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Abstract. In "Petri nets are Monoids" by Meseguer and Montanari , categories 
for Petri nets with and without markings are introduced, where the categorical 
product and coproduct express the joint behavior of nets. However, this 
framework lacks structure in the sense that there is no categorical technique to 
define a composition of nets satisfying some given synchronization 
specification. In this paper, a synchronization operation is proposed which is a 
functor induced by some given synchronization prescription at the transition 
levei. Moreover, since this operation is also able to represent the asynchronous 
composition, the fact that some categories of Petri nets lack coproducts 
(asynchronous composition) is not anymore a restriction for interaction 
semantics. 

1 lntroduction 

"Petri nets are Monoids" [13] provides a formal basis over graphs and categories for 
expressing the semantics of concurrent languages in terms of Petri nets. The categories 
introduced for Petri nets with and without initial markings are equipped with product and 
coproduct constmctions corresponding to parallel composition and nondeterministic choice, 
respectively. However, this framework lacks structuring in the sense that there is no 
categorical technique to define a specific composition of nets satisfying some given 
synchronization prescription. Since complex systems are structured entities, we should be 
able to reason and built on their parts separately. Moreover, as showed in [18], nets with 
markings (and asynchronous morphisms) do not have coproducts. A simple solution for 
this problem is proposed in [13]: the multiplicity of each place in the initial marking can not 
be greater then one. However, coproduct becomes a kind of "total choice" instead of an 
asynchronous composition. 

The approach proposed in this work introduces a synchronization operation which is a 
functor induced by a fibration plus a morphism specifying the transitions to be 
synchronized. The functor applied to the categorical product of nets (all possible 
combination between transitions) erases all those transitions which do not reflect the desired 
synchronization. An important result is that this construction is able to represent 
synchronous and asynchronous compositions and therefore, the existence of the categorical 
coproduct (asynchronous composition) is not anymore impmtant for interaction semantics. 
Moreover, no restriction on nets (such as safe nets as in [18]), initial markings (such as sets 
of initial markings, instead of multisets as in [13]) or morphisms is necessary. 

mailto:blauth@solo.inesc.pt
mailto:fgc@di.fc.ul.pt
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Also, two kinds of synchronizations are categorically defined. The calling is a non­
symmetrical relation where a calls x means that the happening of a leads to the 
synchronous happening of x and the sharing is a symmetrical relation where a shares x is 
the same as a calls x and x calls a . Note that the synchronization operation proposed is 
generic and the extension for any other criterion of synchronization is straightforward. 

Three categories of Petri nets (from [13]) are introduced: 

a) Petri of Petri nets represented as graphs with monoidal structure on states and structure 
preserving graph morphisms. The states are structured as a free commutative monoid 
generated by a set of places, where the multiplicity of a place means more then one 
token produced or consumed simultaneously. 

b) Petriv of pointed Petri nets. It is analogous to Petri except that each net has a 
distinguished transition V, calied skip transition, which aliow us to "forget" or "erase" 
some transitions in net morphisms, resulting in a product consttuction more suitable and 
useful for synchronization of nets. 

c) %Petrív of marked (pointed) Petri nets, where each object is a pointed Petti. net with 
an initial marking (any element of the free commutative monoid of states). Since initial 
markings become part of the structure of the nets, they are preserved by morphisms. 

In Pet-r4 the coproduct results in just putting together the nets and can be viewed as an 
asynchronous composition. The categorical product is the composition operation where the 
transitions of the resulting net are pairs of transitions from the given nets. Each pair 
represents the synchronization between component transitions. Thus, the composed net 
reflects a kind of "total synchronization": each transition of the frrst net is combined with ali 
transitions of the second net. Therefore, the product construction has very few practical 
applications, in the sense that usually we want to synchronize some but not all transitions. 

The categorical coproduct in Petriv has the same interpretation as in Petri.. However, 
the product is very different and the resulting net represents ali possible combination 
between component transitions, with and without synchronization. To obtain the 
synchronized net, we "erase" from the product ali those transitions which do not reflect 
some given synchronization specification. For instance, consider the figure below: 

Nets N 1 and N2 Joint behaviour: a shares x 

To obtain the joint behavior of N1, N2 where a shares x, we erase from N1 x N2 ali 
transitions related to a or x except a I x. The categodcal technique used is that of a fibration 
which is also used e.g. in [18]: the joint behavior is obtained applying the functor induced 
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by a synchronization morphism (which specifies the transitions to be synchronized) anda 
fibration (a forgetful functor from Petri./ in to the category of pointed sets) to the product of 
nets. The table of synchronizations (transitions of the synchronized net) for calling and 
sharing (or both) is categorically defined and the synchronization morphism is uniquely 
induced. 

As stated in [13], Petri nets with initial markings are necessary for defining the opera­
tional semantics of concurrent languages (see, for instance, [ 4], [5], [17], [14] and [6]). 
The categorical product in MPetri.,- has the same interpretation as in Petri.,- and the syn­
chronization operation is easily extended for marked nets. Therefore, the fact that MPetfi./ 
lacks ali coproducts is not anymore a restriction for interaction semantics of Petri nets. 

2 Petri Nets 

First we introduce the concept of graph, graph morphism and the corresponding category 
and then we define Petri nets as graphs leading to a category Petri. A pointed Petri net is a 
Petri net where the set of transitions has a distinguished element t/ called skip transition. 
When a morphism maps a transition in to t/, it is the same as to forget that transition. 
Pointed Petri nets and its morphisms constitute the category Petri./. 

2.1 Petri Nets as Graphs 

In what follows, suppose that k is in {0, 1 }. 

Definition 2 .1 Graph. A (small) graph G is a quadruple (V, T, do, d1) where Tis a set of 
ares, V is a set of nades and do, d1: T ~ V are total functions called source and target, 
respectively. o 
Definition 2.2 Graph Morphism. A graph morphism h: G1 ~ G2 where G1 = (V1, T1, 
do1, d11) and G2 = (V2, T2, d02, d12) is a pair of total functions h= (hv: V1 ~ V2, hT: 
T 1 ~ T 2) such that h v o dk1 = dk2 o hT. o 

Graphs and graph morphisms constitute the category (jraplí. A transition t such that 
do(t) = X and d1 (t) = Y is denoted by t: X ~ Y. 

A Petri net, in this paper, means the general case of a place/transition net. We inn·oduce 
the standard definition of a place/transition netas in [15] and then Peni nets as graphs. For 
further details see [13]. 

Definition 2.3 Place!Transition Net. A place/transition net is a n·iple (S, T, F) where S is a 
set of places, T is a set of n·ansitions and F: ( S X T) + (T X S) ~ N is the causal 
dependency relation (F is a multiset and N is the set of natural numbers). o 

The casual dependency relation specifies how many tokens are consumed or produced 
in each place when a transition fires . For instance, 

(A,a) H 3 and (a,B) H 5 represented by 

specifies that when the transition a fires 3 tokens are consumed at A and 5 tokens are 
produced at B. For simplicity, in graphical representation, an are labeled by 1 h as its v alue 
ornitted. 
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To define a Petri net as a graph, we consider the states as a free commutative monoid 
generated by a set of places. In this case, with respect to each transition, n tokens 
consumed or produced at state A is represented by nA and ni tokens consumed or produced 
simultaneously at state Ai with i ranging over 1 , ... , p respectively, is represented by 
n 1 A 1 EB n2A2 EB •.. EB npAp. where EB is the operation o f the free commutative monoid. 

In what follows, C%on denotes the category of free commutative monoids and cs: 
C%on --7 Set is the canonical forgetful functor. 

Definition 2.4 Petri net. A (place/transition) Petri net is a quadruple N = (SEf>, T, do, d1) 
where SEf> is the free commutative monoid generated by a set S and éJo, éJ1: T --7 cs SEf> are 
total functions . O 

The elerrients of S, SEf> and T are called places, states and transitions, respectively. 

Definition 2.5 Petri Net Morphism. A Petri net morphism h: N1 --7 N2 where N1 = 
(S1 Ef>, T 1, éJo1, éJ11 ), N2 = (S2EEl, T 2, éJo2. d12) is a pair h = (hs: S1 Ef> --7 S2Ef>, h r: T 1 --7 

T 2) such that hs is a C%on-morphism, h r is a total function and cs hs o dk1 = dk2 o h r . o 

Petri nets and its morphisms constitute the category Petri. The categorical product and 
coproduct o f two nets N 1 = (S 1 Ef>, T 1, éJo1, éJ1 1 ), N2 = (S2Ef>, T 2. éJo2 , éJ1 2) are as follows 
(remember that products and coproducts of free commutative monoids are isomorphic): 

N 1 XPetriN2 = ((S1 + SetS2)Ef>, T 1 Xset T 2. éJo1 Xsetd02• d11 Xsetd12) 

N1 +PetriN2 = ((S1 +setS2)EB, T1 +setT2, éJo1 +setd02• éJ11 +setd12) 

For simplicity, whenever possible, the identification o f the category in products and 
coproducts is ornitted. The functions dk1 X dk2 and dk1 + dk2 above are uniquely induced by 
the product and coproduct constructions, respectively. Intuitively, the product and 
coproduct constructions in Petri are viewed as follows: 

• product: the composition operation with (total) synchronization in the sense that each 
transitions of the frrst net are synchronized with all transitions of the second; 

• coproduct: the asynchronous composition operation. It is just the result of putting to­
gether the two nets, without any synchronization between component transitions. 

2.2 Pointed Petri Nets 

Since a Petri-morphism h : N 1 --7 N2 is a pair o f total functions, each transition o f N 1 is 
mapped onto a t:ransition of N2. To forget (erase) some transitions in net morphisms, we 
consider the set of t:ransitions as a pointed set and require that the transition map is a pointed 
set homomorphism. A transition mapped onto the distinguished element is "forgotten". 

In what follows, Set• denotes the category of pointed sets and csp: C%on --7 Set• is 
the canonical forgetful functor which takes the unity of the monoid into the distinguished 
element of the conesponding pointed set. 

Definition 2.6 Pointed Petri Net. A pointed Petri net is a quadruple (SEf>, T , do , éJ1) such 
that Tis a pointed set and do, d1: T --7 cspSEB are Set•-morphisms. o 

The distinguished element o f T, denoted by V' , is called skip transition. Since dk are 
Set•-morphisms, V' is an isolated transition (no token is consumed or produced). For 
simplicity, in graphical representation we omit the skip transition. For instance: 

is abbreviated by 
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Definition 2] Pointed Petri Net Morphism . A pointed Petri net morphism h: N1 ~ N2 
where N1 =(S1EB, T1,d01,d11),N2=(S2EB, T2,d02,d12)isapairh=(hs: S1EB~ 
S2EB, hT: T1 ~ T2) such that hs is a C%on-morphism, hT is a Set•-morphism and 

CSphV 0 dk1 = dk2 ° hT. O 

Pointed Petri nets and its morphisms constitute a category Petri.,-. The categorical 
product and coproduct of two pointed nets N1 = (S1EB, T 1, do1, d1 1) and N2 = (S2$, T 2, 
do2, d1 2) are as follows: 

N1 XN2 = ((S1 +S2)EB, T1 XT2, do1 Xdo2, d11 Xd12) 
N1 +N2 = ((S1 +S2)EB, T1 + T2, do1 +do2, d11 +d12) 

where dk1 X dk2 and dk1 + dk2 are uniquely induced by the product and coproduct 
constructions in Set•, respectively. The following notation is used for elements in T 1 X T 2: 

t 1 I t2 for (t 1 , t2) meaning the composition with synchronization; 
t for (t, V") or (V", t) meaning that the transition tis not synchronized. 

The coproduct construction in Petrív has the same interpretation as in Petri. However, 
the product in Petriv has a different interpretation and can be viewed as the composition of 
nets with ali possible combinations between transitions, as illusn·ated in the following 
example: 

Example 2.8 Product in Petriv: 

X --

o 

3 Synchronization 

The synchronization between nets erases from the product in Petrí.,- all those n·ansitions 
which do not reflect some given table of synchronizations, as follows (see figure below): 

a) let N1 = (S1$, T1, do1, d11), N2 = (S2EB, T2, do2, d12) be pointedPetri nets; 
b) let Table(T 1, T 2) be a table of synchronization which contains the pairs of transitions 

to be synchronized and sync: Table(T 1, T 2) ~ T 1 X T 2 be the synchronization 
morphism which maps the table into the transitions of given nets; 

c) let u: Petrí.,- ~ Set• be the obvious forgetful functor which takes each net into its 
pointed set of transitions. The functor u is a fibration and the fibers u-1 (Table(T 1, 
T 2) ), u-1 (T 1 X T 2) are subcategories o f Petrí.,-; 

UF RGS 
I ~STnlJTO DE INfORMA ICJ~ 

. U~l I .. ~F r..f 
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d) the fibration u and the morphism sync induce a functor sync: u-1 (T 1 X T 2) ~ 
u-1 (Table(T 1, T 2) ). The functor sync applied to N 1 X N2 provides the pointed Petri 
net reflecting the desired synchronization of the given nets. 

Therefore, the resulting net is determined by the specification of the synchronization at 
transition levei. Note that we are synchronizing transitions and not labels (of transitions) 
such as in CSP (see [8]). For the synchronization on labels see [12]. 

In what follows we also show a categorical way to construct the table of 
synchronization and the corresponding synchronization morphism for sharing and calling. 

3.1 Sharing 

The table of synchronization for sharing is the resulting object of a pushout whose middle 
object has as elements pairs of transitions to be synchronized. The corresponding 
synchronization morphism is uniquely induced by the product constmction. 

Definition 3.1 Table of Synchronization for Sharing. Let N 1 = (S 1 E9, T 1, éJo 1, éJ1 1 ), N2 
= (S2Etl, T2, éJo2 , éJ1 2) be PetT'iv--objects, Channei(T1 , T2) be the leastpointed set which 
contains all pairs of transitions to be synchronized and f: Channei(T 1, T 2) ~ T 1, g: 
Channei(T 1, T 2) ~ T 2 be morphisms which project the components of the pairs into the 
corresponding pointed set of transitions. The table of synchronization Table(T 1, T 2) is 
given by the pushout construction as follows: 

....-------------- Set• 

o 

In fact, Table(T 1, T 2) is the disjoint union of T 1 and T 2 except in those elements 
which are identified by f and g. 
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Proposition 3.2 Let Table(T1, T2) together with p: T1 --7 Table(T1, T2), q: T2 --7 

Table(T 1, T 2) be a pushout which defines the table of synchronization for some given 
Channei(T1, T2) and f: Channei(T1, T2) --7 T1, g: Channei(T1, T2) --7 T2. Then there 
are retractioris for p and q denoted by pR and qR, respectively. 

Proof' Since f, g are mono, then p, q are also mono. Thus, there are retractions for p, q 
and they are defined as follows: 

for every b in Table(T 1, T 2), 

if there is a in T 1 such that p(a) = b then pR(b) =a else pR(b) =V; 
if there is a in T 2 such that q(a) = b then qR(b) =a else qR(b) =V. o 

Definition 3.3 Synchronization Morphism. The synchronization morphism sync: 
Table(T1, T2) --7 T1 XT2 is uniquely induced by the product construction as follows: 

,....--------------- set• 

o 

Example 3 .4 Consider the transition sets T1 ={V, a, b}, T2 ={V, x, y} and T1 XT2 = 
{V, a, b,x,y,alx,aly,blx,bl~. 

a) a shares x, b shares y: Channei(T 1, T 2) = Table(T 1, T 2) = {V, a I x, b I y} and 
sync(V) =V, sync(a I x) =a I x, sync(b I y) = b I y; 

b) no synchronization between transitions: Channei(T 1, T 2) = {V}, Table(T 1, T 2) = 
{V, a, b, x, y} and sync(V) =V. o 

3.2 Calling and Sharing 

The table of synchronization for calling and sharing is given by a colirnit of a "twin peaks" 
or "M" diagram (i.e., a diagram with the shape •t-•-?•f-•-7•). Remember that a shares x 
is the same as a calls x and x calls a. 

Definition 3.5 Table of Synchronization. Let N1 = (S1Ei1, T1, d01 , d11), N2 = (S2Ei1, T 2, 
do2 , d1 2) be Petriy-objects and let i be in {1, 2}: 

a) let Channei(T 1, T 2) be the least pointed set which contains all pairs of transitions to be 
synchronized; 

b) Ti' is the least pointed subset of Ti containing ali transitions of Ni which call a transition 
of the other net; 

c) the morphisms calli(a): Ti' --7 Channei(T1, T2) are such that: 

c.l) for a in Tj', if a calls x then cal li( a) =a I x; 
c.2) for a, b in Ti' such that a :~:- b, a calls x and x calls b is not allowed. 
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Let M(T 1, T 2) be the twin peaks diagram represented below where inci : Ti' ~Ti are the 
canonical inclusion morphisms. The table of synchronization Table(T 1, T 2) is given by the 
colimit of M(T 1, T 2). 

o 

From the definition above, we can infer that: (from c.l) calli are monomorphisms and 
(from c.2) the happening of a transition may not lead to the happening of a different 
transition in the same net. 

Example 3.6 Consider the transition sets T 1 ={v', a, b, c} and T 2 ={v', x, y}. Suppose 
that a calls x, b calls y and y calls b (i.e. , b shares y). Then, Channei(T1 , T2) ={v', 
a I X, b I y} and Table(T 1, T 2) is determined as follows: 

{v' ,y} {v' ,a,b,} 

aHa/ "aHalx 
bHb bHbly 

/ ~ /~ 
{v' ,a,b,c} {v' ,alx,bly} {v' ,x,y} 

I 
colimit 

+ 
{V",c,x ,alx,bly} o 

Proposition 3.7 Consider the diagram M (T 1 , T 2) whose colimit determines T able (T 1 , T 2) 
and the morphisms p: T1 ~ Table(T1 , T2) , q: T2 ~ Table(T1, T2). Then there are 
retractions for p and q denoted by pR and qR, respectively. 
Proof· The colimit of M(T 1, T 2) can be detetmined by pushouts CD, @ , ® as follows: 
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Since all morphisms in the above diagram are mono (inCi, calli are mono and therefore, the 
morphisms o f the pushouts are also mono) and since the composition o f monomorphisms is 
mono, then p, q are mono. Thus, there are retractions for p, q as follows: 

for every b in Table(T 1, T 2), 
if there is a in T 1 such that p(a) = b then pR(b) =a else pR(b) =V'; 
if there is a in T 2 such that q(a) = b then qR(b) =a else qR(b) =V'. o 

Definition 3.8 Synchronization Morphism. The synchronization morphism sync: 
T ab I e (T 1, T 2) ~ T 1 X T 2 is uniquely induced by the product T 1 X T 2 and by the 
morphisms pR: Table(T1, T2) ~ T1, qR: Table(T1, T2) ~ T2. o 

3.3 Synchronization Functor 

First we show that the forgetful functor from Petrf., into the category of pointed sets is a 
fibration and then we inn·oduce the synchronization functor. 

Proposition3.9 The forgetful functor u: Petrf., ~ Set• which takes each net into its 
pointed set of transitions is a fibration. 
Proof" Let N2 = (S2Ef>, T 2, ao2 , a1 2) be a net, fT: T1 ~ T 2 be a Set•-morphism and N1 = 
(S2Ef>, T 1, ao1, a1 1) be a net such that dk1 = ak2 o fr. Then, f= (ids2<1l, fr): N 1 ~ N2 is 
cartesian with respect to fr and N2. In fact, let N3 = (S3Etl, T 3, ao3 , a1 3) be a net, v= (vs, 
vr): N3 ~ N2 be a Petrf.,-morphism and hr: T 3 ~ T 1 be a Set•-morphism such that vr = 
fr o h r. Then h = (vs, hr) is the unique Petrf.,-morphism sue h that v = u o h. To see that h 
is a Petrf.,-morphism consider that dk2 o vr = vs o dk3 and, since vr = fr o h r and dk1 = 
dk2 o fr, we have that dk1 o h r = vs o dk3. o 

Definition 3.1 O Functor sync. Consider the fibration u: Petrf., ~ Set •, the nets N 1 = 
(S1Etl, T1, dQ1, d1 1), N2 = (S2Ef>, T2, ao2 , d1 2) and the synchronization morphism sync: 
Table(T 1, T 2) ~ T 1 X T 2· The synchronization of N 1, N2 represented by N 1 llsync N2 is 
given by the functor sync induced by u and sync applied to N 1 X N2, i. e.: 

Example 3.11 

Nets N 1 and N2 

N1llsyncN2 is sync(N1XN2). O 

Synchronization with 
channel {V' ,alx,bly} 

Synchronization with 
channel {V'} o 
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Note that, in the example above, the synchronization with channel {V'} results in a net 
which reflects the asynchronous composition as in the coproduct construction. 

4 Marked Petri Nets 

As shown in [18], marked nets with asynchronous morphisms do not have coproducts. The 
solution proposed in [13] restricting initial markings to sets of places (instead of multisets) 
results in a category with coproducts. But, as illustrated in the example below, the 
coproduct construction becomes a kind of "total choice" instead of an asynchronous 
composition o f nets as in Pe-trív- . 

Example 4.1 Coproduct of marked Petri nets as in [13]: 

--

o 

Since the categorical product of marked Petri nets (with or without multiplicity in the 
initial state) has the same interpretation as in Petr-4,;, we may also introduce the 
synchronization functor for marked nets. Therefore, the proposed synchronization 
construction is able to explain the semantics of composed nets with or without 
synchronization on transitions. Moreover, no restriction on initial markings is needed. 

4 .1 Petri Nets with an Initial Marking 

A Petri net with an initial marking is a pointed Petri net with a distinguished state. The only 
restriction on morphisms is that initial markings must be preserved. The resulting category 
has finite products. 

Definition 4.2 Marked Petri Net. A marked Petli net is a quintuple (SEB, m, T, ao, a1) 
where (SEe , T, ao, a1) is a pointed Petri net and m = n1 s1 EB n2s2 EB . .. EB npSp is a 
distinguished element o f SEe, called initial state o r initial marking. O 

Definition 4.3 Marked Petri Net Morphism . A marked Petli net morphism h: N1 -7 N2 
where N1 =(S1Ee, m1, T1, ao1, a1 1), N2 =(S2Ee, m2, T2, ao2, a1 2)is apointedPen·inet 
morphism h = (hs, hT) such that hs preserves the initial state, i. e. hs(m1) = m2. o 

Marked Petri nets and its morphisms constitute the category 9v[pe-triv- . The categolical 
product of two marked nets N1 = (S1Ee, m1, T 1, ao1, a11), N2 = (S2Ee, m2, T 2, ao2, a12) 
is as follows: 

N1 X N2 = ((S1 + S2)Ee, m1 EB m2, T1 XT2, ao1 xao2, a11 xa12). 
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4.2 Synchronization 

The synchronization in !MPet1V is defined in the same way as in Pet7V: a functor induced 
by a fibration and a synchronization morphism. Also, the constructions for calling and 
sharing are analogous. 

Proposition 4.4 The forgetful functor mu: :MPetriv --7 Set• which takes each marked net 
into its pointed set of transitions is a fibration. 
Proof The proof is analogous to the one for Pet7V. O 

Definition 4.5 Functor sync. Consider the fibration mu: :MPet7V --7 Set•, the nets N1 = 
(S1Ef>, m1, T1, dQ 1, d1 1), N2 = (S2Ef>, m2, T2, ao2 , d1 2) and the synchronization mor­
phism sync: Table(T1, T2) --7 T1 XT2. The synchronization of N1, N2 represented by 
N 1 llsync N2 is given by the functor sync induced by mu and sync applied to N 1 X N2, i. e.: 

N 1 llsync N2 is sync(N 1 X N2). O 

Example 4.6 Compare the synchronization with channel {V'} below with the example 4.1: 

Nets N 1 and N2 

5 Concluding Remarks 

Synchronization 
with 

channel {V ,alx} 

Synchronization 
with 

channel {V'} 
o 

In the context of "Petri Nets are Monoids" [13], we solved the problem of how to 
categorically explain the composition of nets satisfying some given synchronization 
prescription. The proposed approach defines a categorical structuring technique called 
synchronization construction which is a functor induced by a fibration and a 
synchronization morphism which specifies the transitions to be synchronized. The functor 
applied to the categorical product of nets (which represents all possible combination 
between transitions) erases all those transitions which do not reflect the desired 
synchronization. An important result is that this construction is able to represent 
synchronous and asynchronous compositions. Therefore, the fact that some categories of 
Petri nets lack coproduct (asynchronous composition) is not anymore a restriction for 
interaction semantics. Moreover, no rest1iction on nets, initial rnarkings or morphisms is 
necessary. 

Also, two kinds of synchronization between transitions are introduced: calling (non­
syrnmetrical relation) and sharing (syrnmetrical relation) . The table of synchronization 
(transitions of the synchronized net) for calling, sharing or both is also categorically defined 
and the synchronization morphism is uniquely determined. 
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We are generalizing this framework, including the diagonal compositionality 
requirement i.e., both vertical (compositional refinement of systems) and horizontal 
(refinement of systems distributes through interacting combinators). Therefore, we should 
be able to fmther define leveis of abstractions of systems before or after a synchronization 
composition in arder to obtain the same resulting system. We already achieved some results 
w.r.t. the implementation (generalization of the procedme call for concurrent systems) in 
[11] where transitions are mapped into transactions and w.r.t. the transformation 
(generalization of the macro expansion for concuiTent systems) in [10] where graph 
transformations stand for refinements using the so called single pushout approach [9]. 
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