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Compositional Reification of Petri Nets *

P. Blauth Menezes'

Abstract. A categorical semantic domain is constructed for the reification of Petri nets based on graph
transformations. First, the graph transformation concept (based on the single pushout approach) is extended for
Petri nets viewed as graphs with partial morphisms. Classes of transformations stand for reifications where part of a
net (usually a transition) is replaced by another (possible complex) net allowing a hierarchical specification
methodology. The composition of reifications (i.e., composition of pushouts) is defined, leading to a category of
nets and reifications which is complete and cocomplete. Since the reification operation composes, the vertical
compositionality requirement of Petri nets is achieved. Then, it is proven that the reification also satisfies the
horizontal compositionality requirement, i.e., the reification of nets distributes through parallel composition.
Techniques for specification of nets, top down design of nets and a notion of bisimulation between unreified and
reified net are provided.

Keywords. Petri nets, net-based semantics, reification, vertical and horizontal compositionality, graph
transformation, partial morphisms, category theory.

Introduction

Petri nets are one of the first models for concurrency developed and are widely used in many applications.

Recently, frameworks based on Petri nets have been proposed for expressing the semantics of concurrent systems in
the so-called true concurrency approach as in [Meseguer and Montanari 90], [Winskel and Nielsen 94] and [Brown et
al 91]. However, Petri nets until now lack of a basic property that any mathematical theory of concurrency should
satisfy: we call this property diagonal compositionality (or modularity) which is both:

a)

b)

Vertical Compositionality - As stated by [Gorrieri 90] vertical modularity means a hierarchical specification
methodology which allows to add or abstract structure into a concurrent system in different levels of abstraction
such as in the top-down or bottom-up design of sequential system. In these cases, a system described at a higher
level abstracts some details which are further described as (possible) complex entities at lower level. Moreover,
several levels of abstraction my be defined in a compositional way. The vertical operator may be of two kinds:

» implementation: areference for a further definition of an abstraction such as a morphism that maps transitions
into transactions. Note that the refinement morphism as proposed in [Winskel and Nielsen 94] and [Brown et
al 91] which is a mapping of transitions into transitions meaning a (direct) simulation without further detailing
is a special case of implementation.

* derivation: replaces a part of the system by another system. It can be viewed as the generalization of the
macro expansion for concurrent systems.

Horizontal Compositionality - Complex systems are structured entities and can be better understood if we can
reason and build on their parts separately. In a concurrent system the parallel composition is the main combinator
for constructing new processes. However, we should be able to specify the changes of levels of abstractions of a
concurrent system (vertical modularity) before or after the joint behaviour of component parts in order to obtain the
same resulting system. Thus, the vertical composition should distribute through the parallel combinator.

Our goal is to achieve the diagonal compositionality of Petri nets without adding extra structures neither modifying

its basic definition. In this framework we deal with the derivation operation (for implementation see [Menezes 93]).
The derivation operation we define is based on graph transformation using the so-called single pushout approach
([Lowe 90] and [Lowe and Ehrig 90]) on a category of graphs with partial morphisms. Graph transformations
standing for a hierarchical specification methodology is, for our knowledge, a new approach.

This paper extends the previous work [Menezes 94] mainly with the initial markings for Petri nets and with the

notion of simulation between the original net and the derived one. First, we introduce the category of partial Petri nets

*
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and partial morphisms which we prove is finitely complete and cocomplete. The category defined follows some ideas
introduced in [Meseguer and Montanari 90] and we claim that, with respect to the partial morphisms, "Petri nets are
semi-groups”. Then, we extend Petri nets with initial markings resulting in a category which is also finitely complete
and cocomplete. This is an important result, if we compare, for instance, with [Meseguer and Montanari 90] or
[Winskel 87], where the proposed categories are restricted in order the have coproducts. Moreover, it is a basic result
for this work, since the reification proposed is based on pushouts.

The graph transformation concept is extended for partial Petri nets with initial markings as follows: arule r: No -
Mo is a partial net morphism which specifies how the net N is replaced by the net Mg and an instantiation ng: No -+
N is a partial net morphism which specifies how Ng (the source of the rule r) is instantiated into N (the net to be

transformed). Then, the transformation r no applied to the net N resulting in the net M is given by the pushout
construction of r along with ng, illustrated as follows:

rule:

No
|nstar;\§|a§|otnc;‘f e g r -l specifies the
o into replacement

net to be transformed sl N

.0.
transformation  wwwwniie. (psn.\p /

resulting net oN

For instance, in the figure below we show how a transition of a net is replaced by a net preserving its source and
target nodes. Consider the rule r and the instantiation ng where the nodes X and Y are preserved in both r and ng and
so0, they are preserved in the resulting net. However, while the arc X is "forgotten" by r (the morphisms are partial) it is
preserved by no. Thus, in the resulting net, X is replaced by a, b, ¢, d and the nodes A and B are added:

Moreover, the transformation operation defined can be used to specify not only further detailing of nets but also
some other operations such as abstraction which substitutes a (possible) complex part of a net by a simpler net, as in
the bottom up design of systems, deletion of part of a net or addition of new parts to an existing net.

To achieve the vertical composition, we need to compose transformations, i.e., given QN = M and yM = Q, we
should be able to define o\ such that (P)N = Q. Note that the matter is not only the composition of (o and \ as
partial net morphisms, but also as pushouts: given two pushouts with only one vertex in common, we should

determine a single pushout such that the resulting transformation is the composition of the component transformations,
illustrated as follows:

0

No' -

Q
i
o' No——p My Po——— Qo i'

T

\\_¢W°4/
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In fact, we show that for some given rule r and instantiation ng, the resulting transformation @rn, can be
determined by several pushouts. Also, the above composition can be determined by several rules and instantiations.
Thus, we can define classes of equivalencies of pairs of rules and instantiations such that the resulting transformation
coincide. Therefore, a category of nets and partial morphisms leads to a category where objects are nets and
morphisms are classes of equivalence called reifications. An important result is that both categories are isomorphic.
Then, we show that the diagonal compositionality for the category of Petri nets and reifications is achieved.

However, for further specification of a given system, only some reifications are desired. For this purpose, we
introduce the definition of grammar which is basically a collection of rules and instantiations to be applied to an initial
net. Then, we show how to obtain a subcategory where objects are all nets that can be derived from the initial one and
morphisms are all possible reifications (determined by the grammar) to achieve further specifications.

We generalize the top down approach, where rules and instantiations are such that the composition of reifications
can be classified as independent which means that the second reification derives parts which were not previously
derived by the first one (it is the sequential independent case of Lowe 90) or fotal dependent which means that the
second reification derives parts which were all previously derived by the firs one. The solution proposed for the total
dependent case is, for our knowledge, new.

Even if we consider the generalization of the top down approach above, it is possible to reify a Petri net in such
way that we can not define a reasonable notion of equivalence between the unreified and the reified nets. Moreover,
since a reification may introduce or delete transitions or places, we should not expect a direct simulation between nets.
In order to avoid this problem, we introduce the black box reification which replaces single transitions by (possible
complex) nets preserving source and target places, among some other constrains. If we consider the part introduced as
a "black box" where, except the inherited places, all component transitions and places are hidden, then we are be able
to define a notion of bisimulation (which should not be confused with the bisimulation as in [Milner 89]).

2 Partial Petri Nets

First we define partial morphisms on a given category C. Then, we introduce the concepts of graph as an element
of a comma category over the base category Set, internal graph which is a graph where the base category is an
arbitrary category C and structured graph which is an extension of the notion of internal graph where arcs and nodes
may be objects of different categories, provided that there are functors from these categories to the base category. In
this context, the category of Petri nets is defined as the category of partial morphisms on a category of structured
graphs. Also, the category of Petri nets with initial markings is introduced. Both categories of Petri nets are finitely
complete and cocomplete.

2.1 Categories with Partial Morphisms

For a given category C we define the partial morphisms in C. If Chas all pullbacks, we can define the composition
of partial morphisms leading to the category pC. The main reference for partial morphisms is [Asperti and Longo 91].

Definition 2.1 Partial Morphism. Consider a category C. A partial morphism on ( is an equivalence class of
pairs of morphisms {m: D¢ > A, f: Df - B), where m is mono, with respect to the relation (m: D¢ » A, f: D - B)
parc {m'": D » A, f: Dy —» B) if and only if there is an isomorphism iso: D — D¢ such that the following diagram
commutes:

C—

D

>
W B wsen
o

7N
N\

w

=t

Qa

Every C-morphism f: A — B may be represented as a partial morphism [(ida: A — A, f: A — B)]: A — B where
ida is the identity morphism on A. Consider a partial morphism [(m, f)]: A — B where (m: D¢ » A, f: Df - B)isa
representative element of the class. Then [(m, f)] is also denoted by f: A+B, (m, f): A - Bor f: A < D » B.

Definition 2.2 Category with Partial Morphisms. Consider a category C = (Ob¢, Mor¢, dg, 91, 1, °) with
all pullbacks. The category of partial morphism on Cis pC = (Ob¢, pMor¢, pdg, pd1, L, p°) where pMor ¢, pdo, pd+
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are determined by the definition of partial morphisms on C and the composition of two morphisms f = (mg, f): A - B,
g ={mg, g): B — C s gof = {mgemy, g°f): A — C determined by the pullback in the following commutative diagram:

(j____

A Dg——>C

> i
L
\ mg°mf pb o /

\_—< DfXBD -—'"’

Q

For instance, consider the category Set. Then pSet is the category of sets and partial functions (see [Asperti and
Longo 91]). The next proposition shows how a square diagram commutes in pC.

Proposition 2.3 Consider the category pC and the partial morphisms f: A <« Df - B,g: B« Dg - E, u: A <
Dy » G, v: C < Dy - E such that gf = veu. Then, there are morphisms p: Df < M - Dy, g: Dy <« M - Dg
where the middle object M is unique (up to an isomorphism) and are such that the diagram below commutes.
Moreover, ® and @ are pullback.

&
A <« o < D¢ " » B
A Y A
My n1p C) n1g
A s A
Dy -l Z M Jin- D
u ® P 9
QT o TS
C «¢ < Dy » E

Proof: The compositions gef and veu are given by pullbacks in @ and ® where D¢xp Dg and Dy xc Dy are the
pullback objects. Since geof = vou, there is an isomorphism iso: Dfxg Dg — Dyxc Dy and so, both objects represent
the middle object M. Q

2.2 Graphs

Traditionally, a graph is defined as a quadruple (V, T, do, d1) where V is a set of nodes, T is a set of arcs, and do,
91: T — V are functions called source and target, respectively. However, we prefer a different but equivalent approach
which is to consider a graph as an element of a comma category. This approach is used to define graphs, internal
graphs and structured graphs. First we introduce the definition of the diagonal functor as in [Mac Lane 71].

Definition 2.4 Diagonal Functor. Consider the category C. Let (? be the category where objects and morphism
are pairs of objects and morphisms of C. The diagonal functor A: C — (? takes each object A into (A, A) and each

morphism f: A — B into {f, f): (A, A) — (B, B). Q
Definition 2.5 Graph. Consider the diagonal functor A: Set — Set?. The category of (small) graphs is the
comma category ALA denoted by Graph. u]

Thus, a graph is a triple G = (V, T, 9) where d = {(do, d1). We may denote a graph in the traditional way, i.e., G =
(V, T, do, 91). As expected, a morphism in Grap# preserves source and target nodes of transitions. It is usual to write
t: X = Y to denote do(t) = X and d1(t) = Y for any tin T.

As stated in [Corradini 90] (see also [Asperti and Longo 91] for further details), a (small) graph G = (V, T, do, 91)
can be considered as a diagram in the category Set where V and T are sets and do, d1 are total functions. Moreover,
graph morphisms are commutative diagrams in Set. This means that Set plays the role of "universe of discourse" of

the category Grapf: it is defined internally to the category Set. This suggests a generalization of graphs as diagrams in
an arbitrary universe category. This approach is known as internalization.
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Definition 2.6 Internal Graph. Consider the (base) category C and the diagonal functor A: C — C2. The
category of internal graphs over Cis the comma category ALA, denoted by Graph(C). Q

Structured graphs allows the definition of a special kind of graphs where nodes and arcs are object of different
categories. They are defined over internal graphs provided that there are functors from the categories of nodes and arcs
to the base category. The source and target morphisms are taken from the base category.

Definition 2.7 Structured Graph. Consider the functors v: V— C, t: T— Cand A: C — C2. The category of
structured graphs over the base category C with respect to the functors » and ¢ denoted by Grapfi(v, t)is the comma
category A otlAow. w}

2.3 Petri Nets

A Petri net, in this paper, means the general case of a place/transition net. We introduce the standard definition of a
place/transition net and then Petri nets viewed as graphs inspired by [Meseguer and Montanari 90].

Definition 2.8 Place/Transition Net. A place/transition net (see for instance [Reisig 85]) is a triple (S, T, F)
such that S is a set of places, T is a set of transitions and F: (SXT)+(TXS) — N is the causal dependency relation
where F is a multiset (a multiset is a function f: X — N), X and + denote the product and the coproduct in Set and N
denotes the set of natural numbers. a

As proposed in [Meseguer and Montanari 90], to represent a Petri net as a graph we can consider the states as
elements of a free commutative monoid generated by a set of places. In this case, for each transition, n tokens
consumed or produced in the place A is represented by nA and n; tokens consumed or produced simultaneously in A;,
with i ranging over 1, ..., K is represented by n1A1 @ n2A2 @ ... @ nAg (where @ is the additive operation of the
monoid).

Note that, we may consider that every monoid has a distinguished element which is the unity element. In some
sense, the unity element leads to a notion of partiality: to forget an element in a monoid homomorphism it is enough to
map this element to the unity of the target object. Considering that we need partial morphism in order to define graph
transformations, partial monoid homomorphism can be seen as a partial category of a category which already behaves
as a partial one. However, if we consider the category of semi-groups with partial morphisms instead of the category
of monoids, the notion of Petri nets as graphs as in [Meseguer and Montanari 90] is kept. Thus, we claim that, for
partial morphisms "Petri nets are semi-groups”. In what follows, the main reference for concrete categories is
[Addmek et al 90].

Free Commutative Semi-Groups with Partial Morphisms

The category of free commutative semi-groups with partial morphisms, denoted by pCSem, is concrete over the
category of free commutative monoids, denoted by CMon. In fact, any semi-group can be canonically extended as a
monoid and a partial semi-group morphism can be viewed as a "pointed" morphism of monoids, where the
distinguished element is the unity. Moreover, the limits and colimits of CMon are lifted to pCSem.

Definition 2.9 Category pCSem. Consider the category of commutative semi-groups, denoted by CSem. The
category pCSemis the category of partial morphisms on CSerm. a

Proposition 2.10 The category pCSem is finitely complete and cocomplete.

Proof: Consider the functor sm: pCSem — CMon such that:

« for all commutative semi-group S®, smS® = S¢®, where Se® is the free monoid generated by the set S with e
as the unity element;

+ for all pCSem-morphism h: S1® « Sp® 5 So®, smh = he where he: Se® — Se,® and for all s in S19, if s
is in Sp®, then he(s) = h(s); else, he(s) = e.

The functor sm is faithful and so, {pCSem, sm) is a concrete category over CMon. Also, for each finite diagram in

pCSemtaken by the functor sminto CMon, the limits and colimits in CMon can be lifted as an initial source and final

sink, respectively, in pCSem. For further details, see [Menezes 94]. Qa

Partial Petri Net

The category of partial Petri nets is defined as the follows:

» first, consider the category of structured graphs where the base category is pSet, the category of arcs is Set and the
category of nodes is CSem (the category of commutative semi-groups). Thus, the source and target functions are
partial.

 then, consider the category of partial morphisms of the above category of structures graphs.
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Definition 2.11 Partial Petri net. The category of partial Petri nets is pPetri = pGraph(t, v), i.e., the
category of partial morphisms on the category of structured graphs Graph(t, v), where t: Set — pSet is the canonical
embedding functor and v: CSem — pSet is the forgetful functor such that for all CSerm-object S® = (S*, ®), vS® =
S* and for all CSem-morphism h: S1® — S29, vh: S1* — Sp*. Q

Thus, a partial Petri net N is a quadruple N = (V®, T, do, do) where V® is a free commutative semi-group, T is a
set and do, do: tT — vV are partial functions. Let N1 = (V1®, T4, doy, 91¢) and N2 = (V2®, T2, doy, 91,) be nets.
From the definition of partial morphism, we infer that a pPetri-morphism h: N1 < Dn —» N2 is a pair (hy: Vi® «
Dhy —» V2%, h1: T1 « Dht — T2) where hy is a pCSem-morphism, hT is a partial function and is such that, for k
in {0, 1}, the following diagram commutes with @, @ been pullbacks (M, p are determined by @, @, respectively):

Set
tT1 <& : < tDhy 7 » tTo
m
A Tk Tk
My @ Mpp, @ Mk
A A A
tDyy @ <t Dy P Dy
tm tp
A1 Ohy 92
\ o \ \ 4
v vhy
V19 < Dhy » N®

It is easy to prove that, in general, the above diagram is not a commutative diagram in pSet.
Proposition 2.12 The category pPetri is finitely complete e cocomplete.

Proof: The forgetful functor v: pCSem — pSet that takes each semi-group S® = (S*, @) into S* has left adjoint
which takes each set into the commutative semi-group freely generated. Thus, v preserves limits. Suppose K in {0, 1}.
For further details in what follows, see [Menezes 94].

a) Zero object. Let 0 and 09 be zero objects of pSet and pCSem, respectively. Then {09, 0, |, Iy where ! is the
unique partial function, is a zero object of pPetri.

b) Coproducts. Consider the nets N1 = (V1®, T1, 919, 911) and N2 = (V2®, T2, 920, 921). A coproduct of N1 and
N> is the object Ny+No = (V1@+chemV2@, T1tpsetT2, 9191020, d141d2¢) together with the morphisms g1
=(q1y, 917: N1 = Ny+N2 and g2 = {q2y, g27): N2 = N1+N2 where 91,192y are uniquely induced by the
coproduct in pSet, as follows:

qir q2r
T4 \---wm--b» TriT2 «Qmm-’ To
an| \ £ 1cHon / |
N E 4
N g 7

~> -
v V4@ [or—— 1/(V1®+V2@) [ — v Vo®
7 q1y 7 Qy

¢) Coequalizers. Consider the nets N1 = (V19, T1, 91q, 911), N2 = (V2®, T», 924, 924) and the parallel partial
morphisms f, g: Ny = N2 where f = (fy, f1), g = {(gv, gT). Let cy: V2® — V® be a pCSem-coequalizer of fy,
gv and c1: T2 — T be a pSet-coequalizer of fT, gT. A coequalizer of f, g is the net N = (V®, T, do, 1) together
with the morphism ¢ = {Cy, cT): N2 — N where dk are uniquely induced by the coequalizer CT in pSet, as
follows:

fr
Ty e T> WCT T
a7 | Z
o1k | \ § ok
\\ =
'(}fv \» -?-
V4@ __L szeB*m v Vo®
7 gv

UFRGS
INSTITUTO DE |
BIRL IOTECA
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d) Products. Consider the nets Ny = (V1®, T1, 914, 911) and N2 = (Vo®, T», 924, d24). A product of N1 and Ny is
the object N{XNa = (V1@XpagemV2@, T1X psetT2, 910X02¢, 911Xd24) together with the morphisms 71 =
(m1y, T11): N1XN2 — N1 and w2 = (may, go1): NyXN2 — N2 where 91, X0z, are uniquely induced by the
product in pCSem, taken into pSet, as follows (remember that v preserves limits):

T ot
T el Ty T s e T
~
7 ~
01 / a1kX82k N 02

v v

¥ V1® e )\ BX )y i VoD
UTqy U T2y

s

e) Equalizers. Consider the nets N1 = (V1®, Ty, 919, 911), N2 = (V2®, T2, 924, d2¢) and a pair of parallel
morphisms f, g: Ny — Na where f = (fy, f1), g = (Qv, gT). Let ey: V& — V1@ be a pCSem-equalizer of fy, gy
and eT: T — T1 be a pSet-equalizer of fT, gT. An equalizer of f, g is the net N = (V®, T, 9o, 91) together with the
morphism e = (ey, eT): N - N1 where di are uniquely induced by the equalizer ey in pCSem, taken into pSet,
as follows (again, remember that v preserves limits):

er -

T eccnscnsenccscnscccdie T4 > To

E TTss ar

H ~N
o N |9k 92k

= b

B A\ | vy
vV1®M‘;‘;ﬂﬂ'~ vV4® L vV®

¥ vgyv
Q

In pPetri, the coproduct represents the asynchronous composition of nets and the product can be viewed as the
parallel composition of nets where all possible combination of component transitions are represented.

Example 2.13 Coproduct and product in pPetri:

A
X X a|x aly
a X y a X y X a Y
Y Y X y
&) Q
B

N1 N2 N1 + N2 N1 X N2 o
Remark 2.14 Synchronization of Petri Nets. In our previous work [Menezes and Costa 93], we construct a
functorial operation for synchronization of nets, defined for calling and sharing. It is defined using the fibration
technique. The synchronization operation erases from the parallel composition (categorical product) of given nets all
those transition which do not reflect the given synchronization specification. Q

2.4 Petri Nets with Initial Marking

A Partial Petri net with initial markings is a partial Petri net endowed with a set of initial markings where the choice
of which initial marking is considered at run time is an external nondeterminism. The main advantage of considering a
set of initial marking instead of a single initial marking as in [Winskel 87] or [Meseguer & Montanari 90] is that the
resulting category has finite colimits. This solution is more general than restricting the category for safe nets as in
[Winskel 87] or considering initial marking with one token at most in each place as in [Meseguer & Montanari 90].
Moreover, the coproduct construction reflects the asynchronous composition of component nets.

Definition 2.15 Partial Petri Net with Initial Marking. Consider the category pPetri. Let u: pPetri —
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pSet be a functor such that each pPetri-net N = (V®, T, dg, d1) with V® = (V*, @) is taken into the set V* and each
pPetri-morphism h = (hy, hT) is taken into the partial function canonically induced by the pCSem-morphism hy. The
category of partial Petri nets with initial markings, denoted by pM®Petri, is the comma category idpgeti u, where
id‘pget is the identity functor in pSet. Q

Therefore, a partial Petri net with initial markings M is a triple M = (N, |, init) where N = (V®, T, 99, 91)is a
partial Petri net, | is the set of initial states or initial markings and inic is the partial function which instantiates the
initial states into the net N. Thus, a net M may also be considered as M = (V®, T, do, 91, |, init). If init is the canonical
inclusion, it may be omitted, i.e., (V®, T, do, 91, |, inclusion) is abbreviated by (V®, T, do, 91, |). A pMPetri-
morphism is a pair h = ¢hn, hj). Since hy is a pair hy = ¢hy, hT), we also represent a pM‘Petri-morphism as a triple
h = ¢(hy, hT, h)).

Proposition 2.16 The category pM®Petri is finitely complete and cocomplete.

Proof: Since pM®Petri is the comma category i(fﬁeti u, we have only to prove that the functor u: pPetri — pSet
preserves limits. Consider the initial object { } and the functor p: pSet — pPetri such that for all set V, pV is the net
(V®, {}, 1, !) where V® is the semi-group freely generated from V. The functor pis left adjoint to u. Qa

The product and coproduct in pM®Petri have the same interpretation as in MPetri, i.e., the parallel composition
and asynchronous composition, respectively.

Example 2.17 Product and coproduct in pMPetri. For the nets represented below, the set of initial markings are
the following: 11 = {A}, l2 = {X, X+Y}, l1+l2 = {A, X, X+Y}, l1x 12 = {A, X, X+Y, A+X, A+X+Y}. The possible
initial marking in |1 X I2 are represented using the following symbols:

e A * X u X4+Y ® A+X o« A X+Y
& )A
a
A A
X{# m X{* m alx aly
X
p.- 4 | u
a X y a X y l-.l- a .
Y(m Y(m X y
B B
B
N1 N2 N1+N2 N1XN2

3 Reification

The reification defined extends the single pushout approach of graph transformation to Petri nets.

3.1 Transformation of Petri Nets

In what follows, we introduce the concepts of rule, instantiation and transformation.

Definition 3.1 Rule, Instantiation, Transformation.

a) Arule r: No - Mo and an instantiation ng: No — N are just pMPetri-morphisms.

b) The transformation of a net N determined by arule r: No — Mo and an instantiation ng: No — M is given by the
pushout illustrated below, where M is the transformed net and Qr ny: N = M is the transformation morphism.

No
TN
N Mo
(Pm\p.o/
M

PMPetri —




Compositional Reification of Petri Nets 9

Example 3.2 Consider the rule r, the instantiation ng and the transformed net, as in the figure below. Entities
preserved by morphisms are identified with the same label. Note that ¢4 is replaced by a sequence of transitions C11,

C12 and that the state C' is introduced in the resulting net. With respect to the initial markings, the original one is
preserved and a second marking is introduced.

A transformation of a Petri net may be classified in one of the follows cases:

a) expansion: transforms part of a net (usually a transition) into a possible more complex net. An expansion
represents a change from a higher level into a lower level of abstraction, such as in the top-down design of
systems;

b) abstraction: it is the opposite of expansion, as in a bottom-up design of systems;

¢) addition: adds states and transition to a net, possibly identifying some parts (which already exist in the net);
d) deletion: deletes parts of a net;

e) mix: neither of the above cases.

Example 3.3 In each item below, consider the diagram constituted by the rule r and the instantiation no. The
resulting net is determined by the pushout construction of the diagram where dashed boxes and circles identify those
parts which are preserved by morphisms:

a) Expansion: a single arc is further detailed into four arcs:

® O F3e-O>

] +—2 <[] +—» & ® [P0
O ® Fe-O>

7

®

b) Abstraction: a sub-net with four arcs (and four nodes) is abstracted into only one arc (and two nodes):

/__—b-‘

~

©

O

b
Oie0)

R

®
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¢) Addition: adds four transitions and two states (and identify two states):

Php @ e gt
2P

B

@

e) Mix: in the above examples, the instantiation morphisms are total and injective. However, it can be a partial
morphism of any kind:

3.2 Reification of Petri Nets

Consider a rule r, an instantiation ng and the resulting transformation . Since, (0 is a net morphism, by

definition, it is also a rule. Also, it is straightforward to prove that the diagram below is a pushout. Thus, any
PpMPetri-morphism is both a rule and a transformation.

pMPetri 7
N
H N
N M
p.o.

M

Consider the rules r: No —» Mp, s: Po —» Qo, the instantiations ng: No = N, po: Po —» M and the
transformations ,  illustrated in the diagram below. The composition of e should also be given by a pushout
with rule r' and instantiation ng' determined by r, S, ng, Po. In fact, there are many rules and instantiations which
satisfy this requirement. But, since (p and \ are also rules (determined by r, S, No, Po), a very simple pushout which
results in the composed transformation e is given by the rule r' = Yo and the instantiation ng' = idN.
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PMPetri—
No' » Q'
;.
!
o' Ng———Mg P ——— Qg |

Ml ke

NM MM QA/

\\__‘1’\!”

Therefore, a transformation morphism ¢: N — M is fully determined by a pair (r, ng) where r: No — Mo is a rule
and np: No — N is an instantiation. However, () may also be determined by other pairs such as (¢, idn). Thus, we
may consider classes of equivalence of pairs of morphisms with respect to the relation "the transformations determined
by the pushouts coincide". A class of equivalence is called a reification. Petri nets as objects and reifications as
morphisms constitute the category rM®Petri.

Definition 3.4 Category of Petri Nets and Reifications. Consider the category pMPetri. The category
rMPetri is defined as follows:

a) rM®Petrihas the same objects as pMPetri.

b) A morphisms in rMPetri, called reification, is an equivalence class of pairs of morphisms {r: No — Mo, no: No

— N): N - M with respect to the relation (r: No — Mo, no: No — N) reif {r': No' = Mg', ng': No' = N) if and

only if the resulting pushouts determine the following commutative diagram:

PMPetri —
no no'
NO —_— N ¢—m—— NO'

p.o. * p.o.
MO sssssssossccooefifier M ~fiffsscssssascacccaM o'

A class [(r, ng)]: N — M may be denoted by a representative element {r, no) or by the transformation morphism ¢:
N — M which defines the class. The identity reification 1N: N — N is the equivalence class [(idN, idn)]: N — N.
¢) The composition of @: N — M, y: M — Q, denoted by ye@: N — Q, is the class [(yo@, idn)]: N — Q. Q

3.3 Vertical Composition

In the next proposition, we prove that the categories rM“Petri and pMPetri are isomorphic. Thus, the vertical
compositionality of Petri nets with respect to the reification is a direct corollary. In what follows, note that, for any
class [{r, no)]: N — M where (r, no) is a representative element, the pair (Qr,n,, idN) is also an element of the class.
Proposition 3.5 The categories rMPetri and pMPetri are isomorphic.

Proof: Consider:
a) the functor pr: pMPetri — rMPetri such that for all net P and for all : N - M and y: M — Q:
prP =P, pridp = [(idp, idp)], pr¢ = [(@, idn)] and pr(ye@) = [y, idw)]°(P, idN)] = [(ye@, idN)].
b) the functor rp: rMPetri — pMPetri such that for all net P and for all : N - M and y: M — Q:
rpP = P, rp[Cidp, idp)] = idp, rp[(@, idN)] = @ and rp[{ye@, idN)] =
Then rp Opr= idppfetri and prorp = idiafPetri. Q
Since rM®Petri and pMPetri are isomorphic the composition of reifications is straightforward and thus, the

vertical compositionality is achieved. Also, we identify both categories by pMPetri and use the terms reification and
transformation indifferently. A morphism : A — B which is a reification may also be represent as ¢: A = B.
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3.4 Horizontal Compositionality

In the following proposition, we prove that the horizontal compositionality of Petri nets is achieved, i.e., the
reification of nets distributes through the parallel composition (categorical product) of component nets.
Proposition 3.6 Let {(;: Nj = Mj}jc| be an arbitrary indexed set of pMPetri-reifications, where | is a set. Then
Xiel B Xie| Ni = Xie | M;.

Proof: Since pM®Petri is complete, Xic | Qi Xic| Nj = Xic|M; is the morphism uniquely induced by the product
construction in pMPetri, as follows:

TIN;
> Sk
Ve

(0] / Xiel @i

X
o
=

4 Specification of Petri Nets

Usually, for some given system, we want to specify only a set of possible reifications in order to obtain the
desired derived system. Since, until now, the category defined has all possible reifications, we introduce two
techniques which are
» specification grammar and the corresponding subcategory of reifications, reflecting all desired derivations of a

given system;

« hierarchical specification which is a generalization of the top down approach, where the reifications are restricted in
such way that it is not possible to substitute a part of a net which is only partially substituted by the previous
change of level of abstraction.

4.1 Specification Grammar

A specification grammar is basically an initial net and a collection of possible rules and instantiations. Each
grammar induces a subcategory of pMPetri which reflects the possible derivations from the initial net. Thus, a
grammar can be considered as the specification a system and the induced subcategory as the levels of abstractions of
the system and their relationship.

Definition 4.1 Specification Grammar. A specification grammar or just grammar is a triple Gram = (R, |, N)
where R, | are collections of pMPetri-morphisms representing the rules and instantiations of the grammar and N is an
pMPetri-object called initial net. Q

Each grammar induces a subcategory of pM“Petri with all nets that can be derived from the initial one using the
given rules and instantiations.

Definition 4.2 Subcategory Induced by a Grammar. Let Gram = (R, |, N) be a grammar. The subcategory

Gram of pM®Petriinduced by the grammar Gram is inductively defined as follows:

a) Nis an Gram-object and [(idN, idN)]: N — N is a Gram-morphism;

b) for all Gram-object M, for all instantiation mg: Mg — M and for all rule r: Mo — Po, [{r, Mg)]: M — Pisa
Gram-morphism and P is an Gram-object;

¢) for all Gram-morphisms @: M — P, y: P — Q, the morphism [(ye@, idm)]: M — Q is a Gram-morphism. QO

4.2 Top Down Design

The top down design of nets can be achieved restricting the composition of reifications to two possible cases:
independent and total dependent. Two reifications that can be composed and are not related by one of this cases are not
allowed.

Definition 4.3 Independent and Total Dependent Reifications. Consider the reifications Qg noN = M,
Wr,poM = Q represented in the figure below.

a) The reifications () and  are independent if there is an instantiation pj: Po — N such that po = ¢ opj. In this case,
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\ transforms parts of M exclusively inherited from N.

b) The reifications ( and Y are total dependent if there is an instantiation pg: Po — Mo such that pg = pd° Me. In
this case, \f substitutes parts of M exclusively inherited from Mg.

PMPetri—
No —— > My~ 2 — Po—PQo

ng \ / Qo
A’ ) po P°
N

For the independent reifications, the composition may be defined as the simultaneous derivation of the component

reifications. In the case of total depend reifications, the composition is, basically the sequential composition of the
rules.

Q

Proposition 4.4 Consider the rules s: No — Mo, r: Po —» Qo and the instantiations no: No — N, po: Po > M
such that Q(s ng)N = M and (¢ p)M = Q.

a) For the independent reifications, the composition of pushouts is defined as follows:

PMPetri
No+Po

RS

Mo+Qo
p.o.
e

where S+r and No+pj are uniquely induced by the coproduct construction in pMPetri as follows:

Po 5 >00

Nog+Pg— — —s+r- — —»My+Qq

l\ A

Pi No———» M, mo+\qo Qo
No mop \
Y
N 9 _ A4 > Q

b) For the total dependent derivations, the composition of pushouts is defined as follows:

/ \
w\‘”/

pMPetri —
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where the morphisms r' and qo’ are induced as follows (® is a pushout):

Po———— - Q
Pd ® Pd
No —— Jo L g Q) o
No ® Mo ® q:;'\
N — ..z { »\ ! ®

Proof: The case (a) is the sequential independent case proposed in [Lowe 90]. For the case (b) we have only to
prove that the external diagram determined by @ and @ is a pushout. Let u: M — W and v: Qo' — W be morphisms
such that uemp = veqo'. Since @ is a pushout, there is a unique w: Q — W such that u = wey and vepd' = weqo.
Since @ is a pushout, there is a unique v': Qo' — W such that uemg = Vv'er' and v'opd' = weqo. Then, V' = v. Since
vepd' = weqo and Qo = do'°Pd' then vepqd' = weqo'opd'. By the uniqueness of v, v = weqo'. Suppose that there is
w': Q = W such that u = w'oy and v = w'eqo. By the uniqueness of w, W' = w. Since @ and @ are pushouts, then
the external diagram of @ and @ is also a pushout. Q

4.3 Black Box Reification

The black box reification is the reification of single transitions satisfying some constrains. It is determined by a
grammar such that:

¢ eachrule replaces a single transitions;

» for each transition reified, the remaining part of the net (including the source and target places of the replaced
transition) stay unchanged;

« for each transition reified, the new part of the net interact with the remaining one only through the inherited places
of the replaced transition. Also, the new part simulates the source and target functions of the replaced transition in
an "atomic way". For instance, if the firing of the replaced transition consumes n tokens of some place, the new
part consumes N tokens at once in the corresponding inherited place.

If a reification replaces a transition by several new transitions we can not expect that the original net and the
resulting one are equivalent, according to some notion of direct simulation between component transitions. Following
the same idea, if a reification introduces new places we can not expect an equivalence between the reified and unreified
nets according to some notion of observation of state changes. However, if we consider the new part as a "black box"
where, except by the inherited places, the included transitions and places are considered as hidden, then it is possible
the define some kind of direct simulation between the reified transition and the black box. This notion of simulation
can be extended to the unreified and reified nets.

First we introduce the concepts used to define a black box reification and the corresponding bisimulation. In a Petri
net, the change from a marking m into a marking m' when the transition t fires, is denoted as follows:

m—t>m'

Definition 4.5 Places of a Transition. Consider a pMPetri-object M = (V®, T, 9o, 91, |, init). Let t be a
transition in T such that do(t) = U1A1 D UsAs D ... ® UkAk and 91(t) = ViB1 @ VoBr @ ... ®v,B,,. Then:

a) places(do(t)) = {A1, Az, ..., A} and places(d1(t)) = {B1, By, ..., Bn};

a) places(t) = {A1, Az, ..., Ax, B1, Ba, ..., Bn}. Q
Definition 4.6 Path. Consider a pM®Petri-object M. A path of M from the marking mo is a (possibly empty)
sequence of transitions t1, to, t3,... such that:

t4

t t
Mo > My 2>m2 3

where the last transition of the sequence (if exists) leads to a marking from which there is no transition able to fire. In
this case, the path is called finite. The set of all possible paths of M from some given marking mg is denoted by
path(M, mo). Q

Definition 4.7 Reachable Markings. Consider a pM®Petri-object M. Then:
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a)

a marking mp, is reachable from a marking mo, if there is a (possibly empty) sequence of transitions t1, to,..., ts
such that:

Mo ty to S A Iy

> My > My

The set of all reachable markings from a marking mg is denoted by reach(M, mo);

b) amarking mp, is reachable by a path p = ty, t2,..., th from mg if there is a sequence of markings m4, mo, ..., Mnp-1
such that:
Mo L my t2 ;L tn‘1 > Mpq o, My
The set of all the markings reachable by p from mg is denoted by reachpath(p, mo). a
Example 4.8 Consider the pM®Petri-object M = ({A, B, C, D}®, {u, v}, do, 91, |, init) with u: 2A — B®C and v:
C — D. Then:
a) places(do(u)) = {A}, places(d1(u)) = {B, C} and places(u) = {A, B, C};
c) path(M, 5A) = {{u, u, v, v), {u, v, u, v)};
c) reach(M, 5A) = {5A, 3A®B®C, A®2B®2C, 3A®B®D, A®2B®2D} and reachpath({u, u, v, v), 5A) =
{A®2B®2D}. m}

Black Box Reification

Definition 4.9 Black Box Rule, Instantiation, Reification, Grammar. Consider the nets Nt = (V{®, {t},
ato, at‘]v Itv Inltt) and MO = (VOQ;, T01 aOO! ao‘]’ IO: |n|t0>'

a)

b)
)
d)

Aruler = {ry, rT, n): Nt - Mo is a black box rule if:
a.1) rris not defined for the transition t;
a.2) ryisinduced by a total and injective function in the carriers of the semi-groups;
a.3) nis atotal and injective function;
a.4) there are unique transitions € and ¥ in T, named fork and joint, respectively, such that:
places(dty(t)) = places(doe(€)) and places(diy(t)) = places(doq(¥))-
Also, fork and joint must satisfy:
rv(dto(t)) = doo(€) and ry(dry(1)) = do4(%).
An instantiation ny = {ny, nT, N1): Nt — N is a black box instantiation if ny, nT, N are total and monic.
A reification @y n, is a black box reification if r is a black box rule and nt is a black box instantiation.
A grammar Gram = (R, |, N) is a black box (specification) grammar if R is a collection of black box rules and | is
a collection of black box instantiations. Q

Note that the source nets of a black box rule and instantiations have only one transition. Also, for a black box rule

we have that (see figure below):

item a.1) state that the single transition of the source net is replaced;
item a.2) specify that the "shape" of places of the source net are preserved;
item a.4) ensures that tokens consumed (produced) by t are consumed (produced) by M at once. If desired, the
uniqueness of the fork and joint transitions can be relaxed.
e @ sttt A

uq u2 W
V@ - :
uq uo Uk
black box
t —_— Body of M
rule
Vi V2 Vk
2) (5) (o i
V1 \7) Vk
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To illustrate the idea of the fork transition, consider the figure below. In the net N, if b fires, then a is not able to
fire. Suppose that N is reified into N', where the transition b is replaced by the transitions X, y. In this case, if X fires,

a is able to fire. Note that, if N is reified into N", we guaranteed that when fork fires a is not able to fire. The idea of
the joint transition is analogous.

Example 4.10 In each item below, consider the diagram constituted by the black box rule r and the black box
instantiation ng. The resulting net is determined by the pushout construction of the diagram where dashed boxes and
circles identify the parts preserved by morphisms:

a) reification of an idle transition:
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Simulation and Bisimulation

Consider a black box rule r = (ry, rr, ry: Nt = M. Since ry, r| are monic and ry is undefined for the unique

transition in Nt, 11 = (ry"1, rr-1, r71): M — Nt s also a pMPetri-morphism.
Definition 4.11 r-Simulation and r-Bisimulation. Consider the nets Nt = (V{®, {t}, dto, 01, It, initt) and Mo
= (Vo®, To, 90y, 901, lo, inito) and a black box rule r = {ry, T, r1): Nt = Mo. Then:
a) Mo r-simulates Ny, denoted by Ny——»Mo, if and only if:

a.1) for all m in V4® and for all p in path(Mo, ry(m)), p is finite;

a.2) forall min V¢® and for all p in path(Mo, rv(m)), reach(Ny, m) = reachpath(p, ry(m));
b) Nir-simulates Mo, denoted by Ny¢«—— Mo, if and only if:

b.1) for all m in Vo® and for all p in path(Mo, m), p is finite;

b.2) for all m in Vo® and for all p in path(Mo, m), reachpath(p, m) = reach(N, ry-1(m));
¢) Nir-bisimulates Mo, denoted by Ny«——>Mo, if and only if Mg r-simulates Nt and Nt r-simulates Mp. 0

In the above definition, a.1), b.1) ensure that the replaced transition is simulated in a finite time. Items a.2), b.2)
ensure that, for the "same" source marking, Nt and Mo stop with the "same" target marking. Also, from the definition
of black box rule, a.2), b.2) imply that Mg always stops after firing the joint transition.

Definition 4.12 Simulation and Bisimulation. Consider the nets Nt and Mg, a black box rule r: Ny — Mo, a
black box instantiation nt: Nt — N and the resulting reification @ n,: N — M. Then:

a) M @-simulates N, denoted by N L)M, if and only if Nt—r:»Mo;
b) N @-simulates M, denoted by N «2 M, if and only if Nt<r— Mo;
¢) N @-bisimulates M, denoted by N «—2—sM, if and only if Ny«<——Mo; Qo

5 Concluding Remarks

The graph transformation concept based on the single pushout approach is extended for Petri nets with partial
morphisms where classes of transformations stand for reifications of nets. In this context, the composition of
reifications (i.e., the composition of pushouts) is defined leading to categories of nets and reifications. Thus,
reification of nets compose and the vertical compositionality is achieved without modifying or adding extra structure to
the basic definition of Petri nets. Then we show that the reification distributes over the parallel composition
(categorical product) of nets and the horizontal compositionality is also achieved meaning that, in the proposed
framework, we are able to further specify a concurrent system before of after the joint behaviour of its component
parts in order to obtain the same resulting system.

Also, we introduce two technique for system specification namely specification grammar which allows the
definition of all desired reifications for some given net and hierarchical specification which generalizes the top-down
design of systems.

Finally, we provide the black box reification, where transitions are replaced by nets, satisfying some constrains. In
this case, we are able to define a kind of bisimulation between the unreified and the reified nets, provided that the part
introduced is viewed as a "black box", where everything is hidden except the inherited source and target places of the
transition replaced.

Now, we are working on several notions of a "correct" reification, the corresponding notion of simulation and
bisimulation between unreified and reified nets and the preservation of properties such as liveness and safeness.
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