
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUfO DE INFORMÁTICA

CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUf AÇÃO

Systems for System Implementation
por

Paulo Blauth Menezes and Félix Costa
RP 262 Maio/1996

ce 6 ,,rn11 l &
UFRGS 05972530

\• r.:n.n ... •- - -
Bibl\oteca

UFRGS-11 -CPGCC
Caixa Postal 15064- CEP 91501-970
Porto Alegre RS BRASIL
Telefone: (051)316-6155
Fax: (051) 336-5576
Email: pgcc@inf.ufrgs

Systems for System Implementation *
P. Blauth Menezest and J. Félix Costatt

t Departamento de Matemática, Instituto Superior Técnico, Portugal- blauth@raf.ist.utl.pt
tt Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal- fgc@di.fc .ul.pt

Abstract. Inspired by Meseguer and Montanari's "Petri Nets are Monoids", we propose that a refinement o f a Petri net is a
special kind o f net morphism were the target object is enriched with ali conceivable sequential and concurrent computations.
Then it is proven that while refinement o f nets satisfies the vertical compositionality requirement (i.e. , refinements compose),
it lacks the horizontal compositionality requirement (i.e., refinement does not distribute over parallel composition). To
achieve both requirements, a new categoria! semantic domain based on labeled transition systems with full concurrency, called
nonsequential automata, is constructed. Again, a class of morphisms stands for refinement and, in this framework, the
diagonal compositionality requirement (i.e., both vertical and horizontal) is achieved. Adjunctions between both models are
provided extending the approach ofWinskel and Nielsen. The steps of abstraction involved in moving between models show
that nonsequential automata are more concrete than Petri nets.

1 Introduction

We construct a semantic domain for interacting systems which satisfies the diagonal compositionality requirement, i.e.,
refinements compose (vertically), reflecting the stepwise description of systems, involving severallevels of abstraction,
and distributes through combinators (horizontally), meaning that the refinement of a composite system is the
composition of the refinement of its parts.

Taking into consideration the developments in Petri net theory (mainly with seminal papers like [17], [12] and [15])
it was clear that nets might be good candidates. However, most of net-based models such as Petri nets in the sense of
[14] and labeled transition systems (see [13]) lack modularity and abstraction mechanisms in their original definitions.
This motivate the use of the category theory: the approach in [17] provides the former, where categorical constructions
such as product and coproduct stand for composition, and the approach in [12] provides the !ater for Petri nets where a
special kind of net morphism corresponds to the notion of implementation. Also, category theory provides powerful
techruques to unify different categories of models (i.e., classes of models categorically structured) through adjunctions
(usually reflections and coreflections) expressing the relation of their semantics as in [15].

We introduce the concept of nonsequential automaton as a kind of automaton structured on states and transitions.
Structured states are "bags" of local states like tokens in Petri nets and structured transitions specify a concurrency
relationsrup between component transitions in the sense of [2] and [7]. The resulting category is bicomplete with
products isomorphic to coproducts. The categoria! product (or coproduct) stand for the parallel composition. In [11] we
introduce (functorial) operations of synchroruzation and encapsulation for nonsequential automata, where the
synchronization restricts a parallel composition according to some given interaction specification and the encapsulation
extracts a view of an automaton through hiding of transitions introducing an internai nondeterminism.

A refinement morphism maps transitions into transactions reflecting an implementation of an automaton on top of
another. It is defined as an automaton morprusm where the target object is enriched with al1 conceivable sequential and
nonsequential computations. Computations are induced by an endofunctor te (transitive closure) and composition of
refinements is defined using Kleisli categories. Therefore, refinements compose, i.e., the vertical compositionality
requirement is achieved. Moreover we find a general theory for refinement which also satisfies the horizontal
compositionality requirement. i .e., for refinements <p: A1 -7 tcB1, '1': A2 -7 tcB2, we have that <pA1 x 'I' A2 =
<p X '1'(A1 x A2) where <pA1 x '1'A2 and A1 x A2 are the parallel composition and the refinement <p x 'I' is (uniquely)
induced by <p and 'I'· While the vertical compositionality is easily achieved in severa! models, they lack horizontal
compositionality (in this paper, we show that Petri nets lacks horizontal compositionality).

Adjunctions between categories of Petri nets and nonsequential automata are provided, extending the approach in
[15] where a scene for a formal classification of models for concurrency is set. From the steps of abstractions that are
involved in moving between models, we can infer that nonsequential automata are more concrete then Petri nets.
Moreover, categories of Petri nets are isomorphic the subcategories of nonsequential auto mata. For our knowledge, the
proposed model of nonsequential automata is the least concrete model which satisfies both vertical and horizontal
compositionality requirements with respect to implementation.

The categories of Petri nets presented in this paper are extended with labeling on transitions. Also, for simplicity,
we do not deal with initial states (or markings).lf the categories in this framework are extended with irutial states as in
[8] , ali resultare preserved, including the bicompleteness of the categories of Petri nets and nonsequential auto mata. In
what follows, the proofs omitted are in [10].

* This work was partially supported by: UFRGS and CNPq in Brazil; CEC under ESPRIT-III BRA WG 6071 IS-CORE, HCM Scientific

Network MEDICIS and JNICT (PBIC/CffiT/1227/92) in Portugal.

mailto:blauth@raf.ist.utl.pt
mailto:fgc@di.fc.ul.pt

Systems for System Implementation 2

2 Labeled Petri Nets

We introduee Petri nets viewed as graphs extended with labeling on transitions. As proposed in [12], to define a Petri
netas a graph, we eonsider the states as a eommutative monoid. For simplieity and eomparing with the eorresponding
eategories in [12], we drop the requirement of monoids being free. In what follows, suppose that k is in {0, 1 }, C:Mon
is the eategory of eommutative monoids whieh has produets isomorphie to eoproduets and Uset." C:Mon ~ Set is a
funetor whieh forget about the monoidal strueture.

Definition 2.1 Labeled Petri Net. A (labeled) Petri net is N =(V, T, dQ, h L, lab) sueh that V is a eommutative monoid
of states, Tis a set of transitions, do, d1: T ~ Uset V are total funetions ealled souree and target, respeetively, L is a set
of Jabels and lab: T ~ L is a total funetion ealled labeling. O

Dejinition 2.2 Labeled Petri Net morphism. A (labeled) Petri net morphism is a triple h= (hv, hr, h L): (Vt, T 1, do1, d1 1,

L1, lab1) ~ (Vz, h ao2, a1 2, L2, lab2) sueh that hv: Vt ~ Vzis a C:Mon-morphism, hr: T1 ~ T2 is a total funetion sueh
that Usethy 0 dk1 = dk2° hT and hL: L1 ~ L2 is a total funetion sueh that hL olab1 = lab2 °hr. O

A transition I sueh that do(t) =A, d1(1) = 8 and Jabeled by ais denoted by a[t]: A~ 8 or just by a: A ~ 8. Labeled
Petri nets and its morphisms eonstitute a eategory denoted by LPetri whieh is bieomplete (see [10]). The eoproduet
and produet eonstruetions represent the asynehronous and synehronous eomposition of nets, respeetively.

3 Nonsequential Automata

A nonsequential automaton is a retlexive graph (a graph with an identity are for every node) labeled on ares sueh that
nodes, ares and labels are elements of commutative monoids. A reflexive graph represents the shape of an automaton
where nodes andares stand for states and transitions, respectively, with identity ares interpreted as idle transitions. A
struetured transition speeify a eoneurreney relation between eomponent transitions. Comparing with asynchronous
transition systems (first introduced in [2]), the independence relation of a nonsequential automaton is explicit in the
graphieal representation. A structured state ean be viewed as a "bag" of local states where each local state ean be viewed
as a resouree to be eonsumed or produced, like a token in Petri nets.

Definition 3.1 Nonsequential Automaton. A nonsequential automaton A= (V, T, do, d1, t, L, lab) is such that T = (T, 11,
't) , V= (V, E9 , e), L= (L, 11 , 't) are C:Mon-objeets of transitions, states and labels respeetively, do, a1: T ~ V are
C:Mon-morphisms called source and target respeetively, t: V~ Tis a C:Mon-morphism called identity sueh that dk 0 t =
idv and lab: T ~ L is a C:Mon-morphism sueh that lab(l) = 't whenever there is v in V where t(v) = t. O

For a state A, tA: A~ Ais also denoted by A: A~ A. Note that every identity transitions is labeled by 't . Sinee a
state is an element of a monoid, it may be denoted as a formal sum, as in Petri nets. The denotation of a transition is
analogous. We also refer to a (structured) transition as the parallel composition of eomponent transitions. A transition
xll't: XE9A ~ YE9A where t: X~ Y andA: A~ A are Jabeled by x and 't, respeetively, is denoted by x: XE9A ~ YE9A.
For simplieity, in graphieal representation, we ornit the identity transitions. States and labeled transitions are graphically
represented as circles and boxes, respectively.

Example 3.2 Let ({A, B, X, Y}E~. {11, l2, 13. A, B, C, X, V)®, a0, a1, t, {x, y)®, lab) be a nonsequential automaton with
ao. a1 determined by the local ares I 1: 2A ~ B, 12: X ~ y' 13: y ~ X and lab determined by I 1 - X, 12 - X, 13 - y.
The distributed and infinite schema in Figure 1 (left) represents the automaton. Since in this framework we do not deal
with initial states, the graphieal representation makes explieit all possible states that ean be reaehed by all possible
independent eombination of eomponent transitions. For instanee, if we eonsider the initial state AEB2X, only the
corresponding part of the schema of the automata in the figure has to be considered. In Figure 1 (right), we illustrate a
Jabeled Petri net whieh simulates the behavior of the automaton. Comparing both schema, we realize that, while the
eoneurrenee and possible reaehable markings are implieit in a net, they are explicit in an automaton. O

Figure 1 A nonsequential automaton (left) and the corresponding labeled Petri net (right)

Systems for System lmplementation 3

Definition 3.3 Nonsequential Automaton Morphism. A nonsequential automaton morphism is a triple h= (hv, hr, hL.):
(Vt, Tt. ao1, a1 1, t1, Lt, lab1) ~ (V2, h ao2, a12, t2, L2, lab2) where hv: Vt ~ V2, hr: Tt ~ T2 and hL: Lt ~ L2 are
CMon-morphisms such that hy 0 ak1 = ak2°hT, hr 0 t1 = t2 °hv and hL 0 lab1 = lab2°hT. O

Nonsequential automata and its morphisms constitute a category denoted by 9-[_Jlut which is bicomplete with
products isomorphic to coproducts (see [10]) . The product construction stands for the parallel composition.

4 Adjunctions Between Petri Nets and Nonsequential Automata

The relationship between nonsequential automata and Petri nets is done through adjunctions as illustrated in Figure 2.
To compare the expressiveness between nonsequential automata and Petri nets we introduce a subcategory of automata,
denoted by 9-[_Jluf:S, where the (non-identity) transitions of an automaton are elements of a free commutative monoid
and the morphisms on transitions are induced by total functions . Since 9-[_Jluf:S is isomorphic to LPetr~ 9-f..Jluf:S is
bicomplete and LPetri is a subcategory of 9-[_Jlut. The following notations are used: a set S is the set of generator of the
free commutative monoid SEB; for a commutative monoid M = (M, ®, e), M is the corresponding set.

(inc..,.

Figure 2 Adjunctions between the category o f Petri nets and the categories of nonsequential automata

Definition 4.1 Nonsequential s-Automaton. The category of nonsequential s-automata, denoted by 'J{Jl..uts, is a
subcategory of 'J{J!utwhere (consider the Figure 3): (a) a 9-f..Jluts-object A= (V, r+, ao+, a1+, t, LEB, lab+) is a 9-f..J'I.ut­
object such that V= (V, ffi, e), r+ and t: V~ r+ are given by the coproduct ra>+ V, ak+: r+~ Vis uniquely induced
by the coproduct construction in CMon and lab+: r+ ~ L EB is uniquely induced by a total function lab: T ~ L and by
the product construction; (b) a 9-f..Jluf:S-morphism h= (hv, hr+, hLEll): A1 ~ A2 is a 9-f..Jlut-morphism such that hr+: r 1+
~ r2+ is uniquely induced by a total function hr: r1 ~ T 2 and by the coproduct construction in CMon and hLEll: L1EB
~ L2EB is induced by a total function hL: L1 ~ L2. O

~--CMon

TEll.._

ilabEll

T+=TEll+V

ilab+

LEll..,._ __ LEll ...

Figure 3 Diagrams for the category of nonsequential s-automaton (in CMon.. products and coproducts are ismorphic)

Definition 4.2 Functors pw, nps. (a) The functor pw: LPetri~ 'J{Jl..ut:Sis such that for each LPetn~object N =(V, T,
ao, a1, L, lab), pn5 N =(V, r+, ao+, a1+, t, LEB, lab+) and for each LPetri-morphism h= (hv, hr, hL), pn5h = (hv, hr+,
hLEll). (b) The functor np-5: 'J{Jl..uf:S ~ LPetriis such that for each 9-f..Jluf:S-object A= (V, r+, ao+, a1+, t, LEB, lab+),
npsA =(V, r , ao, a1, L, lab) where r, L are the sets of generators of the corresponding free monoids and for each
9-f..J'I.uf:S-morphism h= (hv, hr+, hLEll), npsh = (hv, hr, hL). o

Basically, the functor pn5 freely generates an automata from some given net and nps forgets about the monoidal
structure on transitions and erases the identity transitions and the transitions added by the generation of the free
monoid. The Figure 1 illustrates both functors. The proof of the following proposition is straightforward.

Proposition 4.3 The categories LPetri and :A[Jl.uf:S are isomorphic. O

Definition 4.4 Functors pn, np. (a) Consider the functor pns: LPetri ~ 'J{Jl..uf:S defined above. Let inc.: 9-[_J'l.uf:S ~
9-[_J'l.ut be the inclusion functor which defines 9-[_Jluf:S as a subcategory of 9-[_Jlut. Then, pn = inco pns: LPetri ~
:A{Jl.ut. (b) The functor np: 9-f..J't.ut ~ LPetri is such that for each 9-f..J'I.ut-object A =(V, T, ao. a1, t, L, lab) with T = (r,
11, 't) and L= (L, 11 , 't), npA = (V, r, ao', a1', L, lab') where lab', ao', Cl1' are canonically induced by lab, Cio, Cl1 and for
each 9-f..Jlut-morphism h= (hv, hr, hL), pnh = (hv, hr', hL') where hr': r1 ~ r2 and hL': L1 ~ L2 are canonically induced
by hr and hL, respectively. o

Proposition 4.5 The functor pn: LPetri~ 9-[_Jlutis left adjoint to np: 9-[_Jlut~ LPetri

Systems for System lmplementation 4

5 Refinement

First, we introduce the refinement for automata. Then, using the adjunctions between automata and nets, the refinement
for Petri nets is straightforward. Comparing with the implementation as in [12], the main differences are that nets and
automata have labels on transitions and the transitive closure functor is defined over internai categories (see [3, 6])
instead of monoidal categories. With internai categories we may easily substitute the monoidal structure by any other
structure (such as groups) provided that some properties about limits and colimits are preserved.

The category of categories internai to CMonis denoted by Cat(CMon). We introduce the category .LCat(CMon)
which can be viewed as a generalization of Iabeling on Cat(CMon). There is a forgetful functor from .LCat(CMon)
into :JI.{Jl.ut. This functor has a left adjoint which freely generates a nonsequential automaton into a labeled internai
category. The composition of both functors from :J{J'l.ut into .LCat(CMon) leads to an endofunctor, calied transitive
closure. The composition of refinements of nonsequential automata is defined using Kleisli categories. In fact, the
adjunction above induces a monad which defines a Kleisli category.

An important result is that, while the vertical compositionality is achieved by ali related categories, the horizontal
compositionality "starts" at :J{J'l.ut. This means that :J{J'l.ut is the least concrete (or more abstract) levei which satisfies
the diagonal compositionality. In what follows, a :JI.{J!ut-object A= (V, T, do, d1, t, L, lab) is also denoted by (G, L', lab)
where G =(V, T, do, d1, t) is a 'l((jrapfi(CMon}-object, i.e., a reflexive graph internai to CMon.

5 .1 Vertical Compositionality

Definition 5.1 Category .LCat(CMon). Consider the category Cat(CMon). The category .LCat(CMon) is the comma
category iácat(CM"on)-1- iácat(CM"on) where iácat(CM"on) is the identity functor in Cat(CMon). O

Therefore, a .LCat(CMon)-object is triple :J{ = ((j, .L, [a6) where (j, .L are Cat(CMon}-objects and [a6 is a
Cat(CMon}-morphism.

Proposition 5.2 The category .LCat(CMon) has ali (small) products and coproducts. Moreover, products and
coproducts are isomorphic.

Definition 5.3 Funetor cn. Let :7{ = ((j, .L, [a6) be a .LCat(CMon)-object and fi = (firjl fi L): 'fiÚ. ~ '116 be a
.LCat(CMon}-morphism. The functor cn: .LCat(CMon) ~ :JI.{Jl.ut is such that:
a) the Cat(CMon}-object (j= (V, T, do, d1, t, ;) is taken into the 'l((jrapfi(CMon)-object G = (V, T', do', dj', t'),

where T' is T subject to the equational rui e below and do', d1', t' are induced by do, d1, t considering the monoid T';
the Cat(CMon}-object L= (V, L, do, d1, t, ;) is taken into the CMon-object L', where L' is L subject to the same
equational rui e; the .LCat(CMon}-object :J{ = ((j, .L, fa6) is taken in to the :J{J'l.ut-object N = (G, L', lab) where lab is
the 'l((jrapfi(CMon)-morphism canonically induced by the Cat(CMon)-morphism [a6;

t: A~B E T u: s~c E T t': A'~B' E T u': s·~c· E T

(t; u)li(t'; u')' = (tllt'); (ullu') in T'

b) the .LCat(CMon)-morphism fi= (fiq, fiL): 'fiÚ. ~ '116 with fiq= (hNv. hNr). fiL= (hLv. hLr) is taken into the :JI.{J!ut­
morphism h= (hNv. hNr. hLr): N1 ~ N2 where hNr and hLr are the monoid morphisms induced by hNr and hLr.
respectively. O

The functor cn has a requirement about concurrency which is (t;u) 11 (t';u') = (t 11 t');(u 11 u'). That is, the computation
determined by two independent composed transitions t;u and t';u' is equivalent to the computation whose steps are the
independent transitions t llt' and u 11 u'. For further details on this equation see [12].

Definition 5.4 Funetor nc. Let A= (G, L, lab) be a :J{J'l.ut-object and h= (hG, hL): A1 ~ A2 be a :J{J'l.ut-morphism. The
functor nc: :JI.{Jl.ut ~ .LCat(CMon) is such that:
a) the 'i((jrapfi(CMon}-object G =(V, T, do, d1, t) with V= (V, ffi, e), T = (T, 11, "t) is tak:en into the Cat(CMon)­

object {j =(V, TC, d(), ii1, t, ;) with TC = (TC, ®, "t), ii0, ii1, _;_: TCx TC ~ TC inductively defined as follows:

t: A ~ B E T t: A ~ B E Te u: C ~ D E Te t: A ~ B E Te u: B ~ C E Te

t: A ~ B E Te t ® u: A $ C ~ B ffi D E Te t; u: A ~ C E Te

subject to the following equational rules:

E T u E T

t®u = tllu

E Te u E Te v E Te

t®(u®v) = (t®u)®v

t: A ~ B E Te u: B ~ C E Te v: C ~ D E Te

t;(u;v) = (t;u);v

Systems for System Implementation 5

the CMon-object L is taken into the Cat(CMon}object L= (1, LC, !, !, !, ;) as above; the .9\LJtut-object A = (G, L,
lab) is taken into the LCat(CMon}object 5t = ((j, L, {a{;) where [a[; is the morphism induced by lab;

d) the :71[5tut-morphism h= (hv, hr, hL): A1 ~ A2 is taken into the Cat(CMon}morphism fi= (fíq, fí.ú Jt1 ~ Jt2
where fíq= (hv, hrc), fíL= (!, hLc) and hrc, hLc are the monoid morphisms generated by the monoid morphisms hr
and hrL• respectively . O

Proposition 5.5 The functor nc: :71[5tut~ LCat(CMon}is Ieft adjoint to en: LCat(CMon)~ :71[5tut.

Definition 5.6 Transitive Closure Functor, Refinement Morphism: The transitive closure functor is te = eno nc: :li{JLut
~ :li{JLut. A refinement morphism <p from A into the computations of B is a .9\LJtut-morphism <p: A ~ teB. O

Emmple 5. 7 Consider the nonsequential automaton with free monoids on states and transitions, determined by the
transitions a: A~ B and b: B ~ C. Then, for instance, a;2b: AEDB ~ BEDC is a transition in the transitive closure. Note
that, a;2b represents a class of transitions. In fact, from the equations we can infer that a;2b = a;(b 11 b) = ('t[B] II a);(bll b) =
(-r[B];b) 11 (a;b) = bll (a;b) = (b;-r[C]) 11 (-r[A];(a;b)) = (bll -r[A]);('t[C] II (a;b)) = b;a;b = ... o

Let (nc, e11,11 , E) be the adjunction from :71[5tutinto LCat(CMon)as above. Then, T =(te, 11 . !l) is a monad on
'J{Jtut such that ll = cnE nc: te!-~ te where en: cn ~ en and nc: nc ~ nc are the identity natural transformations and
enE nc is the horizontal composition of natural transformations . For some given automaton A, te A is A enriched with
its computations, llA: A ~ teA includes A into its computations and !lA: te2A ~ teA flattens computations of
computations of A into the computations of A. Each monad defines a Kleisli category which provides the right setting
to describe the composition of refinement and thus, the vertical compositionality is achieved.

Definition 5.8 Category of Nonsequential Automata and Refinements . Consider the monad T =(te, 11. !l) on .9\LJtut
induced by the adjunction (nc, C74 11. E): .9\LJtut ~ LCat(CMon). The category of nonsequential automata and
refinement morphisms, denoted by !R.g.j:71[5tut, is the Kleisli category determined by the monad T. O

Therefore, for the refinements <p: A1 ~ teA2, \jf: A2 ~ teA3 the composition \jf 0 <p: A1 ~ teA3 in !R.g.j:li{JLut is
given by the commutative diagram illustrated in the Figure 5.

~-------------------- :li[JLaut

teAJ
\jlo<p

A1 .. , ,. ,. ~ 1111•• ·

i~
te\jl

teA2 -------1~~ te? A:3

Figure 4 Composition o f refinement morphisms o f nonsequential automata

The definition of the category of Petri nets and refinements is analogous. The adjunction considered is obtained
through the composition of adjunctions.

Definition 5.9 Category of Petri Nets and Refinements . Let (pe = neo pn, ep = npo en): LPetri ~ LCat(CMon) be
the adjunction determined by the composition of the adjunctions (nc, en): :71[5tut ~ LCat(CMon), (p74 np) : LPetri
~ :li[JLut. The category of Iabeled Petri nets and refinement morphisms, denoted by !R.g.jPetri, is the Kleisli category
determined by (pc, cp). O

5. 2 Horizontal Compositionality

In the following proposition, we show that, for some given refinement morphisms of nonsequential automata, the
morphism uniquely induced by the product construction is also a refinement morphism and thus, the horizontal
compositionality is achieved.

Proposition 5.1 O Let {<pi: Ai ~ BiliE 1 be a an indexed family of !R.g.j'J{Ylut-morphisms. Then XiE 1 <pi: XiE 1 Ai ~ XiE 1 Bi
is a !R.g.j'J{Jtut-morphism.
Proof For simplicity, XiEI and +iEI are abbreviated by Xi and +i, respectively . Let Xi<pi: xi Ai ~ Xi tcBi be the
morphism uniquely induced by the product construction in :li[JLut. Now, we have just to prove that X i <!'i is a
!R.g.j~ut-morphism. Since te= cno nc and cn preserves limits, then Xi <pi: X i Ai ~ cn(Xi neBi) · Since Xi ncBi and
+i ncBi are isomorphic then, up to an isomorphism, Xi<pi: XiAi ~ cn(+i ncBi). Since nc preserves colimits, then Xi<pi:
X i Ai ~ cno ne(+i Bi) . Since X i Bi and +i Bi are isomorphic then, up to an isomorphism, Xi <pi: X i Ai ~ te(Xi Bi)·
Therefore, Xi <!'i is a !R.g.j:li{JLut-morphism. O

However, the category of Petri nets lacks the horizontal compositionality requirement. We can summarize by just
saying that te is nota continuous functor at net levei: it does not preserve limits.

Systems for System Implementation 6

Proposition 5.11 The endofunctor te: LPem• ~ LPetri• does not preserve products.
Proof To prove that te does not preserve products we have just to show an example. Consider the nets N given by the
transition a: A~ B, M given by the transition x: X ~ Y and the product N x M with the single transition a I x: AffiX ~
BffiY. Then, for instance, 2a: 2A ~ 28, 3x: 3X ~ 3Y and 2all3x: 2Affi3X ~ 2Bffi3Y are transitions of teN, teM and
teN x teM, respectively. However, 2all3x is nota transition of te(N x M) and thus, te does not preserve products. O

6 Concluding Remarks

In this paper we propose a categoria! semantic domain for concurrent systems which satisfies the diagonal
compositionality (or modularity) requirement, i.e., refinement compose (vertical compositionality) and distributes over
parallel composition (horizontal compositionality). lt is basically a labeled transition system with a monoidal structure
on transitions making explicit which transitions are independent of which. The construction is inspired by Petri nets are
monoids [12] and extends the notion of independence relation of asynchronous transition system [2] .

A refinement or implementation morphism is defined as a special morphism where the target object is enriched with
ali conceivable sequential and concurrent computations that can be split into sequential and concurrent permutations of
the original transitions respecting source and target states. Then we prove that, for nonsequential automata, the diagonal
compositionality requirement is achieve.

The clarification of the relationship between nonsequential automata and Petri nets is done through translation
functors extending the approach in [15] where a scene for a formal classification of models for concurrency is set.
From the steps of abstractions that are involved, we can infer that nonsequential automata are more concrete then Petri
nets. Moreover, the category of Petri nets are isomorphic the subcategory of nonsequential auto mata.

An important result is that, while the vertical compositionality is achieved by ali related models, the horizontal
compositionality "starts" at nonsequential automaton, meaning that nonsequential automaton is the least concrete (or
more abstract) levei among related models which satisfies the diagonal compositionality requirement.

With respect to further work, the next step is an extension toward a semantic domain for object-oriented concepts
following the ideas in this paper and the functorial operations for encapsulation and interaction proposed in [11].

References

A. Asperti, G. Longo, Categories, Types and Structures - An Introduction to the Working Computer Science, Foundations of

Computing (M. Garey, A. Meyer Eds.), MIT Press, 1991.

2 M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, technical report 1/88, University of Sussex, 1988.

3 A. Corradini, An Algebraic Semantics for Transition Systems and Logic Programming, Ph.D. thesis , technical report TD-8/90,

Università di Pisa, 1990.

4 J. F. Costa, Fundamentos Matemáticos da Concorrência, Ph.D. thesis, UTUIST/Departamento de Informática, Lisbon, 1991.

5 R. Gorrieri , Refinement, Atomicity and Transactions for Process Description Language, Ph.D. thesis, Università di Pisa, 1990.

6 S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971 .

7 A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time, Branching Time and Partia! Orders in Logic and Models for

Concurrency (J. W. de Bakker, W. -P. de Roever, G. Rozenberg, Eds.), pp. 285-363, LNCS 354, Springer-Verlag, 1988.

8 P. B. Menezes, Marked Petri Nets , 1ST, Lisbon, 1995. To appear in RITA - Revista de Informatica Teórica e Aplicada, UFRGS, Brazil.

9 P. B. Menezes, J. F. Costa, Synchronization in Petri Nets , preprint IST/DM/2-94, 1ST, Lisbon, 1993. Revised version to appear in

Fundamenta Informaticae, lOS Press.

lO P. B. Menezes, J. F. Costa, Compositional Refinement of Concurrent Systems, preprint IST/DM/26-94, IST, Lisbon, 1994. Revised

version to appear in the Journal of the Brazilian Computer Society - Special Issue on Parallel Computation.
1 I P. B. Menezes, J. F. Costa, A. Sernadas, Rejinement Mapping for General (Discrete Event) Systems Theory, to appear in the

proceedings of EUROCAST 95, LNCS, Springer-Verlag.

12 J. Meseguer, U. Montanari , Petri Nets are Monoids, lnforrnation and Computation 88, pp. 105-155, Academic Press, 1990.

13 R. Milner, Communication and Concurrency, Prentice Hall , 1989.

14 W. Reisig, Petri Nets: An lntroduction, EATCS Monographs on Theoretical Computer Science 4, Springer-Verlag, 1985.

15 V. Sassone, M. Nie1sen, G. Winskel, A Classification of Models for Concurrency, CONCUR 93: 4th International Conference of

Concurrency (E. Best, Ed.), pp. 82-96, LNCS 715, Springer-Verlag, 1993.

16 M. E. Szabo, Algebra of Proofs, Studies in Logic and the Foundations of Mathematics, vol. 88, North-Holland, 1978.

17 G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality, Information and Computation 72, pp. 197-238, Academic Press,

1987.

