UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
. INSTITUTO DE INFORMATICA B
CURSO DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Refinement in a Concurrent, Object-Based Language
por
Paulo Blauth Menezes, A.Sernadas and Félix Costa
RP 263 Maio/1996

\

UFRGS-II-CPGCC

Caixa Postal 15064 - CEP 91501-970
Porto Alegre RS BRASIL

Telefone: (051)316-6155

Fax: (051) 336-5576

Email: pgecc@inf.ufrgs

t s B B
INSTITUTO DF INFORMATICA

BIBLIQTECA

Refinement in a
Concurrent, Object-Based Language *

P. Blauth Menezest, A. Sernadastt and J. Félix Costattt

1 Departamento de Informética Tedrica, Instituto de Informatica, Universidade Federal do Rio Grande do Sul
Caixa Postal 15064, 91501-970, Porto Alegre, Brazil - blauth@inf.ufrgs.br
11 Departamento de Matemética, Instituto Superior Técnico, Universidade Técnica de Lisboa
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal - acs @math.ist.utl.pt

111 Departamento de Informética, Faculdade de Ciéncias, Universidade de Lisboa
Campo Grande, 1700 Lisboa, Portugal - fgc@di.fc.ul.pt

Abstract. Nonsequential automata constitute a categorial semantic domain based on labeled transition system with full concurrency,
where restriction and relabeling are functorial and a class of morphisms stands for refinement. It is, for our knowledge, the first model for
concurrency which satisfies the diagonal compositionality requirement, ie., refinements compose (vertical) and distribute over
combinators (horizontal). To experiment with the proposed semantic domain, a semantics for a concurrent, object-based language is given.
It is a simplified and revised version of the object-oriented specification language GNOME, introducing some special features inspired by
the semantic domain such as refinement. The diagonal compositionality is an essential property to give semantics in this context.

1 Introduction

We construct a semantic domain with full concurrency which is, for our knowledge, the first
model for concurrency satisfying the diagonal compositionality requirement, i.e., refinements
compose (vertically), reflecting the stepwise description of systems, involving several levels of
abstraction, and distributes through parallel composition (horizontally), meaning that the
refinement of a composite system is the composition of the refinement of its parts.

Taking into consideration the developments in Petri net theory (mainly with seminal papers
like [Winskel 87], [Meseguer & Montanari 90] and [Sassone et al 93]) it was clear that nets might be
good candidates. However, most of net-based models such as Petri nets in the sense of [Reisig 85]
and labeled transition systems (see [Milner 89]) lack composition operations (modularity) and
abstraction mechanisms in their original definitions. This motivate the use of the category theory:
the approach in [Winskel 87] provides the former, where categorical constructions such as
product and coproduct stand for system composition, and the approach in [Meseguer & Montanari
90] provides the later for Petri nets where a special kind of net morphism corresponds to the notion
of implementation. Also, category theory provides powerful techniques to unify different categories
of models (i.e., classes of models categorically structured) through adjunctions (usually reflections
and coreflections) expressing the relation of their semantics as in [Sassone et al 93], where a
formal framework for classification of models for concurrency is set.

A nonsequential automaton (first introduced in [Menezes & Costa 95]) is a kind of automaton
with monoidal structure on states and transitions, inspired by [Meseguer & Montanari 90].
Structured states are "bags" of local states like tokens in Petri nets (as in [Reisig 85]) and
structured transitions specify a concurrency relationship between component transitions in the
sense of [Bednarczyk 88] and [Mazurkiewicz 88]. The resulting category is bicomplete where the
categorial product stands for parallel composition. Restriction and relabeling are functorial
operations. A restriction restricts the transitions of an automaton according to some table of
restrictions (at label level). A relabeling relabels the transitions of an automaton according to some
relabeling morphism (at label level). A refinement maps transitions into transactions reflecting an
implementation of an automaton on top of another. It is defined as an automaton morphism where
the target object is enriched with all conceivable sequential and nonsequential computations.
Computations are induced by an endofunctor and composition of refinement morphisms is
inspired by Kleisli categories. With respect to nonsequential automata and comparing with
[Menezes et al 96], in this paper we revise the refinement morphisms and introduce the restriction
and relabeling for refinements.

* This work was partially supported by: CNPq - Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico in
Brazil; CEC under ESPRIT-III BRA WG 6071 IS-CORE, WG 6112 COMPASS, HCM Scientific Network MEDICIS,
JNICT (PBIC/C/TIT/1227/92) in Portugal.

mailto:acs@math.ist.utl.pt
mailto:fgc@dl.fc.ul.pt

In [Menezes & Costa 95] and [Menezes & Costa 96] we show that nonsequential automata are
more concrete then Petri nets (in fact, categories of Petri nets are isomorphic to subcategories of
nonsequential automata) extending the approach in [Sassone et al 93].

To experiment with the proposed semantic domain, a semantics for a concurrent object-based
specification language (using the terminology of [Wegner 90]) is given. The language named
Nautilus is based on the object-oriented language GNOME [Sernadas & Ramos 94] which is a
simplified and revised version of OBLOG [SernadasC et al 92], [SernadasC et al 92b], [SernadasC et
al 91]. Some features inspired by the semantic domain (and not present on GNOME) such as
refinement and aggregation are introduced. A refinement implements an object over sequential or
concurrent computations of another. For simplicity and in order to keep the paper short, we do not
deal with some feature of GNOME such as classes of objects and inheritance. Following the
proposed approach, the diagonal compositionality requirement is an essential property to give

semantics for Nautilus.

2 Nonsequential Automata

A nonsequential automaton is a reflexive graph labeled on arcs such that nodes, arcs and labels
are elements of commutative monoids. A reflexive graph represents the shape of an automaton
where nodes and arcs stand for states and transitions, respectively, with identity arcs interpreted
as idle transitions. Comparing the graphical representations of nonsequential automata and
asynchronous transition systems (first introduced in [Bednarczyk 88]), the independence relation
of a nonsequential automaton is explicit.

Nonsequential automata and its morphisms constitute a category which is complete and
cocomplete with products isomorphic to coproducts. A product (or coproduct) can be viewed as a
parallel composition. In what follows CMon denotes the category of commutative monoids and
suppose that i is in | where | is a set and k is in {0, 1} (for simplicity, we omit that ie | and ke {0, 1}).
Also, for the proof or details omitted, see [Menezes et al 96] and [Menezes & Costa 95b].

2.1 Nonsequential Automaton

Definition 1. Nonsequential Automaton. A nonsequential automaton N = (V, T, dg, 94, 1, L, lab) is
such that T=(T, I, 1), V=(V, &, e), L ={L, I, T) are CMon-objects of transitions, states and labels
respectively, do, 3 T — V are CMon-morphisms called source and target respectively, 1: V — Tis a
CMon-morphism such that d°1 = idy and lab: T — L is a CMon-morphism such that lab() = T
whenever there is v in V where 1(v) = t. Q

We may refer to a nonsequential automaton N=(V, T, dg, d1, 1, L, lab) by N = (G, L, lab) where G=(V, T,
dg, 01, 1) is a reflexive graph internal to CMon (i.e., V, T are C'Mon-objects and dg, 9y, 1 are CMon-
morphisms). In an automaton, a transition labeled by T represents a hidden transition (and
therefore, can not be triggered from the outside). Note that, all idle transitions are hidden. The
labeling procedure is not extensional in the sense that two distinct transitions with the same label
may have the same source and target states (as we will se later, it is essential to give semantics for
an object refinement in Nautilus). For simplicity, in this paper we are not concerned with initial
states.

A transition t such that dy(t) = X, d1() = Y is denoted by t: X — Y. Since a state is an element of a
monoid, it may be denoted as a formal sum njA(®...8n Ay, with the order of the terms being
immaterial, where A; is in V and n; indicate the multiplicity of the corresponding (local) state, for i =
1...m. The denotation of a transition is analogous. We also refer to a structured transition as the
parallel composition of component transitions. When no confusion is possible, a structured
transition xlT: X&éA — Y®A where tt X - Y and 1p5: A — A are labeled by x and 7T, respectively, is
denoted by x: XéA — Y@®A. For simplicity, in graphical representation, we omit the identity
transitions. States and labeled transitions are graphically represented as circles and boxes,
respectively.

Example 2. Let {{A, B, X, Y}®, {t1, t2, t3, A, B, C, X, Y}®, 9, 9, 1, {x, y}®, lab) be a nonsequential
automaton with dg, d; determined by the local arcs t1:2A - B, t2: X — Y, t3: Y — X and lab determined
byt; » X, to » X, t3 = y. The distributed and infinite schema in Figure 1 (left) represents the

automaton. Since in this framework we do not deal with initial states, the graphical
representation makes explicit all possible states that can be reached by all possible independent
combination of component transitions. For instance, if we consider the initial state A®2X, only the
corresponding part of the schema of the automata in the figure has to be considered. In Figure 1
(right), we illustrate a labeled Petri net which simulates the behavior of the automaton.
Comparing both schema, we realize that, while the concurrence and possible reachable markings
are implicit in a net, they are explicit in an automaton. Categories of Petri nets and categories of
nonsequential automata can be unified through adjunctions (see [Menezes & Costa 95] and

[Menezes & Costa 95b]). Q
® G el @
. . 2
X X y B&X y | xl x y 2A®Y X |eee X X y

Figurel. A nonsequential automaton (left) and the corresponding labeled Petri net (right)

Definition 3. Nonsequential Automaton Morphism. A nonsequential automaton morphism h: Ny

— No where Nq=(Vy, Ty, doq, 914, 1, Ly, laby) and Np = (Vo, Tp, oy, 915, 12, Lo, labp) is a triple h = ¢hy, h, hy)

such that hy: Vi — Vo, h1: T1— T, hi: L1 = Lo are CMon-morphisms, hyodys = dko°hT, hTo1y = 150hy and

hpclabq = labaoh. a
Nonsequential automata and their morphisms constitute the category NAut.

Proposition 4. The category NAut is complete and cocomplete with products isomorphic to
coproducts. Q
A categorical product (or coproduct) of two automata Ny = (Vy, Ty, doy, 914, L1, Ly, labt), Na = (Vz, T, doy,
912, 12, L2, lab2) is Ny Xa@utN2 = (ViXcMon Vo, T1XCcMon T2, 901X doz, 911X01p, 11X 12, L1XcMon L2, labgXlabz)
where diy X dgp, 11X 12 and labq X labz are uniquely induced by the product construction.
Example 5. Consider the nonsequential automata Consumer and Producer (with free monoids)
determined by the labeled transitions prod: A — B, send: B — A for the Producer and rec: X — Y, cons: Y — X
for the Consumer. Then, the resulting objet of the parallel composition (categorial product) Consumer x
Producer is illustrated in the Figure 2 (for simplicity, prod, send, rec and cons are abbreviated by p, s, r

and c, respectively). Q
p r
A®X
@ ﬁl s plr plc c
p s 7 r c B®X A®Y T
o
a r slr slc p
BaY
c s

Figure2. Parallel composition of nonsequential automata

2.2 Restriction and Relabeling

Restriction and relabeling of transitions are functorial operations defined using the fibration and
cofibration techniques inspired by [Winskel 87]. Both functors are induced by a morphism at the
label level. The restriction operation restricts an automaton "erasing" all those transitions which
do not reflect some given table of restrictions:

a) let N be a AlQut-object with L as the CMon-object of labels, Table be a C:Mon-object, called table of
restrictions, and restr: Table — L be a restriction morphism. Let w: AAut — CMon be the obvious
forgetful functor taking each automaton into its labels;

b) the functor uis a fibration and the fibers u«1Table, =1L are subcategories of A4ut. The fibration u
and the morphism restr induce a functor restr: L — wlTable. The functor restr applied to N
provides the automaton reflecting the desired restrictions.

The steps for relabeling are as follows:

a) let N be a AAut-object with L; as the CMon-object of labels, relab: L; — L, be a relabeling morphism.
Let u be the same forgetful functor used for synchronization purpose;

b) the functor uis a cofibration (and therefore, a bifibration) and the fibers wIL; uwll, are
subcategories of AAut. The cofibration # and the morphism relab induce a functor relab: wllL; —
u1l, The functor relab applied to N provides the automaton reflecting the desired relabeling.

Restriction. In what follows, we show that the forgetful functor which takes each nonsequential
automaton onto its labels is a fibration and then we introduce the restriction functor.

Proposition 6. The forgetful functor uw: NAut — CMon that takes each nonsequential automaton
onto its underlying commutative monoid of labels is a fibration.

Proof: Let RGr(CMon)be the category of reflexive graphs internal to CMon and let id: RGr(CMon) —
RGr(CMon), emb: CMon — RGr(CMon) be functors. Then, NAut can be defined as the comma
category idlemb. Let f: Ly — L, be a CMon-morphism and Np = (Gp, L, labp) be a nonsequential
automaton where Gz =(V, T2, oy, 912, 12) is a RGr(CMon)-object. Let the object Gy together with laby: Gy
— embL and ug: G1 — Gp be the pullback of f: embL; — embL, and laby: G — embLy. Define Ny = (Gy, Ly,
lab;) which is an automaton by construction. Then u = (ug, f): Ny = N, is cartesian with respect to f
and N2. Q
Definition 7. Functor restr. Consider the fibration u: AfAut — CMon, the automata N =(V, T, dg, 01, L,
L, lab) and the restriction morphism restr: Table — L. The restriction of N is given by the functor restr:
uwl(L) - wl(Table) induced by u and restr applied to N. Q

In the following example, we show that restriction operation can be used for synchronization.
For further details on synchronization, see [Menezes & Costa 93] and [Menezes et al 96].

Example 8. Restriction x Synchronization. Since the product (or coproduct) construction stands
for parallel composition, it is possible to define a synchronization operation using the restriction
operation. For instance, consider the nonsequential automata Consumer and Producer of the previous
example. Suppose a joint behavior sharing the transitions send and rec (a communication without
buffer such as in CSP [Hoare 85] or CCS [Milner 89]), represented by send | rec. Then, Table = {prod,
cons, send | rec}! and the restriction morphism is such that prod — prod, cons — cons and send|rec —
sendlrec. The synchronized automaton is given by restr(Consumer x Producer) as illustrated in the

Figure 3. Note that the transitions send, rec are erased and send | rec is included. Q
@ @ prod A®X cons
/ send |rec A
prod cons BoX A®Y amm

+ prodllcons /
@ cons BaY prod

Figure3. Synchronized automaton

Relabeling. In what follows, we show that the forgetful functor which takes each nonsequential
automaton into its labels is a fibration and then we introduce the restriction functor.

Proposition 9. The forgetful functor u NAut — CMon that maps each automaton onto its
underlying commutative monoid of labels is a cofibration.

Proof: Let f: Ly — Lo be a CMon-morphism and Ny =(Vj, Ty, doy, d15, U4, L1, laby) be an automaton. Define
N2 = (V1, T1, doy, 911, U, Lo, folaby). Then u = (idy,, idr,, {): Ny = Ny is cocartesian with respect to f and Ny. 0
Definition 10. Functor relab. Consider the fibration w: NAut — CMon, the nonsequential automata
N=(V, T, dg, 91, 1, Ly, lab) and the relabeling morphism relab: L; — L,. The relabeling of N satisfying
relab is given by the functor relab: u1L;— uwll;induced by u and relab applied to N. Q

2.3 Refinement

A refinement is defined as a special automaton morphism where the target object is closed under
computations, i.e., the target (more concrete) automaton is enriched with all the conceivable
sequential and nonsequential computations that can be split into permutations of original
transitions, respecting source and target states.

The category of categories internal to CMon is denoted by Cat(CMon). We introduce the category
LCat(CMon) which can be viewed as a generalization of labeling on Cat(CMon). There is a forgetful
functor from LCat(CMon) into NAut. This functor has a left adjoint which freely generates a
nonsequential automaton into a labeled internal category. The composition of both functors from
ANAut into LCat(CMon) leads to an endofunctor, called transitive closure. The composition of
refinements of nonsequential automata is defined using Kleisli categories (see [Asperti & Longo
91]). In fact, the adjunction above induces a monad which defines a Kleisli category. Then we show
that refinement distributes over the parallel composition and therefore, the resulting category of
automata and refinements satisfies the diagonal compositionality.

Definition 11. Category LCat(CMon). Consider the category Cat(CMon). The category LCat(CMon)
is the comma category il{Cat(CMon)‘Li‘{Cat(CMon) where i‘{Cat(CMgn) is the identity functor in
Cat(CMon). Q

Therefore, a LCat(CMon)-object is triple N=(G, L, [ab) where G, L are Cat(CMon}-objects and [ab
is a Cat(CMon)-morphism.

Proposition 12. The category LCat(CMon) has all (small) products and coproducts. Moreover,
products and coproducts are isomorphic.

Definition 13. Functor cn. Let N = (G, L, [aby be a LCat(CMon)-object and A= (hg, hry: Na— Nebe a

LCat(CMon}morphism. The functor cn: LCat(CMon) — NAut is such that:

a) the Cat(CMon)-object G=(V, T, dp, d1, 1, ;) is taken into the RGr(CMon)-object G = (V, T', d¢', 31", 1),
where T'is T subject to the equational rule below and dg', d1', 1" are induced by dy, d1, 1 considering
the monoid T’ the Cat(CMon)-object L=V, L, dg, 91, 1, ;) is taken into the CMon-object L', where L'is
L subject to the same equational rule; the LCat(CMon)-object N = (G, L, [ab) is taken into the
NAut-object N = (G, L' lab) where lab is the RGr(CMon)}morphism canonically induced by the
Cat(CMon)-morphism /ab;

tA-Be T uB->CeTt:A'5B' e T u:B—>C' €T
(Gu)(tsu)= (tt);(ufu) in T
b) the LCat(CMon}morphism A= (g, Ar): Ni— Nz with AgG=(hny, b, AL = (hLy, hiy) is taken into the

NAut-morphism h = (hny, hny, hip): Ny = No where hyp and hip are the monoid morphisms induced
by hny and hyy, respectively. Q

The functor cn has a requirement about concurrency which is (t;u)ll(t;u’) = (tIt);(ullu’). That is, the
computation determined by two independent composed transitions t;u and t;u' is equivalent to the
computation whose steps are the independent transitions tlt' and ullu'.

Definition 14. Functor nc. Let A = (G, L, lab) be a NAut-object and h = (hg, h)): Ay = Ay be a NAut-

morphism. The functor nc: NAut — LCat(CMon) is such that:

a) the RGr(CMon)-object G =(V, T, 3y, d1, 1) with V=(V, ®, e), T = (T, |, T) is taken into the Cat(CMon}
object G=(V, T, 9§, 0, 1, ;) with T¢=(T¢, ®, 1), 95, 9y, _;_: TexT¢ — T° inductively defined as
follows:

tAsBeT tA5BeT° uC—oDeTC tA>Be TS wBsC e T

t AoB e T¢ t®uA®C ->B®D e T° ttw A>C e T¢
subject to the following equational rules:
teT uelT tie TS e TS t e TC teTF® ue F® ve T
t®u = tju tOu = udt t®7 =t t®UBV) = (tQU)BvV
te TS tt A>B e TC tA>Be T® wB—sCeT° v:C—oD e TC
Tt=t & ;1=t 1at=t& tj1g =t t(wv) = (tu)v

the C'Mon-object L is taken into the Cat(CMon}-object L= (1,LC 1,1, ;) as above; the NAut-object A =
(G, L, lab) is taken into the LCat(CMon)-object A = (G, L, [aby where [ab is the morphism induced
by lab;

d) the AAut-morphism h = (hy, hr, h): Ay — A; is taken into the Cat(CMon}morphism £ = (hg, Ar): A1
— Az where fig= (hy, hre), Az = (!, hie) and hte, hie are the monoid morphisms generated by the
monoid morphisms ht and ht, respectively. Q

Proposition 15. The functor nc: NAut — LCat(CMon) is left adjoint to cn: LCat(CMon) — NAut.

Definition 16. Transitive Closure Functor. The transitive closure functor is tc = cnonc: NAut —
NAut. Q
Example 17. Consider the nonsequential automaton with free monoids on states and transitions,
determined by the transitions a: A —» B and b: B — C. Then, for instance, a;2b: A®B — B®C is a
transition in the transitive closure. Note that, a;2b represents a class of transitions. In fact, from
the equations we can infer that a;2b = a;(bllb) = (t[B]lla);(bllb) = (T[B];b) Il (a;b) = bll(a;b) = (b;T[C]) Il (T[A];(asb)) =
(blIT[A]);(T[C] I (a;b)) = bjasb = ... Q

Let (nc, cn, M, €): NAut— LCat(CMon)be the adjunction above. Then, T = (tc, 1, W) is a monad on
NAut such that L = cn€nc: tZ — tc where cn: cn — cn and nc: nc — nc are the identity natural
transformations and cn€nc is the horizontal composition of natural transformations. For some
given automaton N, &N is N enriched with its computations, Mn: N = &N includes N into its
computations and py: te?N — #cN flattens computations of computations into computations.

In previous works we define a refinement morphism @ from A into the computations of B as an
NAut-morphism @: A — tcB and the composition of refinements as in Kleisli categories (each
monad defines a Kleisli category). However, in this work, we modify the definition, since
refinements should to not preserve labeling (and thus, they are not A/4ut-morphisms). As we show
below, each refinement induces a AAut-morphism. Therefore, we may define a category whose
morphisms are A/Aut-morphisms induced by refinements. Both categories are isomorphic.

Definition 18. Refinement. Let T =(tc, M, L) where M = (Mg, ML), 1L = (LG, LL) be the monad induced by

the adjunction (nc, cn, M, €): NAut — LCat(CMon). The category of nonsequential automata and

refinements, denoted by RefAAut, is such that (suppose the AAut-objects Nk = (Gk, L, laby), for k in {1,

2,3)):

a) RefNAut-objects are the NAut-objects;

b) @=@g: Nj — Nz is a RefNAut-morphism where Qg: Gi — tcGz is a RGr(CMon)-morphism and for
each AAut-object N, @ =mMg: N — N is the identity morphism of N in RefNAut;

c) let @:Ny— Na, y: N2 = N3 be ‘Kef?\[ﬂut—morphisms. The composition Yo@ is a morphism YgoxPa:
N1 — N3 where Ygox Qg is as illustrated in the Figure 4. Q

RGr(CMon)—

tc
G gt S ol e GG

Ve ox Pa +

Figure4. Composition of refinements is the composition in the Kleisli category forgetting about the labeling

In what follows, an automaton (G, L, lab) is viewed as a morphism lab: G — embL (see the
proposition about fibration). For simplicity, in diagrams, it is abbreviated just by lab: G — L.

Definition 19. Refinement with Induced Labeling. Let T =(tc, M, L) where 1 = (Mg, ML), 1 = (La, KL)
be the monad induced by the adjunction (nc, cn, 1, €). The category of nonsequential automata and
refinements with induced labeling, denoted by RefNAutr, is such that (suppose the NAut-objects Ny
= (G, Lk, labg), for k in {1, 2, 3}):

a) RefNAut-objects are the NAut-objects;

b) let @g: Gy = tcG2 be a RGr(CMon)}morphism. Then @ =(@g, PL): N1 —> Nz is a RefNAut-morphism
where @ is given by the pushout illustrated in the Figure 5 (left). For each NAut-object N, @ =
(Ma: G - G, @L: L — Lp): N — N is the identity morphism of N in RefAAut, where @ is as above;

c) let @: Ny = Nz, . N2 — N3 be ﬂ(qfﬂ\[ﬂlut[,-morphisms. The composition Yo@ is a morphism
(WG kPG, WLoLPL): Nt — N3 where Ygox®g e WLoL@L is as illustrated in the Figure 5 (right). Q

RGr(CMon) —
G labq L
e
labq Y
Gy —p Ly tcGo
(R VG YLLPL
(‘pGJ \ \VG Ok_(pG
tclabp p-o. y
tcGy ——P tclp —P Loy t2Gg
| labp, o MG p.o.
\ tclabg
P tcGg ———P tclg —— L3 y0p
abg, yoq

Figure5. Refinement with induced labeling

It is easy to prove that RefANAut and RefNAut, are isomorphic (and we identify both categories by
RefNAut). Therefore, every refinement morphism can be viewed as a NAut-morphism. For a
Ll(efﬂ\[ﬂut-morphism @: A — B, the corresponding NAut-morphism is denoted by ¢: A — #cB.

Since refinements constitute a category, the vertical compositionality is achieved. In the
following proposition, we show that, for some given refinement morphisms, the morphism
(uniquely) induced by the parallel composition is also a refinement morphism and thus, the
horizontal compositionality is (also) achieved.

Proposition 20. Let {@;: Ny — tcNp} be an indexed family of refinements. Then X @ XNy —
Xic| tcNpj is a refinement.

Proof: Remember that tc = cnonc. Since nc is left adjoint to cn then nc preserves colimits and cn
preserves limits. Since products and coproducts are isomorphic in LCat(CMon), tc preserves
products. Following this approach, it is easy to prove that X;@; is a refinement morphism. Q

2.4 Restriction and Relabeling of Refinements

The restriction of a refinement is the restriction of the source automaton. The restriction of a
community of refinements (i.e., the parallel composition of refined automata) is the restriction of
the parallel composition of the source automata whose refinement is induced by the component
refinements. Note that, in the following construction, we assume that the horizontal
compositionality requirement is satisfied. Remember that tc preserves products and that every
restriction morphism has a cartesian lifting at the automata level.

Definition 21. Restriction of a Refinement. Let @: N{ — tcN2 be a refinement and restr.: Table — L be
a restriction morphism and restry: restrNy — Ny be its cartesian lifting. The refinement of the
restricted automaton restrNy is restr@: restrNy — tcNa such that restr@ = @orestry. Q

Proposition 22. Let {@;: Ny; — tcNy} be an indexed family of refinements where Ny = (Gy;, Lg; laby). Let
restr.: Table — X;Ly; be a restriction morphism and restry: restrNy; — X;Ny; be its cartesian lifting. The
restriction of the parallel composition of component refinements is restr@;: restrNy; — tc(XiNy) such
that restr@; = X; @jcrestry where X; @; is uniquely induced by the product construction.

Proof: Consider the Figure 6 (left). Since the horizontal compositionality requirement is satisfied,
the proof is straightforward. Q

The relabeling of a refinement is induced by the relabeling of the source automaton.
Definition 23. Relabeling of a Refinement. Consider the Figure 6 (right). Let @: Ny — tcNp be a

reification where Ny = (G, Lk, lab and @ = (@G, @L). Let lab: Ly — L' be a relabeling morphism and
relabNy = (Gy, Ly, relabolaby) the relabeled automaton. Then, the relabeling of the reification

morphism is relab@ ={Qg, relab@). Q
NAut—
restrNy; _
restry \\ L e RGr(CMon) _l
N\ g, felabriabs i
N1 - Xi_Nh } restr @ (pei %ﬁ.
@ i § / , p.o.
l v Gy~ tcly — P L2y |
tcNp, <= (x{Np) i I relablaby o *

Figure6. Restriction and relabeling of refinements

3 Language Nautilus and its Semantics

In this brief introduction to the language Nautilus we introduce some key words in order to help
the understanding of the examples below. Remember that, in this paper, we do not deal with
synchronization of objects. The specification of an object in Nautilus depends on if it is a simple
object or a structured object such as a refinement (over) or a parallel composition. In any case, a
specification has two main parts: interface and body. The interface declares the category
(category) of some actions (birth, death). The body (body) declares the attributes (slot - only for
the simple object) and the methods of all actions. A birth or death action may occur at most one
time (and determines the birth or the death of the object). An action may occur if its enabling (enb)
condition holds. An action with alternatives (alt) is enabled if at least one alternative is enabled.
In this case, only one enabled alternative may occur where the choice is an internal
nondeterminism. The evaluation of an action (or an alternative within an action) is atomic. An
action may be a sequential (seg/end seq) or multiple (cps/end cps) composition of clauses. A
multiple composition is a special composition of concurrent clauses based on Dijkstra’s guarded
commands [Dijkstra 76] where the valuation (val) clauses are evaluated before the results are
assigned to the corresponding slots. Due to space restrictions, we introduce some details of the
language Nautilus through examples and, at the same time, we give its semantics using

nonsequential automata.

3.1 Simple Object

The first example introduces a simple object in Nautilus. In what follows, for an attribute a, @4
denotes its initial (birth) value. For instance, the set of values of a boolean attribute a is {@3, Fa, Ta}.

Example 24. Consider object Obj below (in this example, do not consider the rightmost column).
Note that the birth action Start has two alternatives. Both alternatives are always enabled, since
they do not have enabling conditions. However, since it is a birth action, it occurs only once. Due to
the enabling conditions, each action occurs once and in the following order: Start, Proc and

Finish.

object Obj

category
birth Start
death Finish

body
slot a: boolean
slot b: boolean

act Start
alt sS1 t: @y - V00,0V
seq
val a << false t: Q3 > Fy
val b << false t: @p > Fp
end seq
ale s2 t: @y > 000 L,BV
cps
val a << false t1: @q > Fa
val b << true t3: @p > Tp
end cps
act Proc
enb a = false
cps
val a << true ty: Fa > Ta
val b << true t3: @p > T, t5: Fp > Th, ts: Tp = Tp
end cps
act Finish
enb a = true and b = true t7: Ta®Tp —> ¢
end Obj

Q

Since an action may be a sequential or multiple composition of clauses executed in an atomic
way, the semantics of an independent object in Nautilus is given by a refinement as follows:

e the target automata called base is determined by the computations of a freely generated
automata able to simulate any object specified over the involved attributes. It is defined as the
computations of an automaton whose CMorn-object of states is freely generated by the set of all
possible values of all slots and the CMon-object of transitions is freely generated by the set of all
possible transitions between values of component attributes;

e the source automata is a relabeled restriction of the base.

Example 25. Consider object Obj of the example above. Its semantics is given by the refinement
morphism Obj: Ny — tcNp (partially) illustrated in the Figure 7 (the part of tcN»> used to construct Ni
is drawn using a different line). Consider the additional attribute v with {&,, v/} as its set of
values, used to control the birth of an object (in graphical representation, the value v is omitted in
the sums). Note that the labeling of the automata Ny is not extensional. The semantics is defined as
follows:

a) N2 has Vo= {8/, vV, @, Fa, Ta, @b, Fb, Tp, #}® as states and T = {a(A1, A2), b(By, B2), birth(®,,
©,90,3V), death(A1®B1®v, #)}! as transitions (free CMon-objects) with source and target given
by a(A1, A2): A1 = Az, b(B1, Bp): Bi — By, bith(Q,/, 888,80V): @/ — ©,88,®v and death(A1®B1®V/,
): Ai1®B1®v — ¥ where Ag and Bk are values of a and b, respectively. For simplicity, consider
the following labeling which has correspondence in Obj (the rightmost column):

birth(Qy/, ©288p®V) ~ to a(@q, Fa) » 4 b(@p, Fo) ~ t2
b(@p, Tp) ~ t3 a(Fa, Ta) = t4 b(Fb, Th) = t5
b(Tp, Tp) ~ 16 death(Ta®Tp) ~ t;

b) Njis a relabeled restriction of tcNp. Consider the restriction restr(tcN2) where the functor restris
induced by the morphism restr. on labels determined as below according to the clauses of each
action. The morphism restr. has a cartesian lifting restry: restr(tcNp) — tcNa.

tojtista = tostyst tos(tr [ts) = tos(tslIta) telts = tallty
te|ts - talits te|ts = tllts t7 - t7

The automaton Ni is the resulting object of the relabeling N = relab(restr(tcN2)) where relab is
induced by the morphism of labels relab, determined as below according to the identifications of
each action. The morphism relab_ has a cocartesian lifting relaby: Ny — restr(tcNp).

to;ty;to — Start to;(t1 | ts) ~ Start ts|ts ~ Proc
ty|ts = Proc ty|ts » Proc t; — Finish
Therefore, the labeled transitions of Ny are determined as follows:

Start: @y — Fa®Fp@v Start: @y — Fa@Tp®V Proc: Fa@@p®v — T,@Tpdv
Proc: Fa®Fp®v — Ta@ThHdv Proc: Fa®@Tp®v — T Tpdv Finish: Ta®@Tp®v — ¢

c) Obj: Ny — tcN2 where Obj = restryorelaby is determined as below (only the labels are represented).
The state @y is chosen as the initial one.
Start — to;tq;to Start - to;(h "ta) Proc — t4lit;
Proc — t4lits Proc — tylitg Finish — t;

Sy Ny

Start [=" start

Proc —— i Fa®Fp ts Fa®Tp te

N ta : tal ts ta $ tal tg

Figure7 Semantics of an object in Nautilus as a refinement morphism

3.2 Refinement

The refinement of an object is specified over an existing object. An action may be refined into a
complex action (a sequential or multiple composition of clauses) of the target object. Also, an action

may be refined according to several alternatives, that is, a refinement may be state dependent. Note
that refinements are compositional and therefore, the target object of a refinement may be the
source of another refinement.

Example 26. The object Abstr is implemented over the object Concr. Note that Abstr specifies
alternative implementations for the action New. Also, Concr has alternatives for the action A.

object Abstr over Concr object Concr
category category
birth New birth N
death Finish death F
body body
act New slot state: 1..4
alt N1 act N
N val state << 1
alt N2 act A
seq alt Al
N enb state = 1
A val state << 2
c alt A2
end seq enb state = 1
act X val state << 2
seq alt A3
A enb state =1
B val state << 3
end seq act B
act Finish enb state = 2
F val state << 4
end Abstr act C
enb state = 3
val state << 4
act F
enb state = 4
end Concr

Q

The semantics of a refinement is a composition of refinements, i.e., the refinement of the
source automata over the target composed with the refinement of the target over its base. An action
of the source object may have more then one implementation which may be explicit (alternatives
are explicit in the source object) or implicit (actions in the target object used in a refinement have
alternatives). In both cases, there exist more than one transition with the same label and they have
different implementations.

Example 27. Consider the refinement of the previous example. Its semantics is given by the
refinement (partially) illustrated in the Figure 8 (the parentheses in a transition relate the
alternative with its corresponding transition). Again the labeling is not extensional. The
morphism illustrated in the Figure 8 composed with the refinement morphism that implements
Concr over its base automata is the semantics of Abstr over Concr. Q

3.3 Community of Concurrent Objects

In this context, the semantics of a community of concurrent objects in Nautilus is easily defined. It
is the parallel composition of the semantics of component objects. Therefore, it is the parallel
composition of refinements and again, the diagonal compositionality is an essential property. In
what follows, we omit that i € | for some set |={1,..., n}:

e a terminal object is Nautilus is an object which is not used to construct more complex objects
such as the target object in a refinement;
a unity in Nautilus is a community of (concurrent) terminal objects;
let {Ob;} be the terminal objects of a unity and {Obj: Ny; — ¢cNp} be their semantics;
the semantics of the unity is the resulting object of the categorial product of X Obj: X Ny; — tcXNy;.

nfcConcr

Abstr N
%'
N;A;C

(N;A3;C)
New
(N2)
X X A;B A;B
] (A1;B) (A2;B)
B C
Finish|
F

Figure8. Semantics of a refinement in Nautilus

4 Concluding Remarks

Nonsequential automata constitute a categorial semantic domain with full concurrency which is,
for our knowledge, the first model for concurrency which satisfies the diagonal compositionality
requirement, i.e., refinement compose (vertically) and distributes through the parallel composition
(horizontally). It is based on structured labeled transition systems. Restriction of automata is
categorically explained, by fibration technique. The relabeling of transitions is also dealt with, by
cofibration technique. Refinement is explained using Kleisli categories. Restriction and relabeling
are extended for refinements.

To experiment with the proposed semantic domain, a semantics for a concurrent, ‘object-based
language is given. The language named Nautilus is based on the object-oriented language
GNOME, which is a simplified and revised version of OBLOG. Some features not present on
GNOME such as refinement (implementation of an object over computations of another) are
introduced.

Considering that an action of an object in Nautilus may be a sequential or multiple (concurrent)
composition of clauses, executed in an atomic way, the semantics of an object in Nautilus is given
by a refinement morphism where the target automata called base is determined by the
computations of a freely generated automata able to simulate any object specified over the involved
attributes and the source automata is a relabeled restriction of the base. The semantics of a
refinement is the refinement of the source automata over the target composed with the refinement
of the target over its base. The semantics of a community of concurrent objects is given by the
parallel composition of refinements of nonsequential automata. In this context, the diagonal
compositionality is essential.

With respect to further works, the next step is to extend the semantics for encapsulation,
aggregation and synchronization defined in Nautilus (using the restriction and relabeling

operations as sketched in this paper) and to reintroduce some of the forgotten features of GNOME
such as classes and inheritance. Also interesting is the clarification of the relationship of the
nonsequential automata with logics, following the work in [Fiadeiro & Costa 94] and extending the
work in [Menezes & Costa 95].

5 References

[Asperti & Longo 91] A. Asperti & G. Longo, Categories, Types and Structures - An Introduction to
the Working Computer Science, Foundations of Computing (M. Garey, A. Meyer, Eds.), MIT
Press, 1991.

[Bednarczyk 88] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, technical
report 1/88, University of Sussex, 1988.

[Costa et al 92] J. F. Costa, A. Sernadas, C. Sernadas & H. D. Ehrich, Object Interaction,
Mathematical Foundations of Computer Science '92 (I. Havel, V. Koubek, Eds.), pp. 200-208,
LNCS 629, Springer-Verlag, 1992.

[Costa et al 93] J. F. Costa, A. Sernadas & C. Sernadas, Data Encapsulation and Modularity: Tree
Views of Inheritance, Mathematical Foundation of Computer Science '93, (A. Borzyszkowski,
S. Sokolowski, Eds.), pp. 382-391, LNCS 711, Springer-Verlag, 1993.

[Costa et al 94] J. F. Costa, A. Sernadas & C. Sernadas, Object Inheritance Beyond Subtyping, Acta
Informatica 31, pp. 5-26, Springer-Verlag, 1994.

[Dijkstra 76] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[Ehrich & Sernadas 90] H. D. Ehrich & A. Sernadas, Algebraic Implementation of Objects over
Objects, Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness (J. W.
de Bakker, W. -P. de Roever, G. Rozenberg, Eds.), pp. 239-266, Springer-Verlag, 1990.

[Fiadeiro & Costa 94] J. Fiadeiro & J. F. Costa, Mirror, Mirror in My Hand... A Duality Between
Specifications and Models of Process Behavior, accepted for publication in Mathematical
Structures in Computer Science.

[Gorrieri 90] R. Gorrieri, Refinement, Atomicity and Transactions for Process Description
Language, Ph.D. thesis, Universita di Pisa, 1990.

[Hoare 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[Mac Lane 71] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.

[Mazurkiewicz 88] A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time,
Branching Time and Partial Orders in Logic and Models for Concurrency (J. W. de Bakker, W.
-P. de Roever, G. Rozenberg, Eds.), pp. 285-363, LNCS 354, Springer-Verlag, 1988.

[Menezes & Costa 93] P. B. Menezes & J. F. Costa, Restriction in Petri Nets, accepted for
publication in Fundamenta Informaticae, Annales Societatis Mathematicae Polonae, IOS
Press.

[Menezes & Costa 95] P. B. Menezes & J. F. Costa, Compositional Refinement of Concurrent
Systems, Journal of the Brazilian Computer Society - Special Issue on Parallel Computation,
No. 1, Vol. 2, pp. 50-67, 1995.

[Menezes & Costa 95b] P. B. Menezes & J. F. Costa, Systems for System Implementation, in
Proceedings of the 14th International Congress on Cybernetics, accepted for publication in the
Journal of Cybernetics.

[Menezes et al 96] P. B. Menezes, J. F. Costa & A. Sernadas, Refinement Mapping for (Discrete
Event) System Theory, Proceedings of the Fifth International Conference on Computer Aided
System Technology, EUROCAST 95, pp. 103-116, LNCS 1030, Springer-Verlag, 1996.

[Meseguer & Montanari 90] J. Meseguer & U. Montanari, Petri Nets are Monoids, Information
and Computation 88, pp. 105-155, Academic Press, 1990.

[Milner 89] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[Reisig 85] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer
Science 4, Springer-Verlag, 1985.

[Sassone et al 93] V. Sassone, M. Nielsen & G. Winskel, A Classification of Models for
Concurrency, CONCUR 93: 4th International Conference of Concurrency (E. Best, Ed.), pp. 82-
96, LNCS 715, Springer-Verlag, 1993.

[Sernadas & Ehrich 90] A. Sernadas & H. D. Ehrich, What is an Object, After All, Object-oriented
Databases: Analysis, Design and Construction (R. Meersman, W. Kent, S. Khosla, Eds.), pp. 39-
69, North-Holland, 1991.

[Sernadas & Ramos 94] A. Sernadas & J. Ramos, A Linguagem GNOME: Sintaxe, Semantica e
Cdlculo, technical report, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon,
1994.

[Sernadas et al 92] A. Sernadas, J. F. Costa & C. Sernadas, Especificagio de Objetos com
Diagramas: Abordagem OBLOG, technical report, Universidade Técnica de Lisboa, Instituto
Superior Técnico, Lisbon, 1992. Prémio Descartes 1992.

[SernadasC et al 91] C. Sernadas, P. Resende, P. Gouveia & A. Sernadas, In-the-Large Object-
Oriented Design of Information Systems, The Object-Oriented Approach in Information
Systems (F. van Assche, B. Moulin, C. Rolland, Eds.), pp. 209-232, North-Holland, 1991.

[SernadasC et al 92] C. Sernadas, P. Gouveia & A. Sernadas, OBLOG: Object-Oriented, Logic-
Based Conceptual Modeling, technical report, Universidade Técnica de Lisboa, Instituto
Superior Técnico, Lisbon, 1992.

[SernadasC et al 92b] C. Sernadas, P. Gouveia, J. Gouveia & P. Resende, The Refinement
Dimension in Object-Oriented Database Design, Specification of Data Base Systems (D. Harper,
M. Norrie, Eds.), pp. 275-299, Springer-Verlag, 1992.

[Szabo 78] M. E. Szabo, Algebra of Proofs, Studies in Logic and the Foundations of Mathematics,
vol. 88, North-Holland, 1978.

[Wegner 90] P. Wegner, Concepts and Paradigms of Object-Oriented Programming, OOPS
Messenger, Vol. 1, No. 1, ACM Press, 1990.

[Winskel 87] G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality, Information
and Computation 72, pp. 197-238, Academic Press, 1987.

