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Compositional Reification of Petri Nets * 
P. Blauth Menezest 

Abstract. A categorical semantic domain is constructed for the reification of Petri nets based on graph 
transformations. First, the graph transformation concept (based on the single pushout approach) is extended for 
Petri nets viewed as graphs with partia! morphisms. Classes of transformations stand for reifications where part of a 
net (usually a transition) is replaced by another (possible complex) net allowing a hierarchical specification 
methodology. The composition of reifications (i.e., composition of pushouts) is defined, leading to a category of 
nets and reifications which is complete and cocomplete. Since the reification operation composes, the vertical 
compositionality requirement of Petri nets is achieved. Then , it is proven that the reification also satisfies the 
horizontal compositionality requirement, i.e ., the reification of nets distributes through parallel composition . 
Techniques for specification of nets, top down design of nets anda notion of bisimulation between unreified and 
reified net are provided. 

Keywords . Petri nets, net-based semantics, reification , vertical and horizontal compositionality, graph 
transformation , partia! morphisms, category theory. 

1 Introduction 

Petri nets are one of the first models for concurrency developed and are widely used in many applications. 
Recently, frameworks based on Petri nets have been proposed for expressing the semantics of concurrent systems in 
the so-called true concunency approach as in [Meseguer and Montanari 90], [Winskel and Nielsen 94] and [Brown et 
al 91]. However, Petri nets until now lack of a basic propeny that any mathematical theory of concunency should 
satisfy: we call this property diagonal compositionality (or modularity) which is both: 

a) Vertical Compositionality - As stated by [Gorrieri 90] vertical modularity means a hierarchical specification 
methodology which allows to add or abstract structure into a concurrent system in different leveis of abstraction 
such as in the top-down or bottom-up design of sequential system. In these cases, a system described at a higher 
levei absn·acts some details which are funher described as (possible) complex entities at lower levei. Moreover, 
severallevels of abstraction my be defined in a compositional way. The vertical operator may be of two kinds: 

• implementation: a reference for a further defmition of an abstraction such as a morphism that maps n·ansitions 
into transactions. Note that the refmement morphism as proposed in [Winskel and Nielsen 94] and [Brown et 
al 91] which is a mapping o f transitions in to transitions meaning a (direct) simulation without further detailing 
is a special case of implementation. 

• derivation: replaces a pmt of the system by another system. It can be viewed as the generalization of the 
macro expansion for concurrent systems. 

b) Horizontal Compositionality - Complex systems m·e sn·uctured entities and can be better understood if we can 
reason and build on their parts separately. In a concurrent system the parallel composition is the main combinator 
for constructing new processes. However, we should be able to specify the changes of leveis of abstractions of a 
concurrent system (veitical modularity) before or after the joint behaviour of component parts in order to obtain the 
same resulting system. Thus, the vertical composition should distribute through the parallel combinator. 

Our goal is to achieve the diagonal compositionality of Petri nets without adding exu·a structures neither modifying 
its basic definition. In this framework we deal with the derivation operation (for implementation see [Menezes 93]). 
The derivation operation we define is based on graph transformation using the so-called single pushout approach 
([Lowe 90] and [Lowe and Ehrig 90]) on a category of graphs with partia! morphisms. Graph transformations 
standing for a hierarchical specification methodology is, for our knowledge, a new approach. 

This paper extends the previous work [Menezes 94] mainly with the initial mm·kings for Peu·i nets a11d with the 
notion of simulation between the original net and the derived one. First, we introduce the category of pmtial Peu·i nets 
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and parti ai morphisms which we prove is fmitely complete and cocomplete. The category defmed follows some ideas 
introduced in [Meseguer and Montanari 90] and we claim that, with respect to the partia! morphisms, "Petri nets are 
semi-groups". Then, we extend Petri nets with initial markings resulting in a category which is also finitely complete 
and cocomplete. This is an impmtant result, if we compare, for instance, with [Meseguer and Montanari 90] or 
[Winskel 87], where the proposed categories are restricted in order the have coproducts. Moreover, it is a basic result 
for this work, since the reification proposed is based on pushouts. 

The graph transformation concept is extended for partial Petri nets with initial markings as follows: a rule r: No -H 
Mo is a partial net morphism which specifies how the net No is replaced by the net Mo and an instantiation no: No -H 
N is a partial net morphism which specifies how No (the source of the rule r) is instantiated into N (the net to be 
transformed). Then, the transformation <j)r,no applied to the net N resulting in the net M is given by the pushout 
construction of r along with no, illustrated as follows: 

No 
instantiation of / ~ "'"""""""'llll•·· no r · ••llluuuuuuuouu 

No into N 

net to be transformed .,..,.. N Mo 

transformation ~ ~~p.o./ 
resulting net bt ~N 

rule : 
specifies the 
replacement 

For instance, in the figure below we show how a transition of a net is replaced by a net preserving its source and 
target nodes. Consider the rui e r and the instantiation no where the nodes X and Y are preserved in both r and no and 
so, they are preserved in the resulting net. However, while the are x is "forgotten" by r (the morphisms are partial) it is 
preserved by no. Thus, in the resulting net, x is replaced by a , b, c, d and the nodes A and B are added: 

Moreover, the transformation operation defmed can be used to specify not only further detailing of nets but ais o 
some other operations such as abstraction which substitutes a (possible) complex part of a net by a simpler net, as in 
the bottom up design of systems, deletion of part of a net or addition of new parts to an existing net. 

To achieve the vertical compositio~;I, we need to compose transformations, i.e., given <j) N = M and 'V M = Q , we 
should be able to defme <j>0 'Jf such that (<j>0 'Jf)N = Q. Note that the matter is not only the composition of <p and 'V as 
partial net morphisms, but also as pushouts: given two pushouts with only one vertex in common, we should 
determine a single pushout such that the resulting transformation is the composition of the component transformations, 
illustrated as follows: 

No'---------------------~ Oo' 
r' 

No ----t ... ~ Mo s 
Po---..... ~ao 

I 
I 

I no \ lo I / t p.o. \ 'V p.o. f /I 
~ ... M ... QAiill N' 
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In fact, we show that for some given rule r and instantiation no. the resulting transformation <Pr,no can be 
determined by severa! pushouts. Also, the above composition can be determined by severa! rules and instantiations. 
Thus, we can defme classes of equivalencies of pairs of rules and instantiations such that the resulting transformation 
coincide. Therefore, a category of nets and partia! morphisms leads to a category where objects are nets and 
morphisms are classes of equivalence called reifications. An important result is that both categories are isomorphic. 
Then, we show that the diagonal compositionality for the category of Petri nets and reifications is achieved. 

However, for further specification of a given system, only some reifications are desired. For this purpose, we 
introduce the definition of grarnmar which is basically a collection of rules and instantiations to be applied to an initial 
net. Then, we show how to obtain a subcategory where objects are ali nets that can be derived from the initial one and 
morphisms are ali possible reifications (determined by the grammar) to achieve further specifications. 

We generalize the top down approach, where rules and instantiations are such that the composition of reifications 
can be classified as independer!t which means that the second reification derives parts which were not previously 
derived by the first one (it is the sequential independent case of Lowe 90) or total depende11t which means that the 
second reification derives parts which were ali previously derived by the frrs one. The solution proposed for the total 
dependent caseis, for our knowledge, new. 

Even if we consider the generalization of the top down approach above, it is possible to reify a Pen·i net in such 
way that we can not defme a reasonable notion of equivalence between the unreified and the reified nets. Moreover, 
since a reification may introduce or delete transitions or places, we should not expect a direct simulation between nets. 
In order to avoid this problem, we introduce the black box reification which replaces single transitions by (possible 
complex) nets preserving source and target places, among some other constrains. If we consider the part introduced as 
a "black box" where, except the inherited places, ali component transitions and places are hidden, then we are be able 
to defme a notion of bisimulation (which should not be confused with the bisimulation as in [Milner 89]). 

2 Partial Petri N ets 

First we defme partia! morphisms on a given category C. Then, we introduce the concepts of graph as an element 
of a comrna category over the base category Set, internai graph which is a graph where the base category is an 
arbin·ary category C and structured graph which is an extension of the notion of in tema! graph where ares and nodes 
may be objects of different categories, provided that there are functors from these categories to the base category. In 
this context, the category of Petri nets is defined as the category of panial morphisms on a category of structured 
graphs. Also, the category of Petri nets with initial markings is introduced. Both categories of Petri nets are fmitely 
complete and cocomplete. 

2.1 Categories with Partial Morphisms 

For a given category Cwe defme the pru.tial morphisrns in C. If Chas ali pullbacks, we can defme the composition 
of pru.tial morphisms leading to the category pC. The main reference for pru.tial morphisms is [Aspeiti and Longo 91]. 

Definition 2.1 Partial Morphism. Consider a category C. A partia! morphism on C is an equivalence class of 
pairs of morphisms (m: Dt H A, f: Dt --> 8), where m is mono, with respect to the relation (m: Dt H A, f: Dt --7 8) 
pare (m': Dr H A, f': Dr --> 8) if and only if there is an isomorphism iso : Dt --7 Dr such that the following diagram 
comrnutes: 

c 

o 

Every C-morphism f: A --7 B may be represented as a partia! morphism [(idA: A --7 A, f: A --7 B)]: A --7 B where 
idA is the identity morphism on A. Considera partia! morphism [(m, f)]: A --7 B where (m: Dt H A, f: Dt --7 B) is a 
representative element of the class. Then [(m, f)] is also denoted by f: A-f+B, (m, f) : A --7 B or f: A <-< Dt --> B. 

Definition 2.2 Category with Partia! Morphisms. Considera category C= (Obc, Mor c . ào, à1, t, o) with 
ali pullbacks. The category of partia! morphism on Cis pC = (Obc. pMor c. pé)o, pé)1, l, po) where pMor c. pào. pé)1 
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are determined by the defmition of partia! morphisms on C and the composition of two morphisms f = (mt, f): A ~ B, 
g = (m9, g): B ---7 C is gof = (m9omf, gof) : A ---7 C detennined by the pullback in the following commutaúve diagram: 

.------------------------------------------c 

o 

For instance, consider the category Set. Then pSet is the category of sets and partia! functions (see [Asperti and 
Longo 91]) . The next proposition shows how a square diagram commutes in pC. 

Proposition 2.3 Consider the category pC and the partia! morphisms f: A<-< Dt ~ B, g : B <-< Dg ~ E, u: A <-< 
Du ~ C, v: C<-< Dv ~ E such that g of =vou. Then, there are morphisms p: Dt <-< M ~ Dv, q: Du <-< M ~ Dg 
where the middle object M is unique (up to an isomorphism) and are such that the diagram below commutes. 
Moreover, CD and <2l are pullback. 

~-------------------------------c 

A .... ~t----<< Dt 
mt 

mpl. 

Du ·••li·············< M 
mq 

... B 

(j) 

........... , ... ,,9 
p J • 

v 
C ....... t----<< Dv .... E 

Proof: The compositions gof and vou are given by pullbacks in CD and@ where Dt XB Dg and Du x c Dv are the 
pullback objects. Since gof =vou, there is an isomorphism iso: Dt XB Dg ~ Du xc Dv and so, both objects represent 
the middle object M. o 

2.2 Graphs 

Traditionally, a graph is defmed as a quadmple (V, T, ()0 , d1) where Vis a set of nodes, Tis a set of ares, and ()0 , 

a1: T ~V are functions called source and target, respectively. However, we prefer a different but equivalent approach 
which is to consider a graph as an element of a comma category. This approach is used to define graphs, internai 
graphs and structured graphs. First we introduce the defmition of the diagonal functor as in [Mac Lane 71]. 

Definition 2.4 Diagonal Functor. Consider the category C. Let C2 be the category where objects and morphism 
are pairs of objects and morphisms of C. The diagonal functor ô : C~ c2 takes each object A into (A, A) and each 
morphism f: A~ B into (f, f) : (A, A)~ (B, B). o 

Definition 2.5 Graph. Consider the diagonal functor ô: Set ~ Set2. The category of (small) graphs is the 
comma category ô.J-ô denoted by (jrapfr.. o 

Thus, a graph is a triple G =(V, T, d) where a= (ao, a1). We may denote a graph in the traditional way, i.e., G = 
(V, T, do, d1). As expected, a morphism in (jrapfr.preserves source and target nodes of transitions . It is usual to write 
t: X~ Y to denote do(t) =X and d1(t) = Y for any t in T. 

As stated in [Conadini 90] (see also [Asperti and Longo 91] for further details), a (small) graph G =(V, T, do, d1) 
can be considered as a diagram in the category Set where V and T are sets and do , d1 are total functions. Moreover, 
graph morphisms are commutative diagrams in Set. This means that Set plays the role of "uni verse of discourse" of 
the category (jrap/1:. it is defmed intemally to the category Set. This suggests a generalization of graphs as diagrams in 
an arbitrary universe category. This approach is known as intemalization. 
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Definition 2.6 Internai Graph. Consider the (base) category C and the diagonal functor L1: C ---7 C2o The 
category of internai graphs over Cis the comma category t:1.l-t:1, denoted by (jraplí(C). o 

Structured graphs allows the definition of a special kind of graphs where nodes and ares are object of different 
categorieso They are defmed over internai graphs provided that there are functors from the categories ofnodes andares 
to the base category. The source and target morphisms are taken from the base category. 

Definition 2.7 Structured Graph. Consider the functors v: '!l---7 C, t: 'T ---7 C and L1: C ---7 C2o The category of 
structured graphs over the base category C with respect to the functors v and t denoted by (jraplí(v, t) is the comma 
category L1 ot-!-L1 ovo o 

2.3 Petri Nets 

A Petri net, in this paper, means the general case of a piace/transition net. We introduce the standard defmition of a 
place/transition net and then Petri nets viewed as graphs inspired by [Meseguer and Montanari 90]0 

Definition 2.8 Place/Transition Net. A place/transition net (see for instance [Reisig 85]) is a triple (S, T, F) 
such that S is a set of places, Tis a set of transitions and F: (S X T) + (T X S) ---7 N is the causal dependency relation 
where F is a multiset (a multiset is a function f: X ---7 N), X and + denote the product and the coproduct in Set and N 
denotes the set of natural numberso o 

As proposed in [Meseguer and Montanari 90], to represent a Petri net as a graph we can consider the states as 
eiements of a free commutative monoid generated by a set of placeso In this case, for each uoansition, n tokens 
consumed or produced in the piace A is represented by nA and ni tokens consumed or produced simuitaneousiy in Ai, 
with i ranging over 1, 000 , k is represented by n1A1 EE> n2A2 EE> ... ffi nkAk (where@ is the additive operation of the 
monoid)o 

Note that, we may consider that every monoid has a distinguished eiement which is the unity eiement. In some 
sense, the unity element leads to a notion of partiality: to forget an element in a monoid homomorphism it is enough to 
map this element to the unity of the target object. Considering that we need partia! morphism in order to define graph 
transformations, partia! monoid homomorphism can be seen as a partia! category of a category which already behaves 
as a prutial one. However, if we consider the category of semi-groups with prutial morphisms instead of the category 
of monoids, the notion of Petri nets as graphs as in [Meseguer and Montanruoi 90] is kept. Thus, we claim that, for 
partia! morphisms "Petri nets are semi-groups". In what follows, the main reference for concrete categories is 
[Adámek et al90]. 

Free Commutative Semi-Groups with Partial Morphisms 

The category of free commutative semi-groups with partia! morphisms, denoted by pCSem, is concrete over the 
category of free commutative monoids, denoted by C'Jv{ono In fact, any semi-group can be canonically extended as a 
monoid and a prutial semi-group morphism can be viewed as a "pointed" morphism of monoids, where the 
distinguished element is the unity. Moreover, the lirnits and colirnits of cMon are lifted to pCSemo 

Definition 2.9 Category pCSem. Consider the category of commutative semi-groups, denoted by CSemo The 
category pCSem is the category of partia! morphisms on CSem. o 

Proposition 2.10 The category pCSem is finitely complete and cocompiete. 

Proof: Consider the functor sm: pCSem ---7 CMon such that: 
for ali commutative semi-group SE9, smSE9 = S8 E9, where S8 E9 is the free monoid generated by the set S with e 
as the unity eiement; 
for ali pCSem-morphism h: S1 E9 <-< ShE9 ---7 S2ffi, sm h = h e where h e: Se1E9 ---7 Se2 E9 and for ali s in S1EB, if s 
is in Shffi, then h8 (s) = h(s); eise, h8 (s) = e . 

The functor sm is faithful and so, (pCSem, sm) is a concrete category over CMon. Also, for each finite diagram in 
pCSem taken by the functor sm into cMon, the lirnits and colirnits in CMon can be lifted as an initial source and fmai 
sink, respectively, in pCSem For further details, see [Menezes 94]. O 

Partial Petri Net 

The category of prutial PetTi nets is defined as the follows: 

first, consider the category of stmctured graphs where the base category is pSet, the category of ares is Set and the 
category of nodes is CSem (the category of commutative semi-groups). Thus, the source and target functions are 
pattialo 
then, consider the category of pattial morphisms of the above category of snuctures graphs. 
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Definition 2.11 Partial Petri net. The category of partial Petri nets is pPetri = p(jrap!í(t, v), i.e., the 
category of parti ai morphisms on the category of structured graphs (jrap!í{t, v J where t: Set ~ pSet is the canonical 
embedding functor and v: CSem ~ pSetis the forgetful functor such that for ali CSem-object SEEl = (S*, EB), vSEEl = 
S* and for ali CSem-morphism h: S1EEl ~ S2EB, vh: S1* ~ S2*. o 

Thus, a partial Petri net N is a quadruple N = (VEB, T, êlo, êlo) where VE9 is a free commutative semi-group, Tis a 
setandoo, oo: tT ~ vVEB are partialfunctions. Let N1 = (V1EB, T1, oo1, êl1 1) and N2 = (V2EB, T2 , oo2, êl1 2) benets. 
From the definition of partial morphism, we infer that a pPetri-morphism h: N 1 <-< Dh --> N2 is a pair (h v : V 1 E9 <-< 

Dhv --> V2EB, hT: T 1 <-< Dhr --> T 2) where h vis a pCSem-morphism, hT is a partial function and is such that, for k 
in {0, 1 }, the following diagram commutes with <D,@ been pullbacks (m, pare determined by <D, @, respectively): 

....------------------ Set 

It is easy to prove that, in general, the above diagram is nota commutative diagram in pSet. 

Proposition 2.12 The category pPetri is finitely complete e cocomplete. 

Proof: The forgetful functor v: pCSem ~ pSet that takes each semi-group SE9 = (S* , EB) into S* has left adjoint 
which takes each set into the commutative semi-group freely generated. Thus, v preserves limits. Suppose k in {0 , 1 }. 
For further details in what follows, see [Menezes 94]. 
a) Zero object. Let O and OE9 be zero objects of pSet and pCSem, respectively. Then (OEEl, O, !, !) where ! is the 

unique partia! function, is a zero object of pPetri. 
b) Coproducts. Consider the nets N1 = (V1ES, T1, a1 0 , a1 1) and N2 = (V2ES, T2, a20 , a21). A coproduct of N1 and 

N2 is the object N1+N2 = (V1EB+pCSemV2ES, T 1+pSetT 2. a1 0+a20 , a1 1+a21) together with the morphisms q1 
= (q1V, q1r): N1 ~ N1+N2 and q2 = (q2V• q2r): N2 ~ N1+N2 where a1k+o2k are uniquely induced by the 
coproduct in pSet, as follows: 

c) Coequalizers. Consider the nets N1 = (V1EEl, T1, êl1 0 , êl1 1) , N2 = (V2EEl , T2, a20 , a21) and the parallel partial 
morphisms f, g: N1 ~ N2 where f= (fv, fT), g = (gv, gr). Let cv: V2ES ~ VEEl be a pCSem-coequalizer of fv , 
gy and q: T 2 ~ T be a pSet-coequalizer of fT, 9T· A coequalizer of f, g is the net N = (VEB, T , ao, d1) together 
with the morphism c = (cv, q): N2 ~ N where Ok are uniquely induced by the coequalizer CT in pSet, as 
follows : 

UFRG S 
IN~·· ~~ n·,-o ~'i r; 1\ !f:": ('\). ~.,~m.t~ ~rwc~ 

\J .~ L.~ .. - HU~ \_ ~ t ~RJ.\ I 

BlBLIO ... ~ECA 
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d) Products. Consider the nets N1 = <V1 GJ, T1 . êl10 • êl11) and N2 = <V2GJ, T 2. êl20 , êl21) . A product of N1 and N2 is 
the object N1 X N2 = <V1!fJXpCSemV2GJ, T1 XpSetT2, êl1 0Xêl20 , êl11Xêl21) together with the morphisms rc1 = 

(rc1v. TC1r): N1XN2 ~ N1 and rc2 = (rc2v. q2r) : N1XN2 ~ N2 where êl 1kXêl2k are uniquely induced by the 
product in pCSem, taken into pSet, as follows (remember that v preserves limits): 

e) Equalizers. Consider the nets N1 = (V1 GJ, T1 , êl1 0 , êl1 1) , N2 = <V2GJ, T2, êl20 , êl21 ) anda pair of parallel 
morphisms f, g: N1 ~ N2 where f= (fv, fr), g = (gv, Qr). Let ev: VGJ ~ V1GJ be a pCSem-equalizer of fv, gv 
and er T ~ T 1 be a pSet-equalizer of h, QT- An equalizer of f, g is the net N = (VGJ, T, êlo, êl1) together with the 
morphism e = (ev, er): N ~ N1 where dk are uniquely induced by the equalizer ev in pCSem, taken into pSet, 
as follows (again, remember that v preserves limits): 

e r Ir ... T ... T1 ... T2 --'\!''" 
9T 

!~· ~! 
vtv 

vv1GJ ... v V1$ = vV2$ vev vgv o 

In pPetri, the coproduct represents the asynchronous composition of nets and the product can be viewed as the 
parallel composition of nets where ali possible combination of component transitions are represented. 

Example 2.13 Coproduct and product in pPetri: 

o 

Remark 2.14 Synchronization of Petri Nets. In our previous work [Menezes and Costa 93], we construct a 
functorial operation for synchronization of nets, defined for calling and sharing. It is defined using the fibration 
technique. The synchronization operation erases from the parallel composition (categorical product) of given nets ali 
those transition which do not reflect the given synchronization specification. o 

2.4 Petri Nets with Initial Marking 

A Partia! Petri net with initial markings is a partia! Petri net endowed with a set of initial markings where the choice 
of which initial marking is considered at Iun time is an externai nondeterminism. The main advantage of considering a 
set of initial marking instead of a single initial marking as in [Winskel 87] or [Meseguer & Montanari 90] is that the 
resulting category has fmite colimits. This solution is more general than restricting the category for safe nets as in 
[Winskel 87] or considering initial marking with one token at most in each place as in [Meseguer & Montanari 90] . 
Moreover, the coproduct constmction reflects the asynchronous composition of component nets. 

Definition 2.15 Partia! Petr i Net with Initial Marking. Consider the category pPetri. Let u: pPetri ~ 
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pSet be a functor such that each pPetri-net N = (Vffi, T, dO, ()1) with Vffi =(V*, Ef>) is taken into the set V* and each 
pPetri-morphism h= (hv, hT) is taken into the partia! function canonically induced by the pC5em-morphism hv. The 
category of partia! Petri nets with initial markings, denoted by pMPetri, is the comma category iápset-!-u, where 
ÜÍpSet is the identity functor in pSet. o 

Therefore, a partia! Petri net with initial markings M is a triple M = (N, I, init) where N = (VGJ, T, ao, a1) is a 
partia! Petri net, I is the set of initial states or initial markings and inic is the partia! function which instantiates the 
initial states into the net N. Thus, a net M may also be considered as M = (VGJ, T, ao, a1, I, init). If init is the canonical 
inclusion, it may be omitted, i.e., (VGJ, T, ao, a1, I, inclusion) is abbreviated by (VGJ, T, ao, a1, 1). A pMPetri­
morphism is a pair h = (hN, h1). Since hN is a pair hN = (hv, hT), we also representa pMPetri-morphism as a triple 
h = (hv, hT, h1). 

Proposition 2.16 The category pMPetri is finitely complete and cocomplete. 

Proof: Since pMPetri is the cornma category idpsetlu, we have only to prove that the functor u: pPetri ~ pSet 
preserves limits. Consider the initial object { } and the functor p: pSet ~ pPetri such that for ali set V, p V is the net 
(VGJ, {}, !, !) where VGJ is the semi-group freely generated from V. The functor pis left adjoint to u. o 

The product and coproduct in p:MPetri have the sarne interpretation as in MPetri, i.e. , the parallel composition 
and asynchronous composition, respectively. 

Example 2.17 Product and coproduct in pMPetri. For the nets represented below, the set of initial markings are 
the following: h= {A}, l2 ={X, X+Y}, l1 +l2 ={A, X, X+Y}, l1 x l2 ={A, X, X+Y, A+X, A+X+Y}. The possible 
initial marking in l1 x l2 are represented using the following symbols: 

• A • X • X+Y • A+X • A+X+Y 

A A 

B B 

o 

3 Reification 
The reification defmed extends the single pushout approach of graph transformation to Petri nets. 

3.1 Transformation of Petri Nets 

In what follows, we introduce the concepts of role, instantiation and transformation. 

Definition 3.1 Rule, Instantiation, Transformation. 
a) A rule r: No ~ Mo and an instantiation no: No~ N are just p91-fpetri-morphisms. 
b) The transformation of a net N detennined by a rule r: No~ Mo and an instantiation no: No~ M is given by the 

pushout illustrated below, where M is the transformed net and (j)r,n0 : N ~ M is the transformation morphism. 

,....----------- p91-fpetri 
No 

;7~ 
N Mo 

~~p.o/ 
M 

o 
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Example 3.2 Consider the role r, the instantiation no and the transfOimed net, as in the figure below. Entities 
preserved by morphisms are identified with the sarne label. Note that c1 is replaced by a sequence of transitions c11 , 

C12 and that the state C' is introduced in the resulting net. With respect to the initial markings, the original one is 
preserved and a second marking is introduced. 

I r 

o 

A transformation of a Pen·i net may be classified in one of the follows cases: 

a) expansion: transforms part of a net (usually a transition) into a possible more complex net. An expansion 
represents a change from a higher levei into a lower levei of abstraction, such as in the top-down design of 
systems; 

b) abstraction: it is the opposite of expansion, as in a bottom-up design of systems; 
c) addition: adds states and transition to a net, possibly identifying some parts (which ah·eady exist in the net); 
d) deletion: deletes parts of a net; 
e) mix: neither of the above cases. 

Example 3.3 In each item below, consider the diagrarn constituted by the role r and the instantiation no. The 
resulting net is determined by the pushout consn·uction of the diagrarn where dashed boxes and circles identify those 
parts which are preserved by morphisms: 

a) Expansion: a single are is further detailed into four ares: 

.,.. no < ! ·.········· 

..... •.· 

:::::· 

b) Abstraction: a sub-net with four ares (and four nodes) is abstracted into only one are (and two nodes): __ __... __ 
I r ..,. 

--- ........ ----
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c) Addition: adds four transitions and two states (and identify two states): 

1111 no < ) D 
. 

"' 

d) Deletion: deletes part of a net, preserving the shape of the remaining part: 

I r ... 

e) Mix: in the above examples, the instantiation morphisms are total and injective. However, it can be a partia! 
morphism of any kind: 

= _._j_ ,_--= = _.._----
---

----__ ...__.>- ___ .,.._ __ _ 
1111 no 1 1 r ..,. 

o 

3 . 2 Reification of Petri Nets 

Consider a rule r, an instantiation no and the resulting transformation cp . Since, cp is a net morphism, by 
definition, it is also a rule. Also, it is straightforward to prove that the diagi·am below is a pushout. Thus, any 
p9.1Petri-morphism is both a rule and a transformation. 

pMPetri 
N 

y "; 
N M 

~-0~ idM 

M 

Consider the rules r: No ~ Mo , s: Po ~ Oo, the instantiations no: No ~ N, po: Po ~ M and the 
transformations cp, 'V illustrated in the diagram below. The composition of 'Jf0 Cj) should also be given by a pushout 
with rule r' and instantiation no' determined by r, s , no, po. In fact, there are many rules and instantiations which 
satisfy this requirement. But, since cp and 'V are also rules (determined by r, s , no, po), a very simple pushout which 
results in the composed transfmmation 'Jf0 Cj) is given by the rule r' = 'Jf0 Cj) and the instantiation no' = idN. 
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.-------------------------------------------- p~e~ 

No' --------------------._ao· 
f I 

No ---I•~ Mo 
s 

Po----t• ..... ao I 

I no \ lo I / t q> p.o. \ 'V p.o. + /1 
N--- --I • ...._ M • Q .... 

11 

Therefore, a transformation morphism ~:p : N ~ M is fully determined by a pair (r, no) where r: No ~ Mo is a rule 
and no: No ~ N is an instantiation. However, (j) may also be determined by other pairs such as ((j) , idN). Thus, we 
may consider classes of equivalence of pairs of morphisms with respect to the relation "the transformations determined 
by the pushouts coincide" . A class of equivalence is called a reification. Petri nets as objects and reifications as 
morphisms constitute the category r.MPetri. 

Definit ion 3.4 Category of Petri Nets and Reifications. Consider the category p:MPetri. The category 
r:MPetri is def'med as follows: 
a) r:MPetri has the same objects as pMPetri. 
b) A morphisms in r:M!Petri, called reification, is an equivalence class of pairs of morphisms (r: No ~ Mo, no: No 
~ N): N ~ M with respect to the relation (r: No ~ Mo, no: No ~ N) re if (r': No' ~ Mo', no': No' ~ N) if and 
only if the resulting pushouts detennine the following commutative diagram: 

p:MPetri 

No 
no • N ... no' 

No' 

'l 
I 

!' q> 

p.o. + p.o. 

Mo a. M -41 Mo' 

A class [(r, no)]: N ~ M may be denoted by a representative element (r, no) or by the transformation morphism ~:p: 
N ~ M which defines the class. The identity reification tN: N ~ N is the equivalence class [(idN, idN)]: N ~ N. 

c) The composition of ~:p : N ~ M, 'lf: M ~ O, denoted by 'lf0 (j): N ~ O, is the class [('lfo<p, idN)]: N ~ O. o 

3. 3 Ver tical Composition 

In the next proposition, we prove that the categories r.MPetri and p:MPetri are isomorphic. Thus, the ve1tical 
compositionality of Petri nets with respect to the reification is a direct corollary. In what follows , note that, for any 
class [(r, no)]: N ~ M where (r, no) is a representative element, the pair (<pr,n0 , idN) is also an element of the class. 

Proposition 3.5 The categories r:MPetri and p:MPetri are isomorphic. 
Proof: Consider: 
a) the functor pr: pMPetri ~ r.MPetri such that for ali net P and for ali cp: N ~ M and '1': M ~ 0 : 

prP = P, pridp = [(idp, idp)), pr<p = [(<p, idN)) and pr('lfocp) = [('lf, idM)]o[(<p, idN)] = [('lf0 (j), idN)). 
b) the functor rp: r.MPe~ ~ p']vfpetri such that for ali net P and for ali <p: N ~ M and '1': M ~ 0 : 

rp P = P, rp[(idp, idp)) = idp, rp [(<p, idN)) = <p and rp[('lfocp, idN)) = 'lfo<p. 

Then rp opr= idp:MPetri and prorp = iár:MPetri· o 

Since r:M!Petri and p~etri are isomorphic the composition of reifications is sn·aightforward and thus, the 
vertical compositionality is achieved. Also, we identify both categories by p:MPe~ and use the terms reification and 
transformation indifferently. A morphism cp: A ~ B which is a reification may also be representas <p: A ==> B. 
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3.4 Horizontal Compositionality 

In the following proposition, we prove that the horizontal compositionality of Petri nets is achieved, i.e., the 
reification of nets distributes through the parallel composition (categorical product) of component nets. 

Proposition 3.6 Let {<pi: Ni => Mi}ie 1 be an arbin·ary indexed set of pMPetri-reifications, where I is a set. Then 
Xje I <pj : Xje I Ni => Xje I Mj. 
Proof: Since pM.Petri is complete, Xie 1 <pi: Xie 1 Nj => Xie 1 Mi is the morphism uniquely induced by the product 
construction in pMPetri, as follows: 

4 Specification of Petri Nets 

! X;.,oq> 

XiEIMi o 

Usually, for some given system, we want to specify only a set of possible reifications in order to obtain the 
desired derived system. Since, untii now, the category defined has ali possibie reifications, we introduce two 
techniques which are 

specification grarnmar and the corresponding subcategory of reifications, reflecting ali desired derivations of a 
given system; 
hierarchical specification which is a generalization of the top down approach, where the reifications are restricted in 
such way that it is not possible to substitute a part of a net which is only partially substituted by the previous 
change of levei of abstraction. 

4.1 Specification Grammar 

A specification grammar is basically an initial net and a collection of possibie mies and instantiations. Each 
grarnmar induces a subcategory of p%Petri which reflects the possible derivations from the initial net. Thus, a 
grarnmar can be considered as the specification a system and the induced subcategory as the leveis of absu·actions of 
the system and their relationship. 

Definition 4.1 Specification Grammar. A specification grarnmar or just grammar is a triple Gram = (R, I, N) 
where R, I are collections of pM.Petri-morphisms representing the mies and instantiations of the grammar and N is an 
pM.Petri-object called initial net. o 

Each grarnmar induces a subcategory of pMPetri with ali nets that can be derived from the initial one using the 
given mies and instantiations. 

Definition 4.2 Subcategory lnduced by a Grammar. Let Gram = (R, I, N) be a gramrnar. The subcategory 
Çram of pM.Petri induced by the grarnmar Gram is inductively defmed as follows: 
a) N is an Çram-object and [(idN, idN)]: N ~ N is a Çram-morphism; 
b) for ali Çram-object M, for ali instantiation mo: Mo~ M and for allmle r: Mo ~ Po, [(r, mo)] : M ~ P is a 

Çram-morphism and P is an Çram-object; 
c) for ali Çram-morphisms <p: M ~ P, 'Jf: P ~ Q, the morphism [('Jfa<p, idM)]: M ~ Q is a Çram-morphism. o 

4. 2 Top Down Design 

The top down design of nets can be achieved restricting the composition of reifications to two possible cases: 
independent and total dependent. Two reifications that can be composed and are not related by one of this cases are not 
allowed. 

Definition 4.3 Independent and Total Dependent Reifications. Consider the reifications <i>s .n0 N = M, 
\jfr,p0M =O represented in the figure below. 

a) The reifications <p and 'I' are independent if there is an instantiation Pi : Po ~ N such that Po = <p o pj.ln this case, 
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'I' transforms parts of M exclusively inherited from N. 
b) The reifications <p and 'I' are total dependent if there is an instantiation Pd: Po ~ Mo such that Po = Pd o mo. In 

this case, 'I' substitutes parts of M exclusively inherited from Mo. 

pg.,{petri 
No s ..,. Mo...._ ...EQ - Po ----11 .... ~ ao 

~L_--; :_:ç;~ w p.o. ! '' 
N llr M llr a 

o 

For the independent reifications, the composition may be defined as the simultaneous derivation of the component 
reifications. In the case of total depend reifications, the composition is, basically the sequential composition of the 
rules. 

Proposition 4.4 Consider the rules s: No ~ Mo, r: Po ~ Oo and the instantiations no: No ~ N, po: Po ~ M 
such that <i>(s,no)N = M and 'l'(r,po)M = Q. 

a) For the independent reifications, the composition of pushouts is defmed as follows: 

pg.,{petri 

a 

where s+r and no+pi are uniquely induced by the coproduct constt11ction in pg.,{petri as follows: 

ao 

Jtl 
N0+Po-- - s+r-- +Mo+ao i' s Jf \ 

Pi no+Pi No .... Mo mo+Cb qo 
I l "o ~j 

\ 
\ 
\ 

"' ~ 
N <p .... M • a 

b) For the total dependent derivations, the composition of pushouts is defined as follows: 

.------------- pg.,{petri 

N 0 '0 

' p.o. /. 
'l'o'V ' Jl-' q'o 

a 
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where the morphisms r' and qo' are induced as follows (® is a pushout) : 

Po O o 

''! 
® 'Í s r' qo No ... Mo ... Oo' 

"o! ~mo 
\ 

CD ® qo'\ 

~ 
q> ... "' N M ... a ® 

Proof: The case (a) is the sequential independent case proposed in [Lowe 90]. For the case (b) we have only to 
prove that the externai diagram determined by CD and ® is a pushout. Let u : M ~ W and v : Oo' ~ W be morphisms 
such that uomo = voqo' . Since ® is a pushout, there is a unique w: Q ~ W such that u = W 0\jf and vopd' = woqo. 
Since ® is a pushout, there is a unique v': Oo' ~ W such that uomo = v'or' and v'opd' = woqo. Then, v' =v. Since 
vopd' = woqo and qo = qo'opd' then vopd' = woqo'opd'· By the uniqueness of v , v= woqo '. Suppose that there is 
w': Q ~ W such that u = w'o\jf and v= w'oqo. By the uniqueness of w, w' = w. Since CD and ®are pushouts, then 
the externa! diagram of CD and ® is also a pushout. o 

4. 3 Black · Box Reification 

The black box reification is the reification of single transitions satisfying some constrains. It is determined by a 
grammar such that: 

each rule replaces a single u·ansitions; 
for each transition reified, the remaining part of the net (including the source and target places of the replaced 
u·ansition) stay unchanged; 
for each u·ansition reified, the new prut of the net interact with the remaining one only through the inherited places 
of the replaced transition. Ais o, the new prut simulates the somce and target functions of the replaced transition in 
an "atornic way" . For instance, if the frring of the replaced u·ansition consumes n tokens of some place, the new 
prut consumes n tokens at once in the corresponding inherited place. 

If a reification replaces a transition by several new transitions we can not expect that the original net and the 
resulting one ru·e equivalent, according to some notion of direct sirnulation between component transitions. Following 
the same idea, if a reification inu·oduces new places we can not expect an equivalence between the reified and unreified 
nets according to some notion of observation of state changes. However, if we consider the new prut as a "black box" 
where, except by the inherited places, the included transitions and places ru·e considered as hidden, then it is possible 
the define some kind of direct simulation between the reified transition and the black box. This notion of simulation 
can be extended to the unreified and reified nets. 

First we inu·oduce the concepts used to define a black box reification and the corresponding bisinmlation. In a Pen·i 
net, the change from a marking m into a marking m' when the u·ansition t frres, is denoted as follows: 

m~m· 
Defin ition 4.5 Places of a T r ansition. Considera p%Petri-object M = (VG'J, T , oo, 01, I, init) . Let t be a 
transition in T such that oo(t) = U1A1 EB u2A2 EB ... EB UkAk and 01 (t) = v1 81 EB v2B2 EB ... EB VnBn. Then: 
a) places(oo(t)) = {A1 , A2, ... , Ak} and places(o1(t)) = {81 , 8 2, ... , 8n} ; 
a) places(t) = {A1 , A2, . .. , Ak, 81 , 8 2, .. . , 8n} . o 

Definition 4.6 Path. Consider a p%Petri-object M. A path of M from the mru·king mo is a (possibly empty) 
sequence of transitions t1, t2, !:3, ... such that: 

mo ~ m1~ m2~ 
where the last transition of the sequence (if exists) leads to a marking from which there is no u·ansition able to fire. In 
this case, the path is called finite. The set of ali possible paths of M from some given mru·king mo is denoted by 
path(M , mo) . o 

Definition 4.7 Reachable M arkings. Considera pMPetri-object M. Then: 
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a) a marking mn is reachable from a marking mo, if there is a (possibly empty) sequence of transitions t1 , t2, .. . , tn 
such that: 

mo~m1~ · · · ~mn 
The set of ali reachable markings from a marking mo is denoted by reach(M, mo); 

b) amarking mn is reachable by apath p = t1, t2, ... , tn from mo ifthere is a sequence ofmarkings m1, m2, ... , mn-1 
such that: 

t 1 tn 
n- ) mn-1 -'-'--7 mn 

The set of ali the markings reachable by p from mo is denoted by reachpath(p, mo) . o 

Example 4.8 Consider the p9.&etri-object M =({A, 8, C, 0}€9, {u , v}, élo , él1, I, init) with u: 2A ~ BEElC and v: 
C~ O. Then: 
a) places(élo(u)) ={A}. places(él1(u)) = {B, C} and places(u) ={A, B, C}; 
c) path(M, 5A) = {(u, u, v, v), (u, v, u, v)}; 
c) reach(M, 5A) = {5A, 3AEElBEElC, AE!>2BE!>2C, 3AE!>BE!>D, AE!>2BE!>20} and reachpath((u, u, v, v), 5A) = 

{AE!>2BEEl2D}. o 

Black Box Reification 

Definition 4.9 Black Box Rule, lnstantiation, Reification, Grammar. Consider the nets Nt = (Vt€9, {t}. 
êlt0 • êlt1, lt. initt) and Mo = (Vo€9, To. élo0 • élo1, lo, inito). 
a) A rule r= (rv, rT, q): Nt ~Mo is a black box rule if: 

a.l) rT is not defmed for the transition t; 
a.2) rv is induced by a total and injective function in the caniers ofthe semi-groups; 
a.3) n is a total and injective function; 
a.4) there are unique transitions O and 'Ü' in To, narned fork and joint, respectively, such that: 

places(élt0 (t)) = places(élo0(0)) and places(ot1(t)) = places(oo1('íi')). 
Also, fork and joint must satisfy: 

rv(oto(t)) = éloo(O) anct rv(ot1 (t)) = ao1 ('íi'). 

b) An instantiation nt = (nv, nT, n1): Nt ~ N is a black box instantiation if nv, nT, n1 are total and monic. 
c) A reification (j>r,n1 is a black box reification if ris a black box rule and nt is a black box instantiation. 
d) A grarnrnar Gram =(R, I, N) is a black box (specification) grarnrnar if Ris a collection of black box rules and I is 

a collection of black box instantiations. o 

Note that the source nets of a black box rule and instantiations have only one transition. Also, for a black box rule 
we have that (see figure below): 

item a.l) state that the single transition of the source net is replaced; 
item a.2) specify that the "shape" of places of the source net are preserved; 
item a.4) ensures that tokens consumed (produced) by t are consumed (produced) by M at once. If desired, the 
uniqueness of the fork and joint transitions can be relaxed. 

black box ... 
rui e 
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To illustrate the idea o f the fork transition, consider the figure below. In the net N, if b frres, then a is not able to 
frre. Suppose that N is reified into N', where the transition bis replaced by the transitions x, y. In this case, if x fires, 
ais able to fire. Note that, if N is reified into N", we guaranteed that when fork fires ais not able to fire. The idea of 
the joint transition is analogous. 

Example 4.10 In each item below, consider the diagram constituted by the black box rule r and the black box 
instantiation no. The resulting net is determined by the pushout construction of the diagram where dashed boxes and 
circles identify the patts preseiVed by morphisms: 

a) reification of an idle transition: 

2 

b) reification of a transition whose source and target places are marked: 

o 
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Simulation and Bisimulation 

Considera biack box ruie r= (rv, rr, q): Nt ---7 M. Since rv, q are monic and rr is undefined for the unique 
transition in Nt, r-1 = (rv-1, rr-1, q-1 ): M ---7 N1 is also a p!MPetri-morphism. 

Definition 4.11 r-Simuiation and r-Bisimuiation. Consider the nets Nt = (Vt$, {t}, àt0 , àt1 , lt , initt) and Mo 
= (Vo$, To, ào0 , ào1, lo, inito) anda biack box ruie r= (rv, rr, n): Nt ---7 Mo. Then: 

a) Mo r-simulates Nt, denoted by N1~Mo, if and only if: 

a.l) for ali m in Vt$ and for ali p in path(Mo, rv(m)), p is fmite; 
a.2) for ali m in Vt$ and for all p in path(Mo, rv(m)), reach(N1, m) = reachpath(p, rv(m)); 

b) Nt r-simulates Mo, denoted by Nt ~ Mo, if and only if: 

b.l) for all m in Vo$ and for all p in path(Mo, m), p is fmite; 
b.2) for all m in V o$ and for all p in path(Mo, m) , reachpath(p, m) = reach(N1, rv-1 (m)); 

c) Nt r-bisimulates Mo, denoted by Nt~Mo, if and only if Mo r-simulates N1 and N1 r-simulates Mo. o 
In the above definition, a.l), b.l) ensure that the replaced transition is simuiated in a finite time. Items a.2), b.2) 

ensure that, for the "same" source marking, Nt and Mo stop with the "same" target marking. Aiso, from the defmition 
of black box rule, a.2), b.2) imply that Mo always stops after firing the joint transition. 

Definition 4.12 Simulation and Bisimulation. Consider the nets Nt and Mo, a black box rule r: Nt ---7 Mo, a 
black box instantiation nt= Nt ---7 N and the resulting reification <i'r,n1: N ---7 M. Then: 

a) M <p-simulates N, denoted by N ~M. if and only if Nt~Mo; 
b) N <p-simulates M, denoted by N ~M, if and only if Nt~ Mo; 
c) N <p-bisimulates M, denoted by N ~M, if and only if Nt~Mo; o 

5 Concluding Remarks 

The graph transformation concept based on the single pushout approach is extended for Petri nets with partia! 
morphisms where classes of transformations stand for reifications of nets. In this context, the composition of 
reifications (i.e., the composition of pushouts) is defined leading to categories of nets and reifications. Thus, 
reification of nets compose and the vertical compositionality is achieved without modifying or adding extl'a structme to 
the basic definition of Petri nets. Then we show that the reification distributes over the parallel composition 
(categorical product) of nets and the horizontal compositionality is also achieved meaning that, in the proposed 
framework, we are able to further specify a concunent system before of after the joint behaviour of its component 
parts in order to obtain the same resulting system. 

Also, we introduce two technique for system specification namely specification grarnmar which allows the 
definition of all desired reifications for some given net and hierarchical specification which generalizes the top-down 
design of systems. 

Finally, we provide the black box reification, where transitions are replaced by nets, satisfying some constrains. In 
this case, we are able to defme a kind of bisimulation between the unreified and the reified nets, provided that the prut 
introduced is viewed as a "black box", where everything is hidden except the inherited source and tru·get places of the 
transition replaced. 

Now, we ru·e working on severa! notions of a "correct" reification, the corresponding notion of simulation and 
bisimulation between unreified and reified nets and the preservation of prope1ties such as iiveness and safeness. 
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