
Distributed Prosoft:
Management of Tools and Memory

Report on a work developed at the
Institut für Informatik

U niversitãt Stuttgart / Germany
from December 1995 to March 1996

Lisandro Zambenedetti. Granville

Luciano Paschoal Gaspary

~ SABi

u~s lll!lllll
t:inU»

>lí'll~-r-rroTO DI! INFCJ<i:V.ta~lil.....,t'i\o
'llt.UU,lOTEC_...

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j

j
j

j
j
j

I
j

Distributed Prosoft:
Managernent of Tools and Memory

Report on a work developed at the
Institut für Informatik

Universitãt Stuttgart f Germany
from December 1995 to March 1996

Lisandro Zambenedetti Granville
Luciano Paschoal Gaspary

The authors thank Prof. Daltro José Nunes for the support and incentive in the deve­
lopment of this environment. A special thank to Heribert Schlebbe for the great help
in ali the steps of the implementation of the system.

Stuttgart, March 1996

Contents

1 lntroduction

2 Conventional Prosoft

3 Transition to Distributed Prosoft

4 Distributed Prosoft

4.1 Design Decisions

4.2 ICS and Communication between ATOs

4.2.1 Client Side of a Remote ICS Call

4.2.2 Server side of a Remote ICS call .

4.3 Control and Management of the Prosoft Server Processes over the

1

1

2

4

4

5

5

6

Network 7

4.3.1 Configuration of the Servers

4.3.2 Management of the Servers.

4.3.3 User Session

4.4 ICS Call and Distributed Memory Management

4.4.1 Parameters of the ICS Remote Call

4.4.2 Distributed Memory Management

4.4.3 Minimization of Data Transport

4.4.4 Garbage Collection

5 Suggestions

5.1 Communication between Users .

5.2 Reliability

6 Conclusions

Bibliography

Appendix

7

8

8

10

10

12

13

17

18

19

19

20

21

22

1 INTRODUCTION 1

1 lntroduction

PROSOFT - a Software Development Environment ..,.. has been developed at the
Instituto de Informática, UFRGS (Universidade Federal do Rio Grande do Sul),
under the direction of Prof. Dr. Daltro José Nunes, supported by the Institut für
Informatik, Universitãt Stuttgart.1

The distributed version of the system - Distributed PROSOFT - is conceived and
implemented to satisfy new requirements of the environment and to provide more
flexibility. Its development is based on techniques which will be elucidated in the
severa! sections of this report.

Section 2 covers the concepts of the conventional PROSOFT showing the entities
that constitute the original system. In section 3 the new features are shown
required in the system: distribution of ATOs on the network, better usage of
resources and more efficient configurability mechanisms. The main concepts of
the distributed version o f the system, the process and memory management o f the
ATO servers, are explained in section 4. Suggestions of future implementations
based on the new environment are discussed in section 5.

2 Conventional Prosoft
\

The main goal of the mentioned PROSOFT project isto create a proto'type for a
generic computational environment to develop software. The conventional PR0-

80FT is an extensible software system where new components are added forming
bases for the creation of other tools. A tool in PROSOFT is called ATO - Am­
biente de Thatamento de Objetos - which consists of a class representing its data
structure and a set of methods that manipulate instantiations of this class. Each
instance of an ATO class is called object.

Each object interacts with others by a common communication interface ICS­
Interface de Comunicação do Sistema. It takes a set of objects as parameters and
proceeds the call of an operation of another ATO. The result is returned to the
calling object.

In the conventional PROSOFT system ali ATOs are bound in only one executable
program. They therefore always belong to the same exectition process running on
the same machine. Hence, the ICS always executes local calls, which have access

1The current work was developed within the scope of a person-to-person cooperation bet­
ween the PROSOFT working group of the Instituto de lnformática,UFRGS, Porto Alegre (Prof.
Dr. Daltro José Nunes) and the Institut für Informatik, Universitãt Stuttgart, sections Dialogsy­
steme (Prof. Dr. Rul Gunzenhãuser) and Betriebssoftware (Prof. Dr. Klaus Lagally). Expenses
for traveling and accommodation in Germany were payed by the Brazilian Research Council
(CNPq).

3 TRANSITION TO DISTRIBUTED PROSOFT 2

to a set of global data of the PROSOFT system. Furthermore, a conventional PR0-

80FT session does not possess any information concerning the active sessions of
other users. Therefore communication among them is impossible. Figure 1 shows
the localization of ATOs in the address space of a single executable program and
their interaction via ICS.

Figure 1: Conventional PROSOFT System

A more detailed description of conventional PROSOFT system, its development
environment and paradigm can be found in [Nun92] [Nun93].

3 Transition to Distributed Prosoft

With the growing number of developed ATOs the conventional PROSOFT system
started to create some problems taking directly effect in the development of new
tools. The creation and maintenance of ATOs require a lot of time to be linked,
since ali ATOs are bound together in only one executable program.

3 TRANSITION TO DISTRIBUTED PROSOFT 3

Furthermore, each PROSOFT user, even if interested only in a subset of ATOs
is forced to load and run the complete set. Evidently memory resources were
wasted, once the tools could. :p.pt be shared between se:veral users.

~r;:.'· .. ,;,; ,

On the other hand, new ideas and concepts were developed and new necessities
appeared. For instance, the possibility of having cooperative work in the future
also has contributed to a new conception of the system.

Hence, the concept of Distributed PROSOFT was created. The first work was made
by Heribert Schlebbe during his working stay in Brazil in 1994 [Sch94). The new
system should allow several tools to be autonomously distributed over the network
and capable to be attended to different users simultaneously. This model covers
the new requirements and is supposed to be a base for future implementations.

Methods Package

Figure 2: Distributed PROSOFT

The environment consists of ATOs spread over the network and joined in packa­
ges - so-called ATO packages. Each package is conceived to be a server process
which is capable, hence, to dispatch requests of users or other packages, i.e. to
execute the requested operation of a respective ATO belonging to the package.
If the requested service resides in the same package of the calling ATO it is

4 DISTRIBUTED PROSOFT 4

meant to be a local call, otherwise it is supposed to be a remote one. (see figure
2 on page 3). The processing of these ICS calls is completely transparent to the
implementor of an ATO (so-called atista), since it is implemented at a lower
levei. .

4 Distributed Prosoft

4.1 Design Decisions

The Distributed PROSOFT system was implemented according to a clientjserver
architecture. This model is very appropriate to the development of this environ­
ment, since the ATOs are completely encapsulated and their communication is
clone exclusively by means of a common interface - the ICS. As a result of that,
the ATOs behave like servers, receiving requests from client processes via ICS.
Furthermore, the classes of the respective ATOs represent data structures which
can be allocated at the start-up time of the service, i. e. before serving any requests
of the clients. The access to these classes does not require any synchronization
when serving asynchronous requests of clients, because they will be accessed just
read-only. An instance of the communication of ATOs via ICS can be seen in
figure 3.

~õ~,------------------------
1

I
I
I
I
I
1.·

.. i
I

Sala Package

~----------------------------
--------~----------------- -----------------------------

Kernel Package Methods Package

Figure 3: Communication between ATOs via Remote ICS

4 DISTRIBUTED PROSOFT 5

To provide this functionality of ICS the environment has to be remodeled ,by
using the following techniques:

• Remote Procedure Call (RPC): The distribution of ATOs over the
network requires the use of efficient mechanisms which allow communication
between remote processes to exchange objects between packages of ATOs.
More details about the RPC mechanism can be found in [Blo92].

• Multi-threaded Servers: Since the ATOs are supposed to be sharable
among several users, an implementation of servers is necessary to handle
asynchronous incoming calls from different clients simultaneously. Hence,
multi-threaded servers are developed which are capable to execute each
incoming ICS request by its own thread of control. More information con­
cerning multi-thread programming can be found in [Pow91] and [Sun95].

4.2 ICS and Communication between ATOs

An ICS call in Distributed PROSOFT has the same semantic behaviour like a·
conventional call. The parameters of an operation to be executed are sent to the
server which dispatches the incoming request. The calling process blocks, until
the server returns the answer of the required service. An ICS call in Distributed
PROSOFT, hence, is executed as a co-routine. For this reason there is no need
of any syncronization mechanisms between the processes related to these calls
(see figure 4). Indirect recursive calls to the same server are also permitted. More
details about the client/serverspecifications of the ICS can be found in [Sch94]
and in the Appendix.

4.2.1 Client Side of a Remote ICS Call

Ali ATO clients- i.e. the PROSOFT main programas well as most of the ATO
servers (they behave like clients when requesting services o f other ATO servers)
- have an individual ICS implementation distinguishing between ATOs that
are called locally and those that have to be called remote. Local ATO calls are
executed in the same way as in the conventional PROSOFT, while the remote
ATO calls need to proceed the following steps:

• discover the network location (RPC address and path of server program)
where the ATO server of the needed operation resides;

• create a TCP connection to the server of the requested ATO package;

• prepare the parameter objects of the ICS call by encoding them in an
appropriate way for transport across the network to the server package;

4 DISTRIBUTED PROSOFT

• call the routine using the transport descriptor;

• receive the resulting object and decode it for the client address space;

• dose the TCP connection to the server.

1'------­
Ciient Process
blocks when
calling a remete
proceélure

ClieQt process
continues

3.-------

2

Figure 4: Remote ICS call

4.2.2 Server side of a Remote ICS call

Receives the
request, executes
the ICS procedure
and return the
results to the
client

6

When activated, the main thread of the server creates a handle for TCP connecti­
on to receive requests and then enters the server loop. The current implementation.
uses the multi-threaded server loop provided by the Solaris operating system of
Sun Microsystems. This routine is reliable, since it has been totally implemented
using multi-thread safe libraries.

After the connection with the server is established, a dispatching routine is exe­
cuted to serve the request by executing the following steps:

• receive the parameters of the service;

4 DISTRIBUTED PROSOFT 7

• rebuild the PROSOFT objects by using the unique identification existing in
each node;

• call the local ICS functión;

• prepare the result object for transport across the network;

• send the result object to the client.

4.3 Control and Management of the Prosoft Server Pro­
cesses over the Network

Since the ATOs - due to their distribution over the network - will execute auto­
nomously, there is a need of providing a manager process which is able to control
these servers and allows the configuration of them. The PROSOFT Manager was
created for this purpose.

4.3.1 Configuration of the Servers

The main point in configuring the servers on the network consists in the task to
inform the PROSOFT Manager about the ATOs incorporated in each package as
well as their localization on the network. For this purpose, a configuration file
was introduced.

The correct configuration of ATOs is fundamental for an appropriate and effi.cient
performance of Distributed PROSOFT. It must be considered that some ATOs
are intrinsically related to each other. It is recommended to locate them, for this
reason, in the same package, otherwise there would be an intense network traffic.

For instance, the ATOs cenário and quadro have a strong relation to each other.
If these ATOs were located in different packages, their interaction would provoke
a heavy network traffic. Hence, the efficiency of the environment depends on a
good customization of these ATOs and the PROSOFT administrator should be
aware of this.

The configuration file also acts as a base of information for a utility which au­
tomatically generates, according to this file, the makefiles and - by the RPC
protocol compiler rpcgen - the source code of the ICS routines. The source co­
de includes the interface of the client side for local and remote ICS calls, the
transport functions for passing argument/result objects to/from a remote ICS
procedure and the server routine.

4 DISTRIBUTED PROSOFT 8

4.3.2 Management of the Servers

The PROSOFT Manager is a server process which provides the management of
the distributed system in total, controlling the users who are interacting with the
system as well as the ATO server processes that are running distributed on the
network (see figure 5). It is able to serve the following requests:

• starts and shuts down a PROSOFT server according to the customization of
the serve r type (multi-client, single-client o r local-client) on a specified host.
During the start-up time of the process, the classes belonging to the ATOs
of that servers are created, so that they later can be accessed read-only by
the client processes;

• initializes user specific information on the server side:

- creates a memory management structure of the user;

- allocates a package identifier which is needed to control the optimized
memory update strategy when calling other servers via Remote ICS
(see section 4.4.3);

- establishes an RPC connection to the graphical display of the user (see
section 4.3.3);

• frees user specific data on the server side when a user has finished his session:

- destroys the memory storage associated to that user;

- doses the RPC connection to the user display;

• provides the RPC address (program number, version number and host na­
me) of an ATO server to a client process. For optimization the RPC ad­
dresses of active servers are cached on the client side;

• keeps information about the users which are currently active (e.g. user iden­
tification, user name, current working directory, etc);

• keeps information about the ATO servers which are active over the network.

4.3.3 User Session

Every user of the Distributed PROSOFT activates his own set of processes, as
described below:

4 DISTRIBUTED PROSOFT 9

Server Start/Shutdown

Figure 5: PROSOFT Manager and the requests

The User Main Process

A user activates the Distributed PROSOFT by starting a program named prosoft.
This process is responsable for registering the user with the PROSOFT Manager
- i.e. getting a unique user identification for his session - and for activating other
server processes on demand.

The Graphic Server Process

Once a user has opened a PROSOFT session and an identification has been assi­
gned to him by the PROSOFT Manager, a server is started which is responsible
for receiving and displaying graphical commands from ali ATOs the user will
activate during his session. This process is calied Display Manager.

Thus, the Display Manager implements an RPC server with an RPC address
which is built uniquely by the user identification. This unique address assignment
warrants that ali outputs of graphical procedure calis (made be the ATO ser­
vers during the session) will be directed to the display of the user. The Display
Manager needs to be single-threaded due to the multi-thread unsafeness of the
actual X-Windows system. Since ICS requests are executed like co-rou tines, ali
graphical output sent to the Display Manager will be also processed sequentially.
Therefore no synchronization mechanism is necessary.

To aliow server processes to direct the graphical output to the right Display
Manager, the user identification must be sent to the server as an additional

tn'ID
cz'''Tf'i'01'0 Dll! INFCRM.á'!N~: ... J

~!lUOT~ ·: i . .,

4 DISTRIBUTED PROSOFT 10

argument of the ICS mechanism implemented at lower layer. This information is
saved in a thread-specific variable of the ICS dispatching thread, so that every
graphical RPC call can get access to the right Display Manager.

The Directory Server Process

The ATO Directory does not follow the PROSOFT paradigm. Moreover, this
ATO has a set of global variables that do not allow the standard incorporation
of the ATO Directory in the Distributed PROSOFT system.

A main problem lies in the fact that the ATO Directory reads/writes PROSOFT

objects from/to local disks which are mounted on the workstation of the user. A
remote running ATO Directory, however, would have no access to these data, be­
cause the directory structure visible to that ATO would be that of the PROSOFT

Manager.

To solve this problem the ATO Directory should be customized, for each user ses­
sion, as an individual server process running on the local host of the user. In this
way, the ATO works properly, because it now refiects the directory informations
of the user who has activated the ATO process.

4.4 ICS Call and Distributed Memory Management

As stated before, the implementation of Distributed PROSOFT is mainly based on
turning the ICS interface into a communication interface between ATOs which
are interacting across the network. By providing an additional software layer
in the ICS interface which is capable to handle clientjserver communication,
the PROSOFT system can be transformed into the distributed system without
changes of the source code of the ATOs and the higher levei components of the
conventional version.

4.4.1 Parameters of the ICS Remote Call

The standard ICS routine has a compound of three parameters: the ATO name,
the function to be executed and a list of PROSOFT objects to be passed to the
function.

In the lower levei implementation of the remote ICS routine, however, two addi­
tional parameters are required: the user identifier and the return package identi­
fier.

The main problem here is the fact that an object when sent to the address space
of the remote side might be a sub-object of another one in the client address
space. Since the RPC mechanism does not provide any shared memory facilities
- and therefore inclusions of objects are not recognized- the use of RPC might

4 DISTRIBUTED PROSOFT 11

provoke undesired copies of objects. Therefore additional mechanisms to treat
the parameter and result objects are necessary.

For example, when a remote•·Sétver procedure is calh:id with a parameter repre­
senting a cenário and another one representing a quadro object - being the
quadro object a sub-object of the first one - the server will rebuild both objects
- the cenário and just so the quadro object - independently ignoring the object
inclusion. In this case there exist two copies of the same quadro object on the
server side, which apparently do not work properly (see figure 6 for illustration).

First proposal: Identification of objects in different address spaces

In a first approach to solve this problem ali possible inclusions of the parameter
objects were analyzed, before executing an RPC, to find out which object was
sub-object of another one. Instead of sending the included object just the path
to reach this sub-object from the parent one is sent. By this method an included
object can be identified within another object in the address space on the remote
side, so that improper copies are avoided. The same happens with the result
object: Because a result object of an ICS call either is a new object ora modified
parameter object, only the modified parts of a certain object- inclusive the paths
to reach them - were returned to the client address space, in order to update the
original object.

Figure 6: Reaching a sub-object

4 DISTRIBUTED PROSOFT 12

However, this solution turned out to be very inefficient, because in some cases
it is hard to analyze ali modifications done in the result object. A criticai case,
for instance, is the exchange of the places of two sub-objects within an object­
a case which requires a great analytical effort to recognize it; this proposal was
discarded.

Second proposal: ldentification of nodes in different address spaces

Instead of identifying parameters and possible inclosures in a remote address
space on the base of PROSOFT objects, the nodes themselves - which every object
is constructed of - are regarded to find out a more effective solution.

When created, every node is assigned a unique identification which depends on
the ATO package identifier. This node identifier can be used to recognize the
same node in different address spaces. Furthermore, in order to form a PROSOFT

object which should be independent of address spaces, the memory pointers -
which are linking nodes together to build an object- should be replaced by their ·
corresponding node identifiers. This object representation can be used to rebuilt
a homologous object in any desired address space.

If the remote ICS function would transport only the root identifications and
a unique sequence of address space independent nodes of the parameters, the
objects could easily be rebuilt - with regard to ali their object inclusions - in the
address space of the remote side.

The transport o f nodes via net can be minimized, if both sides (client and server)
maintain a storage to cache all nodes which ever have been exchanged, and fur­
ther, if there exists a mechanism to control which nodes are in a consistent state
on both sides.

This concept of a minimum data exchange requires the implementation of a dis­
tributed memory management mechanism which is described in the following
section.

4.4.2 Distributed Memory Management

There are several options to implement a distributed memory.

• Centralized memory: The memory resides at exactly one location on the
network; a manager process administers the read/write requests of remote
processes to that memory.

• Floating memory: The memory may be distributed over different locati­
ons (processes) on the network; a mechanism is required to control which
process is actually the owner of the memory object to be accessed.

4 DISTRIBUTED PROSOFT 13

• Replicated memory: Every process caches .parts of the common memory
which must not necessarily be in a· consistent state; a mechanism is needed
to control which parts pf the remote m~mory,.have to be updated when
doing a request to a ~~fuote process, and whi~h are the parts of its own
memory to be updated upon receipt of the result.

The solution implemented uses the last method. The memory replication method
seems to be the ideal option to minimize the network data flow.

To allow object nodes to be effi.ciently accessed in the memory, when objects of
the ICS interface have to be codified or decodified in the actual address space,
a hash table is implemented. To keep insertions of nodes into and deletions from
the table transparent to the implementor of ATOs, ali primitive functions of the
PROSOFT system that create, destroy and change nodes were modified in order
to treat these operations automatically.

To implement a distributed memory manager, two fields have to be added to the
structure of a conventional PROSOFT node:

• Node identifier: On the one hand this field is used- as already mentionend
above- as a substitution for memory pointers when building object repre­
sentations which must not be dependent on an address space, on the other
hand it serves as a hash index to the memory table;

• Set of package identifiers: This field contains the identifiers of those server
packages that already have stored the most recent version of this node in
their memory. Section 4.4.3 discusses this field in detail.

When a user - identified by his identification - for the first time requests a
service of a certain ATO server, a new hash table will be aliocated to store ali
user specific nodes. A user specific storage is necessary to avoid synchronization
between the asynchronous memory accesses made by other user threads working
in paraliel.

To provide uni que identifications for ali nodes generated by a user, the counter for
node identifiers is initialized to an appropriate value depending on the package
identifier. As the node identifier is stored in an integer word, every user is able to
active 28 packages simultaneously, each package with up to 224 memory nodes.

4.4.3 Minimization of Data Transport

As mentioned above, a special field containing a set of package identifiers was
added to the descriptor of a PROSOFT node to maintain information which ATO
packages have already stored the most recent version o f the node in their memory.

4 DISTRIBUTED PROSOFT 14

Hence, when calling remotely the ICS only those nodes of parameter or result
objects (which are not uptodate in the user memory ofthe corresponding package
side) have to be transported via network. These nodes have to be sent across the
network in their address space independent representation, as described above in
section 4.4.1.

This mechanism of memory control reduces the flow of data on the network.

Figure 7: Flow of Data in a ICS Remote Call

The minimized data flow of a remote ICS call is illustrated schematicly in figure 7:

From client to server:

• The identifier of the root nodes of the parameters objects: This information
allows the server to recognize in its memory the roots of the objects received
as parameters and to rebuild the objects.

• A list of those nodes of the parameter objects which are not uptodate in
the server memory.

4 DISTRIBUTED PROSOFT 15

From server to client:

• The root node identifien,:of the resulting object~1This information is rieeded
to allow the client - on successful completion of the service - to localize
and rebuild the result object in its own memory.

• A list of created and modified nodes of the result object which are not
uptodate in the client memory.

Example

Figure 8 shows a more detailed example of an ICS request of a client package
identified by package id 1 to an ATO server package identified by package id 2.
The result object is assumed to be the same one as the parameter object identified
by node id 7.

Left hand above:
The parameter object to be sent to package 2 consists of five nodes; three
of them (7, 9, 10) are already uptodate in package 2 and two nodes (8, 11)
are marked as uptodate only in package 1, since they have been recently
modified or created there. Thus, only nodes 8 and 11 have to be sent.

Right hand above:
On the server package 2 the present node 8 has to be updated while node
11 has to be inserted into the object. Both are marked uptodate in packages
1 and 2. On both sides there exists now an identical instance of the object.

Right hand below:
lt is assumed that the operation to be executed by the local ICS call on the
server side has made some changes to the node 9. Consequently only this
node has to be returned as result in order to update node 9 of the client
memory.

Left hand below:
Upon successful completion of the ICS call node 9 of package 1 is changed
correspondingly and marked as consistent in both packages on both sides.

4 DISTRIBUTED PROSOFT

Sending Parameter Object

Root ID of parameter: 7

Client package ID: 1

Not updated nodes in
package2:

m­
~-

Unique node ID

Set of updated
packages

Packages marked by a star (*) are
added after successfuiiCS call.

Recelvlng Result Object

Root ID of result: 7

Client package ID: 1

Not updated nodes In
package 1:

16

packageiD:2

packageiD:2

Figure 8: Minimization of data exchange due to memory caching of servers

4 DISTRIBUTED PROSOFT 17

4.4.4 Garbage Collection

The Garbage Coliection is ~",gE:ocedure that fr~es f>,~ç:>SOFT objects which were
not bound to the user data (êeríario) during an interâêtion cycle o f the PROSOFT

user. The Garbage Collector works in the following way: Every object (when
created) is inserted into a so-called Garbage List and taken off from it when it
is accessed by a binding operation. This garbage processing is integrated in the
primitive functions of the PROSOFT system, and remains therefore completely
transparent to an ATO implementer who is using exclusively these primitive
operations to construct and manipulate his PROSOFT objects.

The Necessity of Garbage Collection

The Garbage Collection is needed dueto the fact that ATO implementers should
not be responsable for destroying objects which are not used anymore. Thus, these
objects should be automaticaliy destroyed. Without a Garbage Collector some
temporary unbound PROSOFT objects would be created and never more destroyed
during a PROSOFT session, filling up the available memory with useless data.

The foliowing ICS cali may illustrate this:

ROTA := ICS (ATO_SADT, DEVOLVE_ROTA, sadt,
cria_objeto_coordenada(3,2), cria_objeto_real(cont),
nil,nil);

Here, two objects are created: one of type coordenada and another one of ty­
pe real. Both objects will not be bound to the user's cenario, because they
are temporary objects. Without Garbage Collection these objects would stay
in the memory until the end o f the user session. However, the primitive opera­
tions cria_objeto_coordenada and cria_objeto_real are implemented in a
way that ali new created objects are put automatically into the Garbage List
and, hence, whilst staying unbound can be removed at an appropriate time.

New Concept and Functionality of the Garbage Collection

The cycle of Garbage Coliection of the conventional PROSOFT system actualiy
depends on the main loop of the system, i.e. the interaction cycle of the PROSOFT

user. Whenever an interaction loop ends, ali unbound temporary objects are
eliminated by the Garbage Collector.

Moreover, the actual Garbage Collection - which is clone by the primitive opera­
tions of the system- is using a global variable to maintain the garbage list. This
implementation concept conflicts with the implementational necessities of the
Distributed PROSOFT. Furthermore, ATOs that are producing garbage objects
may be located at different servers. These facts require the necessity to conceive
a Distributed Garbage Collection.

5 SUGGESTIONS 18

The collection cycle of the Distributed Garbage Collector should not be related to
the PROSOFT main loop anymore, but must be oriented at the server dispatching
routine that serves a remote ICS request. Whenever a client process asks a remote
server for a service, its dispatcher routine creates its own garbage list, in a way to
keep it consistent with that one on the client side. At the end of the service the
dispatcher calls a procedure to destroy ali those objects which still have remained ·
in the garbage list. Due to the fact that the dispatcher routine is executed by·
its own. thread o f control, the garbage list is bound to a thread-specific variable
which can be accessed only by the thread the variable belongs to.

However, both sides involved in a service request must have knowledge, whether
an object is garbage or not on the other side. To convey this recognition it is
necessary to store this information in the objects themselves, since objects are
the entities to be sent to the remote side. Thus, whenever an object (parameter ·
or result) is verified to be garbage on the remo te side, it is inserted into the local
garbage list too. This procedure warrants the garbage lists on both sides to be
consistent.

In summary, the main differences between the conventional and distributed gar­
bage collection are the following:

• The conventional collector is related to the interaction cycle of a PROSOFT

user, while the distributed one is bound to the thread of an ICS dispatching
routine of an ATO server.

• In contrast to the conventional implementation the distributed one has to
take into account, that garbage objects passed as parameters or received as
result by a remote ICS call have to be treated as garbage on the server as
well as on the client side.

5 Suggestions

As stated previously, the Distributed PROSOFT system provides different mecha­
nisms to allow communication of processes over the network.

Since the distributed programming is more complex than conventional program­
ming, failures of the components of the working environment (servers, network)
might cause severe recovery problems. Hence, some suggestions are made which
should be taken into consideration.

5 SUGGESTIONS 19

5.1 Communication between Users

· The current communication ÍJJ,.Ristributed PROSOF1t,.,.W9rks the way that a user or
a client process makes a requést'to an existing server' process. However, communi­
cation between different users is not yet possible. Once a base of communication
has been implemented, there would exist possibilities to provide communication
between the users as well.

The exchange of objects belonging to different users is possible, because the
mechanism of remote ICS already provides this functionality. The Distributed
PROSOFT could, hence, become a cooperative environment, if an object manager
would be provided .. Following the PROSOFT paradigms, this manager should be
an ATO taking care of the data exchange between users.

5.2 Reliability

Reactivation of Server Processes

A crash o f an ATO server may occur. This creates the need to restart the server in
order to continue serving the incoming requests. However, the new server process
does not have the same information buffered as the old one does; some unexpected
effects might occur.

The main problem is in our eyes that some activated servers may have nodes
which are marked as uptodate in the server which has just crashed. By this way
these nodes are not sent to that process, when a remote ICS call occurs, but they
are needed in this new server, so that objects can be rebuilt there.

A solution for this problem is to force the PROSOFT Manager to inform all existing
servers, that a specific server has been restarted after a crash, so that they can
actualize their package set information.

Change of the Localization of the Prosoft Main Loop

In the current PROSOFT implementation the main loop, i.e. the interaction cycle,
is located in the ATO Menu which is incorporated with other frequently used
ATOs in a server package. The main data of every user (the so-called cenario)
are stored in the memory of this package and there is no replication of these data
available in the memory of the user main process. Hence, a crash of this package
would provoke a total loss of data of all active users.

A solution of this problem would be to move the localization of this central loop
from the ATO Menu to the main program of each user, so that the user would
be able to recover the data of his cenario.

·~· .

6 CONCLUSIONS 20

6 Conclusions

The implementation of Distributed PROSOFT offers many advances reflecting
more productivity, better resource usage and an easier configuration of the sy­
stem. Besides, this environment will be a base to future implementations allowing
cooperative work among different PROSOFT users.

The performance of the distributed environment is very satisfactory. Even though
the ATOs are distributed over the network, their response time is very similar
to the previous environment. The effi.ciency depends, however, on an appropriate
configuration of the ATOs (see section 4.3.1).

The economy of memory resources must also be taken into consideration. In the
conventional PROSOFT, every user had the complete set of ATOs available to his
private use; a lot of memory resources was wasted. In the new implementation
the usage of memory is optimized, once the ATOs are shared among the users.

The new environment also provides easy configurability. The addition and remo­
tion of ATOs in the PROSOFT environment was not an ordinary task, since many
source codes were supposed to be updated and recompiled. The new environment
allows an easy customization of the ATOs, and their servers can be generated
automatically by means of a utility using the configuration file.

The goals and aims of the project have been achieved. Now PROSOFT is are­
modeled system ajusted to the new requirements. Advanced architectures and
mechanisms have been used to implement and to test the new version successful­
ly on multiprocessar machines.

BIBLIOGRAPHY 21

Bibliography

[Blo 92] John Bloomer. Power programming with !fPC. O'Reilly & Associates,
Sebastopol, Calif., 1992. XXXII, 459 p.

[Nun 92] Daltro J. Nunes. Estrategia data-driven no desenvolvimento de soft­
ware. In VI Simposio Brasileiro de Engenheria de Software. Sociedade
Brasileira de Computação, Proceedings 1992.

[Nun 93] Daltro J. Nunes. Verbesserung der Software-Qualitãt durch Verifikation
der Korrektheit der Implementierung im Projekt Prosoft. Fakultãt
Informatik, Universitãt Stuttgart, Report No. 1993/2.

[Pow 91] M. L. Powell et. al.. SunOS Multi-Thread Architecture. In Proceedings
ofthe Winter 1991 USENIX Conference, Texas. USENIX Assoe., 1991.
pp. 65-79.

[Sch 94] Heribert Schlebbe. Distributed Prosoft. Report on a working stay at the
Institute o f Computer Science o f the State University o f Rio Grande do
Sul {UFRGS) at Porto Alegre/ Brazil, from May 1 to June 15, 1994,
Institut für Informatik, Universitãt Stuttgart, 1994.

[Sun 95] Multithreaded Programming Guide. SunSoft Press, USA, 1995.

APPENDIX 22

Appendix

Syntax of the Configuration File

In the following is given an example of the configuration file of the distribution
of ATOs over the network and the rules to create it.

The syntax of the file is very simple:

<prosoft_configuration> := <server_configuration>* .
<server_configuration> := <package_specification> <ATO_specification>* .
<package_specification> := '@' <package_name> ':' <server_type> ':'

<package_name>
<server_type>
<server_host>
<server_program>
<ATO_specification>
<ATO.identifier>
<ATO_name>

<server_host> ':' <server_program> ':' .
:= string.
:= 'M' I 'S' I 'L'.
:= string.
:= string.
:= '&' <ATO.identifier> ':' <ATO_name> ':' .
:= integer.
:= string.

Comments: Comment lines may be inserted to the configuration file by using
the character % at the beginning of a line.

Specification of ATO packages: A package is defined by indicating the follo­
wing items:

1. name of the package;

2. server type, i.e. how it is going to be executed {L - Local, S - Single-user
or M- Multi-user);

3. name of the host where the server will be executed, and finally

4. directory where the server executable resides (if no host name is given, the
server will be started for exclusive use of the user).

lnclusion of ATOs in a package: Designates an ATO to be incorporated into
the last defined ATO package (ATO identifiers and their names are defined in a
file of the PROSOFT system called nomes .h).

APPENDIX 23

The following configuration file was used to distribute some ATO servers on dif­
ferent hosts o f the workstation pool at the lnstitut für Informatik, U niversitãt
Stuttgart. The Distributed PFtÇ>SOFT implementation was tested under these con­
ditions:

% Pacote gráfico
~grafico:S:tanne:/user/granvile/prosoft/servers/grafico_svc:

%
% --
% Pacote Kernel
~kernel:M:tanne:/user/granvile/prosoft/servers/kernel_svc:

&50:ATO_CENARIO:
&51:ATO_QUADRO:
&52:ATO_MENU:
&53:ATO_OPCAO:
&54:ATO_SERVICE:
&66:ATO_LISTA:
%
% --
% Pacote Local - Diretório
~directory:L::directory_svc:

&58:ATO_DIRETORIO:
&66:ATO_LISTA:
%
% --
% Methods
@methods:M:trick:/user/granvile/prosoft/servers/methods_svc:
&60:ATO_NSD:
&61:ATO_ROTA:
&62:ATO_SADT:
&56:ATO_JACK:
&66:ATO_LISTA:
%
% --
% Sala
~sala:M:tanne:/user/granvile/prosoft/servers/sala_svc:

&96:ATO_SALA:
&66:ATO_LISTA:
&57:ATO_TEXTO:
% --

APPENDIX

#define ICS_PROG
#define ICS_VERS
#define ICS_PROC

60
1
1

I* Package program number *I
I* Package version.number *I
I* ICS procedure number *I

struct obj_struct (
objeto antecessor;

posterior;

);

objeto
objeto
integer
integer
tipo_nodo

sucessor;
Nodeid;
PkgSet;
tipo;

tipo_valores valores;

typedef struct obj_struct *objeto;

struct ics_params (

Unique node identifier
Set of updated packages

User identifier

··•··•·]

integer

integer
int

Userid;
Pkgid;
ato;
oper;
p[S];

ldentifier of return package

);

int
objeto

~;!Jê(ihiti~'n;,i;th'e:se.rv~ti$·ÍJtggi;J. :;nd. vêijii;ri'afld• t . · .. ::;.:~::.::= · .. ::·:.;.·: : '.:··. :::::.:: ::.::": ... :• ::::.::·· ... · ·.: .. ": ::::<=1-:~::.· . : :.: . :.: .::· ; ... · .. ::.-. :. ,, . :

program ics_server_program (

version ics_server_version (

objeto ICS (ics_params} • ICS_PROC;
) • ICS_VERS;

) • ICS_PROG;

Figure 9: Node structure of Distributed PROSOFT

24

APPENDIX

idefine ICS_PROC 1
objeto remote_ics (intato, oper; objeto pl, p2 •••)
(

CLIENT *cl; ics_params params;

info_type *info; objeto result;

info = consult_prosoft_manager (ato);

do {
cl = clnt_create (info->host, info->prog, info->vers, •tcp•);

if (cl == NULL)
start_ato_server (info->host, info->path);

while (cl == NULL);

params = encode_ics_params (ato, oper, pl, p2, •••);

clnt_call (cl, ICS_PROC, xdr_ics_params, params, xdr_objeto, &result,

CALL_TIMBOU'l');

result = decode_ics_result (result, ato, oper, pl, p2, •••);

} return (result);

Figure 10: Remote ICS (client side)

25

APPENDIX

Server's RPC address
#define PACKAGE_PROG 60 I* Server program number of the package *I
#define PACKAGE_VERS 1 I* Server version number of the package *I

26

#define ICS_PROC 1 I* Server procedure number of ICS (the only procedure defined) *

Server dispatch function

void package_prog (rqstp, transp) struct svc_req *rqstp; SVCXPRT *transp;
(ics_params params; objeto result;

if (rpstp->rq_proc == ICS_PROC) (I* Server procedure ICS PROC called *I

g~:the .lCSargum,qts'using:·ih' xd~:êlata~prêseQtitioh·fortran~j,ij:of ICSpjfamêter~::;·.:
if (I svc_getargs (transp, xdr_ics_params, ¶ms)) (

fprintf (stderr, Cannot decode argumenta•); return;
·:··:.·:·:.::.:: :;:· .. ·· .. ::·.:.:·.: ·:·.::·: .. :·: .:·:::::::

···ªÚild·and•ldegtityitiJêip,os~ff·param~ter.•obJ~ts•tot:í/Je.serv~~s:;ªa~ress.:tPac~·
params = decode_ics_params (params);

result = ICS (params->ato, params->oper, params->p1, params->p2, •••);

~r~par~:•the.Pro~~ª;~esult.obj~tior;f,ra~~~~.~aê~itntot~:;dlt!~~~i~~dr!~~·~pâ~::• ·
result = encode_ics_result (result, params);

if (I svc_sendreply· (transp, xdr_objeto, &result) (

} } } printf (stderr, •server system error: cannot send result•); return;

Figure 11: Remote ICS (server side)

)

