
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE ṔOS-GRADUAÇÃO EM COMPUTAÇÃO

JULIANA KAIZER VIZZOTTO

Structuring General and Complete
Quantum Computations in Haskell: The

Arrows Approach

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Antônio Carlos Rocha Costa
Advisor

Prof. Dr. Amr A. Sabry
Co-advisor

Porto Alegre, July 2006

CIP – CATALOGING-IN-PUBLICATION

Vizzotto, Juliana Kaizer

Structuring General and Complete Quantum Computations
in Haskell: The Arrows Approach / Juliana Kaizer Vizzotto. –
Porto Alegre: PPGC da UFRGS, 2006.

128 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2006. Advisor: Antônio Carlos Rocha Costa; Co-advisor:
Amr A. Sabry.

1. Quantum Programming Languages. 2. Haskell. 3. Density
Matrices. 4. Monads. I. Rocha Costa, Antônio Carlos. II. Sabry,
Amr A. III. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Jos Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquı́ria Linck Bassani
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Flávio Rech Wagner
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If quantum mechanics hasn’t profoundly shocked you,
you haven’t understood it yet.”

— Niels Bohr

ACKNOWLEDGMENTS

First of all I am very grateful to my advisor Antônio Carlos da Rocha Costa for intro-
ducing me to thismagicfield of research calledQuantum Computing.

This thesis has a long trajectory and I have many people to thank in many different
places. I am going to start thanking my first colleagues at PPGC/UFRGS, Bohrer, João,
Júlio, Márcia Pasin, Mozart, Pilla, Pati, Tati, Vânia, Wives, and Zé. In particular, thanks
to Mônica for her support and special friendship. I’d also like to thank to my second round
colleagues at PPGC/UFRGS Fábio, Márcia, and Pablo. Many thanks to all people from
the Computer Science Department at Indiana University, specially to Prof. Amr Sabry
for the many helpful discussions and pointers, Prof. DanielFriedman for his hospitality,
and friends Eric, Marina, and Will, for their support and company in stargazing nights.
My gratitude goes also to Jonathan Grattage, and Thorsten Altenkirch for our helpful
quantum discussions. Finally, I would like to thank my actual and lovely colleagues at
UCPel, Adenauer, André, Graça, Marilton, Pilla, and Renata. They had an important role
in the conclusion of this work.

Thanks to my best friends Fernanda and Flávia for their encouragement and special
friendship.

Thanks to my wonderful family. Specially, to my parents, Angelo Renato and Terez-
inha, and to my sister, Daniele, for their love and support.

Finally, I would like to express my special gratitude to my advisor Antônio Carlos da
Rocha Costa and to my co-advisor Amr Sabry for their teaching, guidance, support, and
for their belief in my ability to finish this task.

This research was supported by a grant from CNPq and another grant from CAPES,
during the period I was visiting Prof. Amr Sabry at Indiana University.

CONTENTS

LIST OF FIGURES . 9

ABSTRACT . 10

RESUMO . 11

1 INTRODUCTION . 13
1.1 Quantum Computation . 13
1.2 Domains of Quantum Computations . 14
1.3 Quantum Programming Languages . 15
1.4 Monads and Arrows . 16
1.5 Contributions of this thesis . 17
1.6 Plan . 18
1.7 Publications . 18

2 QUANTUM COMPUTATION . 19
2.1 Axioms of Quantum Mechanics. 19
2.1.1 States . 19
2.1.2 Observables . 19
2.1.3 Measurements . 20
2.1.4 Dynamics . 21
2.1.5 Composite Systems . 21
2.2 Qubits . 21
2.3 Quantum Operations on Qubits. 22
2.3.1 Measurements . 22
2.3.2 Unitary Transformations .. . 22
2.4 Characteristics of Quantum States . 24
2.4.1 Entanglement . 24
2.4.2 Copying a Qubit . 24
2.4.3 Discarding a Qubit . 25
2.5 The Deutsch Algorithm . 25
2.6 Quantum Computer Models . 26
2.6.1 Quantum Computer Models with Classical Control 26
2.6.2 Quantum Computer Models with Quantum Control 27
2.7 Summary . 27

3 INDEXED MONADS AND INDEXED ARROWS 28
3.1 Monads . 28
3.1.1 Monads in Haskell . 29
3.1.2 Monads in Haskell with Type Classes 30
3.1.3 Monad Transformers . 31
3.1.4 Indexed Monads . 32
3.2 Arrows . 33
3.2.1 Arrows in Haskell . 34
3.2.2 A Better Notation for Arrows .. . 36
3.2.3 The Arrow Transformers .36
3.2.4 Indexed Arrows . 37
3.3 Summary . 38

4 QML: QUANTUM DATA AND QUANTUM CONTROL 39
4.1 The Language QML . 39
4.1.1 Copying Quantum Data . 40
4.1.2 Discarting Quantum Data .. 40
4.2 The Classical Sublanguage. 41
4.2.1 Syntax . 41
4.2.2 Type System . 41
4.2.3 The Category of Typed Terms .. 42
4.2.4 Semantics . 43
4.2.5 Examples . 44
4.2.6 Equational Theory .46
4.2.7 Completeness of the Classical Theory 55
4.3 Quantum Data and Control . 64
4.3.1 The CategoryVec . 64
4.3.2 Orthogonality . 65
4.3.3 The CategoryQ◦ . 66
4.3.4 Quantum Equational Theory .. 66
4.3.5 Quoting quantum values .67
4.4 Summary . 72

5 MODELLING QUANTUM EFFECTS I: STATE VECTORS AS INDEXED
MONADS . 73

5.1 Vectors. 73
5.2 Linear Operators . 76
5.3 Example: A Circuit for the Toffoli Gate 77
5.4 Summary . 79

6 MODELLING QUANTUM EFFECTS II: SUPEROPERATORS AS IN-
DEXED ARROWS . 80

6.1 Density Matrices and Superoperators 80
6.1.1 Density Matrices . 80
6.1.2 Superoperators . 81
6.1.3 Tracing and Measurement .. 81
6.2 Why Density Matrices are not Monads? 82
6.3 Superoperators as Indexed Arrows. 83

6.4 Examples: Toffoli and Teleportation . 83
6.4.1 Toffoli . 83
6.4.2 Quantum Teleportation .. 84
6.5 Typing Rules . 86
6.6 Summary . 87

7 MODELLING QUANTUM EFFECTS III: MIXED PRO GRAMS WITH
DENSITY OPERATORS AND CLASSICAL OUTPUTS AS INDEXED
ARROWS . 88

7.1 Mixed Programs with Density Matrices 89
7.2 Mixed Programs with Density Matrices as Indexed Arrows 90
7.3 Example: Teleportation . 91
7.4 Summary . 92

8 MODELLING QUANTUM EFFECTS IV: MIXED PRO GRAMS WITH
PROBABILITY DISTRIBUTIONS OF QUANTUM VECTORS STATES
AS ARROWS . 93

8.1 Mixed Programs with Probability Distributions 93
8.2 PDQTrans as Indexed Arrows. 95
8.3 Example: Teleportation . 96
8.4 Summary . 97

9 CONCLUSION . 98
9.1 Contributions . 98
9.1.1 High-level Languages for Quantum Computation 98
9.1.2 Main Differences between Quantum and Classical Programming 98
9.1.3 High-level Executable Models of Quantum Computation. 99
9.2 Future Work . 99
9.2.1 Quantum Haskell . 99
9.2.2 QML . 99

REFERENCES . 100

APPENDIX A LINEAR VECTOR SPACES 105
A.1 Basics . 105
A.2 Inner Product Spaces . 107
A.3 Dual Spaces and Dirac Notation. 109
A.4 Subspaces. 109
A.5 Linear Operators . 109
A.5.1 Matrix Elements of Linear Operators 110
A.5.2 The Adjoint of an Operator .. 111
A.5.3 Hermitian, Anti-Hermitian and Unitary Operators 112
A.5.4 The Eigenvalue Problem .112

APPENDIX B A HASKELL PRIMER . 114

APPENDIX C PROOFS . 115
C.1 Proof of Proposition 6.3.1 . 115

APPENDIX D ESTRUTURANDO COMPUTAÇ ÕES QUÂNTICAS VIA SE-
TAS . 121

D.1 Introdução . 121
D.2 Modelando Efeitos Qûanticos I: Vetores de Estado como M̂onadas In-

dexadas . 122
D.2.1 Mônadas Indexadas .123
D.2.2 Vetores . 123
D.3 Modelando Efeitos Qûanticos II: Superoperadores como Setas Indexadas124
D.3.1 Setas Indexadas . 125
D.3.2 Superoperadores como Setas Indexadas 125
D.4 Modelando Efeitos Qûanticos III: Programas Mistos como Setas Index-

adas . 126
D.4.1 Programas com Matrizes de Densidade 127
D.5 Conclus̃ao . 128

LIST OF FIGURES

Figure 2.1: Quantum Circuit. .. . 23
Figure 2.2: Controlled-NOT. .. . 24
Figure 2.3: Classical circuit tocopy. 24

Figure 4.1: Typing classical terms 42
Figure 4.2: Meaning of classical derivations 45
Figure 4.3: Diagram for completeness proof technique. 56
Figure 4.4: Typing quantum data (I) 64
Figure 4.5: Meaning function for quantum data 65
Figure 4.6: Typing quantum data (II) 66
Figure 4.7: Inner products and orthogonality 66
Figure 4.8: Value tree forQ2 ⊗Q2 . 68

Figure 5.1: A Circuit for the Toffoli Gate. 78
Figure 5.2: The evolution of values in the circuit for the Toffoli gate. 78

Figure 6.1: Typing arrow combinators for quantum computations 86

ABSTRACT

Quantumcomputation can be understood astransformationof information encoded
in the state of aquantumphysical system. The basic idea behind quantum computation
is to encode data using quantum bits (qubits). Differently from the classical bit, the qubit
can be in asuperpositionof basic states leading to “quantum parallelism”, which is an
important characteristic of quantum computation since it can greatly increase the speed
processing of algorithms. However, quantum data types are computationally very power-
ful not only due to superposition. There are other odd properties likemeasurementand
entangled.

In this thesis we argue that a realistic model for quantum computations should be
generalwith respect to measurements, andcompletewith respect to the information flow
between the quantum and classical worlds. We thus explain and structure general and
complete quantum programming in Haskell using well known constructions from classi-
cal semantics and programming languages, likemonadsandarrows. In more detail, this
thesis focuses on the following contributions.

Monads and Arrows. Quantum parallelism, entanglement, and measurement certainly
go beyond “pure” functional programming. We have shown thatquantum parallelism can
be modelled using a slightly generalisation of monads called indexed monads, or Kleisli
structures. We have also build on this insight and showed that quantum measurement
can be explained using a more radical generalisation of monads, the so-calledarrows,
more specifically,indexed arrows, which we define in this thesis. This result connects
“generic” and “complete” quantum features to well-foundedsemantics constructions and
programming languages.

Understanding of Interpretations of Quantum Mechanics as Computational Effects. In
a thought experiment, Einsten, Podolsky, and Rosen demonstrate some counter-intuitive
consequences of quantum mechanics. The basic idea is that two entangled particles ap-
pear to always communicate some information even when they are separated by arbitrarily
large distances. There has been endless debate and papers onthis topic, but it is interesting
that, as proposed by Amr Sabry, this strangeness can be essentially modelled by assign-
ments to global variables. We build on that, and model this strangeness using the general
notions of computational effects embodied in monads and arrows.

Reasoning about Quantum Programs Using Algebraic Laws. We have developed a
preliminary work to do equational reasoning about quantum algorithms written in apure
sublanguage of a functional quantum programming language,called QML.

Keywords: Quantum Programming Languages, Haskell, Density Matrices, Monads.

RESUMO

Estruturando Computações Qûanticas Gerais e Completas em Haskell:
Abordagem das Setas

Computaçãoquânticapode ser entendida comotransformaç̃ao da informação codifi-
cada no estado de um sistema fı́sicoquântico. A idéia básica da computação quântica é
codificar dados utilizando bits quânticos (qubits). Diferentemente do bit clássico, o qubit
pode existir em umasuperposiç̃ao dos seus estados básicos permitindo o “paralelismo
quântico”, o qual é uma caracterı́stica importante da computação quântica visto que pode
aumentar consideravelmente a velocidade de processamentodos algoritmos. Entretanto,
tipos de dados quânticos são bastante poderosos não somente por causa da superposição
de estados. Existem outras propriedades ı́mpares comomedidaeemaranhamento.

Nesta tese, nós discutimos que um modelo realı́stico para computações quânticas
deve sergeral com respeito a medidas, ecompletocom respeito a comunicação entre o
mundo quântico e o mundo clássico. Nós, então, explicamos e estruturamos computações
quânticas gerais e completas em Haskell utilizando construções conhecidas da área de
semântica e linguagens de programação clássicas, comomônadasesetas. Em mais deta-
lhes, esta tese se concentra nas seguintes contribuições.

Mônadas e Setas. Paralelismo quântico, emaranhamento e medida quânticacerta-
mente vão além do escopo de linguagens funcionais “puras”. Nós mostramos que o
paralelismo quântico pode ser modelado utilizando-se umapequena generalização de
mônadas, chamadamônadas indexadasou estruturas Kleisli. Além disso, nós mostra-
mos que a medida quântica pode ser explicada utilizando-seuma generalização mais ra-
dical de mônadas, as assim chamadassetas, mais especificamente,setas indexadas, as
quais definimos nesta tese. Este resultado conecta caracterı́sticas quânticas “genéricas” e
“completas” à construções semânticas de linguagens deprogramação bem fundamenta-
das.

Entendendo as Interpretações da Meĉanica Qûantica como Efeitos Computacionais.
Em um experimento hipotético, Einstein, Podolsky e Rosen demonstraram algumas con-
seqüências contra-intuitivas da mecânica quântica. Aidéia básica é que duas partı́culas
parecem sempre comunicar alguma informação mesmo estando separadas por uma dis-
tância arbitrariamente grande. Existe muito debate e muitos artigos sobre esse tópico,
mas é interessante notar que, como proposto por Amr Sabry, essas caracterı́sticas estra-
nhas podem ser essencialmente modeladas por atribuiçõesa variáveis globais. Baseados
nesta idéia nós modelamos este comportamento estranho utilizando noções gerais de efei-
tos computacionais incorporados nas noções de mônadas esetas.

Provando Propriedades de Programas Quânticos Utilizando Leis Alǵebricas. Nós
desenvolvemos um trabalho preliminar para fazer provas equacionais sobre algoritmos
quânticos escritos em uma sublinguagempura de uma linguagem de programação fun-
cional quântica, chamada QML.

Palavras-chave:Linguagens de Programação Quântica, Haskell, Matrizesde Densidade.

13

1 INTRODUCTION

1.1 Quantum Computation

The first insight on quantum computation is generally accepted as Feynman’s observa-
tion that simulation of quantum systems in classical computers is expensive (FEYNMAN,
1982), i.e., we need exponential time to simulate polynomial circuits. Three years later,
Deutsch (DEUTSCH, 1985) explicitly asked whether it is possible to compute more effi-
ciently on a quantum computer than on a classical computer. By addressing this question,
he further extended the theory of quantum computation with the development of the quan-
tum Turing machine. However, it was after Shor’s quantum algorithm (SHOR, 1994) to
factor an integer in polynomial time in the number of its digits, and its interplay with cryp-
tography which has the potential to undermine many current cryptosystems, that quantum
computing has become a fast growing research area. In 1996, Grover showed a fast quan-
tum algorithm for database search (GROVER, 1996) evidencing another task that could
also be made more efficient by the use of quantum computers. Lastly, we cannot forget to
mention the substantial research that has been done on quantum cryptographic techniques
based on the pioneer work by Bennet and Brassard (BENNETT; BRASSARD, 1984).

The basic idea behind quantum computation is to encode data using quantum bits.
A quantum bit orqubit is a physical system which has two basic states, usually written
in the Dirac notation|0〉 and |1〉. Differently from the classical bit, the qubit can be in
a superpositionof these two basic states written asα|0〉 + β|1〉, with |α|2 + |β|2 = 1.
Intuitively, one can think that a qubit can exist as a0, a1, or simultaneously as both0 and
1, with a numerical coefficient which determines the probability of each state. Formally,
a qubit can be modelled as a normalized vector in a two-dimensional Hilbert space, i.e., a
complex vector space equipped with an inner product satisfying certain axioms.

The quantum superposition phenomena is responsible for theso called “quantum par-
allelism”. To understand what this means consider a (boolean) function that takes a single
bit x to a single bitf(x). In a quantum computer we can apply the functionf to both in-
puts at once, that is the function can act in asuperpositionof |0〉 and|1〉. This idea is used
in the famous Deutsch’s (DEUTSCH, 1985) algorithm, which was one of the first demon-
strations that a quantum computer can solve problems more efficiently than a classical
one.

We can perform ameasurementoperation projecting a quantum state likeα|0〉+ β|1〉
onto the basis|0〉,|1〉. The outcome of the measurement is not deterministic and it is given
by the probability amplitude, i.e., the probability that the state after the measurement is|0〉
is |α|2 and the probability that that the state is|1〉 is |β|2. If the value of the qubit is initially
unknown, than there is no way to determineα andβ with that single measurement, as the
measurement maydisturb the state. But,after the measurement, the qubit is in aknown

14

state; either|0〉 or |1〉.
The disturbance related to the measurement is also connected with another essential

characteristic of quantum states: thenon cloning propertyof quantum states (NIELSEN;
CHUANG, 2000). If we could make a perfect copy of a qubit, we could measure the
original without disturbing it in contradiction with the disturbance principle.

This issue is sometimes called the problem ofdecoherence. For example, consider a
qubit that is in a coherent state. As soon as its measurable interacts with the environment
it will decohere and fall into one of the two basic states. Thedecoherence is a stum-
bling block for quantum computers (BONE; CASTRO, 1997), anda semantically quite
complicated issue to deal with for quantum programming languages.

Surprisingly, more recently there has been several proposals of different models of
quantum computation based only on measurements. One example is the “1-way quan-
tum computer” by Raussendorf and Briegel (RAUSSENDORF; BROWNE; BRIEGEL,
2001, 2003). In such a computer the computation starts whichacluster state(BRIEGEL;
RAUSSENDORF, 2001) of certain size and uses only 1-qubit measurements. Other works
also suggesting that measurements could be the actual driving force behind quantum com-
putations are (NIELSEN, 2003; KASHEFI; PANANGADEN; DANOS,2004; LEUNG,
2004; DANOS et al., 2005).

Quantum data types are computationally very powerful not only due to superposition
(and measurements). Moreover, qubits can be in anentangledstate. In such a state,
two or more qubits have to be described with reference to eachother, even though the
individuals may be spatially separated. For instance, a state of two qubits is a vector of
the tensor product (usually, represented by⊗) of two Hilbert spaces. Some of these two
qubit states can be written as the tensor product of its constituent parts like|φ1〉 ⊗ |φ2〉,
but there are also the entangled states, which cannot be written as the tensor product of its
parts. A well-known example of entangled state is the EPR pair α|00〉+β|11〉 1. Quantum
entanglement is the basis for emerging quantum algorithms,for instance these states have
been used for experiments in quantum teleportation.

Besides measurements,unitary transformationsare the only operations acting on
qubits. For a general introduction to quantum computation,see e.g. (NIELSEN; CHUANG,
2000). We also recommend Preskill’s excellent online notes(PRESKILL, 1999).

More abstractly, quantum computation can be organised intotwo main approaches:
classical control and quantum data, and quantum control and quantum data. Essen-
tially, the former follows the work by Knill (KNILL, 1996), where a quantum com-
puter consists of aquantum random access machine(QRAM). In this model the pro-
grammer assumes the existence of predefined universal set ofunitary operations. The
quantum control approach follows the model of a quantum Turing machine introduced
by Deutsch (DEUTSCH, 1985). Quantum control means that the control can also be
in a superposition, allowing the programmer to define any physically realisable unitary
operation.

1.2 Domains of Quantum Computations

We callstrict or pureor reversiblequantum computations the evolution of a quantum
state by the means of unitary gates; measurements are not considered. The objects in

1The name of the vector “EPR” refers to the initials of Einstein, Podolsky, and Rosen who used such
a vector in a thought experiment to demonstrate some strangeconsequences of quantum mechanics (EIN-
STEIN; PODOLSKY; ROSEN, 1935).

15

this pure domain are normalized vectors in a complex vector space, i.e., functions from a
classical state space to complex numbers. The normalization condition is because mea-
surements on those states have probabilistic outcomes related to the complex amplitude.
Hence, we require that the sum of probabilities of all possible outcomes of a measure-
ment add up to1. The pure computations are unitary maps, these are linear isomorphisms
which preserve the probabilistic interpretation of amplitudes.

Irreversibleprograms involve measurements because we cannot dispose ofa quantum
bit without measuring it, and leading to mixed states, i.e.,probabilistic distribution of pure
states.Superoperators(that is, completely positive maps, see (SELINGER, 2004)) acting
on density matrices, a notation for mixed quantum states dueto von Neumann, are the well
accepted domain to interpret the general quantum operations involving measurements.

1.3 Quantum Programming Languages

The research area in quantum programming languages has beenmainly stimulated
from the fact that quantum information processing devices,like their classical counter-
parts, should be programmed in high level, structured and well-defined languages. We
believe that high level quantum programming languages can improve our understanding
of the power of quantum computation.

Even though, the implementations of quantum computers are still very limited, work-
ing with only a few qubits in physics laboratories, we believe this topic of research is very
fruitful and it has been pointed in (GAY, 2006) that many criticisms are ill-founded, for
several reasons:

1. It overlooks the progress which has been made in the practical implementation of
quantum cryptography.

2. On one hand, the early work on the foundations of classicalprogramming lan-
guages (that is, Alonzo Church’s famous paper (CHURCH, 1936) presenting the
lambda calculus, and the work by Alan Turing showing his Turing machine as a
universal computing model (TURING, 1936)) has been dated several years before
the development of practical and commercial computing devices in the 50’s, and
has inspired the design of many actual programming languages. On the other hand,
nowadays, every computer scientist is familiar with the problems caused in soft-
ware engineering by the widespread use of programming languages which do not
have firm semantic foundation. Mainly, this is due to the factthat computing tech-
nologies have raced ahead of theoretical studies. From these two points of view, the
work on quantum programming languages and its foundations before the hardware
exists is, in some sense, a very good situation.

3. Lastly, it seems that the application of semantic, logical and specially category-
theoretic techniques is providing new perspective on quantum theory itself. For
instance the works by Abramsky, Duncan, and Coecke (ABRAMSKY; DUNCAN,
2004; ABRAMSKY; COECKE, 2004; COECKE, 2005).

Essentially, following Simon Gay’s quantum programming languages survey (GAY,
2006) the design of quantum languages can be classified as: a)imperative languages,
b) functional languages, and c) other paradigms. In this context, we can rearrange the
languages in two branches: 1) those ones that follow Knill’squantum random access
machine(KNILL, 1996) (QRAM), usually called by the slogan “classical control and

16

quantum data”. In this model a quantum computer can be seen asa classical computer,
the controller, with a quantum device, the quantum memory, attached to it. The classical
controller has the ability to perform a previously defined set (ideally universal) of quan-
tum operations, including state preparation, unitary transformation and measurement, on
quantum registers. And 2) those ones in which control, as well as data, may be quantum.
The quantum Turing machine (DEUTSCH, 1985), in which the entire machine state, in-
cluding the tape, and the position of the head is assumed to bein quantum superposition,
is an example of this model.

We summarize some of the main quantum programming languagesthat have been
developed in Tables1.1 and1.2. For a complete survey see (GAY, 2006).

Table 1.1: Quantum programming languages withclassicalcontrol.

Imperative Functional

QCL by BernhardÖmer (ÖMER,
1998): the first real quantum pro-
gramming language, with a syntax
inspired by C.

Peter Selinger’s influential quan-
tum language (SELINGER, 2004).
Combines high level classical struc-
tures with operations on quantum
data. This language has a clear
mathematical semantics in terms of
superoperators.

Classical
Control

Betteli, Calarco and Serafini (BET-
TELLI; SERAFINI; CALARCO,
2003) define a combination of C++
with a collection of low-level prim-
itives based on the QRAM model.

Selinger and Valiron’s lan-
guage (SELINGER; VALIRON,
2006) based on the work above by
Selinger. This language is based
on a call-by-value λ-calculus,
and has an affine type system (no
contraction).

qGCL by Sandres and Zu-
liani (SANDERS; ZULIANI,
2000) which is based on a guarded
command language.

Arrighi and Dowek (ARRIGHI;
DOWEK, 2005) define a linear
algebraicλ-calculus in which all
functions are linear operators on
vector spaces.

1.4 Monads and Arrows

The mathematical concept of monads (MACLANE, 1971) was introduced to com-
puter science by Moggi (MOGGI, 1989) in the late 1980’s as a way of structuring de-
notational semantics of programming languages. Several different language features, in-
cluding nontermination, state, exceptions, continuations, and interaction can be viewed
as monads. More recently, this construction has been internalised in the programming
language Haskell as a tool to elegantly express computational effects within the context
of a pure functional language.

Since the work of Moggi, several natural notions of computational effects were dis-
covered which could only be expressed as generalisations ofmonads. Of particular im-
portance to us is the generalisation of monads known as arrows (HUGHES, 2000) which

17

Table 1.2: Quantum programming languages withquantumcontrol.

Functional

Quantum
Control

Andre van Tonder (TONDER, 2003, 2004) has proposed a quantumλ-
calculus incorporating higher order quantum programs, butno measure-
ments. He also suggests an equational theory for strict (higher order)
computations, but shows neither completeness nor normalisation.
QML (ALTENKIRCH; GRATTAGE, 2005) is a first order functional
quantum programming language added with quantum data and control.
QML has a quantumif◦, which analyzes the data without measuring,
and hence without changing the data..

is also internalised in the programming language Haskell.

1.5 Contributions of this thesis

The main objective of this thesis is to explain and structurequantum programming
using well known constructions from classical semantics and programming languages. In
more detail, this thesis focuses on the following subjects.

• Monads and Arrows. Quantum parallelism, entanglement, and measurement cer-
tainly go beyond “pure” functional programming. We have shown (Chapter 5) that
quantum parallelism can be modelled using a slightly generalisation of monads
called indexed monads, or Kleisli structures(ALTENKIRCH; REUS, 1999). We
have also build on this insight and showed (Chapter 6) that quantum measure-
ment can be explained using a more radical generalisation ofmonads calledar-
rows(HUGHES, 2000), more specifically,indexed arrows, which we define on Sec-
tion 3.2.4. This result connects “generic” (including measurement) and “complete”
(including communication between quantum and classical data) quantum features
to well-founded semantics constructions and programming languages (Chapters 7
and 8).

• Understanding of Interpretations of Quantum Mechanics as Computational
Effects. In a thought experiment, Einsten, Podolsky, and Rosen (EINSTEIN;
PODOLSKY; ROSEN, 1935) demonstrate some counter-intuitive consequences of
quantum mechanics. The basic idea is that two entangled particles appear to al-
ways communicate some information even when they are separated by arbitrarily
large distances. There has been endless debate and papers onthis topic, but it is
interesting that, as proposed by Amr Sabry (SABRY, 2003), this strangeness can
be essentially modelled by assignments to global variables. We build on that, and
model this strangeness using the general notions of computational effects embodied
in monads and arrows.

• Reasoning about Quantum Programs Using Algebraic Laws. We have devel-
oped in Chapter 4 a preliminary work to do equational reasoning about quantum al-
gorithms written in a small subset of a functional quantum programming language,
called QML (ALTENKIRCH; GRATTAGE, 2005).

18

1.6 Plan

In Chapter 2 we present a brief review on quantum computation. In Chapter 3 we show
indexed monads and indexed arrows. The categorical notionswe use to structure quan-
tum computations. Chapter 4 describes an equational theoryfor reasoning about programs
written in a pure subset of QML (ALTENKIRCH; GRATTAGE, 2005), a quantum func-
tional language. Additionally we proof soundness and completeness for the pure subset of
the language. Chapter 5 describes a monadic approach for “pure” (without measurement)
quantum programming in Haskell. In Chapter 6 after modelling density matrices and
superoperators in Haskell, we structure this model for “general” quantum computations
(including measurements) using a generalisation of monadscalled indexed arrows. In
Chapter 7 we extend the approach for “complete” quantum computations (including com-
munication between quantum and classical data). Chapter 8 presents an alternative model
for general and complete quantum computations using explicit probability distribution of
state vectors. Chapter 9 concludes.

1.7 Publications

Some of the work described in this thesis has been published:

• Juliana K. Vizzotto, Antônio Carlos da Rocha Costa and Amr Sabry. Quantum
Arrows. 4th International Workshop on Quantum Programming Languages, July
2006. To appear in ENTCS. (VIZZOTTO; COSTA; SABRY, 2006)

• Juliana K. Vizzotto, Thorsten Altenkirch and Amr Sabry. Structuring Quantum
Effects: Superoperators as Arrows. InJournal of Mathematical Structures in Com-
puter Science: special issue in quantum programming languages. 2006. (VIZ-
ZOTTO; ALTENKIRCH; SABRY, 2006)

• Juliana K. Vizzotto and Antônio Carlos da Rocha Costa.Concurrent Quantum
Programming in Haskell. In VII Congresso Brasileiro de Redes Neurais (2005).
Sessão de Computação Quântica. (VIZZOTTO; COSTA, 2005)

• Thorsten Altenkirch, Jonathan Grattage, Juliana K. Vizzotto and Amr Sabry.An
Algebra of Pure Quantum Programming. 3rd International Workshop on Quantum
Programming Languages, July 2005. To appear in ENTCS. (ALTENKIRCH et al.,
2005)

19

2 QUANTUM COMPUTATION

Quantumcomputation can be understood astransformationof information encoded
in the state of aquantumphysical system. Hence, we start the chapter describing themain
laws which preview the behaviour of quantum mechanical systems.

In classical computation the indivisible unit of information is the bit: an object that
can take one of the possible values{0, 1}. In this chapter we describe thequbit, the cor-
responding unit of quantum information, and how computation can be carried out over an
array of qubits. We also discuss two characteristic of quantum states which are claimed to
be essential ingredients for the power of quantum computation: quantum parallelism and
entanglement. As an example, we show Deutsch’s (DEUTSCH, 1985) algorithm, demon-
strating a specific problem which can be solved more efficiently in a quantum computer
than in a classical one. We also briefly discuss some quantum computer models. In this
chapter we consider a background on linear algebra which is discussed in the Appendix A.

2.1 Axioms of Quantum Mechanics

Quantum theory is a mathematical model of the physical world. To characterize the
model we need to specify how it will represent: states, observables, measurements, dy-
namics, and composite systems.

2.1.1 States

In quantum theory a physical state is represented as aunit vector living in a complex
inner product vector space know asHilbert space. We call such a vector aket (see ap-
pendix A) and denote it by|α〉. This state ket contains complete information about the
physical state.

2.1.2 Observables

An observable is a property of a physical system that can be measured. In quantum
mechanics, an observable can be represented by a Hermitianoperator, A, acting in the
vector space in question. Remember from Section A.5.4 that there are particular kets of
importance, known aseigenketsof the operatorA, denoted by

|a′〉, |a′′〉, |a′′′〉, . . .

with the property
A|a′〉 = a′|a′〉, A|a′′〉 = a′′|a′′〉, . . .

wherea′, a′′, . . . are just real numbers, calledeigenvaluesof the operatorA.

20

2.1.3 Measurements

“A measurement always causes the system to jump into an eigenstate of the dynamical
variable that is being measured”(P. A. M. Dirac).

Following Sakurai (SAKURAI, 1994) we may interpret Dirac’swords above as fol-
lows: before a measurement of an observableA, the system is assumed to be represented
by some linear combination

|α〉 =
∑

a′

ca′ |a′〉 =
∑

a′

|a′〉〈a′|α〉.

When the measurement is performed, the system is “thrown into” one of the eigenstates,
say|a′〉 of the observableA. In other words,

|α〉 A meas−→ |a′〉.

Thus ameasurement usually changes the state. The only exception is when the state is
already in one of the eigenstates of the observable being measured, in which case

|a′〉 A meas−→ |a′〉

with certainty. When a measurement causes|α〉 to change into|a′〉, it is said thatA is
measured to bea′. It is in this sense that the result of the measurement yieldsone of the
eigenvalues of the observable being measured.

Given

|α〉 =
∑

a′

ca′ |a′〉 =
∑

a′

|a′〉〈a′|α〉.

which is the state ket of a physical system before the measurement, we do not know
in advance into which of the various|a′〉’s the system will be thrown as the result of the
measurement. However, we do know that theprobabilityfor jumping into some particular
|a′〉 is given by

|〈a′|α〉|2

provided that|α〉 is normalized.
This probabilistic interpretation for the squared inner product above is one of the

fundamental postulates of quantum mechanics. Suppose the state ket is|a′〉 itself even
before the measurement is made. Then, according to the postulate, the probability for
gettinga′ - or more precisely, for being thrown into|a′〉 - as the result of the measurement
is predicted to be1, which is just what we expect.

There is also the notion ofseletive measurement, orfiltration. More generally, we con-
sider a measurement process with a device that selects only one of the eigenkets ofA, say
|a′〉 and rejects all others. Mathematically, we can say that sucha selective measurement
amounts to applying the projection operator

Λa′ ≡ |a′〉〈a′|

to |α〉:
Λa′ |α〉 = |a′〉〈a′|α〉.

21

2.1.4 Dynamics

Time evolution of aclosedquantum state is described by aunitary transformation.
That is, the state|α〉 of the system at timet1 is related to the state|α′〉 of the system at
time t2 by a unitary operatorU :

|α′〉 = U |α〉.

2.1.5 Composite Systems

The state space of a composite physical system is thetensor product(see defini-
tion A.4.2) of the state spaces of the component physical systems. Moreover, if we have
systems numbered1 throughn, and system numberi is prepared in the state|αi〉, then the
joint state of the total system is|α1〉 ⊗ |α2〉, . . . , |αn〉.

2.2 Qubits

The qubit is the simplest possible quantum system, that is, it is represented as a vector
in a two-dimensional Hilbert space (i.e., in a complex vector space with inner product).
Usually, the elements of an orthonormal basis in this space are called|0〉 and|1〉 in Dirac
notation. Then a normalized vector can be represented as a linear combination of basic
states:

|α〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1

that can also be written as the column vector
[

a
b

]

wherea andb ∈ C. Coefficients, likea andb, are called complex amplitudes.
It is this ability of the qubit of being in alinear combinationof basic states, also

often calledsuperposition, that is responsible for the so called “quantum parallelism”. To
understand what this means consider a (boolean) function that takes a single bitx to a
single bitf(x). In a quantum computer we can apply the functionf to both inputs at
once, that is the function can be applied to asuperpositionof |0〉 and|1〉. This feature is
used in an immediate way in Deutsch’s algorithm (Section 2.5).

A quantum state ofN qubits can be expressed as a vector in a space of dimension
2N . A 2N dimensional qubit space is given by thetensor product(⊗) of N spaces of
single qubits. For instance, an orthonormal basis for a quantum state of2 qubits could
be {|0〉, |1〉} ⊗ {|0〉, |1〉} = {|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}, usually written
as {|00〉, |01〉, |10〉, |11〉}. The tensor product gives as a general 2 qubit state a linear
combination of this four basic states, i.e.,

a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 =
∑

i,j∈{0,1}
aij |i, j〉.

In general, a state ofN quantum bits is a non-zero vector in a Hilbert space, which
can be represented as the following formal linear combination:

∑

b1,...,bn∈{0,1}
ab1...bn

|b1 . . . bn〉, with
∑

b1,...,bn∈{0,1}
|ab1...bn

|2 = 1.

22

2.3 Quantum Operations on Qubits

2.3.1 Measurements

The normalization condition in the qubit vector is requiredbecause measurements on
those states have probabilistic outcomes related to the complex amplitude. Hence, the
sum of probabilities of all possible outcomes of a measurement must add up to1. More
specifically, we can perform a measurement that projects thequbit a|0〉 + b|1〉 onto the
basis{|0〉, |1〉}. Then, the post measurement state will be|0〉 with probability|a|2, or |1〉
with probability|b|2. The measurement theory in quantum mechanics (see Section 2.1.3)
says that the valueoutputby a measurement is one of the eigenvalues of theobservable
being measured and that the state is collapsed to a corresponding eigenstate. However, in
quantum computation one is often more interested in thepost measurement statethan in
the real value (the eigenvalue) measured. So, in most times,if the post measurement state
is |0〉 one would say that0 was measured.

If the value of the qubit is initially unknown, than there is no way to determinea and
b with one single measurement. But,after the measurement, the qubit is in aknowstate,
either|0〉 or |1〉. In particular, if after a measurement the same measurementis performed
again it will give the same answer as in the first time.

The situation is more complex if more than one qubit is involved. Consider a two-
qubit system in the statea00|00〉+ a01|01〉+ a10|1, 0〉+ a11|11〉. If we measure the value
of the first qubit, we obtain:

• 0 with probability|a00|2 + |a01|2, and the quantum state will collapse to

1
√

|a00|2 + |a01|2
(a00|00〉+ a01|01〉), and

• 1 with probability|a10|2 + |a11|2, and the quantum state will collapse to

1
√

|a10|2 + |a11|2
(a10|10〉+ a11|11〉).

Note that at each step we normalize the states in such a way that the sum of the squares
of the amplitudes of the new reached state is1. A similar situation happens if we measure
the second qubit.

In a general state ofN quantum bits

∑

b1,...,bn∈{0,1}
ab1...bn

|b1 . . . bn〉, with
∑

b1,...,bn∈{0,1}
|ab1...bn

|2 = 1.

the probability to get|b1 . . . bn〉 when measuring the system is|ab1...bn
|2.

2.3.2 Unitary Transformations

The other kind of operations we can apply to qubits areunitary transformations, which
can be represented by unitary matrices.

Suppose|α〉 = a|0〉 + b|1〉, then we can perform a reversible transformation on that
by the application of a2× 2 unitaryS:

(

s11 s12

s21 s22

) (

a
b

)

23

which is given by usual matrix multiplication. In general, a2n × 2n matrix acts onn
quibt system. The rows and columns of the unitary transformations are labeled from left
to right and top to botton as00 . . . 0, 00 . . . 1 to 11 . . . 1.

Usually, these unitary matrices are called quantum gates asthey are used inquantum
circuits. Some important quantum gates are:

NOT or Pauli-X=

(

0 1
1 0

)

H or Hadamard= 1√
2

(

1 1
1 −1

)

S or Phase=

(

1 0
0 i

)

Z or Pauli-Z=

(

1 0
0 −1

)

CNOT or Controlled-Not=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









Toffoli =

(

id4 0
0 CNOT

)

The unary gate NOT is the quantum version of the boolean not mappinga|0〉 + b|1〉 to
b|0〉 + a|1〉. The unary Hadamard is sometimes described as turning|0〉 into “halfway”
between|0〉 and|1〉 (first column of H), and also|1〉 into “halfway” between|0〉 and|1〉
(second column of H). The Hadamard gate is one of the most useful gates, it is used when
one wants to prepare a quantum state in a coherent superposition. The unary gates S and
Z represent complex phase changes. The binary controlled gate CNOT applies the NOT
gate to the second qubit if the first one is1; if the first qubit is0 it does nothing. Similarly,
the Toffoli is a controlled-controlled NOT, which applies the NOT gate to the third qubit
if the first and second qubits are1. The Toffoli gate can be used to simulate NAND
(initializing the third qubit to1) and FANOUT (initializing the first and third qubits to1
and0, respectively) gates.

Quantum circuits, as their classical counterparts consist ofwiresandlogic gates. The
wires are used to carry information around the circuit, while the logic gates perform ma-
nipulations of the information. For instance consider the circuit in Figure 2.1, which is
read from left to right, and from top to bottom, and computes the state

G2 ◦ (G1 ⊗ id)(x⊗ y).

G

G
1

2

x

y

Figure 2.1: Quantum Circuit.

In general, there is a special notation for controlled gates. Instead of using simple
boxes they are written using a filled circle in the control qubits. For instance see the
circuit for controlled-NOT below:

24

x

y

x

x + y

Figure 2.2: Controlled-NOT.

2.4 Characteristics of Quantum States

2.4.1 Entanglement

It is interesting to note that information isnon-local in an array of qubits due toen-
tanglement. A 2-qubit state|α〉 is said to beentangledif it cannot be written as the tensor
product of its constituent parts, i.e., as|α1〉 ⊗ |α2〉. For example, consider theBell state
or EPR pair:

|α〉 = |00〉+ |11〉√
2

.

One cannot find|α1〉 and |α2〉 such that|α1〉 ⊗ |α2〉 = |α〉. One may see that|α1〉 =
a|0〉+ b|1〉 and|α2〉 = c|0〉+ d|1〉 such that

|α〉 = (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉) = ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉.

But, that is impossible to get|00〉 + |11〉 from above, because we would need to have
ac 6= 0 andbd 6= 0, with ad = 0. Indeed information is non-local in the Bell state; the
measurement outcomes arecorrelated(NIELSEN; CHUANG, 2000). More specifically,
the Bell state has the property that upon measuring the first qubit, one obtains two pos-
sible results:0 with probability1/2, leaving the post measurement state|00〉, and1 with
probability1/2, leaving the post measurement state|11〉. As a result, a measurement of
the second qubit always gives the same result as the measurement of the first qubit.

2.4.2 Copying a Qubit

Consider the task of copying a classical bit. This may be doneusing a classical CNOT
gate, which takes an unknown bitx to copy and a “scratchpad” bit initialized to0, as
illustrated in Figure 2.3. The output is two bits, both in thesame statex.

xx

0

x

x

x

y x+y

Figure 2.3: Classical circuit tocopy.

Suppose we want to copy a qubit in the unknown state|α〉 = a|0〉 + b|1〉 in the same
manner by using a quantum CNOT gate. The input state of two qubits can be written as

[a|0〉+ b|1〉]|0〉 = a|00〉+ b|10〉.

25

The function of CNOT is to negate the second qubit when the first qubit is1. Thus, the
output is simplya|00〉 + b|11〉. In the case wherea = 0 or b = 0 the circuit indeed
successfully copies|α〉. However, for a general state|α〉we see that the result of the copy
operation would be

|α〉 |α〉 = a2|00〉+ ab|01〉+ ab|10〉+ b2|11〉
which is not a linear operation. In fact, it turns out to beimpossibleto make a copy of
an unknown quantum state. This is called thenon-cloning(NIELSEN; CHUANG, 2000)
property of quantum states.

This property can also be explained by the disturbance related to the measurement. If
we could make a perfect copy of qubit, we could measure the original without disturbing
it in contradiction with the disturbance principle.

The CNOT gate applied to a qubit and “scratchpad” bit initialized to0 is sometimes
refereed as “sharing” and it is used as the semantics of duplicating variables in quan-
tum programming languages, see for instance (ALTENKIRCH; GRATTAGE, 2005; AR-
RIGHI; DOWEK, 2005).

2.4.3 Discarding a Qubit

Consider any composite quantum state living in a composite vector space and recall
that such a vector space is formed by thetensor productof its component spaces. Any
quantum state living in this composite space isglobalandpossible entangled. Hence, any
quantum operation is consideredglobal.

Now suppose we just haveignoredsome specific part of the global quantum state. But
by just ignoringpart of the state we maintain the global entanglement, and any operation
acting on the ignored part may affect other parts still entangled with it. The general
way of destroying entanglement and taking apart a specific part of a quantum state is by
performing a measurement on that.

More specifically, suppose we want to discard the left qubit of the EPR pair:

|α〉 = |00〉+ |11〉√
2

,

which means to measure it. Hence, the state|α〉 after discarding the left qubit will be|0〉
with probability1/2 or |1〉 with probability1/2.

This decoherencecaused by discarding is, thus, a very trick situation for quantum
programming (for a concrete discussion see Section 6.5).

2.5 The Deutsch Algorithm

Deutsch’s (DEUTSCH, 1985) algorithm is used to find out whether a boolean function
f is balanced or constant. Here we show a version of the algorithm presented in (GAY,
2006). Classically, to solve the problem we must evaluatef(0) andf(1) and compare the
results. The appeal of the algorithm is that a quantum computer can answer the question
with only one evaluation off .

Firstly, we need to build a quantum version off , that is aunitary transformationF ,
which performs the same compution asf . Note that in generalf need not to be reversible.
However, it is possible to construct a unitary transformationF on two qubits such that

F |x〉|y〉 = |x〉|y ⊕ f(x)〉

26

We therefore can assume that this is a quantum version off .
The trick now is to applyF to the state

|+〉|−〉 = 1

2
(|00〉 − |01〉+ |10〉 − |11〉)

where

|+〉 =
1√
2
(|0〉+ |1〉 and|−〉 =

1√
2
(|0〉 − |1〉

Note that this state can be created by applyingH ⊗H to |01〉.
Then we need to do some calculation in order to be able to express the result in terms

of the unknown functionf .
From the definition ofF we have

F |x〉|0〉 = |x〉|f(x)〉
F |x〉|1〉 = |x〉|1⊕ f(x)〉.

Combining this equations to calculateF |x〉|−〉, we see that iff(x) = 0 thenF |x〉|−〉 =
1
2
|x〉(|0〉 − |1〉), and iff(x) = 1 thenF |x〉|−〉 = 1

2
|x〉(|1〉 − |0〉). Hence

F |x〉|−〉 = (−1)f(x)
√

2
|x〉(|0〉 − |1〉)

= (−1)f(x)|x〉|−〉.
Thus

F |+〉|−〉 = 1
2
(F |0〉|−〉+ F |1〉|−〉

=

{

+
−|+〉|−〉 if f(0) = f(1)
+
−|−〉|−〉 if f(0) 6= f(1)

and the information about whether or notf is constant has been concentrated into the first
qubit.

From thatH|+〉 = |0〉 andH|−〉 = |1〉, then applyingH to the first qubit we get

+
−|0〉|−〉 if f(0) = f(1)
+
−|1〉|−〉 if f(0) 6= f(1)

2.6 Quantum Computer Models

It is useful to keep in mind a hypothetical hardware device onwhich one can execute
quantum algorithms.

2.6.1 Quantum Computer Models with Classical Control

One of the first proposals for quantum hardware devices was given by Knill (KNILL,
1996). In this model a practical quantum computer will take place on a QRAM (quantum
random access machine), which consists of a general-purpose classical computercontrol-
ling a special quantum hardware device which provides a bank of individually addressable
quantum bits. The classical device acts on the QRAM by sending to it a sequence of com-
mands to perform initializations (setting a qubit to|0〉 or |1〉), built-in unitary operations
and measurements.

27

2.6.2 Quantum Computer Models with Quantum Control

In such models,control, as well a data, may be quantum. The quantum Turing ma-
chine (DEUTSCH, 1985), in which the entire machine state, including the tape, and the
the position of the head is assumed to be in quantum superposition, is an example of this
model. The QML: quantum data and control (ALTENKIRCH; GRATTAGE, 2005b) lan-
guage encompass both data and control quantum structures. In quantum computers with
classical control, quantum data can only me processed usingcombinators corresponding
to quantum circuits or by measurements. In contrast, QML hasa quantumif◦, which
analyzes the data without measuring, and hence without changing the data. There is no
need for a finite set of built-in unitary operations. For instance, the Hadamard gate can be
written using the quantum controlif ◦ as follows:

had x = if ◦ x then ((−1) ∗ true + false) else (true + false)
where(true + false) represents an equal superposition oftrue andfalse.

2.7 Summary

In this Chapter we reviewed basic principles of quantum mechanics and presented the
main concepts of quantum programming. Essentially, in quantum programming one codes
the state of a system using a quantum state, and then transforms it by means of unitary
transformations and measurements. Also, one can combine classical control structures
with quantum operations.

There are many reasons for using quantum mechanical devicesfor doing computation.
First, consider a technological reason. The revolution in semiconductor technology has
lead to a great effort into reducing the size and costs of binary bits. Nowadays a flat
microchip with a surface area of order1cm2 can hold of the order of108 bits. The
small size of these memory chips has also had the effect of speeding up the rate at which
computers can run. Basicaly, this is because the electromagnetic signal has less distance
to travel between components. Hence a motivation for imagining a “quantum computer”
is to push these improvements in technology to their physical limit. The smallest device
one can imagine, that can exist in two states, is a single quantum particle (the electron
spin, for instance).

Second, as proved by Shor’s (SHOR, 1994) factorization quantum algorithm, quantum
data types, which featuresuperpositionandentangled, can greatly increase the speed of
computations.

28

3 INDEXED MONADS AND INDEXED ARROWS

The mathematical concept of monads (MACLANE, 1971) was introduced to com-
puter science by Moggi (MOGGI, 1989) in the late 1980’s as a way of structuring de-
notational semantics of programming languages. Several different language features, in-
cluding nontermination, state, exceptions, continuations, and interaction can be viewed
as monads. More recently, this construction has been internalised in the programming
language Haskell as a tool to elegantly express computational effects within the context
of a pure functional language.

Since the work of Moggi, several natural notions of computational effects were dis-
covered which could only be expressed as generalisations ofmonads. Of particular im-
portance to us is the generalisation of monads known as arrows (HUGHES, 2000) which
is also internalised in the programming language Haskell.

In this Chapter we review these two concepts in the context ofthe programming lan-
guage Haskell, as well we briefly discuss a small variation ofthese notions, which we
call indexedmonads andindexedarrows. Those are the right notions needed to structure
quantum computations in Haskell.

3.1 Monads

A monad is a concept from category theory which is used in Computer Science for for-
mulating definitions and structuringnotions of computationsin programming languages.
Essentially, one can understand a notion of computation as aqualitative description of
certain (possibly non-fucntional) program features such as side-effects, exceptions, par-
tial and nondeterministic computations, etc. In this context, a program, which features
notions of computations, can be viewed as afunction from values to computations. For
instance a program with exceptions can be viewed as a function that takes a value and
return acomputationthat may succeed or may fail.

More precisely, one can consider a value categoryC, as a model for functions, and
build on top of that, notions of computation via an operator (functor)T acting on objects
of C - i.e.,T maps an objectB from C, viewed as theset of values of typeτ , to an object
TB corresponding tocomputations of typeτ . Then a program which takes an input of type
A, and after performing certain computation returns a value of type B, can be identified
with a morphism fromA to TB in C (MOGGI, 1991).

This reasoning aboutcomputationscan be intuitively organized by Kleisli triples,
leading to Kleisli categories as a model for programs.

Definition 3.1.1 (Kleisli Triple) A Kleisli triple over a categoryC is a triple (T, η, ∗),
where

29

• T : Obj(C)→ Obj(C),

• ηA : A→ TA,

• f ∗ : TA→ TB for f : A→ TB,

and the following equations hold:

• η∗
A = idTA

• ηA; f ∗ = f

• f ∗; g∗ = (f ; g∗)∗

Intuitively ηA is the inclusionof values into computations andf ∗ is theextensionof a
function from values to computations to a function from computations to computations,
which first evaluates the operand computation and then appliesf to the resulting value:

TA
f∗

// TB

A
f

77oooooooooooooo

ηA

OO

B

ηB

OO

In other words, this explicitly implies the existence of afunctorT , of complex objects,
for all valuesin C, such that all computations over those complex objects are defined in
terms of functions from values to complex objects, respectively. We call a complex object
TA aneffectinvolving A.

The axioms for Kleisli triples amount exactly to say that programs form a category,
theKleisli categoryCT , where the setCT (A, B) of morphisms fromA to B is C(A, TB),
the identity overA is ηA, and composition off followed byg is f ; g∗ (MOGGI, 1991).
Intuitively, f ; g∗ takes a valuea and appliesf to produce a computationfa, then iteval-
uates/executesthe computationfa to get a valueb, and finally it appliesg to b to produce
the final computation.

Note that we are talking about monads but we have defined Kleisli structures. Indeed,
there is a one-to-one correspondence between these two notions. However the definition
of a monad is given in terms of functors and natural transformations, and although more
elegant it is more abstract. We choose to present here the representation as a Kleisli
structure because the Haskell’s implementation of a monad mirrors the Kleisli version.

3.1.1 Monads in Haskell

Basically, monads are used in Haskell as a way to carry out computations with effects
in the context of a pure functional language. A monad is represented in Haskell using a
type constructor for computationsm and two functions:

return ∈ forall a.a → m a

>>= ∈ forall a b.m a → (a → m b)→ m b

The operation>>= (pronounced “bind”) specifies how to sequence computationsand
return specifies how to lift values to computations. The functionreturn is exactly the
ηA requirement of the Kleisli triple above. To understand the type of bind, one just need
to consider the arguments for∗ : (A → TA) → TA → TB in the inverse order. Ob-
serve the quantifierforall preceding the types of the functions. This is to emphasize that
m represents anendofunctorover the category of values, as the definition ofT formally
presented in definition 3.1.1.

30

To construe a proper monad, thereturn and≫= functions must work together accord-
ing to the three monad laws:

m≫= return = m
(return x)≫= f = fx
(m≫= f)≫= g = m≫= (λx→ fx≫= g)

Note that the equations are the same as above just rephrased in terms of the Haskell’s
operations.

A simple example of a monad in Haskell is theMaybe type:
data Maybe a = Nothing | Just a

which represents the type of computations over a typea which may fail to return a result.
It is similar to the idea of exceptions in programming languages: a computation may
return a value (Just a), or fail returningNothing . ThenreturnM lifts simple values to
computations which may fail, andbindM combines computations of that type together:

returnM ∈ forall a.a → Maybe a

returnM a = Just a

(bindM) ∈ forall a b.Maybe a → (a → Maybe b)→ Maybe b

Nothing ‘bindM ′ f = Nothing

(Just x)‘bindM ′ f = f x

that is, the combined computation should yieldNothing whenever either of the computa-
tions yieldNothing and the combined computation should yield a computation of typeb

applied to the result of the computationMaybe a when both computations succeed.

3.1.2 Monads in Haskell with Type Classes

Haskell’ type classes allow the user to declare thenamesandsignaturesof theclass
operations. For instance, in Haskell, there is a standardMonad class that defines the
names and signatures of the two monad functions:

class Monad m where

return ∈ forall a.a → m a

(>>=) ∈ forall a b.m a → (a → m b)→ m b

This declares that a typem belongs to the classMonad if there are two operationsreturn
of typea → m a and>>= of typem a → (a → m b) → m b. The definition of the
Monad class above showed only the minimal complete definition. The full definition of
the Monad class in Haskell actually includes two additionalfunctions:

fail ∈ a → m a

>> ∈ m a → m b → m b

where, the default implementation of the fail function is:
fail s = error s

We only need to change this if we want to provide different behavior for failure or to
incorporate failure into the computational strategy of ourmonad. The Maybe monad, for
instance, defines fail as:

fail = Nothing

so thatfail returns an instance of theMaybe monad with meaningful behavior when it is
bound with other functions in the Maybe monad.

The fail function is not a required part of the mathematical definition of a monad,
but it is included in the standard Monad class definition because of the role it plays in
Haskell’s do notation as explained below.

31

The>> function is a convenience operator that is used to bind a monadic computation
that does not require input from the previous computation inthe sequence. It is defined in
terms of>>=:

(>>) ∈ m a → m b → m b

m >> k = m >>= (λ → k)

Then we can define which types are instances of which class, and provide definitions
of the overloaded operations associated with a class, for example:

instance Monad Maybe where

return = returnM

>>= = bindM

fail = Nothing

declares that typeMaybe belongs to classMonad , and that the implementation of the two
functions onMaybe type is given as in section above, andfail is Nothing.

It is not strictly necessary to make our monad instances of the Monad class, but
Haskell has special support forMonad instances built into the language, calleddo-
notation, which allow us to write cleaner and more elegant code. Basically, using the
do notation we can write monadic computations in a pseudo-imperative style with named
variables. The result of a monadic computation can beassignedto a variable using a left
arrow← operator. Then using that variable in a subsequent monadic computation auto-
matically performs the binding. The type of the expression to the right of the arrow is a
monadic typem a. A traditional example would be to define division using theMaybe

type:
(//) ∈ Maybe Float → Maybe Float → Maybe Float

x // y = do a ← x

b ← y

if b ≡ 0 then Nothing else return (a / b)

which is equivalent to the following awkward expression:
x // y = x >>= λa.y >>= λb.if b ≡ 0 then Nothing else return (a / b)

Do-notation uses the following identies to translatedo-expressions to respective monadic
expressions withreturn, >>=, and>>:

do {p ← e; s } = e >>= λp → do {s }
do {e; s } = e >> do {s }
do {e } = e

The functions>>, >>= are the functions in theMonad class. Thefail function is called
whenever a pattern matching failure occurs in ado block.

3.1.3 Monad Transformers

Consider we want to merge two monads, that is, we want to builda computation with
two different kinds of effects, for instance computations which feature exceptions (Maybe

type) and state passing. This can be designed systematically, usingmonad transform-
ers (SHENG LIANG; JONES, 1995). A monad transformer is a monad parameterised
on another monad, such that computations over the parametermonad can belifted to
computations over the new one.

For example, theMaybe monad above can be generalised to a monad transformer:
newtype MaybeMonadT m a = MT (m (Maybe a))
unMT (MT c) = c

In general, the monad operators on the new type must be definedin terms of the monad
operators in the parameter type:

32

instance Monad m ⇒ Monad (MaybeMonadT m) where

return a = MT (return (Just a))
x >>= f = MT (do a ← unMT x

case a of

Nothing → return Nothing

Just a → unMT (f a))
Lifting of computations is defined by

liftMaybe ∈ Monad m ⇒ m a → MaybeMonadT m a

liftMaybe x = MT (x >>= λa → return (Just a))

3.1.4 Indexed Monads

In the definition of a Kleisli triple, the functionT is an endofunctor onC. Intuitively,
this is the reason for the universal quantifier before the definitions of return and>>= in
Section 3.1.1, that is, the monadic constructor acts over all objects in the category of
valuesC.

However, sometimes we want toselectsome objects fromC to apply the constructorT .
This notion is slightly more general than Kleisli triples, and it is captured by the definition
of Kleisli structure(ALTENKIRCH; REUS, 1999). Basically, for Kleisli structures, the
functionT does not need be an endofunctor onC. We can select some objects fromC to
apply the constructor.

Definition 3.1.2 A Kleisli structure(I, F, G, ηF,G, ∗F,G) on a categoryC is given by:

• an index setI ∈ Set,

• families of objects indexed byI: F, G : I → Obj(C),

• a family of morphisms indexed byi ∈ I: ηF,G
i : F (i)→ G(i),

• a family of functions indexed byi, j ∈ I:

f ∗F,G
i,j : G(i)→ G(j)

for fF,G
i,j ∈ F (i)→ G(j).

which are subject to the following equations:

1. η∗F,G
i,i = idG(i)

2. ηF,G
i ; f ∗F,G

i,j = fF,G
i,j wherefF,G

i,j : F (i)→ G(j).

3. f ∗F,G
i,j ; g∗F,G

j,k = (fF,G
i,j ; g∗F,G

j,k)∗F,G
i,k wherefF,G

i,j : F (i)→ G(j), gF,G
j,k : F (j)→ G(k).

Note that Kleisli triples are a special case of Kleisli structures whereI = Obj(C) and
F is the identity.

G(i)
f
∗F,G
i,j // G(j)

F (i)
f

F,G
i,j

77ooooooooooooo

η
F,G
i

OO

F (j)

η
F,G
j

OO

33

Now, the definitions ofreturn and>>= in Haskell would be rephrased as:
return ∈ forall a.F (a)⇒ a → m a

>>= ∈ forall a b.(F (a),F (b))⇒ m a → (a → m b)→ m b

That is, for alla for whichF (a) holds we can apply the constructorm, and for alla and
b for which F (a) andF (b) hold we can apply>>=. In terms of type classes we would
like to rewrite theMonad class indexed in such a way:

class IMonad m where

return ∈ F a ⇒ a → m a

(>>=) ∈ (F a,F b)⇒ m a → (a → m b)→ m b

Fortunately, in the new version of GHC (Glasgow Haskell Compiler - 6.5), the types
for return, >>=, and>> used in thedo-notation may be overloaded to have our proper
types. Therefore, we can define ourindexed monadsand still usedo-notation for that
type.

3.2 Arrows

To handle situations where monads are inapplicable, Hughes(HUGHES, 2000) intro-
duced a new type class generalising monads, calledarrows. Indeed, in addition to defining
a notion of procedure which may perform computational effects, arrows may have a static
component, or may accept more than one input.

Arrows were first introduced as an abstract interface for Swierstra and Duponcheel’s
parsing library (SWIERSTRA; DUPONCHEEL, 1996), which could not be modelled
using monads. Essentially, they defined an efficient parsinglibrary in the sense that the
space leaks, caused in parsing grammars that define non-terminals via alternatives, are
substantially reduced. The solution they proposed was to include a static component to
the parser with some information about the tokens which could be accepted as the first in
the input. Unfortunatelly, they coudn’t define>>= ∈ Parser s a → (a → Parser s b)→
Parser s b using this representation (heres stands to thestatic component). The problem
is that the static properties of the resultingParser s b depend on the static properties of
boththe first and the second arguments. Yet in the definition of>>=, while we have acces
to the static properties of the first argument, we cannot obtain the static properties of the
second one without applying it to a value of typea.

Just as we think of a monadic typem a as representing acomputationdelivering an
a, so we think of an arrow typea b c as representing a computation with input of typeb

delivering ac. Arrows make the dependence on input explicit.
Formally, arrows give rise toFreyd-categoriesto model notions of computations.

Here we present a simplified version of Freyd-categories as defined in (PATERSON,
2001), which is equivalent to the definition of Power and Robinson (POWER; ROBIN-
SON, 1997).

Definition 3.2.1 (Freyd-category) A Freyd-category is a structure(V, C, inc, ⋉), where:

• a categoryV with finite products (the value category),

• a categoryC with the same objects asV (the computation category),

• a functorinc :: V → C that is the identity on objects,

34

• a functor⋉ :: C × V → C such that

inc x ⋉ y = inc(x× y)

and the following natural isomorphisms inV

assoc× : (A×B)× C ∼= A× (B × C)
unitr× : A× 1 ∼= A

extend to natural isomorphism inC:

inc assoc× : (A ⋉ B) ⋉ C ∼= A ⋉ (B × C)
inc unitr× : A ⋉ 1 ∼= A

The object preserving functorinc corresponds to thelift of functions from values to
values to functions from computations to computations. Intuitively, the functor⋉ corre-
sponds to say that we can always augment the state space of functions from computations
to computations by applying aprogramthat does nothing to the extra computations.

C C

V
inc

OO

C × V
⋉

OO

The last two axioms correspond to the naturality requeriments for the category.

3.2.1 Arrows in Haskell

In Haskell, the arrow interface is defined using the following class declaration:
class Arrow a where

arr ∈ forall b c.(b → c)→ a b c

(≫) ∈ forall b c d .a b c → a c d → a b d

first ∈ forall b c d .a b c → a (b, d) (c, d)
In other words, to be an arrow, a typea must support the three operationsarr, ≫, andfirst
with the given types. Mirroring the naturality axioms in definition 3.2.1, these operations
must satisfy the following equations:

arr id ≫ f = f
f ≫ arr id = f

(f ≫ g) ≫ h = f ≫ (g ≫ h)
arr (g . f) = arr f ≫ arr g

first (arr f) = arr (f × id)
first (f ≫ g) = first f ≫ first g

first f ≫ arr (id× g) = arr (id× g) ≫ first f
first f ≫ arr fst = arr fst ≫ f

first (first f) ≫ arr assoc = arr assoc≫ first f

where the functions× andassocare defined as follows:

(f × g) (a, b) = (f a, g b)
assoc ((a, b), c) = (a, (b, c))

Graphically the functions associated with the arrow type are the following:

35

f
b c b c d

f g fb

d d

c

>>> firstarr

(b)(a) (c)

The functionarr allows us to introduce “pure” arrows which are simple functions from
their inputs to their outputs. The function≫ is similar to≫=: it composes two computa-
tions. The functionfirst is the critical one for our purposes: it allows us to apply an arrow
to a component of theglobal state. The equations above ensure that these operations are
always well-defined even with arbitrary permutations and change of associativity.

Given these three basic functions, we can define more useful combinators. For in-
stance, we can define a combinator that applies its argument to the second component
instead of the first:

second ∈ Arrow a ⇒ a b c → a (d , b) (d , c)
second f = arr swap ≫ first f ≫ arr swap

where swap (x , y) = (y , x)

and a combinator which processes both components of a pair:
(∗∗∗) ∈ Arrow a ⇒ a b c → a d e → a (b, d) (c, e)
f ∗∗∗ g = first f ≫ second g

which is equivalent to first applyf to thefirst argument and then applyg to the second
argument.

Also, we can define a combinator which builds a pair from the results of two arrows:
(&&&) ∈ Arrow a ⇒ a b c → a b d → a b (c, d)
f &&&g = arr (λb → (b, b)) ≫ (f ∗∗∗ g))

Now suppose we want to choose between two arrows on the basis of an input. For that
Hughes (HUGHES, 2000) introduced a dynamic choice operatorand instead of enlarging
the existingArrow class further, he defined a new class calledArrowChoice. In this way
we can define arrow types which do not support the dynamic choice operator.

The definition of the choice combinator uses the pre-defined Haskell’s sum type:
data Either a b = Left a | Right b

Then, the new class (which can be viewed as asubclassof Arrow) requires aleft
function:

class Arrow a ⇒ ArrowChoice a where

left ∈ a b c → a (Either b d) (Either c d)

whereleft f invokesf only onLeft inputs, and leavesRight inputs unchanged.
UsingLeft and the other combinators we can derive some more interesting combina-

tors:
right ∈ ArrowChoice a ⇒ a b c → a (Either d b) (Either d c)
right f = arr mirror ≫ left f ≫ arr mirror

where mirror (Left x) = Right x

mirror (Right y) = Left y

similarly right f invokesf only onRight inputs, and leavesLeft inputs unchanged.
The last interesting function we show here isf ||| g which passesLeft inputs tof and

Right inputs tog :

36

(|||) ∈ ArrowChoice a ⇒ a b d → a c d → a (Either b c) d

f ||| g = f +++ g ≫ arr untag

where untag (Left x) = x

untag (Right y) = y

(+++) ∈ ArrowChoice a ⇒ a b c → a b ′ c ′ → a (Either b b ′) (c c ′)
f +++ g = left f ≫ right g

3.2.2 A Better Notation for Arrows

Following the Haskell’s monadicdo-notation, Paterson (2001) presented an extension
to Haskell with an improved syntax for writing computationsusing arrows. He defined
a preprocessor, that reads as input a Haskell script augmented with arrow notation, and
outputs a plain Haskell script. We concentrate only on the explanation of new forms
which we use in our examples. Here is a simple example to illustrate the notation:

op ∈ Ty (T1,T) (T1,T)
op = proc (a, b)→ do

r ← f ≺ a

returnA ≺ (r , b)

Thedo-notation simply sequences the actions in its body. The function returnA is the
equivalent for arrows of the monadic functionreturn. The two additional keywords are:

• thearrow abstractionproc which constructs an arrow instead of a regular function.

• thearrow application≺ which feeds the value of an expression into an arrow.

Paterson (2001) shows that the above notation is general enough to express arrow
computations and the preprocessor is implemented such thatit translates the new syntax to
regular Haskell. In the case ofop above, the translation to Haskell produces the following
code:

e ∈ Ty (T1,T) (T1,T)
e = first f

for f ∈ Ty T1 T1. As the example shows, the output of the preprocessor is quite op-
timised. However, the preprocessor should be executed manually and it is not strictly
necessary to add types to the expressions.

The notation is also implemented directly in GHC, from version 6.2, where it is en-
abled by the−farrows option. Hence, if our types are an instance of theArrow class we
can use the arrow notation directly in the Haskell code.

3.2.3 The Arrow Transformers

Arrows have the same property we present in Section 3.1.3 formonads, that is, we
can definearrow transformerswhich map simpler arrow types to more complex ones. An
arrow transformer is, by analogy with a monad transformer, just an arrow type parame-
terised on another arrow type, such that we can lift operations on the parameter type to the
new type. For instance, any arrow type can be lifted to an arrow type supporting failures:

newtype MaybeArrowT a b c = MAT (a b (Maybe c))

unMAT (MAT c) = c

That is, the result of the arrow can indicate failure. We can lift arrows to this type using:
liftMaybe ∈ Arrow a ⇒ a b c → MaybeArrowT a b c

liftMaybe f = MAT (f ≫ arr Just)

37

Again, in general, the arrow operators in the new type are defined in terms of the
operators in the parameter type. Moreover, the arrow operations need to handle failures,
which means they need to make dynamic decisions, and therefore must require that the
parameter arrow type supports choice:

instance ArrowChoice a ⇒ Arrow (MaybeArrowT a) where

arr f = liftMaybe (arr f)
f ≫ g = let f0 = unMAT f

g0 = unMAT g

in MAT (f0 ≫ arr (λz → case z of

Just c → Left c

Nothing → Right Nothing) ≫

(g0 ||| arr id))
first (MAT f) = MAT (first f ≫

arr (λ(c, d)→ case c of

Just c → Just (c, d)
Nothing → Nothing))

3.2.4 Indexed Arrows

As we have presented the definition of indexed monads, i.e.,Kleisli structures, we
want to define indexed arrows. Recall definition3.2.1, whereinc is afunctorfromV to C.
It is because ofinc that we have the quantifierforall in the definition of theArrow class
in Section 3.2.1. But again, suppose we want toselectsome elements fromV to build
our computations. For that purpose we define here a generalisation ofFreyd-categories,
which we callindexed Freyd-categories. Essentially, a indexed Freyd-category is build on
top of anindexedcategory of values.

An indexed category is a well know construction from category theory, which model
uniformly defined families of categories (TARLECKI; BURSTALL; GOGUEN, 1991).

Definition 3.2.2 (Indexed Category)An indexed categoryC over an indexI is a functor
Iop → Cat. Given an indexi ∈ I, we may writeCi for the categoryC(i), and given an
index morphismσ :: i → j, we may writeCσ for the functorC(σ) : C(j) → C(i). Also,
we may callCi theith component category ofC.

Definition 3.2.3 (Indexed Freyd-category)A indexed Freyd-category is a structure(I,
V, C, inc, ⋉) with:

• a categoryV with finite products (the value category),

• an index setI ∈ Set, taken as a trivial category and used as the index category,

• an indexed categoryVi, such thati ∈ I,

• a categoryCi with the same objects asVi (the computation category), such that
i ∈ I,

• a family of functorsinc indexed byi ∈ I, with inci :: Vi → Ci that is the identity
on objetcs,

• a family of functors⋉ indexed byi, j ∈ I, with ⋉i,j :: Ci × Vj → C(i,j) such that

inci x ⋉i,j y = inc(i,j)(x× y)

38

and the following natural isomorphisms, indexed byi, j, k ∈ I, in V

assoc× : (Ai ×Bj)× Ck
∼= Ai × (Bj × Ck)

unitr× : Ai × 1 ∼= Ai

extend to natural isomorphism in the indexed categoryC:

inc assoc× : (Ai ⋉ Bj) ⋉ Ck
∼= Ai ⋉ (Bj × Ck)

inc unitr× : Ai ⋉ 1 ∼= Ai

Below, we show the diagram for an indexed Freyd-category:

Ci C(i,j)

Vi

inci

OO

Ci × Vj

⋉i,j

OO

Now, the definitions ofarr , ≫, andfirst in Haskell could be rephrased as:
arr ∈ forall bi cj.(bi → cj)→ a bi cj

(≫) ∈ forall bi cj dk.a bi cj → a cj dk → a bi dk

first ∈ forall bi cj dk.a bi cj → a (bi, dk) (cj , dk)
such thati, j, k ∈ I.

In terms of type classes we would like to rewrite theArrow class to become a indexed
Arrow class allowing us to write, for instance:

class IArrow m where

arr ∈ (I b, I c)⇒ (b → c)→ a b c

(≫) ∈ (I b, I c, I d)⇒ a b c → a c d → a b d

first ∈ (I b, I c, I d)⇒ a b c → a (b, d) (c, d)
Unfortunately, in the current version of GHC (6.5), the types for arr , ≫, andfirst

used in the arrow notation maynotbe overload to have our proper types. This is a problem
related to “rebindable syntax in GHC” (SABRY, 2006), and it seems that it is quite hard to
solve. Therefore, we can define ourindexed arrowsbut wecan notrun programs directly
into Haskell based on them for the moment. As an option to compile them manually to
pure Haskell we still can use Paterson’s preprocessor.

3.3 Summary

In this Chapter we have presented two mathematical notions,monadsand arrows,
which are now widely used in computer science, mainly in programming language se-
mantics and design. For us these constructions are interesting as a tool to structure and
elegantly model computational effects introduced by quantum computations. Specially
we have presented generalisations of these concepts, whichwe call indexed monads(re-
spective to Kleisli structures (ALTENKIRCH; REUS, 1999)) and indexed arrows, which
are the right structures to model finite complex vector spaces build over a computational
basis set (that is, the set of classical observable values).

39

4 QML: QUANTUM DATA AND QUANTUM CONTROL

This chapter is based on (ALTENKIRCH et al., 2005), where we developed a sound
andcompleteequational theory for a pure (omitting measurements) sublanguage of QML.

The language QML was introduced in (ALTENKIRCH; GRATTAGE, 2005) and
(ALTENKIRCH; GRATTAGE, 2005b). QML is a first order functional language which
features both quantum data structures and quantum control structures, in particular a
quantum conditional structureif◦ - which analyses quantum data without measuring, and
hence without changing the data.

QML’s type system is based onstrict linear logic, that is linear logic with contraction,
but without implicit weakening.

The chapter is divided in three parts: i) an informal view of the language; ii) proof
of completeness for a classical sublanguage of QML; and iii)proof of completeness for a
pure sublanguage of QML.

A next step would be generalise this approach to the full QML including measure-
ments. In next chapters we structure a model for general (including measurements) and
complete (including quantum and classical data as well as the interchanging between
quantum and classical worlds) quantum computations using arrows. We hope to integrate
the results of next chapters with a quantum programming language like QML.

4.1 The Language QML

We consider some interesting examples to give further intuition about the semantics
of the language. We present the examples using global functions definitions.

The following three functions correspond to simple rotations on qubits:
qnot x = if◦ x then false else true

had x = if◦ x then ((−1) ∗ true + false) else (true + false)

z x = if◦ x then (i ∗ true) else false

The first is the quantum version of boolean negation: it behaves as usual when applied to
classical values but it also applies to quantum data. Evaluating qnot (κ ∗ false + ι ∗ true)
swaps the probability amplitudes associated withfalse and true. The second function
represents the fundamentalHadamardmatrix, and the third represents thephasegate.

The function:
cnot c x = if◦ c

then (true, qnot x)
else (false, x)

is the conditional-not operation, which behaves as follows: if the control qubitc is true

it negates the second qubitx ; otherwise it leaves it unchanged. When the control qubit

40

is in some superposition oftrue andfalse, the result is a superposition of the two pairs
resulting from the evaluation of each branch of the conditional. For example, evaluating
cnot (false + true) false produces theentangledpair (false, false) + (true, true).

To motivate the main aspects of the QML type system (which we presented in the next
chapter), we examine in detail the issues related to copyingand discarding quantum data.

4.1.1 Copying Quantum Data

A simple example where quantum data appears to be copied, in violation of theno-
cloningtheorem (NIELSEN; CHUANG, 2000), is:

let x = false + true

in (x , x)

As the formal semantics of QML clarifies, this expression does not actually clone quantum
data; rather itsharesone copy of the quantum data. With this interpretation, one can
freely duplicate variables bound to quantum data. When translated to the type system,
this means that the type system imposes no restrictions on the use of the structural rule of
contraction.

4.1.2 Discarting Quantum Data

In contrast, a simple example where quantum data appears to be discarded is:

let (x , y) = {(false, false) | (true, true)}
in x

Indeed the quantum data bound toy is discarded, which according to both the physical
interpretation of quantum computation and the QML semantics explained in next chapters
corresponds to ameasurementof y . This measurement could be made explicit in the QML
syntax by writing:

let (x , y) = {(false, false) | (true, true)}
in meas y in x

Since measurement is semantically quite complicated to deal with, they should be explic-
itly represented in the syntax and typing judgments. Thus the type system is designed to
reject the first expression and accept the second. This meansthat the structural rule of
weakeningis controlled and can only be used when it corresponds to an explicit measure-
ment.

Of course, the situation is more subtle than just syntactically checking whether a vari-
able is used or not. Consider the expression:

if◦ x then true else true

The expression appears, syntactically at least, to usex . However given the semantics of
if◦ which returns a superposition of the branches, the expression happens to returntrue
without reallyusingany information aboutx . In order to maintain the invariant that all
measurements are explicit, the type system rejects the above expression. In more detail,
an expression:

if◦ x then t else u

is only accepted ift andu areorthogonalquantum values. This notion intuitively ensures
that the conditional operator does not implicitly discard any information aboutx during
the evaluation.

41

4.2 The Classical Sublanguage

4.2.1 Syntax

By the classical sublanguage, we mean a classical first-order functional language. The
syntax of terms is the following:

(Variables) x , y , ... ∈ Vars

(Patterns) p, q ::= x | (x , y)
(Terms) t , u, e ::= x | () | (t , u)

| let p = t in u

| if t then u else u ′

| false | true
The classic sublanguage consists of variables,let-expressions, unit, pairs, booleans,

and conditionals.

4.2.2 Type System

The main rôle of the type system is to control the use of variables. The typing rules
of QML are based on strict linear logic, where contractions are implicit and weakenings
are not allowed when they correspond to information loss. Asexplained in the previous
section, weakenings correspond to measurements, which arenot supported in the subset
of the language discussed in this work.

We useσ, τ, ρ to vary over QML types which are given by the following grammar:
σ = Q1 | Q2 | σ ⊗ τ

As apparent from the grammar, QML types are first-order and finite: there are no higher-
order types and no recursive types. The only types we can represent are the types of
collections of qubits.

Typing contexts (Γ, ∆) are given by:
Γ = • | Γ, x : σ

where• stands for the empty context, but is omitted if the context isnon-empty. For
simplicity we assume that every variable appears at most once. Contexts correspond to
functions from a finite set of variables to types. We introduce the operator⊗, mapping
pairs of contexts to contexts:

(Γ, x : σ)⊗ (∆, x : σ) = (Γ⊗∆), x : σ (4.1)

(Γ, x : σ)⊗∆ = (Γ⊗∆), x : σ if x /∈ dom(∆) (4.2)

• ⊗∆ = ∆ (4.3)

This operation is partial: it is only well-defined if the two contexts do not assign
different types to the same variable. Whenever we use this operator we implicitly assume
that it is well-defined.

Figure 4.1 presents the rules for deriving valid typing judgementsΓ ⊢ t : σ. The
only variables that may be dropped from the context are the ones of typeQ1 which, by
definition, carry no information. Otherwise the type systemforces every variable in the
context to be used (perhaps more than once if it is shared).

To see how the type system works in more details consider the following derivation
where the same variable is being used twice:

42

var
x : σ ⊢ x : σ

Γ ⊢ t : σ ∆, x : σ ⊢ u : τ
let

Γ⊗∆ ⊢ let x = t in u : τ

unit
• ⊢ () : Q1

Γ ⊢ t : σ ∆ ⊢ u : τ
⊗-intro

Γ⊗∆ ⊢ (t, u) : σ ⊗ τ

Γ ⊢ t : σ ⊗ τ ∆, x : σ, y : τ ⊢ u : ρ
⊗-elim

Γ⊗∆ ⊢ let (x, y) = t in u : ρ

f-intro
• ⊢ false : Q2

t-intro
• ⊢ true : Q2

Γ ⊢ c : Q2 ∆ ⊢ t, u : σ
if

◦
Γ⊗∆ ⊢ if

◦ c then t else u : σ

Γ, x : Q1 ⊢ t : σ
wk-unit

Γ ⊢ t : σ

Figure 4.1: Typing classical terms

t-intro
• ⊢ true : Q2

var
x : Q2 ⊢ x : Q2

var
x : Q2 ⊢ x : Q2 ⊗

•, x : Q2 ⊢ (x, x) : Q2 ⊗Q2
let

• ⊗ • ⊢ let x = true in (x, x) : Q2 ⊗Q2

The key point here is the context. Note that we can only prove true with the empty context.
Intuitively this means that the context cannot include variables which are never used. The
let expression introduces the variablex in the context, and using the operation⊗ we can
sharethis variable:

•, x : Q2 = • ⊗ •, x : Q2 (by 4.3)
= (•, x : Q2)⊗ (•, xQ2) (by 4.1)

4.2.3 The Category of Typed Terms

The set of typed terms can be organised in an elegant categorical structure, which
facilitates the proofs later. The objects of the category are contexts; the homset between
the objectsΓ and∆, denotedTm Γ ∆, consists of all the termst such thatΓ ⊢ t : |∆|
where|∆| views the context∆ as a type. This latter map is naturally defined as follows:

| • | = Q1

|Γ, x : σ| = |Γ| ⊗ σ

For each contextΓ, the identity1Γ ∈ TmΓΓ is defined as follows:

1• = ()
1Γ,x:σ = (1Γ, x)

To express composition, we first define:
let∗ • = u in t ≡ t

let∗ Γ, x : σ = u in t ≡ let (xr, x) = u in let∗ Γ = xr in t

43

Givend ∈ Tm ∆ Γ ande ∈ Tm Γ Θ, the compositione ◦ d ∈ Tm ∆ Θ is given by the
term let∗ Γ = d in e.

For example, consider we want to model in this category the term • ⊢ let x =
false in (((), x), x) : (Q1 ⊗Q2)⊗Q2. Then, we need the following objects:

Γ = •
Θ = •, y : Q2, z : Q2

such that

|Γ| = Q1

|Θ| = (| • | ⊗ Q2)⊗Q2 = (Q1 ⊗Q2)⊗Q2

and we have that the term is the arrow below:

Γ
let x=false in (((),x),x) // Θ

Now, as the typing rules suggest the let expression above is the same as the composi-
tion of • ⊢ ((), false) : Q1 ⊗Q2 with Q1 ⊗Q2 ⊢ (((), x), x) : (Q1 ⊗Q2) ⊗Q2, that is,
given

∆ = •, x : Q2

|∆| = | • | ⊗ Q2 = Q1 ⊗Q2

we want the following diagram to comute:

Γ
let x=false in (((),x),x) //

((),false))

��

Θ

∆

(((),x),x)

77pp

Checking: the composition(((), x), x) ◦ (x, false) is:
let∗ ∆ = (x , false) in (((), x), x)
(by definition of ∆)
= let∗ •, x :Q2 = ((), false) in (((), x), x)
(by definition of let∗)
= let (xr, x) = ((), false) in let∗ • = xr in (((), x), x)
(by definition of let∗)
= let (xr, x) = ((), false) in (((), x), x)
(by β equation)
= let xr = () in let x = false in (((), x), x)
(by substitution)
= let x = false in (((), x), x)

4.2.4 Semantics

The intention is to interpret every typeσ and every contextΓ as finite setsJσK and
JΓK, and then interpret a judgementΓ ⊢ t : σ as a functionJΓ ⊢ t : σK ∈ JΓK→ JσK.

44

In the classical case, the typeQ2 is simply the type of booleans; the types are inter-
preted as follows:

JQ1K = {0}
JQ2K = {0, 1}

Jσ ⊗ τK = JσK× JτK

We use the abbreviationJΓK for J|Γ|K.
The meaning function is defined in Figure 4.2 by induction over the structure of type

derivations. It uses the following auxiliary maps:

• id : S → S defined byid(a) = a

• id∗ : S → JQ1K×S and its inverseid∗ defined byid∗(a) = (0, a) andid∗(0, a) = a

• For a ∈ S, the family of constant functionsconsta : JQ1K → S defined by
(consta)(0) = a.

• δ : S → (S, S) defined byδ(a) = (a, a)

• swap : S × T → T × S defined byswap(a, b) = (b, a). We will usually implicitly
useswapto avoid cluttering the figures with maps which just re-shuffle values.

• For any two functionsf ∈ S1 → T1 andg ∈ S2 → T2, the function(f × g) :
(S1 × S2)→ (T1 × T2) is defined as usual:

(f × g)(a, b) = (f a, g b)

• δΓ,∆ : JΓ⊗∆K→ JΓK× J∆K. This map is defined by induction on the definition of
Γ⊗∆ as follows:

δΓ,∆ =







δΓ′,∆′ × δ if Γ = Γ′, x : σ and∆ = ∆′, x : σ
δΓ′,∆ × id if Γ = Γ′, x : σ andx 6∈ dom(∆)

id∗ if Γ = •

Intuitively, the mapδΓ,∆ takes an incoming environment for an expression, creates
shared copies of the appropriate values, and rearranges them (the shuffling is im-
plicit and not shown in the above definition) into two environments that are then
passed to the subexpressions.

• For any two functionsf, g ∈ S → T , we define the conditionalf |g ∈ (JQ2K×S)→
T as follows:

(f |g) (1, a) = f a
(f |g) (0, a) = g a

4.2.5 Examples

We interpreted some simple QML expressions as explained above. Consider the fol-
lowing function representing boolean negation:

qnot x = if◦ x then false else true

Formally, this function can be written as the type judgementbelow:

x : Q2 ⊢ if
◦ x then false else true : Q2

45

J• ⊢ () : Q1K = const0
J• ⊢ false : Q2K = const0
J• ⊢ true : Q2K = const1
Jx : σ ⊢ x : σK = id∗

JΓ⊗∆ ⊢ let x = t in u : τK = g ◦ (f × id) ◦ δΓ,∆

where f = JΓ ⊢ t : σK
g = J∆, x : σ ⊢ u : τK

JΓ⊗∆ ⊢ (t, u) : σ ⊗ τK = (f × g) ◦ δΓ,∆

where f = JΓ ⊢ t : σK
g = J∆ ⊢ u : τK

JΓ⊗∆ ⊢ let (x, y) = t in u : ρK = g ◦ (f × id) ◦ δΓ,∆

where f = JΓ ⊢ t : σ ⊗ τK
g = J∆, x : σ, y : τ ⊢ u : ρK

JΓ⊗∆ ⊢ if
◦ c then t else u : σK = (g|h) ◦ (f × id) ◦ δΓ,∆

where f = JΓ ⊢ c : Q2K
g = J∆ ⊢ t : σK
h = J∆ ⊢ u : σK

JΓ ⊢ t : σK = f ◦ id∗

wheref = JΓ, x : Q1 ⊢ t : σK

Figure 4.2: Meaning of classical derivations

Because the initial empty context is omitted if the context is non-empty, we have
•, x : Q2, which is equivalent to:

•, x : Q2 = (• ⊗ •), x : Q2 (by 4.3)
= (•, x : Q2)⊗ • (by 4.2)

Therefore, we shall interpret the type judgement rewrittenas:

J(•, x : Q2)⊗ • ⊢ if
◦ x then false else true : Q2K

= (g|h) ◦ (f × id) ◦ δ(•,x:Q2),•
where f = J•, x : Q2 ⊢ x : Q2K = id∗

g = J• ⊢ false : Q2K = const0
h = J• ⊢ true : Q2K = const1

δ(•,x:Q2),• = δ•,• × id = id∗ × id

= (const0|const1) ◦ (id∗ × id) ◦ (id∗ × id)
– by definition ofid∗ andid∗

= (const0|const1) ◦ (id × id)
= (const0|const1) :: (JQ2K× JQ1K)→ JQ2K

defined as

(const0|const1) (1, 0) = const0 0 = 0
(const0|const1) (0, 0) = const1 0 = 1

which exactly behaves as the boolean negation.
Other example is the function which copies classical data1:

1This will be interesting to compare with the semantics in thenext chapter for quantum data

46

J• ⊗ • ⊢ let x = truein (x, x) : Q2 ⊗Q2K
= g ◦ (f × id) ◦ δ•,•
where f = J• ⊢ true : Q2K = const1

g = J•, x : Q2 ⊢ (x, x) : Q2 ⊗Q2K
- by definition of ⊗ on contexts

= J• ⊗ •, x : Q2 ⊢ (x, x) : Q2 ⊗Q2K
- by definition of ⊗ on contexts

= J(•, x : Q2)⊗ (•, x : Q2) ⊢ (x, x) : Q2 ⊗Q2K
= (f ′ × g′) ◦ δ(•,x:Q2),(•,x:Q2)

where f ′ = J•, x : Q2 ⊢ x : Q2K = id∗
g′ = J•, x : Q2 ⊢ x : Q2K = id∗

δ(•,x:Q2),(•,x:Q2) = δ•,• × δ = id∗ × δ

Remember that the shuffling is implicit in the definition ofδΓ,∆. Basically, for the
case above, that is forδ(•,x:Q2),(•,x:Q2), where the variablex is being shared, we will need
the following function:

rew :: Q1 ×Q1 ×Q2 ×Q2 → Q1 ×Q2 ×Q1 ×Q2

rew = id × swap × id

The final interpretation for thelet can be analyzed in the diagram below:

J• ⊗ •K δ•,• //

let x=true in (x,x)

!!B
B

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

J• ⊗ •K f×id // JQ2 ⊗ •K
swap //

g

��

J• ⊗Q2K

id∗×δ

��
= = J• ⊗ • ⊗ Q2 ⊗Q2K

rew

��
J• ⊗Q2 ⊗ • ⊗Q2K

id∗×id∗tthhhhhhhhhhhhhhhhhh

JQ2 ⊗Q2K

4.2.6 Equational Theory

We present the equational theory for the classical sublanguage and then show its
soundness and completeness. The equations refer to a set of syntactic values defined
as follows:

val ∈ ValC ::= x | () | false | true | (val1, val2)

Definition 4.2.1 Theclassical equationsare grouped in four categories.

• let-equation

let p = val in u ≡ u [val / p]

• β-equations

let (x , y) = (t , u) in e ≡ let x = t in let y = u in e

if ◦ false then t else u ≡ u

if ◦ true then t else u ≡ t

47

• η-equations

() ≡ t -- if t:Q1

let x = t in x ≡ t

let (x , y) = t in (x , y) ≡ t

if ◦ t then true else false ≡ t

• Commuting conversions

let p = t in let q = u in e ≡ let q = u in let p = t in e

let p = if ◦ t ≡ if ◦ t

then u0 then let p = u0 in e

else u1 else let p = u1 in e

in e

We writeΓ ⊢ t ≡ u : σ if Γ ⊢ t, u : σ and the equationt ≡ u is derivable at the type
σ.

Lemma 4.2.1 (Soundness)The equational theory is sound: ifΓ ⊢ t ≡ u : σ then the
functionsJΓ ⊢ t : σK andJΓ ⊢ u : σK are extensionally equal.

Proof. By induction on the derivationΓ ⊢ t ≡ u : σ.

• let-equation

let p = val in u ≡ u [val / p]

Note that this equation is a bit restrictive:p can only be bound to avalue. This is
because we want to use all these equations for the language added with quantum
data. The key point here is the well-known “non-cloning” property of quantum
states (NIELSEN; CHUANG, 2000). Imagine thatp is bound to quantum data, and
that it is being used more than once in the termu. This would correspond to make
copies of qubits, which is physically not realizable.

To prove soundness for that we will interpret substitution as usual. From the rules
on Figure 4.1 we can derive the following substitution rule:

Γ ⊢ val : σ ∆, p : σ ⊢ u : τ
Subs

Γ⊗∆ ⊢ u[val/p] : τ

whereu[val/p] denotes the result of substitutingval for p in u, which is interpreted
as:

JΓ⊗∆ ⊢ u[val/p] : τK =
J∆, p : σ ⊢ u : τK ◦ (JΓ ⊢ val : σK× id) ◦ δΓ,∆

That is, exactly as given the meaning forlet p = val in u in Figure 4.2.

• β-equations

1. let (x , y) = (t , u) in e ≡ let x = t in let y = u in e

First, the left hand side.

48

lhs = JΓ⊗∆⊗∆′ ⊢ let (x, y) = (t, u) in e : ρK
= ge ◦ (f(t,u) × id) ◦ δ(Γ⊗∆),∆′

where

ge = J∆′, x : σ, y : τ ⊢ u : ρK
f(t,u) = JΓ⊗∆ ⊢ (t, u) : σ ⊗ τK

= (ft × fu) ◦ δΓ,∆

where
ft = JΓ ⊢ t : σK
fu = J∆ ⊢ u : τK

Then, we have:

lhs = ge ◦ (((ft × fu)) ◦ δΓ,∆)× id) ◦ δ(Γ⊗∆),∆′

To the right hand side:

rhs = JΓ⊗∆⊗∆′ ⊢ let x = t in let y = u in e : ρK
= glet ◦ (ft × id) ◦ δΓ,(∆⊗∆′)

where

ft = JΓ ⊢ t : σK
glet = J∆⊗∆′, x : σ ⊢ let y = u in e : ρK

= ge ◦ (fu × id) ◦ δ∆,(∆′,x:σ)

where
fu = J∆ ⊢ u : τK
ge = J∆′, x : σ, y : τ ⊢ e : ρK

Then, we have:

rhs = ge ◦ (fu × id) ◦ δ∆,(∆′,x:σ) ◦ (ft × id) ◦ δΓ,(∆⊗∆′)

Finally, because parallel composition is extensionally equal to sequential com-
position using identity in the extra wires, we have that lhs is extensionally
equal to rhs :

Γ⊗∆⊗∆′
δ(Γ⊗∆),∆′

vvmmmmmmmmmmmm
δΓ,(∆⊗∆′)

((QQQQQQQQQQQQ

(Γ⊗∆)⊗∆′

δΓ,∆×id

��

Γ⊗ (∆⊗∆′)

ft×id

��
Γ⊗∆⊗∆′

ft×fu×id

��

σ ⊗ (∆⊗∆′)

δ∆,(∆′,x:σ)

��
// σ ⊗ τ ⊗∆′

ge

��

∆⊗ (∆′ ⊗ σ)
fu×id

oo

ρ

49

2. if ◦ false then t else u ≡ u

First the left hand side:

lhs = JΓ⊗∆ ⊢ if
◦ false then t else u : σK

= (g|h) ◦ (f × id) ◦ δΓ,∆

where

f = J• ⊢ false : Q2K
= const0

g = J∆ ⊢ t : σK
h = J∆ ⊢ u : σK

Then, using the conditional definition and becauseΓ is empty:

lhs = (g|h) ◦ (const0× id) ◦ id∗ = h

Now, the right hand side:

rhs = J• ⊗∆ ⊢ u : σK = h.

The proof can be easily compacted in the diagram below:

• ⊗∆
id∗

//

h

##GGGGGGGGGGGGGGGGGGGGGGGG
• ⊗ (• ⊗∆)

const0×id

��
Q2 ⊗ (• ⊗∆)

(g|h)

��
σ

3. if ◦ true then t else u ≡ t

First the left hand side:

lhs = JΓ⊗∆ ⊢ if
◦ true then t else u : σK

= (g|h) ◦ (f × id) ◦ δΓ,∆

where

f = J• ⊢ true : Q2K
= const1

g = J∆ ⊢ t : σK
h = J∆ ⊢ u : σK

Then, using the conditional definition and becauseΓ is empty:

lhs = (g|h) ◦ (const1× id) ◦ id∗ = g

Now, the right hand side:

rhs = J• ⊗∆ ⊢ t : σK = g.

50

Again, the proof can be easily compacted in the diagram below:

• ⊗∆
id∗

//

g

##GGGGGGGGGGGGGGGGGGGGGGGG
• ⊗ (• ⊗∆)

const1×id

��
Q2 ⊗ (• ⊗∆)

(g|h)

��
σ

• η-equations

1. let x = t in x ≡ t

lhs = JΓ⊗∆ ⊢ let x = t in x : σK
= g ◦ (f × id) ◦ δΓ,∆

where

f = JΓ ⊢ t : σK
g = J∆, x : σ ⊢ x : σK

= J•, x : σ ⊢ x : σK
= id∗

then, knowing that∆ is empty, we have:

lhs = id∗ ◦ (f × id) ◦ δΓ,•

and

rhs = JΓ⊗ • ⊢ t : σK
= JΓ ⊢ t : σK
= f

The proof is illustrated by the diagram:

Γ⊗ • id∗ //

f

##GGGGGGGGGGGGGGGGGGGGG
• ⊗ Γ⊗ •

f×id

��
σ ⊗ •

id∗

��
σ

2. let (x , y) = t in (x , y) ≡ t

lhs = JΓ⊗∆ ⊢ let (x, y) = t in (x, y) : ρK
= g ◦ (f × id) ◦ δΓ,∆

where

51

f = JΓ ⊢ t : σ ⊗ τK
g = J∆, x : σ, y : τ ⊢ (x, y) : ρK

= J•, x : σ, y : τ ⊢ (x, y) : ρK
= (gx × gy) ◦ δ•,x:σ,y:τ

where
gx = Jx : σ ⊢ x : σK = id∗
gy = Jy : τ ⊢ y : τK = id∗

then

lhs = (id∗ × id∗) ◦ id∗ ◦ (f × id) ◦ id∗

Using the facts that∆ is empty and thatρ ≡ σ ⊗ τ , we have:

Γ⊗ • id∗

//

f

""EEE
EEE

EEE
EE

EEE
EE

EEE
EE

EEE
EE

EEE
EE

E
• ⊗ Γ⊗ •

f×id

��
σ ⊗ τ ⊗ •

id∗

��
• ⊗ σ ⊗ • ⊗ τ

id∗×id∗

��
σ ⊗ τ

3. if ◦ t then true else false ≡ t

lhs = JΓ⊗∆ ⊢ if
◦ t then true else false : Q2K

= (g|h) ◦ (f × id) ◦ δΓ,∆

where

f = JΓ ⊢ t : Q2K
g = J• ⊢ true : Q2K

= const1
h = J• ⊢ false : Q2K

= const0

Then, using the conditional definition and because∆ is empty:

lhs = (const1|const0) ◦ (f × id) ◦ id∗

= f
= JΓ⊗ • ⊢ t : Q2K
= rhs

More specifically, we have the following diagram:

52

Γ⊗ • id∗

//

f

%%KKKKKKKKKKKKKKKKKKKKKKKKK
• ⊗ Γ⊗ •

f×id

��
Q2 ⊗ •

(const1|const0)
��
Q2

• Commuting conversions

1. let p = t in let q = u in e

≡ let q = u in let p = t in e

lhs = JΓ⊗∆⊗∆′ ⊢ let p = t in let q = u in e : ρK
= glet ◦ (ft × id) ◦ δΓ,∆⊗∆′

where

ft = JΓ ⊢ t : σK
glet = J∆⊗ p : σ, ∆′ ⊢ let q = u in e : ρK

= ge ◦ (fu × id) ◦ δ∆,(p:σ,∆′)

where
fu = J∆ ⊢ u : τK
ge = Jp : σ, q : τ, ∆′ ⊢ e : ρK

then

lhs = ge ◦ (fu × id) ◦ δ∆,(p:σ,∆′) ◦ (ft × id) ◦ δΓ,∆⊗∆′

Now,

rhs = JΓ⊗∆⊗∆′ ⊢ let q = u in let p = t in e : ρK
= glet ◦ (fu × id) ◦ δ∆,Γ⊗∆′

= ge ◦ (ft × id) ◦ δΓ,(q:τ,∆′) ◦ (fu × id) ◦ δ∆,Γ⊗∆′

Therefore, the diagram commutes:

Γ⊗ (∆⊗∆′)

ft×id

��

Γ⊗∆⊗∆′
δΓ,∆⊗∆′

oo
δ∆,Γ⊗∆′

// ∆⊗ (Γ⊗∆′)

fu×id

��
σ ⊗ (∆⊗∆′)

δ∆,(p:σ,∆′)

��

τ ⊗ (Γ⊗∆′)

δΓ,(q:τ,∆′)

��
∆⊗ (σ ⊗∆′)

fu×id

��

Γ⊗ (τ ⊗∆′)

ft×id

��
σ ⊗ τ ⊗∆′

ge

**UUUUUUUUUUUUUUUUUUUU
σ ⊗ τ ⊗∆′

ge

ttiiiiiiiiiiiiiiiiiiii

ρ

53

2. let x = if◦ t then u0 else u1

in e ≡
if ◦ t

then let x = u0 in e

else let x = u1 in e

lhs = JΓ⊗∆⊗∆′ ⊢ let x = if
◦ t then uo else u1

in e : τK
= ge ◦ (fif × id) ◦ δ(Γ⊗∆),∆′

where

fif = JΓ⊗∆ ⊢ if
◦ t then uo else u1 : σK

= (fu0|fu1) ◦ (ft × id) ◦ δΓ,∆

ft = JΓ ⊢ t : Q2K
fu0 = J∆ ⊢ u0 : σK
fu1 = J∆ ⊢ u1 : σK
ge = J∆′, x : σ ⊢ e : τK

Therefore:

lhs = ge ◦ (((fu0|fu1) ◦ (ft × id) ◦ δΓ,∆)× id)◦
δ(Γ⊗∆),∆′

Now, the right hand side:

rhs = JΓ⊗∆⊗∆′ ⊢ if
◦ t

then let x = u0 in e
else let x = u1 in e : τK

= (glet1 |hlet2) ◦ (ft × id) ◦ δΓ,(∆⊗∆′)

where

ft = JΓ ⊢ t : Q2K
glet1 = J∆⊗∆′ ⊢ let x = u0 in e : τK

= ge ◦ (fu0 × id) ◦ δ∆,∆′

fu0 = J∆ ⊢ u0 : σK
ge = J∆′, x : σ ⊢ e : τK

hlet2 = J∆⊗∆′ ⊢ let x = u1 in e : τK
= ge ◦ (fu1 × id) ◦ δ∆,∆′

fu1 = J∆ ⊢ u1 : σK

Therefore:

rhs = ((ge ◦ (fu0 × id) ◦ δ∆,∆′)|(ge ◦ (fu1 × id) ◦ δ∆,∆′))
◦(ft × id) ◦ δΓ,(∆⊗∆′)

Finally, both sides of the equation are extensionally equalas shows the com-
mutative diagram below:

54

(Γ⊗∆)⊗∆′

δΓ,∆×id

��

Γ⊗∆⊗∆′
δΓ,(∆⊗∆′) //

δ(Γ⊗∆)⊗∆′

oo Γ⊗ (∆⊗∆′)

ft×id

��
Γ⊗∆⊗∆′

ft×id×id

��

= Q2 ⊗ (∆⊗∆′)

��
δ∆,∆′

��

(glet1
|hlet2)

yys s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s

Q2 ⊗∆⊗∆′

(fu0 |fu1)×id

��

∆⊗∆′

u1×id

��

u0×id

��

σ ⊗∆′

ge

&&LLLLLLLLLLLL
=

τ σ ⊗∆′
ge

jj
ge

tt

2

We note that the equation

• Commuting conversion forif ◦

if ◦ (if ◦ t then u0 else u1) then e0 else e1 ≡
if ◦ t

then (if◦ u0 then e0 else e1)
else (if ◦ u1 then e0 else e1)

is derivable from the ones given above.

Proof. Assume that we have the following equivalence:
let x = e in if ◦ x then e1 else e2 ≡ if ◦ e then e1 else e2 (∗)

Then we can prove the commuting conversion forif◦ as follows:
if ◦ (if◦ e1 then e2 else e3) then e4 else e5

≡ (assumed eq .∗)
let x = if◦ e1 then e2 else e3 in if◦ x then e4 else e5

≡ (commuting conversion let− if ◦ (def .4.4.1))
if ◦ e1 then (let x = e2 in if ◦ x then e4 else e5)

else (let x = e3 in if ◦ x then e4 else e5)
≡ (assumed eq twice)
≡ if ◦ e1 then (if ◦ e2 then e4 else e5)

else (if◦ e3 then e4 else e5)
So really we only need to prove (*). We do the proof by cases on e:

• If e is a value then both sides are equivalent to:if◦ e then e1 then e2.

• If e = (e3, e4), then the equation is not well-typed.

• If e = (let p = e3 in e4), then the lhs is:

let x = (let p = e3 in e4) in if ◦ x then e1 else e2

≡ (η equation for if◦)
let x = (if◦ (let p = e3 in e4) then true else false)

55

in if ◦ x then e1 else e2

≡ (commuting conversion for let− if ◦)
if ◦ (let p = e3 in e4)

then (let x = true in if◦ x then e1 else e2)
else (let x = false in if ◦ x then e1 else e2)

≡ (β equations)
if ◦ (let p = e3 in e4) then e1 e2

≡ rhs

• If e = if ◦ t then u else u ′, then the lhs is:

let x = (if◦ t then u else u ′) in if◦ x then e1 else e2

≡ (η equation for if◦)
let x = if ◦ (if◦ t then u else u ′)

then true else false

in if ◦ x then e1 else e2

≡ (commuting conversion for let− if ◦)
if ◦ (if ◦ t then u else u ′)

then (let x = true in if ◦ x then e1 else e2)
else (let x = false in if ◦ x then e1 else e2)
≡ (β equations)
if ◦ (if ◦ t then u else u ′)

then e1

else e2

≡ rhs

2

4.2.7 Completeness of the Classical Theory

The equational theory iscompletein a strong technical sense: as we prove in the
remainder of the section, any equivalence implied by the semantics is derivable in the
theory. The proof technique is based on current work by Thorsten Altenkirch with Tarmo
Uustalu (ALTENKIRCH; UUSTALU, 2004). The proof we present extends and simpli-
fies the method presented in that work.

4.2.7.1 Proof Technique

The ultimate goal is to prove the following statement.

Proposition 4.2.1 (Completeness)If JΓ ⊢ t : σK andJΓ ⊢ u : σK are extensionally equal,
then we can deriveΓ ⊢ t ≡ u : σ.

In model theory (BRIDGE, 1997), in general one starts with a semantic structure and
then from that defines the language (i.e., the syntactic structure). In this context, one
wants to define arepresentativeor inversefunction to show how semantic objects are
represented in the syntactic structure.

However, in programming languages design, it is natural to follow a contrary path. We
start with a syntactic structure (the language) and then give the semantics using a meaning
or evaluation function as we do here.

56

Therefore, in order to prove the statement above, we define a functionqσ
Γ which inverts

evaluation by producing a canonical syntactical representative. In fact, we define the
functionqσ

Γ such that it maps a denotationJΓ ⊢ t : σK to the normal form oft.

Definition 4.2.2 Thenormal formof t is given by nfσΓ(t) = qσ
Γ(JΓ ⊢ t : σK).

The normal form is well-defined: given an equationΓ ⊢ t ≡ u : σ, we know
by soundness thatJΓ ⊢ t : σK is extensionally equalJΓ ⊢ u : σK and hence we get that
nfσΓ(t) = nfσΓ(u). If we can now prove that the syntactic theory can prove that every term
is equal to its normal form, then we can prove the main completeness result. Indeed given
the following lemma, we can prove completeness.

Lemma 4.2.2 (Inversion) The equationΓ ⊢ nfσΓ (t) ≡ t : σ is derivable.

Proof. Proof of Proposition 4.2.1 (Completeness) We have:

Γ ⊢ t ≡ qσ
ΓJΓ ⊢ t : σK : σ by inversion

Γ ⊢ qσ
ΓJΓ ⊢ t : σK ≡ qσ

ΓJΓ ⊢ u : σK : σ by assumption
Γ ⊢ qσ

ΓJΓ ⊢ u : σK ≡ u : σ by inversion

2

To summarise we can establish completeness by defining a function qσ
Γ that inverts

evaluation and that satisfies Inversion Lemma 4.2.2. Essentially, the approach can be
analyzed in Figure 4.3. Consider we have two different syntactic terms (t1, t2) and that
they are given the same denotation (f). Then, we can use the function which inverts
evaluation (q) to map the meaning back to the normal form of the terms (nf1).Finally, we
have completeness if we can derive the dashed arrows (in the syntax) from the equational
theory.

Syntax Denotation

q

t1

t2
t3

nf1

f´

h

f

g

[[]]

[[]]

Figure 4.3: Diagram for completeness proof technique.

4.2.7.2 Adequacy

We begin by defining a family of functionsqσ (“quote”) which invert the evaluation
of closedterms and prove a special case of the inversion lemma for closed terms, called
adequacy. These functions and the adequacy result are then used in thenext section to
invert the evaluation of open terms and prove the general inversion lemma.

57

Definition 4.2.3 Thesyntactic representations of denotationsis given by:

qσ ∈ JσK→ ValCσ

defined by induction overσ:

qQ1 0 = ()
qQ2 0 = false
qQ2 1 = true

qσ⊗τ (a, b) = (qσ a, qτ b)

The version of the inversion lemma for closed terms is calledadequacy. It guaran-
tees that the equational theory is rich enough to equate every closed term with its final
observable value.

Remark 4.2.1 Note thate ∈ JΓ⊗∆K is different fromg ∈ JΓK and d ∈ J∆K. But
δΓ,∆e = (g, d). For instance, considerΓ = •, x : Q1, ∆ = •, x : Q1, y : Q1 then
Γ⊗∆ = •, x : Q1, y : Q1.

Lemma 4.2.3 For e ∈ JΓ⊗∆K andg ∈ JΓK, d ∈ J∆K, such thatδΓ,∆e = (g, d), then

• For let
let∗ Γ⊗∆ = qΓ⊗∆e in let x = t in u
≡
let x = (let∗ Γ = qΓg in t) in let∗ ∆ = q∆d in u.

• For product
let∗ Γ⊗∆ = qΓ⊗∆e in (t, u)
≡
(let∗ Γ = qΓ(g) in t, let∗ ∆ = q∆(d) in u).

Proof. The proof is by induction over the definition of⊗ on contexts.

• Base Case:• ⊗∆ = ∆

– For let: if d ∈ JdK, andδ•,∆d = id∗d = (0, d), then

lhs = let∗ • ⊗∆ = q•⊗∆d in let x = t in u
≡ (by⊗)
let∗ ∆ = q∆d in let x = t in u

rhs = let x = (let∗ • = q•0 in t) in let∗ ∆ = q∆d in u
≡ (by let∗)
let x = t in let∗ ∆ = q∆d in u
≡ (by Commuting)
let∗ ∆ = q∆d in let x = t in u

– Forproduct: if d ∈ JdK, andδ•,∆d = id ∗d = (0, d), then

lhs = let∗ ∆ = q∆d in (t, u)

rhs = (let∗ • = q•(0) in t, let∗ ∆ = q∆(d) in u)
≡ (t, let∗ ∆ = q∆(d) in u)
≡ (by let case above)
let∗ ∆ = q∆d in (t, u)

58

• Induction hypothesis: assume the lemma holds for(Γ⊗∆), such thate′ ∈ JΓ⊗∆K
andg ∈ JΓK, d ∈ J∆K, such thatδΓ,∆e′ = (g, d).

• Induction step 1:(Γ, x : σ)⊗∆ = (Γ⊗∆), x : σ if x /∈ dom(∆)

– For let: if e ∈ J(Γ⊗∆), x : σK, andδ(Γ,x:σ),∆e = ((g, s), d), then

lhs = let∗ (Γ⊗∆), x : σ = q(Γ⊗∆),x:σe in let xl = t in u.

rhs = let xl = (let∗ Γ, x : σ = qΓ,x:σ(g, s) in t) in let∗ ∆ = q∆d in u
≡ (by let∗)
let xl = (let (xr, x) = (qΓg, qσs) in let∗ Γ = xr in t)
in let∗ ∆ = q∆d in u
≡ (by β equation)
let xl = (let x = qσs in let∗ Γ = qΓg in t)
in let∗ ∆ = q∆d in u
≡ (by commuting conversion)
let xl = (let∗ Γ = qΓg in let x = qσs in t)
in let∗ ∆ = q∆d in u
≡ (by hypothesis)
let∗ (Γ⊗∆) = q(Γ⊗∆)e′ in let xl = (let x = qσs in t)
in u

– Forproduct: if e ∈ J(Γ⊗∆), x : σK, andδ(Γ,x:σ),∆e = ((g, s), d), then

lhs = let∗ (Γ⊗∆), x : σ = q(Γ⊗∆),x:σe in (t , u)

rhs = (let∗ Γ, x : σ = qΓ,x:σ(g, s) in t, let∗ ∆ = q∆d in u)
≡ (by let∗)
(let (xr, x) = (qΓg, qσs) in let∗ Γ = xr in t , let∗ ∆ = q∆d in u)
≡ (by β equation)
(let x = qσs in let∗ Γ = qΓg in t , let∗ ∆ = q∆d in u)
≡ (by commuting conversion)
(let∗ Γ = qΓg in let x = qσs in t , let∗ ∆ = q∆d in u)
≡ (by hypothesis)
let∗ Γ⊗∆ = qΓ⊗∆e′ in (let x = qσs in t , u)
≡ (by let∗)
let∗ Γ⊗∆ = qΓ⊗∆e′ in (let∗ •, x : σ = ((), qσs) in t , u)
≡ (by let case)
let∗ •, x : σ ⊗ (Γ⊗∆) = q•,x:σ⊗(Γ⊗∆)e in (t, u)
≡ (by ⊗ on contexts)
let∗(Γ⊗∆), x : σ = q(Γ⊗∆),x:σe in (t, u)

• Induction step 2:(Γ, x : σ)⊗ (∆, x : σ) = (Γ⊗∆), x : σ.

– For let: if e ∈ J(Γ⊗∆), x : σK, andδ(Γ,x:σ),(∆,x:σ)e = ((g, s), (d, s)), then

59

lhs = let∗ (Γ⊗∆), x : σ = q(Γ⊗∆),x:σe in let xl = t in u.

rhs = let xl = (let∗ Γ, x : σ = qΓ,x:σ(g, s) in t)
in let∗ ∆, x : σ = q∆,x:σ(d, s) in u

≡ (by let∗)
let xl = (let (xr, x) = (qΓg, qσs) in let∗ Γ = xr in t)
in let (xs, x) = (q∆d, qσs) in let∗ ∆ = xs in u
≡ (by β equation)
let xl = (let x = qσs in let∗ Γ = qΓg in t)
in let x = qσs in let∗ ∆ = q∆d in u
≡ (by commuting conversion)
let xl = (let∗ Γ = qΓg in let x = qσs in t)
in let∗ ∆ = q∆d in let x = qσs in u
≡ (by hypothesis)
let∗ (Γ⊗∆) = q(Γ⊗∆)e′ in let xl = (let x = qσs in t)
in let x = qσs in u
≡ (by let∗)
let∗ (Γ⊗∆) = q(Γ⊗∆)e′ in let xl = (let∗ •, x : σ = ((), qσs) in t)
let∗ •, x : σ = ((), qσs) in u
≡ (by commuting conversion)
let xl = (let∗ •, x : σ = ((), qσs) in t) in let∗ (Γ⊗∆) = q(Γ⊗∆)e′

let∗ •, x : σ = ((), qσs) in u
≡ (by base case)
let∗ •, x : σ ⊗ (Γ⊗∆) = q•,x:σ⊗(Γ⊗∆)e in let xl = t in u
≡ (by ⊗ on contexts)
let∗ (Γ⊗∆), x : σ = q(Γ⊗∆),x:σe in let xl = t in u

Lemma 4.2.4 (Adequacy)The equation⊢ qσ(J ⊢ t : σK 0) ≡ t : σ is derivable.

Proof. The proof is by induction over⊢ t : σ. Therefore, we need to generalize the
statement, that is, during the proof we encounter open termsthat must be closed before
they are “quoted.” First we have to extendq to contexts by identifying a context with the
product of all its components, i.e., we useq|Γ|. The idea we use in the proof is: given an
open termΓ ⊢ t : σ, and a semantic value representing an environment,g ∈ JΓK, we can
generate a closed instance of the term by calculatingq|Γ|(g) and then generating nested
let-expressions. For convenience, we uselet∗ which is defined in 4.2.3.

Note that we could have done this using iterated substitutions as follows: givenΓ =
x1 : σ1, x2 : σ2, .., xn : σn then forall v1 ∈ Jσ1K, v2 ∈ Jσ2K, . . . , vn ∈ JσnK. Then
qσ(JtK(x1 7→ v1, . . . , xn 7→ vn)) = t[x1 = qσ1v1, . . . , xn = qσnvn] This would have
worked in the classical case but not in the quantum case wherethere is a globalentangled
quantum state. Imagine what happens ifΓ = x : Q2, y : Q2 with let (x , y) = (0, 0) +
(1, 1) in.... The idea oflet∗ is to maintain the global state with “pointers” to specific
values.

So in fact the statement to prove by induction is the following:

If g ∈ JΓK then ⊢ qσ(JΓ ⊢ t : σK g) ≡ let∗ Γ = q|Γ|(g)in t : σ

60

1. • ⊢ () : Q1. Then, we need to show

qQ1(J• ⊢ () : Q1K0) ≡ let∗ • = qQ1(0) in() : Q1.

The lhs is equal to:

qQ1(J• ⊢ () : Q1K0) ≡ (by the meaning function in Figure4.2)
qQ1(const0 0)

≡ (by const0)
qQ1(0)

≡ (by q)
()

The rhs is equal to:

let∗ • = qQ1(0) in() : Q1 ≡ (by q)
let∗ • = () in () : Q1

≡ (by let∗)
()

2. • ⊢ false: Q2. Then, we need to show

qQ2(J• ⊢ false: Q2K0) ≡ let∗ • = qQ2(0) in false: Q2.

The lhs is equal to:

qQ2(J• ⊢ false: Q2K0) ≡ (by the meaning function in Figure4.2)
qQ2(const0 0)

≡ (by const0)
qQ2(0)

≡ (by q)
false

The rhs is equal to:

let∗ • = qQ2(0) in false : Q2 ≡ (by q)
let∗ • = falsein false: Q2

≡ (by let∗)
false

3. • ⊢ true : Q2. Then, we need to show

qQ2(J• ⊢ true : Q2K0) ≡ let∗ • = qQ2(0) in true : Q2.

The lhs is equal to:

61

qQ2(J• ⊢ true : Q2K0) ≡ (by the meaning function in Figure4.2)
qQ2(const1 0)

≡ (by const1)
qQ2(1)

≡ (by q)
true

The rhs is equal to:

let∗ • = qQ2(0) in true : Q2 ≡ (by q)
let∗ • = truein true : Q2

≡ (by let∗)
true

4. x : σ ⊢ x : σ. Then, we need to show

qσ(Jx : σ ⊢ x : σKg) ≡ let∗ x : σ = qσ(g) in x : σ.

Actually, because the empty context is omitted if the context is non-empty, then we
really need to show that ifg ∈ J•, x : σK = {0} × JσK then

qσ(J•, x : σ ⊢ x : σK(0, s)) ≡ let∗(•, x : σ) = qQ1⊗σ(0, s) in x : σ.

qσ(J•, x : σ ⊢ x : σK(0, s)) ≡ (by Figure4.2)
qσ(id∗ (0, s))

≡ qσ(s)

The rhs is:

let∗(•, x : σ) = qQ1⊗σ(0, s) in x ≡ (by q)
let∗(•, x : σ) = ((), qσs) in x ≡ (by let∗)

let(xr, x) = ((), qσs) in let∗ • = xr in x ≡ (by let∗)
let(xr, x) = ((), qσs) in x ≡ (by β eq.)

let xr = () in let x = qσs in x ≡ (by let)
let x = qσs in x& ≡ (by η)

qσs

5. Γ⊗∆ ⊢ let x = t in u : τ . We want to show that: ife ∈ JΓ⊗∆K then

qτ (JΓ⊗∆ ⊢ let x = t in u : τKe)
≡
let∗ Γ⊗∆ = qΓ⊗∆e in let x = t in u.

By induction hypothesis we have: ifg ∈ JΓK, s ∈ JσK andd ∈ J∆K, such that
δΓ,∆e = (g, d), then

(a) qσ(JΓ ⊢ t : σKg) = let∗ Γ = qΓ(g) in t.

62

(b) qτ (J∆, x : σ ⊢ u : τK(d, s) = let∗ ∆, x : σ = q∆,σ(d, s) in u.

Now developing the lhs:

qτ (JΓ⊗∆ ⊢ let x = t in u : τKe)
≡ (by the meaning function in Figure4.2)
qτ (J∆, x : σ ⊢ u : τK ◦ (JΓ ⊢ t : σK× id) ◦ δΓ,∆e)
≡ (by simplification)
qτ (J∆, x : σ ⊢ u : τK(d, JΓ ⊢ t : σKg))
≡ (by hypothesis b.)
let∗ ∆, x : σ = q∆,σ(d, JΓ ⊢ t : σKg) in u
≡ (by q)
let∗ ∆, x : σ = (q∆d, qσJΓ ⊢ t : σKg) in u
≡ (by hypothesis a.)
let∗ ∆, x : σ = (q∆d, let∗ Γ = qΓ(g) in t) in u
≡ (by let∗)
let (xr, x) = (q∆d, let∗ Γ = qΓ(g) in t) in let∗ ∆ = xr in u
≡ (by β equation)
let xr = q∆ d in let x = (let∗ Γ = qΓ(g) in t) in let∗ ∆ = xr in u
≡ (by let equation)
let x = (let∗ Γ = qΓ(g) in t) in let∗ ∆ = q∆d in u
≡ (by Lemma4.2.3)
let∗ Γ⊗∆ = qΓ⊗∆e in let x = t in u.

6. Γ⊗∆ ⊢ (t, u) : σ ⊗ τ . We want to show that: ife ∈ JΓ⊗∆K then

qσ⊗τ (JΓ⊗∆ ⊢ (t, u) : σ ⊗ τKe)
≡
let∗ Γ⊗∆ = qΓ⊗∆e in (t, u).

By induction hypothesis we have: ifg ∈ JΓK, andd ∈ J∆K, such thatδΓ,∆e = (g, d),
then

(a) qσ(JΓ ⊢ t : σKg) = let∗ Γ = qΓ(g) in t.

(b) qτ (J∆ ⊢ u : τKd) = let∗ ∆ = q∆(d) in u.

Now developing the lhs:

qσ⊗τ (JΓ⊗∆ ⊢ (t, u) : σ ⊗ τKe)
≡ (by the meaning function in Figure4.2)
qσ⊗τ ((JΓ ⊢ t : σK× J∆ ⊢ u : τK) ◦ δΓ,∆e)
≡ (by simplification)
qσ⊗τ (JΓ ⊢ t : σKg, J∆ ⊢ u : τKd)
≡ (by q)
(qσJΓ ⊢ t : σKg, qτJ∆ ⊢ u : τKd)
≡ (by hypothesis a. and b.)
(let∗ Γ = qΓ(g) in t, let∗ ∆ = q∆(d) in u)
≡ (by Lemma4.2.3)
let∗ Γ⊗∆ = qΓ⊗∆e in (t, u).

63

2

4.2.7.3 Inverting Evaluation

As explained earlier, the main ingredient of the proof of completeness is the function
qσ
Γ which inverts evaluation. To understand the basic idea of how the inverse of evaluation

is defined, consider the following example. LetΓ be the environmentx : (Q2 ⊗Q2), y :
Q2 and letf ∈ JΓK → JQ2K. To find a syntactic term corresponding tof , we proceed as
follows:

• flatten all the products by introducing intermediate names;this produces an updated
environmentΓ′ = x1 : Q2, x2 : Q2, y : Q2, and an updated semantic functionf ′

such that:
f ′ (((((), x1), x2), y) = f (((), (x1, x2)), y)

• enumerate all possible values for the variables, and applyf ′ to each enumera-
tion to produce a result in the setJQ2K. For example, it could be the case that
f (((), (1, 1)), 1) = 0. The result of each enumeration can be inverted to a syntactic
term usingqσ from Definition 4.2.3.

• Put things together using nested conditions representing all the possible values for
the input variables. In the example we are considering, we get:

let (x1, x2) = x

in if ◦ x1

then if ◦ x2

then if ◦ y then false

else ...
else ...

else ...

The idea is formalised in the following definition.

Definition 4.2.4 The function

qσ
Γ ∈ (JΓK→ JσK)→ Tm Γ σ

for inverting evaluationis defined by analysing the context:

qσ
• (f) = qσ (f (0))

qσ
Γ,x:Q1

(f) = qσ
Γ (h) whereh(g) = f(g, 0)

qσ
Γ,x:Q2

(f) = (if◦ x then qσ
Γ (h1) else qσ

Γ (h0))
wherehi(g) = f(g, i) for i ∈ {0, 1}

qσ
Γ,x:(τ1⊗τ2)(f) = (let (x1, x2) = x in qσ

Γ,x1:τ1,x2:τ2
(h)

whereh(g, x1, x2) = f(g, (x1, x2))

The base case is straightforward: the evaluation produces aclosed value which can be
inverted using the“quote” function of Definition 4.2.3. If the context includes a variable
x of typeQ1, then we supply the only possible value for that variable (0), and inductively
construct the term with the variablex bound to(). The result is of the correct type because
we can add or drop bindings of variables of typeQ1 to the environment. If the context
includes a variablex of typeQ2, then we supply the two possible values for that variable

64

z-intro
• ⊢ −→0 : σ

Γ ⊢ t : σ
prob

Γ ⊢ κ ∗ t : σ

Γ ⊢ t, u : σ
sup

Γ ⊢ t + u : σ

Figure 4.4: Typing quantum data (I)

0 and 1. A conditional is then used to select the correct branch depending on the actual
value ofx. Finally, if the context includes a variable of typeτ1⊗τ2 then we simply flatten
the product and proceed inductively. The functionqσ

Γ does indeed satisfy the inversion
lemma.

4.3 Quantum Data and Control

The QML pure sublanguage terms consist of those presented inSection 4.2, extended
with quantum data and quantum control. The full language also includes quantum mea-
surement, which we do not consider in this work. The syntax ofthe quantum constructs
is the following:

(Prob.amplitudes) κ, ι, ... ∈ C

(Terms) t , u ::= ... |
−→
0 | κ ∗ t | t + u

Quantum data is modelled using the constructsκ ∗ t ,
−→
0 , andt + u. The termκ ∗ t

whereκ is a complex number associates theprobability amplitudeκ with the termt . It is
convenient to have a special constant

−→
0 for terms with probability amplitude zero. The

termt + u is a quantumsuperpositionof t andu. Quantum superpositions are first-class
values: when used as the first subexpression of a conditional, they turn the conditional into
a quantum controlconstruct. For example,if◦ (true + false) then t else u evaluates
botht andu and combines their results in a quantum superposition.

We develop the typing rules and semantics of the quantum fragment of QML in two
stages. First we extend the judgementsΓ ⊢ t : σ and the semantics of Section 4.2.4 to
handle quantum data in a straightforward manner. This simple treatment is only however
an intermediate step in the development as it admits quantumprograms that are not real-
isable on a quantum computer. We then refine both the type system and the semantics to
identify exactly the realisable quantum programs.

4.3.1 The CategoryVec

As a first approximation to a type system for QML programs, we consider the type
system of Figure 4.1 extended with the rules in Figure 4.4.

Unlike the classical case, a judgementΓ ⊢ t : σ is not interpreted as a function in
JΓK → JσK. Rather, because we now have superpositions of terms with complex proba-
bility amplitudes, we interpret such judgements as functions inJΓK → JσKQ whereJσKQ

represents the complex vectors over the base setJσK. In other words,JσKQ is defined to
beJσK → C which is sometimes denoted~JσK. We call the structure described above the
categoryVec.

Naturally this change requires that we revisit the semantics of the classical terms given
in Figure 4.2 so that each denotation returns a complex vector. For example, we should
have:

J• ⊢ false : Q2K
Q = constv wherev 0 = 1 andv 1 = 0

Instead of mapping the value representing the empty contextto the denotation offalse, we

65

J• ⊢ −→0 : σKQ = constv where∀a ∈ JσK.v a = 0
JΓ ⊢ κ ∗ t : σKQ = g where g a = κ ∗ (fa)

f = JΓ ⊢ t : σKQ

JΓ ⊢ t + u : σKQ = h where h a = f a + g a
f = JΓ ⊢ t : σKQ

g = JΓ ⊢ u : σKQ

Figure 4.5: Meaning function for quantum data

now return a vectorv which associates the denotation offalse with probability amplitude
1 and the denotation oftrue with probability amplitude 0.

This change can be done systematically by noticing that it corresponds to a monad
whose unit and lift operation are defined below:

returna (b) = 1 if a = b and 0 otherwise
f ∗(v) = Σa.(v a) ∗ (f a)

More precisely every value that is returned in Figure 4.2 is explicitly tagged with the
monadicreturn and when two functions are composed in Figure 4.2 usingf ◦ g, the
composition is replaced byf ∗ ◦ g.

The meaning of the new constructs for quantum data is given inFigure 4.5.

4.3.2 Orthogonality

The type system presented so far does indeed correctly trackthe uses of variables
and prevents variables from being weakened; yet the situation is more subtle. It turns
out that the type system accepts terms which implicitly perform measurements and as a
consequence accepts programs which are not realisable as quantum computations.

Consider the expressionif◦ x then true else true: this expression appears, syntacti-
cally at least, to usex . However given the semantics ofif◦, which returns a superposition
of the branches, the expression happens to returntrue without reallyusingany informa-
tion aboutx . In order to maintain the invariant that all measurements are explicit, the type
system should reject the above expression as well.

More precisely, the expressionif◦ x then t else u should only be accepted ift
andu areorthogonalquantum values (t ⊥ u). This notion intuitively ensures that the
conditional operator does not implicitly discard any information aboutx during the eval-
uation. Because of a similar concern, the two branches of a superposition should also be
orthogonal.

The typing rules for conditionals and superpositions are modified as in Figure 4.6.
This modification also achieves that programs are normalised, i.e., the sum of the proba-
bilities of a superposition add up to 1.

In Figure 4.7 we define the inner product of terms, which to anypair of termsΓ ⊢
t, u : σ assigns〈t|u〉 ∈ C ∪ {?}. This is used to define orthogonality:t ⊥ u holds if
〈t|u〉 = 0.

The judgement⊢◦ is not automatically closed under the equality judgement, hence we
add the rule (subst). Our philosophy is that we allow equivalent representations of QML
programs which do not satisfy the orthogonality criteria locally, as long as the program as
a whole is equivalent to one which does satisfy the criteria.

66

Γ ⊢◦ c : Q2 ∆ ⊢◦ t, u : σ t ⊥ u
if

◦
Γ⊗∆ ⊢◦ if

◦ c then t else u : σ

Γ ⊢◦ t, u : σ t ⊥ u ||λ||2 + ||κ||2 = 1
sup◦

Γ ⊢◦ λ ∗ t + κ ∗ u : σ

Γ ⊢◦ t : σ Γ ⊢ t ≡ u : σ
subst

Γ ⊢◦ u : σ

Figure 4.6: Typing quantum data (II)

〈t|t〉 = 1
〈false|true〉 = 0
〈true|false〉 = 0

〈−→0 |true〉 = 0 = 〈true|−→0 〉
〈−→0 |false〉 = 0 = 〈false|−→0 〉
〈−→0 |x〉 = 0 = 〈x|−→0 〉

〈(t, t′) | (u, u′)〉 = 〈t|u〉 ∗ 〈t′|u′〉

〈λ ∗ t + λ′ ∗ t′ | u〉 = λ∗ ∗ 〈t|u〉+ λ′∗ ∗ 〈t′|u〉
〈t | κ ∗ u + κ′ ∗ u′〉 = κ ∗ 〈t|u〉+ κ′ ∗ 〈t|u′〉

〈λ ∗ t|u〉 = λ∗〈t|u〉
〈t|λ ∗ u〉 = λ〈t|u〉
〈t + t′|u〉 = 〈t|u〉+ 〈t′|u〉
〈t|u + u′〉 = 〈t|u〉+ 〈t|u′〉

〈t|u〉 = ? otherwise

Figure 4.7: Inner products and orthogonality

4.3.3 The CategoryQ◦

The restriction of the set of typable terms requires a similar semantic restriction. All
we need to do is to restrict the morphisms in the category of complex vectors to satisfy
the following two conditions:

• Linearity: If f ∈ ~A→ ~B, α ∈ C, andv, v1, v2 ∈ ~A, thenf(v1+v2) = f(v1)+f(v2)
andf(αv) = α(f v).

• Isometry: If f ∈ ~A → ~B andv1, v2 ∈ ~A, then〈v1|v2〉 = 〈f v1|f v2〉. (In other
words,f preserves inner products of vectors.)

Two morphismsf, g ∈ A → B are orthogonal if for all vector v ∈ ~A, we have
〈f v|g v〉 = 0. We call the resulting category, the categoryQ◦ of strict quantum computa-
tions. The homset of morphisms inJΓK→ JσKQ satisfying the above conditions is called
Q◦ JΓK JσKQ.

The meaning function is given as before but with the maps interpreted in the category
Q◦, i.e., the meaning of a derivationΓ ⊢ t : σ is a morphismJΓ ⊢ t : σKQ ∈ Q◦ JΓK JσKQ.
The requirement for orthogonality in the type system is reflected semantically: for isome-
triesf, g, we have thatf |g is an isometry, iff andg are orthogonal.

4.3.4 Quantum Equational Theory

The equational theory for the quantum language inherits allthe equations for the clas-
sical case. This can be informally verified by noting that themeaning function in the case
of the quantum language is essentially identical to the classical case. Formally, the proof
technique explained in Section 4.2.7 applies equally well to the quantum case and yields

67

the same equations for the classical core plus additional equations to deal with quantum
data.

Definition 4.3.1 Thequantum equationsare:

(if◦)

if◦ (λ ∗ t0 + κ ∗ t1) then u0 else u1

≡ λ ∗ (if◦ t0 then u0 else u1) + κ ∗ (if◦ t1 then u0 else u1)

(superpositions)

t + u ≡ u + t

t +
−→
0 ≡ t

t + (u + v) ≡ (t + u) + v

λ ∗ (t + u) ≡ λ ∗ t + λ ∗ u

λ ∗ t + κ ∗ t ≡ (λ + κ) ∗ t

0 ∗ t ≡ −→
0

Lemma 4.3.1 (Soundness)The equational theory is sound: ifΓ ⊢ t ≡ u : σ then the
isometriesJΓ ⊢ t : σKQ andJΓ ⊢ u : σKQ are extensionally equal.

The additional equations are used to prove equality betweendifferent quantum values.
Semantically, two quantum values are the same if they denotethe same vector, which is
the case if the sum of the paths to each classical value is the same. For example, to find a
simplified quantum value equivalent to:

(false + true) + (false + (−1) ∗ true)
we first normalise to:

(1 /
√

2) ∗ ((1 /
√

2) ∗ false + (1 /
√

2) ∗ true) +

(1 /
√

2) ∗ ((1 /
√

2) ∗ false + (−1 /
√

2) ∗ true)
This term has two paths tofalse; along each of them the product of the amplitudes is
(1 /
√

2) ∗ (1 /
√

2) which is1 / 2. The sum of all the paths tofalse is 1, and the sum of
all the paths totrue is 0. In other words, the entire term is equivalent to simplyfalse. The
above calculation proves that the Hadamard operation is self-inverse, as discussed in the
introduction.

4.3.5 Quoting quantum values

We will now adapt the techniques developed in section 4.2.7 to the quantum case. A
classical valuev ∈ ValCσ is simply a term representing an element inJσK. A quantum
value represents a vector in~JσKQ, hence we have to close values under superpositions. We
defineValQ σ ⊆ Tm σ inductively as a subset of closed terms of typeσ:

• v ∈ ValC σ

val v ∈ ValQ σ

• 0 ∈ ValQ σ

• v, w ∈ ValQ σ

v + w ∈ ValQ σ

68

fst v 0

ttjjjjjjjjjjjjjjjjjj
fst v 1

**TTTTTTTTTTTTTTTTTT

v(0,0)
fst v 0

{{xx
xx

xx
xx

x v(0,1)
fst v 0

##FF
FF

FF
FF

F
v(1,0)
fst v 1

{{xx
xx

xx
xx

x v(1,1)
fst v 1

##FF
FF

FF
FF

F

(0,0) (0,1) (1,0) (1,1)

Figure 4.8: Value tree forQ2 ⊗Q2

• v ∈ ValQ σ

κ ∗ v ∈ ValQ σ

We writeValQ◦ σ for isometric quantum values which satisfy the restrictions introduced in
Figure 4.6.

We have already seen that there is a monadic structure on~A = A→ C. Correspond-
ingly, we have a Kleisli structure onValQ; val ∈ ValCσ → ValQσ is the return and bind
is defined as givenv ∈ ValQσ andf ∈ ValCσ → ValQτ , we definev >>= f ∈ ValQ τ by
induction overv:

(val x) >>= f = f x

0 >>= f = 0
v + w >>= f = (v >>= f) + (w >>= f)
κ ∗ v >>= f = κ ∗ (v >>= f)

Lemma 4.3.2 (ValC, ValQ, val, (>>=)) is a Kleisli structure, i.e. it satisfies the following
equations:

1. val x >>= f ≡ f x

2. v >>= λx .val x ≡ v

3. v >>= λx .(f x) >>= g ≡ (v >>= f) >>= g

Proof. Case (i) follows from the definition. Cases (ii) and (iii) can be shown by induction
over the structure ofv.

While the classical definition ofqσ (def. 4.2.3) was completely straightforward, its
quantum counterpart is a bit more subtle, in particular in the case of tensor products. As
a special case considerqQ2⊗Q2, given an element

−→v ∈ JQ2 ⊗Q2K
Q = JQ2K× JQ2K→ C

we have to construct a valueqQ2⊗Q2 −→v ∈ ValQQ2 ⊗Q2. This can be done by calcu-
lating the probabilities that the first qubit isi, fst−→v i ∈ R+, given by

fst−→v i =
√

|−→v (i, 0)|2 + |−→v (i, 1)|2

creating the first level of the value as a tree, and then for thesecond level normalising the
amplitudes wrt. the probabilities of the previous level, see figure 4.8 for the corresponding
tree. We writeJσKP = JσK → R

+ for the set of probability distributions, obviously we
haveJσKP ⊆ JσKQ. We observe thatfst−→v ∈ JσKP. Generalising the idea given above we
arrive at the following definition of quote:

69

Definition 4.3.2 Thesyntactic representations of denotationsis given by

qσ ∈ JσKQ→ ValQ σ

defined by induction overσ:

qQ1 −→v = (−→v 0) ∗ ()
qQ2 −→v = (−→v 1) ∗ true + (−→v 0) ∗ false

qσ⊗τ −→v = qσ(fst−→v)
>>=λx ∈ JσK.(1/(fst−→v)x) ∗ qτ (λy.−→v (x, y))
>>=λy .val (x , y)

where:
fst ∈ Jσ ⊗ τKQ→ JσKP

fst−→v x =
√

Σy.|−→v (x, y)|2

1/− ∈ JσKP→ JσKP

1/−→v x = λx .if p x ≡ 0 then 0 else 1 / (p x)

To show adequacy we have to establish a number of properties of qσ: we have to show
that it is linear and isometric and that it preserves tensor products. This is summarised in
the following proposition:

Proposition 4.3.1

1. qσ (κ ∗ −→v) ≡ κ ∗ (qσ−→v)

2. qσ (−→v +−→w) ≡ (qσ−→v) + (qσ−→w)

3. 〈−→v |−→w 〉 = 〈qσ−→v |qσ−→w 〉

4. qσ⊗τ (−→v ⊗−→w) ≡ (qσ −→v , qτ −→w)

The proof of the above proposition again isn’t completely straightforward, e.g. linear-
ity cannot just be proven by induction overσ. It is essential that we first establish some
properties of renormalising a vector wrt. a probability distribution. We define the product
of a probability distributionp ∈ JσKP and a vector−→v ∈ JσKQ as:

p ∗ −→v ∈ JσKQ

p ∗ −→v = λx ∈ JσK.(px) ∗ (−→v x)

It is not hard to see that an analogous operation can be definedon values, givenv ∈ ValQ σ
andp ∈ JσKP as above, we define:

p ∗ v ∈ ValQ σ
p ∗ v = v >>= λx ∈ JσK.(px) ∗ (valx)

The key property we establish is

Lemma 4.3.3 Givenp ∈ JσKP and−→v ∈ JσKQ

p ∗ (qσ−→v) ≡ qσ (p ∗ −→v)

70

which can be verified by induction overσ and observing that while1/− isn’t a proper
inverse, it nevertheless satisfies the following property

1/(p + q) ∗ (p + q) = (1/p) ∗ p

Using the fact thatqσ is isometric we can show that it produces values satisfying the
orthogonality constraints:

Proposition 4.3.2 Givenv ∈ JσKQ

⊢◦ qσ v : σ

4.3.5.1 Adequacy

We define a syntactic counterpart to:

δΓ,∆ ∈ Q◦ JΓ⊗∆K (JΓKQ⊗ J∆KQ)

as:
δ̂Γ,∆ ∈ Tm (Γ⊗∆) (|Γ| ⊗ |∆|)

by:

δ̂Γ,∆ =























let (g , d) = δΓ′,∆′in ((g , x), (d , x)) if Γ = Γ′, x : σ
and∆ = ∆′, x : σ

let (g , d) = δΓ′,∆in ((g , x), d) if Γ = Γ′, x : σ
andx 6∈ dom ∆

1∆ if Γ = •
To establish thatqσ commutes with the context operations we have to show that con-

traction corresponds toδ ∈ Q◦ JσK (JσKQ⊗ JσKQ).

Lemma 4.3.4 Givenv ∈ JσKQ we have

let x = qσ v in (x , x) ≡ qσ⊗σ v

Proof. By induction onσ.
Exploiting this property we can show that the context operations commute with quote:

Lemma 4.3.5 Given−→v ∈ JΓ⊗∆KQ

q|Γ|⊗|∆| (δΓ,∆
−→v) ≡ δ̂Γ,∆ q|Γ⊗∆|−→v

Theorem 4.3.3 If Γ ⊢ t : σ andg ∈ JΓKQ then

⊢ qσ(JΓ ⊢ t : σKQg) ≡ let∗ Γ = qΓ g in t : σ.

Proof. By induction over the derivation ofΓ ⊢ t : σ, as an example consider the case for
let:

qρ (JΓ⊗∆ ⊢ let x = t in u : ρKQ)
≡ {definition ofJ. . .KQ}
qρ (JuKQ ◦ (JtKQ ⊗ id) ◦ δΓ,∆)
≡ {induction hypothesis foru andt}
u ◦ (t ◦ qΓ ⊗ q∆) ◦ δΓ,∆)
≡ { lemma 4.3.5}}
u ◦ (t⊗ id) ◦ δ̂Γ,∆ ◦ q|Γ⊗∆|

≡
(let x = t in u) ◦ q|Γ⊗∆|

71

The other cases use the same style of reasoning to deal with the structural properties and
exploit proposition 4.3.1. Note that the case forif◦ can be reduced to linearity.

Corollary 4.3.4 (Adequacy) If ⊢ t : σ then⊢ qσ(J ⊢ t : σKQ) ≡ t : σ

4.3.5.2 Completeness and normalisation

The development here follows closely the one in the classical case as presented in
Section 4.2.7.3.

Definition 4.3.3 The function:

qσ
Γ ∈ Q◦ JΓK JσKQ→ Tm Γ σ

for inverting evaluationis defined by analysing the context:

qσ
• (f) = qσ (f (return0))

qσ
Γ,x:Q1

(f) = φ−1
Γ,x:Q1

◦ (qρ
Γ) ◦ ΦΓ,x:Q1

qσ
Γ,x:Q2

(f) = φ−1
Γ,x:Q2

◦ (qσ
Γ × qσ

Γ) ◦ ΦΓ,x:Q2

qσ
Γ,x:(τ1⊗τ2)(f) = φ−1

Γ,x:τ1⊗τ2
◦ qσ

Γ,x1:τ1,x2:τ2
◦ ΦΓ,x:τ1⊗τ2

The auxiliary isomorphisms are defined as follows:

φΓ,x:Q1 ∈ Tm (Γ, x : Q1) σ → Tm Γ σ
φΓ,x:Q1t = let x = () in t

φΓt = t

φΓ,x:Q2 ∈ Tm (Γ, x : Q2 σ)→ {(t0, t1) ∈ (Tm Γ σ)2 | t0 ⊥ t1}
φx:Q2 t = (let x = false in t, let x = true in t)

φ−1
Γ,x:Q2

(t, u) = if
◦ x then t else u

φΓ,x:τ1⊗τ2 ∈ Tm (Γ, x : τ1 ⊗ τ2) ρ→ Tm (Γ, x1 : τ1, x2 : τ2)
φΓ,x:τ1⊗τ2 t = let x = (x1, x2) in t

φ−1
Γ,x:τ1⊗τ2

(t) = let (x1, x2) = x in t

The semantic map corresponding to eachφ is writtenΦ.

For the inversion proof we only need the provability of one side of the isomorphisms
which follows from theη-equalities.

Lemma 4.3.6 The following family of equalities is derivable

φ−1
Γ (φΓt) ≡ t

Definition 4.3.4 Thenormal formof t is given by nfσΓ(t) = qσ
Γ(JΓ ⊢ t : σKQ).

Lemma 4.3.7 (Inversion) The equationΓ ⊢ nfσΓ (t) ≡ t is derivable.

Proof. By induction over the definition ofqσ
Γ. In the case ofΓ = • the result follows

from adequacy, Corollary 4.3.4. In all the other cases we exploit Lemma 4.3.6.
Since all our definitions are effective nf indeed gives rise to a normalisation algorithm.

As a consequence, our equational theory is decidable, modulo deciding equalities of the
complex number terms which occur in our programs. We also note that as in the classical
case, our theory is complete:

Proposition 4.3.5 (Completeness)If JΓ ⊢ t : σKQ andJΓ ⊢ u : σKQ are extensionally equal,
then we can deriveΓ ⊢ t ≡ u : σ.

72

4.4 Summary

In this chapter we presented a sound and complete equationaltheory for a subset of
QML excluding measurements. This enables syntactic reasoning about quantum pro-
grams using standard classical tools from semantics of classical programming languages.
A next step would be generalise this approach to the full QML including measurements.
In next chapters we structure a model for general and complete quantum computations us-
ing arrows. We hope to integrate the results of next chapterswith a quantum programming
language like QML.

73

5 MODELLING QUANTUM EFFECTS I: STATE VECTORS
AS INDEXED MONADS

The traditional model of quantum computing is based on vector spaces, withnormal-
ized vectorsto model computational states andunitary transformationsto model physi-
cally realizable quantum computations. The idea is that information processing is physi-
cally realized via aclosed quantum system.

In a closed quantum system, the evolution isreversible(also calledstrict or pure), that
is, it is only given by means of unitary gates; measurements,which model theinteraction
with external world, are not considered. Therefore, in thiscontext, the quantum compu-
tational process is considered like a black box, where information can be input and then
read at the end of the process.

As explained in Chapter 2 there are some intrinsic differences between classical and
quantum programming due to the nature of quantum states and operations acting on these
states. Using the traditional model we can emphasize two main characteristics of quantum
programming:

• quantum parallelism, which is caused by the quantum superposition phenomenon
and expressed byvectorstates.

• global (possible entangled) quantum state, which is why not all composed vectors,
that model a quantum state, can be decomposed into their subparts. In this way, each
operation is global, yet in quantum circuits this global action is hidden. Abstractly,
the application of a specific operation to a specificsubspaceof the vector space is
achieved by the application of an operation to the whole space which carries the
identity to the remaining subspaces. The semantics of any quantum programming
language needs to take care of that.

In this chapter we present a monadic approach for quantum programming in Haskell.
We show how to structure quantum state vectors using monads in Haskell, in such a way
that the application of unitary transformations to state vectors is modelled by the monadic
bind operation.

5.1 Vectors

Given a seta representing observable (classical) values, i.e. abasisset, a pure quan-
tum state is a vectora → C which associates each basis element with a complex proba-
bility amplitude.

In Haskell, a finite seta can be represented as an instance of the classBasis, shown
below, which has the constructorbasis ∈ [a] explicitly listing the basis elements. The

74

basis elements must be distinguishable from each other, which explains the constraint
Eq a on the type of elements below:

class Eq a ⇒ Basis a where basis ∈ [a]
type K = C Double

type Vec a = a → K

The typeK (notation from the base field) is the type of probability amplitudes.
As we saw in Chapter 3, from a programming perspective, a monad (or Kleisli triple)

is a way to structurecomputationsin terms of values and sequences of computations using
those values.

Because we can only build vectors over aset, which is a basis (that is, a set of ob-
servable values), our computations have the additional constraint that they are indexed
by Basis. Therefore, the type constructorVec corresponds to aKleisli structure(AL-
TENKIRCH; REUS, 1999) or, to anindexed monad(see Section 3.1.4).

Recall the class for indexed monads:
class IMonad m where

return ∈ F a ⇒ a → m a

(>>=) ∈ (F a,F b)⇒ m a → (a → m b)→ m b

Therefore to make our vectors an instance ofCMonad class we need to define:
instance IMonad Vec where

return ∈ Basis a ⇒ a → Vec a

return a b = if a ≡ b then 1.0 else 0.0

(>>=) ∈ (Basis a,Basis b)⇒ Vec a → (a → Vec b)→ Vec b

va >>= f = λb → sum [(va a) ∗ (f a b) | a ← basis]

return just lifts values to vectors, andbind , given a linear operator represented as a func-
tion a → Vec b, and given aVec a, returns aVec b. Using the functional representation
for vectors and the definition above forbind we can easily extend any linear operator to
act in a bigger space as we explain in detail in next section.

Proposition 5.1.1 The indexed monadVec satisfies the required equations for monads
(see Section 3.1.1).

Proof.

• First monad law:(return x) ≫= f = f x

(return x) ≫= f = λb → sum [(return x a) ∗ (f a b) | a ← basis]
= λb → sum [(if x ≡ a then 1.0 else 0.0) ∗ (f a b) |

a ← basis]
= λb → f x b

= f x

• Second monad law:m ≫= return = m

m ≫= return = λb → s um [(m a) ∗ (return a b) | a ← basis]
= λb → sum [(m a) ∗ (if a ≡ b then 1.0 else 0.0) |

a ← basis]
= λb → m b

= m

• Third monad law:(m ≫= f) ≫= g = m ≫= (λ x . f x ≫= g)

75

(m ≫= f) ≫= g = (λb → sum [(m a) ∗ (f a b) | a ← basis]) ≫= g

= λc → sum [(sum [(m a) ∗ (f a b) | a ← basis])
∗ (g b c) | b ← basis]

= λc → sum [(m a) ∗ (f a b) ∗ (g b c)
a ← basis , b ← basis]

m ≫= (λx → f x ≫= g) = λc → sum [(m a) ∗ ((f a ≫= g) c) |
a ← basis]

= λc → sum [(m a) ∗ (sum [(f a b) ∗ (g b c) |
b ← basis]) | a ← basis]

= λc → sum [(m a) ∗ (f a b) ∗ (g b c) |
a ← basis , b ← basis]

2

The indexed monads have additional properties abstracted in the indexed version of
the Haskell classMonadPlus:

class IMonad m ⇒ IMonadPlus m where

mzero ∈ F a ⇒ m a

mplus ∈ F a ⇒ m a → m a → m a

Instances of this class support two additional methods:mzero andmplus which provide
a “zero” computation and an operation to “add” computations:

instance IMonadPlus Vec where

mzero ∈ Basis a ⇒ Vec a

mzero = const 0.0

mplus ∈ Basis a ⇒ Vec a → Vec a → Vec a

mplus v1 v2 a = v1 a + v2 a

whereconst ∈ t → t1 → t is a Haskell’s polymorphic function. Analogously, we can
also definemminus:

mminus ∈ Basis a ⇒ Vec a → Vec a → Vec a

mminus v1 v2 a = v1 a − v2 a

As we are modelling vector spaces in Haskell, we would like todefineproductsover
vectors: thescalarproduct$∗, thetensorproduct〈∗〉, and thedot product〈·〉:

($∗) ∈ K → Vec a → Vec a

pa $∗ v = λa → pa ∗ (v a)

(〈∗〉) ∈ Vec a → Vec b → Vec (a, b)
v1〈∗〉v2 = λ(a, b)→ (v1 a) ∗ (v2 b)

(〈.〉) ∈ Basis a ⇒ Vec a → Vec a → K

v1〈.〉v2 = sum [conjugate (v1 a) ∗ (v2 a) | a ← basis]
Examples of vectors over the set of booleans may be defined as follows:

instance Basis Bool where

basis = [False,True]

qFalse, qTrue, qFT , qFmT ∈ Vec Bool

qFalse = return False

qTrue = return True

qFT = (1 /
√

2) $∗ (qFalse ‘mplus‘ qTrue)

qFmT = (1 /
√

2) $∗ (qFalse ‘mminus ‘ qTrue)
The first two are unit vectors corresponding to basis elements; the last two represent
states which are in equal superpositions ofFalse andTrue. In the Dirac notation, these

76

vectors would be respectively written as| False〉, | True〉, 1√
2
(| False〉+ | True〉), and

1√
2
(|False〉− |True〉).
Multidimensional vectors can be easily described using thetensor product on vectors

or the Cartesian product on the underlying bases:
instance (Basis a,Basis b)⇒ Basis (a, b) where

basis = [(a, b) | a ← basis , b ← basis]

p1, p2, p3 ∈ Vec (Bool ,Bool)
p1 = qFT 〈∗〉qFalse

p2 = qFalse〈∗〉qFT

p3 = qFT 〈∗〉qFT

epr ∈ Vec (Bool ,Bool)

epr (False,False) = 1 /
√

2

epr (True,True) = 1 /
√

2
epr = 0

In contrast to the first three vectors, the last vector describes anentangledquantum state
which cannot be separated into the product of independent quantum states.

5.2 Linear Operators

Given two base setsA andB a linear operatorf ∈ A ⊸ B is a function mapping
vectors overA to vectors overB. We represent such operators as functions mapping
values to vectors which is similar to the representation used by Karczmarczuk (2003) and
which mirrors amatrix:

type Lin a b = a → Vec b

fun2lin ∈ (Basis a,Basis b)⇒ (a → b)→ Lin a b

fun2lin f a = return (f a)
The functionfun2lin converts a classical (reversible) function to a linear operator. For
example, the quantum version of the boolean negation is:

qnot ∈ Lin Bool Bool

qnot = fun2lin not
Linear operations can also be defined directly, for example:

phase ∈ Lin Bool Bool

phase False = return False

phase True = (0 :+1) $∗ (return True)

hadamard ∈ Lin Bool Bool

hadamard False = qFT

hadamard True = qFmT

zgate ∈ Lin Bool Bool

zgate False = qFalse

zgate True = −1 $∗ qTrue

The definition of a linear operation specifies its action on each individual element of
the basis, as a matrix. To apply a linear operationf to a vectorv , we use thebind op-
eration to calculatev ≫= f . For example(qFT ≫= hadamard) applies the operation
hadamard to the vectorqFT , which can be calculated as follows:

qFT >>= hadamard

= λb → sum [(qFT a) (hadamard a b) | a ← [False,True]]
= λb → if b ≡ False then sum [(qFT False) (hadamard False False) +

77

(qFT True) (hadamard True False)]
else sum [(qFT False) (hadamard False True) +

(qFT True) (hadamard True True)]
= λb → if b ≡ False then 1

else 0

that is, it produces the vectorqFalse as a result.
It is possible to write higher-order functions which consume linear operators and pro-

duce new linear operators. A very importante example of suchfunctions extends the space
of action of a linear operator:

extend ∈ (Basis a,Basis b)⇒ Lin a a → Lin (a, b) (a, b)
extend f = λ(a1, b1)→ (f a1 >>= λa2 → return (a2, b1))

The definition ofbind gives us this possibility of easily extending a linear operator to act
in a bigger space. A function similar to that is used in thedo-notation for the implemen-
tation of the circuit for the Toffoli gate in next section.

Another example produces the so-calledcontrolled operations:
controlled ∈ Basis a ⇒ Lin a a → Lin (Bool , a) (Bool , a)
controlled f (b, a) = (return b)〈∗〉(if b then f a else return a)

The linear operatorf is transformed to a new linear operator controlled by a quantum
boolean value. The modified operator returns a pair whose first component is the input
control value. The second input is passed tof only if the control value is true, and is
otherwise left unchanged. For example,(qFT 〈∗〉 qFalse)≫= (controlled qnot) ap-
plies the familiarcontrolled-notgate to a vector over two values: the control value is a
superposition ofFalse andTrue and the data value isFalse. As one may calculate, the
result of this application is theepr vector.

Linear operations can be combined and transformed in several ways which we list
below. The function〉∗〈 produces the linear operator corresponding to theouter product
of two vectors. The functionslinplus andlintens are the functions corresponding to the
sum and tensor product on vectors. Finally the functiono composes two linear operators.

adjoint ∈ (Basis a,Basis b)⇒ Lin a b → Lin b a

adjoint f b a = conjugate (f a b)

(〉∗〈) ∈ (Basis a,Basis b)⇒ Vec a → Vec b → Lin a b

(v1〉∗〈v2) a b = (v1 a) ∗ (conjugate (v2 b))

linplus ∈ (Basis a,Basis b)⇒ Lin a b → Lin a b → Lin a b

linplus f g a = f a ‘mplus ‘ g a

lintens ∈ (Basis a,Basis b,Basis c,Basis d)⇒
Lin a b → Lin c d → Lin (a, c) (b, d)

lintens f g (a, c) = f a〈∗〉g c

o ∈ (Basis a,Basis b,Basis c)⇒ Lin a b → Lin b c → Lin a c

o f g a = (f a >>= g)

5.3 Example: A Circuit for the Toffoli Gate

Modelling state vectors as monads we can define quite elegantquantum programs
using monads’do-notation. For instance, consider we want to program a circuit for the
Toffoli gate, as in Figure 5.1. The circuit diagram uses the de-facto standard notation for
specifying quantum computations. Each line carries one quantum bit (qubit); we refer to
the three qubits in the circuit astop, middle, andbottom. The values flow from left to

78

right in steps corresponding to the alignment of the boxes, which represent quantum gates.
The gates labeledH , V , VT , andNot represent the quantum operationshadamard ,
phase, adjoint phase, andqnot respectively. Gates connected via a bullet to another wire
arecontrolledoperations.

VH HVVT

 Not Not

Figure 5.1: A Circuit for the Toffoli Gate.

In general all three qubits in the circuit may be entangled and hence the state vector
representing them cannot be separated into individual state vectors. This means that,
despite the appearance to the contrary, it is not possible tooperate on any of the lines
individually. Instead the circuit defines a linear operation on the entire state. However,
as one can observe below, usingdo-notation we can elegantly program the circuit,hiding
rewiring and the global state action of each quantum operator:

toffoli ∈ Lin (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli (top,middle, bottom) =

do b1 ← hadamard bottom

(m1, b2)← controlled phase (middle, b1)
(t1, m2)← controlled qnot (top, m1)
(m3, b3)← controlled (adjoint phase) (m2, b2)
(t2,m4)← controlled qnot (t1, m3)
(t3, b4)← controlled phase (t2, b3)
b5 ← hadamard b4

return (t3,m4 , b5)
Note that we are using indices in the value variables. This isbecause monads’do-notation
simulates an imperative routine. The evolution of the indices in the circuit can be analysed
in the figure below:

VH HVVT

 Not Not

bottom

middle

top top

middle

b1

m1

b2

top

b2

m2

t1

b3

m3

t1 t2

b4

t3

b5

t3

b3

m4 m4 m4

Figure 5.2: The evolution of values in the circuit for the Toffoli gate.

Runningtoffoli , which behaves like a controlled-controlled not as explained in Sec-
tion 2.3.2, applied to the following entangled state1:

emt ∈ Vec (Bool ,Bool ,Bool)

emt = (1 /
√

2 $∗ return (True,True,True))‘mplus ′

(1 /
√

2 $∗ return (False,False,False))

1In Dirac’s notation:1/
√

2(|000〉+ |111〉).

79

produces2:
haskell〉emt >>= toffoli

[((False,False,False), 0.5 :+0.0),
((True,True,False), 0.5 :+0.0)]

5.4 Summary

We have shown the use of monads to structure the probability effects of quantum
state vectors. The approach reveals an elegant underlying structure for quantum compu-
tations. This structure can be studied in the context of category theory and exploited in
the design of calculi for quantum computation (TONDER, 2003, 2004; VALIRON, 2004;
ALTENKIRCH; GRATTAGE, 2005).

Unfortunately in the monadic model of quantum computing we have used so far, it
is difficult or impossible to deal formally with another class of quantum system, which
present effects including measurements, decoherence, or noise, say to beopen quantum
systems. In the next chapter we consider density matrices and superoperators as a model
for general quantum computations.

2In Dirac’s notation:1/
√

2(|000〉+ |110〉).

80

6 MODELLING QUANTUM EFFECTS II: SUPEROPERA-
TORS AS INDEXED ARROWS

While the state vector model of quantum computing is still widely considered as a
convenient formalism to describe quantum algorithms, using measurements to deal with
decoherence or noise, to make quantum computing aninteractiveprocess, and even to
steer quantum computations has been considered a novel alternative, for instance see
(AHARONOV; KITAEV; NISAN, 1998; RAUSSENDORF; BROWNE; BRIEGEL, 2001,
2003; KASHEFI; PANANGADEN; DANOS, 2004; DANOS et al., 2005;GAY; NA-
GARAJAN, 2006).

In this chapter we review the general model of quantum computations, including mea-
surements, based on density matrices and superoperators. After expressing this more gen-
eral model in Haskell, we establish that the superoperatorsused to express all quantum
computations and measurements are an instance of the concept of indexed arrows, a gen-
eralisation of monads (see Chapter 3). The material presented on this chapter has been
published in (VIZZOTTO; ALTENKIRCH; SABRY, 2006).

6.1 Density Matrices and Superoperators

We review, using Haskell, a generalised model of quantum computation where the
state of computation is represented using adensity matrixand the operations are repre-
sented usingsuperoperators(AHARONOV; KITAEV; NISAN, 1998). Using these no-
tions, theprojectionsnecessary to express measurements become expressible within the
model.

6.1.1 Density Matrices

Intuitively, density matrices can be understood as a statistical perspective of the state
vector. In the density matrix formalism, a quantum state that used to be modelled by a
vectorv (as presented in Section 5.1) is now modelled by its outer product in such a way
that theamplitudes of the state vector turn into a kind of probability distributions of state
vectors1.

type Dens a = Vec (a, a)

pureD ∈ Basis a ⇒ Vec a → Dens a

pureD v = lin2vec (v〉∗〈v)

lin2vec ∈ (a → Vec b)→ Vec (a, b)
lin2vec = uncurry

1The construction in this chapter is build on the construction in Chapter 5.

81

The functionpureD embeds a state vector in its density matrix representation.For con-
venience, we uncurry the arguments to the density matrix so that it looks more like a
“matrix.” For example, the density matrices correspondingto the vectorsqFalse, qTrue,
andqFT presented in Section 5.1 can be visually represented as follows:

(

1 0
0 0

) (

0 0
0 1

) (

1/2 1/2
1/2 1/2

)

and written as:
qFalseD, qTrueD , qFTD ∈ Dens Bool

qFalseD = pureD qFalse

qTrueD = pureD qTrue

qFTD = pureD qFT

In Haskell, we use the a following pretty printing for those matrices:
[((False,False), 1.0 :+0.0)]

[((True,True), 1.0 :+0.0)]

[((False,False), 0.5 :+0.0),
((False,True), 0.5 :+0.0),
((True,False), 0.5 :+0.0),
((True,True), 0.5 :+0.0)]

The appeal of density matrices is that they can represent states other than the pure
ones above. In particular if we perform a measurement on the state represented byqFT ,
we should getFalse with probability1/2 or True with probability1/2. This information,
which cannot be expressed using vectors, can be representedby the following density
matrix:

(

1/2 0
0 0

)

+

(

0 0
0 1/2

)

=

(

1/2 0
0 1/2

)

Such a density matrix represents amixed statewhich corresponds to the sum (and then
normalisation) of the density matrices for the two results of the observation.

6.1.2 Superoperators

Operations mapping density matrices to density matrices are calledsuperoperators:
type Super a b = (a, a)→ Dens b

lin2super ∈ (Basis a,Basis b)⇒ Lin a b → Super a b

lin2super f (a1, a2) = lin2vec (f a1〉∗〈f a2)
As we have done for unitary operators in Section 5.2, we represent a superoperator mir-
roring a big matrix, so mapping values to density matrices (that is,Super a b ≡ (a, a)→
(b, b) → K). The functionlin2super constructs a superoperator from a linear operator
on vectors. For instance:

hadamardS ∈ Super Bool Bool

hadamardS = lin2super hadamard

lifts the unitary operatorhadamard to a superoperator.

6.1.3 Tracing and Measurement

In contrast to the situation with the state vector model of quantum computing, it is pos-
sible to define a superoperator which “forgets,”projects, or traces outpart of a quantum
state. Essentially, this corresponds to turn the dimensionof the state space in considera-
tion smaller. To do such an operation, we need first to understand how tomeasurepart of

82

the quantum state which we would like to trace out. Measuringcorresponds to setting the
secondary diagonal of the density matrix to zero leaving only the classical probabilities
corresponding to the possible measurement outputs in the main diagonal (same indexes).

meas ∈ Basis a ⇒ Super a (a, a)
meas (a1, a2) = if a1 ≡ a2 then return ((a1, a1), (a1, a1)) else mzero

Note that we are consideringprojectivemeasurements which are described by a set of
projections onto mutually orthogonal subspaces. This kindof measurement returns a
classical value and a post-measurement state of the quantumsystem. The operationmeas

is defined in such a way that it can encompass both results. Using the fact that a classical
valuem can be represented by the density matrix|m〉〈m| the superoperatormeas returns
the output of the measurement attached to the post-measurement state.

Now, it is easy to understand the operation below which forgets part of the quantum
state. Before forgetting we measure:

trL ∈ (Basis a,Basis b)⇒ Super (a, b) b

trL ((a1, b1), (a2, b2)) = if a1 ≡ a2 then return (b1, b2) else mzero

For example, the sequence:
pureD qFT >>= meas >>= trL

first performs a measurement on the pure density matrix representing the vectorqFT .
This measurement produces a vector with two components: thefirst is the resulting col-
lapsed quantum state and the second is the classical observed value. The last operation
forgets about the collapsed quantum state and returns the result of the classical measure-
ment. As explained earlier the resulting density matrix is:

(

1/2 0
0 1/2

)

6.2 Why Density Matrices are not Monads?

Remember that for a type to be a monad, it would support the definition of
class Monad m where

return ∈ forall a.a → m a

(>>=) ∈ forall a b.m a → (a → m b)→ m b

But, as also explained for vectors is Section 5.1, because ofthe basis constraint over the
types with which we build density matrices, the type constructorDens would corresponds
in fact to aindexed monad, where:

return ∈ (Basis a)⇒ a → Dens a

return = pureD .return
However, the monadic bind operation needed to model the application of a superoperator
to a density matrix can only be achieved with an operation instantiated to the following
type:

(>>=) ∈ (Basis a,Basis b)⇒ Dens a → ((a, a)→ Dens b)→ Dens b

da >>= s = λ(b1, b2)→ sum [(da (a1, a2)) ∗ (s (a1, a2) (b1, b2))
| a1 ← basis , a2 ← basis]

As one can observe, this type does not correspond to the required type for computations
like s, which consume multiple input values(in this case(a, a)). This observation is
reminiscent of Hughes’s motivation for generalising monads toarrows(HUGHES, 2000)
(see Section 3.2). Indeed, in addition to defining a notion ofprocedure which may perform
computational effects, arrows may have a static component independent of the input, or
may accept more than one input.

83

6.3 Superoperators as Indexed Arrows

Just as the probability effect associated with vectors is modelled by anindexed monad
because of theBasis constraint, the typeSuper is modelled by anindexed arrow, as the
following types include the additional constraint requiring the elements to form a set of
observables:

instance IArrow Super where

arr ∈ (Basis b,Basis c)⇒ (b → c)→ Super b c

arr f = fun2lin (λ(b1, b2)→ (f b1, f b2))

(≫) ∈ (Basis b,Basis c,Basis d)⇒ Super b c → Super c d → Super b d

(≫) = o

first ∈ (Basis b,Basis c,Basis d)⇒ Super b c → Super (b, d) (c, d)
first f ((b1, d1), (b2, d2)) = permute ((f (b1, b2))〈∗〉(return (d1, d2)))

where permute v ((b1, b2), (d1, d2)) = v ((b1, d1), (b2, d2))

The functionarr constructs a superoperator from a pure function by applyingthe function
to both the vector and its dual. The composition of arrows is simply the composition of
linear operators (the operationo is defined in Section 5.2). The functionfirst applies the
superoperatorf to the first component (and its dual) and leaves the second component
unchanged. The definition calculates each part separately and then permutes the results
to match the required type.

Proposition 6.3.1 The indexed arrowSuper satisfies the required equations for arrows
presented in Section 3.2.1.

Proof. See Appendix C.
The proposition implies that we can use the arrow combinators to structure our quan-

tum computations. For instance, the first few steps of the circuit for the Toffoli gate of
Section 5.3 would now look like:

toffoli ∈ Super (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli = let hadS = lin2super hadamard

cphaseS = lin2super (controlled phase)
cnotS = lin2super (controlled qnot)

in arr (λ(a0, b0, c0)→ (c0, (a0, b0))) ≫

(first hadS ≫ arr (λ(c1, (a0, b0))→ ((b0, c1), a0))) ≫

(first cphaseS ≫ arr (λ((b1, c2), a0)→ ((a0, b1), c2))) ≫

(first cnotS ≫ arr (λ((a1, b2), c2)→ ((b2, c2), a1))) ≫ ...

Clearly this notation is awkward as it forces us to explicitly manipulate the entire
state and to manually permute the values. However, all the tedious code can be generated
automatically as we explain next.

6.4 Examples: Toffoli and Teleportation

Using the arrow notation presented in Section 3.2.2, we express two well known quan-
tum algorithms elegantly.

6.4.1 Toffoli

The following code mirrors the structure of the circuit and the structure of the monadic
computation expressed earlier in Section 5.3:

84

toffoli ∈ Super (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli = let hadS = lin2super hadamard

cnotS = lin2super (controlled qnot)
cphaseS = lin2super (controlled phase)
caphaseS = lin2super (controlled (adjoint phase))

in proc (a0, b0, c0)→ do

c1 ← hadS ≺ c0

(b1, c2)← cphaseS ≺ (b0, c1)
(a1, b2)← cnotS ≺ (a0, b1)
(b3, c3)← caphaseS ≺ (b2, c2)
(a2, b4)← cnotS ≺ (a1, b3)
(a3, c4)← cphaseS ≺ (a2, c3)
c5 ← hadS ≺ c4

returnA ≺ (a3, b4, c5)

Lets runtoffoli , applied to the vectoremt from Section 5.3 lifted to a density matrix:
demt ∈ Dens (Bool ,Bool ,Bool)
demt = pureD emt

haskell〉d >>= toffoli

As expected, this produces the matrix:
[(((False,False,False), (False,False,False)), 0.5 :+0.0),
(((False,False,False), (True,True,False)), 0.5 :+0.0),
(((True,True,False), (False,False,False)), 0.5 :+0.0),
(((True,True,False), (True,True,False)), 0.5 :+0.0)]

6.4.2 Quantum Teleportation

The idea of quantum teleportation is to make disappear a quantum information (quan-
tum state) in one place making a perfect replica of it somewhere else. Indeed quantum
teleportation (BENNETT et al., 1993) enables the transmission,using a classical commu-
nication channel, of an unknown quantum state via a previously sharedepr pair.

In the following diagram, Alice and Bob initially have access to one of the qubits of
an entangledepr pair, and Alice aims to teleport an unknown qubitq to Bob:

Not

H

{EPR

Not Z

q

q

Alice Bob

m2

m1

The calculation proceeds as follows. First Alice interactswith the unknown qubitq
and her half of theepr state. Then Alice performs a measurement collapsing her quantum
state and getting two classical bitsm1 andm2 that she transmits to Bob using a classical
channel of communication.

85

Upon receiving the two classical bits of information, Bob interacts with his half of the
epr state with gates controlled by the classical bits. The circuit in the figure can be shown
to re-create the quantum stateq which existed at Alice’s site before the experiment.

Our main interest in this circuit is that it is naturally expressed using a sequence of
operations on quantum values which include a non-unitarymeasurementin the middle.

We use the machinery we have developed to express the teleportation circuit. We
break the algorithm in two individual procedures,alice andbob. Besides the use of the
arrows notation to express the action of superoperators on specific qubits, we incorporate
the measurement in Alice’s procedure, and trace out the irrelevant qubits from the answer
returned by Bob.

alice ∈ Super (Bool ,Bool) (Bool ,Bool)
alice = proc (eprL, q)→ do

(q1, e1)← (lin2super (controlled qnot)) ≺ (q , eprL)
q2 ← (lin2super hadamard) ≺ q1

((q3, e2), (m1, n1))←meas ≺ (q2, e1)
(m2, n2)← trL ((q3, e2), (m1, n1))
returnA ≺ (m2, n2)

bob ∈ Super (Bool ,Bool ,Bool) Bool

bob = proc (eprR, m1, n1)→ do

(n2, e1)← (lin2super (controlled qnot)) ≺ (n1, eprR)
(m2, e2)← (lin2super (controlled zgate)) ≺ (m1, e1)
q ′ ← trL ≺ ((m2, n2), e2)
returnA ≺ q ′

teleport ∈ Super (Bool ,Bool ,Bool) Bool

teleport = proc (eprL, eprR, q)→ do

(m1, n1)← alice ≺ (eprL, q)
q ′ ← bob ≺ (eprR, m1, n1)
returnA ≺ q ′

As an example, suppose we want to teleport the state1/
√

2(|0〉 + |1〉). Then the three
qubits state to be passed to the procedureteleport is1/

√
2(|0〉+|1〉)⊗1/

√
2(|00〉+|11〉) =

1/2(|000〉+ |011〉+ |100〉+ |111〉), pretty printed in Haskell as:

gtele ∈ Vec (Bool ,Bool ,Bool)
gtele = [((True,False,False), 1 / 2),

((True,True,True), 1 / 2),
((False,False,False), 1 / 2),
((False,True,True), 1 / 2)]

dgtete ∈ Dens (Bool ,Bool ,Bool)
dgtele = pureD gtele

The application of the procedure recreates the density matrix for the qubit one wants to
teleport:

haskell〉dgtele >>= teleport

[((False,False), 0.5 :+0.0),
((False,True), 0.5 :+0.0),
((True,False), 0.5 :+0.0),
((True,True), 0.5 :+0.0)]

86

6.5 Typing Rules

The category of superoperators is considered to be an adequate model of non-reversible
quantum computation (SELINGER, 2004). Our construction presented so far seems to
suggest that this category corresponds to a functional language with arrows, and so that
we can accurately express quantum computation in such a framework. But as we explain
below, this is not quite the whole story.

First consider the well-known “non-cloning” property of quantum states (NIELSEN;
CHUANG, 2000). The arrow notation allows us to reuse variables more than once, and
we are free to define the following operator:

copy ∈ Super Bool (Bool ,Bool)
copy = arr (λx → (x , x))

But can this superoperator be used to clone a qubit? The answer, as explained in Section
1.3.5 of the classic book on quantum computing (NIELSEN; CHUANG, 2000), is no.
The superoperatorcopy can be used to copy classical information encoded in quantum
data, but when applied to an arbitrary quantum state, for exampleqFT , the superoperator
does not make two copies of the stateqFT but rather it produces theepr state which is
the correct and desired behaviour. Thus, in this aspect the semantics of arrows is coherent
with quantum computation,i.e., the use of variables more than once models entanglement,
not cloning.

In contrast, in our model there is nothing to prevent the definition of:
weaken ∈ Super (Bool ,Bool) Bool

weaken = arr (λ(x , y)→ y)
This operator is however not physically realizable. Applyingweaken to epr givesqFT .
Physically forgetting aboutx corresponds to a measurement: if we measure the left qubit
of epr we should getqFalse or qTrue or the mixed state of both measurements, but never
qFT .

This suggests that we need something more than only the arrowcombinators to make
our quantum computations compatible with Quantum Mechanics. We propose a simple
type system for the arrow combinators. First, suppose we have choosen a univeral set of
unitary operationsU .

u : Lin b c ∈ U
Lift

lin2super u : Super b c

b ∈ Basis c ∈ Basis f : b→ c
arr if dim(b) 6 dim(c)

arr f : Super b c

f : Super b c g : Super c d
>>>

f >>> g : Super b d

f : Super b c d ∈ Basis
first

first f : Super (b, d) (c, d)

Figure 6.1: Typing arrow combinators for quantum computations

The critical typing rule isarr which selects only a class ofbasic functionsto be lifted
to superoperators, i.e., those ones which do not forget variables. That is imposed by the
restrictiondim(b) 6 dim(c).

87

6.6 Summary

We have argued that a realistic model for quantum computations should accommo-
date both unitary operations and measurements, and we have shown that such general
quantum computations can be modelled usingindexed arrows. This is an extension of the
previously-known observation that one can model pure quantum probabilities using in-
dexed monads. Establishing such connections between quantum computations and mon-
ads and arrows enables elegant embeddings in current classical languages, and exposes
connections to well-understood concepts from the semantics of (classical) programming
languages.

We also have demonstrated the use of indexed arrows to elegantly model two exam-
ples in Haskell, including the teleportation experiment which interleaves measurements
with unitary operations. However, for the case of teleportation, this model is not faithful.
The procedurealice is implemented such that at the end of its processing there isa pro-
jective measurement of her two qubits. Everything is very well except the factthere is no
classical information explicitly being communicatedbetween Alice and Bob. That ism1

andn1 are classical values represented by the density matrices|m1〉〈m1| and |n1〉〈n1|,
respectively. That is, they are classical information represented in a form typically used to
represent quantum information. Yet as noted by (GAY; NAGARAJAN, 2005; UNRUH,
2005) acompletemodel for expressing quantum algorithms should accommodate both
measurements and combined interactions of quantum andclassical data. In the next two
chapters we propose to structure two alternative general (involving measurements) and
complete (involving both quantum and classical data) approaches forcombinedquantum
and classical computations as arrows.

88

7 MODELLING QUANTUM EFFECTS III: MIXED PRO -
GRAMS WITH DENSITY OPERATORS AND CLASSICAL
OUTPUTS AS INDEXED ARROWS

The model presented in last chapter is purely quantum. However, various quantum
algorithms are explained in terms of theinterchangingof quantum and classical informa-
tion 1. For instance, quantum teleportation is a traditional example of an algorithm which
is based on two quantum process communicating viaclassical data. There is interest to
consider amixedmodel for quantum computations involvingmeasurementsand theinfor-
mation flowbetween quantum and classical processes (for instance, see(RAUSSENDORF;
BROWNE; BRIEGEL, 2003; KASHEFI; PANANGADEN; DANOS, 2004; NIELSEN,
2003; GAY; NAGARAJAN, 2005; UNRUH, 2005)).

On the other hand, the finding of a representation that is suitable for representing both
the results of unitary transformations and measurement operations should also be put into
perspective.

That is, we would like that the same representational framework be able to take care
of both: (1) the task of representing thequantum stateresulting from a unitary operation
applied to a given quantum state, and (2) the task of representing the pair of information
coming out from a measurement, namely: (2a) that corresponding to themeasurement
valueproduced by the measurement (one of the eigen-values of the measurement opera-
tor), and (2b) thequantum statethat results from the projection imposed on the original
quantum state by the measurement (one of the eigen-vectors of the measurement opera-
tor).

The main problem introduced by the need of that uniformity isthat measurement
results (both value and state results) are of a probabilistic kind, needingsets of possible
results for their representation. The usual alternative solution to such problem is the
density matrix formalism.

Hence, in this Chapter we present a model formixedor combinedquantum computa-
tions based on a measurement approach over density matrices. We call mixed or combined
quantum computation any computation transforming a combined state, with classical and
quantum data. Essentially, the idea is to have a density operator representing the (global)
quantum part, and a probability distribution of classical values representing the classical
part of the state. A quantum program acting on this combined state is interpreted by a
specialtracing superoperator, which in the general case traces out part of the state, re-
turning a classical output, and leaving the system in a new state (possibly in a space with
reduced dimension).

1By interchanging we mean, for instance, a measurement in themiddle of the computation.

89

7.1 Mixed Programs with Density Matrices

Because the tracing superoperator in generalforgetspart of the state, we define a
relation between bases which we callDec (from decomposition):

class (Basis a,Basis b)⇒ Dec a b where

dec ∈ [a]→ [b]

specifying thata can be decomposed in a partb. Then, a quantum program froma to
b, parameterized byi , the type of the input classical probability distribution,ando, the
part to be measured, is represented by a superoperator froma to b, delivering a classical
probability distribution overo, the part ofa which is measured.

type DProb c = [(c,Prob)]
type QProgram i o a b = (DProb i , (a, a))→ (DProb o,Dens b)

Note that our quantum programs should satisfy the restrictionDec a o, and thatDProb i

is used in classical operations or quantum operations controlled by classical data.
We can lift density matrices to combined states by:

dens2combst ∈ (Basis a)⇒ Dens a → (DProb (),Dens a)
dens2combst d = ([], d)

SupposeqFTD as presented in Section 6.1.1, thendens2combst qFTD produces:
([], [(((False,False), (False,False)), 0.5 :+0.0),

(((False,False), (True,True)), 0.5 :+0.0),
(((True,True), (False,False)), 0.5 :+0.0),
(((True,True), (True,True)), 0.5 :+0.0)])

which is a combined state with an empty classical part.
As any type can be decomposed into theunit (), and can be decomposed into itself,

and also can be decomposed into one of its parts, we have the following instances:
instance (Basis a)⇒ Dec a () where

dec = []
instance (Basis a)⇒ Dec a a where

dec l = l

instance (Basis a,Basis b)⇒ Dec (a, b) b where

dec [] = []
dec ((x , y) : l) = y : dec l

Any unitary operator, as represented in Section 5.2, can be lifted to a quantum program
which traces out().

uni2qprog ∈ (Basis a,Basis b,Basis i , Sub a ())⇒
Lin a b → QProgram i () a b

uni2qprog f (dp, (a1, a2)) = let d = lin2vec (f a1〉∗〈f a2)
in (d , [])

The functionuni2qprog constructs a mixed quantum program from a function represent-
ing a unitary operator. The idea is to apply the default construction to build a superop-
erator from a unitary transformation (see Section 6.1.2). Note that the classical input is
ignored and the classical output is empty: there is no interaction with the classical world
when considering unitary transformations.

For instance:
hadamardP ∈ QProgram i () Bool Bool

hadamardP = uni2qprog hadamard

lifts the unitary operatorhadamard to a quantum program acting on a combined state.

90

Given a quantum state over a basis set(a, b), the quantum programtrR forgets the
right component, returning a new state overb. The subspace is measured before being
discarded outputting a classical probability distribution over the basis which forms that
subspace. In this case, the input classical data is just ignored.

trR ∈ (Basis a,Basis b,Basis i)⇒ QProgram i b (a, b) a

trR (dp, ((a1, b1), (a2, b2))) = let d = if b1 ≡ b2 then vreturn (a1, a2)
else vzero

p = [(b1, 1) | b1 ≡ b2]
in (p, d)

trA ∈ (Basis a,Basis i)⇒ QProgram i a a ()
trA (dp, (a1, a2)) = let d = if a1 ≡ a2 then vreturn ((), ()) else vzero

p = [(a1, 1) | a1 ≡ a2]
in (p, d)

Similarly, the programtrA forgets (measures) all quantum state returning only a classical
probability distribution as the result. To construe the classical probability distribution we
consider that any value from the type being measuredcanappear in the output quantum
state. Hence each value from the basis is attached to the probability 1. The real probability
to appear in the final state is calculated by the functionapp below, which given amixed
program and acombinedstate calculates the new density matrix and the classical result
(if there is some).

app ∈ (Basis a,Basis b,Basis i ,Basis o, Sub a o)⇒
((DProb i , (a, a))→ (DProb o,Dens b))→
(DProb i ,Dens a)→ (DProb o,Dens b)

app p (di, da) = let fdb = [(b, sum [let (po, db) = p (di, a)
p2 = vlookup b db

p1 = vlookup a da

in p1 ∗ p2 | a ← basis])
| b ← basis]

l = map (λa → let pp = vlookup (a, a) da

in if pp 6≡ 0 then p (di, (a, a))
else ([], [])) basis

(lp, ld) = unzip l

flp = concat (filter (λa → if (a ≡ [])
then False

else True) lp)
in (flp, dbf)

The output density matrixfdb (from final densityof typeb) is calculated by simple matrix
multiplication: the superoperator matrix by the input density matrix. Note that the over-
all operation may depend on the classical state. Then, the final probability distribution
of classical valuesflp is calculated by analysing the inputted density matrixdi and by
applyingp to the observables indi.

7.2 Mixed Programs with Density Matrices as Indexed Arrows

We define the three functions,arr , ≫, andfirst , overQProgram i o as follows:
arr ∈ (Basis b,Basis c, Sub b ())⇒ (b → c)→ QProgram i () b c

arr = uni2qprog.fun2lin

(≫) ∈ (Basis a,Basis b,Basis c,Basis i ,Basis o,

91

Basis o2, Sub a o, Sub b o2)⇒
QProgram i o a b → QProgram o o2 b c → QProgram i o2 a c

(f ≫ g) (dpi , (a1, a2)) = app g (f (dpi , (a1, a2)))

first ∈ (Basis a,Basis b,Basis c,Basis i ,Basis o, Sub a o, Sub (a, c) o)⇒
QProgram i o a b → QProgram i o (a, c) (b, c)

first p (pi , ((a1, c1), (a2, c2))) =
let (po, db) = p (pi , (a1, a2))

vcc = vreturn (c1, c2)
dbc = [(((b1, c1), (b2, c2)), db (b1, b2) ∗ vcc (c1, c2)) |

((b1, c1), (b2, c2))← basis]
in (po, dbc)

The functionarr just lifts basic functions tomixedprograms. The classical input is ig-
nored and the classical output is empty. The function≫ composes two mixed programs,
andfirst augments the state space of the quantum part of a mixed program by c. The
action of the new augmented mixed program is defined as the original program overa
with identity overc.

Proposition 7.2.1 The indexed arrowQProgram i o satisfies the required equations for
arrows.

7.3 Example: Teleportation

Recall the teleportation circuit in Section 6.4.2. Remember that the original algorithm
involves a measurement in the middle of the computation and communication of classical
information (the classical result of the measurement) between Alice (the sender) and Bob
(the receiver). Using this model of mixed programs acting oncombined states structured
as arrows we can faithfully express the teleportation algorithm as follows. The main
procedure receives no classical data and three entangled qubits; then passes a qubit of the
epr pair and the qubit to be teleported to Alice, which realizes some quantum operations
and measures its two qubits, returning only classical values to the main procedure, which
will be communicated to Bob.

teleportation ∈ QProgram () () (Bool ,Bool ,Bool) Bool

teleportation = proc (eprL, eprR, q)→ do

cs ← alice ≺ (eprL, q)
q ′ ← bob ≺ (eprR, cs)
returnA ≺ q ′

alice ∈ QProgram () (Bool ,Bool) (Bool ,Bool) ()
alice = proc (eprL, q)→ do

(q1, e1)← qcnotP ≺ (q , eprL)
q2 ← hadamardP ≺ q1

cs ← trA ≺ (e1, q2)
returnA ≺ cs

whereqcnotP is the mixed version of the linear operatorcontrolled qnot defined in
Section 5.2.

qcnotP ∈ QProgram () () (Bool ,Bool) (Bool ,Bool)
qcnotP = uni2qprog (controlled qnot)

Bob is a procedure which receives a classical data over(Bool ,Bool) and a qubit. The
procedure analyses the classical data and depending on its value applies or not a certain

92

quantum operation to the input qubit.
bob ∈ QProgram (Bool ,Bool) () ((),Bool) Bool

bob = λ(pbb, db)→ let (p1, d1) = if (lookup True (unzipL pbb) pbb > 0)
then (qnotP ([((), 1)], db))
else ([((), 1)], vreturn db)

(p2, d2) = if (lookup True (unzipR pbb) > 0)
then (zgateP ([((), 1)], db))
else st1

in (p2, d2)
Again we are using a mixed version of a linear operator defineded in Section 5.2

zgateP ∈ QProgram () () Bool Bool

zgateP = uni2prog zgate

The functionsunzipL andunzipR take a list of tuples and return a list with the left
elements of the tuples and a list with the right elements of the tuples, respectively.

unzipL ∈ [((a, b), p)]→ [a]
unzipL l = let (lb, lp) = unzip l

(las , lbs) = unzip lb

in las

unzipR ∈ [((a, b), p)]→ [b]
unzipR l = let (lb, lp) = unzip l

(las , lbs) = unzip lb

in lbs

7.4 Summary

In this Chapter we introduced a model for mixed quantum computations acting on
a combined state with a quantum and a classical part. The quantum part of the state is
represented by a density matrix which can efficiently express the probabilistic distribution
of quantum states resulting from measurements. We justifiedthe importance of using
mixed programs and combined states based on the structure ofsome important quantum
algorithms like teleportation.

However, there is a (possibly not minor) conceptual problemin the adoption of the
density matrix formalism, namely: a density matrix is supposed to represent a set (en-
semble) of quantum systems whose probability distribution of states the density matrix
represents; however, from a programming theoretic point ofview, one usually thinks of a
quantum algorithm as being performed by one single quantum system, not an ensemble
of quantum systems each possibly behaving in a different wayaccording to a probability
distribution.

We feel that the quantum programmer’s intuition of programming one single quantum
system at a time, while elaborating his algorithms, may happen to be not appropriately
captured by the density matrix formalism. We feel (but we have no definite argument)
that a representation modelled on the usual set-theoretic representation of states of non-
deterministic machines, adjusted to explicitly representthe probability of occurrence of
each deterministic state, may happen to capture in a better way the quantum programmer’s
intuition.

So, in next Chapter we introduce another way of dealing withmixedquantum compu-
tations, which is based on explicit probability distributions over sets of quantum states.

93

8 MODELLING QUANTUM EFFECTS IV: MIXED PRO -
GRAMS WITH PROBABILITY DISTRIBUTIONS OF QUAN-
TUM VECTORS STATES AS ARROWS

As motivated in the previous chapter before, we present in this chapter another way
of representing combined states. Basically, the quantum part of the combined state is
represented by an explicit probability distribution over quantum states.

The idea is to have a combined state, where the classical partis as before (i.e. a
probability distribution of classical values), and the quantum part is represented by this
explicity probability distribution over quantum states. Amixed program acting on this
combined state can act on the quantum part, on the classical part, or on both parts.

Mixed programs acting only on quantum data are of two kinds: i) the unitary transfor-
mations, which reversibly transform the state vector and nothing happens to the classical
probability; and ii) measurements, which probabilistically yield one of theeigenvaluesof
the observable being measured, andthrowsthe system into the correspondenteigenstate.
Yet one can have quantum operations controlled by classicalvalues as well as purely
classical operations.

8.1 Mixed Programs with Probability Distributions

The probabilistic quantum programming model that we define is based on data type
to representprobability distributions of quantum state vectors:

type EV = Double

type Prob = Double

newtype PDQst a = PDQ{unPDQ ∈ [([EV],Vec a,Prob)]}
More specifically, a probability distribution over a basis set a is represented by a pair
formed by: a list of real valuesEV , the eigenvalues which are the outputs of previously
performed measurements, and a state vector,Vec a. We chose to keep a list of eigenvalues
EV to maintain a history of measurements. For now this list doesnot include information
about the source of eigenvalues, i.e., about the position ofthe qubit which was measured
in the global state.

An example of simple distribution over a basic vector may be defined as follows:
return ∈ (Basis a)⇒ a → PDQst a

return a = PDQ [([], return a, 1)]

qdFalse ∈ PDQst Bool

qdFalse = return False

Also we can define basic distributions over simple superpositions and overn-dimensional
vectors:

94

qdFT ∈ PDQst Bool

qdFT = PDQ [([], qFT , 1)]
eprd ∈ PDQst (Bool ,Bool)
eprd = PDQ [([], epr , 1)]

Note that the list of eigenvalues is empty for basic distributions. This is because the
eigenvalues start to appear in distributions only after we have measurements involved.

A mixed quantum programis represented by two kinds of transformations:
data PDQTrans a b = Transform ((PDQst a)→ (PDQst b))

| Meas ((PDQst a)→ (PDQst b))
We made the difference explicit because the semantics of applying unitary transforma-
tions is different from the semantics of applying measurements.

A simple unitary transformation can be defined in such a way that the transformation
is applied to all vectors in the distribution. The probability distribution over eigenvalues
is preserved. For instance, a simple quantum unitary transformation ashadamard can be
defined as:

hadamardD ∈ PDQTrans Bool Bool

hadamardD =
Transform (λx → PDQ [(l21, v2, p1) | (l21, v1, p1)← unPDQ x ,

let v2 = v1 >>= hadamard])

We can test the function above using an application operation:
appD ∈ (Basis a,Basis b)⇒ PDQTrans a b → PDQst a → PDQst b

appD f = λx → f x

Applying hadamardD to qdFT produces:
([], [(False, 1.0 :+0.0), (True, 0.0 :+0.0)])→ 1.0

using a pretty printing forPDQst : on the left are the list of eigenvalues and the vector,
and on the right, after the arrow, is the probability.

Measurements are the operations which produce eigenvaluesasclassical outputsand
return a new classical probability distribution over eigenstates of the observable according
to eachvector in the distribution.

The measurement of a simple qubit realized by an observable,which hasqFalse (|0〉)
andqTrue (|1〉) as its eigenvectors, can be implemented as follows:

measqD ∈ PDQTrans Bool Bool

measqD = Meas (λx → PDQ [(evalue : l21, evector , p2) |
(l21, v1, p1)← unPDQ x ,
(evalue, evector)← [(0, qFalse), (1, qTrue)],
let p2 = if p1 6≡ 0

then (((magnitude (evector〈.〉v1)) ∗∗ 2) ∗ p1) else 0])

The two possible outputs are0 collapsing the vector toqFalse or 1 collapsing the vector to
qTrue. Note that the new probabilityp2 is calculated using the formula presented in Sec-
tion 2.1.3 multiplied by the previous probability as it is a dependent event. This operation
may augment the number of vectors in the distribution, for instanceappD measqD qdFT

returns:
([0.0], [(False, 1.0 :+0.0)])→ 0.5
([1.0], [(True, 1.0 :+0.0)])→ 0.5

Moreover we can define a function which discards a qubit,
discqD ∈ PDQTrans Bool ()

Of course, discarding a qubit physically corresponds to measuring it, returning a real
value for the probability distribution. The definition of this function is similar tomeasqD

95

except for the fact that there is no vector returned.

8.2 PDQTrans as Indexed Arrows

We define the three functions,arr , ≫, andfirst , overPDQTrans as follows:
arr ∈ (Basis b1,Basis b2)⇒ (b1 → b2)→ PDQTrans b1 b2

arr f = Transform (λx → PDQ [(e1, v2, p) | (e1, v1, p)← unPDQ x ,
let fv = fun2vecfun f ,
let v2 = fv v1])

(≫) ∈ (Basis b1,Basis b2,Basis b3)⇒
PDQTrans b1 b2 → PDQTrans b2 b3 → PDQTrans b1 b3

(Transform f) ≫ (Transform g) = Transform (λx → let d = f x in g d)
(Meas f) ≫ (Transform g) = Transform (λx → let d = f x in g d)
(Transform f) ≫ (Meas g) = Meas (λx → let d = f x in g d)
(Meas f) ≫ (Meas g) = Meas (λx → let d = f x in g d)

first ∈ (Basis b1,Basis b2,Basis b3)⇒
PDQTrans b1 b2 → PDQTrans (b1, b3) (b2, b3)

first (Transform f) =
Transform (λx → let fg = getvbs (Transform f)

fext = firstl fg

in PDQ [(le, v , p) | (l21, v1, p1)← unPDQ x ,
let (le, v , p) = (l21, [((b, c), k1 ∗ k2) |
((a, c), k1)← v1, let d2 = fext (a, c),
(le2, v2, p2)← unPDQ d2,
((b, c), k2) ← v2], p1)])

first (Meas f) =
Meas (λx → let fg = getvbs (Meas f)

fext = firstl fg

in zipqd (PDQ [(le, v , p) | (l21, v1, p1)← unPDQ x ,
((a, c), k1)← v1, let d2 = fext (a, c),
(le2, v2, p2) ← unPDQ d2,
let (le, v) = (le2 ++ l21,

[((b, c), k1 ∗ k2) | ((b, c), k2)← v2]),
let p = p1 ∗ p2 ∗ (((∗∗2).magnitude) k1)]))

The first two functions are straightforward:arr constructs areversibletransformation
from a basic function, where

fun2vecfun ∈ (Basis a,Basis b)⇒ (a → b)→ (Vec a → Vec b)
fun2vecfun f va = let fa = fun2lin f

in va >>= fa

converts a “matrix” to a function mapping vectors to vectors, and≫ just composes two
PDQTrans. The functionfirst is a bit more subtle, the idea is to transform a function
which acts inpart of a quantum state (sayVec b1) to a function which acts in theglobal
state (sayVec (b1, b3)). The implementation is based in the following two functions 1:

getvbs ∈ PDQTrans a b → (a → PDQst b)
getvbs (Transform f) = λa → let d = dreturn a in f d

getvbs (Meas f) = λa → let d = dreturn a in f d

1The functionvlk a v just lookups the amplitude probability ofa in vectorv .

96

firstbs ∈ (a → PDQst b)→ (a, c)→ PDQst (b, c)
firstl f (a, c) = let db = f a

dc = dreturn c

in PDQ [(le , v2, p ∗ q) | (le , vb, p)← unPDQ db,
(, vc, q)← unPDQ dc,
let v2 = [((b, c), vlk b vb ∗ vlk c vc) | (b, c)← basis]]

Given aPDQTrans, getvbs determines how that behaves for basic vectors. Then, given
the basis’ elements,firstbs extends the transformation. Essentially, whatfirst does is to
calculate theextendedfunction for the inputPDQTrans usingfirstbs, and then to cal-
culate the output, correctly applying the extendedPDQTrans to the inputed probability
distribution of state vectors. The trick forfirst is that we have made an explicit differ-
ence between measurements and unitary transformations. Ifthe inputed function isnot
a measurement the calculation is standard, but if thatis a measurement then the number
of states vectors in the distribution is augmented and we need to use the functionzipqd ,
which combines all state vectors that are tagged with the same eigenvalue.

Proposition 8.2.1 The given implementation forarr , ≫, andfirst satisfy the required
equations for arrows.

We can use the arrow combinators to structure quantum computations modelled by
mixed computationsover combined states.

8.3 Example: Teleportation

Now we model the algorithm for teleportation usingPDQTrans as arrows.
alice ∈ PDQTrans (Bool ,Bool) ()
alice = proc (eprL, q)→ do

(q1, e1)← controlled notD ≺ (q , eprL)
q2 ← hadamardD ≺ q1

u1 ← discqD ≺ q2

e2 ← simplqD ≺ (u1 , e1)
u2 ← discqD ≺ e2

returnA ≺ u2

bob ∈ PDQTrans Bool Bool

bob = PDQTrans (λx → PDQ [((l21, v3), p1) | ((l21, v1), p1)← unPDQ x ,
let v2 = if ((head l21) ≡ 1) then v1 >>= qnot else v1,
let v3 = if ((head (tail l21)) ≡ 1) then v2 >>= z else v2])

teleportation ∈ PDQTrans (Bool ,Bool ,Bool) Bool

teleportation = proc (eprL, eprR, q)→ do

u1 ← alice ≺ (eprL, q)
q ′ ← bob ≺ eprR

returnA← q ′

A running ofteleportation of the qubit 1√
2
(|0〉+ |1〉) produces the following output

([0.0, 0.0], [(False, 1 /
√

2), (True, 1 /
√

2)])→ 0.25

([1.0, 0.0], [(False, 1 /
√

2), (True, 1 /
√

2)])→ 0.25

([0.0, 1.0], [(False, 1 /
√

2), (True, 1 /
√

2)])→ 0.25

([1.0, 1.0], [(False, 1 /
√

2), (True, 1 /
√

2)])→ 0.25

97

that is, if we sum the probabilities the final state in Bob’s site is 100% in a uniform
superposition ofFalse andTrue. Note that at the end there is a list of all classical results
of the measurements.

8.4 Summary

This Chapter presents an alternative model for mixed quantum computations acting
on a combined state with quantum and classical data, such that the quantum part of the
state is represented by an explicit probability distributions over quantum states.

Although we feel this model using explicit probability distributions of vectors is more
intuitive for a programmer, it remains to be analysed how efficient, as the size of these
states will in general greatly increase in the number of measurements performed and
as they may represent, in different probabilities, vectorswhich are not observationally
different.

98

9 CONCLUSION

In this thesis we have modelled and explained quantum programming using well es-
tablished constructions of classical programming languages and semantics.

9.1 Contributions

9.1.1 High-level Languages for Quantum Computation

It took many years for a classical programming language to develop sophisticated pro-
gramming abstractions, compiler technology, type systems, and connections to semantic
constructions like monads. In this thesis we formalize someimportant connections be-
tween classical and quantum computations and we hope this would help much of the
constructs and tools used for classical programming to be transfered to the domain of
quantum programming languages.

In Section 4 we have developed a technique for reasoning about quantum programs,
written in a pure subset of QML, using algebraic laws.

We have also noted that a general purpose quantum programming language that can
faithfully express quantum algorithms would begeneral, with respect measurements, and
complete, with respect the interchanging between quantum and classical data. Addition-
aly, we shown that two approaches for general and complete quantum computations can
be structured using indexed arrows.

9.1.2 Main Differences between Quantum and Classical Programming

Previous work on quantum programming seems to declare that this new approach
is completely disjoint with classical programming constructions. In some sense this is
true for two reasons: (1) quantum computing is based on a kindof parallelism caused
by the non-local character of quantum information which is qualitatively different from
the classical notion of parallelism, and (2) quantum computing has a peculiar notion of
observation in which the observed part of the quantum state and every other part that is
entangled with it immediately lose their choerence.

Interestingly it seems that none of the other differences that are often cited between
quantum and classical computing are actually relevant semantically. For example, even
though we do not often think of classical computation as “reversible,” it is just as re-
versible as quantum computing. Both can be implemented by a set of reversible universal
gates (see (NIELSEN; CHUANG, 2000), section 1.4.1), but in neither model should the
user be required to reason about reversibility.

The two properties of quantum computing discussed above certainly go beyond “pure”
classical programming. In this thesis we have established that quantum parallelism can

99

be elegantly structured using indexed monads, and that quantum measurement can be
modelled using a generalisation of monads called indexed arrows. In summary, our con-
struction relates “unusual” quantum features to well-founded semantic constructions and
programming languages. We hope it will serve as a useful toolto further understand the
nature and structure of quantum computation.

However as pointed in Section 6.5 it seems there is a tricky characteristic in quantum
programming, which is related to forgetting variables (stopping to operate on them) in
quantum programs, as the quantum state is global and possibly entangled, and forgetting a
part of the quantum state corresponds to measure it and to possibly destroy entanglement.

9.1.3 High-level Executable Models of Quantum Computation

Developing executable models for quantum computation may help in a better under-
standing of quantum algorithms and may give inspiration forprogrammers to develop
new quantum algorithms. Also, showing how quantum programming can be integrated
to classical programming constructions, based on a sound mathematical semantics, may
help the structuring of simulators for quantum computers.

9.2 Future Work

9.2.1 Quantum Haskell

As an obvious future work we plan to develop further the library for general and com-
plete quantum computation structured as indexed arrows. Specially implementing a type
system to control decoherence, adding quantum control and high-level data structures.

9.2.2 QML

We presented in Section 4.1 a functional quantum programming language, called
QML developed by Altenkirch and Grattage (ALTENKIRCH; GRATTAGE, 2005). Es-
sentially, QML is explained by translating functional programs with quantum effects into
quantum circuits using additional registers for initial heap and final garbage of the compu-
tation. These circuits can be translated into superoperators, and this translation turns out
to be full, i.e., every superoperator is given by a computation. A QML compiler has been
implemented by Grattage in Haskell (GRATTAGE; ALTENKIRCH,2005), its output are
quantum circuits which can be simulated using a standard simulator for quantum circuits.
The present work is complementary: it provides a direct implementation of superoper-
ators in Haskell, by passing the need to simulate circuits. The details of implementing
QML using the library of superoperators presented here willbe subject of further work.

100

REFERENCES

ABRAMSKY, S.; COECKE, B. A Categorical Semantics of QuantumProtocols. In: AN-
NUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS, 19.,2004,
Chicago, USA.Proceedings. . .[S.l.]:IEEE Computer Society, 2004. Also arXiv:quant-
ph/0402130.

ABRAMSKY, S.; DUNCAN, R. A Categorical Quantum Logic. In: INTERNATIONAL
WORKSHOP ON QUANTUM PROGRAMMING LANGUAGES, 2., 2004, Turku, Fin-
land.Proceedings. . .[S.l.: s.n.], 2004.

AHARONOV, D.; KITAEV, A.; NISAN, N. Quantum circuits with mixed states. In:
ACM SYMPOSIUM ON THEORY OF COMPUTING, 1998.Proceedings. . .New York:
ACM Press, 1998. p.20–30.

ALTENKIRCH, T.; GRATTAGE, J. A functional quantum programming language. In:
ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, 20., 2005.Pro-
ceedings. . .[S.l.: s.n.], 2005.

ALTENKIRCH, T.; GRATTAGE, J.QML : quantum data and control. Submitted for pub-
lication, 2005.

ALTENKIRCH, T.; GRATTAGE, J.; VIZZOTTO, J. K.; SABRY, A. An Algebra of Pure
Quantum Programming. In: INTERNATIONAL WORKSHOP ON QUANTUM PRO-
GRAMMING LANGUAGES, 3., 2005.Proceedings. . .[S.l.: s.n.], 2005. To appear in
ENTCS.

ALTENKIRCH, T.; REUS, B. Monadic presentations of lambda terms using generalized
inductive types. In: COMPUTER SCIENCE LOGIC, 1999.Proceedings. . .[S.l.: s.n.],
1999.

ALTENKIRCH, T.; UUSTALU, T. Normalization by evaluation for λ→2. In: FUNC-
TIONAL AND LOGIC PROGRAMMING, 2004.Proceedings. . .[S.l.: s.n.], 2004. p.260
– 275. (Lecture Notes in Computer Science, n. 2998).

ARRIGHI, P.; DOWEK, G. A Computational Definition of the Notion of Vectorial Space.
Electr. Notes Theor. Comput. Sci., [S.l.], v.117, p.249–261, 2005.

BELL, J. S. On The Einstein-Podolsky-Rosen Paradox. In:Speakable and Unspeakable
in Quantum Mechanics. [S.l.]: Cambridge University Press, 1987. p.14–21.

101

BENNETT, C. H.; BRASSARD, G. Quantum Cryptography: public-key distribution
and coin tossing. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER,
SYSTEMS AND SIGNAL PROCESSING, 1984, Bangalore, India.Proceedings. . .
[S.l.: s.n.], 1984. p.175–179.

BENNETT, C. H.; BRASSARD, G.; CREPEAU, C.; JOZSA, R.; PERES,A.; WOOT-
TERS, W. Teleporting an unknown quantum state via dual classical and EPR channels.
Phys Rev Lett, [S.l.], p.1895–1899, 1993.

BETTELLI, S.; SERAFINI, L.; CALARCO, T. Toward an architecture for quantum pro-
gramming.EUR.PHYS.J.D, [S.l.], v.25, p.181, 2003.

BONE, S.; CASTRO, M.A Brief History of Quantum Computing . Available at:
<http://www.doc.ic.ac.uk/ nd/nada>. Visited on January 2006.

BRIDGE, J. Beginning Model Theory: the completeness theorem and some conse-
quences. [S.l.]: Oxford University Press, 1997.

BRIEGEL, H. J.; RAUSSENDORF, R. Persistent Entanglement inArrays of Interacting
Particles.Phys. Rev. Lett., [S.l.], v.86, p.910–913, 2001.

CHURCH, A. An Unsolvable Problem of Elementary Number Theory. J. Math., [S.l.],
v.58, p.345–363, 1936.

COECKE, B. De-linearizing linearity I: projective quantumaxiomatics from strong com-
pact closure. In: INTERNATIONAL WORKSHOP ON QUANTUM PROGRAMMING
LANGUAGES, 3., 2005, Chicago, USA.Proceedings. . .[S.l.]:Elsevier Science, 2005.
(Electronic Notes in Theoretical Computer Science).

DANOS, V.; HONDT, E. D. .; KASHEFI, E.; PANANGADEN, P. Distributed
measurement-based quantum computation. In: INTERNATIONAL WORKSHOP ON
QUANTUM PROGRAMMING LANGUAGES, 3., 2005, Chicago, USA.Proceedings. . .
[S.l.]:Elsevier Science, 2005. (Electronic Notes in Theoretical Computer Science).

DEUTSCH, D. Quantum Theory, the Church-Turing Principle and the Universal Quantum
Computer.Proc. Roy. Soc. London, Ser. A, [S.l.], v.400, p.97–117, 1985.

EINSTEIN, A.; PODOLSKY, B.; ROSEN, N. Can Quantum-Mechanical Description of
Physical Reality be Considered Complete?Phys. Rev., [S.l.], v.47, p.777–780, 1935.

FEYNMAN, R. Simulating Physics with Computers.International Journal of Theoret-
ical Physics, [S.l.], v.21, n.6&7, p.467–488, 1982.

GAY, S. Quantum Programming Languages: survey and bibliography.Mathematical
Structures in Computer Science, [S.l.], v.16, n.4, p.581–600, 2006.

GAY, S. J.; NAGARAJAN, R. Communicating Quantum Processes.In: ACM SYM-
POSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 32., 2005.Proceed-
ings. . . [S.l.: s.n.], 2005.

GAY, S.; NAGARAJAN, R. Typechecking Communicating QuantumProcesses.Mathe-
matical Structures in Computer Science, [S.l.], v.16, n.3, p.375–406, 2006.

102

GRATTAGE, J.; ALTENKIRCH, T.A compiler for a functional quantum program-
ming language. Submitted for publication. January, 2005.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In: AN-
NUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 28., 1996.Proceedings. . .
[S.l.: s.n.], 1996. p.212–219.

HUGHES, J. Generalising Monads to Arrows.Science of Computer Programming,
[S.l.], v.37, p.67–111, May 2000.

KASHEFI, E.; PANANGADEN, P.; DANOS, V.The Measurement Calculus. Available
at: <http://arxiv.org/abs/quant-ph/0412135>. Visited on January 2006.

KNILL, E. Conventions for quantum pseudocode. Technical Report LAUR-96-2724,
Los Alamos National Laboratory. 1996.

LEUNG, D. W. Quantum computation by measurements.J. of Quant. Comp., [S.l.], v.2,
p.33–43, 2004.

MACLANE, S. Categories for the Working Mathematician. [S.l.]: Spinger Verlag,
1971.

MOGGI, E. Computational lambda-calculus and monads. In: ANNUAL SYMPOSIUM
ON LOGIC IN COMPUTER SCIENCE, 4., 1989.Proceedings. . .[S.l.]:IEEE Press,
1989. p.14–23.

MOGGI, E. Notions of Computation and Monads.Information and Computation , [S.l.],
v.93, n.1, p.55–92, 1991.

NIELSEN, M. A. Universal quantum computation using only projective measurement,
quantum memory, and preparation of the 0 state.Phys. Lett., [S.l.], v.A. 308, n.2–3,
p.96–100, 2003.

NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Informa-
tion. [S.l.]: Cambridge University Press, 2000.

ÖMER, B. A Procedural Formalism for Quantum Computing . 1998. Dissertação
(Mestrado em Ciência da Computação) — Department of Theoretical Physics, Techni-
cal University of Vienna.

PATERSON, R. A New Notation for Arrows. In: INTERNATIONAL CONFERENCE
ON FUNCTIONAL PROGRAMMING, 2001.Proceedings. . .[S.l.: s.n.], 2001. p.229–
240.

POWER, J.; ROBINSON, E. Premonoidal Categories and Notionsof Computation.
Mathematical Structures in Computer Science, [S.l.], v.7, n.5, p.453–468, 1997.

PRESKILL, J. Lecture notes for Physics 229, quantum computation. Available
at: <http://www.theory.caltech.edu/people/preskill/ph229/#lecture>. Visited on January
2006.

RAUSSENDORF, R.; BROWNE, D.; BRIEGEL, H. A One-Way Quantum Computer.
Phys. Rev., [S.l.], v.86, p.5188–5191, 2001.

103

RAUSSENDORF, R.; BROWNE, D.; BRIEGEL, H. Measurement-based quantum com-
putation with cluster states.Phys. Rev., [S.l.], v.A 68, 2003.

SABRY, A. A. Rebindable syntax in GHC. Personal Communication. 2006.

SABRY, A. Modeling quantum computing in Haskell. In: ACM SIGPLAN WORKSHOP
ON HASKELL, 2003.Proceedings. . .New York: ACM Press, 2003. p.39–49.

TUAN, S. F. (Ed.).Modern Quantum Mechanics. [S.l.]: Addison-Wesley, 1994.

SANDERS, J. W.; ZULIANI, P. Quantum Programming. In: S.L.] MATHEMATICS
OF PROGRAM CONSTRUCTION, 2000.Proceedings. . .[S.l.]:Springer-Verlag, 2000.
p.80–99. (Lecture Notes in Computer Science, v.1837).

SELINGER, P. Towards a Quantum Programming Language.Mathematical Structures
in Computer Science, [S.l.], v.14, n.4, p.527–586, 2004.

SELINGER, P.; VALIRON, B. A lambda calculus for quantum computation with classical
control.Mathematical Structures in Computer Science, [S.l.], v.16, p.527–552, 2006.

SHANKAR, R. Principles of Quantum Mechanics. 2nd. [S.l.]: Springer, 1994.

SHENG LIANG, P. H.; JONES, M. Monad Transformers and ModularInterpreters. In:
ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, POPL,
22., 1995.Proceedings. . .[S.l.: s.n.], 1995.

SHOR, P. W. Algorithms for Quantum Computation: discrete logarithms and factoring.
In: IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1994. Pro-
ceedings. . .[S.l.: s.n.], 1994. p.124–134.

SWIERSTRA, S. D.; DUPONCHEEL, L. Deterministic, Error-Correcting Combina-
tor Parsers. In: ADVANCED FUNCTIONAL PROGRAMMING, 1996.Proceedings. . .
[S.l.]:Springer-Verlag, 1996. p.184–207. (Lecture Notesin Computer Science, v.1129).

TARLECKI, A.; BURSTALL, R.; GOGUEN, J. A. Some Fundamental Algebraic Tools
For The Semantics Of Computation, Part 3: indexed categories.Theoretical Computer
Science, [S.l.], v.91, p.239–264, 1991.

TONDER, A. van.Quantum Computation, Categorical Semantics and Linear Logic.
Available at:<http://arxiv.org/abs/quant-ph/0312174>. Visited on January 2006.

TONDER, A. van. A Lambda Calculus for Quantum Computation.SIAM Journal on
Computing, [S.l.], v.33, n.5, p.1109–1135, 2004.

TURING, A. M. On Computable Numbers, with an Application to the Entschei-
dungsproblem.Proceedings of the London Mathematical Society, [S.l.], v.42, n.2,
p.230–265, 1936.

UNRUH, D. Quantum Programs with Classical Output Streams.Electronic Notes in
Theoretical Computer Science, [S.l.], 2005. 3rd International Workshop on Quantum
Programming Languages, to be published.

104

VALIRON, B. Quantum typing. In: INTERNATIONAL WORKSHOP ON QUANTUM
PROGRAMMING LANGUAGES, 2., 2004, Turku, Finland.Proceedings. . .[S.l.: s.n.],
2004.

VIZZOTTO, J. K.; ALTENKIRCH, T.; SABRY, A. Structuring Quantum Effects: su-
peroperators as arrows.Journal of Mathematical Structures in Computer Science:
special issue in quantum programming languages, [S.l.], v.16, p.453–468, 2006.

VIZZOTTO, J. K.; COSTA, A. C. R. Concurrent Quantum Programming in Haskell. In:
CONGRESSO BRASILEIRO DE REDES NEURAIS, 7., SESSÃO DE COMPUTAçãO
QUÂNTICA, 2005.Anais. . . [S.l.: s.n.], 2005. p.1–6.

VIZZOTTO, J. K.; COSTA, A. C. R.; SABRY, A. Quantum Arrows in Haskell. In: IN-
TERNATIONAL WORKSHOP ON QUANTUM PROGRAMMING LANGUAGES, 4.,
2006, Oxford.Proceedings. . .[S.l.: s.n.], 2006. (Electronic Notes in Theoretical Com-
puter Science). To appear in ENTCS.

105

APPENDIX A LINEAR VECTOR SPACES

In this appendix, we review the essential notions on vector spaces needed to a basic
understanding of the principles of quantum mechanics. Thisreview is based on Chapter
1 from (SHANKAR, 1994).

A.1 Basics

Intuitively, a vector space is a very useful mathematical world to model scenarios from
the real world - we can model the scenes and preview how they change. The cleverness
of vectors spaces is that they may abstract an appropriate set of general properties of the
scenarios.

Definition A.1.1 (Linear Vector Space) A linear vector spaceV is a collection of ob-
jects1 |1〉, |2〉, . . . , |V 〉, . . . , |W 〉, . . ., called vectors, for which there exists:

1. A definite rule for forming the vector sum, denoted by|V 〉+ |W 〉

2. A definite rule for multiplication by scalarsa, b, . . . , denoted bya|V 〉 with the fol-
lowing features:

• The result of these operations is another element of the space, a feature called
closure: |V 〉+ |W 〉 ∈ V.

• Scalar multiplication isdistributivein the vectors:a(|V 〉+ |W 〉) = a|V 〉+ a|W 〉.

• Scalar multiplication isdistributivein the scalars:(a + b)|V 〉 = a|V 〉+ b|V 〉.

• Scalar multiplication isassociative: a(b|V 〉) = ab|V 〉.

• Addition iscommutative: |V 〉+ |W 〉 = |W 〉+ |V 〉.

• Addition isassociative: |V 〉(|W 〉+ |Z〉) = (|V 〉+ |W 〉) + |Z〉.

• There exists anull vector|0〉 obeying|V 〉+ |0〉 = |V 〉.

• For every vector|V 〉 there exists aninverseunder addition,| −V 〉, such that|V 〉+
| − V 〉 = 0.

1Here we are using thebraketDirac’s notation. The symbol|V 〉 is called aket and denotes a generic
vector.

106

The numbersa, b, . . . are called thefield over which the vector space is defined. If the
fiel consists of real numbers, we havereal vector spaces, if they are complex, we have a
complex vector space.

By one hand, one can, of course, associate an object|V 〉 with an arrow-like object
such that addition of two arrows corresponds to put the tail of the second arrow on the
tip of the first. Scalar multiplication corresponds to stretching the vector by a factora.
This is a real vector space since stretching by a complex number makes no sense. Since
these operations acting on arrows give more arrows, we have aclosure. The null vector is
the arrow of zero length, while the inverse of a vector is the vector reversed in direction.
Hence one can think the objects of a vector space are necessarily arrows. However, no
reference has been made to magnitude or direction. The pointis that while the arrows
have these qualities, members of a vector space need not. Forinstance, consider the set
of all 2 × 2 matrices. We know how to add them, multiply them by scalars, anf that the
corresponding rules obey closure. In other words, they constitute a genuine vector space,
which do not have an obvious length or direction associated with them.

Now consider linear dependence of vectors:

Definition A.1.2 (Linear Dependence)A set of vectors is said to be linearly independent
if the only linear relation such that

n
∑

i=1

ai|i〉 = |0〉

is the one with allai = 0. If the set of vector is not linear independent, we say they are
linearly dependent.

The definition tells that it is not possible to write any member of the linearly independent
set in terms of the others. For instance, consider two non-parallel vectors|1〉 and |2〉
in a plane. These form a linearly independent set. There is noway to write one as a
multiple of the other, or equivalently, no way to combine them to get the null vector. On
the other hand if the vectors are parallel, we can clearly write one as multiple of the other
or equivalently play them against each other to get|0〉.

Definition A.1.3 (Dimension of a Vector Space)A vector space has dimensionn if it
can accommodate a maximum ofn linearly independent vectors.

For example, the plane is two-dimensional and the set of2×2 matrices is a four-dimensional
vector space, which can have the following linearly independent set of vectors:

|1〉 =

[

1 0
0 0

]

|2〉 =

[

0 1
0 0

]

|3〉 =

[

0 0
1 0

]

|4〉 =

[

0 0
0 1

]

Note that it is impossible to form a linear combination of anythree of them to give the
fourth any three of them. So the space is at least four-dimensional, and it can not be bigger
since any arbitrary2× 2 matrix can be written in terms of them:

[

a b
c b

]

= a|1〉+ b|2〉+ c|3〉+ d|4〉.

If the scalarsa, b, c, d are real, we have areal four-dimensional space, if they are
complex we have acomplex four-dimensional space.

107

Definition A.1.4 (Basis) a set ofn linearly independent vectors in an-dimensional space
is called abasis.

Thus we can write auniqueexpansion:

|V 〉 =
n

∑

i=1

vi|i〉

for any vector, such that the vectors|i〉 form a basis.

A.2 Inner Product Spaces

The2 × 2 matrix example of a vector space in the section below has clarified that a
vector space need not to have a preassigned length or direction for its elements. However,
one can make up quantities that have the same properties thatthe lengths and angles do
in the case of arrows.

Based on the definition of thedot productfor arrows2 there is a generalisation called
the inner productbetween any two vectors|V 〉 and |W 〉 that is denoted by the symbol
〈V |W 〉. The inner product is a number (generally complex) dependent on the two vectors
and obey the following axioms:

• 〈V |W 〉 = 〈W |V 〉∗ 3 (skew-symmetry)

• 〈V |V 〉 > 0 or 0 iff |V 〉 = |0〉 (positive semidefiniteness)

• 〈V |(a|W 〉+ b|Z〉) ≡ 〈V |aW + bZ〉 = a〈V |W 〉+ b〈V |Z〉 (linearity in ket)

Definition A.2.1 (Inner Product Vector Space) An inner product spaceis a vector space
with an inner product.

Notice that we have not yet presented an explicit rule for actually evaluating the inner
product, we just posted that any rule must have these properties. Lets analyse the axioms
closer. The first one ensures that〈V |V 〉 is real. The second axiom says that〈V |V 〉
is not just real but also positive semidefinite, vanishing only if the vector itself does.
The last axiom expresses the linearity of the inner product when a linear superposition
a|W 〉+ b|Z〉 ≡ |aW + bZ〉 appears as the second vector.

Definition A.2.2 (Orthogonality) Two vectors areorthogonalor perpendicular if their
inner product vanishes.

Definition A.2.3 (Norm) The norm or length of a vector is defined as
√

〈V |V 〉 ≡ |V |.
A normalized vector has unit norm.

Definition A.2.4 (Orthonormal Basis) An orthonormal basis is a set of basis vectors all
of unit norm which are pairwise orthogonal.

2
→

A .
→

B= |A||B| cos θ, which is defined in terms of the lengths of the arrows and the cosine of the angle
between the arrows.

3Where∗ is the conjugate complex.

108

We present now a concrete formula for the inner product (or also called the dot prod-
uct). Given|V 〉 and|W 〉

|V 〉 =
∑

i vi|i〉
|W 〉 =

∑

j vj |j〉
Following the axioms obeyed by the inner product we have:

〈V |W 〉 =
∑

i

∑

j

v∗
i wj〈i|j〉.

Then, we have to know the inner product between basis vectors, 〈i|j〉. That depends on the
details of the basis vectors and all we know for sure is that they are linearly independent.
But note that if we use an orthonormal basis only diagonal terms like〈i|i〉 will survive.

Theorem A.2.1 (Gram-Schmidt) Given a linearly independent basis we can form linear
combinations of the basis vectors to obtain an orthonormal basis.

To verify the proof of the theorem see (NIELSEN; CHUANG, 2000), Section . Assuming
that the procedure has been implemented and that the currentbasis is orthonormal:

〈i|j〉 =

{

1 for i = j
0 for i 6= j

we will use the following formula for the inner product:

〈V |W 〉 =
∑

i

v∗
i wi.

Since the vector|V 〉 is uniquely specified by its components in a given basis, we may,
in this basis, write it as a column vector:

|V 〉 →











v1

v2
...

vn











in this basis. Likewise

|W 〉 →











w1

w2
...

wn











in this basis. Hence, the inner product is given by the matrixproduct of the transpose
conjugate of the column vector representing|V 〉 with the column vector representing
|W 〉:

〈V |W 〉 = [v∗
1, v

∗
2, . . . , v

∗
n]











w1

w2
...

wn











.

109

A.3 Dual Spaces and Dirac Notation

Column vectors are concrete manifestations of an abstract vector|V 〉 or ket in a basis.
We can also work backwards and go from column vectors to the abstract kets. But then it
is similarly possible to work backward and associate arow vectorwith an abstract object
〈W |, calledbra-W . Therefore, associated with every ket|V 〉 is a column vector, and
taking itsadjoint, or transpose conjugate, we form a row vector, which is the abstract bra,
〈V |. Thus, there are two vector spaces, the space of kets and the dual space of bras, with
a ket for every bra and vice-versa. There is a basis of vectors|i〉 for expanding kets and
a similar basis〈i| for expanding bras. The basis ket|i〉 is represented in the basis we are
using by a column vector with all zeros except for a1 in the ith row, while the basis bra
〈i| is a row vector with all zeros except for a1 the theith column.

All this may be summarized as follows:

|V 〉 ↔











v1

v2
...

vn











↔ [v∗
1 , v

∗
2, . . . , v

∗
n]↔ 〈V |

where↔means “within a basis”.

A.4 Subspaces

Definition A.4.1 (Subspace)Given a vector spaceV, a subset of its elements that form
a vector space among themselves, such that vector addition and scalar multiplication are
defined in the same way in the subspace as inV, is called a subspace.

Remark A.4.1 We denote a particular subspacei of dimensionalityni byV
ni

i .

Definition A.4.2 (Composite Spaces)Given two subspacesVni

i and V
mj

j , thenV
ni

i ⊗
V

mj

j (read⊗ as tensor) is ani×mj dimensional vector space. The elements ofV
ni

i ⊗V
mj

j

are linear combinations of tensor products|v〉⊗|w〉 of elements|v〉 ∈ V
ni

i and|w〉 ∈ V
mj

j .
In particular, if |i〉 and|j〉 are orthonormal bases for the spacesV

ni

i andV
mj

j then|i〉⊗|j〉
is a basis forVni

i ⊗ V
mj

j .

Remark A.4.2 We often use abbreviated notations|v〉|w〉, |v, w〉 or even|vw〉 for the
tensor product|v〉 ⊗ |w〉.

A.5 Linear Operators

An operatorΩ is an instruction for transforming any given vector|V 〉 into another
vector|V ′〉. The action of the operator is represented as follows:

Ω|V 〉 = |V ′〉.
One says that the operatorΩ has transformed the ket|V 〉 into the ket|V ′〉. We will restrict
our attention throughout to operatorsΩ that do not take us out of the vector space, i.e., if
|V 〉 is an element of a spaceV, so is|V ′〉 = Ω|V 〉.

Operators can also act on bras:

110

〈V ′|Ω = 〈V ′′|
Linear operatorsare the operators which obey the following rules:

• Ωα|Vi〉 = αΩ|Vi〉

• Ω{α|Vi〉+ β|Vj〉} = αΩ|Vi〉+ βΩ|Vi〉

• 〈Vi|αΩ = 〈Vi|Ωα

• (〈Vi|α + 〈Vj|β)Ω = α〈Vi|Ω + β〈Vj|Ω.

The simplest operator is the identity operator,I, which carries the instruction:

I → leave the vector alone!

Thus,
I|V 〉 = |V 〉 for all kets|V 〉

and

〈V |I = 〈V | for all bras〈V |.
The nice feature of linear operators is that once their action on the basis vectors is

know, their action on any vector in the space is determined. If

Ω|i〉 = |i′〉
for a basis|1〉, |2〉, . . . , |n〉 in Vn (wheren is the dimension of the space), then for nay
|V 〉 =

∑

i vi|i〉

Ω|V 〉 =
∑

i

Ωvi|i〉 =
∑

i

viΩ|i〉 =
∑

i

vi|i′〉.

A.5.1 Matrix Elements of Linear Operators

We are accustomed to the idea of an abstract vector being represented in a basis by an
n-tuple of numbers, called its components, in terms of which all vector operations can be
carried out. We shall now see that in the same manner a linear operator can be represented
in a basis by a set ofn2 numbers, written as ann×n matrix, and called itsmatrix elements
in that basis.

The start point is the observation made earlier, that the action of a linear operator is
fully specified by its action on the basis vectors. If the basis vector suffer a change

Ω|i〉 = |i′〉
then any vector in this space undergoes a change that is readily calculable:

Ω|V 〉 = Ω
∑

i

vi|i〉 =
∑

i

viΩ|i〉 =
∑

i

vi|i′〉.

As the vector|i′〉 is know, its components in the original basis

〈j|i′〉 = 〈j|Ω|i〉 = Ωj,i

111

are know. Then2 numbers,Ωi,j are thematrixelements ofΩ in this basis. If

Ω|V 〉 = |V ′〉

then the components of the transformed ket|V ′〉 are expressible in terms of the compo-
nentsΩij and|V 〉:

v′
i = 〈i|V ′〉 = 〈i|Ω|V 〉 = 〈i|Ω

(

∑

j vj |j〉
)

=
∑

j vj〈i|Ω|j〉
=

∑

j Ωijvj .

Summarizing, we can form the following matrix forΩ:










v′
1

v′
2
...

v′
n











=











〈1|Ω|1〉 〈1|Ω|2〉 . . . 〈1|Ω|n〉
〈2|Ω|1〉 〈2|Ω|2〉 . . . 〈2|Ω|n〉

...
...

〈n|Ω|1〉 〈n|Ω|2〉 . . . 〈n|Ω|n〉





















v1

v2
...

vn











Notice that the components of the first column are simply the components of the first
transformed basis vector|1′〉 = Ω|1〉 in the given basis. Likewise, the components of the
jth column represent the image of thejth basis vector afterΩ acts on it.

Now we can have the feeling about what an object like|i〉〈i| is. Whereas〈V |V ′〉 =
(1×n matrix)×(n×1 matrix) = (1×1 matrix) is a scalar,|V 〉〈V ′′| == (n×1 matrix)×
(1×n matrix) = (n×n matrix) is an operator. The inner product〈V |V ′〉 represents a bra
and ket that have found each other, while|V 〉〈V ′|, sometimes called theouter product,
has the two factors looking the other way.

A.5.2 The Adjoint of an Operator

Recall that given a ketα|V 〉 the corresponding bra is

〈V |α∗(not 〈V |α)

In the same way, given a ket
Ω|V 〉

the corresponding bra is

〈V |Ω†

which definesthe operatorΩ†. In other words, ifΩ turns a ket|V 〉 to |V ′〉, thenΩ† turns
the bra〈V | into 〈V ′|. Just asα andα∗, |V 〉 and〈V | are related but distinct objects, so are
Ω andΩ†. The relation betweenΩ andΩ†, called theadjoint of Ω or “omega dagger”, is
best seen in a basis:

(Ω†)ij = 〈i|Ω†|j〉 = 〈Ωi|j〉
= 〈j|Ωi〉∗ = 〈j|Ω|i〉∗

so

Ω†
ij = Ω∗

ji.

That means that the matrix representingΩ† is the transpose conjugate of the matrix rep-
resentingΩ.

112

A.5.3 Hermitian, Anti-Hermitian and Unitary Operators

We now turn our attention to certain special classes of operators that will play a major
role in quantum mechanics.

Definition A.5.1 (Hermitian) An operatorΩ is Hermitian ifΩ† = Ω.

Definition A.5.2 (Anti-Hermitian) An operatorΩ is anti-Hermitian ifΩ† = −Ω.

The adjoint is to an operator what the complex conjugate is tonumbers. Hermitian and
anti-Hermitian operators are like pure real and pure imaginary numbers.

Definition A.5.3 (Unitary) An operatorU is unitary if

UU † = I.

The equation above tells us thatU andU † are inverses of each other. Consequently,

U †U = I.

Theorem A.5.1 Unitary operators preserve the inner product between the vectors they
act.

A.5.4 The Eigenvalue Problem

Consider some linear operatorΩ acting on an arbitrarynonzeroket |V 〉:

Ω|V 〉 = |V ′〉.

Unless the operator happens to be a trivial one, such as the identity or its multiple, the
vector will suffer a nontrivial change, i.e,|V ′〉 will not be simply related to|V 〉. Each
operator, however, has certain kets of its own, called itseigenkets, on which its action is
simply that of rescaling:

Ω|V 〉 = ω|V 〉.
In this case we say that|V 〉 is aneigenketof Ω with eigenvalueω. Given an operatorΩ
we can systematically determine all its eigenvalues and eigenvectors.

For instance, consider the trivial case whereΩ = I. Since

I|V 〉 = |V 〉

for all |V 〉, we conclude that

1. the only eigenvalue ofI is 1;

2. all vectors are its eigenvectors with this eigenvalue.

The solution of theeigenvalue problemis given by the following calculation. The
equation

det(Ω− ωI) = 0

which is the condition for nonzero eigenvectors, will determine the eigenvaluesω.
The eigenvalues, which are the roots of the polynomial above, are basis independent.

And because everyn-order polynomial hasn roots, not necessarily distinct and not nec-
essarily real, every operator inVn hasn eigenvalues. Once the eigenvalues are know, the
eigenvectors may be found, at least for Hermitian and Unitary operators.

113

Theorem A.5.2 The eigenvalues of a Hermitian operator are real.

Theorem A.5.3 To every Hermitian operatorΩ, there exists (at least) a basis consisting
of its orthonormal eigenvectors. It is diagonal in this eigenbasis and has its eigenvalues
as its diagonal entries.

114

APPENDIX B A HASKELL PRIMER

We use Haskell as a precise mathematical (and executable) notation.
It is useful to think of a Haskell type as representing a mathematical set. Haskell

includes several built-in types that we use: the typeBoolean whose only two elements are
False andTrue; the typeComplex Double whose elements are complex numbers written
a :+ b where botha andb are elements of the typeDouble which approximates the real
numbers. Given two typesa and b, the type(a, b) is the type of ordered pairs whose
elements are of the respective types; the typea → b is the type of functions mapping
elements ofa to elements ofb; and the type[a] is the type of sequences (lists) whose
elements are of typea. For convenience, we often use the keywordtype to introduce a
new type abbreviation. For example:

type PA = C Double

introduces the new typePA as an abbreviation of the more verboseComplex Double.
A family of types that supports related operations can be grouped in a Haskellclass.
Individual types can then be made aninstance of the class, and arbitrary code can require
that a certain type be a member of a given class.

The syntax of Haskell expressions is usually self-explanatory except perhaps for the
following points. A function can be written in at least two ways. Both the following
definitions define a function which squares its argument:

sq n = n ∗ n

sq ′ = λn → n ∗ n

A function f can be applied to every element of a list usingmap or usinglist comprehen-
sions. If xs is the list[1, 2, 3, 4], then both the following:

map sq xs

[sq x | x ← xs]
evaluate to[1, 4, 9, 16].

Usually, a functionf is applied to an argumenta, by writing f a. If the function
expects two arguments, it can either be applied to both at once f (a, b) or one at a time
f a b depending on its type. When convenient the function symbol can be placed between
the arguments using back quotesa ‘f ‘ b.

115

APPENDIX C PROOFS

C.1 Proof of Proposition 6.3.1

Proof.

• First arrow equation:arr id ≫ f = f .

arr id ≫ f = fun2lin (λ(a1, a2)→ (id a1, id a2)) ‘o‘ f (by arr and ≫)
= fun2lin id ‘o‘ f (by simp.)
= return ‘o‘ f (by fun2lin)
= λa → return a >>= f (by ‘o‘)
= λa → f a (by m.law 1.)
= f

• Second arrow equation:f ≫ arr id = f .

f ≫ arr id = f ‘o‘ fun2lin (λ(b1, b2)→ (id b1, id b2)) (by arr and ≫)
= f ‘o‘ fun2lin id (by simp.)
= f ‘o‘ return (by fun2lin)
= λa → f a >>= return (by o)
= λa → f a (by m.law 2.)
= f

• Third arrow equation:(f ≫ g) ≫ h = f ≫ (g ≫ h).

(f ≫ g) ≫ h = (f ‘o‘ g) ‘o‘ h (by ≫)
= λb → (λa.f a >>= g) b >>= h (by o)
= λb → (f b >>= g) >>= h (by β)

f ≫ (g ≫ h) = f ‘o‘ (g ‘o‘ h) (by>>=)
= λa → f a >>= (λb → g b >>= h) (by o)
= λa → (f a >>= g) >>= h (by m.law 3.)

• Fourth arrow equation:arr (g .f) = arr f ≫ arr g .

arr (g .f) = fun2lin (λ(b1, b2)→ ((g .f) b1, (g .f) b2)) (by arr)
= return.(λ(b1, b2)→ ((g .f) b1, (g .f) b2)) (by fun2lin)
= λ(b1, b2)→ return ((g .f) b1, (g .f) b2) (simp.)

arr f ≫ arr g = fun2lin (λ(b1, b2)→ (f b1, f b2)) ‘o‘
fun2lin (λ(b1, b2)→ (g b1, g b2))

− (by >>= and arr)

116

= return.(λ(b1, b2)→ (f b1, f b2)) ‘o‘
return.(λ(b1, b2)→ (g b1, g b2))

− (by fun2lin)
= λ(b1, b2)→ return (f b1, f b2) >>=

λ(b1, b2)→ return (g b1, g b2))
− (by o)
= λ(b1, b2)→ (λ(b1, b2)→ return (g b1, g b2)) (f b1, f b2)
− (by m.law 1.)
= λ(b1, b2)→ return ((g .f) b1, (g .f) b2)
− (by β)

• Fifth arrow equation:first (arr f) = arr (f × id).

first (arr f) = first (fun2lin (λ(b1, b2)→ (f b1, f b2)))
− (by arr)
= first (return.(λ(b1, b2)→ (f b1, f b2)))
− (by fun2lin)
= first (λ(b1, b2)→ return (f b1, f b2))
− (by simp.)
= λ((b1, d1), (b2, d2))→ λ((x , y), (w , z))→

return (f b1, f b2) (x ,w) ∗ return (d1, d2) (y , z)
− (by first)
= λ((b1, d1), (b2, d2))→ λ((x , y), (w , z))→

if ((f b1, f b2), (d1, d2)) ≡ ((x ,w), (y , z))
then 1 else 0

− (by return)

arr (f × id) = fun2lin (λ((b1, d1), (b2, d2))→ ((f b1, d1), (f b2, d2)))
− (by arr)
= return.(λ((b1, d1), (b2, d2))→ ((f b1, d1), (f b2, d2)))
− (by fun2lin)
= λ((b1, d1), (b2, d2))→ return ((f b1, d1), (f b2, d2))
− (by return)
= λ((b1, d1), (b2, d2))→ λ((x , y), (w , z))→

if ((f b1, d1), (f b2, d2)) ≡ ((x , y), (w , z))
then 1 else 0

− (by return)

• Sixth arrow equation:first (f ≫ g) = first f ≫ first g . In the following proofs
assume:ad1 ((b1, d1), (b2, d2)) = (b1, b2) andad2 ((b1, d1), (b2, d2)) = (d1, d2).

first (f ‘o‘ g) = first (λa.f a >>= g)
− (by o)
= λb → λ((x , y), (w , z)).(f (ad1 b) >>= g) (x ,w) ∗

return (ad2 b) (y , z)
− (by first)
= λb → λ((x , y), (w , z))→ (λc → sum [(f (ad1 b)) a ∗

g a c | a ← basis])(x ,w) ∗ return (ad2 b) (y , z)
− (by>>=)
= λb → λ((x , y), (w , z))→ sum [(f (ad1 b)) a ∗

117

g a (x ,w) | a ← basis] ∗ return (ad2 b) (y , z)
− (by β)

first f ‘o‘ first g = λa → first f a >>= λb → first g b

− (by‘o‘)
= λa → λ((x , y), (w , z))→ f (ad1 a) (x ,w) ∗

return (ad2 a) (y , z) >>= λb → λ((x , y), (w , z))→
g (ad1 b) (x ,w) ∗ return (ad2 b) (y , z)

− (by first)
= λa → λ((x , y), (w , z))→ sum [f (ad1 a) (m, o) ∗

return (ad2 a) (n, p) ∗ (λ((x , y), (w , z))→
g (m, o) (x ,w) ∗ return (n, p) (y , z)) ((x , y), (w , z)) |
((m, n), (o, p))← basis]

− (by>>=)
= λa → λ((x , y), (w , z))→ sum [f (ad1 a) (m, o) ∗

return (ad2 a) (n, p) ∗ g (m, o) (x ,w) ∗
return (n, p) (y , z) | ((m, n), (o, p))← basis]

= λa → λ((x , y), (w , z))→ sum [f (ad1 a) a1 ∗
g a1 (x ,w) ∗ return (ad2 a) a2 ∗
return a2 (y , z) | a1 ← basis , a2 ← basis]

− (by simp.)
= λa → λ((x , y), (w , z))→ sum [f (ad1 a) a1 ∗

g a1 (x ,w) | a1 ← basis] ∗ return (ad2 a) (y , z)
− (by simp.)

• Seventh arrow equation:first f ≫ arr (id × g) = arr (idλ× g) ≫ first f .

lhs = first f ‘o‘ arr (id × g)

lhs = λ((a1, b1), (a2, b2))→ first f ((a1, b1), (a2, b2)) >>=
fun2lin (λ((a, b), (c, d))→ ((a, g b), (c, g d)))

− (by ‘o‘ and arr)
= λ((a1, b1), (a2, b2))→ first f ((a1, b1), (a2, b2)) >>=

λ((a, b), (c, d))→ return ((a, g b), (c, g d))
− (by fun2lin)
= λ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→ f (a1, a2) (x ,w) ∗

return (b1, b2) (y , z) >>= λ((a, b), (c, d))→
return ((a, g b), (c, g d))

− (by first)
= λ((a1, b1), (a2, b2))→ λc → sum [f (a1, a2) (m, o) ∗

return (b1, b2) (n, p) ∗ return ((m, g n), (o, g p)) c |
((m, n), (o, p))← basis]

− (by>>=)
= λ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→ sum [

f (a1, a2) (m, o) ∗ return (b1, b2) (n, p) ∗
return ((m, g n), (o, g p)) ((x , y), (w , z)) |
((m, n), (o, p))← basis]

− (by simp.)
= λ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→

sum [f (a1, a2) (m, o) ∗ [if (b1, b2) ≡ (n, p) then 1 else 0] ∗

118

[if ((m, g n), (o, g p)) ≡ ((x , y), (w , z))
then 1 else 0] | ((m, n), (o, p))← basis]

− (by return)
= λ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→

if (g b1, g b2) ≡ (y , z) then f (a1, a2) (x ,w)
else 0

rhs = arr (id × g) ‘o‘ first f

rhs = λ((a1, b1), (a2, b2))→ fun2lin (λ((a, b), (c, d))→
((a, g b), (c, g d)))((a1, b1), (a2, b2)) >>= first f

− (by ‘o‘ and arr)
= λ((a1, b1), (a2, b2))→ return ((a1, g b1), (a2, g b2))

>>= first f

− (by fun2lin)
= λ((a1, b1), (a2, b2))→ first f ((a1, g b1), (a2, g b2))
− (by monad law 1.)
= λl ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→

f (a1, a2) (x ,w) ∗ return (g b1, g b2) (y , z)
− (by first)
= λ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→

f (a1, a2) (x ,w) ∗ [if (g b1, g b2) ≡ (y , z)
then 1 else 0]

− (by return)

• Eighth arrow equation:first f ≫ arr fst = arr fst ≫ f .

lhs = first f ‘o‘ arr (λ(a, b)→ a)

lhs = λ((a1, b1), (a2, b2))→ first f ((a1, b1), (a2, b2)) >>=
arrλ(a, b)→ a

− (by o)
= λ((a1, b1), (a2, b2))→ first f ((a1, b1), (a2, b2)) >>=

λ((a, b), (c, d))→ return (a, c)
− (by arr)
= λ((a1, b1), (a2, b2))→ λ((x , y), (w , z))→ f (a1, a2) (x ,w) ∗

return (b1, b2) (y , z) >>= λ((a, b), (c, d))→ return (a, c)
− (by first)
= λ((a1, b1), (a2, b2))→ λ(c1, c2)→ sum [f (a1, a2) (m, o) ∗

return (b1, b2) (n, p) ∗ return (m, o) (c1, c2) |
((m, n), (o, p))← basis]

− (by>>=)
= λ((a1, b1), (a2, b2))→ λ(c1, c2)→ sum [f (a1, a2) (m, o) ∗

[if (b1, b2) ≡ (n, p) then 1 else 0] ∗
[if (m, o) ≡ (c1, c2) then 1 else 0] |
((m, n), (o, p))← basis]

− (by return)
= λ((a1, b1), (a2, b2))→ λ(c1, c2)→ f (a1, a2) (c1, c2)
− (by simp.)

rhs = arr fst ‘o‘ f

119

rhs = λ((a, b), (c, d))→ return (a, c) ‘o‘ f
− (by arr)
= λ((a1, b1), (a2, b2))→ (λλ ((a, b), (c, d))→

return (a, c))((a1, b1), (a2, b2)) >>= f

− (by o)
= λ((a1, b1), (a2, b2))→ f (a1, a2)
− (by monad law 1.)
= λ((a1, b1), (a2, b2))→ λ(c1, c2)→ f (a1, a2) (c1, c2)

• Ninth arrow equation:first (first f) ≫ arr assoc = arr assoc ≫ first f

lhs = λ(((a1, b1), c1), ((a2, b2), c2))→ first (first f)
(((a1, b1), c1), ((a2, b2), c2)) >>= arr (λ((a, b), c)→ (a, (b, c)))

lhs = λ(((a1, b1), c1), ((a2, b2), c2))→ first (λb →
λ((x , y), (w , z))→ f (ad1 b) (x ,w) ∗ return (ad2 b) (y , z))
(((a1, b1), c1), ((a2, b2), c2)) >>= λ(((a1, b1), c1), ((a2, b2), c2))→
return ((a1, (b1, c1)), (a2, (b2, c2)))

− (by first)
= λ(((a1, b1), c1), ((a2, b2), c2))→

λ((m1, n1), p1) ((m2, n2), p2)→ (λb → λ((x , y), (w , z))→
f (ad1 b) (x ,w) ∗ return (ad2 b) (y , z)) ((a1, b1), (a2, b2))
((m1, n1), (m2, n2)) ∗ return (c1, c2) (p1, p2) >>=
λ(((a1, b1), c1), ((a2, b2), c2))→
return ((a1, (b1, c1)), (a2, (b2, c2)))

− (by first)
= λ(((a1, b1), c1), ((a2, b2), c2))→ λ((m1, n1), p1) ((m2, n2), p2)→

f (a1, a2) (m1, m2) ∗ return (b1, b2) (n1, n2) ∗
return (c1, c2) (p1, p2) >>=
λ(((a1, b1), c1), ((a2, b2), c2))→ return ((a1, (b1, c1)), (a2, (b2, c2)))

− (by β)
= λ(((a1, b1), c1), ((a2, b2), c2))→

λ((x1, (y1, z1)), (x2, (y2, z2)))→
sum [f (a1, a2) (m1, m2) ∗ return (b1, b2) (n1, n2) ∗
return (c1, c2) (p1, p2) ∗ return ((m1, n1), p1) ((m2, n2), p2)
((x1, (y1, z1)), (x2, (y2, z2))) |
((m1, n1), p1) ((m2, n2), p2)← basis]

− (by>>=)
= λ(((a1, b1), c1), ((a2, b2), c2))→

λ((x1, (y1, z1)), (x2, (y2, z2)))→ sum [f (a1, a2) (m1, m2) ∗
if (b1, b2) ≡ (n1, n2) then 1 else 0] ∗
[if (c1, c2) ≡ (p1, p2) then 1 else 0] ∗
[if ((m1, n1), p1) ((m2, n2), p2) ≡ ((x1, (y1, z1)), (x2, (y2, z2)))
then 1 else 0] | ((m1, n1), p1) ((m2, n2), p2)← basis]

− (by return)
= λ(((a1, b1), c1), ((a2, b2), c2))→

λ((x1, (y1, z1)), (x2, (y2, z2)))→ f (a1, a2) (x1, x2) ∗
return ((b1, c1), (b2, c2)) ((y1, z1), (y2, z2))

rhs = λ(((a1, b1), c1), ((a2, b2), c2))→

120

return ((a1, (b1, c1)), (a2, (b2, c2))) ‘o‘ first f

rhs = λ(((a1, b1), c1), ((a2, b2), c2))→
return ((a1, (b1, c1)), (a2, (b2, c2))) >>= first f

− (by o)
= λ(((a1, b1), c1), ((a2, b2), c2))→ first f ((a1, (b1, c1)), (a2, (b2, c2)))
− (by monad law 1.)
= λ(((a1, b1), c1), ((a2, b2), c2))→ λ((x1, (y1, z1)), (x2, (y2, z2)))→

f (a1, a2) (x1, x2) ∗ return ((b1, c1), (b2, c2)) ((y1, z1), (y2, z2))
− (by first)

2

121

APPENDIX D ESTRUTURANDO COMPUTAÇ ÕES QUÂN-
TICAS VIA SETAS

Nesta tese, discutimos que um modelo realı́stico para computações quânticas deve ser
geral e completo, considerando medidas e a comunicação entre o mundo quântico e o
mundo clássico, respectivamente. Assim sendo, explicamos e estruturamos computações
quânticas gerais e completas em Haskell utilizando construções conhecidas da área de
semântica e linguagens de programação clássicas, comomônadasesetas.

Nessa seção apresentamos brevemente os três principaiscapı́tulos da tese mostrando
o desenvolvimento incremental que levou as principais contribuições e conclusões finais.

D.1 Introdução

A computaç̃ao qûantica(NIELSEN; CHUANG, 2000) pode ser entendida comopro-
cessamentoda informação codificada fisicamente através de um sistema fı́sico qûantico.
A idéia básica é codificar dados binários usando bits quˆanticos (qubits). Diferentemente
do bit clássico, o bit quântico pode estar em umasuperposiç̃ao de estados básicos, tor-
nando possı́vel o “paralelismo quântico”. O paralelismo quântico é uma caracterı́stica
importante da computação quântica, pois é um dos pontosresponsáveis pelo possı́vel
aumento da eficiência informação codificada fisicamente através de um sistemafı́sico
quântico. A idéia básica é codificar dados binários usando bits quânticos (qubits). Difer-
entemente do bit clássico, o bit quântico pode estar em umasuperposiç̃ao de estados
básicos, tornando possı́vel o “paralelismo quântico”. Oparalelismo quântico é uma car-
acterı́stica importante da computação quântica, pois ´e um dos pontos responsáveis pelo
possı́vel aumento da eficiência em relação ao tempo de processamento dos algoritmos
quânticos. Entretanto, dados quânticos são computacionalmente interessantes não so-
mente pela superposição de estados. Existem outras caracterı́sticas ı́mpares como ame-
didae oemaranhamento.

Nesta tese, discutimos que um modelo realı́stico para computações quânticas deve ser
geral e completo, considerando medidas e a comunicação entre o mundo quântico e o
mundo clássico, respectivamente. Assim sendo, explicamos e estruturamos computações
quânticas gerais e completas em Haskell utilizando construções conhecidas da área de
semântica e linguagens de programação clássicas, comomônadas(MOGGI, 1989) ese-
tas(HUGHES, 2000).

Em mais detalhes, este trabalho tem como foco as seguintes contribuições: i)en-
tendimento de efeitos quânticos utilizando construções conhecidas náarea de sem̂antica
de linguagens de programação clássicas. O paralelismo quântico, o emaranhamento
e a medida são noções que certamente vão além dos conceitos conhecidos em lingua-

122

gens funcionais “puras”. Com este intuito, mostramos que o paralelismo quântico pode
ser modelado utilizando uma generalização de mônadas chamadamônadas indexadas,
ou Estruturas Kleisli. Além disso, mostramos que a medida quântica pode ser expli-
cada através de uma generalização mais radical de mônadas chamadassetas, mais es-
pecificamentesetas indexadas, conceito este definido nesta tese. Este resultado conecta
efeitos quânticos, como a superposição e a medida, à construções semânticas de lingua-
gens de programação clássicas. ii)Uma interpretaç̃ao computacional para a mecânica
quântica. Einsten, Podolsky, e Rosen demonstraram em (BELL, 1987) algumas pro-
priedades não-intuitivas da mecânica quântica. A idéia básica discutida pelos autores é
que duas partı́culas emaranhadas parecem sempre comunicaralguma informação mesmo
quando elas estão separadas por uma distância arbitrária. Atualmente ainda existem sérios
debates na comunidade fı́sica sobre esse tópico, mas é interessante notar que, como pro-
posto por Amr Sabry (SABRY, 2003), o emaranhamento pode essencialmente ser mode-
lado através de atribuições à variáveis globais. Nesta tese, discutimos sobre esse assunto
e modelamos o emaranhamento usando noções gerais de efeitos computacionais expres-
sados em mônadas e setas.

D.2 Modelando Efeitos Qûanticos I: Vetores de Estado como M̂onadas
Indexadas

O modelo tradicional de computação quântica é baseado em espaços vetoriais, com
vetores normalizadospara modelar estados computacionais etransformaç̃oes unit́arias
para modelar computações quânticas fisicamente realiz´aveis. A idéia é que o processa-
mento da informação é fisicamente realizado viasistemas qûanticos fechados.

Em um sistema quântico fechado, a evolução éreverśıvel (também chamadaestritaou
pura), isto é, ela somente acontece por meio de portas unitárias; a medida, a qual é uma
operação que modela ainteraç̃ao do sistema com omundo, não é considerada. Portanto,
nesse contexto, o processo computacional quântico é considerado como uma caixa preta,
que lê informação de entrada e ao final do processo a saı́daé retornada.

Devido a natureza dos estados quânticos e operações agindo em tais estados, exis-
tem algumas diferenças intrı́nsecas entre programaçãoclássica e programação quântica.
Podemos enfatizar duas caracterı́sticas principais na programação quântica: i) paralelismo
quântico, o qual é caracterizado pelo fenômeno da superposição de estados quânticos e
expressado pelovetorde estado; ii) estado quânticoglobal (possivelmente emaranhado),
o qual é caracterizado pelo fato de que nem todos os vetores compostos, que modelam o
estado quântico, podem ser decompostos em suas subpartes.Cada operação quântica é
sempre global. Em termos abstratos isto pode ser explicado pelo fato de que a aplicação
de uma operação em umsubespaçoespecı́fico do espaço vetorial em questão é realizada
através da aplicação de uma operação em todo o espaço de estados. A operação identi-
dade é aplicada nos subespaços não atingidos pela transformação. Portanto, a semântica
de linguagens de programação quântica precisa necessariamente considerar este fato.

Nesta seção, apresentamos uma abordagem baseada em mônadas para programação
quântica em Haskell. Para tanto, mostramos como estruturar vetores de estado quântico
usando mônadas. A idéia é que a aplicação de transformações unitárias a vetores de estado
é modelada pela operação monádicabind.

123

D.2.1 Mônadas Indexadas

Mônadas são utilizadas para formular definições e estruturarnoç̃oes de computações
(possivelmente não-funcionais) em linguagens de programação. Neste contexto, umpro-
grama, o qual apresenta noções de computações (como efeitos colaterais por exemplo),
pode ser visto como umafunç̃ao de valores para computações. Por exemplo, um pro-
grama com exceções pode ser visto como uma função que recebe um valor e retorna uma
computaç̃ao que pode suceder ou falhar.

Em Haskell, uma mônada é representada utilizando-se um tipo construtor para computações
m e duas funções:

return ∈ forall a.a → m a

>>= ∈ forall a b.m a → (a → m b)→ m b

A operação>>= (pronunciada “bind”) especifica como sequencializar computações ereturn
especifica comoelevarvalores em computações. Os requerimentosforall nas definições
representam que o construtor é induzido por umendofuntorT em alguma categoria de
valoresC. Então,m é um tipo construtor agindo emtodos os objetosda categoria de
valores.

Entretanto, algumas vezes precisamosselecionaralguns objetos (conjuntos) da cat-
egoriaC para aplicar o construtorT . Esta noção é um pouco mais geral que mônadas
e é capturada pela definição deestrutura Kleisli(?). Basicamente, paramônadas index-
adas(ou estrutura Kleisli), a funçãoT não precisa ser necessariamente um endofunctor
na categoriaC. Em contraste, podemos selecionar alguns objetos deC para aplicar o con-
strutor. Esta idéia representa exatamente a noção que precisamos para modelar vetores de
estado quântico (função que associa cada estado básicocom uma determinada amplitude
de probabilidade). O construtor para um vetor quântico agesomente sobre os tipos que
podem constituir um conjunto de bases para o espaço vetorial.

Para mônadas indexadas, as definições dereturn e >>= em Haskell podem ser ree-
scritas como:

return ∈ forall a.F a ⇒ a → m a

>>= ∈ forall a b.F a,F b ⇒ m a → (a → m b)→ m b

isto é, para todoa o qualF a vale podemos aplicar o construtorm, e para todoa eb para
os quaisF a e F b valem, podemos aplicar>>=. Além disso, para formar uma mônada
indexada, as funçõesreturn e≫= devem safisfazer as leis monádicas (MOGGI, 1989):

m≫= return = m
(return x)≫= f = fx
(m≫= f)≫= g = m≫= (λx→ fx≫= g)

D.2.2 Vetores

Dado um conjuntoa representando valores clássicos de observáveis, i.e. umconjunto
de bases, um estado quântico puro é um vetora → C, que associa cado elemento do
conjunto de bases com uma amplitude de probabilidade complexa. Em Haskell, um con-
junto finitoa pode ser representado como uma instância da classeBasis, como mostrado
abaixo. Essa classe tem um construtorbasis ∈ [a], o qual lista explicitamente os elemen-
tos do conjunto. Os elementos da base devem ser diferenciáveis uns dos outros, por isso
temos a restriçãoEq a sobre o tipo de elementos:

class Eq a ⇒ Basis a where basis ∈ [a]
type K = C Double

type Vec a = a → K

124

O tipoK (aqui utilizamos a notação de campo básico) é o tipo de possı́veis amplitudes de
probabilidade.

As funções monádicas para vetores são definidas como:
return ∈ Basis a ⇒ a → Vec a

return a b = if a ≡ b then 1.0 else 0.0

(>>=) ∈ (Basis a,Basis b)⇒ Vec a → (a → Vec b)→ Vec b

va >>= f = λb → sum [(va a) ∗ (f a b) | a ← basis]

return é o construtor de vetores básicos, ebind , dada umaoperaç̃ao unit́aria (matriz)
representada como uma funçãoa → Vec b, e dado um vetorVec a, retornaVec b (i.e.,
ela specifica como umVec a pode ser transformado em umVec b).

Proposition D.2.1 A mônada indexadaVec satisfaz as equações mońadicas.

Exemplos de vetores sobre o conjunto dos booleanos podem serdefinidos como segue:
instance Basis Bool where

basis = [False,True]

qFalse, qTrue, qFT , qFmT ∈ Vec Bool

qFalse = return False

qTrue = return True

qFT = (1 /
√

2) $∗ (qFalse ‘mplus‘ qTrue)

Os primeiros dois são vetores unitarios básicos; e os doisúltimos representam estados em
superposição coerente deFalse e True. Na notação de Dirac, esses vetores podem ser
escritos, respectivamente, como|False〉, |True〉, 1√

2
(|False〉+ |True〉), e 1√

2
(|False〉− |

True〉). As operações$∗ e ‘mplus ′ são definidas como produto escalar e soma de vetores,
respectivamente.

Operações unitárias também podem ser definidas diretamente, por exemplo:
type Uni a b = a → Vec b

hadamard ∈ Uni Bool Bool

hadamard False = qFT

hadamard True = qFmT

D.3 Modelando Efeitos Qûanticos II: Superoperadores como Setas
Indexadas

Enquanto o modelo de computação quântica baseado em vetores de estado é ainda bas-
tante considerado como um formalismo conveniente para descrever algoritmos quânticos,
a utilização da medida para modelar ruı́do ou decoerência, e tratar computação quântica
como um processointerativo, tem sido uma alternativa bastante interessante (AHARONOV;
KITAEV; NISAN, 1998; RAUSSENDORF; BROWNE; BRIEGEL, 2003; DANOS et al.,
2005).

Nesta seção, revisamos o modelo para computações quânticas gerais, incluindo a
operação de medida, baseado em matrizes de densidade e superoperadores. Depois de
expressar tal modelo em Haskell, mostramos que os superoperadores, utilizados para ex-
pressar todas as computações e medidas, são uma instância do conceito desetas index-
adas, uma generalização de mônadas. O material apresentado nessa seção foi publicado
em (VIZZOTTO; ALTENKIRCH; SABRY, 2006).

125

D.3.1 Setas Indexadas

Para tratar situações onde as mônadas são inaplicáveis, Hughes (HUGHES, 2000)
introduziu uma nova abstração generalizando mônadas, chamadasetas. Realmente, em
adição a definição da noção de procedimento que pode realizar efeitos computacionais,
setas podem ter um componente estático, ou aceitar mais queuma entrada.

Da mesma maneira como definimos um tipo monádicom a representando umacomputaç̃ao
retornando um valora, podemos pensar em uma seta do tipoa b c representando uma
computação com entrada do tipob retornando umc. Setas tornam a dependência na
entrada explı́cita:

arr ∈ forall b c.(b → c)→ a b c

(≫) ∈ forall b c d .a b c → a c d → a b d

first ∈ forall b c d .a b c → a (b, d) (c, d)

Em outras palavras, para ser uma seta, um tipoa deve suportar as três operaçõesarr, ≫, e
firstdos tipos como declarados acima. A funçãoarr possibilitaelevarmosfunções “puras”
em computações. A função≫ compõe duas computações. A funçãofirst possibilita a
aplicação de uma seta no contexto de outros dados.

Observe os requerimentos deforall nas definições. Eles significam que podemos con-
struir computações sobretodasas funções agindo sobre valores. Entretanto, como no
caso das mônadas, precisamos selecionar alguns funçõespuras especı́ficas. Este é ex-
atamente o caso para computações quânticas: precisamoselevar funções simples agindo
sobre conjunto de bases em funções agindo em vetores sobreessas bases. Consequente-
mente, definimossetas indexadas:

arr ∈ (I b, I c)⇒ (b → c)→ a b c

(≫) ∈ (I b, I c, I d)⇒ a b c → a c d → a b d

first ∈ (I b, I c, I d)⇒ a b c → a (b, d) (c, d)

As operações para setas ousetas indexadasdevem satisfazer as leis das setas (HUGHES,
2000), tal que essas operações são bem definidas sobre permutações arbitrárias e trocas
associativas.

D.3.2 Superoperadores como Setas Indexadas

Intuitivamente, matrizes de densidade podem ser entendidas como uma perspectiva es-
tatı́stica do vetor de estado. No formalismo de matrizes de densidade, um estado quântico
que era modelado como um vetorv é transformado em uma matriz de tal forma que as am-
plitudes do vetor de estado se transformam em um tipo de distribuição de probabilidade
sobre vetores de estado.

type Dens b = Vec (b, b)

Mapeamentos entre matrizes de densidade são chamados desuperoperadores:
type Super b c = (b, b)→ Dens c

A idéia é representar superoperadores como umamatriz grande, mapeando valores à ma-
trizes de densidade (i.e.,Super b c ≡ (b, b)→ (c, c)→ K).

Da mesma forma como o efeito da amplitude de probabilidade associado com vetores
é modelados por umamônada indexadasdevido á restrição doBasis, o tipo Super é
modelado por umaseta indexada. As definições dearr , ≫, efirst paraSuper seguem
abaixo:

arr ∈ (Basis b,Basis c)⇒ (b → c)→ Super b c

arr f = fup (λ(b1, b2)→ return (f b1, f b2))

(≫) ∈ (Basis b,Basis c,Basis d)⇒ Super b c → Super c d → Super b d

126

(f ≫ g) (b1, b2) = (f (b1, b2) >>= g)

first ∈ (Basis b,Basis c,Basis d)⇒ Super b c → Super (b, d) (c, d)
first f ((b1, d1), (b2, d2)) = permute ((f (b1, b2))〈∗〉(return (d1, d2)))

where permute v ((b1, b2), (d1, d2)) = v ((b1, d1), (b2, d2))

A funçãoarr constrói um superoperados dada uma função pura, aplicando a função à
ambos vetor e seu dual. A composição de setas simplesmenteaplica dois superoperadores
em sequência. A funçãofirst aplica o superoperadorf ao primeiro componente e deixa o
segundo componente como estava. A definição calcula cada parte separadamente e então
permuta os resultados para formar o tipo requerido.

Proposition D.3.1 A seta indexadaSuper satisfaz as equações requeridas para setas.

Usando este modelogeralpara computações quânticas estruturado como setas, pode-
mos expressar de maneira elegante computações quânticas envolvendo medidas. Entre-
tanto, este trabalho é somente baseado em dados quânticos. Ainda não conseguimos ex-
pressar algoritmos com interações combinadas de operações quânticas e clássicas. Como
já notado por (GAY; NAGARAJAN, 2005; UNRUH, 2005) um modelocompletopara
expressar algoritmos quânticos deve acomodar ambos a medidas e interações combinadas
de dados clássicos e quânticos.

D.4 Modelando Efeitos Qûanticos III: Programas Mistos como Setas
Indexadas

O modelo apresentado na seção acima é puramente quântico. Entretanto, diversos al-
goritmos quânticos são explicados em termos da suainteraç̃aoentre informação clássica e
quântica (por exemplo, uma medida no meio da computação). Um exemplo de algoritmo
que apresenta tal interação é a teleportação quântica. Esse algoritmo apresenta dois pro-
cessos quânticos se comunicando viadado cĺassico. Existe interesse na consideração de
um modelomistopara computações quânticas envolvebdomedidase ofluxo de informaç̃ao
entre o processos clássicos e quânticos (veja (RAUSSENDORF; BROWNE; BRIEGEL,
2003; GAY; NAGARAJAN, 2005; UNRUH, 2005)).

Portanto, gostarı́amos de umframeworkcapaz de representar ambos: (1)oestado
quântico resultante de uma operação unitária aplicada em um dadosestado quântico, e
(2) o par de informação retornado por uma medida, isto é: (2a) correspondendo aovalor
de medidaproduzido pela operação de medida (um auto-valor do observável), e (2b) o
estado qûanticoque resulta da projeção imposta no estado quântico original pela medida.

O principal obstáculo introduzido pela necessidade destauniformidade é que os resul-
tados da medida (ambos valor e estado) são do tipo probabil´ıstico, necessitandoconjuntos
de posśıveis resultadospara sua representação. A alternativa usual é o formalismo de ma-
trizes de densidade.

Consequentemente, nesta seção apresentamos um modelo para computaçãomistas
ou combinadasbaseado em uma abordagem de medida sobre matrizes de densidade.
Chamamos de computações mistas ou combinadas qualquer computação transformando
um estado combinado, com dados clássicos e quânticos. Essencialmente, a idéia é ter uma
matriz de densidade representando a parte do estado quântico (global) e uma distribuição
de probabilidade de valores clássicos representando a parte clássica do estado. Um pro-
grama quântico agindo neste estado combinado é interpretado por umsuperoperador de
traço, o qual projeto parte do estado quântico, retornando uma saı́da clássica, e deixando

127

o sistema em um novo estado (possivelmente em um espaço com dimensões reduzidas).
O material apresentado nesta seção foi publicado em (VIZZOTTO; COSTA; SABRY,
2006).

D.4.1 Programas com Matrizes de Densidade

Pelo motivo que o superoperador de traço em geralesqueceparte do estado, definimos
uma relação entre as bases a qual chamamos deDec (dedecomposiç̃ao):

class (Basis a,Basis b,Basis o)⇒ Dec a b o where

dec ∈ [a]→ [(b, o)]

especificando que um conjunto básicoa escrito pode ser escrito como(b, o). Então, um
programa quântico dea parab,parametrizado pori , o tipo da distribuição de probabil-
idade clássica no sistema antes da operação, eo, a parte a ser medida, é representado
por um superoperador dea parab, retornando uma distribuição de probabilidade clássica
sobreo.

type DProb c = [(c,Prob)]
type QProgram i o a b = (DProb i , (a, a))→ (DProb o,Dens b)

Note que os programs devem satisfazer a restriçãoDec a b o, e queDProb i é utilizado
na operação clássica ou operações quânticas controladas por dados clássicos.

Qualquer operador unitário pode agora se definido como um programa agindo no
estado misto queesquece().

uni2qprog ∈ (Basis a,Basis b,Basis i ,Dec a b ())⇒
Lin a b → QProgram i () a b

A idéia é aplicar o método padrão para construir um superoperador a partir de uma
operação unitária. Note que a entrada clássica é ignorada e a saı́da clássica é vazia: não
existe interação com dados clássicos quando consideramos transformações unitárias. Por
exemplo:

hadamardP ∈ QProgram i () Bool Bool

hadamardP = uni2qprog hadamard

constrói um programa agindo no estado combinado a partir datransformação dehadamard .
Dado um estado quântico sobre o conjunto de bases(a, b), o programa quânticotrR

esquece o componente da direita, retornando um novo estado sobreb. O subespaço é
medido antes antes de ser descartado retornando um distribuição de probabilidade so-
bre o conjunto básico que forma o subespaço. Neste caso, o dado de entrada clássico é
ignorando.

trR ∈ (Basis a,Basis b,Dec (a, b) a b)⇒ QProgram i b (a, b) a

trA ∈ (Basis a,Basis i ,Dec a () a)⇒ QProgram i a a ()

Similarmente, o programatrA esquece (mede) todo o estado quântico, retornando uma
distribuição de probabilidade clássica como resultado.

Assim podemos definir as três funçõesarr , ≫, efirst :
arr ∈ (Basis b,Basis c, Sub b ())⇒ (b → c)→ QProgram i () b c

arr = uni2qprog.fun2lin

(≫) ∈ (Basis a,Basis b,Basis c,Basis i ,Basis o,
Basis o2, Sub a o, Sub b o2)⇒

QProgram i o a b → QProgram o o2 b c → QProgram i o2 a c

(f ≫ g) (dpi , (a1, a2)) = app g (f (dpi , (a1, a2)))

first ∈ (Basis a,Basis b,Basis c,Basis i ,Basis o, Sub a o, Sub (a, c) o)⇒
QProgram i o a b → QProgram i o (a, c) (b, c)

128

first p (pi , ((a1, c1), (a2, c2))) =
let (po, db) = p (pi , (a1, a2))

vcc = vreturn (c1, c2)
dbc = [(((b1, c1), (b2, c2)), db (b1, b2) ∗ vcc (c1, c2)) |

((b1, c1), (b2, c2))← basis]
in (po, dbc)

A funçãoarr constrói programas a partir de funções simples. A entrada clássica é ig-
norada e a saı́da clássica fica vazia. A função≫ compõe dois programas mistos efirst

aumenta o espaço do estado quântico de um programac. T A ação do novo programa
(aumentado) é definida como o programa original sobrea com identidade sobrec.

Proposition D.4.1 A seta indexadaQProgram i o satisfaz as equações requeridas para
setas.

D.5 Conclus̃ao

Apresentamos um modelo geral e completo para computaçõesagindo sobre um estado
combinado (clássico e quântico). Este trabalho é um passo inicial para o desenvolvimento
de uma linguagem geral trabalhando com dados clássicos e quânticos, possibilitando a
interação entre os dois sistemas fı́sicos.

