UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
. INSTITUTO DE INFORMATICA 3
CURSO DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Systems for System Implementation
por
Paulo Blauth Menezes and Félix Costa
RP 262 Maio/1996

o Sl

RGS 05972530

I B

\I o

Bnblsoteca

UFRGS-II-CPGCC

Caixa Postal 15064 - CEP 91501-970
Porto Alegre RS BRASIL

Telefone: (051)316-6155

Fax: (051) 336-5576

Email: pgecc@inf.ufrgs

Systems for System Implementation *

P. Blauth MenezesT and J. Félix Costa't

T Departamento de Matematica, Instituto Superior Técnico, Portugal - blauth @raf.ist.utl.pt
11 Departamento de Informatica, Faculdade de Ciéncias, Universidade de Lisboa, Portugal - fgc@di.fc.ul.pt

Abstract. Inspired by Meseguer and Montanari's "Petri Nets are Monoids", we propose that a refinement of a Petri net is a
special kind of net morphism were the target object is enriched with all conceivable sequential and concurrent computations.
Then it is proven that while refinement of nets satisfies the vertical compositionality requirement (i.e., refinements compose),
it lacks the horizontal compositionality requirement (i.e., refinement does not distribute over parallel composition). To
achieve both requirements, a new categorial semantic domain based on labeled transition systems with full concurrency, called
nonsequential automata, is constructed. Again, a class of morphisms stands for refinement and, in this framework, the
diagonal compositionality requirement (i.e., both vertical and horizontal) is achieved. Adjunctions between both models are
provided extending the approach of Winskel and Nielsen. The steps of abstraction involved in moving between models show
that nonsequential automata are more concrete than Petri nets.

1 Introduction

We construct a semantic domain for interacting systems which satisfies the diagonal compositionality requirement, i.e.,
refinements compose (vertically), reflecting the stepwise description of systems, involving several levels of abstraction,
and distributes through combinators (horizontally), meaning that the refinement of a composite system is the
composition of the refinement of its parts.

Taking into consideration the developments in Petri net theory (mainly with seminal papers like [17], [12] and [15])
it was clear that nets might be good candidates. However, most of net-based models such as Petri nets in the sense of
[14] and labeled transition systems (see [13]) lack modularity and abstraction mechanisms in their original definitions.
This motivate the use of the category theory: the approach in [17] provides the former, where categorical constructions
such as product and coproduct stand for composition, and the approach in [12] provides the later for Petri nets where a
special kind of net morphism corresponds to the notion of implementation. Also, category theory provides powerful
techniques to unify different categories of models (i.e., classes of models categorically structured) through adjunctions
(usually reflections and coreflections) expressing the relation of their semantics as in [15].

We introduce the concept of nonsequential automaton as a kind of automaton structured on states and transitions.
Structured states are "bags" of local states like tokens in Petri nets and structured transitions specify a concurrency
relationship between component transitions in the sense of [2] and [7]. The resulting category is bicomplete with
products isomorphic to coproducts. The categorial product (or coproduct) stand for the parallel composition. In [11] we
introduce (functorial) operations of synchronization and encapsulation for nonsequential automata, where the
synchronization restricts a parallel composition according to some given interaction specification and the encapsulation
extracts a view of an automaton through hiding of transitions introducing an internal nondeterminism.

A refinement morphism maps transitions into transactions reflecting an implementation of an automaton on top of
another. It is defined as an automaton morphism where the target object is enriched with all conceivable sequential and
nonsequential computations. Computations are induced by an endofunctor #c (transitive closure) and composition of
refinements is defined using Kleisli categories. Therefore, refinements compose, i.e., the vertical compositionality
requirement is achieved. Moreover we find a general theory for refinement which also satisfies the horizontal
compositionality requirement. i.e., for refinements @: Ay — #cBy, W: Ao — tcBy, we have that QA{x YA, =
@ x Y (AyxAp) where PAyx YA, and Ayx A, are the parallel composition and the refinement @ X\ is (uniquely)
induced by ¢ and \y. While the vertical compositionality is easily achieved in several models, they lack horizontal
compositionality (in this paper, we show that Petri nets lacks horizontal compositionality).

Adjunctions between categories of Petri nets and nonsequential automata are provided, extending the approach in
[15] where a scene for a formal classification of models for concurrency is set. From the steps of abstractions that are
involved in moving between models, we can infer that nonsequential automata are more concrete then Petri nets.
Moreover, categories of Petri nets are isomorphic the subcategories of nonsequential automata. For our knowledge, the
proposed model of nonsequential automata is the least concrete model which satisfies both vertical and horizontal
compositionality requirements with respect to implementation.

The categories of Petri nets presented in this paper are extended with labeling on transitions. Also, for simplicity,
we do not deal with initial states (or markings). If the categories in this framework are extended with initial states as in
[8], all result are preserved, including the bicompleteness of the categories of Petri nets and nonsequential automata. In
what follows, the proofs omitted are in [10].

* This work was partially supported by: UFRGS and CNPq in Brazil; CEC under ESPRIT-III BRA WG 6071 IS-CORE, HCM Scientific
Network MEDICIS and JNICT (PBIC/C/TIT/1227/92) in Portugal.

mailto:blauth@raf.ist.utl.pt
mailto:fgc@di.fc.ul.pt

Systems for System Implementation 2

2 Labeled Petri Nets

We introduce Petri nets viewed as graphs extended with labeling on transitions. As proposed in [12], to define a Petri
net as a graph, we consider the states as a commutative monoid. For simplicity and comparing with the corresponding
categories in [12], we drop the requirement of monoids being free. In what follows, suppose that K is in {0, 1}, C?Mon
is the category of commutative monoids which has products isomorphic to coproducts and ¢ CMon — Set is a
functor which forget about the monoidal structure.

Definition 2.1 Labeled Petri Net. A (labeled) Petri netis N =(V, T, do, d1, L, lab) such that V is a commutative monoid
of states, T is a set of transitions, dg, d1: T — ¢V are total functions called source and target, respectively, L is a set
of labels and lab: T — L is a total function called labeling. Q

Definition 2.2 Labeled Petri Net morphism. A (labeled) Petri net morphism is a triple h = (hy, ht, hy): (Vy, T4, doq, 11,
Ly, laby) — (V2, To, 0, 915, L2, labg) such that hy: Vi — Vo is a CMon-morphism, ht: Ty — Tg is a total function such
that #g.¢hy°dks = dko0ht and hi: Ly — Lo is a total function such that h °labq = labpchr. Q

A transition t such that do(t) = A, d1(t) = B and labeled by a is denoted by a[t]: A — B or just by a: A — B. Labeled
Petri nets and its morphisms constitute a category denoted by LPetri which is bicomplete (see [10]). The coproduct
and product constructions represent the asynchronous and synchronous composition of nets, respectively.

3 Nonsequential Automata

A nonsequential automaton is a reflexive graph (a graph with an identity arc for every node) labeled on arcs such that
nodes, arcs and labels are elements of commutative monoids. A reflexive graph represents the shape of an automaton
where nodes and arcs stand for states and transitions, respectively, with identity arcs interpreted as idle transitions. A
structured transition specify a concurrency relation between component transitions. Comparing with asynchronous
transition systems (first introduced in [2]), the independence relation of a nonsequential automaton is explicit in the
graphical representation. A structured state can be viewed as a "bag" of local states where each local state can be viewed
as a resource to be consumed or produced, like a token in Petri nets.

Definition 3.1 Nonsequential Automaton. A nonsequential automaton A =(V, T, dy, 01, 1, L, lab) is such that T= (T, |,
1), V={V, @, e), L ={L, |, T) are CMon-objects of transitions, states and labels respectively, dy, d1: T — V are
CMon-morphisms called source and target respectively, 1: V — Tis a CMon-morphism called identity such that d°1 =
idy and lab: T— L is a CMon-morphism such that lab(t) = T whenever there is v in V where 1(v) = t. Q

For a state A, 1o: A — A is also denoted by A: A — A. Note that every identity transitions is labeled by T. Since a
state is an element of a monoid, it may be denoted as a formal sum, as in Petri nets. The denotation of a transition is
analogous. We also refer to a (structured) transition as the parallel composition of component transitions. A transition
xIT: X&éA — Y®A where t: X — Y and A: A — A are labeled by x and 7T, respectively, is denoted by x: X&A — Y®A.
For simplicity, in graphical representation, we omit the identity transitions. States and labeled transitions are graphically
represented as circles and boxes, respectively.

Example 3.2 Let ({A, B, X, Y}®, {t1, t2, 13, A, B, C, X, Y}®, 9, 91, 1, {X, y}®, lab) be a nonsequential automaton with
dg, 01 determined by the local arcs t1: 2A — B, to: X = Y, t3: Y — X and lab determined by t1 = x, to = X, t3 = .
The distributed and infinite schema in Figure 1 (left) represents the automaton. Since in this framework we do not deal
with initial states, the graphical representation makes explicit all possible states that can be reached by all possible
independent combination of component transitions. For instance, if we consider the initial state A®2X, only the
corresponding part of the schema of the automata in the figure has to be considered. In Figure 1 (right), we illustrate a
labeled Petri net which simulates the behavior of the automaton. Comparing both schema, we realize that, while the

concurrence and possible reachable markings are implicit in a net, they are explicit in an automaton. Q
© kep] @
2
X X y B®X y x| x \ 2A® X [eee

X X y
e X B®Y X x|y 8

Figure 1 A nonsequential automaton (left) and the corresponding labeled Petri net (right)

Systems for System Implementation 3

Definition 3.3 Nonsequential Automaton Morphism. A nonsequential automaton morphism is a triple h = ¢hy, ht, hy):
(V1, T1, doq, 914, U, L1, labi) — (Vo, T, doy, 01, 12, L2, labg) where hy: Vi — Vo, h1i Ty — Tz and hi: L1 — Lp are
CMon-morphisms such that hy©dks = dg,°hT, hTo1y = 120hy and hi °labq = labyehr. Q

Nonsequential automata and its morphisms constitute a category denoted by AAut which is bicomplete with
products isomorphic to coproducts (see [10]). The product construction stands for the parallel composition.

4 Adjunctions Between Petri Nets and Nonsequential Automata

The relationship between nonsequential automata and Petri nets is done through adjunctions as illustrated in Figure 2.
To compare the expressiveness between nonsequential automata and Petri nets we introduce a subcategory of automata,
denoted by A{Auts, where the (non-identity) transitions of an automaton are elements of a free commutative monoid
and the morphisms on transitions are induced by total functions. Since AAutS is isomorphic to LPetri, NAuts is
bicomplete and LPetriis a subcategory of NAut. The following notations are used: a set S is the set of generator of the
free commutative monoid S®; for a commutative monoid M= (M, ®, e), M is the corresponding set.

NAuts l inc NAut
iso lnil A ”El
2 LPetri | pn = inco pns

Figure 2 Adjunctions between the category of Petri nets and the categories of nonsequential automata

Definition 4.1 Nonsequential s-Automaton. The category of nonsequential s-automata, denoted by AAuts, is a
subcategory of AAut where (consider the Figure 3): (a) a NAuts-object A =(V, T+, oo, 911, 1, LD, lab*) is a NAut-
object such that V=(V, ®, e), T+ and 1: V — T* are given by the coproduct T®+V, dy*: T+ — Vis uniquely induced
by the coproduct construction in CMon and lab*: T+ — L® is uniquely induced by a total function lab: T — L and by
the product construction; (b) a NAutS-morphism h = (hy, ht+, hLe): A1 — A is a NAut-morphism such that hr+ T4+
— Tot is uniquely induced by a total function hy: T{ — T2 and by the coproduct construction in CMon and hi&: L1®
— L2® is induced by a total function hi: L1 — Lp. Q

CMon
1
TO i T+ _ TOL |l VTSP T+ =T(O1y, —V; 7O @— T+=TO+y —Pp V

okt h7® fhyt hy lab® lab* |
ok® = idy

To O Tot = T4V, V2 | ® e | & ——P 1

||
o[[

< ll]

Figure 3 Diagrams for the category of nonsequential s-automaton (in CMon, products and coproducts are ismorphic)

Definition 4.2 Functors pn®, np°. (a) The functor pné: LPetri— NAuts is such that for each LPetri-object N=(V, T,
d0, 91, L, lab), pnsN = (V, T+, oo™, 01T, 1, L®, lab*) and for each LPetri-morphism h = (hy, hr, h), prsh = (hy, hr+,
hLa). (b) The functor nps: NAutS — LPetri is such that for each NAuts-object A = (V, T+, do*, 91, 1, L®, labt),
np5A =(V, T, do, d1, L, lab) where T, L are the sets of generators of the corresponding free monoids and for each
NAutsS-morphism h = {hy, h1+, hy @), npsh = (hy, hr, hy). o
Basically, the functor pnS freely generates an automata from some given net and np® forgets about the monoidal

structure on transitions and erases the identity transitions and the transitions added by the generation of the free
monoid. The Figure 1 illustrates both functors. The proof of the following proposition is straightforward.

Proposition 4.3 The categories LPetriand NAutS are isomorphic. Q

Definition 4.4 Functors pn, np. (a) Consider the functor pns: LPetri — NAuts defined above. Let inc: NAutS —
NAut be the inclusion functor which defines AAutS as a subcategory of NAut. Then, pn = incopns: LPetri —
NAut. (b) The functor np: NAut — LPetriis such that for each NAut-object A=(V, T, do, 91,1, L, lab) with T = (T,
I,t)and L={(L, I, T), npA =(V, T, do’, d1', L, lab’) where lab’, do', 01" are canonically induced by lab, dg, d1 and for
each AAut-morphism h = ¢hy, ht,), prh =<{hy, ht', h.) where ht': Ty — T2 and h": L1 — L2 are canonically induced
by ht and hy, respectively. Q

Proposition 4.5 The functor pn: LPetri — NAutis left adjoint to np: NAut — LPetri.

Systems for System Implementation 4

5 Refinement

First, we introduce the refinement for automata. Then, using the adjunctions between automata and nets, the refinement
for Petri nets is straightforward. Comparing with the implementation as in [12], the main differences are that nets and
automata have labels on transitions and the transitive closure functor is defined over internal categories (see [3, 6])
instead of monoidal categories. With internal categories we may easily substitute the monoidal structure by any other
structure (such as groups) provided that some properties about limits and colimits are preserved.

The category of categories internal to CMorn is denoted by Cat(CMon). We introduce the category LCat(CMon)
which can be viewed as a generalization of labeling on Cat(CMon). There is a forgetful functor from LCat(CMon)
into A(Aut. This functor has a left adjoint which freely generates a nonsequential automaton into a labeled internal
category. The composition of both functors from NAut into LCat(CMon) leads to an endofunctor, called transitive
closure. The composition of refinements of nonsequential automata is defined using Kleisli categories. In fact, the
adjunction above induces a monad which defines a Kleisli category.

An important result is that, while the vertical compositionality is achieved by all related categories, the horizontal
compositionality "starts" at AAut. This means that N\Aut is the least concrete (or more abstract) level which satisfies
the diagonal compositionality. In what follows, a NAut-object A=(V, T, dy, 91, 1, L, lab) is also denoted by (G, L', lab)
where G=(V, T, dg, 91, L) is a Rgrapﬁ(CMon)-object, i.e., a reflexive graph internal to C?Mon.

5.1 Vertical Compositionality

Definition 5.1 Category LCat(CMon). Consider the category Cat(CMon). The category LCat(CMon)is the comma

category i‘{Cat(CMan)‘L idCat(CMon) Where idcat(cMon) is the identity functor in Cat(CMon). Q
Therefore, a LCat(CMon)-object is triple N = (G, L, lab) where G, L are Cat(C:Mon)-objects and [ab is a

Cat(CMon)-morphism.

Proposition 5.2 The category LCat(CMon) has all (small) products and coproducts. Moreover, products and

coproducts are isomorphic.

Definition 5.3 Functor cn. Let N = (G, L, lab) be a LCat(CMon}-object and £ = (hg, Ar): Ni — Nz be a

LCat(CMon)-morphism. The functor crn: LCat(CMon) — NAut is such that:

a) the Cat(CMon)object G=(V, T, do, 01, 1, ;) is taken into the RGraph(CMon}-object G = (V, T, d¢', ', 1),
where T'is T subject to the equational rule below and dg', d1', 1' are induced by dg, d1, L considering the monoid T
the Cat(CMon)-object L={V, L, do, 91, 1, ;) is taken into the CMon-object L', where L'is L subject to the same
equational rule; the LCat(CMon)-object N=(G, L, [ab) is taken into the NAut-object N = (G, L' lab) where lab is
the RGraph(CMon)-morphism canonically induced by the Cat(CMon}morphism [ab,

tA->BeT uB->CeTt:A5B €T u:B—>C' €T
(tu)(tsu)'= (tt)s(ufu) in T

b) the LCat(CMon)-morphism A=(fig, hr): N — Nz with Aig=(hny, hnp, AL = (hLy, hiy) is taken into the NAut-
morphism h = (hny, hnp, hup): Ny — Np where hnp and hpp are the monoid morphisms induced by hny and hir,
respectively. a

The functor cn has a requirement about concurrency which is (t;u) ll (t';u') = (tlt');(ullu'). That is, the computation
determined by two independent composed transitions t;u and t';u' is equivalent to the computation whose steps are the
independent transitions tlt' and ullu'. For further details on this equation see [12].

Definition 5.4 Functor nc. Let A = (G, L, lab) be a NAut-object and h = {hg, h.): A; — A, be a AAut-morphism. The

functor nc: NAut — LCat(CMon)is such that:

a) the RGraph(CMon)-object G =(V, T, do, 91, 1) with V =(V, ®, e), T=(T, I, T) is taken into the Cat(CMon)-
object G=(V, T¢, 9, a;, 1, ;) with T¢=(T¢, ®, T), 95, a;, _j_: Tx T¢ — TCinductively defined as follows:

tAoBeT tA-BeT° uC-oDeT’ tA>BeT° uB->CeTC
t A>B e T® teuA®C—>B@D e T¢ twA—>C e TC
subject to the following equational rules:
te T ueT te TS uehe fe T° te T° L ikea TS Ve T®
“teu=tly Tteu=-ust t®r=1 t®USV) = (1OU®V
EASB e T t ABe T R SGE T veble T°

ast =t & g =t t(u;v) = (Hu)v

Systems for System Implementation 5

the CPMon-object L is taken into the Cat(CMon)-object L= (1, L¢, 1, |, |, ;) as above; the NAut-object A = (G, L,
lab) is taken into the LCat(CMon)-object A=(G, L, laby where [ab is the morphism induced by lab;

d) the NAut-morphism h = ¢hy, ht, h): A; — A, is taken into the Cat(CMon)morphism A = (ﬁg, hr): A1 — Az
where ﬁg: {hy, htc), Az = (!, hic) and hre, hic are the monoid morphisms generated by the monoid morphisms ht
and hty, respectively. Qa

Proposition 5.5 The functor nc: NAut — LCat(CMon)is left adjoint to cn: LCat(CMon) — NAut.

Definition 5.6 Transitive Closure Functor, Refinement Morphism: The transitive closure functor is tc = cno nc: NAut
— NAut. A refinement morphism (@ from A into the computations of B is a NAut-morphism @: A — tcB. 0

Example 5.7 Consider the nonsequential automaton with free monoids on states and transitions, determined by the
transitions a: A — B and b: B — C. Then, for instance, a;2b: A@B — B@®C is a transition in the transitive closure. Note
that, a;2b represents a class of transitions. In fact, from the equations we can infer that a;2b = a;(bllb) = (t[B]lla);(bllb) =
(T[B];b) I (a;b) = bll(a;b) = (b;T[C]) I (T[A];(a;b)) = (bl T[A]);(T[C]ll (a;b)) = bsa;b = ... Q

Let (nc, cm, 1), €) be the adjunction from NAut into LCat(CMon)as above. Then, T = (tc, 1, lL) is a monad on
NAut such that L = cn€ ne: tc? — tcwhere cr: cn— cnand ne: nc — nc are the identity natural transformations and
cn€ ncis the horizontal composition of natural transformations. For some given automaton A, tcA is A enriched with
its computations, Ma: A — tcA includes A into its computations and [A: tc?A — tcA flattens computations of
computations of A into the computations of A. Each monad defines a Kleisli category which provides the right setting
to describe the composition of refinement and thus, the vertical compositionality is achieved.

Definition 5.8 Category of Nonsequential Automata and Refinements. Consider the monad T = (tc, 1, W) on NAut
induced by the adjunction (nc, cn, 1M, €): NAut — LCat(CMon). The category of nonsequential automata and
refinement morphisms, denoted by Kef?\[ﬂut, is the Kleisli category determined by the monad T. Q

Therefore, for the refinements ©: Ay — tcAp, : Ay — tcAg the composition Wo@: Ay — tcAg in RefNAut is
given by the commutative diagram illustrated in the Figure 5.

NAaut
A1 ---------\!{-3---(?--------“nn-- tcAs
y I
tcA2 tc_‘"» tAs

Figure 4 Composition of refinement morphisms of nonsequential automata

The definition of the category of Petri nets and refinements is analogous. The adjunction considered is obtained
through the composition of adjunctions.

Definition 5.9 Category of Petri Nets and Refinements. Let (pc = nco pn, cp = npocny. LPetri — LCat(CMon) be
the adjunction determined by the composition of the adjunctions (7, cn): NAut — LCat(CMon), {pn, np). LPetri
— NAut. The category of labeled Petri nets and refinement morphisms, denoted by Rqﬁ’etTi, is the Kleisli category
determined by {pc, cp). m]

5.2 Horizontal Compositionality

In the following proposition, we show that, for some given refinement morphisms of nonsequential automata, the
morphism uniquely induced by the product construction is also a refinement morphism and thus, the horizontal
compositionality is achieved.
Proposition 5.10 Let {@;: Aj — Bjlic| be a an indexed family of RefANAut-morphisms. Then Xjc|@j: Xic| Aj = Xic|Bj
is a RefNAut-morphism.
Proof: For simplicity, Xjc| and +jc| are abbreviated by X; and +;, respectively. Let X;@;: XjA; = X; tcB; be the
morphism uniquely induced by the product construction in A/Aut. Now, we have just to prove that X;@; is a
RefNAut-morphism. Since tc = cnonc and cn preserves limits, then X; @;: X;A; — cn(X;ncB;). Since X;7cB; and
+; ncB; are isomorphic then, up to an isomorphism, X;@;: X;A; — cn(+; ncB;). Since 7c preserves colimits, then X; @;:
XiA; — cnonc(+iB;). Since X;B; and +;B; are isomorphic then, up to an isomorphism, X;@;: X;A; — #c(X;B)).
Therefore, X; @; is a RefNAut-morphism. n]
However, the category of Petri nets lacks the horizontal compositionality requirement. We can summarize by just
saying that £cis not a continuous functor at net level: it does not preserve limits.

Systems for System Implementation 6

Proposition 5.11 The endofunctor tc: LPetri® — LPetri® does not preserve products.

Proof: To prove that tcdoes not preserve products we have just to show an example. Consider the nets N given by the
transition a: A — B, M given by the transition x: X — Y and the product NxM with the single transition a |x: A®X —
B@®Y. Then, for instance, 2a: 2A — 2B, 3x: 3X — 3Y and 2all3x: 2A®3X — 2B®3Y are transitions of N, tcM and
tcN X tcM, respectively. However, 2all3x is not a transition of £c(NxM) and thus, tc does not preserve products. O

6 Concluding Remarks

In this paper we propose a categorial semantic domain for concurrent systems which satisfies the diagonal
compositionality (or modularity) requirement, i.e., refinement compose (vertical compositionality) and distributes over
parallel composition (horizontal compositionality). It is basically a labeled transition system with a monoidal structure
on transitions making explicit which transitions are independent of which. The construction is inspired by Petri nets are
monoids [12] and extends the notion of independence relation of asynchronous transition system [2].

A refinement or implementation morphism is defined as a special morphism where the target object is enriched with
all conceivable sequential and concurrent computations that can be split into sequential and concurrent permutations of
the original transitions respecting source and target states. Then we prove that, for nonsequential automata, the diagonal
compositionality requirement is achieve.

The clarification of the relationship between nonsequential automata and Petri nets is done through translation
functors extending the approach in [15] where a scene for a formal classification of models for concurrency is set.
From the steps of abstractions that are involved, we can infer that nonsequential automata are more concrete then Petri
nets. Moreover, the category of Petri nets are isomorphic the subcategory of nonsequential automata.

An important result is that, while the vertical compositionality is achieved by all related models, the horizontal
compositionality "starts" at nonsequential automaton, meaning that nonsequential automaton is the least concrete (or
more abstract) level among related models which satisfies the diagonal compositionality requirement.

With respect to further work, the next step is an extension toward a semantic domain for object-oriented concepts
following the ideas in this paper and the functorial operations for encapsulation and interaction proposed in [11].

References

1 A. Asperti, G. Longo, Categories, Types and Structures - An Introduction to the Working Computer Science, Foundations of
Computing (M. Garey, A. Meyer Eds.), MIT Press, 1991.

2 M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, technical report 1/88, University of Sussex, 1988.

A. Corradini, An Algebraic Semantics for Transition Systems and Logic Programming, Ph.D. thesis, technical report TD-8/90,

Universita di Pisa, 1990.

J. F. Costa, Fundamentos Matemdticos da Concorréncia, Ph.D. thesis, UTL/IST/Departamento de Informatica, Lisbon, 1991.

R. Gorrieri, Refinement, Atomicity and Transactions for Process Description Language, Ph.D. thesis, Universita di Pisa, 1990.

S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.

A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time, Branching Time and Partial Orders in Logic and Models for

Concurrency (J. W. de Bakker, W. -P. de Roever, G. Rozenberg, Eds.), pp. 285-363, LNCS 354, Springer-Verlag, 1988.

P. B. Menezes, Marked Petri Nets, IST, Lisbon, 1995. To appear in RITA - Revista de Informatica Teérica e Aplicada, UFRGS, Brazil.

9 P. B. Menezes, J. F. Costa, Synchronization in Petri Nets, preprint IST/DM/2-94, IST, Lisbon, 1993. Revised version to appear in
Fundamenta Informaticae, IOS Press.

10 P. B. Menezes, J. F. Costa, Compositional Refinement of Concurrent Systems, preprint IST/DM/26-94, IST, Lisbon, 1994. Revised
version to appear in the Journal of the Brazilian Computer Society - Special Issue on Parallel Computation.

11 P. B. Menezes, J. F. Costa, A. Sernadas, Refinement Mapping for General (Discrete Event) Systems Theory, to appear in the
proceedings of EUROCAST 95, LNCS, Springer-Verlag.

12 J. Meseguer, U. Montanari, Petri Nets are Monoids, Information and Computation 88, pp. 105-155, Academic Press, 1990.

13 R. Milner, Communication and Concurrency, Prentice Hall, 1989.

14 W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science 4, Springer-Verlag, 1985.

15 V. Sassone, M. Nielsen, G. Winskel, A Classification of Models for Concurrency, CONCUR 93: 4th International Conference of
Concurrency (E. Best, Ed.), pp. 82-96, LNCS 715, Springer-Verlag, 1993.

16 M. E. Szabo, Algebra of Proofs, Studies in Logic and the Foundations of Mathematics, vol. 88, North-Holland, 1978.

17 G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality, Information and Computation 72, pp. 197-238, Academic Press,
1987.

N N B w

oo

