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Abstract. In "Petri nets are Monoids" by Meseguer and Montanari, categories
for Petri nets with and without markings are introduced, where the categorical
product and coproduct express the joint behavior of nets. However, this
framework lacks structure in the sense that there is no categorical technique to
define a composition of nets satisfying some given synchronization
specification. In this paper, a synchronization operation is proposed which is a
functor induced by some given synchronization prescription at the transition
level. Moreover, since this operation is also able to represent the asynchronous
composition, the fact that some categories of Petri nets lack coproducts
(asynchronous composition) is not anymore a restriction for interaction
semantics.

1 Introduction

"Petri nets are Monoids" [13] provides a formal basis over graphs and categories for
expressing the semantics of concurrent languages in terms of Petri nets. The categories
introduced for Petri nets with and without initial markings are equipped with product and
coproduct constructions corresponding to parallel composition and nondeterministic choice,
respectively. However, this framework lacks structuring in the sense that there is no
categorical technique to define a specific composition of nets satisfying some given
synchronization prescription. Since complex systems are structured entities, we should be
able to reason and built on their parts separately. Moreover, as showed in [18], nets with
markings (and asynchronous morphisms) do not have coproducts. A simple solution for
this problem is proposed in [13]: the multiplicity of each place in the initial marking can not
be greater then one. However, coproduct becomes a kind of "total choice" instead of an
asynchronous composition.

The approach proposed in this work introduces a synchronization operation which is a
functor induced by a fibration plus a morphism specifying the transitions to be
synchronized. The functor applied to the categorical product of nets (all possible
combination between transitions) erases all those transitions which do not reflect the desired
synchronization. An important result is that this construction is able to represent
synchronous and asynchronous compositions and therefore, the existence of the categorical
coproduct (asynchronous composition) is not anymore important for interaction semantics.
Moreover, no restriction on nets (such as safe nets as in [18]), initial markings (such as sets
of initial markings, instead of multisets as in [13]) or morphisms is necessary.
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Also, two kinds of synchronizations are categorically defined. The calling is a non-
symmetrical relation where a calls X means that the happening of a leads to the
synchronous happening of X and the sharing is a symmetrical relation where a shares X is
the same as a calls x and X calls a. Note that the synchronization operation proposed is
generic and the extension for any other criterion of synchronization is straightforward.

Three categories of Petri nets (from [13]) are introduced:

a) ‘Petriof Petri nets represented as graphs with monoidal structure on states and structure
preserving graph morphisms. The states are structured as a free commutative monoid
generated by a set of places, where the multiplicity of a place means more then one
token produced or consumed simultaneously.

b) Petri,, of pointed Petri nets. It is analogous to Petri except that each net has a
distinguished transition ¢, called skip transition, which allow us to "forget" or "erase"
some transitions in net morphisms, resulting in a product construction more suitable and
useful for synchronization of nets.

c) M®Petri,, of marked (pointed) Petri nets, where each object is a pointed Petri net with
an initial marking (any element of the free commutative monoid of states). Since initial
markings become part of the structure of the nets, they are preserved by morphisms.

In Petri, the coproduct results in just putting together the nets and can be viewed as an
asynchronous composition. The categorical product is the composition operation where the
transitions of the resulting net are pairs of transitions from the given nets. Each pair
represents the synchronization between component transitions. Thus, the composed net
reflects a kind of "total synchronization": each transition of the first net is combined with all
transitions of the second net. Therefore, the product construction has very few practical
applications, in the sense that usually we want to synchronize some but not all transitions.

The categorical coproduct in Petri,, has the same interpretation as in Petri. However,
the product is very different and the resulting net represents all possible combination
between component transitions, with and without synchronization. To obtain the
synchronized net, we "erase" from the product all those transitions which do not reflect
some given synchronization specification. For instance, consider the figure below:

@ A X A X
a

e X B X B

bé b| [bix b

C b Y

Nets N4 and Ny Ny X Np Joint behaviour: a shares x

To obtain the joint behavior of N1, N2 where a shares X, we erase from N1 x N2 all
transitions related to @ or X except a | x. The categorical technique used is that of a fibration
which is also used e.g. in [18]: the joint behavior is obtained applying the functor induced
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by a synchronization morphism (which specifies the transitions to be synchronized) and a
fibration (a forgetful functor from Petri, into the category of pointed sets) to the product of
nets. The table of synchronizations (transitions of the synchronized net) for calling and
sharing (or both) is categorically defined and the synchronization morphism is uniquely
induced.

As stated in [13], Petri nets with initial markings are necessary for defining the opera-
tional semantics of concurrent languages (see, for instance, [4], [5], [17], [14] and [6]).
The categorical product in MPetri,, has the same interpretation as in Petri,, and the syn-
chronization operation is easily extended for marked nets. Therefore, the fact that MPetri,
lacks all coproducts is not anymore a restriction for interaction semantics of Petri nets.

2 Petri Nets

First we introduce the concept of graph, graph morphism and the corresponding category
and then we define Petri nets as graphs leading to a category Petri. A pointed Petri net is a
Petri net where the set of transitions has a distinguished element ¢ called skip transition.
When a morphism maps a transition into ¢, it is the same as to forget that transition.
Pointed Petri nets and its morphisms constitute the category Petriy,.

2.1 Petri Nets as Graphs

In what follows, suppose that K is in {0, 1}.

Definition 2.1 Graph. A (small) graph G is a quadruple (V, T, do, d1) where T is a set of
arcs, V is a set of nodes and do, d1: T — V are total functions called source and target,
respectively. Q
Definition 2.2 Graph Morphism. A graph morphism h: G4 — Gg where G1 =(V1, T4,
001, 911) and G2 =(V2, T2, doy, d19) is a pair of total functions h = (hy: V1 — Vo, hT:
T1 — To) such that hy °dxy = dkp° hT. Q

Graphs and graph morphisms constitute the category grapﬁ. A transition t such that
do(t) = X and d1(t) = Y is denoted by t: X — Y.

A Petri net, in this paper, means the general case of a place/transition net. We introduce
the standard definition of a place/transition net as in [15] and then Petri nets as graphs. For
further details see [13].

Definition 2.3 Place/Transition Net. A place/transition net is a triple (S, T, F) where S is a
set of places, T is a set of transitions and F: (SXT)+ (TXS) - N is the causal
dependency relation (F is a multiset and N is the set of natural numbers). Q

The casual dependency relation specifies how many tokens are consumed or produced
in each place when a transition fires. For instance,

(A,a)— 3and (a,B)— 5 represented by @-—Q‘—b a

specifies that when the transition a fires 3 tokens are consumed at A and 5 tokens are
produced at B. For simplicity, in graphical representation, an arc labeled by 1 has its value
omitted.
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To define a Petri net as a graph, we consider the states as a free commutative monoid
generated by a set of places. In this case, with respect to each transition, n tokens
consumed or produced at state A is represented by nA and nj tokens consumed or produced
simultaneously at state Aj with i ranging over 1, ..., p respectively, is represented by
N1A1@n2A2® ... ® npAp, where @ is the operation of the free commutative monoid.

In what follows, CMon denotes the category of free commutative monoids and cs:
CMon — Set is the canonical forgetful functor.

Definition 2.4 Petri net. A (place/transition) Petri net is a quadruple N = (S®, T, dg, 91)
where S® is the free commutative monoid generated by a set S and dg, d1: T — ¢sS® are
total functions. a

The elements of S, S® and T are called places, states and transitions, respectively.

Definition 2.5 Petri Net Morphism. A Petri net morphism h: Ny — N2 where N1 =
($19, T1, 904, 911), N2 =(S2%, T2, dop, 91,) is a pair h = (hg: S1® — S8, h1: T1 —
T2) such that hg is a CMon-morphism, h is a total function and cshg°dky =dkpohT. QO

Petri nets and its morphisms constitute the category Petri. The categorical product and
coproduct of two nets N1 = (S1®, T4, dp1, 911), N2 = (S29, Ta, dg,, d15) are as follows
(remember that products and coproducts of free commutative monoids are isomorphic):

N1 XpeeriN2 = ((S1+506S2)®, T1Xset T2, 001 XSe£902, 011 XSet012)
N1 +2eriN2 = ((S1 +56¢S52)®, T1 +5e: T2, 901 +5e£902, 911 +S5et912)

For simplicity, whenever possible, the identification of the category in products and
coproducts is omitted. The functions dkq X dko and dkq + dko above are uniquely induced by
the product and coproduct constructions, respectively. Intuitively, the product and
coproduct constructions in Petri are viewed as follows:

¢ product: the composition operation with (total) synchronization in the sense that each
transitions of the first net are synchronized with all transitions of the second;

« coproduct: the asynchronous composition operation. It is just the result of putting to-
gether the two nets, without any synchronization between component transitions.

2.2 Pointed Petri Nets

Since a Petri-morphism h: Ny — Na is a pair of total functions, each transition of N1 is
mapped onto a transition of No. To forget (erase) some transitions in net morphisms, we
consider the set of transitions as a pointed set and require that the transition map is a pointed
set homomorphism. A transition mapped onto the distinguished element is "forgotten".

In what follows, Set® denotes the category of pointed sets and csp: CMon — Set® is
the canonical forgetful functor which takes the unity of the monoid into the distinguished
element of the corresponding pointed set.

Definition 2.6 Pointed Petri Net. A pointed Petri net is a quadruple (S®, T, dg, 91) such
that T is a pointed set and dg, d1: T — ¢sp S® are Set®-morphisms. a

The distinguished element of T, denoted by ¢/, is called skip transition. Since dk are
Set®-morphisms, ¢ is an isolated transition (no token is consumed or produced). For
simplicity, in graphical representation we omit the skip transition. For instance:

O—P -DO v is abbreviated by O—> -»O
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Definition 2.7 Pointed Petri Net Morphism. A pointed Petri net morphism h: N1 — Nao
where N1 =(S19, T1, do1, 911), N2 =(S2®, Ta, dg, d15) is a pair h = (hg: S1© —
S29, h1: T1 — T2) such that hg is a CMon-morphism, hT is a Set®-morphism and
esphvedky = dkp °hT. Q

Pointed Petri nets and its morphisms constitute a category Petri,,. The categorical
product and coproduct of two pointed nets N = (S19, T1, do4, 911) and N2 = (S2®, T»,
902, d1o) are as follows:

N1XN2 =((S1+S2)®, T1XT2, do1 X0y, 911 X312)

Ni+N2={((S1+S2)®, T1+ T2, doy+ 90y, d11 +912)
where dkq X dkp and dkq + dko are uniquely induced by the product and coproduct
constructions in Set®, respectively. The following notation is used for elements in T1 X T2:

t4 |t2 for (1, to) meaning the composition with synchronization;

t for (t, ¢/) or (¢, t) meaning that the transition t is not synchronized.

The coproduct construction in Petri,, has the same interpretation as in Petri. However,
the product in Petri,, has a different interpretation and can be viewed as the composition of

nets with all possible combinations between transitions, as illustrated in the following
example:

Example 2.8 Product in Petri:

C'/p A %

a @ a a|x +
(B ] = (E x
b é b b|x
é - 4 a
3 Synchronization

The synchronization between nets erases from the product in Petri, all those transitions
which do not reflect some given table of synchronizations, as follows (see figure below):

a) let Ny =(S19, T1, do1, 911), N2 =(S29, T2, dp5, 915) be pointed Petri nets;

b) let Table(T1, T2) be a table of synchronization which contains the pairs of transitions
to be synchronized and sync: Table(Tq, T2) — T1X T2 be the synchronization
morphism which maps the table into the transitions of given nets;

c) let u: Petri, — Set® be the obvious forgetful functor which takes each net into its
pointed set of transitions. The functor u is a fibration and the fibers u~1(Table(T1,
T2)), u1(T1XT2) are subcategories of Petriy;

UFRGS

INSTHU NFORMATICY
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d) the fibration # and the morphism sync induce a functor sync: w1 (T1XT2) =
u1(Table(T1, T2)). The functor sync applied to N1 X N2 provides the pointed Petri
net reflecting the desired synchronization of the given nets.

- ulTable(Ty,T.
N1/[sync N2

Therefore, the resulting net is determined by the specification of the synchronization at
transition level. Note that we are synchronizing transitions and not labels (of transitions)
such as in CSP (see [8]). For the synchronization on labels see [12].

In what follows we also show a categorical way to construct the table of
synchronization and the corresponding synchronization morphism for sharing and calling.

3.1 Sharing

The table of synchronization for sharing is the resulting object of a pushout whose middle
object has as elements pairs of transitions to be synchronized. The corresponding
synchronization morphism is uniquely induced by the product construction.

Definition 3.1 Table of Synchronization for Sharing. Let Ny =(S19, T4, dg1, 911), N2
=(S29, T2, doy, d1,) be Petri-objects, Channel(T4, T2) be the least pointed set which
contains all pairs of transitions to be synchronized and f: Channel(T1, T2) — T4, 9:
Channel(T1, T2) — T2 be morphisms which project the components of the pairs into the
corresponding pointed set of transitions. The table of synchronization Table(T1, T2) is
given by the pushout construction as follows:

Set®

Channel(T{,Ty)

Table(T1 ,T2)

a

In fact, Table(Tq, T2) is the disjoint union of T4 and T2 except in those elements
which are identified by f and g.
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Proposition 3.2 Let Table(T1, T2) together with p: T1 — Table(T1, T2),q: T2 —
Table(T1, T2) be a pushout which defines the table of synchronization for some given
Channel(T4, T2) and f: Channel(T1, T2) = T1, g: Channel(T1, T2) — T2. Then there
are retractions for p and q denoted by pR and qR, respectively.

Proof: Since f, g are mono, then p, q are also mono. Thus, there are retractions for p, q
and they are defined as follows:
for every b in Table(T1, To),
if there is @ in T4 such that p(a) = b then pR(b) = a else pR(b) = v;
if there is @ in T2 such that q(a) = b then qR(b) = a else gR(b) = V. Q

Definition 3.3 Synchronization Morphism. The synchronization morphism Sync:
Table(Tq, T2) = T1XT2 is uniquely induced by the product construction as follows:

Set®
Table

—_—

T1,T2)

pR qR

sync

T4 = o
T) el 757, g T

a

Example 3.4 Consider the transition sets T1 ={¢/, a, b}, T2 ={¢/, X, y}and T1 X T2 =
{v,a,b,x,y alx aly,blx, bly}

a) a shares X, b shares y: Channel(Ty, T2) = Table(Tq, T2) = {¢, alx, by} and
sync(v) = v, sync(a|x) = alx, syncoly) =bly;

b) no synchronization between transitions: Channel(T1, T2) = {¢/}, Table(Tq, T2) =
{v/, a, b, x, y} and sync(v') = V. Q

s Calling and Sharing

The table of synchronization for calling and sharing is given by a colimit of a "twin peaks"
or "M" diagram (i.e., a diagram with the shape e<—e—e<—e—e) Remember that a shares X
is the same as a calls X and X calls a.

Definition 3.5 Table of Synchronization. Let N1 =(S1®, T4, do1, 911), N2 = (829, To,
doo, d15) be Petri-objects and let i be in {1, 2}:

a) let Channel(T1, T2) be the least pointed set which contains all pairs of transitions to be
synchronized;
b) Tj'is the least pointed subset of Tj containing all transitions of Nj which call a transition
of the other net;
¢) the morphisms calli(a): Ti' — Channel(T1, T2) are such that:
c.1) forain Ty, if a calls x then callj(a) = a | x;
c.2) fora, bin Tj such thata # b, a calls x and X calls b is not allowed.
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Let M(T1, T2) be the twin peaks diagram represented below where incj: Ti' — Tj are the
canonical inclusion morphisms. The table of synchronization Table(T1, T2) is given by the
colimit of M(T1, T2).

Jet* = :

) T4 T5' ]
i WY A

Channel (T4,To)

collmlt
q

ﬁM(

T O

From the definition above, we can infer that: (from c.1) call; are monomorphisms and
(from c.2) the happening of a transition may not lead to the happening of a different
transition in the same net.

Example 3.6 Consider the transition sets T1 = {¢/, a, b, ¢} and T2 = {¢/, X, y}. Suppose
that a calls X, b calls y and y calls b (i.e., b shares y). Then, Channel(Tq, T2) = {¢/,
alx, bl y} and Table(T1, T2) is determined as follows:

v.ab} v.yl
s:s/ \:zzlz s
{Vabq ¢aumy {v . xy}
coI|m|t
q
{v,cx a|x bly} Q

Proposition 3.7 Consider the diagram M(T1, T2) whose colimit determines Table(T1, T2)
and the morphisms p: T1 — Table(Tq, T2),q: T2 — Table(T1, T2). Then there are
retractions for p and g denoted by pR and R, respectively.

Proof: The colimit of M(T1, T2) can be determined by pushouts ®, @, @ as follows:

[ ®
¢ N N
e @©® e (@ e
\\../\../’
\ ®@ o /
i \.//q
‘bod/
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Since all morphisms in the above diagram are mono (inc;, callj are mono and therefore, the
morphisms of the pushouts are also mono) and since the composition of monomorphisms is
mono, then p, q are mono. Thus, there are retractions for p, q as follows:

for every b in Table(T1, T2),
if there is @ in T such that p(a) = b then pR(b) = a else pR(b) = v;
if there is @ in T2 such that q(a) = b then qR(b) = a else qR(b) = ¢. Q

Definition 3.8 Synchronization Morphism. The synchronization morphism Sync:
Table(T1, T2) > T1X T2 is uniquely induced by the product T1X T2 and by the
morphisms pR: Table(T1, T2) = T4, qR: Table(T1, T2) — To. Q

3.3 Synchronization Functor

First we show that the forgetful functor from Petri, into the category of pointed sets is a
fibration and then we introduce the synchronization functor.

Proposition 3.9 The forgetful functor u: Petri,, — Set® which takes each net into its
pointed set of transitions is a fibration.

Proof: Let No ={(S29, Ta, do,, d1,) be a net, fr: Ty = T2 be a Set*-morphism and N1 =
(S2®, T4, do1, 911) be a net such that dxy = dkp ° fT. Then, f = (idg,®, fr): Ny = Nais
cartesian with respect to fT and Na. In fact, let N3 = (S3®, T3, dgg, 013) be a net, v = (vs,
vT): N3 — N2 be a Petri,,-morphism and ht: Tg — T4 be a Set ®*-morphism such that v =
frehT. Then h = {vs, hT) is the unique Petri,,-morphism such that v = uch. To see that h
is a Petri,,-morphism consider that dx, ° VT = Vg °0dkg and, since vT = freht and dgq =
dko © f1, we have that dxq ° hT = Vg dka. Q

Definition 3.10 Functor sync. Consider the fibration u: Petri,, — Set®, the nets N1 =
(819, T4, 901, 911), N2 = (S2®, T2, dg,, d1,) and the synchronization morphism sync:
Table(T4, T2) — T1XT2. The synchronization of N1, N2 represented by N1 [lsync N2 is
given by the functor syncinduced by u and sync applied to N1 XNy, i.e.:

Example 3.11

S w8
1o
§ g% B8

Synchronization with Synchronization with
N¢and N
Na.hlyand e channel {¥,a[x,bly} channel (v} 0
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Note that, in the example above, the synchronization with channel {¢/} results in a net
which reflects the asynchronous composition as in the coproduct construction.

4 Marked Petri Nets

As shown in [18], marked nets with asynchronous morphisms do not have coproducts. The
solution proposed in [13] restricting initial markings to sets of places (instead of multisets)
results in a category with coproducts. But, as illustrated in the example below, the
coproduct construction becomes a kind of "total choice" instead of an asynchronous
composition of nets as in Petri, .

Example 4.1 Coproduct of marked Petri nets as in [13]:

(:)A AX (@ ®) AY
a X@ C?Y ;
X y

® + == {5} X y

b V4 b

5 §. ek

Since the categorical product of marked Petri nets (with or without multiplicity in the
initial state) has the same interpretation as in Petri,,, we may also introduce the
synchronization functor for marked nets. Therefore, the proposed synchronization
construction is able to explain the semantics of composed nets with or without
synchronization on transitions. Moreover, no restriction on initial markings is needed.

4.1 Petri Nets with an Initial Marking

A Petri net with an initial marking is a pointed Petri net with a distinguished state. The only
restriction on morphisms is that initial markings must be preserved. The resulting category
has finite products.

Definition 4.2 Marked Petri Net. A marked Petri net is a quintuple (S®, m, T, dg, 91)
where (S®, T, dg, d1) is a pointed Petri net and m = n1s1 ®nas2® ... ® npsp is a
distinguished element of S®, called initial state or initial marking. Q
Definition 4.3 Marked Petri Net Morphism. A marked Petri net morphism h: N1 — N2
where N1 =(S1®, mq, T1, do1, 911), N2 =(S2®, mp, T2, dg,, 915) is a pointed Petri net
morphism h = (hg, hT) such that hg preserves the initial state, i.e. hg(m1) = ma2. Q

Marked Petri nets and its morphisms constitute the category MPetri,,. The categorical
product of two marked nets N1 = (S1®, mq, T1, o1, 911), N2 = (S2®, ma, T2, dgz, 912)
is as follows:

N1XN2 ={(S1+S2)®, mi®@mp, T1X T2, dg1 X0z, 911 X12).
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4.2 Synchronization

The synchronization in MPetri, is defined in the same way as in Petri,: a functor induced
by a fibration and a synchronization morphism. Also, the constructions for calling and
sharing are analogous.

Proposition 4.4 The forgetful functor mu: MPetri, — Set® which takes each marked net
into its pointed set of transitions is a fibration.
Proof: The proof is analogous to the one for Petri,, . Q

Definition 4.5 Functor sync. Consider the fibration mu: MPetri, — Set®, the nets N1 =
(S1®, my, T4, do1, 911), N2 = (S2®, mp, T2, do,, d1,) and the synchronization mor-
phism sync: Table(T1, T2) — T1 X Ta. The synchronization of N1, N2 represented by
N1 [lsync N2 is given by the functor sync induced by mu and sync applied to Ny XNa, i.e.:

N'| ”synch is SynC(N1XN2) a
Example 4.6 Compare the synchronization with channel {¢/} below with the example 4.1:

? @x Y@ @) A ’x/@v@ @A?X YC?

alx y a y
* \@/ S 5
b - b s
Synchronization Synchronization
Nets N4 and No with with
channel {¢/,a|x} channel {¢/}
a
5 Concluding Remarks

In the context of "Petri Nets are Monoids" [13], we solved the problem of how to
categorically explain the composition of nets satisfying some given synchronization
prescription. The proposed approach defines a categorical structuring technique called
synchronization construction which is a functor induced by a fibration and a
synchronization morphism which specifies the transitions to be synchronized. The functor
applied to the categorical product of nets (which represents all possible combination
between transitions) erases all those transitions which do not reflect the desired
synchronization. An important result is that this construction is able to represent
synchronous and asynchronous compositions. Therefore, the fact that some categories of
Petri nets lack coproduct (asynchronous composition) is not anymore a restriction for
interaction semantics. Moreover, no restriction on nets, initial markings or morphisms is
necessary.

Also, two kinds of synchronization between transitions are introduced: calling (non-
symmetrical relation) and sharing (symmetrical relation). The table of synchronization
(transitions of the synchronized net) for calling, sharing or both is also categorically defined
and the synchronization morphism is uniquely determined.
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We are generalizing this framework, including the diagonal compositionality
requirement i.e., both vertical (compositional refinement of systems) and horizontal
(refinement of systems distributes through interacting combinators). Therefore, we should
be able to further define levels of abstractions of systems before or after a synchronization
composition in order to obtain the same resulting system. We already achieved some results
w.r.t. the implementation (generalization of the procedure call for concurrent systems) in
[11] where transitions are mapped into transactions and w.r.t. the transformation
(generalization of the macro expansion for concurrent systems) in [10] where graph
transformations stand for refinements using the so called single pushout approach [9].

Acknowledgments

This work was partially supported by: UFRGS - Universidade Federal do Rio Grande do
Sul and CNPq - Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico in Brazil;
CEC under ESPRIT-III BRA WG 6071 IS-CORE and BRA WG 6112 COMPASS; ESDI
under research contract OBLOG; HCM Scientific Network MEDICIS in Portugal.

References

[1] J. Adamek, H. Herrlich, & G. Strecker, Abstract and Concrete Categories, Wiley, 1990.

[2] M. Barr & C. Wells, Category Theory for Computing Science, Prentice Hall, 1990.

[3] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, technical report 1/88,
University of Sussex, 1988.

[4] P. Degano, R. De Nicola & U. Montanari, A Distributed Operational Semantics for CCS Based on
Condition/Event Systems, Acta Informatica 26, pp. 59-91, 1988.

[5] P. Degano & U. Montanari, Concurrent Histories: A Basis for Observing Distributed Systems J.
Comput. System Sci. 34, Nos. 2/3, pp. 422-462, 1987.

[6] R. J. van Glabbeek & F. W. Vaandrager, Petri Net Model for Algebraic Theories of Concurrency,
LNCS 259, pp. 224-242, Spring-Verlag, 1987.

[7]1 R. Gorrieri, Refinement, Atomicity and Transactions for Process Description Language, Ph.D. Thesis,
Universita di Pisa, 1990.

[8] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[9]1 M. Lowe, Algebraic Approach to Graph Transformation Based on a Single Pushout Derivation with
Partial Morphisms, Techn. Report 90/5, Technische Universitat Berlin, 1990.

[10] P. B. Menezes, Compositional Reification of Petri Nets, technical report INESC/RT/74-94, preprint
IST/DM/25-94, INESC/IST, Lisbon, 1994. Submitted.

[11] P. B. Menezes, Compositional Reification of Concurrent Systems, technical report INESC/RT/75-
94, preprint IST/DM/26-94, INESC/IST, Lisbon, 1994. Submitted.

[12] P. B. Menezes & J. F. Costa, Algebraic Implementation of Transition Systems, technical report
INESC/RT/72-93, preprint IST/DM/3-94, INESC/IST, Lisbon, 1993. Accepted for presentation in
EUROCAST'95.

[13] J. Meseguer & U. Montanari, Petri Nets are Monoids, Information and Computation 88, pp. 105-
155, Academic Press, 1990.

[14] E.R. Olderog, Operational Petri Net Semantics for CSP Advances in Petri Nets 1987 (G. Rozenberg,
Ed), 196-223, Springer-Verlag, 1987.

[15] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science 4,
Springer-Verlag, 1985.

[16] V. Sassone, M. Nielsen & G. Winskel, A Classification of Models for Concurrency, CONCUR 93:
4th International Conference of Concurrency (E. Best, Ed.), Springer-Verlag, 1993.

[17]1 G. Winskel, Categories of Models for Concurrency, LNCS 197, Seminar on Concurrency (S.
Brookes, Roscoe, G. Winskel, Eds.), pp. 246-267, Springer-Verlag, 1984.

[18] G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality, Information and Computation
72, pp. 197-238, Academic Press, 1987.



