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Abstract

This report presents the modelling of the methodology employed in designing the
physical layout of the operational block of the RISCO microprocessor 1C, under de-
velopment at the UFRGS. The model uses the concepts of design methodology man-
agement supported by the STAR design framework. The design process is organized
as an hierarchy of rnethodologlm according to the design alternatives and the ar-
chitecture of the microprocessor component mothules. Each methodology specializes
a basic structure (a conceptual model), which organizes the various representations
created for the design objects during the design process.. The model also specifies

all design tasks, in a condition-driven approach which relates tasks and design data
(ualities.

Keywords
VLSI design automation. Design methodology management. Design frameworks.

Resumo

FEste relatério apresenta a modelagem da metodologia empregada no projeto do lay-
out fisico do bloco operacional do circuito integrado microprocessador RISCO, em
desenvolvimento na UFRGS. O modelo usa conceitos de geréncia de metodologias de
projeto suportados pelo ambiente de projeto STAR. O processo de projeto é organi-
zado como uma hiera.rquia. de metodologias, em funcdo das alternativas de projeto
¢ da arquitetura dos médulos componentes do microprocessador. Cada metodologia
especializa uma estrutura béasica (um modelo conceitual), que organiza as varias re-
presentagdes criadas para os objetos de projeto ao longo do processo de projeto. O
modelo também especifica todas as tarefas de projeto, através de uma abordagem
divigida por condi¢oes que relaciona tarefas e qualidades dos dados de projeto.

Palavras-chave
Automacgio do projeto de circuitos VLSI. Geréncia de metodologms de projeto.
Ambientes de projeto.
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1 Introduction

This report presents the modelling of the methodology employed in designing the
physical layout of the operational block of the RISCO microprocessor IC, under de-
velopment at the UFRGS. The model uses the concepts of design methodology man-
agement supported by the STAR design framework. The design process is organized
as an hierarchy of methodologies, according to the design alternatives and to the ar-
chitecture of the microprocessor component modules. Each methodology specializes
a basic structure (a conceptual model), which organizes the various representations
created for the design objects during the design process. The model also specifies all
design tasks, in a condition-driven approach which relates tasks and desired design
properties.

This report does not intend to extensively present the STAR data model neither
the STAR design methodology management mechanisms. The reader should refer to
other reports for this purpose [1, 2], and a knowledge of these concepts will be pre-
sumed in this report. It intends only to illustrate the principles of the STAR design
methodology management model, not the application of a concrete tool which imple-
ments this model. A complete description of the RISCO microprocessor is neither in
the scope of this report. This can be found in [3].

< In this initial section, we first introduce the main features of design frameworks
and design methodology management. We then introduce the STAR framework and
the RISCO microprocessor.

The remaining of this report is organized as follows. Section 2 briefly presents the
overall behavioral, structural and floorplan design of the whole microprocessor, as
‘well as the structural design of the operational block. The design methodology of the
operational block of the RISC'O microprocessor is then formally described in Section 3.
Section 4 gives an overview of the whole design methodology, explaining it as an
hicrarchy of partial methodologies. Finally, Section 5 gives concluding remarks. The
Appendix introduces new constructs of the Plasma language, a semi-formal system
used in the specification of the STAR data model. These additional constructs are
needed for the definition of particular conceptual models.

1.1 Design frameworks

Design frameworks aim at the integration of tools so as to guarantee the overall con-
sistency of the process of designing circuits and systems and to provide a uniform in-
teraction between the designers and the tools. Examples of frameworks that partially
or totally support these goals are Oct [4], from Berkeley, Cadweld [5], from Carnegie-
Mellon, and CWS [6], from the Cadlab in Germany, as well as comercial products,
sich as the Open Framework from Cadence and the ValidFrame from Valid.

The main feature of a design framework is the provision of a uniform data model
for design data representation [7], which supports the representation of circuits and
systems as complex objects, taking into account aspects like composition of sub-
objects, hierarchy, and instantiation of objects.



A design framework data model must provide facilities for multiple representations
for a design ohject. Tn the scope of this report, we designate the organization of these
multiple representations as the object control structure. Dlﬂmont representations for
a design object can correspond to

o design alternatives (e.g. a standard-cell or a gate-array approach);

e design views, i.e. representations of the same object at different abstraction
levels (algorithmic, RT, logic, layout, etc);

e design revisions, i.e. consccutive refinements or improvements of the same ob-
ject.

A design methodology [8] is a set of design rules that either enforce or guide the

design activities performed by the user, so as to obtain design objects with desired
propertics. Rules can express:

o tasks that must be executed when the design process arrives at a given point

(this point can be for instance m(prmqocl in terms of some design object prop-
erties);

o alternative design approaches to be followed from a given design point, as well

as criteria for deciding hetween the possible design paths (agam these crieria
can involve design object properties);

o design representations that must be created under given conditions (e.g. arepre-
sentation at a more detailed design level or alternatives that must be compared
according to some trade-offs).

Design methodology management is the control of tlie creation of the design ob-

jeets and of the execution of the design tasks so that they conform to the eslabllshed
rules. '

1.2 The STAR framework

The development of the STAR framework is a joint effort of the UFRGS and the
IBM Rio Scientific Center which is based on previous experience of these groups in
the field of design frameworks (the AMPLO environment [9], at the UFRGS, and
the GARDEN data model [10], at IBM). The STAR framework supports the most
important features expected from systems effectively open to the integration of tools
aimed at various applications, architectures, and technologies [11]. STAR is based
on a data model [1] which is derived from the GARDEN model. It has been shown
that the GARDEN model supports more flexible and powerful concepts than other
frameworks [12]. The STAR framework also offers special facilities for data and design
methodology management. and for cooperation between designers.

The definition of a design methodology in the STAR framework is based on three
main principles: the task flow. the control structures of the design objects, and the

)
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hierarchization of the design methodologies. A detailed description of the STAR
design methodology management model can be found in [2].

Task flow is expressed through a condition-driven model, where input-output rela-
tionships between tools and design data are specified. These relationships can involve
“qualities” of the design objects (such as the values of certain object attributes). A
tool is eligible for execution when its input data, with the desired qualities, is avail-
able. The choice among many executable tools is left to the user.

A design methodology is strongly related to control structures that organize all
representations that can be created for the design objects of a given application
according to a given management strategy. These control structures explicitly contain
all object “qualities” that are needed for the task sequencing. Each design object can
have a different control structure, depending on the particular design methodology
to be applied to it. We call the conceptual scheme of the application the set of all
ohject control structures defined for this application.

Design methodologics can be organized in a hierarchical way. A new design
methodology can be derived from a previous one by specializing (either by extending
or restricting) the control structures of the previous methodology, and by adding new
tasks to the task flow specification.

Any user can also be an “application manager”, that defines a new application as
a specialization of the application that he/she is authorized to execute. The applica-
tion manager must define, prior to the execution of a design methodology, both its
conceptnal scheme and the associated tasks. While defining the conceptual scheme,
all objects and attributes that he/she already knows as necessary are specified (al-
thongh attribute values may be assigned during the design process), specially those
needed for specifying the task flow control. However, new objects and attributes may
be still defined and created during the design process.

1.3 The RISCO microprocessor

RISCO [3] is a 32-bit microprocessor which is being developed at the UFRGS. Tt is
being designed using 1.5 um CMOS design rales with 2 metal levels. It has a three-
address architecture and executes one instruction per cycle at normal flow, except for
memory references. Its main architectural features are:

‘o data, instructions, and addresses are 32-bit words;
e a 32-bit word is the basic addressable unit, thus giving access to 4 Gwords; -

¢ communication with the main memory is done through a 32-bit multiplexed bus
for data and address;

e it has 32 32-bit registers, including the Program Counter, the Stack Pointer,
the Processor Status Word, and RO (constant zero);

e it has a 3-stage pipeline, achieving a peak instruction rate of one instruction
per machine cycle;



o branch instructions have their execution delayed by one cycle.

‘The RISCO microprocessor has four main architectural blocks: the Operational
Part, which is composed of 32 almost identical 1-bit wide slices, the Control Part, a
Validation Interface, which is responsible for synchronizing and buffering the control
signals from the Control Part to the Operational Part, and the Clock Generator.

The overall layout contains the Clock Generator, to the left, and the Control
Part, to the right, in a top slice. Below them are located first the Validation Interface -
and then the Operational Part, both as wide as the top slice. The Operational Part
is divided into 32 1-bit wide horizontal slices. It is implemented in a bus-based
architecture. Two data busses run horizontaly through ali cells of each slice. Control
lines run vertically, while the power lines also run horizontally.



2 Behavioral, structural, and floorplan design

This section only intends to introduce the early design phases of the RISCO micropro-
cessor design, including the hehavioral, structural, and floorplan design. The object
control structures are only introduced when this is relevant for the physical layout

design, to be detailed later. The tasks invoked during these design stages are not
specified.

2.1 Behavioral design

The RISCO microprocessor is initially specified through a behavioral description, by
using some hardware description language. This description states the behavior of
the RISCO instruction set: how each instruction affects the microprocessor registers
and flags and the memory contents. It does not contain any references to possible
implementations for the microprocessor.

The methodology for the microprocessor behavioral design specifies the RISCO
Design object and its initial control structure, including Views that contain behavioral
related information. As a result of the design process, ViewStates for these Views

are created. The RISCO object has three initial attributes, corresponding to design
requirements to be set by the application manager: maximum area, maximum power
~dissipation, and minimnum clock frequency. These attributes are defined at the root
of the control structure. Ports that are visible in the initial specification of the
microprocessor, such as data and address busses and external control lines, are created
luring the design process and defined at the root. The design methodology specifies
that all Ports have attributes PortDirection and BitWidth.

2.2 Structural design
2.2.1 Si:ructural'deAcompositiqn of the microprocessor

A structural representation {or the RISCO microprocessor is manually generated from
the behavioral one. The circuit is partitioned into its four main structural blocks:
the.operational block OP, the control block CP, the clock generator ClockGen, and
the validation interface ValidatInterf between CP and OP. The methodology for the
structural design extends the RISCO control structure by adding a ViewGroup VG-
- RISCO-Struct, which gathers all Views of the RISCO object that correspond to the
structural design. One of these Views (V-RISCO-Struct-Obj) is of type MHD and
contains four DesignInstances that make reference to other Designs (OP, CP, Clock-
Gien, and ValidatInterf).

The user which is responsible for the structural design extends the conceptual
scheme, by adding these objects. Figure 1 shows the definition for object OP (the
operational block whose design is the subject of this report) in the new scheme. !

"This definition is given in the Plasma specification language, extended as presented in the
Appendix.

[}



OP :- Design
has A_Bus :- Port
has BitWidth = { 31 .. 0 }
‘has PortDirection = inout
has BOUT_BB :- Port
has PortDirection = in
is generalization of { V-OP-Struct (View MHD) ;
V-OP-SlicedStruct (View MHD) ;
V-OP-FullCustom-ExpandedStruct (View MHD) ;
VG-OP-Layout (ViewGroup) }

Figure 1: The OP object

The design methodology previously specifies which attributes do the OP Ports
have, but actual Ports are created only during the design process. Only the Ports
A_Bus (a data bus) and BOUT_BB (a control line from CP) are shown as example,
since OP has some dozen Ports. These Ports have attribute PortDirection, while
A_Bus has an additional attribute BitWidth. A_Bus is a bundle of 32 lines, and
cach of them can be referred to as A_Bus [i]. The object OP does not have any
attributes (UserFields) defined at the Design level (the root of the hierarchy of object
representations). L ,

The methodology for the structural design already specifies a View V-OP-Struct,
of type MHD, which will contain the structural representation of OP. The ViewGroup
VG-OP-Layout will be added later by the methodology for the floorplanning design
(see subsection 2.3), while the MHD Views V-OP-FullCustom-ExpandedStruct and
V-OP-SlicedStruct will be needed by the methodology for the full-custom layout
design of OP. ’ ' |

It must be noted that Ports, in the STAR data model, are automatically inherited
by all representations below the node of the control structure where they are defined.
The inheritance of Parameters and UserFields is not automatic and must be explicitly
defined. . ’

Ports, Parameters, and UserFields can be changed during the design process, when
the change is not forbidden by the design methodology. They can be created or re-
moved, and their attributes can also be created or removed. Also the attribute values
can be changed. Any of these changes is automatically stored by the framework in a
new “version” of the control structure node where the Port, Parameter, or UserField
is defined.

2.2.2 Structural decomposition of the operational block

The operational block OP is manually designed as an interconnection of modules,
such as an ALU, a register file, other registers, and some logic. Each of these modules

UFRGS
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processes information that is 32-bit wide. The structural partition of QP is stored in
a MHD View V-OP-Struct, as shown in Figure 2.

V-OP-Struct :- View (MHD)
contains ALU-Part :- Component
has ... (same Ports as ALU)
has reference to Design : ALU
~ contains BReg-Part :- Component
. has ... (same Ports as BReg)
has reference to Design : BReg

contains ALU-PartA - Designinstance of ALU-Part
contains BReg-PartA :- Designlnstance of BReg-Part

contains ... (‘Nets)

" Figure 2: The structnra.l View of the opera.tional part

- This-View has DesignInstances that make reference to new Designs ALU, BReg
(the register file), PC (the Program Counter), UD (the barrel shifter), etc. These
Designs were not known when the methodology for the structural design has been
defined. The user which is responsible for the structural design of the operational
block dynamically extends the conceptual scheme by adding the new objects ALU,

" BReg, PC, UD, etc. and by defining the control structures needed for them during

this design stage.
Figure 3 shows the definition of object ALU (we will restrict this report to the

" design of this module inside OP). We show only the Ports A_Bus and RUA_ BA, since

" the ALU has a large number of Ports.

ALV :- Design
has RUA_BA :- Port
has PortDirection = in
has A_Bus :- Port
has BitWidth = { 31 .. 0 }
has PortDirection = inout
is generalization of { V-ALU-BehavSrc (View HDL) ;
V-ALU-BehavObj (View HDL) ;
V-ALU-Struct (View MHD) }

Figure 3: The ALU object
HDL Views V-ALU-BehavSrc and V-ALU-BehavObj are needed for the simulation

7



O of thé: gtrﬁctural representation of the microprocessor, while the MHD View V-ALU-

Strict is used in the structural decomposition of the ALU, as shown in the next
subsection. .

- Supposing that the designer wants to simulate the structural decomposition of
the RISCO microprocessor achieved until this point, behavioral descriptions must be
created for all leaves of the structural hierarchy under the RISCO View V-RISCO-
Struct. This must be done for the Designs ALU, BReg, etc (modules within OP),
CP, ClockGen, and ValidatIntetf (other modules within RISCO). The behavioral
descriptions are split into two Views, both of type HDL, one containing the source
description and the other the result of the compilation process (see Figure 3 for the
ALU). : ‘

Now a configuration can be built for the structural View of OP, selecting View-
States containing behayioral descriptions for the modules within OP. After that, a
configutation can 'also’be established for the RISCO structural view, with a selection
of ViewStates containing behavioral descriptions for CP, ClockGen, and ValidatInterf,
and using the already built configuration for OP.

As a result of the simulation of this configuration, the designer may wish to create
new ViewStates for all design objects involved in the configuration, in order to achieve
the best result. New configurations do not need to be created for RISCO and OP,
if the above mentioned ones afe dynamic and specify the most recent ViewState of
each of these design objects. ' '

2.2.3 Structural decomposition of the ALU

Also the modules within the operational block must be designed as a structural de-
composition of mote ptimitive cells. In the following, we illustrate this by showing
the maiit steps in the design of the ALU. o o |

As a first step, a ViewState for the ALU View V-ALU-Struct is created, as shown
in Figute 4. V-ALU-Struct, of type MHD, is an interconnection of 32 slices of 1-bit
wide ALUs. - ,

V-ALU-Struct :- View (MHD) o
contains ALUSlice-Part :- Component
has ... (same Ports as ALUSlice)
has teference to View : V-ALUSlice-Struct
contains ALUSlicel :- Designinstance of ALUSlice-Part
contains ALUSlice2 :- Designinstance of ALUSlice-Part

contains ALUSlice32 :- Designinstance of ALUSlice-Part -
contains ... (Nets)

Figure 4: The ALU structural View



V-ALU-Struct refers to a MHD View V-ALUSlice-Struct of another Design ALU-
Slice, shown in Figure 5. This Design must have the same Ports as the ALU object,
except that the data bus lines are now 1-bit wide. Since it is previously known
that this object will be needed, its initial control structure, containing only V-ALU-
Slice-Struct, can be already specified by the design methodology. The ViewGroup
VG-ALUSlice-LO and the MHD View V-ALUSlice-Extracted will be later added by
the methodology for the ALU physical design.

ALUSlice :- Design
has-RUA_BA :- Port
‘has PortDirection = in
- -has A_Bus :- Port
has PortDirection = inout
has ... (same other Ports as ALU)
has MaxDelay :- UserField : integer
is generalization of { V-ALUSlice-Struct (View MHD) ;
V-ALUSlice-Extracted (View MHD) ;
VG-ALUSlice-LO (ViewGroup) }

Figure 5: The ALUSlice object
V-ALUSlice-Struct, shown in Figure 6, is an interconnection of instances of the

most recent ViewState of structural representations of transistors and logic gates,
which are supposed to exist in a cell library.

V-ALUSlice-Struct :- View (MHD)
contains AND-Part :- Component
has ... (Ports)
has reference to most recent ViewState : V-ANDGate-Struct
contains Transistor-Part :- Component

contains AND1 :- Designlnstance of AND-Part

contains ANDm :- Designinstance of AND-Part
contains Trl :- Designinstance of Transistor-Part

contains Trn :- Designinstance of Transistor-Part

contains ... (Nets)

Figure 6: The structural View of ALUSlice
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2.2.4 The sliced structural represehtation of OP.

A sliced representation of the operational block structure will be later needed for the
layout design methodology. The operational block is seen as an array of 32 1-bit wide
instances of an object OPSlice, as shown in Figure 7.

V-OP-SlicedStruct :- View (MHD)
contains OPSlice-Part :- Component
has ... (same Ports as OPSlice)
has reference to Design : OPSlice -
contains OPSlicel :- Designinstance of OPSlice-Part
contains OPSlice2 :- Designlnstance-of OPSlice-Part

contams OPSlice32 -»Desngnlnstance of OPShce Part
contams (Nets)

Figure 7: The sliced structural representation of OP

Since the need for this decomposition of OP is known before the structural de-
sign, the object OPSlice, with its initial control structure (only the View V-OPSlice-
Struct), is already defined in the design methodology for the structural decomposition,

as shown in Figure 8. OPSlice has the same Ports as OP, except that the data bus
lines are now 1-bit wide.

OPSlice :- Design
has BOUT_BB :- Port
has PortDirection = in
has A_Bus :- Port
has PortDirection = inout -
is generallzatnon of { V-OPSlice-Struct (View-MHD) ;
V-OPSlice-ExpandedStruct (View MHD) ;
V-OPSlice-LO (View LO) }

Figure 8: The OPSlice object |

The MHD View V-OPSlice-Struct, shown in Figure 9, contains instances of the
already existing structural representations of ALUSlice, BRegSlice, etc. The addi-
tional Views V-OPSlice-LLO and V-OPSlice-ExpandedStruct will be added by the
methodology for the operational block layout design.

10



V-OPSlice-Struct :- View (MHD)
contains ALUSlice-Part':- Component
' has ... (same Ports as ALUSlice)
has reference to View : V-ALUSlice-Struct
contains BRegSlice-Part :- Component
has ... (same Ports as BRegSlice)
has reference to View : V-BRegSlice-Struct

contains ALUSlicel :- Designlinstance of ALUSlice-Part
contains BRegSlicel :- De5|gnlnstance of BRegShce-Part

contams (Nets)

Figﬁre 9: The structural representation of OPSlice

2.3 F"'loorplanning

The design methodology for the floorplanning process extends the control structures

“for the objects OP, CP, ClockGen, and ValidatInterf, already specxﬁed during the

structural design, and defines an mmal control structure for a new object Pads.

In the floorplanning process, the designer assigns initial values to the dimensions
and posmonmg of the four main structural blocks of the RISCO microprocessor. The
~ goal of ‘the floorplanning process is to obtain the minimum possible overall area for

“‘the RISCO object. The further detailed layout design of the structural blocks may
" lead the designer to change these dimmensions and positions. In order to accomplish
the ﬂoorplannmg task, a ViewState for a View V-RISCO-Layout, of type Layout,
must be creatod for the RISCO Design (see Figure 10).

V-RISCO-Layout :- View (LO)

has Width, Height :- UserField : integer

contains OP-Part :- Component
has ... (same Ports as OP)

.. (same for CP, ClockGen, Validatinterf)

contains OP-Partl :- Designinstance of OP-Part
has Width, Height :- UserField : integer
has Coordinates :- UserField : { integer; integer }

... (same for CP, ClockGen, ValidatInterf)

Figure 10: The Layout View for the RISCO object

'V-RISCO-Layout has attributes whose values are the width and the height of the
overall microprocessor layout. These attributes are specified by the design method-

11



ology, but their values are assigned during the design process. The DesignlInstances
of V-RISCO-Layout correspond to the objects OP, CP, ClockGen, ValidatInterf, and
Pads, and have three UserFields: width, height; and coordinates of the left bottom
corner of the block. Since the partitioning of RISCO into these four modules is pre-
viously known, the design methodology could already enforce the existence of the
respective DesignInstances. As a result of the floorplanning process, various View-
States for V-RISCO-Layout can be created, with different values for width, height,
and coordinates of its DesignInstances.

This design step also involves ViewGroups for the Designs OP, CP, ClockGen,
ValidatInterf, and Pads, that will gather their layout Views. Figure 11 shows the
ViewGroup VG-OP-Layout for the Design OP. It has two UserFields whose values
are defined during the floorplanning process: width and height. The Ports now have
additional methodology-defined attributes Width (the width of the layout track),
Coordinates and ImplemLayer (the layout layer where the Port is implemented). At
the layout level, each data bus (A_Bus and B_Bus) is implemented by two separate
lines that carry complementary values. For'the A_Bus, an additional Port A_Bus_not
is thus created. Furthermore, since at the layout level each bit of the data busses must
be separately routed, each bit of A_Bus has its own attributes. ‘VG-OP-Layout also
has additional Ports defined at this level, corresponding to the power supply lines.
The existence of these Ports could be already enforced by the design methodology.
The ViewGroups VG-OP-FullCustom and VG-OP-CellBased are added to the control
structure by the methodologies for the OP layout design. ,

At the end of the floorplanning process, the attributes Width and Height of VG-
OP-Layout must receive the values assigned to the width and height of the corre-
sponding DesignInstance in the ViewState of V-RISCO-Layout which was considered
to be the optimum one. One could, for instance, choose a ViewState with minimum
overall area, but with a height for the operational block that is greater than a cer-
tain lower limit that is necessary for a good layout design. The values obtained for
Width and Height will act as design constraints during the physical design of the

operational block. Similar constraints are obtained for the design of the other blocks
(C'P, ClockGen, and ValidatInterf). :
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VG-OP-Layout :- ViewGroup
has VDD :- Port
has Width :- UserField : integer .
has Coordinates :- UserField : { integer; integer }
“has ImplemLayer :- UserField : Layer
has GND :- Port
has ... (same attributes as VDD)
has BOUT_BB :- Port
has Width :- UserField : integer
has Coordinates :- UserField : { integer; integer }
has ImplemLayer :- UserField : Layer
has A_Bus [1] :- Port
has Width :- UserField : integer
has Coordinates :- UserField : { integer; integer }
has ImplemLayer :- UserField : Layer
has A_Bus_not {1] :- Port
has Width :- UserField : integer
has Coordinates :- UserField : { integer; integer }
has ImplemLayer :- UserField : Layer
has A_Bus [2] :- Port
has ... (same attributes as A_Bus [1] )
. -+ (same for A_Bus [3] until A_Bus [32] and
for A_Bus_not [2] until A_Bus_not [32])
has Width, Height :- UserField : integer
_is generalization of { VG-OP-FullCustom (ViewGroup) ;
VG-OP-CellBased (ViewGroup) }

Layer : string = { poly / diffusion / well / metall / metal2 / ...}

Figure 11: ViewGroup for the floorplanning of OP
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3 Physical design of the‘operational‘ block

Although two different design methodologies — full-custom and cell-based — can be
tried in the search for an optimal solution for the operational block layout, this report
will be restricted to the discussion of the full-custom design.

3.1 Splitting the operational block into slices

All representations for the full-custom design of the operational block are stored
under VG-OP-FullCustom, shown in Figure 12. In the full-custom methodology, the
operational block layout is designed as an array of 32 identical horizontal slices. This
representation is stored in a Layout View V-OP-FullCustom-LO.

VG-OP-FullCustom :- ViewGraup

has Width, Height :- UserField : integer

has PowerBusWidth :- UserField : integer = valuel -

has PowerBusDirection, DataBusDirection :- UserField :
: - Direction = horizontal

has ControlLinesDirection :- UserField : Direction = vertical

is generalization of { V-OP-FullCustom-LO (View LO) ;
V-OP-FuliCustom-ENL (View MHD) }

{{ strict inherited Width, Height, PowerBusWidth,
PowerBusDirection, DataBusDirection, ControlLinesDirection }}

Figure 12: ViewGroup for the full-custom design of the operational block

The full-custom design follows some guidelines that are established in attributes
of VG-OP-FullCustom: the power supply and data bus lines must run in the hori-
zontal direction, the control lines must run in the vertical direction, and the power
supply lines must have a given width. This width receives an initial value which is
used as a design constraint, but after the layout design, and knowing the real power
consumption of the whole OP slices, the designer may need to change this value.

VG-OP-FullCustom also has UserFields Width and Height. As a design goal, their
values must be less than the values of the corresponding attributes in VG-OP-Layout,
that were established during the floorplanning process. Since the ALU design is the
critical task in the overall OP design, the ALU layout will be designed first. The
designer will try to adjust the width and height of the ALU slices to the constraints
established in the floorplanning. He/she will try to design the ALU slice with a
minimal height, but without resulting in a too much wide module. The height of the
ALU slice will serve as a design constraint for all other modules within the OP slice.



3.2 Designing the ALU slices

The ViewGroup VG-ALUSlice-1.O gathers all layout related information about the
ALU slices and presents attributes, shown in Figure 14, that are needed in order to
guarantee the overall consistency of the layout design of the operational block slices:

o height - its value must be as aproximate as possible to 1/32 of the height of the
operational block (attribute of VG-OPSlice-LO);

e power supply, data bus, and control lines attributes related to the track width

and direction — their values must be the same of the corresponding attributes
of VG-OP-FullCustom.

For each of the ALU slice inter face signals the following attributes are defined:
coordinates, 1mplementat10n layer, and width of the channel layout.

Fmth(‘rmme the data busses traverses the operahona] block horizontally, so that
coordinates must be defined for their left and right interface points, while some control
lines, such as RUA_BA, traverse the ALU slices vertically, so that coordinates must
be defined for their top and hottom interface points.

The values of these interface signal attributes will be determined by the ALUSlice
layout design task. _

There are two ‘possible methodologies for the design of the ALU slices: manual
or through a module generator. Representations for each of them are gathered in a
ViewGroup (either VG-ATUSlice-Manual or VG-ALUSlice-ModGener) defined under
VG-ALUSlice-LO, as shown in Figure 14. We will detail only the methodology for
the manual (lmlgn Figure 13 shows the definition of VG-ALUSlice-Manual.

VG-ALUSlice-Manual :- ViewGroup
is generaltzation of { V-ALUSlice-Manual-LO (View LO) ;
. V-ALUSlice-Manual-ENL (View MHD) }

Figure 13: The ViewGroup for the manual design of the ALU slice

The manual design proceeds through six steps: layout generation, design rule
checking, netlist extraction, netlist comparison, capacitance extraction, and timing
evalnation. They are described next.

During the design of the ALU slice layout, many Auxiliary Objects are used:
DesignRules-1.5 (file with design rules for the 1.5 micra technology), IdentifTrans-

5 (file with knowledge about the identification of transistors and connections for
the 1.5 mi(‘ra.‘technolog\) ComparTrans-1.5 (file with information about the netlist

comparison for the 1.5 micra technology), StimuliFile and ResultFile (both containing
waveforms for signals in the ALU slice).
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VG-ALUSlice-LO :- ViewGroup
has Height, Width :- UserField : integer
has PowerBusWidth :- UserField : integer { value .. value }
has PowerBusDirection, DataBusDirection, ControlLinesDirection
:- UserField : Direction = { horizontal, vertical }
has RUA_BA :- Port
has ImplemLayer :- UserField : Layer
has Width :- UserField : integer
has Toplinterface :- UserField
has Coordinates :- UserField : { integer; integer }
has BottomInterface :- UserField
has Coordinates :- UserField : { integer; mteger }
has A_Bus :- Port
has ImplemLayer :- UserField : Layer
has Width :- UserField : integer '
has LeftInterface :- UserField
has Coordinates :- UserField : { integer; integer }
has Rightinterface :- UserField
~ has Coordinates :- UserField : { integer; integer }
has A_Bus_not :- Port ’
has ImplemLayer :- UserField : Layer
has Width :- UserField : integer
has Leftinterface :- UserField
has Coordinates :- UserField :. { mteger mteger }.
has RightInterface :- UserField

has Coordinates :- UserField : { |nteger, integer }
has VDD :- Port

... (same attributes as A_Bus)
has GND :- Port
. (same attributes as A_Bus)
is generallzatlon of { VG-ALUSlice-Manual (VlewGroup) :
VG-ALUSlice-ModGener (ViewGroup) }
{{ strict inherited Height, Width,
PowerBusWidth, PowerBulerectlon
DataBusDirection, ControlLinesDirection }}

Figure 14: The attributes of the ALU slices
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Layout generation :
\\’1th the mask editor conﬁgnrated for.a 1.5 micra grid, a VlewState for a Layout
View V-ALUSlice-Manual-1.O is created, as shown in Figure 15. This View has an

attribute LayoutOK, and inherits attributes relative to the power, data, and control
lines from VG-ALUSlice-LO:

task: ALU layout generation
tool: mask-editor [ configuration = 1.5 micra |
input: ViewState for V-ALUSlice-Struct
output: ViewState for V-ALUSlice-Manual-LO
Correlation: ViewState of V-ALUSlice-Manual-LO
manually generated from
ViewState of V-ALUSlice-Struct
goals: Height =< 1/32 V-RISCO-Layout . OP-Partl . Height
(OP-Partl is a Designlnstance within V-RISCO-Layout
corresponding to the operational block)

Figure 15: Layout generation for the ALU slice

This task defines the width and lmght of the ALU slice (attributes of V-ALUSlice-
Manual-LLO whose existence is inherited from VG-ALUSlice-LO), as well as the coor-
dinates and the 1mp|0monfahon layer of its interface signals. The layout must follow

the design guidelines, relative to the power, data, and control lines, defined in a
previous task (see-Figure 16). %

task: ALU slice layout generation guidelines assignment
tool: data-manager
_input: VG-OP-FullCustom

output: VG-ALUSIice-LO . PowerBusWidth :=
VG-OP-FullCustom . PowerBusWidth
.. {same for PowerBusD:rectlon DataBusDirection,
ControlLlnelerectlon)
goals: none

Figure 16: ALU slice layout generation guidelines

As a design goal, the h.oight of the ALU slice must be smaller than 1/32 of the
height of the operational block, established during the floorplanning. If this is not
achieved, either the ALU slice layout must be redesigned or the floorplanning must

*The “data manager” used in the task specification of Figure 16 is a tool which allows the designer
(=1 the design methodology manager) to directly operate upon the objects in the STAR data base.
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be re-avaluated. The task also establishes a correlation betwecn ViewStates of V-
ALUSlice-Manual-LO and V-ALUSlice-Struct.

' The control structure for VG-ALUSlice-LO already enforcés that both interface

points of A_Bus have the same implementation layer and the same track width. The

same occurs for RUA_BA. The desired cell simmetry is however not completely en-

forced, since each interface point of A_Bus (and of RUA_BA) has its own coordinates.

Only during the composition of the OP slice the complete simmetry will be thus
verified.

Design rule checking

With the design rule checker also configurated for the 1.5 micra technology, the Layout
View is checked. This task assigns a value (either true or false) to the attribute
LayoutOK of V-ALUSlice-Manual-LO (see Figure 17). Since V-ALUSlice-Manual-
1.O is a primitive cell, with no references to other des'lgn objects, we do not need to
specify a configuration for its processing.

task: ALU slice design rule checking
tool: design-rule-checker [ configuration = 1.5 micra |
input: ViewState for V-ALUSlice-Manual-LO

DesignRules-1.5 (file with design rules for the technology) -
output: none .
goals: V-ALUSlice-Manual-LO . LayoutOK = true

Figure 17: Design rule checking for the ALU slice’

Netlist extraction »
An electrical netlist extractor, configurated for the 1.5 micra technology, extracts a

netlist from a good layout, generating a ViewState for a MHD View V-ALUSlice-
Manual-ENL (see Figure 18).

V-ALUSlice-Manual-ENL :- View (MHD)
has NetListOK :- UserField : boolean
contains ... (Components)
has reference to most recent ViewState : ...
contains .. (Desugnlnstances)
contains ... (Nets)

Figure 18: The netlist representation for the ALU slice
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This View contains instances of objects defined in a cell library, making reference
- to their most recent ViewStates, and has an attribute NetListOK. This task, shown in
Figure 19, also establishes a correlation hetween ViewStates of V-ALUSlice-Manual-
. 1O and V-ALUSlice-Manual-ENT..

" task: netlist extraction for the ALU slice
'~ tool: ENL-extractor [ configuration = 1.5 micra |
input: ViewState for V-ALUSlice-Manual-LO | LayoutOK = true ]
IdentifTrans-1.5 (technology file with the knowledge about ‘
identification of transistors and connections)
output: ViewState for V-ALUSlice-Manual-ENL
Correlation: ViewState of V- ALUShce-Manual ENL
“extracted from

ViewState of V-ALUSlice-Manual-LO .

goals: none

Figm'é'lf): Extracting the netlist for the ALU slice

Netlist comparison

An electrical netlist comparator compares the extracted netlist with the structural
design of the ALU slice (View V-ALUSlice-Struct, see Figure 6). This task, shown
in Figure 20, assigns a value (either true or false) to the attribute NetListOK of V-
ALUSlice-Manual-ENL. Since both V-ALUSlIice-Struct and V-ALUSlice-Manual-ENL
make reference to the most recent ViewState of objects assigned to their Components,
ConfigurationDefinitions are not needed for their processing. If the task goal (Net-
ListOK = true) is not achieved, the designer must create a new layout for the ALU
-slice and re-execute the previous tasks (DRC and netlist extraction).

task: netlist comparison for the ALU slice
tool: ENL-comparator
~input: ViewState for V-ALUSlice-Manual-ENL,
ViewState for V-ALUSlice-Struct,
ComparTrans-1.5 (technology file with information
_ , about the comparison) .
output: none
goals: V-ALUSlice-Manual-ENL . NetListOK = true

" Figure 20: Netlist comparison for the ALU slice
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Capacitance extraction

The capacitance of some important ALU signals (those that drive the data bus
lines, the carry line, the control lines) is calculated, as shown in Figure 21. These
values are back-annotated to a structural representation V-ALUSlice-Extracted of
the ALU slice. This View, besides the back-annotated capacitances, is identical to
V-ALUSlice-Struct. The task establishes correlations between a ViewState of V-

ALUSlice-Extracted and ViewStates of both V-ALUSlice-Manual-LO and V-ALUSljce-
Struct. :

task: capacitance extraction for the ALU slice
tool: ENL- extractor [ configuration = 1.5 micra,
extract parasitic capacitances ]
input: ViewState for V-ALUSlice-Manual-LO
ViewState for V-ALUSlice-Struct
output: ViewState for V-ALUSlice-Extracted :
Correlation: ViewState of V-ALUSlice-Extracted created from
ViewState of V-ALUSlice-Struct
Correlation: ViewState of V-ALUSlice-Extracted
contains parasitic capacitances from
ViewState of V-ALUSlice-Manual-LO

goals: none

Figure 21: Capacitance extraction for the ALU slice

Timing evaluation : :

By electrically simulating the structural representation V-ALUSlice-Extracted with
the calculated capacitances, the maximum delay of the ALU slice (attribute MaxDelay
of ALUSlice, see Figure 5) is evaluated, as shown in Figure 22, and compared to an
expected value. Other timing estimates from the structural desngn are also confirmed,
such as the delay in the carry line. :

Many simulation runs are needed, each using a different stimuli file. The creation
of these files is not shown in this report. We suppose that a certain number of such
files has been created for exercizing the ALU slice. They are bound to this object
through correlations. Result files generated by the simulation runs are bound through
correlations to both the simulated ViewState of the ALU slice and the stimuli file used
in the simulation run. _

As for V-ALUSlice-Struct, from which it is derived, V-ALUSIlice-Extracted makes
reference to the most recent ViewState of the objects assigned to their Components,
so that it can be processed without specifying a ConfigurationDefinition.
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task: timing evaluation of the ALU slice -
tool: electrical-simulator
input: ViewState for V-ALUSlice-Extracted
StimuliFile [ correlated with ALUShce ]
output: ResultFile '
Correlation : ResultFile x ViewState of V-ALUSlice-Extracted
Correlation : ResultFile x StimuliFile
goals: ALUSlice . MaxDelay < expected value
.. (other timing estimates)

~ Figure 22: Timing evaluation of the ALU slice

3.3 Designing the other operational block modules

For all other modules of the operational block slice (the register file Breg, the barrel
shifter UD, the program counter PC, etc) a layout is now generated, by using the
height of the ALU slice as a constraint and by trying to get the less wider modules
as possible. The coordinates and widths of the horizontal busses (A_Bus, A_Bus_not,
B_Bus, B_.Bus_not, VDD, and GND), that have been dcfined during the ALU slice
layout design, must be identical in all other modules. :

The design methodology must guarantee that the guidelines for power supply,

data bus, and control lines, established in VG-OP-Layout, are followed in all these
modules.

3.4 Composing the operational block

Now that the layouts of all modules of an operational block slice have been designed,
they are composed to create the complete layout of a slice. The slices are then
composed into the complete layout of the operational block. _

Composing the operational block slice

The layout of each operational block slice is designed as an abutment of layouts for
slices of the modules ALU, BReg, etc. The composition of the operational block slice
is performed by two basic tasks.

In the first task, shown in Figure 24, a Vlewgtato for a Layout View V-OPSlice-LO -
(see Figure 23) is created. This View descnbes the layout of OPSlice as a composi-
tion of the layouts of the modules ALUSlice, BRegSlice, etc. As already explained
for the ALU slice design, new Ports appear at the layout representation (VDD, GND,

A_Busnot), and new Port UserFields are added (ImplemLayer, Width, and Coordi-
nates). '



V-OPSlice-LO :- View (LO)
has Width, Height :- UserField : integer =
has PowerBusWidth :- UserField : integer = { value .. value }
has BOUT_BB :- Port . :
has ImplemLayer :- UserField : Layer
has Width :- UserField : integer :
has Coordinates :- UserField : { integer; mteger }
has A_Bus :- Port :
has ImplemLayer :- UserField : Layer
has Width :- UserField : integer
has Leftinterface :- UserField
has Coordinates :- UserField : { integer; integer }
has Rightinterface :- UserField
has Coordinates :- UserField : { integer; integer }
has A_Bus_not :- Port , 4
has ImplemLayer :- UserField : Layer
has Width :- UserField : integer
has LeftInterface :- UserField
has Coordinates :- UserField : { lnteger mteger }
has Rightinterface :- UserField .
has Coordinates :- UserField : { mteger mteger }.
has VDD :- Port : ;
.. (same attributes as A_Bus)
has GND :- Port
.. (same attributes as A_Bus)
contains ALUSlice-Part :- Component
has Width, Height :- UserField : integer -
has ... (same Ports as VG-ALUSlice-LO)
~ has reference to View : V-ALUSlice-Manual
contains BRegSlice-Part :- Component :
has Width, Height :- UserField : integer
has ... (same Ports as VG-BRegSlice-LO)
has reference to View : V-BRegSlice-Manual

contains ALUSlice-PartA :- Designinstance of ALUSlice-Part
has Width, Height :- UserField : integer
has Coordinates : UserField : { integer, integer }
contains BRegSlice-PartA :- Designinstance of BRegSlice-Part
~ has Width, Height :- UserField : integer
has Coordinates : UserField : { integer, integer }

Figure 23: The layout of the operational block slice
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. The designer has to decide about the relative positioning of the modules inside
the operational block slice. There are two modules (an input and an output register)
whose positions are important because of their connections to the pads. The other
modules can be positioned anywhere, because of the bus architecture, which makes
the modules independent from each other. There is no routing between the modules.
With the mask editor, the designer thus assigns values to the attributes Coordinates
of cach Designlnstance of the OP slice layont.

Since Components in this View refer to the Views V-ALUSlice-Manual, V-BReg-
Slice-Manual, etc, and in these Views values have been assigned to the attributes
Width, ImplemLayer, and Coordinates of each of their interface signals, these values
are inherited by these Components and by the DesignInstances that instantiate them.

task: layout composition for the operational block slice
" tool: mask-editor [ configuration = 1.5 micra ]
input: ViewState for V-ALUSlice-Manual-LO ,
... (the same for BRegSlice, PCSlice, UDSlice, etc)
- output: ViewState for V-OPSlice-LO
(results in V-OPSlice-LO . Width :=
ALUSlice-PartA . Width + BRegSlice-PartA . Width + ...)
(results in V-OPSlice-LO . Height := ALUSlice-PartA . Height)

goals: none

Figure 21: Composing an operational block slice

In the second task, a ConfigurationDefinition C-OPSlice-LO is created for a View-
State of the View 'V-OPSlice-LO, as shown in Figure 25. This configuration selects
a Layout ViewState for each Component in the View. Since V-OPSlice-LO already
statically selects Views for these Components (e.g. V-ALUSlice-Manual for the Com-
ponent that corresponds to the ALU slice), the configuration must select a ViewState
for this View (e.g. the narrowest ViewState).

task: configuration of the composition of the OP slice layout

tool: configurator

input: ViewState for V-OPSlice-LO

output: C-OPSlice-LO for ViewState of V-OPSlice-LO

configuration criterium: ViewState with minimum Width

goals: C-OPSlice-LO . Width =< V-RISCO-Layout . OP-Partl . Width
(OP-Partl is a Designlnstance within V-RISCO-Layout
corresponding to the operational block)

Figure 25: Configuration of the composition of the OP slice layout
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It must be noted that the ConfigurationDefinitions inherit the attributes of the
objects from which they are derived. In this case, C-OPSlice-LO has the atttibute
Width as V-OPSlice-LO. As a design goal, the designer has to obtain an OP slice
with a Width smaller than the Width established as a design constraint during the
floorplanning. If this is not achieved, either the floorplanning has to be re-evaluated
or the layout of one or several modiles of the OP slice have to be re-designed.

Composing the operational block .
Now that the slice layout is composed, 32 slices are put together to create the layout
of the whole operational block. We are simplifying the real procedure, assuming

that the 32 slices are identical. In fact, the calculation of the ALU overflow asks for
differences in the two topmost slices.

The View V-OP-FullCustom-LO defines a Component OPSlice-Part from which
32 Designlnstances are created (see Figure 26), and that makes reference to the
most recent ViewState of V-OPSlice-LO. These DesignInstances have an attribute
Height that is inherited from V-OPSlice-LO. As a result of the task, the height of the
operational block, stored as an attribute of VG-OP-FullCustom, is calculated as the
sum of the heights of the Designlnstances, as shown in Figure 27.

V-OP-FullCustom-LO :- View (LO)
has LayoutOK :- UsetField : boolean
contains OPSlice-Part :- Component
_has Width, Height :- UserField : integer
has ... (same Ports as OPSlice)
has reference to most recent ViewState : V-OPSlice-LO
contains OPSlicel :- Designinstance of OPSlice-Part - -
has Width, Height :- UserField : integer - :
‘ has Coordinates :- UserField : { integer; integer }
contains OPSlice2 :- Designinstance of OPSlice-Part - -
has Width, Height :- UserField : integer :
has Coordinates :- UserField : { integer; integer }

contains OPSlice32 :- Designinstance of OPSlice-Part
has Width, Height :- UserField : integer
has Coordinates :- UserField : { integer; integer }

Figure 26: The full-customn layout.of the operational block

In the composition of the OP layout, we decided to use a dynamic configuration
for V-OP-FullCustom-LO that automatically selects the most recent ViewState for
the layout of OPSlice. However, since this ViewState is a composition of layouts of
the modules ALUslice, BRegSlice, etc, many configurations may have been creited
for it, using different ViewStates for V-ALUSlice-Manual, V-BRegSlice-Manual, etc.
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task: composition of the OP layout _
. tool: mask-editor [ configuration = 1.5 micra |
input: VG-OP-FullCustom;
_ ViewState for V-OPSlice-LO
output: ViewState for V-OP-FullCustom-LO . -
| (results in VG-OP-FullCustom . Height := OPSlicel . Height +
OPSlice2 . Height + ... + OPSlice32 . Height)
goals: none

Figure 27: Composing the full-custom layout of the operational block

A ConfigurationDefinition must be thus defined for V-OP-FullCustom-LO, in order
to verify it, selecting a particular configuration for the most recent ViewState of V-
OPSlice-LO. Figure 28 shows that the configurator uses as criterion the selection of
the most recent configuration for this ViewState.

task: configuration for the composition of the OP layout
tool: configurator
input: ViewState for V-OP-FullCustom-LO
.. output: C-OP-FullCustom-LO for ViewState of V-OP-FullCustom-LO
. configuration criterium: most recent ConfigurationDefinition
. - for the Viewstate of V-OPSlice-LO
goals: none '

. Figure 28: Configuration for the composition of the OP layout

3.5 Verifying the layout composition of OP

Now the layout composed for the operational block in the configuration C-OP-Full-
Custom-LO can be processed. This processing will check the overall layout, structure,
and timing. Because of the unavailability of hierarchical tools, this checking will
be done for a complete flattened structure. More powerful hierarchical tools could
restrict the checking to the interconnections between the modules, disregarding their
internal details. Furthermore, since the available electrical simulator would consume
an unaffordable time for an overall simulation, the timing evaluation will be done
only for the operational block slices. ' :
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Design rule checking |

As shown in Figure 29, the design rule checker assigns a value (either true or false)
to the attribute LayoutOK of C-OP-FullCustom-LO. It must be noted that C-OP-
FullCustom-LO inherits the attribute LayoutOK from V-OP-FullCustom-LO. This
task will verify if the modules ALUSlice, BRegSlice, etc. have been designed with
vertical simmetry, i.e. if control lines have the same top and bottom x-coordinates.
The control structure already enforces the same implementation layer and channel
width for the top and bottom interface points.

task: design rule checking for the operational block

tool: design-rule-checker [ configuration = 1.5 micra |

input: C-OP-FullCustom-LO -
DesignRules-1.5 (file with design rules for the technology)

output: none ' '

goal: C-OP-FullCustom-LO . LayoutOK = true

Figure 29: Design rule checking for the operational block

Netlist extraction

As shown in Figure 30, the electrical netlist extractor, configurated for the 1.5 mi-
cra technology, creates, from C-OP-FullCustom-LO, a ViewState for the MHD View
V-OP-FullCustom-ENL under VG-OP-FullCustom. The task also establishes a cor-

relation between the ViewState of V-OP-FullCustom-ENL and the configuration C-
OP-FullCustom-1.0O.

task: netlist extraction for the operational block
tool: ENL-extractor [ configuration = 1.5 micra ]
input: C-OP-FullCustom-LO [ LayoutOK = true ]
IdentifTrans-1.5 (technology file with knowledge about ,
identification of transistors and connections)
output: ViewState for V-OP-FullCustom-ENL
Correlation: ViewState of V-OP-FullCustom-ENL
extracted from C-OP-FuliCustom-LO
goals: none

Fignre 30: Netlist extraction for 'thve operational block
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Flattening the operational block

A flattened structural representation for the operational block, without hierarchy,
is needed for the comparison with the extracted netlist. This representation is cre-
ated from V-OP-Struct by an hierarchy expander and stored in a MHD View V-OP-
FullCustom-ExpandedStruct under the OP Design, as shown in Figure 31. The hier-
archy expander must perform configuration functions, since it must select descriptions
for the DesignInstances within V-OP-Struct. The task also establishes a correlation
between the ViewStates of V-OP-FullCustom-ExpandedStruct and V-OP-Struct.

task: flattening of the operational block
tool: hierarchy-expander
input: ViewState for V-OP-Struct
output: ViewState for V-OP-FullCustom-ExpandedStruct
Correlation: ViewState of V-OP-FullCustom-ExpandedStruct
expanded from ViewState of V-OP-Struct
goals: none

Figure 31: Flattening of the operational block

Netlist comparison

The netlist comparator compares V-OP-FullCustom-ENL with V-OP-FullCustom-
ExpandedStruct, as shown in Figure 32, assigning a value (either true or false) to the
attribute NetListOK of V-OP-FullCustom-ENL.

task: netlist comparison for the operational block

tool: ENL-comparator

input: ViewState for V-OP-FullCustom-ENL
ViewState for V-OP-FullCustom-ExpandedStruct
ComparTrans-1.5 (technology file with information

about the comparison)
output: none
goals: V-OP-FullCustom-ENL . NetlistOK = true

Figure 32: Netlist comparison for the operational block

Flattening the operational block slice

Since the timing evaluation will be performed upon the operational block slice, and
not upon the whole operational block, a flattened structural representation for the
slice must be created. As shown in Figure 33, the hierarchy expander creates, from
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V-OPSlice-Struct, a ViewState for V-OPSlice-ExpandedStruct, which seats directly
under the OPSlice Design. The task establishes a correlation between ViewStates of
V-OPSlice-ExpandedStruct and V-OPSlice-Struct.

task: flattening of the OP slice
tool: hierarchy-expander
input: ViewState for V-OPSlice-Struct
output: ViewState for V-OPSlice-ExpandedStruct
Correlation: ViewState of V-OPSlice-ExpandedStruct
expanded from

ViewState of V-OPSlice-Struct
goals: none

Figure 33: Flattening of the operational block slice

Capacitance extraction

The netlist extractor, configurated for the 1.5 micra technology, extracts parasitic
capacitances from the layout of the operational block slices, and back-annotates this
information to the flattened structural representation V-OPSlice-ExpandedStruct, as
shown in Figure 34. This task establishes a correlation between the ViewStates of

V-OPSlice-ExpandedStruct and V-OPSlice-1.0.

task: capacitance extraction for the OP slice
tool: ENL-extractor [ configuration = 1.5 micra,
extract parasitic capacitances ]
input: ViewState for V-OPSlice-LO
output: ViewState for V-OPSlice-ExpandedStruct
Correlation: ViewState of V-OPSlice-ExpandedStruct

contains parasitic capacitances from
ViewState of V-OPSlice-LO

goals: none

Figure 34: Capacitance extraction for the operational block slice

Timing evaluation

The electrical simulator is run, in order to confirm the early timing estimates for the
operational block slices, as shown in Figure 35. We do not need to specify a configura-
tion for V-OPSlice-ExpandedStruct, since it is supposed that this description makes
reference to the most recent ViewState of the basic Designs (gates and transistors).
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Many simulation runs are needed, each using a different stimuli file and generating a
different result file.

task: timing evaluation of the OP slice
tool: electrical-simulator
input: ViewState for V-OPSlice-ExpandedStruct
StimuliFile [ correlated with OPSlice |
output: ResultFile
Correlation : ResultFile x ViewState of V-OPSlice-ExpandedStruct
Correlation : ResultFile x StimuliFile
goals: none

Figure 35: Timing evaluation of the operational block slice
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4 Hierarchical derivation of the design method-
ology

The complete design methodology for the microprocessor design may be defined in a
hierarchical way. Starting with an initial design methodology, each new methodology
is derived from a previous one by specializing already existing control structures,
defining control structures for new objects, and adding new tasks.

Hierarchization of design methodologies may serve different purposes:

® A designer sees only the design object representations and tasks defined for
the design methodology he/she is using. Objects and tasks defined for other
methodologies, such as those derived from the current one, are hidden from

him/her.

® The design can start as soon as an initial methodology is established for the
first design steps. Design methodologies for certain sub-objects or for certain
specialized design activities (test generation, for instance) can be derived later
on, as the design proceeds.

® New tools can be integrated into the design environment without disturbing
already existing design activities. These tools may handle new design represen-
tations and/or auxiliary objects to be defined.

Figure 36 shows a possible hierarchical derivation for the complete RISCO design

methodology. In the following, we briefly summarize methodologies M1 thru M4,
which have been covered by this report. ’

M0. RISCO behavior
M1. RISCO structure
M2. RISCO floorplanning

M3. OP full-custom
M4. ALU slice manual
M5. ALU slice with module generator

M6. OP cell-based

M7. CP random logic

M8. CP PLA-based

Figure 36: Hierarchy of design methodologies

M0: Behavioral design - Methodology MO is the initial methodology for the be-
havioral design of the RISCO microprocessor. It defines an initial control structure
for the RISCO object, containing only a behavioral HDL View for it. Ports that
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are visible in the initial specification of the microprocessor, such as data and address
husses and control lines for external communication with memory and I /O devices, are
défined at the control structure root. Tasks in-M0 include behavior definition (with
a text editor), compilation (with the compiler for a hardware description language),
and simulation (with the simulator for this language).

M1: Structural design A methodology M1 for the microprocessor structural de-
sign is derived from MO0. It adds a structural MHD View to the RISCO control
structure and defines four new objects OP, CP, ValidatInterf, and ClockGen, with
their respective initial control structures. These control structures contain behavioral
HDL Views. Ports corresponding to the control signals between OP and CP are
already defined. For the OP object, M1 defines a structural MHD View for repre-
senting it as an interconnection of objects ALU, BReg, PC, UD, etc, while for each
of these additional objects structural representations (as interconnections of gates
and/or transistors) must be also defined and created. The initial control structures
for these additional objects must be thus defined during the execution of the method-

ology M1. Tasks include the structural decomposition and simulation of RISCO and
OP.

M2: Floorplanning design For the floorplanning design of the microprocessor,
established in the methodology M2, the already existing control structures must
be refined. A Layout View is defined for RISCO. ViewGroups for gathering layout
related information are defined for OP, CP, ValidatInterf, and ClockGen. For all
these objects, the data and address busses are decomposed into 32 lines, additional
Ports corresponding to the complementary bus lines and to the power supply lines
are added, and Ports have new, layout related attributes. Tasks that are related to
the floorplan edition and verification are included.

Prom M2, four different design methodologies can be derived, corresponding to

the full-custom and cell-based design of OP and to the random logic and PLA-based
design of CP.

M3: Full-custom design of the operational block Methodology M3, which
is devoted to the full-custom design of the operational part, refines the OP con-
trol structure with new ViewGroups and Views, such as VG-OP-FullCustom, V-OP-
Full Custom-LO, and V-OP-FullCustom-ENL. It also defines new objects OPSlice and
ALUSlice and their control structures, and extends the already existing control struc-
ture for ALU. Tasks include the layout composition and verification of OPSlice as an
abutment of layouts for ALUSlice, BRegSlice, etc, and the layout composition and
verification of OP as an abutment of 32 instances of OPSlice. Auxiliary objects for
these tasks (technology files, for instance) are defined for M3.

A4: ALU slice manual design Methodology M3 depends on the existence of
cither M4 or M5, which allow the layout design of AL USlice. In the case of M4, for
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instance, VG-ALUSlice-Manual, V-ALUSlice-Manual-LO, and V-ALUSlice-Manual-
ENL are added to the control structure of ALUSlice. New tasks are defined for
the layout generation, design rule checking, netlist extraction, netlist comparison,
capacitance extraction, and timing evaluation of ALUSlice. Some Auxiliary Objects
already defined for M3 are also used within M4, although new ones must be created,
such as stimuli files for the electrical simulation of ALUSlice.
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5 Concluding remarks

This report presented in detail the formalization of the design methodology for a mi-
croprocessor layout, according to the design methodology management model defined

for the STAR framework.

The example illustrated‘ all the main features of this model:
e a design methodology is defined by a conceptual scheme and a set of tasks;

e the conceptual scheme is a set of control structures for the various design objects
~ a control structure organizes the several representations to be created for an
object along the design process and establishes relationships between them;

o tasks are defined through a condition-driven approach, where input conditions

for the task execution and task goals are specified by assertions about design
qualities;

* design methodologies can be hierarchically derived from each other, by defining
new objects and their control structures, by extending already existing control
structures, and by defining new tasks;

e the designer is constrained to use the design object representations and tasks
defined for the current design methodology, but he/she may have the right to

dinamically add new objects and representations as they are needed during the
design process.

It has been shown (2, 8] that the combination of these features is not found on
other systems. Most other systems base design methodology management on task
flow control, which is oriented towards design guidance. Even though they offer
sophisticated task control facilities, these are not coupled with a powerful design
data representation model, which adds automatic design consistency to the design
guidance. The STAR design data model allows the definition of control structures
which are strongly related to design methodology management, since they organize
all representations to be created during the design process according to methodology-
specific strategies.

Future work include testing the proposed design methodology management model
in other applications, such as formal hardware verification, and then designing and
implementing concrete mechanisms on top of the already existing STAR resources.
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A Extending the Plasma language for conceptﬁal
scheme definition |

Plasma [1] is a semi-formal specification language, specially conceived for describing
the STAR data model in a clear way. It is not argued that it is a formal language, nei-
ther that its mechanisms are complete, orthogonal, or even consistent with each other.
These same considerations are also valid for the extensions to the language introduced
in this report, intended for the specification of particular conceptual schemes.

The presentation of the new language constructs will be done by exemplification.
Creating objects

The STAR data model defines various object types, such as Design, ViewState, and
View.

ALU :- Design
creates a Design object with name ALU.
V-ALU-Struct :- View (MHD)

creates a View objecﬁ with name V-ALU-Struct and indicates that this View is of
type MHD. a '
Defining attributes

Object attributes (UserFields, in the STAR terminology) may be defined by the user.
They have a user-defined name. They must be of some of the basic STAR data
types (integer, real, string, etc) or of some user-defined data type derived from them.
User-defined data types can be built using records, arrays, and sets, as well as by
enumeration or subseting. An initial value may be assigned to an attribute in the
conceptual scheme. This value may be modified at run-time.

ALY has Cell-Area :- UserField : integer
defines for object ALU a UserField with name Cell-Area and data type integer.
ALULogicView has ALUTechnology :- UserField : string = 2 micra

~ assigns to UserField ALUTechnology of object ALULogicView the value “2 micra”.
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ALU has ALUTechnology :- UserField : LayoutTechnology = { 2 micra / 1.5 micra }

defines for an object ALU a UserField with name ALUTechnology and user-defined
data type LayoutTechnology, whose possible values are “2 micra” and “1.5 micra” (a
data type created by subseting the type string).

UserFields may be structured and contain other UserFields, as in the example
below.

ALU has ALUTechnology :- UserField
has TechFile : file
has TechVersion : integer

defines that an attribute ALUTechnology is composed of two sub-attributes, named
TechFile (of basic data type file) and TechVersion (of basic data type integer).

Defining Ports and their attributes

The STAR data model specifies that Ports may be defined at different nodes of a
control structure (Designs, ViewGroups, Views, and ViewStates). Ports created in
a conceptual scheme must have a name. Furthermore, Ports may have user-defined
attributes. As for the UserFields, these attributes have a name, a data type, and a
possible initial value already defined in the conceptual scheme. They may be also
composed of other sub-attributes.

OP :- Design
has ABus :- Port
has BitWidth = {31 .. 0 }
has Coordinates :- UserField : { integer; integer }

creates a Port with name ABus for the object OP. This Port has two attributes.
BitWidth is a system-defined attribute (a pair of integers, indicating the identification
of the MSB and LSB), while Coordinates is a user-defined attribute whose type is
also a pair of integers.

Defining generalizations

The STAR data model defines that Designs are generalizations of ViewGroups and
Views, and that ViewGroups are in turn generalizations of other ViewGroups and
Views.

In a particular conceptual scheme, one has to define the names of the ViewGroups
and Views which are generalized by a Design or a ViewGroup. It is also possible to
define which UserFields of the generalization object are inherited by the generalized
sub-objects.
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ALU is generalization of { ALULogicView (View MHD);
ALU-Layout-VG (ViewGroup) }

defines that ALU is a generalization of a View (of type MHD) with name ALULogic-
View and of a ViewGroup with name ALU-Layout-VG.

ALU is generalization of ALULogicView
{{ single inherited ALUTechnology }}

indicates that the UserField ALUTechnology of the generalization object ALU is

inherited (in strict mode) by the generalized sub-objects (only ALULogicView, in
this case).

Creating compositions and references

The STAR data model specifies that an object View may contain DesignInstances
and/or Components, and that either Components or DesignInstances may reference

other object representations. Furthermore, Components and DesignInstances have
Ports and UserFields.

ALU contains Add1 :- Component
has ... (Ports)
has ... (UserFields)

defines that the object ALU contains a Component of name Add1 with given Ports
and UserFields.

ALU contains AddA :- Designinstance of Add1

defines that the object ALU contains a DesignInstance of name AddA which is an
instance of Component Add1.

ALU contains Addl :- Component
has reference to Design : Register

defines that the object ALU has a Component Addl which makes reference to the
Design object of name Register.

References may also be done to particular ViewGroups, Views, or ViewStates of
other objects. A particular dynamic configuration may be created with the construct

ALU contains Addl :- Component
has reference to most recent ViewState : RegisterView

which defines that the Component Add1 makes a reference to the most recent View-
State of the View object of name RegisterView.
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