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Weak turbulence in dusty plasmas with collisional dust charging: Quasilinear
wave-particle interaction
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Starting from the exact microscopic equations for an unmagnetized dusty plasma, where the dust charge is
regarded as a new degree of freedom of the system, we present a self-consistent set of equations that is suitable
for weak turbulence analyses, where we have considered that the dust is electrically charged by absorption of
plasma particles through inelastic collisions. In the quasilinear limit of the wave-particle interaction, we find a
modified equation for the spectral energy density of the plasma electric field, and two other equations of the
spectral energy densities associated with the fluctuation of the dust distribution due to plasma particle absorption,
and with the fluctuation of the dust charging current. Different dispersion relations are found respectively for
each type of oscillation. The corresponding kinetic equations for the waves are given, as well as the temporal

evolution equations of the dust and plasma particles.
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I. INTRODUCTION

The presence of dust may greatly modify the electromag-
netic properties of a plasma. This feature relies on the fact
that dust particles are in general significantly more massive
and bigger than ions and electrons and as such can act as
a sink of plasma particles through inelastic collisions. The
collisional absorption of new charged particles by a dust
grain is, to a high degree, influenced by the charges already
attached to its surface in a self-consistent process where the
electric interaction between plasma particles and dust particles
plays an important role. Other factors also contribute to the
collisional charging process, for instance, the distributions
of dust size and density and the mean thermal energy of
plasma particles. In addition, mechanisms of emission of
particles can also be effective, as photoemission and secondary
emission of electrons. Therefore, as a consequence of the dust
presence, the propagation of electrostatic and electromagnetic
waves in dusty plasmas exhibits new features compared with
dustless plasmas. Many investigations have been made on this
subject, and here we cite a few authors [1-5], who use either
a magnetohydrodynamic or a kinetic approach. Besides the
dust charge, the dust mass is particularly important and is
intrinsically related with two low-frequency normal modes of
propagation in unmagnetized weakly coupled dusty plasmas,
the dust acoustic and the dust ion-acoustic modes [6], which
were theoretically predicted by Rao, Shukla, and Yu [7] and
Shukla and Silin [8].

The eigenmodes that arise from the collective motions in a
plasma may become unstable and may also interact one with
another. If the amplitudes of the eigenmodes are sufficiently
small, their interaction will be weak, but not necessarily
negligible, and can be classified into three different classes.
The first one is the quasilinear wave-particle interaction, which
occurs more strongly when the resonance w = k - vis satisfied.
The second one, the nonlinear three-wave interaction, satisfies
w; + wy = w3, K; + Ky = k3. The third one is the nonlinear
wave-particle class, where the resonance condition occurs for
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w1 — wr = (k; —Ky) - v, corresponding to a wave scattering
by a particle [9].

The theory which incorporates the description of these
low-order nonlinear processes is the so-called weak turbulence
theory, whose theoretical foundations were largely developed
in the 1960s and 1970s [9-13] and have been revisited in
more recent years [ 14—16]. The framework of weak turbulence
theory has been employed to solve fundamental problems in
plasma physics, since it provides tools for the understanding
of nonlinear phenomena. Among the large number of papers
which apply weak turbulence theory, we cite only a few as
example [17-24]. In these papers the interested reader can
find references to other publications on the subject. Weak
turbulence theory also has been applied to investigate some
nonlinear effects on dusty plasmas eigenmodes. For instance,
Yi, Ryu, and Yoon have investigated the nonlinear frequency
shift in coherent dust acoustic and dust ion-acoustic waves in
an unmagnetized dusty plasma, caused by higher dust acoustic
and dust ion-acoustic turbulence, respectively [25,26].

The present work develops considering the dust charge
as a variable quantity [27] in the context of weak turbulence
theory. We have started from the exact microscopic
distributions for dust particles and plasma electrons and ions,
considering the dust charge as a new degree of freedom of
the system, and considering the first-order kinetic equations
in the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy for a dusty plasma [28]. Among the diverse possible
dust charging mechanisms we have considered for simplicity
only the charging due to the absorption of plasma particles
by inelastic collisions. The interaction between dust particles
was also neglected for simplicity. This approximation is
valid for investigations in dusty plasmas where the intergrain
average distance is greater than the Debye length, r; > Ap,
a condition typically found in plasma laboratory experiments
and in diverse space plasma environments [29].

In analogy with the standard weak turbulence theory of
dustless plasmas, we have expanded the plasma particles
fluctuations and the dust particles fluctuations in powers of
the plasma electric field, as well as in powers of the fields
associated to the dust electric charging process. In the present
work we concentrate the analysis on the effect of wave-particle
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interactions, obtaining a complete set of quasilinear equations
which interconnects the time evolution of the averaged particle
distribution functions with the kinetic equations for the actual
wave fields and for fieldlike quantities which are related to dust
charging fluctuations. A group of three independent dispersion
relations naturally arises from such a set of equations and
can provide relevant properties of electrostatic waves in an
unmagnetized dusty plasma. The outcome is a self-consistent
quasilinear kinetic formulation for the time evolution of plasma
particles, electrostatic waves, and dust particles charged by
collisional processes, which was not yet available in the
literature, to best of our knowledge.

The work is structured as follows: In Sec. II we make
a review of the kinetic description for a dusty plasma in
the assumed configuration, introduce the relevant fluctuating
quantities, and obtain a system of equations that is suitable for
a weak turbulence analysis. In Sec. III the system of equations
is expressed in terms of spectral variables for the fluctuating
quantities. In Sec. IV we examine with further detail a
set of kinetic equations which conduct us to a quasilinear
analysis of the evolution of the dust-plasma system, taking
into account electrostatic fluctuations. The associated spectral
energy densities and corresponding dispersion relations are
introduced. In Sec. V an example of application of the
formalism is given, with detailed expressions of the quasilinear
systems of equations for the case of a dusty plasma with a
single ion species and a single electron population. Finally, we
present our conclusions and final remarks in Sec. VI.

II. KINETIC DESCRIPTION

The possibility of absorption of a plasma particle by a dust
grain can be modeled by redefining the microscopic particle
distribution in the form [28]

Ny
No(X,1) = Z 83X — Xic (D]0(tic — 1), (1)
i=1
where X = (r,v), X, (t) = [r;5(t),V,,(t)] are six-dimensional
vectors, f;, is the instant of collision of the ith particle with a
dust grain, and 6(x) is the Heaviside step function. From (1),
the equation for the time development of the distribution N,
can be written as

ON, +8Na -V+8Ng g

ot or v my

_ / dX'QU — ¥ v — V. a)NJX DN, (Xo1), (2)

where X = (r,v,q) are the coordinates in the dust seven-
dimension phase space, and the microscopic dust distribution
is given as
N
Ny(X.1) = 81X — X (1)), 3)

j=1
and the function
Qr—r,v—v,a)
=8(r—r|—a)f[—(v—V)-ep]l(v-V)-er| (4

has dimension of frequency.
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The microscopic equation for the dust component, disre-
garding the dust to dust interaction, is [28]

ON; 0Ny oNg FY
— —_— V —_— i ——
ot aor v my

= - Z / dX'N,(X',0)[Q(r —1r',v — V,a)Ny(X 1)

—Q@r—r,v—=58v, —V,a)
X Ng(r,v — 8Vy,q — qq,t)]. (®))

The g, symbol refers to the electric charge of the plasma
species, and 8v, is the change in the velocity of a dust grain
due to a collision with a plasma particle. Since these are small
parameters in the interaction, one can expand the right-hand
side of Eq. (5), such that

IN; 0Ny oN; FJ 0

_ — . L = ——[I"Ny(X,1)], 6

5 T VT oy p Bq[ a(X, 0], (6)
where

I" = Zq(, / dX'N, X' H)Qr—r',v—v,a). (1)

The first-order term that remains in Eq. (6) is the term due
to dust charging. The approximation in which the dust charge
discreteness can be neglected is valid for sufficiently large dust
grains, with a radius of order a ~ 107> c¢m [30].

Averaging Eqs. (2) and (6),

Afe  0fo N, F"
L+L.V+< ._>

ot ar ov  mg,
= / dX'Q(Ny(X',1)N,(X,1)), (@)
W W (N FIN_ (D
o ar " <av md>_ <8q(1 Nd(X’t))>’ ®
where

No
(NaX,t)) =) / dXis ... Xy, 8[X = Xio (1)]
i=1

x0(tic —)GXio ... Xy,) = fo(X,0),

which is nonzero for ¢ < t),, and G is the density of
probability that at time ¢ the plasma particles are in the state
[Xis(t)...Xn, (¢);¢]. From here to the end of this section we
denote Q(r — r',v — v',a) simply as €.

Solutions to Egs. (8) and (9) require a kinetic equation
for the binary correlation (N, (X’,t)N,(X,t)), which in turn
depends on equations of higher-order correlations, and so on.
The sequence of steps results in a complete BBGKY hierarchy
for a dusty plasma, as found in Ref. [28]. However, it is
well known from plasma kinetic theory that such a chain of
equations can be closed at some order, according to parameters
of interest.

Taking the above into account, we introduce the fluctuation
of the phase density SN = N — (N), which leads us to the
replacement (NyNy,) — (6N46N,) + (Ng){N,) and to the
need of a binary correlation for the fluctuations (SN 8N, ).
At this point, weak turbulence starts to play a role, as it will
become clear as the formalism further develops along the text,
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using the premise that the small parameter in the interaction
can be taken as the ratio between the energy density of the
fluctuating fields and the mean energy density of the plasma
particles.

Using the definition of /™ in Eq. (7), the equation for the
dust distribution can be written as

0 a oN; F7
Ua | a o [3Na Fg
ot or ov  my

0
=—-I(X, t) fd()c' t) — (81’"(X 1)SN4(X 1)), (10)
where the following quantities with dimension of current have
been defined:

1(X,t) = qu/dX’Qfa(X/,t), (11)
SIM(X,t) = iq”/dX/Q(SN(,(X/,I). (12)
Similarly, J
fy,  ofs ON, FZ
3_ft + 8_{' vt < v m(,>

_ f AX'QULAX D fo (Kot) + BNa(X DN, X )].
(13)

With the absence of magnetic fields, we only consider
the electrostatic Maxwell’s equations, where the divergence
equation shall include the contribution of the dust component,
such that

a m
o BNy =4n ;qofvaa(X,t)

+ /dqq/vad(X,t)

and, besides, d/dr x E™ = 0.

Neglecting any other kind of force, the acting force over
a plasma particle is purely electric, F) = g,E™. Considering
that the electric field can also be written as an average value
and a fluctuation, Eq. (13) is given as follows:

(14)

afa afa af(’
Jo 4 Vo, —E 2o
ot + ar v My av
08N, o
_ < 5E'”> = I N, (XS, (X))
my\ OV My Vs

- wo‘(X’[)fG'(Xst)s

where we have introduced quantities §E, and o, with
dimensions of electric field and frequency, respectively,

15)

SE,(X.1) =~

o

ws(X,t) = / dX'Qf(X',1).

/dX/QSNd(X’,t), (16)

a7
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The velocity v, was introduced as a characteristic velocity

of the problem to be examined. For instance, in the case of

electrostatic waves, it may be convenient to choose the thermal

velocity of the electrons. The quantity § E,, is an effective field

associated to dust fluctuations due to the absorption of plasma

particles of type o, while w, is the average collision frequency.
For the dust component we obtain

fa | Bfa q dfa
A g. 24
ot toar ar +md av
d8N, 9
__1 LSE™) — I(X,1)— fa( X, 1)
mgy av aq

- i<51"’(X,z)5Nd(2L’,t)). (18)
dq

Subtracting Eq. (15) from Eq. (2), one obtains an equation
for the fluctuation of the distribution of particles of species o,

dSN, 88N(7
ot ar

s 06N, o [06N,

my OV My ov

[6N,(X,t)E, (X 1) —

O'aO'
v o o
my 0V

8 EW[

'8Em>

(0N, (X,t)8 E;(X,1))

My Vs
+fa'(X1t)5EU(th)] +wa(x9t)8Na'(th)a (19)

where we have considered the average electric field E = 0.
Subtracting Eq. (18) from Eq. (6),

SN, d8N, d
i 4,49 dfa _SEM
ot or mgy BV
dSN, déN,
_ 9 90 spm [ 4 990 spm
mg 0V mg OV

9 9
— 81" —8Ny; + — (81" (X, )8 Ny(X,1))
dq dq

1L sn, —sm 2 s
dq d dq &

(20)

The set of equations for a complete dynamical description
of the plasma is finally closed with the equation for the
fluctuating plasma electric field,

3
— . SE™(r,1)
r

3
=4 (Zqﬂ /dsz(, +/dqqfdv8Nd>. 1)

Now we introduce a simplification by averaging the newly
introduced quantities § E, and w, given by Eqgs. (16) and (17)
over the velocity variable and quantities / and §1™ given by
Egs. (11) and (12) over velocity and dust charge variable. As
a result, the time evolution of the dusty plasma, considering
only the occurrence of electrostatic waves, will be ruled by
Eq. (21) and by Egs. (15) and (18)—(20), where the fluctuating
fields SE™, as well as the quantities w,, §E,, I, §I™, are only
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a function of position and time,

wy(r,t) = i/dvfg/dX/Qfd(é\f'/,l), (22)
No

aEU(r,z)zm"”* avi, | dX'QSNJX 1), (23)

I(r,t) = /dvdqfd qu/dX’Qfg(X’,t), (24)

SI™(r,1) = — / dvdqdeqa / dX'QSN,(X',1). (25)

The averaged distributions are normalized such that n, (r,7) =
Jdvf,(X,r) and ny(r,t) = [ dvdqf,;(X,t) are the number of
plasma particles and dust particles per unit volume.

III. SPECTRAL VARIABLES

Since we are interested in the study of wave-particle
interactions, it seems natural to work in the reciprocal spectral
space, where we are led by performing a Fourier-Laplace
transform of the relevant equations. To simplify the notation,
in what follows we drop the § symbol and the index m.

Initially, starting from (21), we obtain an equation for the
Fourier transform of the fluctuations of the plasma electric
field,

Ex(t) = _@(an / dvN? + / dqq f vak) (26)

where k = |K|.
In the sequence, we consider the field given by Eq. (23),
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where we have defined the nondimensional function

«k
Qv —V.0) = Qv — Vi), (29)
W5y
where w,, is the plasma frequency and the transforms of 2
and N, are given by

Qv —v.,a) = /er(r,v —V,a)e” kT,
' @y’ (30)

/ 1 —ik.r

NIV ,q' 1) = m/drNd(r,v/,q/,t)e kr,

We then proceed with Eq. (295),
4ri
I(t) = . ;CI oy *—/dVdCIfd

X /dv’Qﬁ(v —V,a)NJ (V). (31)

By assuming that distributions f, and f; are uniform in
space, we consider that quantities which depend on an integral
form upon these distributions are also independent of position.
Therefore, Egs. (22) and (24) become

1
Wy (1) = n—/dvfa/dr/dv'dq/

X |(v—=V)-ev|8(r' —a)fav.q',t), (32)

1) = — / dvdg deqa / dr'dv

x8(r' = a)(v—=V)-ev| fo(V.01). (33)

The equations which result from the transformations of the
equations for the average distribution functions, and for the
equations describing the evolution of the fluctuating distribu-
tions N, and Ny, may be said to evolve in different time scales.

My Vs , , , , In fact, it is possible to perform a multiple-time-scale expan-
E,(r,1) = " dvfs | dX'Qr —1r.,v—v.,a)Ng(X'.1). sion in the small parameter of the nonlinear interaction, & < 1,
77 27 by extending the number of time variables such that [11,13]
t=e Y, =, V=", ..
Fourier transforming (27), The slow oscillation time scale affects the plasma particles and
dust averaged distributions, while the fast oscillation time scale
E%(1) = i g, dv is relevant for the fluctuations. Therefore, writing the fluctu-
k()= "k on, v/o ating quantities as functions of (¢,), and taking the Laplace
transform over the fast time, the set of kinetic equations which
X / dvdq' Qv —v,a)N{(v'.q'.t), (28)  we have obtained is transformed into the following:
|

of,(v,t' 1 N ,

R 3(,, A / / dn’ [ o e N (O Ew()) = —(N7 (ﬂ)Eg,(m)}“k*k e, 34
*

3fd(V 61 f’) iy )3fd(f) / / |:
my

d 4o afa k
- — —k- o | NS (&' — = 2 —En(t
z(w—}—la, V+la)> (t) = e vk
INg_
My av

En/<z/>>) - mq . / dn'(Eg(t)Ny

Nd(t )Ew (1)) —

s AN K
E;j(z’)-/dd(q— ntl L En(t)

my OV

0 . N ,
3 <N,?(r’>1n/(r’>>}e’“‘+“>'f"<‘“+‘“”, (35)
q

— (Eg (N7 ). (36)
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. . B] afa 3 /
(—zw+ o Tikev Ig)Ng(t’) = —mida—fv —En(t) — Iy(t )ﬁ - E/a’n/[ln/(t’)fo_n/ —(Iw@NZL)]
/ q 8]Vrﬁllfn’ k/ / q aNILlifn’ k/ /
— fdn| ——2" . _E, () - {22 . _E.1))), 37
/n(md v K ()md oy () 37)
47Tl qg / g / (o2 / !
I(I)——T o = - dvdqfy | dv'Q(v—v.,a)Ng(V,t), (33)
It = — / dvdqdeqa / dAr'dv's(r' — a)|(v — V) - ep| f(V,1)), (39)
wy(t') = n—fdvfa/dr’dv’dq’l(v—v’)~erf|8(r’—a)fd(vﬁq’,t’), (40)
4ri g,
E°(t) = —ﬂq—/dvfg/dv’dq Qv — V. )NV g 1), (41)

En(t') = ——[an f dvN7 (1) + / dqq / dvN, (' )} (42)

where

1 o0
Ax(t,t) = / dwAy(t)exp(—iwt), At = 2—/ dt Ax(t,t") exp(iwt),
L T Jo

for Ax(t,t’) representing N (¢,1), N]‘f(t,t/), Ex(t,t"), E](t,t"), and Ii(¢,1') and where we have made n = (k,w).
Introducing the operators
9 a/0v

S —— 43)
mew—K-v+iws

gr(v) = —

and
—1
9o U,

A ) e A S —
n (V) myw—K-v+io,

(44)

which contain the effect of the collision frequency w,, Eq. (36) can be written as

k / o k/ o k/ o o o o o
NS = i<gg : E)E,,fa +ihSES f, +i/dn|: <Nn w o Ew <N., v >) + hy (EG NG —(En,Nn_n,>):|. (45)

The corresponding Eq. (37) for N¢ requires a previous treatment of the operator 3/dq, before it can be put in a form similar
to (45). For this, we assume that there is a frequency wy, such that

; NI
dq

= wy NI, (46)

(1) s the approximation in first order for lew given by Eq. (56). Then we obtain

k . . . K K
N¢ = i(gg . %)En fa+ihlEnfa+i f dn’[hﬁ(En/Ng_n, —(EwNZ_)) +gﬁ(N;j_n, —Ey _<Nj . _E,,>>} (47)

where Ny,

k' k
where
q a/ov
M 48
g"(v 9) = mda) k-v+iw; “48)
62 18/36]
hd 49
n(V) = md w—KkK-v+io; “49)
and where we have defined the field
A Mg Uy
Ey = 22 Iy (50

in terms of the fluctuating current I, which is represented by Eq. (38). The quantity £, may be regarded as the component of an
effective field associated to fluctuations of the current over the dust particles.
Equation (45) can be expanded as a series of powers of the amplitudes of the electric fields,

o0
Ng =Y NGV (51)

j=1
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At first order, the equation is simply

k
Ny = ,-(gg : %)Enfa + L ER fo (52)
and at jth order we have the formal expression
. . K . K , .
o . /| o o(j—1 o(j—1 o o ar0(j—1 o aro(j—1
NoW :z/dn |:gn <Nn(’n, ).PE,‘, —<Nn<fn, >.PE,,,>> +hg(EGNZYTD — (EGNSY )))]. (53)

As an example, if the expansion is carried out up to third order, series (51) reads

. o k 10 O o k o k
N® = l(gn : E)E,.f(, +ihlES fy — /dn1 /dl12<3(n—n1 —n2)|:(gn : k—:> (gnz : k—j)(E,,, En, — (En, En,))

k k
(e ) 2, = (B ) 0 (8, 52 ) (5 o = 5, )+ 08, 5, 5, = (L 25 |

: ., ks - k; , Kk
—i | dn; | dny | dnz8(n—n;—ny—n3) gn-k—3 Bom T gnz-g (En, En, En,—(En, En,)Eny,—(En, En, En,))
1
k

21
ki
k;

o o k; o k; o o o o\ o o o
X (gn—n3 : k_l) (gnz : k_2> + (gn—n3 : k_1>hn2 (Enl EngEn3 - <Eﬂ1En2)En3 + (EnlEann3>):|

k k
g —3) [hgm (gﬁz . k—j) (E{ En,En, — (EJ En,)En, — (E] En, En,)) + hi_y h% (E] EJ En, — (EJ EJ )En,

+

o
gn7n3 :

)h;(E,,I E{ En, — (En EJ )En, + (En EJ, Em))} + h [(E,,l EnEJ, — (En, Enz)Ef; — (En, En, Eﬁ}))

k
(68, B ) |+ 15 (- ) (B8 B, — (55, B, — (B, EncE )
i 5 G (L B — (e B ) | £ e

Such an expansion would be sufficient to take into account the interactions between the waves and the nonlinear wave-particle
interactions [31]. For the purpose of the present paper it is sufficient to carry out expansion (51) up to first order, in the form of
(52), to take into account the quasilinear wave-particle interactions [31].

The expansion of Eq. (47) develops in the same way,

oo

Ni = NGO, (55)
j=1
with the first and the jth-order terms given respectively by
A p . k
Ny = ihgEn fa +z<gi : %)Enfd, (56)
. ) R . . . . k/ . k/
Ng(]) =1 /dl'l/ [hg(En’Njijn/ D <En’Nj(_Jn/ 1))) + gz (Ngijn/ b PEII’ - <Nj(_jn/ v PEII’>>i|7 (57)
and has a similar expanded form as (54), given by
A . k A P k A

N = ih®Eqfy +z<gg : %)En fu— / dn; / dnzs(n—nl—nz)[hghgz (En En, —(En En,)) + ( d. k_11>hﬁ2 (En,En, — (En,En,))

~ ~ k k k
+ (Enl Enz - (Enl Enz»hz (gﬁ2 : k_2) + (gﬂ : k_1> <gﬁ2 : k_2>(En2En1 - <En2En1>):|fd
2 1 2
» f dn, / dn, / dns3(n —ny —ny — n3>{hg [hﬁ_mhﬁz(ﬁn, B By — (Ews Ens)Ens — (Bny Ens B

k A oA PO .
+ (gz—m ' k_11>hﬁ2(En1 Enz Em - (Em Enz>En3 - <En1 Enz Em)):|

k A oA PO .
+ (gﬁ : k_j) |:hg—n3hi112 (EnlEann3 - (En] Enz>Eﬂz - <E111 Eanns))

k A .
+ (gﬁng : k_ll>h£ri2(En1 Enz Em - <En1 Enz>En3 - <En1 Eanm)):|
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+ [(E,, Eny B — (Ens Ent)Ews — (B Eny Bt i1

A . . K

+ (Enl En, Eny — <E“1 En2>E“3 - (En] Ey, En3>) (gﬁ ' k_j
k

+ (En, Eny Eny — (En, Eny)Eny — (En, Eny Eny)) <gg 2

. . k
+ (En, En, En, — (En, En,)En, — (En, En2En3>)hd <gn - _1>

n'*n—n;
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ki

g0 o l,z—l')}( a. kz)}fd (58)

The set of equations which governs the time evolution of the dust-plasma system, in the quasilinear approximation, is therefore
given by Eqgs. (52) and (56), which are respectively limit cases of (54) and (58), for the fluctuations in particle and dust populations,
and Egs. (34) and (35) for the average distributions, with the fluctuating fields given by Egs. (41), (42), and (50).

IV. QUASILINEAR APPROXIMATION

In neglect of nonlinear effects, only terms proportional to
f- and @, will remain at the right-hand side of Eq. (19),
and terms proportional to / and to df;/dg will remain at the
right-hand side of Eq. (20).

A coupling of the different electric field sources explicitly
arises by insertion of Eqgs. (52) and (56) into (41), (42), and
(50). Multiplying the resulting equations by E_,, from the right
and taking the average, we obtain

(Ea)e+v) =D xiolEgEn) + V1 (EaEn). (59)
(EZE_n) = t10(EnE_n) + 02 (E}). (60)
(EnE_n) = p1(Ep) + D p2o(ES E_n). 61)

Here some response functions can be identified. The first
one is the well-known expression of the dielectric function,

em) =1+ x(m), (62)

where x (n) is the linear electric susceptibility,
Zqo [ 9rn @

Expression (63) together with (43) are known modified
susceptibilities expressions that can be found in kinetic
formulations with a nonzero collisional term describing the
inelastic collision absorption [32,33]. The other ones are due
to the presence of dust and contribute to the effective linear
susceptibility,

ym=--3 /dqqfdv k) fu, (64)

x(m) =

1o = Tau [ dvhis,. (65)
Yi(n) = ﬁ / dqq / dvhikfa, (66)
4 @ mg 1
=—Yy 2<% [dvd
p1(m) 2 2 mong ] 4" qfa

x de’Qﬁ(V —v.,a)(g] - K)f5, (67)

« / VLW — V. hIkfy.  (68)

(

471 9o
Sio(m) = /dea/dqu Qv — V. a)hikfy,
(69)

47 g
o = 53 /dvfafdvdq Qv —v.a)(gl k) fu.
(70)

Substitution of (60) in Egs. (59) and (61), and further
substitution of the succeeding expression in Eq. (59), leads
to

P1+ Qg P20 820
(E121) €e+y — Z Xlo (510% + C2a>

P1+ D o P2 C20

w 1 - Zg’ P20’ ;la

=0. (71)

Defining by D; the quantity that multiplies the spectral
density, the identity

P1+ D5 P20 L0
Dy=e+v — Xa<§aa—+§o>
] Z ] : 1 - Za'/ p20”§10” :

P+ D, P20 8200 _
I_Z 102(7;10

is the dispersion relation related to the spectral energy (EZ).

Denoting by oS} the angular frequencies which are the
roots of the dispersion relation (72), we assume that the
only field fluctuations to be present are those associated
to these frequencies. Moreover, assuming a random-phase
approximation, we will have

=YY L75(w+ jof). (73)

o j=+

4 (72)

where Z,’ denotes the total intensity of the fluctuations.

We expand the dielectric linear functions under the as-
sumption that [Im(w)| < |w|, and take into account that the
imaginary part of the frequency incorporates the slow variation
of the wave amplitudes. Therefore [13],

[em) + y()](E})

i
o |:6(n) ym+ 5( ow ow

ORee | aReW)%}(Eﬁ). (74)
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From Eq. (71) we obtain

i (9Ree = dRey o P1+ Do P20 C20 o1+ D0 P20 5200
2( EYS + - 9w > 8t< n> (6(11) + 1;0(“)) |:Z Xlo (cla 1 — Za/ ,020/_;10/ + §2(T> + 1#1 1— Z(,r ng’glg/ :|

(75)

The time evolution of (E2) can be obtained by equating the imaginary part of (75) to zero,
1 <8Ree oRey

2

a
)E(E,ﬂ = —Im[e(m) + ¥ ()](E;)

P14 D 0 P20 5200 P14+ D0 P2 826 | n
+Im| Y« (c “—+ca)+w"— EX.  (76)
|:; 7 7 - Zo’ 1020’&-10’ 2 ] 1 - Zo'/ pZG’gla’ < )

Inserting (73) into (76) and integrating in w, we find the kinetic equation for the intensity of the waves,

Re [ae(m?k) aw(1w7k)] g
— +
2 at

w w

LN . o j + o’ o’ o’
= —Im(e(joiy) + ¥ (joik)) L’ +1Im Z Xlo (glﬂ% + Q")

ow ow

p1+ ng ,020’525’ I;Zj-

+ ¥
1 - Zg’ 1020’;10’

(77)

For (Eﬁ) we proceed with a similar approach but multiplying Egs. (41), (42), and (50) by £_,. Another set of three equations
is obtained in the form

(EaE_n)(e +¥) = ) x1o{Ey E—n) +¥n(E7), (78)
(E](:E—n> - é‘la( ) + ;20 <E E—n) (79)
(Eq) = p{EuEw) + ) p2o(Ey E n). (80)
By inserting Eq. (79) in Eqgs. (78) and (80), and combining the succeeding expressions, we obtain
A a;la + 1//1 Z ’ Xla’gla’ + K/f1
Ezl:l_p ZGXI - pa( ot o0 Z =0, (81)
( n> 16+w_20 Xla§2(r Z > é‘l ;‘2 €+l/f—2[,/ Xl(r/é‘2(r’

o

which leads to the dispersion relation associated to (Efl),

Y s Xiollo + V1 < Yo Xio'Slor + Y1 )
D, =1-— — ol Clo + S0 =0. 82
? Pl €+ 1/f - Zg de{ZU sz Cl €2 €+ w - Zg/ XlU’é’Z(T’ ( )

By analogy with (E2), we assume

o

(Ea)= 22D L8(w+ jek). (83)
o j==+
where @ are the roots of D,, with the time evolution equation for the intensity of the fluctuations given by

Re[ 3D, (jw%) 01 w\1sa)
S oo =
For (Eg’ES ), considering the same equations (41), (42), and (50), but multiplied by E?,
(EaBZ,)e +¥) =D xior(Ex EZp)+ ¥1{EaEZ,). (85)
(E7 E,) = Cio/(EaE? ) + Cao/(EnE?,), (86)
(EnE?,) = pi1(EnEC,) +Z pror(ESE,) (87)

By combining these equations,

o' po \ _ €+w P1X16" o" o
(EgE?,) = z;w; p— (EH& +p20~><E,, E?,)

$20' o o 6+1ﬁ P1X1o” o" o
cty 2 [X“’”(E“ L)+ v — pivn <e Ty T ><E“ E“>]' %)

o
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A dispersion relation
D;=0 (89)

can be obtained from the system of equations that arises from (88) when the plasma species, electrons and ions, are defined. An
example is given in the following section. If w$; are the roots of D3, then we may write for each pair o’c

E[am (jwzk)} 0T

> P = —Im[D3 (ng(k)]:[a]a ‘g (90)

where, in analogy with the previous two cases,

(EJEZ) =D T 8w+ jooh). 1)

o j=%

dw

It is worthwhile to notice that there are as many equations (90) as there are combinations among equal and different plasma
species.

The time evolution of the distribution functions of the plasma particles and dust is given by (34) and (35). By substitution of
(52) and (56),

UsV) o [ gk 3<gn X(E2) + h3(ETE ))fa—z

at’ My k 0 k .
afa(v,q,t") ofa . q kK 0/, - ko, 29 e ko

= _[_ — d _ h E E7 R E _ . d h E e E E7 .

at’ aq lmd nk v n< n n) + &n k( n> fd lmdv* aq n n< l‘l) —+ gn k( n n) fd

93)

Up to this point only correlations of equal fields were given. The expressions for the correlations with mixed field fluctuations
can be obtained from a combination of Egs. (60), (61), (78), (85), (73), (83), and (91),

(EJE_a) =10 01 DD T 8(w+ joth) +szg (EJE) | + 00 ) Y TV 8(w + joofy). (94)
a j=x o j=%
- P1+Z ,Ozaiza
EqE_y) = 778 ( 95
A > X1a§|a+1/f1 o .
EnE_,) = d s 2 ), 96
( > e+w—ngla§mXa:,=Zi 3o+ jok) oo
o 1 e+y P1X10"
(EaE%) = e+¢f;[X'“”Lw'ﬁw—mwl(ww ﬂzz Ao+ jek). o0

Expressions (95)—(97) can be inserted into (92) and (93), but (94) needs, as mentioned before, a previous definition of the
plasma species. For instance, in a electron-ion plasma we should find
(C1ep1 + G2e)(1 — C1ip2i) + (C1i o1 + §2i)81e p2i

(1 = C1ep2e)(1 = £1: 02i) — L1i P2 81602

With substitution in the kinetic equations, the result is a closed system of equations given by Eqs. (72), (77), (82), (84), (89),
(90), and (92)—(94), which describes the time evolution of the system in the quasilinear approximation.

The explicit dependence on the dust charge ¢ in the kinetic equation for the dust distribution is complemented with the
equation for the charging current, I = dq/dt, which is given by Eq. (33), and by the plasma neutrality condition,

D> Noda +naZse =0 (99)

o

V. THE CASE OF A TWO-COMPONENT DUSTY PLASMA

(E5E_o) = (E:

n

), (ELE_n) = (ESE_n)(e S i). (98)

Let us consider the case of a dusty plasma composed by dust, electrons and a single ion species. The explicit kinetic equations
for such a two-component electron-ion dusty plasma are

Re [ d¢e(jo® v (jo )0z . 4

7|: (8a)lk) * E?a) lk)] 8;( = ~Im[ Dy (jeii) |, (100)
Re [ 9D (jws,) 702 o yaa
7[ » Qk} 5 = ~m[Da(jes) [ (101)
Re [ 9D3(jews) 9T, i)
7[ E” ﬂ o = ~Im[Ds (o) [, (102)
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where in each case the index « = 0,1, . .. ,n, where n is the number of roots of the corresponding dispersion relation. In Eq. (102),

the indexes oo indicate the combinations ee, ei, ie, and ii. Moreover, Dy, D,, and Dj; are given as follows:

+ 3, p2gCrg
Di=e+y = Xiobw — (xm +> xla;w)%, (103)
> o XioCler + Y
Dy=1- 3" p2o 20 o =3 oo, 104
) <P1+ A P2082 >6+¢—ZU/X1G'{20/ A 020810 (104)

o= -a g (5 ) - s e (2 ) )

) 1_§1i€+fﬂ+—1€>11ﬂ1<€pf;+p2i> Eil/f[X“—i—%EJr;—'——Ii)llﬂl(Epf;+p2i>“

o (G ) gl (A )]

g g”eﬁf—ﬁ.wl(fﬁ; +"26)+ iw[x‘ew‘e;ﬁilwl (epflw +”26>}}' (1o

We find instructive to demonstrate the obtained equation (105). For the case of a two species electron-ion plasma, Eq. (88)
leads to a coupled system of four equations,

e2\ _ €E+y P1X1e e2 P1X1i ) i e
<En>_§1€€+1ﬂ—,011ﬂ1 [(Ew +pze>(E,.)+<€+w +pzz)<EnEn>}
2 2 e+ Y P1Xle 2
+6+w|:X]e(En>+W]€+¢_lel<€+1/f+p2€><En >i|

$2e i e €+ Y P1X1i e
ey [X“<E“E“)+w‘e ¥ — prv <e y >(E“E“>}

e i _ €+¢ P1X1e e i P1X1i i
<EnE7n> §1€6+¢__p]w_] [<E+1ﬂ +P2e>(EnEn)+(6+l// + 21)( >:|

+ 6§2€ |:Xle<EeEl >+1/f1 6+1// (IO]X]e +;02e>(Exe1El_n>:|

e e+v —pr1yr \e+ Y

$2e e+y P1X1i ‘ iﬂ
+e+w[x“< >+‘”Ie+w—p1w1<e+w+p2’)(E“) ’

(EnES,) = G- +f/f+—¢;011/f1 [(ffljf + ,02e>(Ef;2) + (Gpi:(i/lf + pZi)(E;Ein):|

$ai 2 e+ P1X1e o
+e+w[x'e(E“ e o (ew +ng>(En >]

&oi i me €+1ﬁ P1X1i ) i e
e +y [Xll(EnE_n) i €e+y — piyn (6 +v " pz,)(EnE_n)i|

i2\ __ €+1ﬁ P1X1e e i P1X1i i2
(B} = g7 Y — o [(e +y +p2€><E“E‘“>+ <e +y +p2’)<E ﬂ

i ¢ i e+y P1Xle ¢ i
T +y [Xle(EnEn) e e+y —piYn (E + v e ><EnEn>:|

S €E+y P1X1i \, g2
* +w[ )+ +w—p1w1<e+w+p2’><E“)]‘

Putting the above system in matrix homogeneous form, a 4 x 4 determinant is obtained from the coefficients,

Dy 0 D3 0

0 D 0 D
D; = Dy, 0” Dss 013 = D11 D33 — Di3Dsy, (106)
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where

6+1// P1Xle >
Dy =1- e + 02
! CIE‘H//—,OH/H(G‘H// &

€+ Y <,01X1i
€+ v — i

D3 = —¢1.

$2e
e+1ﬁ+p2i> +w|:X11+W1

PHYSICAL REVIEW E 92, 023102 (2015)

$2e
e+

6+W P1Xle
|:X1e+1ﬁ1 I <€+W +pze):|,

€+ Y <;0]X]i +p~>]
+vy—pn\e+y )L

+v

+ . ¢
Dy =~ — _w (,01)(1 +/Oze> i‘ﬁ |:Xle "i‘Wl6 —i—f// o <:)1_i(lw +:02e):|’

e+ —pY \e+ ¢

€+ v (Plei
€+v — o1

D33 =1-¢y;

&2
6+¢+/02i> +w|:Xll+1ﬂ1

€+ Y (Plei +,o->:|
+¥ —pY \e+ ¢ )1

The dispersion relation given by Eq. (105) corresponds to Eq. (106) equal to zero.
The connection of the kinetic equations for f, and f; with the dispersion properties of the plasma may become more explicit

with integration in terms of (73), (83), and (95)-(98),
fo(v,t) _

J(ij:

A i ZZ/dkk 9y <kjwlk. >Iajfo_l_azj=2/dk%.5

o

» [ e (C1ep1 + L2e)(A — £1502i) + (C1ip1 + $20)1e02i
o jeli $1i 0281602

(1 = &1ep2)(A = 13 02:) —

e+

868 + 80’[(6 = i):|I](:jfcr -1

ZZ/dk

o j=%

k) 1
X {(gk,ngk'%)6+w2|:X1a'f+1/f16

afd(Van/)

q kK o/,
- dk~ . 2 (nd .
or g Xa:;/ k av< kojof ]

Yo Xiollo + ¥ )A j afa
dk " LY fg—1==.
mdv* Xa:Z / < k. joi +gk jw?ke‘i‘w Z Xl(l;Z(T fd aq

VI. CONCLUSIONS

In the current work we have developed, on the basis
of weak turbulence theory and starting from first principles
of kinetic theory for a dusty plasma, a modified equation
for the spectral energy density of the plasma electric field
fluctuations and, as far as we know, two novel equations for
spectral energy densities associated with the charging process
of the dust particles. The analysis has been made considering
the occurrence of small-scale fluctuations of the dynamical
variables, so nonlinear effects are taken into account up to
small order. For the present work, wave-particle interactions
have been taken into account in the form of quasilinear effects
and effects due to collisional charging.

In the final part of the paper, Sec. V, detailed dispersion
relations have been given for electric field fluctuations and
for effective field fluctuations associated to dust charge and
dust current fluctuations. The time evolution equations for
these fluctuations have also been presented, as well as the
corresponding evolution equations for the particle distribution
functions.

We conclude with the expectation that the present formal-
ism may be useful for studies on the time evolution of turbulent

P1 X1o” 70
P14+ D g P82 d j
T~ St + gk,jw';k)zﬁ Ja

(108)

(

dusty plasmas. Further extension of the formalism can be
made, for instance, including the possibility of electromagnetic
waves or the occurrence of spontaneous emission effects,
similarly to what has been made for dustless plasmas [34,35].
Before these formal developments, however, it is of interest
to produce a fullly developed analysis of the time evolution
of the coupled equations of the weak turbulence theory
for a dust-plasma system, including nonlinear interactions
involving the electrostatic wave fields and the fluctuations
of the dust charge and of the dust charging currents. Such
analysis is lengthier and is the complementary extension of
the present work in regard of the nonlinear interactions, with
the use of Egs. (54) and (58) in place of Egs. (52) and (56). We
believe that such fully nonlinear analysis requires a separated
manuscript, which is under development and which we intend
to submit for publication in the near future.
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