
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Refinement in a Concurrent, Object-Based Language
por

Paulo Blauth Menezes, A.Sernadas and Félix Costa
RP 263 Maio/1996

UFRGS-11-CPGCC
Caixa Postal 15064- CEP 91501-970
Porto Alegre RS BRASIL
Telefone: (051)316-6155
Fax: (051) 336-5576
Email: pgcc@inf.ufrgs

FRG~

lN:'TITUTO
BIP' I'"':"T:;::;(' I',L\l,, r._·r•·•t

Refinement in a
Concurrent, Object-Based Language *

P. Blauth Menezest, A. Sernadastt and J. Félix Costattt

t Departamento de lnfonnática Teórica, Instituto de lnfonnática, Universidade Federal do Rio Grande do Sul
Caixa Postal 15064, 91501·970, Porto Alegre, Brazil - blauth@inf.ufrgs.br

tt Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal- acs@math.ist.utl.pt

ttt Departamento de lnfonnática, Faculdade de Ciências, Universidade de Lisboa
Campo Grande, 1700 Usboa, Portugal- fgc@di.fc.ul.pt

Abstract. Nonsequential automata constitute a categoria! semantic domain based oo labeled transition system with full concurrency,
where restriction and relabeling are functorial and a class oi morphisms stands for refinement. ~ is, for ou r knowledge, the first model f o r
concurrency which satisfies the diagonal compositionality requirement, i.e., refinements compose (vertical) and distribute over
combinators (horizontal). To experiment with the proposed semantic domain, a semantics for a concurrent, object-based language is given.
lt is a simplified and revised version oi lhe object-oriented specification language GNOME, introducing sane special features inspired by
lhe semantic domain such as refinement. The diagonal compositionality is an essential property to give semantics in this context.

1 In.troduction

We construct a semantic domain with full concurrency which is, for our knowledge, the first
model for concurrency satisfying the diagonal compositionality requirement, i.e., refinements
compose (vertically), reflecting the stepwise description of systems, involving severa! leveis "of
abstraction, and distributes through parallel composition (horizontally), meaning that the
refinement of a composite system is the composition of the refinement of its parts.

Taking into consideration the developments in Petri net theory (mainly with seminal papers
like [Winskel 87), [Meseguer & Montanari 90] and [Sassone et al 93]) it was clear that nets might be
good candidates. However, most of net-based models such as Petri nets in the sense of [Reisig 85]
and labeled transition systems (see [Milner 89]) lack composition operations (modularity) and
abstraction mechanisms in their original definitions. This motivate the use of the category theory:
the approach in [Winskel 87] provides the former, where categorical constructions such as
product and coproduct stand for system composition, and the approach in [Meseguer & Montanari
90] provides the la ter for Petri nets where a special kind of net morphism corresponds to the notion
of implementation. Also, category theory provides powerful techniques to unify different categories \
of models (i.e., classes of models categorically structured) through adjunctions (usually reflections
and coreflections) expressing the relation of their semantics as in [Sassone et al 93], where a
formal framework for classification of models for concurrency is set.

A nonsequential automaton (first introduced in [Menezes & Costa 95]) is a kind of automaton
with monoidal structure on states and transitions, inspired by [Meseguer & Montanari 90] .
Structured states are "bags" of local states like tokens in Petri nets (as in [Reisig 85]) and
structured transitions specify a concurrency relationship between component transitions in the
sense of [Bednarczyk 88] and [Mazurkiewicz 88]. The resulting category is bicomplete where the
categoria! product stands for parallel composition. Restriction and relabeling are functorial
operations. A restriction restricts the transitions of an automaton according to some table of
restrictions (at label level). A relabeling relabels the transitions of an automaton according to some
relabeling morphism (at label level). A refinement maps transitions into transactions reflecting an
implementation of an automaton on top of another. It is defined as an automaton morphism where
the target object is enriched with ali conceivable sequential and nonsequential computations .
Computations are induced by an endofunctor and composition of refinement morphisms is
inspired by Kleisli categories. With respect to nonsequential automata and comparing with
[Menezes et al 96], in this paper we revise the refinement morphisms and introduce the restriction
and relabeling for refinements.

* This work was partially supported by: CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico in
Brazil; CEC under ESPRIT-III BRA WG 6071 IS-CORE, WG 6112 COMPASS, HCM Scientific Network MEDICIS,
JNICT (PBIC/CtriT/1227/92) in Portugal.

mailto:acs@math.ist.utl.pt
mailto:fgc@dl.fc.ul.pt

In [Menezes & Costa 95] and [Menezes & Costa 96] we show that nonsequential automata are
more concrete then Petri nets (in fact, categories of Petri nets are isomorphic to subcategories of
nonsequential automata) extending the approach in [Sassone et al 93] .

To experiment with the proposed semantic domain, a semantics for a concurrent object-based
specification language (using the terminology of [Wegner 90]) is given. The language named
Nautilus is based on the object-oriented language GNOME [Sernadas & Ramos 94] which is a
simplified and revised version of OBLOG [SernadasC et al 92], [SernadasC et al 92b], [SernadasC et
al 91]. Some features inspired by the semantic domain (and not present on GNOME) such as
refinement and aggregation are introduced. A refinement implements an object over sequential or
concurrent computations of another. For simplicity and in order to keep the paper short, we do not
deal with some feature of GNOME such as classes of objects and inheritance. Following the
proposed approach, the diagonal compositionality requirement is an essential property to give
semantics for Nautilus.

2 Nonsequential Automata

A nonsequential automaton is a reflexive graph labeled on ares such that nodes, ares and labels
are elements of commutative monoids . A reflexive graph represents the shape of an automaton
where nodes and ares stand for states and transitions, respectively, with identity ares interpreted
as idle transitions. Comparing the graphical representations of nonsequential automata and
asynchronous transition systems (first introduced in [Bednarczyk 88]), the independence relation
of a nonsequential automaton is explicit.

Nonsequential automata and its morphisms constitute a category which is complete and
cocomplete with products isomorphic to coproducts. A product (or coproduct) can be viewed as a
parallel composition. In what follows C:Jvfon denotes the category of commutative monoids and
suppose that i is in I where I is a set and k is in {0, 1} (for simplicity, we omit that i e I and ke {0, 1}).
Also, for the proof or details omitted, see [Menezes et al 96] and [Menezes & Costa 95b] .

2.1 Nonsequential Automaton

Definition 1. Nonsequential Automaton. A nonsequential automaton N = (V, T, ào, à1, t, L, lab) is
such that T = (T, 11, 't), V= (V, ffi, e), L= (L, 11, 't) are CMon-objects of transitions, states and labels
respectively, ao, a1: T ~ V are CMon-morphisms called source and target respectively, t: V~ Tis a
C:Jvfon-morphism such that ak ot = idv and lab: T ~ L is a C:Jvfon-morphism such that lab(t) = 't
whenever there is v in V where t(v) = I. o

We may refer to a nonsequential automaton N =(V, T, ào, 01, t, L, lab) by N = (G, L, lab) where G =(V, T,
ào, h t) is a reflexive graph internai to C:Jvfon (i.e., V, T are C:Jvfon-objects and ào, 01, t are CMon­
morphisms). In an automaton, a transition labeled by 't represents a hidden transition (and
therefore, can not be triggered from the outside). Note that, ali idle transitions are hidden. The
labeling procedure is not extensional in the sense that two distinct transitions with the same label
may have the same source and target states (as we will se !ater, it is essential to give semantics for
an object refinement in Nautilus). For simplicity, in this paper we are not concerned with initial
states.

A transition I such that ao(l) =X, a1(l) = Y is denoted by t: X~ Y. Since a state is an element of a
monoid, it may be denoted as a formal sum n1A1 ffi ... ffinmAm, with the order of the terms being
immaterial, where Ai is in V and ni indicate the multiplicity of the corresponding (local) state, for i =
1 ... m. The denotation of a transition is analogous. We also refer to a structured transition as the
parallel composition of component transitions. When no confusion is possible, a structured
transition xll't: XffiA ~ Yffi A where t: X ~ Y and tA: A ~ A are labeled by x and 't, respectively, is
denoted by x: XffiA ~ Yffi A. For simplicity, in graphical representation, we omit the identity
transitions. States and labeled transitions are graphically represented as circles and boxes,
respectively.

Example 2. Let ({A, 8, X, Y} ffi , {l1, l2 , l3, A, 8, C, X, Y} ®, ao. à1, t, {x, y}®, lab) be a nonsequential
automaton with a0, a1 determined by the local ares I f 2A ~ 8, l2: X ~ Y, l3: Y ~ X and lab determined
by 11 x, l2 x, l3 y. The distributed and infinite schema in Figure 1 (left) represents the

automaton. Since in this framework we do not deal with initial states, the graphical
representation makes explicit all possible states that can be reached by all possible independent
combination of component transitions. For instance, if we consider the initial state Affi2X, only the
corresponding part of the schema of the automata in the figure has to be considered. In Figure 1
(right), we illustrate a labeled Petri net which simulates the behavior of the automaton.
Comparing both schema, we realize that, while the concurrence and possible reachable markings
are implicit in a net, they are explicit in an automaton. Categories of Petri nets and categories of
nonsequential automata can be unified through adjunctions (see [Menezes & Costa 95] and
[Menezes & Costa 95b]). o

Figure 1. A nonsequential automaton {left;) and the corresponding labeled Petri net (right)

Definition 3. Nonsequential Automaton Morphism. A nonsequential automaton morphism h: N1
~ N2 where N1 = (Vt. Tt. ào1• à1 1• t1, Lt, lab1) and N2 = (V2, h ào2• à1 2• t2, Lz, lab2) is a triple h= (hv, hr, hL.)
such that hv: Vt ~ V2, hr: Tt ~ Tz, hL: Lt ~ L2 are CMon-morphisms, hy oàk1 = àk2°hr, hr 0 t1 = t2 °hy and
hL olab1 = lab2 ohr. i:J

Nonsequential automata and their morphisms constitute the category 1{Jf.ut.

Proposition 4. The category 9{filut is complete and cocomplete with products isomorphic to
coproducts. o

A categorical product (or coproduct) of two automata N1 = (Vt, Tt. ào1, 01 1, t1, Lt,lab1), N2 = (V2, Tz. ào2,

012, t2, L2, lab2) is N1X~JlutN2=(VtXC!ilfonVz, TtXC!ilfonTz. ào1Xào2, 011Xà12, t1Xt2, LtXC!ilfonLz, lab1XIab2)
where dk1 X ak2, t 1 X t2 and lab1 X lab2 are uniquely induced by the product construction.

Example 5. Consider the nonsequential automata Consumar and Producer (with free monoids)
determined by the labeled transitions prod: A~ 8, send: 8 ~ A for the Producer and rec: X ~ V, cons: V ~ X
for the Consumar. Then, the rasulting objet of the parallel composition (categoria! product) Consumar x
Producar is illustrated in the Figure 2 (for simplicity, prod, send, rec and cons are abbreviated by p, s, r
and c, respectively). o

...

Figure2. Parallel composition of nonsequential automata

2.2 Restriction and Relabeling

Restriction and relabeling of transitions are functorial operations defined using the fibration and
cofibration techniques inspired by [Winskel 87] o Both functors are induced by a morphism at the
labellevel. The restriction operation restricts an automaton "erasing" all those transitions which
do not reflect some given table of restrictions:

a) let N be a ~ut-object with L as the CMon-object of labels, Table be a CMon-object, called table of
restrictions, and restr: Table -7 L be a restriction morphismo Let u: 9{_.9tut -7 CMon be the obvious
forgetful functor taking each automaton into its labels;

b) the functor u is a fibration and the fibers u-1 Table, u-1 L are subcategories of ~ut. The fibration u
and the morphism restr induce a functor restr: u-1 L -7 u-1 Tab/eo The functor restr applied to N
provides the automaton reflecting the desired restrictionso

The steps for relabeling are as follows:

a) let N be a 9{_.9f.ut-object with L1 as the CMon-object of labels, relab: L1 -7 L2 be a relabeling morphismo
Let u be the same forgetful functor used for synchronization purpose;

b) the functor u is a cofibration (and therefore, a bifibration) and the fibers u-1 Lt, u-1 L2 are
subcategories of 9{_.9tut. The cofibration u and the morphism relab induce a functor refa6: u-1 Lt -7

u-1 L2o The functor refa6 applied to N provides the automaton reflecting the desired relabelingo

Restriction. In what follows, we show that the forgetful functor which takes each nonsequential
automaton onto its labels is a fibration and then we introduce the restriction functoro

Proposition 60 The forgetful functor u: 9{_.9f.ut -7 CMon that takes each nonsequential automaton
onto its underlying commutative monoid of labels is a fibrationo

Proofo Let 'l{{jr(CMon) be the category of reflexive graphs intemal to CMon and let iá: '1{/jr(CMon) -7

'l((jr(CMon), em6: CMon -7 'l((jr{CMon) be functorso Then, 9{_.9tut can be defined as the comma
category iÜem60 Let f: Lt -7 L2 be a CMon-morphism and N2 = (G2, L2, lab2) be a nonsequential
automaton where G2 = <V2, h oo2, 01 2, t2) is a 'l((jr{CMon}-objecto Let the object G1 together with lab1: G1
-7 em6Lt and UG: G1 -7 G2 be the pullback off: em6Lt-7 em6L2 and lab2: G2 -7 em6L2o Define N1 = (G1, Lt,
lab1) which is an automaton by constructiono Then u = (UG, f): N1 -7 N2 is cartesian with respect to f
and N2 o o
Definition 70 Functor restro Consider the fibration u: 9{_.9f.ut-? CMon, the automata N =(V, T, oo, h tj,
L, lab) and the restriction morphism restr: Table -7 L. The restriction of N is given by the functor restr:
u-1 (L) -7 u-1 (Tab/e) induced by u and restr applied to No o

In the following example, we show that restriction operation can be used for synchronizationo
For further details on synchronization, see [Menezes & Costa 93] and [Menezes et al 96] o

Example 80 Restriction x Synchronizationo Since the product (or coproduct) construction stands
for parallel composition, it is possible to define a synchronization operation using the restriction
operationo For instance, consider the nonsequential automata Consumer and Producer of the previous
exampleo Suppose a joint behavior sharing the transitions send and rec (a communication without
buffer such as in CSP [Hoare 85] or CCS [Milner 89]), represented by send I reco Then, Tab/e = (prod,
cons, send I rec) l and the restriction morphism is such that prod prod, cons cons and send I rec
send ll reco The synchronized automaton is given by restr(Consumer x Producer) as illustrated in the
Figure 30 Note that the transitions send, rec are erased and send I rec is includedo o

•••

0
Figure3. Synchronized automaton

Relabeling. In what follows , we show that the forgetful functor which takes each nonsequential
automaton into its labels is a fibration and then we introduce the restriction functor.

Proposition 9. The forgetful functor u: 'l{flut --7 CMon that maps each automaton onto its
underlying commutative monoid of labels is a cofibration.

Proof" Let f: Lt--7 L2 be a CMon-morphism and N1 = (Vt, h Clo1, Cl1 1, 11, Lt, lab1) be an automaton. Define
N2 = (Vt, Tt. Clo1, Cl1 1, 11, L2, folab1)· Then u = (idv1• idr1• f): N1 --7 N2 is cocartesian with respect to f and N1. o

Definition 10. Functor refa6. Consider the fibration u: 91[.9/.ut --7 CMon, the nonsequential automata
N =(V, T, Clo, h 1, Lt, lab) and the relabeling morphism relab: Lt --7 L2. The relabeling of N satisfying
relab is given by the functor refa6: u-1 L1 --7 u-1 L2 induced by u and relab applied to N. Q

2.3 Refinement

A refinement is defined as a special automaton morphism where the target object is closed under
computations, i .e., the target (more concrete) automaton is enriched with all the conceivable
sequential and nonsequential computations that can be split into permutations of original
transitions, respecting source and target states.

The category of categorias internai to CMonis denoted by Cat(CMon). We introduce the category
LCat{CMon) which can be viewed as a generalization of labeling on Cat{CMon). There is a forgetful
functor from LCat{C:Mon) into 9{_!4.ut. This functor has a left adjoint which freely generates a
nonsequential automaton into a labeled internai category. The composition of both functors from
'J{flut into LCat{CMon) leads to an endofunctor, called transitive closure. The composition of
refinements of nonsequential automata is defined using Kleisli categories (see [Asperti & Longo
91)). In fact, the adjunction above induces a monad which defmes a Kleisli category. Then we show
that refinement distributes over the parallel composition and therefore, the resulting category of
automata and refinements satisfies the diagonal compositionality.

Definition 11. Category LCat(CMon). Consider the category Cat(CMon). The category LCat(CMon)
is the comma category iácat(C!Mon)j, iácat(C!Mon) where iácat(C!Mon) is the identity functor in
~t~~ Q

Therefore, a LCat{C:Mon}-object is triple 91[= ((j, L, fa8) where q, L are Cat{C:Mon}-objects and fa6
is a Cat{C:Mon}-morphism.

Proposition 12. The category LCat{C:Mon) has all (small) products and coproducts . Moreover,
products and coproducts are isomorphic.

Definition 13. Functor cn. Let 91[= ((j, L, fa8) be a LCat{CMon}-object and fi= (fiq, fi L): 'l{j --7 9f2 be a
LCat{C:Mon}-morphism. The functor cn: LCat(C:Mon) --7 9{_!4.ut is such that:
a) the Cat{C:Mon}-object y= (V, T, ào, Cl1, 1, ;) is taken into the 2{_(jr{C:Mon}-object G =(V, T', ào', à1', 1'),

where T' is T subject to the equational rule below and Clo', Cl1', 1' are induced by Clo, Cl1, 1 considering
the monoid T'; the Cat{CMon}-object L= (V, L, Clo, Cl1, 1, ;) is taken into the CMon-object L', where L' is
L subject to the same equational rule; the LCat{C:Mon}-object 91[= (q, L, fa8) is taken in to the
'l{flut-object N = (G, L', lab) where lab is the 2{_(jr{C:Mon}-morphism canonically induced by the
Cat{CMon)-morphism [a6;

t:A--78 E T u:8--7C E T t':A' --7 8' E T u':8'--7C' E T

(t;u)il(t';u')'= (tllt');(ullu') in T'

b) the LCat{C:Mon}-morphism fi= (fiq, fiL): 'l{j --7 9f2 with fir;= (hNv. hNr), fiL= (hLv. hLr) is taken into the
9{.9/.ut-morphism h= (hNv. hNr. hLr): N1 --7 N2 where hNr and hLr are the monoid morphisms induced
by hNr and hLT, respectively. Q

The functor cn has a requirement about concurrency which is (t;u)ll(t';u') = (tllt');(u ll u') . That is, the
computation determined by two independent composed transitions t;u and t';u' is equivalent to the
computation whose steps are the independent transitions tllt' and ull u'.

Definition 14. Functor nc. Let A = (G, L, lab) be a 9{_J'iut-object and h = (hG, hL): A1 --7 A2 be a 9\{_J'iut­
morphism. The functor nc: 91[.9/.ut --7 LCat{C:Mon) is such that:

a) the 2{_{jr{CMon}-object G =(V, T, Clo, Cl1, 1) with V= (V, Etl , e), T = (T, 11 , 't) is taken into the Cat{CMon}­
object {j= (V, Te, a0, a1 , t , ;) with TC = (TC, ® , 't), a0, a1, _;_: TC x 'fC --7 TC inductively defined as
follows :

t:A~BET

t: A~ B E Te

t: A ~ B E Te u: C ~ D E Te

t ® u: A EEl C ~ B EEl D E Te

t: A ~ B E Te u: B ~ C E Te

t;u: A~ C E Te

subject to the following equational rules:

E T u E T
t®u tllu

E Te u E Te

t®u = u®t

t E Te

t® .. = t
E Te u E Te v E Te

t®(u®v) = (t®u)®v

t E Te t: A ~ B E Te

t;t = t & t;'t = t tA;t = t & t;t8 =
t: A ~ B E Te u: B ~ C E Te v: C ~ D E Te

t;(u;v) = (t;u);v

the C9vfon-object L is taken in to the Cat(C9vfon}-object L= (1, LC, !, !, !, ;) as above; the 9{51ut-object A =
(G, L, lab) is taken into the LCat(C9vfon)-object 51= ((j, L, fali) where [a6 is the morphism induced
bylab;

d) the 9{ltut-morphism h= (hv, hr, hL): A1 ~ A2 is taken into the Cat(C9vfon)-morphism fi= (fiq, fiL): 511
~ 512 where fiq = (hv, hrc), fiL = (!, hLc) and hrc, hLc are the monoid morphisms generated by the
monoid morphisms hr and hTL> respectively. o

Proposition 15. The functor nc: 9{51ut~ LCat(CMon)is left adjoint to cn: LCat(CMon)~ 9{ltut.

Definition 16. Transitive Closure Functor . The transitive closure functor is te = cno nc: 9{51ut ~
9{51ut. o
Example 17. Consider the nonsequential automaton with free monoids on states and transitions,
determined by the transitions a: A ~ B and b: B ~ C. Then, for instance, a;2b: AEElB ~ BEElC is a
transition in the transítive closure. Note that, a;2b represents a class of transitions. In fact, from
the equations we can infer that a;2b = a;(bllb) = ('t[B]IIa);(b ll b) = ('t[B];b) ll (a;b) = bll (a;b) = (b;'t[C])II('t[A];(a;b)) =
(b 11 't[A]);(t[C]II (a;b)) = b;a;b = ... o

Let (nc, cn, 11 , E): 9{liut~ LCat(CMon}be the adjunction above. Then, T =(te, 11, Jl) is a monad on
91{1tut such that Jl = cnE nc: te2 ~ te where cn: cn ~ cn and nc: nc ~ nc are the identity natural
transformations and cnE nc is the horizontal composition of natural transformations. For some
given automaton N, teN is N enriched with its computations, 1lN: N ~ teN includes N into its
computations and Jl.N: tc2N ~ tcN flattens computations of computations in to computations.

In previous works we define a refinement morphism q> from A into the computations of B as an
9{.9lut-morphism q>: A ~ tcB and the composition .of refinements as in Kleisli categories (each
monad defines a Kleisli category). However, in this work, we modify the definition, since
refinements should to not preserve labeling (and thus, they are not 9{.9lut-morphisms). As we show
below, each refinement induces a 9{51ut-morphism. Therefore, we may define a category whose
morphisms are 9{51ut-morphisms induced by refinements. Both categories are isomorphic.

Definition 18. Refinement. Let T =(te, 11, Jl) where 11 = (1lG, 110, Jl = (Jl.G, Jl.L) be the monad induced by
the adjunction (nc, cn, 11, E): 9{51ut ~ LCat(CMon). The category of nonsequential automata and
refinements, denoted by !f?!j9{51ut, is such that (suppose the 9{.9lut-objects Nk = (Gk, Lk, labk), for k in {1,
2, 3}) :

a) !f?!j9{51ut-objects are the 9{51ut-objects;
b) q> = q>G: N1 ~ Nz is a !f?!j9{51ut-morphism where q>G: G1 ~ tcGz is a 2((jr(C9vfon}-morphism

each 9{.9lut-object N, q> = 1lG: N ~ N is the identity morphism of N in !f?!j9{51ut:,
c) let q>: N1 ~ Nz, \jf: Nz ~ N3 be !f?!j9{.9lut-morphisms. The composition \jf 0 q> is a morphism

N1 ~ N3 where \jfG 0~G is as illustrated in the Figure 4 .

.------------------ 2({jr(C9vfon)

f..LG ..,. tcG
3

+

and for

Figure4. Composition of refinements is the composition in the Kleisli category forgetting about the labeling

In what follows, an automaton (G, L, lab) is viewed as a morphism lab: G --7 em6 L (see the
proposition about fibration). For simplicity, in diagrams, it is abbreviated just by lab: G --7 L.

Definition 19. Refinement with Induced Labeling. Let T =(te, ll , Jl) where ll = (llG, llL), Jl = (J.LG, JlL)
be the monad induced by the adjunction (nc, cn, ll, E) . The category of nonsequential automata and
refinements with induced labeling, denoted by 1(f.j9{_.9LutL, is such that (suppose the ~ut-objects Nk
= (Gk, Lk, labk), for k in {1, 2, 3}):

a) 1?.f-j9{_.9LutL-objects are the 9{_.9Lut-objects; ·
b) let q>G: G1 --7 tcG2 be a 1(qr(C!i\{on}-morphism. Then <p = (q>G, <j>L): N1 --7 N2 is a 1(q9{_.9!utL-morphism

where <j>L is given by the pushout illustrated in the Figure 5 (left). For each 9{_.9Lut-object N, <p =
(llG: G --7 tcG, <j>L: L --7 Lry): N --7 N is the identity morphism of N in 1(f.j9{_.9LutL where <j>L is as above;

c) let <p: N1 --7 N2, 'ljf. N2 --7 N3 be 1?.f-j9{_.9LutL-morphisms. The composition \jf 0 <p is a morphism
(\jfG 0 7((PG, 'I' L o L<j>L): N1 --7 N3 where \jfG 0 7((PG e '!'L o L<f>L is as illustrated in the Figure 5 (right). o

1(qr(C!i\{on)

IG'
lab1

... Lt

lab1 ~t G1 ... Lt

~Gt ~ ~ ~G
tclab2 o/G[~Go p

tcG2 ... tcL2 ... L2,rp

I lab2 , ~p t ~'"' "'"" ... tcl.:J L3,'!"'tp tcG3

I la~.'I""'P t
FigureS. Refinement with induced labeling

It is easy to prove that 1?.!-j~ut and 1(f.j9{_.9LutL are isomorphic (and we identify both categories by
1?.!-j~ut) . Therefore, every refinement morphism can be viewed as a 9{_.9!ut-morphism. For a
1?.f-j9{_.9Lut-morphism <p: A --7 8, the corresponding ~ut-morphism is denoted by <p: A --7 tcB.

Since refinements constitute a category, the vertical compositionality is achieued. In the
following proposition, we show that, for some given refinement morphisms, the morphism
(uniquely) induced by the parallel composition is also a refinement morphism and thus, the
horizontal compositionality is (also) achieved.

Proposition 20. Let {<pi: N1; --7 tcN2i} be an indexed family of refinements . Then xiEI<f>i: XiEIN1; --7

XiE 1 tcN2i is a refinement.

Proof' Remember that te = cno nc. Since nc is left adjoint to cn then nc preserves colimits and cn
preserves limits. Since products and coproducts are isomorphic in LCat(CMon), te preserves
products. Following this approach, it is easy to prove that Xj <f>i is a refinement morphism. o

2.4 Restriction and Relabeling ofRefinements

The restriction of a refinement is the restriction of the source automaton. The restriction of a
community of refinements (i. e., the parallel composition of refined automata) is the restriction of
the parallel composition of the source automata whose refinement is induced by the component
refinements . Note that, in the following construction, we assume that the horizontal
compositionality requirement is satisfied. Remember that te preserves products and that every
restriction morphism has a cartesian lifting at the automata levei.

Definition 21. Restriction of a Refinement. Let <p: N1 --7 tcN2 be a refinement and restrl: Table --7 Lt be
a restriction morphism and restrN: restrN1 --7 N1 be its cartesian lifting. The refinement of the
restricted automaton restrN1 is restr<p: restrN1 --7 tcN2 such that restr<p = <p orestrN. o

Proposition 22. Let {<pi: N1 1 ~ tcN2il be an indexed family of refinements where Nkl = (Gkj, Lk;. labkj). Let
restrL: Table ~ Xi L1i be a restriction morphism and restrN: restrN11 ~ ><t N11 be its cartesian lifting. The
restriction of the parallel composition of component refinements is restr<pF restrN11 ~ tc(Xi N21) such
that restr<pi = Xi <!>i o restrN where Xi <!>i is uniquely induced by the product construction.

Proof· Consider the Figure 6 (left) . Since the horizontal compositionality requirement is satisfied,
the proof is straightforward. a

The relabeling of a refinement is induced by the relabeling of the source automaton.

Definition 23. Relabeling of a Refinement. Consider the Figure 6 (right). Let <p: N1 ~ tcN2 be a
reification where Nk = (Gk, Lk, labk) and <p = (<pG, <!>L). Let lab: L1 ~ L1' be a relabeling morphism and
refa6N1 = (G1, L1', relabolab1) the relabeled automaton. Then, the relabeling of the reification
morphism is refa6<p = (<pG, refa6<pL). a

.-------------------~u

tcN2
1

........ ._ __

restrN1 1

restrN~ ',,
I

Xi!'l11 1 restrq>j

"' 'n· i) .,..,..l..i. /
"f}J

tc(X i N21)

relabolab1
----1 ... ~ Lt'

,, . .., ~
---1 ... ~ tcL2 ...

Figure6. Restriction and relabeling of refinements

3 Language Nautilus and its Semantics

In this brief introduction to the language Nautilus we introduce some key words in order to help
the understanding of the examples below. Remember that, in this paper, we do not deal with
synchronization of objects. The specification of an object in Nautilus depends on if it is a simple
object ora structured object such as a refinement (over) or a parallel composition. In any case, a
specification has two main parts: interface and body. The interface declares the category
(category) of some actions (birth, death). The body (body) declares the attributes (slot- only for
the simple object) and the methods of ali actions. A birth or death action may occur at most one
time (and determines the birth or the death of the object). An action may occur if its enabling (enb)
condition holds . An action with altematives (alt) is enabled if at least one altemative is enabled.
In this case, only one enabled altemative may occur where the choice is an internai
nondeterminism. The evaluation of an action (or an alternative within an action) is atomic. An
action may be a sequential (seq/end seq) or multiple (cps/end cps) composition of clauses. A
multiple composition is a special composition of concurrent clauses based on Dijkstra's guarded
commands [Dijkstra 76] where the valuation (val) clauses are evaluated before the results are
assigned to the corresponding slots. Due to space restrictions, we introduce some details of the
language Nautilus through examples and, at the same time, we give its semantics using
nonsequential automata.

3.1 Sirnple Object

The first example introduces a simple object in Nautilus. In what follows, for an attribute a, Oa
denotes its initial (birth) value. For instance, the set ofvalues of a boolean attribute ais {Oa, Fa, Ta}.

Example 24. Consider object Obj below (in this example, do not consider the rightmost column).
Note that the birth action Start has two alternatives. Both altematives are always enabled, since
they do not have enabling conditions. However, since it is a birth action, it occurs only once. Due to
the enabling conditions, each action occurs once and in the following order: Start, Proc and
Finish.

object Obj

category
birth Start
death Finish

body
slot a: boolean
slot b: boolean
act Start

alt Sl
seq

val a << false
val b << false

end seq
alt S2

cps
val a << false
val b << true

end cps
act Proc

enb a false
cps

val a << true
val b << true

end cps
act Finish

enb a = true and b

end Obj

true

!1: Oa ~ Fa
!2: Ob ~ Fb

t1 : Oa ~ Fa
h: ob ~ Tb

!4: Fa ~Ta
l3: Ob ~ Tb, ls: Fb -7 Tb, ls: Tb -7 Tb

o
Since an action may be a sequential or multiple composition of clauses executed in an atomic

way, the semantics of an independent object in Nautilus is given by a refmement as follows:

• the target automata called base is determined by the computations of a freely generated
automata able to simulate any object specified over the involved attributes. It is defined as the
computations of an automaton whose CMon-object of states is freely generated by the set of ali
possible values of ali slots and the CMon-object of transitions is freely generated by the set of ali
possible transitions between values of component attributes;

• the source automata is a relabeled restriction of the base.

Example 25. Consider object Obj of the example above. Its semantics is given by the refinement
morphism Obj: N1 ~ tcN2 (partially) illustrated in the Figure 7 (the part of tcN2 used to construct N1
is drawn using a different line). Consider the additional attribute ./ with {O.r, ./} as its set of
values, used to control the birth of an object (in graphical representation, the value ./ is omitted in
the sums). Note that the labeling of the automata N1 is not extensional. The semantics is defined as
follows:

a) N2 has V2 = {O.r, ./, Oa, Fa, Ta, Ob, Fb, Tb , iJ')Ell as states and T2 = {a(A1, A2), b(81, 82), birth(O.r,
OaEBObEB./), death(A1EB81EB./, iJ')J I as transitions (free CMon-objects) with source and target given
by a(A1, A2): A1 -7 A2, b(81, 82): 81 -7 82, birth(O.r, OaEBObEB./): O.r ~ OaEBObEB./ and death(A1EB81EB./,
il'): A1EB81EB./ ~ il' where Ak and 8k are values of a and b, respectively. For simplicity, consider
the following labeling which has correspondence in Obj (the rightmost column):

birth(Ov , OaEBObEBV) lo
b(Ob, Tb) ..., l3
b(Tb, Tb) ls

a(Oa, Fa) ..., !1

a(Fa. Ta) ..., !4
dealh(T aEBT b) !7

b(Ob, Fb) ..., !2
b(Fb, Tb) ..., ls

b) N1 is a relabeled restriction of tcN2. Consider the restriction restr(tcN2) where the functor restr is
induced by the morphism reslrL on labels determined as below according to the clauses of each
action. The morphism restrL has a cartesian lifting reslrN: restr(tcN2) ~ tcN2.

lo;t1 ;!2 lo;l1 ;!2
t4l ts l4 1l ls

lo;(l1 I !3) lo;(l1 ll ta)
!4 I ls l4ll ts

t4l la !4ll la
17 17

The automaton N1 is the resulting object of the relabeling N1 = refa6(restr(tcN2)) where refa6 is
induced by the morphism of labels relabl determined as below according to the identifications of
each action. The morphism relabl h as a cocartesian lifting relabN: N1 ~ restr(tcN2).

10 ;11 ;12 Slart lo;(l1 I l3) Slart l4l l3 Proc
l41 ls Proc t4l ls Proc h Finish

Therefore, the labeled transitions of N1 are determined as follows :

Start: Ov ~ FaffiFbffi V'
Proc: Faffi FbffiV' ~ TaffiT bffill'

Slart: Ov ~ FaffiTbffiV'
Proc: FaffiTbffiV' ~ TaffiTbffiV'

Proc: FaffiObffiV' ~ TaffiT bffiV'
Finish: TaffiTbffiV' ~ íl'

c) Obj: N1 ~ tcN2 where Obj = reslrN ° relabN is determined as below (only the labels are represented).
The state Ov is chosen as the initial one.

Slart lo;l1 ;12 Start l0;(t1 ll l3) Proc t411 t3
Proc l4 ll ls Proc l4 llle Finish l7

o

Figure7 Semantics of an object in Nautilus as a refinement morphism

3.2 Refinement

The refinement of an object is specified over an existing object. An action may be refined into a
complex action (a sequential or multiple composition of clauses) of the target object. Also, an action

'·J:)Tl UlO
8181' - ...

c .. ·

may be refined according to severa} alternatives, that is, a refinement may be state dependent. Note
that refinements are compositional and therefore, the target object of a refinement may be the
source of another refinement.

Example 26. The object Abstr is implemented over the object Concr. Note that Abstr specifies
alternative implementations for the action New. Also, Concr has alternatives for the action A.

object Abstr over Concr

category
birth New
death Finish

body
act New

alt N1
N

alt N2
seq

N
A
c

end
act X

seq
A
B

seq

end seq
act Finish

F

end Abstr

object Concr

category
birth N
death F

body
slot state: 1 . . 4
act N

val state << 1
act A

alt A1
enb state = 1
val state << 2

alt A2
enb state = 1
val state << 2

alt A3
enb state = 1
val state << 3

act B
enb state 2
val state << 4

act C
enb state = 3
val state << 4

act F

enb state = 4

end Concr
o

The semantics of a refinement is a composition of refinements, i.e., the refinement of the
source automata over the target composed with the refinement of the target over its base. An action
of the source object may have more then one implementation which may be explicit (alternatives
are explicit in the source object) or implicit (actions in the target object used in a refinement have
alternatives) . In both cases, there exist more than one transition with the same label and they have
different implementations.

Example 27. Consider the refinement of the previous example. Its semantics is given by the
refinement (partially) illustrated in the Figure 8 (the parentheses in a transition relate the
alternative with its corresponding transition) . Again the labeling is not extensional. The
morphism illustrated in the Figure 8 composed with the refinement morphism that implements
Concr over its base automata is the semantics of Abstr over Concr. o

3.3 Community ofConcurrent Objects

In this context, the seJILantics of a community of concurrent objects in Nautilus is easily defined. It
is the parallel composition of the semantics of component objects. Therefore, it is the parallel
composition of refinements and again, the diagonal compositionality is an essential property. In
what follows, we omit that i E I for some set I = {1 , .. . , n}:

• a terminal object is Nautilus is an object which is not used to construct more complex objects
such as the target object in a refinement;

• a unity in Nautilus is a community of (concurrent) terminal objects;
• let { Obi } be the terminal objects of a unity and {Obi: N1i --t tcN2i} be their semantics;
• the semantics of the unity is the resulting object of the categoria! product of X Obi: X N1i --t tcX N2i·

nfcConcr

Abstr

Figm:-e8. Semantics of a refinement in Nautilus

4 Concluding Remarks

Nonsequential automata constitute a categoria! semantic domain with full concurrency which is ,
for our knowledge, the flrst model for concurrency which satisfles the diagonal compositionality
requirement, i.e., reflnement compose (vertically) and distributes through the parallel composition
(horizontally). It is based on structured labeled transition systems. Restriction of automata is
categorically explained, by fibration technique. The relabeling of transitions is also dealt with, by
cofibration technique. Refinement is explained using Kleisli categories. Restriction and relabeling
are extended for refinements.

To experiment with the proposed semantic domain, a semantics for a concurrent, 'object-based
language is given. The language named Nautilus is based on the object-oriented language
GNOME, which is a simplified and revised version of OBLOG. Some features not present on
GNOME such as reflnement (implementation of an object over computations of another) are
introduced.

Considering that an action of an object in Nautilus may be a sequential or multiple (concurrent)
composition of clauses, executed in an atomic way, the semantics of an object in Nautilus is given
by a refinement morphism where the target automata called base is determined by the
computations of a freely generated automata able to simula te any object specified over the involved
attributes and the source automata is a relabeled restriction of the base. The semantics of a
refinement is the reflnement of the source automata over the target composed with the refinement
of the target over its base. The semantics of a community of concurrent objects is given by the
parallel composition of refinements of nonsequential automata. In this context, the diagonal
compositionality is essential.

With respect to further works , the next step is to extend the semantics for encapsulation,
aggregation and synchronization deflned in Nautilus (using the restriction and relabeling

operations as sketched in this paper) and to reintroduce some of the forgotten features of GNOME
such as classes and inheritance. Also interesting is the clarification of the relationship of the
nonsequential automata with logics, following the work in [Fiadeiro & Costa 94] and extending the
work in [Menezes & Costa 95].

5 References

[Asperti & Longo 91] A. Asperti & G. Longo, Categories, Types and Structures- An Introduction to
the Working Computer Science, Foundations of Computing (M. Garey, A. Meyer, Eds.), MIT
Press, 1991.

[Bednarczyk 88] M. A. Bednarczyk, Categories of Asynchronous Systems , Ph.D. thesis , technical
report 1/88, University of Sussex, 1988.

[Costa et al 92] J. F. Costa, A. Sernadas, C. Sernadas & H. D. Ehrich, Object Interaction ,
Mathematical Foundations of Computer Science '92 (I. Havei, V. Koubek, Eds.), pp. 200-208,
LNCS 629, Springer-Verlag, 1992.

[Costa et al 93] J. F. Costa, A. Sernadas & C. Sernadas, Data Encapsulation and Modularity: Tree
Views of Inheritance, Mathematical Foundation of Computer Science '93, (A. Borzyszkowski,
S . Sokolowski, Eds.), pp. 382-391, LNCS 711, Springer-Verlag, 1993.

[Costa et al 94] J . F. Costa, A. Sernadas & C. Semadas, Object lnheritance Beyond Subtyp ing, Acta
Informatica 31, pp. 5-26, Springer-Verlag, 1994.

[Dijkstra 76] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.
[Ehrich & Sernadas 90] H. D. Ehrich & A. Sernadas, Algebraic lmplementation of Objects over

Objects, Stepwise Refinement of Distributed Systems: Models , Formalisms, Correctness (J. W.
de Bakker, W. -P. de Roever, G. Rozenberg, Eds.), pp. 239-266, Springer-Verlag, 1990.

[Fiadeiro & Costa 94] J. Fiadeiro & J. F. Costa, Mirrar, Mirror in My Hand .. . A Duality B etween
Specifícations and Models of Process Behavior, accepted for publication in Mathematical
Structures in Computer Science.

[Gorrieri 90] R. Gorrieri, Refinement, Atomicity and Transactions for Process Description
Language, Ph.D. thesis, Università di Pisa, 1990.

[Hoare 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[Mac Lane 71] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.
[Mazurkiewicz 88] A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time ,

Branching Time and Partia! Orders in Logic and Models for Concurrency (J. W. de Bakker, W.
-P. de Roever, G. Rozenberg, Eds.), pp. 285-363, LNCS 354, Springer-Verlag, 1988.

[Menezes & Costa 93] P. B. Menezes & J . F. Costa, R estriction in Petri Nets , accepted for
publication in Fundamenta Informaticae, Annales Societatis Mathematicae Polonae, lOS
Press.

[Menezes & Costa 95] P. B. Menezes & J . F . Costa, Compositional Refinement of Concurrent
Sy stems , Journal of the Brazilian Computer Society - Special Issue on Parallel Computation,
No. 1, Vol. 2, pp. 50-67, 1995.

[Menezes & Costa 95b] P. B. Menezes & J . F . Costa, Systems [or System Implementation, in
Proceedings of the 14th International Congress on Cybernetics, accepted for publication in the
Journal of Cybernetics.

[Menezes et al 96] P. B. Menezes, J . F. Costa & A. Sernadas, Refinement Mapping for (Discrete
Event) System Theory, Proceedings of the Fifth International Conference on Compu ter Aided
System Technology, EUROCAST 95, pp. 103-116, LNCS 1030, Springer-Verlag, 1996.

[Meseguer & Montanari 90] J . Meseguer & U . Montanari, Petri N ets are Monoids , Information
and Computation 88, pp. 105-155, Academic Press, 1990.

[Milner 89] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[Reisig 85] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer

Science 4, Springer-Verlag, 1985.
[Sassone et al 93] V. Sassone, M. Nielsen & G. Winskel, A Classifícation of Models for

Concurrency, CONCUR 93: 4th International Conference of Concurrency (E. Best, Ed.), pp. 82-
96, LNCS 715, Springer-Verlag, 1993.

[Sernadas & Ehrich 90] A. Sernadas & H. D. Ehrich, What is an Object, After All , Object-oriented
Databases: Analysis, Design and Construction (R. Meersman, W. Kent, S . Khosla, Eds .), pp. 39-
69, North-Holland, 1991.

[Sernadas & Ramos 94] A. Sernadas & J. Ramos, A Linguagem GNOME: S intaxe, Semântica e
Cálculo , technical report, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon,
1994.

[Sernadas et ai 92] A. Sernadas, J . F. Costa & C. Sernadas, Especificação de Objetos com
Diagramas: Abordagem OBLOG, technical report, Universidade Técnica de Lisboa, Instituto
Superior Técnico, Lisbon, 1992. Prêmio Descartes 1992.

[SernadasC et ai 91] C. Sernadas, P . Resende, P. Gouveia & A. Sernadas, In-the-Large Object­
Oriented Design of lnformation Systems, The Object-Oriented Approach in Information
Systems (F . van Assche, B. Moulin, C. Rolland, Eds.), pp. 209-232, North-Holland, 1991.

[SernadasC et al 92] C. Sernadas, P. Gouveia & A. Sernadas, OBLOG: Object-Oriented, Logic­
Based Conceptual Modeling , technical report, Universidade Técnica de Lisboa, Instituto
Superior Técnico, Lisbon, 1992.

[SernadasC et ai 92b] C. Sernadas, P. Gouveia, J. Gouveia & P. Resende, The R efinement
Dimension in Object-Oriented Database Design, Specification of Data Base Systems (D. Harper,
M. Norrie, Eds.), pp. 275-299, Springer-Verlag, 1992.

[Szabo 78] M. E. Szabo, Algebra of Proofs , Studies in Logic and the Foundations of Mathematics,
vol. 88, North-Holland, 1978.

[Wegner 90] P. Wegner, Concepts and Paradigms of Object-Oriented Programming, OOPS
Messenger, Vol. 1, No. 1, ACM Press, 1990.

[Winskel 87] G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality , Information
and Computation 72, pp. 197-238, Academic Press, 1987.

