities of component membership for the data point, p(j [ 
x), the estimation step. These can be obtained through Bayes' theorem, using the current 
component-conditional densities p(x [j) and priors p(j) as follows: 

p(J I x) = f(x I J)p(J) 

LP(X I j)p(j) 
j=l 

Vj (8) 

The posterior probabilities can then be used to compute new estimates for the values 
o f the mean f.l/ew and variance d/ew o f each component density p(xi I j), and the priors 
pnew(j) in the maximization step. The usual maximization step updates the parameters of 
the current model based on the maximization of the likelihood of the data. Next, we 
briefly explain the ideas behind this procedure, considering the particular case of a 
mixture model composed only by one-dimensional Gaussian distributions p(xi I j), as 
defined by equations (1), (4) and (5). 

The parameters e= (B1, ••• , BM)r, corresponding to the means, f.lJi• variances, cl1i, and 
priors p(j) of a mixture model involving one-dimensional Gaussian distributions p(xi !J), 
as is the case by INBC, can be estimated from a data set of Nvectors, X= {x1

, ... , xn, ... , 
xN} assumed to be drawn independently from this mixture distribution. In this case, the 
likelihood of e for the given X, L(e), is the joint probability density of the whole data 
set X, given by 

N N [ M l 
L(O)=p(X[O)= Dp(xn [O)= D ~p(xn [j)p(j)J (9) 

The technique o f maximum likelihood sets the value of e by maximizing L( e). This 
corresponds to choose the e =e*, that is most likely to give rise to the observed data. 
Altematively, the negative log-likelihood for the data set can be regarded as an error 
function, given by 

N N [ M l E(O) = -lnL(O) =-~lnp(xn) =-~ln ~p(xn I j)p(j) (10) 

The expressions for the parameters e* at the maximum of L(e), equivalent to the 
minimum of (10), can be found iteratively by the EM-algorithm, given an initial guess 
for e. At each iteration new parameters, enew, are computed through the following EM­
update equations corresponding to the maximization step: 
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t t-1 

LP(J I xn)x; = p(j I X1 )xJ + LP(J I xn)x; (20) 
n=l n=l 

Which is equivalent to the update o f spx1i, written as 

(21) 

Similarly, using spx/ew and sprw in (11) a new estimate for the mean of the 
Gaussian representing the ith attribute o f the jth component can be computed by 

t-1 

p(j I X
1
)x; + LP(J I Xn)xin spxn~w 

Jl;tw = p(j I xt) + fp(j I xn) = -sp_;_J:w-
(22) 

n=l 

To update the value of the variance for the ith attribute of the jth component, we 
need to compute the sum of products of the posteriors by the square of the difference 
between the value of this attribute and its mean, the so called 2nd-order data moment 
about the mean for j. Here, the new estimate for the mean Jl.itew can be used as shown 
by 

t ~~ 

LP(J I xn)(x;- f-lji) 2 = p(j I X1)(x;- f.l;:w) 2 + LPU I Xn)(x;- f.ljJ 2 (23) 
n=l n=l 

The variable sps1i stores this summation, resulting in the following update expression 

(24) 

Using sps/ew and sprw in (12) a new estimate for the variance of the Gaussian 
representing the ith attribute o f the jth component can be computed according to 

t-1 

p(j I X 1 )(xJ- f.l;tw) 2 + LPU I xn)(xin- f.lj;) 2 
spsnew 

CJ Ji new = -----P-(1-. -~ X-t )-+--'-i'771,_p_(_J_I_X_n_) ____ = -s-p-'i'-:w-
(25) 

n=l 



I t-I 

LPCJ I xn) = p(j I X 1
) + LPCJ I xn) (15) 

n=l n=l 

The left term and the last right term correspond respectively to the new and old 
values o f the variable sp1, 

(16) 

This variable stores the current sum of posteriors that are used at the denominators 
of (11), (12) and (14), and at (13). As a matter of fact, sp1 represents an approximate 
estima te o f the desired summation, as by each new presented data point the distribution 
parameters change. This actualization errar is analog to the one made by the EM 
algorithm when the new parameter values are computed using posteriors computed by 
old parameters. In the case of the EM algorithm, this errar is minimized through 
successive presentations o f the whole data set, while in the case o f the INBC the errar is 
minimized through the successive presentation of new data. If the leaming task is 
episodic, meaning that it evolves in cycles from a starting state to a terminal state, it is 
very likely that all distribution components o f the INB model will be properly updated, 
equivalently to the repeated presentations of the whole data set for the EM algorithm. 
However, as the posteriors of the past observations are not updated by INBC, in 
continuing, non-episodic tasks this approximation may fail if the model parameters 
change rapidly. This makes INBC suitable either for episodic tasks as well for infinite 
horizon tasks in non-stationary but slowly variable environments. 

Using sp/ew in (13), a new estimate for the prior probability for the componentj can 
be computed by 

( ")new 1 ~ ( "I n) 1 new PJ =-L...Jp) X =-sp1 t n=l t 
(17) 

No te that ( 17) implies that the current number o f presented data points, equivalent to 
t, must be stored. However, the total number o f presented data points can be computed 
summing all sp1, and so no extra counter is needed to this end, as can be shown by 

(18) 

So, equation (17) can be replaced by 

spnew 
( ")new i 

p} = M (19) 

LSP;"w 
j=l 

Similarly, the variable spx1; stores the current sum of products of posterior 
probabilities for componentj by the respective values of attribute i for all data presented 
so far, the so called 1st-arder data moment for}. The instantaneously presented data 
point x1 contributes to this sum with the product of its posterior probability to the 
component j by the value o f its attribute i according to 



Consider now the case that x has a discrete attribute xi. At an instant t, a data vector 
X

1 with xi = xiv contributes with its posterior probability p(j I x1
) to the counter 

corresponding to the value o f its attribute at compon:ent f; So, to compute p(xiv I j) we 
need a variable SPJiv for each discrete value of this attribute, summing up the posterior 
probabilities for data points containing the discrete attribute value Xiv as shown by 

new ("I I) old sp Jiv = p } X + sp Jiv (26) 

The probability for the attribute value Xiv is then computed as the relative frequency 
o f the accumulated values according to 

(27) 

Altematively, (27) can be replaced by the so called Laplace estimator that avoids 
empty accumulators and the undesirable zero values for these probabilities, leading to a 
forced zero p(xiJ) through (4). In this case, every accumulator for each discrete attribute 
value is incremented by one, and the corresponding number of attribute values, niv, is 
added to the denominator as shown by 

S new + 1 
(x. I ")new = p }IV P,vJ new 

SP; + niv 

(28) 

These equations formalize the maximization step o f INBC. 

2.1.1 Creating a new component: novelty and stability criteria 

To create a new component, INBC uses the novelty criterion given by (7), but also a 
stability criterion that tests if there is already a recent created component that should 
assimilate the current presented data point. The stability criterion is based on the 
assumption explained before that the model parameters should not change rapidly. This 
also means that there is a stable dominant component for the current data, which is 
equivalent to say that the environment can be decomposed in stable contexts, the 
concepts o f the environment. To this end, we store the age o f each model component }, 
agej, consisting of the number of data that have been presented to the leaming system 
since the component was created. A new component is created only if there is no model 
component whose age is less than a specified threshold Tage, i. e., the stability criterion 
can be defined by 
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'V} (29) 

Then, if the data change too fast, these data points are assimilated by the current 
model as noise and no new component is created. As a matter of fact, the stability 
criterion avoids the successive creation of components in a noisy environment, but it 
cannot avoid the creation of an eventual spurious component. However, a spurious 
component can be readily identified if its spj remains very small, bellow a specified 
parameter spmin, after some time steps since its creation, given by the parameter 
agemin. Once identified, a spurious component can be deleted from the current model. 
The condition to identify a spurious component can be written as 

IF agej > agemin n spj < spmin THEN spuriousj = 1 

where spuriousjis a flag identifying componentj as spurious. 

In the experiments presented in Chapter 3, 'fage = 2, spmin = 3 and agemin = 5. 

Whenever a data point x1 matches the novelty criterion given by (7), and the stability 
criterion is fulfilled, a new component M = M 1

d + 1 is created, centered at that data 
d · h h b 1· · · r d 2 2 s· · vector an w1t t e ase me vanance, 1. e., f/M,; = x; an crM,i = crb; . mce SPM lS 

initialized with 1, the prior for this new component is adjusted according to (19) to: 

p(M) = M 1 

LSP~ 
j=l 

(30) 

However, we must adjust all p(j) to satisfy the constraint (2a). Here we could apply 
different heuristics, but we found that a simple overall normalization produced good 
results in our experiments, meaning that the priors are adjusted by 

( ·)old 
p(Jrew = ! 1 

LPUtld 
j=l 

(31) 

Here, p(Jt1
d represents the prior for the jth component, including the new one, 

immediate1y after creating a new component, and p(Jtew represents this prior after 
normalization. 

2.2 Incrementallearning from unbounded data streams 

INBC was designed to process data streams creating on-line models of eventually 
huge amounts of data based on accumulation of information collected by individual 
observations. This unbounded accumulation may lead to an eventual saturation of the 



variables that store the corresponding summations, depending on the specific limitation 
of the available numeric representation. To avoid this problem, a discount factor given 
by a parameter ais applied to the instantaneous value o f the corresponding variable. For 
the accumulator o f the posteriors, for example, we obtain: 

(32) 

Since the instantaneous sum o f p(j I x1
) o ver all components j is one, if we choose O 

<a< 1 as 

1 
a=l--- (33) 

nmax 

where nmax is a large number within the available numeric representation, the 
accumulation over the time of all sp1 according to the recursive equation (32) is 
bounded to nmax, as shown by 

I M 

lim L" spj = nmax /~CO ~ 
n=l j=l 

(34) 

Similarly, we apply the discount factor a to all other accumulators resulting in 

new b( . I t) 1 o/d spxji =pro ; x X; + aspxji (35) 

(36) 

new (;'I I)+ as o/d \-/XI I XI = x. sp jiv = p X p jiv v ' IV 
(37) 

The long term behavior of these recursive equations can be readily understood 
considering that the model is locally stable, meaning that the expressions (22), (25) and 
(27) for the corresponding parameters are valid. In this case, from (34) follows that 
these equations are bounded to the product of nmax with the corresponding parameter, as 
shown by 
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I M I M 

lim LLSP;iv = lim LLP(Xiv I j)sp; = p(xiv I j)nmax (40) 
l--+oo n=l j=l l--+oo n=l j=l 

A large nmax is desirable to keep the overall strategy stable. In our experiments, we 
observed that nmax ~ 106 produced negligible effects in the generated models. 

Moreover, we observe from these long-term equations that when the model is at a 
local minimum, its parameters are dependent from the relation among the values o f the 
accumulators but not on the values themselves. So, to better explore the available 
numeric range keeping the system responsive to new components, whenever long-term 
mode is reached, identified as a fraction fJ of nmax, the accumulators are restarted to a 
fraction yoftheir corresponding value, i.e. 

Whenever 

then, 

M 

:L sp 1 ~ flnm•x 
j=l 

snx~~w = wnxold r Jl t~r 1, 

new old 
sps Ji = ysps Ji 

new old 
sp jiv = ysp jiv 

In the experiments presented in Chapter 3, we used fJ= 0.8 and r= 0.5. 

(41) 

(42) 

(43) 

(44) 

(45) 
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3 EXPERIMENTS 

To highlight the main features of the algorithm, we present a series of experiments 
involving simulated data related to the domain of mobile robots trajectories. In the first 
two experiments the data consist of a sequence of vectors with 2 continuous 
components representing the instant position of a mobile robot moving along a corridor 
and a rectangular environment, respectively. Although in real mobile robotics we can 
rarely count on the actual instant position ofthe robot, these data were used because the 
resulting computed models are more easily interpreted than the more realistic 
multidimensional sensor data of a real robot, used in the next experiments. Then, in the 
next experiments, the data consist of 4 continuous values corresponding to the readings 
of the sonar sensors of a Pioneer mobile robot. In all experiments, the data was 
corrupted with noise. 

3.1 Moving along a corridor: models with one component 
In this experiment, INBC receives a sequence of data points corresponding to the 

noisy observations of the (x, y) position of a robot moving alonga corridor following a 
loop with a halfway intersection, as shown in Figure 3.1. In this figure a square 
corresponds to a data point representing the real position o f the robot in the range [ -100, 
+100; -2, +2] added with random noise from a normal distribution with mean zero and 
standard deviation 0.1. Walls are represented by two parallel thick lines at y = ±20. A 
complete lap starts and ends at ( -100, O) generating 200 data points, but the robot can 
iterate many laps, generating data sequences of different lengths. In the experiment 
shown in Figure 3.1, the robot made just a single lap and INBC created just one cluster 
representing these data. The central dot in this figure represents the position of the 
cluster generated by INBC. The two parallel thin lines at ±5.3 represent the y-positions 
of the borders of the cluster according to the novelty criterion while the corresponding 
x-positions fall out of the figure and are not visible. Table 3.1 shows the clusters 
parameters after a single iteration through the data sequence and the corresponding 
statistics computed for these data. We can see that the values of the cluster parameters 
computed by INBC and those from the statistics for these data are very close. In this 
table the value for the other parameters o f the algorithm used in this experiment are also 
included. 



30 l"""i·----------;-··········;········-·;··--------i-----------;-----------i----------i----------i--- ............... i .................. i ......... . 
I I I I I I I o I I I 
I I I I I I I I I I 1 

20~·~--~· ---·~---· ---·----·----·----·----·----·----·--
' I I I I I I I I I I 
I I I I I I I I 1 1 1 
I I I I I I I I 1 1 1 

10 1----~-----·····+·········-~----------~----------~-----------~----------~----------:'-·······-~-----------:-----------~---··· 
I I I I I I I I I o 1 

I I I I I I I I I 
I I I I I I 1 I 1 1 1 

-10 ... ~- ......... -~ •........ -~- ......... ~ .......... ~- ......... -~ _, ...... --~ .......... i·.·.' .. -- .. ~-- ...... --+--- ... -- .. ~--- .. . 
I I I I I I I I I I I 
I I I I I I I I I I 1 

-20 ~·~-·~-·~-!""'· ---·----·----·----·---·----·---·--i i l i l '30 ~-1~oo~--~-8~0--~-6~o-----~4o~--~-20~--~o----~2o~--~4o~--~6~o----~8o--~~1o~o--

Figure 3. 1: The dot at the center o f the figure represents the position o f the mean o f the 
single cluster generated by INBC after a complete lap o f the robot around the corri dor. 

The squares represent the data points presented to the algorithm. 

Table 3.1: Distribution parameters computed by INBC and statistics 

'Z'nov: 0.001 o: 0.1 nmax: 1 o+6 

Cluster 1 (INB) Statistics 
Mean StdDev Mean Std Dev 

X -0.0069 70.4716 -0.0069 70.8793 
y 0.0083 1.4230 0.0083 1.4319 

3.1.1 Handling large data sequences 

In this experiment, we verify the effect o f restarting the counters to a fraction r o f the 
current va1ue when it reaches f3nmax, comparing the resu1ts obtained without restarting, 
and with a discount factor of unity. In this case, the robot iterates 5000 laps through the 
environment, generating 106 data points that is the same value ofnmax. Table 3.2 shows 
the results obtained restarting the accumu1ators with f3 = 0.8 and r= 0.5. These results 
show that the models parameters computed restarting the accumu1ators to 50% of their 
original value when the sum of sp reaches 80% of nmax are essentially the same as those 
computed without decay and restarting, indicating that the strategy of decaying and 
restarting the accumulators is effective for leaming from unbounded data streams. 

Table 3.2: Distribution parameters and final values ofthe accumulators computed by 
INBC with and without restart 

'Z'nov: 0.001 o: 0.1 nmax: 1 o+6 f3 = 0.8 r=0.5 

with restart Mean Std Dev sp spx sps 

X -0.0001 70.7105 -52.42 3160586092.22 
632120.74 

y -0.0001 1.4177 -52.57 1270555.81 

without 
Mean Std Dev spx 

decay /restart 
sp sps 

X -0.0003 70.7104 1000000.00 -262.23 4999959219.43 

y -0.0001 1.4176 -64.42 2009647.56 
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3.2 Moving changing direction: models with many components 

In this experiment, the robot moves along a rectangular environment, experiencing 
abrupt changes in direction. Figures 3.2 shows the results obtained after a complete lap 
through the environment. Table 3.3 shows the parameters of the model computed by 
INBC for the data presented in these figures. INBC created 4 clusters, one for each 
trajectory segment. As a result of the Na'ive Bayes approach followed by INBC, each 
distribution component is aligned with the coordinate axes, as can be seen in this figure. 
The colored dots in the center o f each segment represent the position o f the mean o f the 
corresponding cluster. The rectangles surrounding each center represent the borders of 
the corresponding cluster according to the novelty criterion. 
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Figure 3.2: Results obtained with INBC after a single lap through the environment. 

Table 3.3: Distribution parameters computed by INBC for the experiment shown in 
Figure 3.2 

t"nov: 0.01 o: 0.02 nmax: 10+6 f3 = 0.8 r=0.5 

Mean StdDev Mean StdDev 
Cl 

0.0140 57.8698 
C3 

-2.0729 56.6961 
p: 0.3336 Xt p: 0.3269 

X[ 

X2 50.0002 0.3457 X2 -50.0030 0.3362 

Mean StdDev Mean StdDev 
C2 99.9093 1.0236 C4 

0.9021 p: 0.1740 
Xt p: 0.1655 Xt -99.9824 

X2 -1.9513 29.9087 X2 -0.4389 28.5697 



Figure 3.3 shows the results obtained applying the EM algorithm to these data 
setting the number of clusters to 4. Table 3.4 shows the parameters of the model 
computed by the EM algorithm. From these figures and tables, we can see that the 
model computed by INBC is a very good approximation to the model computed by the 
EM algorithm. 
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Figure 3.3: Results obtained with the EM algorithm. 

Table 3.4: Distribution parameters computed by the EM algorithm for the experiment 
shown in Figure 3.3 

EM algorithm with 4 clusters 

Mean StdDev Mean StdDev 
C1 

0.1130 57.7856 
C3 0.0206 57.7850 

p: 0.3336 
X! 

p: 0.3336 X! 

X2 50.0016 0.0963 X2 -50.0044 0.0982 

Mean StdDev Mean StdDev 
C2 100.0018 0.1098 C4 

-99.9808 0.0974 
p: 0.1662 

X! 
p: 0.1666 

X! 

X2 -0.0376 28.8064 X2 0.0666 28.8586 
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3.3 Detecting concepts from sonar signals 

In these experiments, the data consist of a sequence of 4 continuous values (s~, s2, 

s3, s4) corresponding to the readings of the sonars located at the left/right side (s,, s4) 
and at -10°/+ 10° from the front (s2, s3) o f a robot, generated using the Pioneer simulator 
software ARCOS (Advanced Robot Control & Operations Software). Figure 3.4 shows 
the segmentation of the trajectory obtained by INBC when the robot follows the walls 
of a square room. INBC created two clusters corresponding to the concepts of "wall at 
left" and "curve at right". The colored filled dots in this figure correspond to the 
location where each cluster was created. A square represents a robot position and has 
the same color o f the cluster with the largest posterior probability for the corresponding 
data point. Table 3.5 shows the parameters of the model computed by INBC. For these 
data, 5000 corresponds to the maximum value of the sensor, indicating that no obstacle 
was detected in the corresponding direction. Figure 3.5 (a) shows the plots of the means 
appearing in Table 3.5 for the pair of signals of the sonars at the left and right side (s1, 

s4) and, (b ), in the front (s2, s3). In this figure a rectangle represents the borders o f the 
corresponding cluster according to the novelty criterion. 
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Figure 3.4: Each colored dot corresponds to the position where a cluster was created by 
INBC. A square represents a robot position and has the same color o f the cluster with 

the largest posterior probability for the corresponding data. Red segments correspond to 
the concept "wall at left", blue segments to the concept "curve at right". 

From the means presented in Table 3.5 we can see that the concept "wall at left" is 
mainly related to a small value of s 1, meaning a close obstacle detected at left, whereas 
"curve at right" is related to the detection o f (not so elo se) obstacles at left and at -10° 
in the front. 



Table 3.5: Distribution parameters computed by INBC for the experiment shown in 
Figure 3.4 

Z"nov: 10-6 6:0.05 nmax: 10+6 fJ = 0.8 y=0.5 

C1uster 1 - red ("wall at 1eft") Prior 0.9257 

Mean Si (left) 592 Std. Dev Si 109 

Mean Sz ( front -1 0°) 3927 Std. Dev sz 639 

Mean S3 (front + 1 0°) 4987 Std. Dev s3 101 

Mean s 4 (right) 5000 Std. Dev S4 0.01 

C1uster 2 - b1ue ("curve at right") Prior 0.0743 

Mean si (left) 1442 

Mean S2 ( front -1 0°) 2553 

Mean s 3 (front + 10°) 3710 

Mean s 4 (right) 5000 
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Figure 3.5: The components ofthe mean ofeach cluster created by INBC for the data 
shown in Figure 3.4. The data components are grouped in pairs, (s~, s4) corresponding to 

left/right sonars in (a), (s2, s3) corresponding to the -10°/+10° front sonars in (b). The 
rectang1es show the borders of each cluster according to the novelty criterion. 

Figure 3.6 shows the segmentation of the trajectory of a robot following the walls 
in an environment with two different sized rooms connected by a short corridor. In this 
case, INBC created five clusters corresponding to the concepts "wall at right", 
"corridor", "obstacle front/curve at left", "corridor at right" and "curve at right". Tab1e 
3.6 shows the parameters of the mode1 computed by INBC and Figure 3.7 shows the 
p1ots of the means o f each cluster for these data. Here too, we interpreted each concept 
extracted by INBC from the va1ues of the means presented in Tab1e 3.6. In this case, 
"wall at right" corresponds to obstacle at right; "corridor" means obstacles at right and 
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at left. The concept "obstacle front/curve at left" corresponds to the detection of a close 
obstacle at right and an obstacle not so close in the front. From the point of view o f the 
means, "corridor at right" corresponds to the detection of a relative close obstacle in the 
front and no obstacles at both sides. Finally, "curve at right" stores the sensor readings 
at the positions where the robot makes a tum to the right by entering or exiting the short 
corridor. Note that here we chose a more comprehensible concept based on the action 
that the robot takes, but that is not included by simplicity in this experiment. In more 
realistic experiments, we would include the action as an extra input variable to the 
leaming system. 
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Figure 3.6: Each colored dot corresponds to the position where a cluster was created by 
INBC. A square represents a robot position and has the same color o f the cluster with 

the largest posterior probability for the corresponding data. 
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Figure 3.7: The components ofthe mean ofeach cluster created by INBC for the data 
shown in Figure 3.6. The 4 data components (s1, s2, s3, s4), are grouped in pairs, (s1, s3) 

in (a), (s2, s4), in (b). 



Table 3.6: Distribution parameters computed by INBC for the experiment shown in 
Figure 3.6 

'Z'nov: 0.02 5:0.05 nmax: 10+6 fJ = 0.8 r=0.5 

C1uster 1 - red ("wall at right") Prior 0.5797 

Mean si (left) 4999 Std. Dev si 72 

Mean s 2 (front -10°) 4999 Std. Dev s2 24 

Mean S3 (front + 1 0°) 4999 Std. Dev s3 25 

Mean S4 (right) 1157 Std. Dev s4 86 

Cluster 2 - b1ue ("corridor") Prior 0.0664 

Mean SI (left) 1113 Std. Dev SI 116 

Mean s 2 (front -10°) 4986 Std. Dev s2 130 

Mean S3 (front + 1 0°) 5000 Std. Dev s3 66 

Mean s4 (right) 1581 Std. Dev s4 1143 

Cluster 3 - black (" obstacle front/curve at left") Prior 0.3256 

Mean SI (left) 5000 Std. Dev si 36 

Mean s 2 (front -10°) 3536 Std. Dev s2 995 

Mean s 3 (front + 10°) 3148 Std. Dev s3 980 

Mean s4 (right) 1259 Std. Dev s4 234 

Cluster 4- cyan ("corridor at right") Prior 0.0078 

Mean si (left) 5000 Std. Dev SI 221 

Mean s 2 (front -10°) 2188 Std. Dev s2 282 

Mean s 3 (front +10°) 2175 Std. Dev S3 277 

Mean s4 (right) 5000 Std. Dev s4 228 

Cluster 5 - magenta ("curve at right") Prior 0.0205 

Mean SI (left) 2372 Std. Dev si 1221 

Mean S2 ( front -1 0°) 3063 Std. Dev s2 1380 

Mean S3 (front + 1 0°) 3962 Std. Dev s3 1254 

Mean s4 (right) 1465 Std. Dev s4 422 
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From these results, we can see that INBC has segmented the trajectories according to a 
set of concepts that are useful to locate the robot in the environment. In the future, we 
will include the robot actions as input variables and investigate the use of the leamed 
concepts for task planning. 



4 CONCLUSION 

In this technical report we presented a new algorithm for dataflow segmentation 
based on an incrementai probabilistic model, called INBC, for Incrementai Na'ive Bayes 
Clustering. The adopted mixture distribution model is expanded based on a novelty 
criterion, and a stability criterion avoids the successive creation of spurious components 
in a noisy environment. The model is updated by sequential assimilation of data points. 
The update equations are incrementai approximation versions o f the update equations o f 
the well known EM-algorithm based on accumulation of information collected by 
individual observations. We showed that the corresponding accumulators used to update 
the parameters of the model are bounded to a maximum value controlled by a 
discounted factor, allowing INBC to be used for modeling unbounded data streams. 
Experiments with simulated data streams of sonar readings of a mobile robot showed 
that INBC could efficiently segment trajectories detecting higher order concepts like 
"wall at right" and "curve at left". Future developments will expand the current 
approach to a hierarchy of segmentation layers. 
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