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ABSTRACT

Quantumcomputation can be understoodtemnsformationof information encoded
in the state of ayuantumphysical system. The basic idea behind quantum computation
is to encode data using quantum bits (qubits). Differertiyf the classical bit, the qubit
can be in asuperpositiorof basic states leading to “quantum parallelism”, whichns a
important characteristic of quantum computation sinceit greatly increase the speed
processing of algorithms. However, quantum data typesargatationally very power-
ful not only due to superposition. There are other odd prigsetike measuremerand
entangled

In this thesis we argue that a realistic model for quantumpmaations should be
generalwith respect to measurements, amnpletewith respect to the information flow
between the quantum and classical worlds. We thus explalrsancture general and
complete quantum programming in Haskell using well knownstauctions from classi-
cal semantics and programming languages, iikmadsandarrows In more detail, this
thesis focuses on the following contributions.

Monads and ArrowsQuantum parallelism, entanglement, and measuremeairdgrt
go beyond “pure” functional programming. We have shown tjugntum parallelism can
be modelled using a slightly generalisation of monads dafldexed monadr Kleisli
structures We have also build on this insight and showed that quantumsorement
can be explained using a more radical generalisation of dmrthe so-calle@rrows
more specificallyjndexed arrowswhich we define in this thesis. This result connects
“generic” and “complete” quantum features to well-foundgednantics constructions and
programming languages.

Understanding of Interpretations of Quantum Mechanics as@utational Effectdn
a thought experiment, Einsten, Podolsky, and Rosen demad@siome counter-intuitive
consequences of quantum mechanics. The basic idea is iha&ntangled particles ap-
pear to always communicate some information even when tieeseparated by arbitrarily
large distances. There has been endless debate and paffessopic, but it is interesting
that, as proposed by Amr Sabry, this strangeness can betieigenodelled by assign-
ments to global variables. We build on that, and model thangeness using the general
notions of computational effects embodied in monads arahexr

Reasoning about Quantum Programs Using Algebraic Lawe have developed a
preliminary work to do equational reasoning about quantlgarghms written in goure
sublanguage of a functional quantum programming languzdied QML.

Keywords: Quantum Programming Languages, Haskell, Density Matridesads.



Estruturando Computac¢des Quanticas Gerais e Completas em Haskell:
Abordagem das Setas

RESUMO

Computacaaguanticapode ser entendida comi@ansformago da informacao codifi-
cada no estado de um sistema fisijp@ntico. A idéia basica da computacao quantica &
codificar dados utilizando bits quanticos (qubits). Defgemente do bit classico, o qubit
pode existir em umauperposigo dos seus estados basicos permitindo o “paralelismo
quantico”, o qual & uma caracteristica importante damgatao quantica visto que pode
aumentar consideravelmente a velocidade de processaden#dgoritmos. Entretanto,
tipos de dados quanticos sao bastante poderosos naotgopoe causa da superposicao
de estados. Existem outras propriedades impares owedalae emaranhamento

Nesta tese, nos discutimos que um modelo realistico pargputacdes quanticas
deve selgeral com respeito a medidas,cempletocom respeito a comunicagao entre o
mundo quantico e o mundo classico. Nos, entao, explbsagrestruturamos computacdes
quanticas gerais e completas em Haskell utilizando cog@#s conhecidas da area de
semantica e linguagens de programacao classicas, mdmadase setas Em mais deta-
Ihes, esta tese se concentra nas seguintes contribuicdes

Mobnadas e SetasParalelismo quantico, emaranhamento e medida quaceita-
mente vao alem do escopo de linguagens funcionais “purbijs mostramos que o
paralelismo quantico pode ser modelado utilizando-se petpena generalizagao de
monadas, chamadabnadas indexadasu estruturas Kleisli Aléem disso, n6s mostra-
mos que a medida quantica pode ser explicada utilizandorsegeneralizacao mais ra-
dical de modnadas, as assim chamasktsis mais especificamentsgetas indexadasas
quais definimos nesta tese. Este resultado conecta cétctsr quanticas “genéricas” e
“completas” a construcdes semanticas de linguagensaggamacao bem fundamenta-
das.

Entendendo as Interpretées da Meanica Quantica como Efeitos Computacionais
Em um experimento hipotético, Einstein, Podolsky e Rosanahstraram algumas con-
sequéncias contra-intuitivas da mecanica quanticadém basica é que duas particulas
parecem sempre comunicar alguma informagao mesmo essaparadas por uma dis-
tancia arbitrariamente grande. Existe muito debate eanuittigos sobre esse topico,
mas € interessante notar que, como proposto por Amr Sasgs €aracteristicas estra-
nhas podem ser essencialmente modeladas por atrib@g@egveis globais. Baseados
nesta idéia nds modelamos este comportamento estratibando no¢des gerais de efei-
tos computacionais incorporados nas no¢oes de monaddae

Provando Propriedades de Programas &picos Utilizando Leis Algbricas No6s
desenvolvemos um trabalho preliminar para fazer provaacagpais sobre algoritmos
quanticos escritos em uma sublinguageuna de uma linguagem de programacao fun-
cional quantica, chamada QML.

Palavras-chave:Linguagens de Programacao Quantica, Haskell, Matded3ensidade.
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1 INTRODUCTION

1.1 Quantum Computation

The firstinsight on quantum computation is generally acagps Feynman'’s observa-
tion that simulation of quantum systems in classical comsus expensive (FEYNMAN,
1982), i.e., we need exponential time to simulate polynbpifauits. Three years later,
Deutsch (DEUTSCH, 1985) explicitly asked whether it is plolesto compute more effi-
ciently on a quantum computer than on a classical compujeaddressing this question,
he further extended the theory of quantum computation \Wettdievelopment of the quan-
tum Turing machine. However, it was after Shor’s quantunoidigm (SHOR, 1994) to
factor an integer in polynomial time in the number of its tBgand its interplay with cryp-
tography which has the potential to undermine many curmgmtosystems, that quantum
computing has become a fast growing research area. In 1968eshowed a fast quan-
tum algorithm for database search (GROVER, 1996) evidgnaiother task that could
also be made more efficient by the use of quantum computesslyl @e cannot forget to
mention the substantial research that has been done oruquantptographic techniques
based on the pioneer work by Bennet and Brassard (BENNETASSARD, 1984).

The basic idea behind quantum computation is to encode datg guantum bits.
A quantum bit orqubitis a physical system which has two basic states, usuallyenrit
in the Dirac notatior|0) and|1). Differently from the classical bit, the qubit can be in
a superpositiorof these two basic states written @g) + 3|1), with |« + |5]* = 1.
Intuitively, one can think that a qubit can exist a$, @ 1, or simultaneously as bothand
1, with a numerical coefficient which determines the probgbdf each state. Formally,
a qubit can be modelled as a normalized vector in a two-diroeakHilbert space, i.e., a
complex vector space equipped with an inner product satigigertain axioms.

The quantum superposition phenomena is responsible faothalled “quantum par-
allelism”. To understand what this means consider a (bodlesction that takes a single
bit « to a single bitf(x). In a quantum computer we can apply the functfoio both in-
puts at once, that is the function can act superpositiorof |0) and|1). This idea is used
in the famous Deutsch’s (DEUTSCH, 1985) algorithm, whiclswae of the first demon-
strations that a quantum computer can solve problems mbogeafly than a classical
one.

We can perform aneasurementperation projecting a quantum state lik®) + 3|1)
onto the basif0),|1). The outcome of the measurement is not deterministic asdjiven
by the probability amplitude, i.e., the probability tha¢ ttate after the measuremenbis
is |a|? and the probability that that the statelisis |3]°. If the value of the qubit is initially
unknown, than there is no way to determinand with that single measurement, as the
measurement mayisturbthe state. Butafter the measurement, the qubit is irkaown
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state; eithef0) or |1).

The disturbance related to the measurement is also comnhedte another essential
characteristic of quantum states: ti@n cloning propertyf quantum states (NIELSEN;
CHUANG, 2000). If we could make a perfect copy of a qubit, welldomeasure the
original without disturbing it in contradiction with thesturbance principle.

This issue is sometimes called the problende€oherenceFor example, consider a
qubit that is in a coherent state. As soon as its measuraieleaots with the environment
it will decohere and fall into one of the two basic states. Teeoherence is a stum-
bling block for quantum computers (BONE; CASTRO, 1997), angemantically quite
complicated issue to deal with for quantum programming laggs.

Surprisingly, more recently there has been several prépasaifferent models of
quantum computation based only on measurements. One exasriple “1-way quan-
tum computer” by Raussendorf and Briegel (RAUSSENDORF; BRE; BRIEGEL,
2001, 2003). In such a computer the computation starts watinster stat§ BRIEGEL;
RAUSSENDOREF, 2001) of certain size and uses only 1-qubismeaments. Other works
also suggesting that measurements could be the actualgifosce behind quantum com-
putations are (NIELSEN, 2003; KASHEFI; PANANGADEN; DANO3004; LEUNG,
2004; DANOS et al., 2005).

Quantum data types are computationally very powerful not dae to superposition
(and measurements). Moreover, qubits can be ir@iangledstate. In such a state,
two or more qubits have to be described with reference to ettodr, even though the
individuals may be spatially separated. For instance,te stiatwo qubits is a vector of
the tensor product (usually, representedsjyof two Hilbert spaces. Some of these two
qubit states can be written as the tensor product of its itaast parts likel¢,) ® |p9),
but there are also the entangled states, which cannot denvais the tensor product of its
parts. A well-known example of entangled state is the EPRqdad) +3|11) . Quantum
entanglement is the basis for emerging quantum algoritfong)stance these states have
been used for experiments in quantum teleportation.

Besides measurementsnitary transformationsare the only operations acting on
qubits. For a general introduction to quantum computatiea,e.g. (NIELSEN; CHUANG,
2000). We also recommend Preskill’s excellent online n(REESKILL, 1999).

More abstractly, qguantum computation can be organisedtimbomain approaches:
classical control and quantum datand quantum control and quantum dateéEssen-
tially, the former follows the work by Knill (KNILL, 1996), \were a quantum com-
puter consists of guantum random access machi(@RAM). In this model the pro-
grammer assumes the existence of predefined universal seiitafy operations. The
guantum control approach follows the model of a quantumnBumachine introduced
by Deutsch (DEUTSCH, 1985). Quantum control means that ¢méral can also be
in a superposition, allowing the programmer to define anysajly realisable unitary
operation.

1.2 Domains of Quantum Computations

We callstrict or pureor reversiblequantum computations the evolution of a quantum
state by the means of unitary gates; measurements are nsitleced. The objects in

1The name of the vector “EPR” refers to the initials of Einsté?odolsky, and Rosen who used such
a vector in a thought experiment to demonstrate some streomggequences of quantum mechanics (EIN-
STEIN; PODOLSKY; ROSEN, 1935).
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this pure domain are normalized vectors in a complex ve@acs, i.e., functions from a
classical state space to complex numbers. The normalizatiodition is because mea-
surements on those states have probabilistic outcomesdadtathe complex amplitude.
Hence, we require that the sum of probabilities of all pdssdutcomes of a measure-
ment add up td. The pure computations are unitary maps, these are lin@@aoiphisms
which preserve the probabilistic interpretation of amyulés.

Irreversibleprograms involve measurements because we cannot dispasgiahtum
bit without measuring it, and leading to mixed states, pebabilistic distribution of pure
states Superoperatorgthat is, completely positive maps, see (SELINGER, 200dijhg
on density matrices, a notation for mixed quantum statesaiv@n Neumann, are the well
accepted domain to interpret the general quantum opesatiwolving measurements.

1.3 Quantum Programming Languages

The research area in quantum programming languages hasriseely stimulated
from the fact that quantum information processing devitigs,their classical counter-
parts, should be programmed in high level, structured antddeéned languages. We
believe that high level quantum programming languages rcgunave our understanding
of the power of quantum computation.

Even though, the implementations of quantum computerstilireesy limited, work-
ing with only a few qubits in physics laboratories, we bedi¢his topic of research is very
fruitful and it has been pointed in (GAY, 2006) that manyicréms are ill-founded, for
several reasons:

1. It overlooks the progress which has been made in the pehatnplementation of
guantum cryptography.

2. On one hand, the early work on the foundations of clasgioagramming lan-
guages (that is, Alonzo Church’s famous paper (CHURCH, 1986&senting the
lambda calculus, and the work by Alan Turing showing his ignmachine as a
universal computing model (TURING, 1936)) has been datedratyears before
the development of practical and commercial computingaevin the 50’s, and
has inspired the design of many actual programming langudde the other hand,
nowadays, every computer scientist is familiar with thebpems caused in soft-
ware engineering by the widespread use of programming Egegiwhich do not
have firm semantic foundation. Mainly, this is due to the faet computing tech-
nologies have raced ahead of theoretical studies. Fror tivespoints of view, the
work on quantum programming languages and its foundatiefaa®the hardware
exists is, in some sense, a very good situation.

3. Lastly, it seems that the application of semantic, ldgasal specially category-
theoretic techniques is providing new perspective on gquartheory itself. For
instance the works by Abramsky, Duncan, and Coecke (ABRAMIMXUNCAN,
2004; ABRAMSKY; COECKE, 2004; COECKE, 2005).

Essentially, following Simon Gay’s quantum programminggaages survey (GAY,
2006) the design of quantum languages can be classified ampajative languages,
b) functional languages, and c) other paradigms. In thigesx@nwe can rearrange the
languages in two branches: 1) those ones that follow Krgjliantum random access
machine(KNILL, 1996) (QRAM), usually called by the slogan “clasalccontrol and
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quantum data”. In this model a quantum computer can be searclassical computer,
the controller, with a quantum device, the quantum mematgched to it. The classical
controller has the ability to perform a previously definet(g#eally universal) of quan-
tum operations, including state preparation, unitarydfamation and measurement, on
quantum registers. And 2) those ones in which control, abagalata, may be quantum.
The quantum Turing machine (DEUTSCH, 1985), in which théremhachine state, in-
cluding the tape, and the position of the head is assumeditodueantum superposition,
is an example of this model.

We summarize some of the main quantum programming languhgésiave been
developed in Tables.1 and1.2. For a complete survey see (GAY, 2006).

Table 1.1: Quantum programming languages wl#ssicalcontrol.

| Imperative | Functional

QCL by BernhardOmer OMER, | Peter Selinger’'s influential quan-
1998): the first real quantum pro+tum language (SELINGER, 2004).
gramming language, with a syntaxCombines high level classical struc-
inspired by C. tures with operations on quantum
data. This language has a clear
mathematical semantics in terms of
superoperators

Classical| Betteli, Calarco and Serafini (BET-Selinger and Valiron’s lan-
Control | TELLI; SERAFINI; CALARCO, | guage (SELINGER; VALIRON,
2003) define a combination of C++2006) based on the work above by
with a collection of low-level prim- Selinger. This language is based
itives based on the QRAM model| on a call-by-value \-calculus,
and has an affine type system (no
contraction).

gGCL by Sandres and Zu-Arrighi and Dowek (ARRIGHI,
liani  (SANDERS; ZULIANI, | DOWEK, 2005) define a linear
2000) which is based on a guardedlgebraic A-calculus in which all
command language. functions are linear operators on
vector spaces.

1.4 Monads and Arrows

The mathematical concept of monads (MACLANE, 1971) wasoohiced to com-
puter science by Moggi (MOGGI, 1989) in the late 1980’s as & wfastructuring de-
notational semantics of programming languages. Sevdfaleit language features, in-
cluding nontermination, state, exceptions, continuaj@nd interaction can be viewed
as monads. More recently, this construction has been mitsed in the programming
language Haskell as a tool to elegantly express computdtedfects within the context
of a pure functional language.

Since the work of Moggi, several natural notions of compatetl effects were dis-
covered which could only be expressed as generalisatiomoofds. Of particular im-
portance to us is the generalisation of monads known as arfidWGHES, 2000) which
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Table 1.2: Quantum programming languages wjitlantumcontrol.

Functional

Quantum Andre van Tonder (TONDER, 2003, 2004) has proposed a quaktum
Control | calculus incorporating higher order quantum programsnbuheasure-
ments. He also suggests an equational theory for strichénigrder)
computations, but shows neither completeness nor noratialis

QML (ALTENKIRCH; GRATTAGE, 2005) is a first order functional
guantum programming language added with quantum data aricbto
QML has a quantunif®, which analyzes the data without measuring,
and hence without changing the data..

is also internalised in the programming language Haskell.

1.5 Contributions of this thesis

The main objective of this thesis is to explain and structgwantum programming
using well known constructions from classical semantics@egramming languages. In
more detall, this thesis focuses on the following subjects.

e Monads and Arrows. Quantum parallelism, entanglement, and measurement cer-
tainly go beyond “pure” functional programming. We havewhdChapter 5) that
quantum parallelism can be modelled using a slightly gdisateon of monads
calledindexed monad=r Kleisli structures(ALTENKIRCH; REUS, 1999). We
have also build on this insight and showed (Chapter 6) thahtgum measure-
ment can be explained using a more radical generalisationavfads calledar-
rows(HUGHES, 2000), more specificallyjdexed arrowswhich we define on Sec-
tion 3.2.4. This result connects “generic” (including measnent) and “complete”
(including communication between quantum and classica)dpantum features
to well-founded semantics constructions and programmanguages (Chapters 7
and 8).

Understanding of Interpretations of Quantum Mechanics as @mputational
Effects. In a thought experiment, Einsten, Podolsky, and Rosen SERN;
PODOLSKY; ROSEN, 1935) demonstrate some counter-ingitonsequences of
qguantum mechanics. The basic idea is that two entanglettlparappear to al-
ways communicate some information even when they are depdog arbitrarily
large distances. There has been endless debate and paphrs tmpic, but it is
interesting that, as proposed by Amr Sabry (SABRY, 2003} slrangeness can
be essentially modelled by assignments to global variabMesbuild on that, and
model this strangeness using the general notions of cotnpnaideffects embodied
in monads and arrows.

Reasoning about Quantum Programs Using Algebraic Laws We have devel-
oped in Chapter 4 a preliminary work to do equational reagpabout quantum al-
gorithms written in a small subset of a functional quantuosgpamming language,
called QML (ALTENKIRCH; GRATTAGE, 2005).
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1.6 Plan

In Chapter 2 we present a brief review on quantum computalio@hapter 3 we show
indexed monads and indexed arrows. The categorical notvensse to structure quan-
tum computations. Chapter 4 describes an equational th@omyasoning about programs
written in a pure subset of QML (ALTENKIRCH; GRATTAGE, 2005 quantum func-
tional language. Additionally we proof soundness and cetepless for the pure subset of
the language. Chapter 5 describes a monadic approach faa™fwathout measurement)
quantum programming in Haskell. In Chapter 6 after modglliensity matrices and
superoperators in Haskell, we structure this model for ggali quantum computations
(including measurements) using a generalisation of monatled indexed arrows. In
Chapter 7 we extend the approach for “complete” quantum coatipns (including com-
munication between quantum and classical data). Chaptes@pts an alternative model
for general and complete quantum computations using expfigbability distribution of
state vectors. Chapter 9 concludes.

1.7 Publications

Some of the work described in this thesis has been published:

e Juliana K. Vizzotto, Antdonio Carlos da Rocha Costa and Ambrg. Quantum
Arrows. 4th International Workshop on Quantum Programming LaggsaJuly
2006. To appear in ENTCS. (VIZZOTTO; COSTA; SABRY, 2006)

e Juliana K. Vizzotto, Thorsten Altenkirch and Amr Sabry. Usturing Quantum
Effects: Superoperators as Arrows.Journal of Mathematical Structures in Com-
puter Science: special issue in quantum programming laggsa2006. (VIZ-
ZOTTO; ALTENKIRCH; SABRY, 2006)

e Juliana K. Vizzotto and Antdnio Carlos da Rocha Cos@oncurrent Quantum
Programming in Haskell In VII Congresso Brasileiro de Redes Neurais (2005).
Sessao de Computacao Quantica. (VIZZOTTO; COSTA, 2005

e Thorsten Altenkirch, Jonathan Grattage, Juliana K. Vitzand Amr Sabry.An
Algebra of Pure Quantum Programmingrd International Workshop on Quantum
Programming Languages, July 2005. To appear in ENTCS. (AIKIRCH et al.,
2005)
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2 QUANTUM COMPUTATION

Quantumcomputation can be understoodtemnsformationof information encoded
in the state of @uantumphysical system. Hence, we start the chapter describingéne
laws which preview the behaviour of quantum mechanicalesyst

In classical computation the indivisible unit of informatiis the bit: an object that
can take one of the possible valugs 1}. In this chapter we describe tigeibit, the cor-
responding unit of quantum information, and how computatian be carried out over an
array of qubits. We also discuss two characteristic of quantutestahich are claimed to
be essential ingredients for the power of quantum compmutatjuantum parallelism and
entanglement. As an example, we show Deutsch’s (DEUTSC8g)1&lgorithm, demon-
strating a specific problem which can be solved more effiienta quantum computer
than in a classical one. We also briefly discuss some quantampater models. In this
chapter we consider a background on linear algebra whidkgsisised in the Appendix A.

2.1 Axioms of Quantum Mechanics

Quantum theory is a mathematical model of the physical woFtwlcharacterize the
model we need to specify how it will represent: states, oladdes, measurements, dy-
namics, and composite systems.

2.1.1 States

In quantum theory a physical state is representeduastaector living in a complex
inner product vector space know Hgbert space We call such a vector ket (see ap-
pendix A) and denote it bjr). This state ket contains complete information about the
physical state.

2.1.2 Observables

An observable is a property of a physical system that can suned. In quantum
mechanics, an observable can be represented by a Hermjgeator, A, acting in the
vector space in question. Remember from Section A.5.4 besetare particular kets of
importance, known asigenket®f the operatord, denoted by

|a,/>’ |a//>’ |a///>’ o

with the property
Ald'y = d'|d"y, Ald")y =d"]|d"),...

whered’, a”, ... are just real numbers, calleigenvaluesf the operatorA.
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2.1.3 Measurements

“A measurement always causes the system to jump into anstajerof the dynamical
variable that is being measuredP. A. M. Dirac).

Following Sakurai (SAKURAI, 1994) we may interpret Diragi®rds above as fol-
lows: before a measurement of an observahléhe system is assumed to be represented
by some linear combination

@) =Y culd) =Y ld')(d]).

When the measurement is performed, the system is “throw amte of the eigenstates,
say|a’) of the observablel. In other words,

o) 25 ).
Thus ameasurement usually changes the statke only exception is when the state is
already in one of the eigenstates of the observable beingured, in which case

o) 4 o)

with certainty. When a measurement caugesto change intdad’), it is said thatA is
measured to be'. It is in this sense that the result of the measurement ymiesof the
eigenvalues of the observable being measured.

Given

@) =Y culd) = ld)(d]).

which is the state ket of a physical system before the meamng we do not know
in advance into which of the varioyg')’s the system will be thrown as the result of the
measurement. However, we do know thatphabability for jumping into some particular
|a’) is given by

[{a']a)]?

provided that«) is normalized.

This probabilistic interpretation for the squared inneodarct above is one of the
fundamental postulates of quantum mechanics. Supposeateeket is|a’) itself even
before the measurement is made. Then, according to thelai@stthe probability for
gettinga’ - or more precisely, for being thrown int@') - as the result of the measurement
is predicted to bé&, which is just what we expect.

There is also the notion skletive measuremerar filtration. More generally, we con-
sider a measurement process with a device that selects walgfahe eigenkets of, say
|a") and rejects all others. Mathematically, we can say that aLg#lective measurement
amounts to applying the projection operator

to |«):
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2.1.4 Dynamics

Time evolution of aclosedquantum state is described byaitary transformation
That is, the statén) of the system at time, is related to the state) of the system at
timet, by a unitary operatol/:

o) = Ula).

2.1.5 Composite Systems

The state space of a composite physical system idehsor product(see defini-
tion A.4.2) of the state spaces of the component physicésys Moreover, if we have
systems numberedthroughn, and system numbeiis prepared in the state;), then the
joint state of the total system &) ® |as),. .., |am).

2.2 Qubits

The qubit is the simplest possible quantum system, thatigsrepresented as a vector
in a two-dimensional Hilbert space (i.e., in a complex vesjgace with inner product).
Usually, the elements of an orthonormal basis in this spezealled|0) and|1) in Dirac
notation. Then a normalized vector can be represented aga Icombination of basic
states:

) = al0) +b[1), |al* +[b]* =1
that can also be written as the column vector

a
a
wherea andb € C. Coefficients, likex andb, are called complex amplitudes.

It is this ability of the qubit of being in dinear combinationof basic states, also
often calledsuperpositionthat is responsible for the so called “quantum parallélisfo
understand what this means consider a (boolean) functaintdkes a single bit to a
single bit f(z). In a quantum computer we can apply the functjoto both inputs at
once, that is the function can be applied teugperpositiorof |0) and|1). This feature is
used in an immediate way in Deutsch'’s algorithm (Sectiof. 2.5

A quantum state ofV qubits can be expressed as a vector in a space of dimension
2NV, A 2% dimensional qubit space is given by ttensor produc{®) of N spaces of
single qubits. For instance, an orthonormal basis for a umarstate of2 qubits could
be {|0), 1)} ® {]0),|1)} = {]|0) ® |0),|0) & |1),]1) ® |0),|1) ® |1)}, usually written
as{|00),|01),|10), |11)}. The tensor product gives as a general 2 qubit state a linear
combination of this four basic states, i.e.,

a00|00) + g [01) + a1o|10) + an[11) = Y ayli, j).
i,7€{0,1}
In general, a state oV quantum bits is a non-zero vector in a Hilbert space, which
can be represented as the following formal linear combonati

Z by b, |1 - - by, With Z |ap, .5, > = 1.

b1,..., bnG{O,l} b1,..., bne{(],l}
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2.3 Quantum Operations on Qubits

2.3.1 Measurements

The normalization condition in the qubit vector is requiteEtause measurements on
those states have probabilistic outcomes related to thelesnamplitude. Hence, the
sum of probabilities of all possible outcomes of a measurgmmeist add up td. More
specifically, we can perform a measurement that projectsjtibé «|0) + b/1) onto the
basis{|0), [1)}. Then, the post measurement state will@ewith probability|a|?, or |1)
with probability [6|?. The measurement theory in quantum mechanics (see Secti®) 2
says that the valueutputby a measurement is one of the eigenvalues obtieervable
being measured and that the state is collapsed to a coriggagigenstate. However, in
guantum computation one is often more interested irptiet measurement statgan in
the real value (the eigenvalue) measured. So, in most tifrthg, post measurement state
is |0) one would say that was measured.

If the value of the qubit is initially unknown, than there ig way to determine and
b with one single measurement. Bafter the measurement, the qubit is irkmowstate,
either|0) or |1). In particular, if after a measurement the same measurespetformed
again it will give the same answer as in the first time.

The situation is more complex if more than one qubit is inedlv Consider a two-
qubit system in the stat@|00) + ao;1|01) + a1|1,0) + a11|11). If we measure the value
of the first qubit, we obtain:

o 0 with probability |ag|? + |ae:|?, and the quantum state will collapse to

1

v |aoo]? + |ao:|?

e 1 with probability|a;o|* + |a1; |, and the quantum state will collapse to

(ago|00) + a01/01)), and

1

Vaw|* + a2

Note that at each step we normalize the states in such a wethésum of the squares
of the amplitudes of the new reached state i8 similar situation happens if we measure
the second qubit.

In a general state aV quantum bits

Z abl...bn|bl .. bn>, with Z |ab1mbn|2 =1.

the probability to getb; . . . b,) when measuring the system|is, _;, |*.

(a10|10> + a11|11>).

2.3.2 Unitary Transformations

The other kind of operations we can apply to qubitsiargary transformationswhich
can be represented by unitary matrices.

Supposéa) = al0) + b|1), then we can perform a reversible transformation on that
by the application of & x 2 unitary S:

(3 22) (1)
S21 S22 b
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which is given by usual matrix multiplication. In general2’a x 2™ matrix acts om
quibt system. The rows and columns of the unitary transfaona are labeled from left
to right and top to botton &% ...0,00...1to11...1.

Usually, these unitary matrices are called quantum gatédsegsare used iquantum
circuits. Some important quantum gates are:

. (01 (11
NOTorPaull-X_(1 0) HorHadamard:ﬁ(1 _1)

S or Phase= 1 0 7 or Pauli-Z= 10
0 2 0 —1
1 0 0O
01 00
CNOT or Controlled-Not= 000 1
0010

. idy 0

Toffoli = ( 0 } ONOT )
The unary gate NOT is the quantum version of the boolean nppinga|0) + b|1) to
b|0) + a|1). The unary Hadamard is sometimes described as tutfijnigto “halfway”
between0) and|1) (first column of H), and als¢l) into “halfway” between0) and|1)
(second column of H). The Hadamard gate is one of the mostilugaties, it is used when
one wants to prepare a quantum state in a coherent sup@po3ihe unary gates S and
Z represent complex phase changes. The binary controlled@j&4OT applies the NOT
gate to the second qubit if the first ond jsf the first qubit isO it does nothing. Similarly,
the Toffoli is a controlled-controlled NOT, which appliggeetNOT gate to the third qubit
if the first and second qubits ade The Toffoli gate can be used to simulate NAND
(initializing the third qubit tol) and FANOUT (initializing the first and third qubits to
and0, respectively) gates.

Quantum circuitsas their classical counterparts consisivoesandlogic gates The
wires are used to carry information around the circuit, wlhiile logic gates perform ma-
nipulations of the information. For instance consider theuit in Figure 2.1, which is
read from left to right, and from top to bottom, and compuhesdtate

Goo (G ®id)(z ®y).

G .
G

Figure 2.1: Quantum Circuit.

In general, there is a special notation for controlled gatestead of using simple
boxes they are written using a filled circle in the control itgib For instance see the
circuit for controlled-NOT below:
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X i X
y P X+y

Figure 2.2: Controlled-NOT.

2.4 Characteristics of Quantum States

2.4.1 Entanglement

It is interesting to note that information ron-localin an array of qubits due ten-
tanglementA 2-qubit statd«) is said to beentangledf it cannot be written as the tensor
product of its constituent parts, i.e., ag) ® |ay). For example, consider ttgell state
or EPR pair:

_[00) +11)

‘a> - \/i .
One cannot finda;) and|az) such thatia;) ® |as) = |a). One may see thaty) =
al0) 4+ b|1) and|as) = ¢|0) 4 d|1) such that

o) = (al0) + b]1)) ® (c|0) + d|1)) = ac|00) + ad|01) + be|10) + bd|11).

But, that is impossible to ge00) + |11) from above, because we would need to have
ac # 0 andbd # 0, with ad = 0. Indeed information is non-local in the Bell state; the
measurement outcomes a@related(NIELSEN; CHUANG, 2000). More specifically,
the Bell state has the property that upon measuring the fitst,qone obtains two pos-
sible results0 with probability 1/2, leaving the post measurement st@®, and1 with
probability 1/2, leaving the post measurement stdte). As a result, a measurement of
the second qubit always gives the same result as the mea=ntrefithe first qubit.

2.4.2 Copying a Qubit

Consider the task of copying a classical bit. This may be dsingg a classical CNOT
gate, which takes an unknown hitto copy and a “scratchpad” bit initialized t§ as
illustrated in Figure 2.3. The output is two bits, both in Hzne state.

X—X X—— X

O—y xty— X

Figure 2.3: Classical circuit toopy:.

Suppose we want to copy a qubit in the unknown state= «|0) + b|1) in the same
manner by using a quantum CNOT gate. The input state of twdsjcdn be written as

[a]0) + b[1)]]0) = a|00) + b|10).
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The function of CNOT is to negate the second qubit when thedirbit is1. Thus, the
output is simplya|00) + b[11). In the case where = 0 or b = 0 the circuit indeed
successfully copiejgr). However, for a general stafe) we see that the result of the copy
operation would be

|a) |a) = a*|00) + ab|01) + ab|10) + b*|11)
which is not a linear operation. In fact, it turns out toibgossibleto make a copy of
an unknown quantum state. This is called tim&-cloning(NIELSEN; CHUANG, 2000)
property of quantum states.

This property can also be explained by the disturbanceakatthe measurement. If
we could make a perfect copy of qubit, we could measure tlggnali without disturbing
it in contradiction with the disturbance principle.

The CNOT gate applied to a qubit and “scratchpad” bit inizedl to0 is sometimes
refereed as “sharing” and it is used as the semantics of @htplg variables in quan-
tum programming languages, see for instance (ALTENKIRCRAGTAGE, 2005; AR-
RIGHI; DOWEK, 2005).

2.4.3 Discarding a Qubit

Consider any composite quantum state living in a composgitéov space and recall
that such a vector space is formed by thesor producof its component spaces. Any
quantum state living in this composite spacgl@balandpossible entangledHence, any
guantum operation is considerghbbal.

Now suppose we just havgnoredsome specific part of the global quantum state. But
by justignoring part of the state we maintain the global entanglement, apdperation
acting on the ignored part may affect other parts still egleoh with it. The general
way of destroying entanglement and taking apart a specificgb@ quantum state is by
performing a measurement on that.

More specifically, suppose we want to discard the left quitihe EPR pair:

|00) + |11)
) o
which means to measure it. Hence, the stajeafter discarding the left qubit will bg)
with probability1/2 or |1) with probability1/2.

This decoherenceaused by discarding is, thus, a very trick situation forrjum
programming (for a concrete discussion see Section 6.5).

2.5 The Deutsch Algorithm

Deutsch’s (DEUTSCH, 1985) algorithm is used to find out weethboolean function
f is balanced or constant. Here we show a version of the afgoniresented in (GAY,
2006). Classically, to solve the problem we must evalyéte and f (1) and compare the
results. The appeal of the algorithm is that a quantum coenmatn answer the question
with only one evaluation of.

Firstly, we need to build a quantum version fgfthat is aunitary transformation?’,
which performs the same computionasNote that in generaf need not to be reversible.
However, it is possible to construct a unitary transforomafi’ on two qubits such that

Flz)ly) = |x)ly © f(2))
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We therefore can assume that this is a quantum versign of
The trick now is to apply¥' to the state

[+) =) = %(I00> —|01) + [10) — |11))
where

1 1
= ﬁ(|0>—|1>

Note that this state can be created by applyihg H to |01).

Then we need to do some calculation in order to be able to sgjphne result in terms
of the unknown functiory.

From the definition of” we have

Flz)|0) = |)|f(z))
Flo)[1) = |z)[1 e f(z)).

Combining this equations to calculatéz)|—), we see that iff (z) = 0 thenF|z)|—) =
|z)(10) — (1)), and if f(z) = 1 thenF|z)|—) = 3|z)(|1) — |0)). Hence

2

+) (10) + 1) and—) =

V2

Fla)-) = E21(0) - 1)
= (=1)/@)|z)|-).

Thus

Fl+)l=) = 3(Fl0)|=) + F1)|-)
{fH)I—) if £(0) = /(1)
S=)=) i £(0) # (D)

and the information about whether or rnfois constant has been concentrated into the first
qubit.
From thatH |+) = |0) and H|—) = |1), then applyingH to the first qubit we get

Tl0y|=) i £(0) = f(1)
H[=) if f(0) # f(1)

2.6 Quantum Computer Models

It is useful to keep in mind a hypothetical hardware devicevbich one can execute
quantum algorithms.

2.6.1 Quantum Computer Models with Classical Control

One of the first proposals for qguantum hardware devices wasdiy Knill (KNILL,
1996). In this model a practical quantum computer will taleep on a QRAM (quantum
random access machine), which consists of a general-paigb@ssical computeontrol-
ling a special quantum hardware device which provides a bankldfidually addressable
guantum bits. The classical device acts on the QRAM by sgrtdiit a sequence of com-
mands to perform initializations (setting a qubit|/@ or 1)), built-in unitary operations
and measurements.
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2.6.2 Quantum Computer Models with Quantum Control

In such modelsgontrol, as well a data, may be quantum. The quantum Turing ma-
chine (DEUTSCH, 1985), in which the entire machine stateluising the tape, and the
the position of the head is assumed to be in quantum sup&grgss an example of this
model. The QML: quantum data and control (ALTENKIRCH; GRAYGE, 2005b) lan-
guage encompass both data and control quantum structargaahtum computers with
classical control, quantum data can only me processed usim@pinators corresponding
to quantum circuits or by measurements. In contrast, QML&hgsantumif®, which
analyzes the data without measuring, and hence withoutgahguthe data. There is no
need for a finite set of built-in unitary operations. For arste, the Hadamard gate can be
written using the quantum contrifl® as follows:

had x = if° x then ((—1) * true + false) else (true + false)
where(true + false) represents an equal superpositiortrafe and false.

2.7 Summary

In this Chapter we reviewed basic principles of quantum raeds and presented the
main concepts of quantum programming. Essentially, in uamprogramming one codes
the state of a system using a quantum state, and then trarssibby means of unitary
transformations and measurements. Also, one can comhassical control structures
with quantum operations.

There are many reasons for using quantum mechanical dégragsing computation.
First, consider a technological reason. The revolutioremisonductor technology has
lead to a great effort into reducing the size and costs ofrpibés. Nowadays a flat
microchip with a surface area of ordérm? can hold of the order of08 bits. The
small size of these memory chips has also had the effect efigpg up the rate at which
computers can run. Basicaly, this is because the electnostiagsignal has less distance
to travel between components. Hence a motivation for imagia “quantum computer”
is to push these improvements in technology to their physio&. The smallest device
one can imagine, that can exist in two states, is a singletquaparticle (the electron
spin, for instance).

Second, as proved by Shor’s (SHOR, 1994) factorizationguaalgorithm, quantum
data types, which featuuperpositiorandentangled can greatly increase the speed of
computations.
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3 INDEXED MONADS AND INDEXED ARROWS

The mathematical concept of monads (MACLANE, 1971) wasoohiced to com-
puter science by Moggi (MOGGI, 1989) in the late 1980’s as & wfastructuring de-
notational semantics of programming languages. Sevdfaleit language features, in-
cluding nontermination, state, exceptions, continuatj@nd interaction can be viewed
as monads. More recently, this construction has been mltsed in the programming
language Haskell as a tool to elegantly express computdtedfects within the context
of a pure functional language.

Since the work of Moggi, several natural notions of compatetl effects were dis-
covered which could only be expressed as generalisatiomsoads. Of particular im-
portance to us is the generalisation of monads known as affidWGHES, 2000) which
is also internalised in the programming language Haskell.

In this Chapter we review these two concepts in the contetti@programming lan-
guage Haskell, as well we briefly discuss a small variatiotheke notions, which we
call indexedmonads anghdexedarrows. Those are the right notions needed to structure
guantum computations in Haskell.

3.1 Monads

A monad is a concept from category theory which is used in Gaer@science for for-
mulating definitions and structuringptions of computations programming languages.
Essentially, one can understand a notion of computation @sahtative description of
certain (possibly non-fucntional) program features suckide-effects, exceptions, par-
tial and nondeterministic computations, etc. In this ceijta program which features
notions of computations, can be viewed asiaction from values to computatiansor
instance a program with exceptions can be viewed as a funtiiat takes a value and
return acomputatiorthat may succeed or may fail.

More precisely, one can consider a value categhrgs a model for functions, and
build on top of that, notions of computation via an operaton¢tor) 7" acting on objects
of C - i.e.,T maps an objecB from C, viewed as thaet of values of type, to an object
T B corresponding tcomputations of type. Then a program which takes an input of type
A, and after performing certain computation returns a vafugpme B, can be identified
with a morphism fromA to T'B in C (MOGGiI, 1991).

This reasoning aboutomputationscan be intuitively organized by Kleisli triples,
leading to Kleisli categories as a model for programs.

Definition 3.1.1 (Kleisli Triple) A Kleisli triple over a category is a triple (T, n, -*),
where
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e T:0bj(C) — Obj(C),
e ny: A—TA,
o f*:TA—-TBforf:A—TB,
and the following equations hold:
o '\ =idra
e na fr=1f
o /59 = (i)
Intuitively 74 is theinclusionof values into computations angl is the extensiorof a

function from values to computations to a function from caitighions to computations,
which first evaluates the operand computation and thenegppto the resulting value:

f*

TA TB
[
!
A B

In other words, this explicitly implies the existence dbiactorT’, of complex objects
for all valuesin C, such that all computations over those complex objects efiaeat! in
terms of functions from values to complex objects, respebti We call a complex object
T A aneffectinvolving A.

The axioms for Kleisli triples amount exactly to say thatgmams form a category,
theKleisli categoryCr, where the sefr (A, B) of morphisms fromA to B isC(A, T B),
the identity overA is n4, and composition of followed byg is f; ¢* (MOGGI, 1991).
Intuitively, f; g* takes a value and appliesf to produce a computatiofu, then iteval-
uates/executate computatiorfa to get a valué, and finally it applieg; to b to produce
the final computation.

Note that we are talking about monads but we have definedlKsgisctures. Indeed,
there is a one-to-one correspondence between these tvamsotiowever the definition
of a monad is given in terms of functors and natural transéions, and although more
elegant it is more abstract. We choose to present here thesexgation as a Kleisli
structure because the Haskell's implementation of a monadms the Kleisli version.

3.1.1 Monads in Haskell

Basically, monads are used in Haskell as a way to carry oupatations with effects

in the context of a pure functional language. A monad is rgmeed in Haskell using a
type constructor for computatioms and two functions:

return € forall a.a — m a

>= € forallabbm a — (a - mb) - m b
The operation>= (pronounced “bind”) specifies how to sequence computatan
return specifies how to lift values to computations. The functieturn is exactly the
na requirement of the Kleisli triple above. To understand gpetof bind, one just need
to consider the arguments for : (A — T'A) — TA — TB in the inverse order. Ob-
serve the quantifieforall preceding the types of the functions. This is to emphasiae th
m represents aandofunctorover the category of values, as the definitiorfoformally
presented in definition 3.1.1.
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To construe a proper monad, theurn and>>= functions must work together accord-
ing to the three monad laws:

m S>=return = m
(returnx) >=f = fx
(m>=f)>=g = m> (\x— fz>=g)

Note that the equations are the same as above just rephraseanis of the Haskell's
operations.
A simple example of a monad in Haskell is th&uybe type:

data Maybe a = Nothing | Just a
which represents the type of computations over a typdrich may fail to return a result.
It is similar to the idea of exceptions in programming langes a computation may
return a value {ust a), or fail returningNothing. ThenreturnM lifts simple values to
computations which may fail, andndM combines computations of that type together:

returnM € forall a.a — Maybe a

returnM a = Just a

(bindM) € forall a b.Maybe a — (a — Maybe b) — Maybe b

Nothing bindM' f = Nothing

(Just ) bindM' f = f x
that is, the combined computation should yidldthing whenever either of the computa-
tions yield Nothing and the combined computation should yield a computatiogipd &
applied to the result of the computatidfuybe o when both computations succeed.

3.1.2 Monads in Haskell with Type Classes

Haskell’ type classes allow the user to declarerthemesandsignaturesof the class
operations For instance, in Haskell, there is a standafdnad class that defines the
names and signatures of the two monad functions:

class Monad m where

return € forall a.a — m a

(>=) € forallabma— (a—mb)—mb
This declares that a type belongs to the clas&onad if there are two operationgturn
of typea — m a and>= of typem a — (a — m b) — m b. The definition of the
Monad class above showed only the minimal complete defmitithe full definition of
the Monad class in Haskell actually includes two additidoattions:

faill € a — m a

>ecema—mb—mb
where, the default implementation of the fail function is:

fail s = error s
We only need to change this if we want to provide differentasédr for failure or to
incorporate failure into the computational strategy of mmad. The Maybe monad, for
instance, defines fail as:

fail — = Nothing
so thatfail returns an instance of thiéaybe monad with meaningful behavior when it is
bound with other functions in the Maybe monad.

The fail function is not a required part of the mathematical definitod a monad,
but it is included in the standard Monad class definition beeaof the role it plays in
Haskell's do notation as explained below.
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The > function is a convenience operator that is used to bind a diomamputation
that does not require input from the previous computatidhésequence. It is defined in
terms of>>=:

(>)ema—mb—mb
m>k=m>=(A_— k)
Then we can define which types are instances of which cladavide definitions
of the overloaded operations associated with a class, fomple:
instance Monad Maybe where
return = returnM
>= = bindM
fail = Nothing
declares that typé/aybe belongs to class/onad, and that the implementation of the two
functions onMaybe type is given as in section above, afad is Nothing.

It is not strictly necessary to make our monad instances @fMhnad class, but
Haskell has special support fdilonad instances built into the language, calldd-
notation, which allow us to write cleaner and more elegamntecoBasically, using the
do notation we can write monadic computations in a pseudo-iatpe style with named
variables. The result of a monadic computation caassgnedo a variable using a left
arrow < operator. Then using that variable in a subsequent monadipuatation auto-
matically performs the binding. The type of the expressmthe right of the arrow is a
monadic typen a. A traditional example would be to define division using tieybe
type:

(//) € Maybe Float — Maybe Float — Maybe Float
r//y=doa«—z
b—vy
if b = 0 then Nothing else return (a / b)
which is equivalent to the following awkward expression:
/)y =1z>=Xa.y>=\b.if b =0 then Nothing else return (a / b)

Do-notation uses the following identies to transldteexpressions to respective monadic
expressions witheturn, >=, and>>:

do{p«—est=e>=Ap—do{s}

do {e;s} =e>do{s}

do {e} =e
The functions>, >= are the functions in thé/onad class. Thefail function is called
whenever a pattern matching failure occurs idcablock.

3.1.3 Monad Transformers

Consider we want to merge two monads, that is, we want to butloimputation with
two different kinds of effects, for instance computatiortsai feature exceptiond{aybe
type) and state passing. This can be designed systemgtigsilhg monad transform-
ers (SHENG LIANG; JONES, 1995). A monad transformer is a monacupeterised
on another monad, such that computations over the parammetead can bdifted to
computations over the new one.

For example, théd/aybe monad above can be generalised to a monad transformer:

newtype MaybeMonadT m a = MT (m (Maybe a))

unMT (MT ¢) = c
In general, the monad operators on the new type must be defiriedms of the monad
operators in the parameter type:
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instance Monad m = Monad (MaybeMonadT m) where
return a = MT (return (Just a))
z>=f=MT (do a — unMT x
case a of
Nothing — return Nothing
Just a — unMT (f a))
Lifting of computations is defined by
liftMaybe € Monad m = m a — MaybeMonadT m a
liftMaybe © = MT (z >= Aa — return (Just a))

3.1.4 Indexed Monads

In the definition of a Kleisli triple, the functioff’ is an endofunctor od. Intuitively,
this is the reason for the universal quantifier before thend&fhs of return and>>= in
Section 3.1.1, that is, the monadic constructor acts oveslgécts in the category of
valuesC.

However, sometimes we wantgelectsome objects fror@ to apply the constructdr.
This notion is slightly more general than Kleisli tripleghit is captured by the definition
of Kleisli structure(ALTENKIRCH; REUS, 1999). Basically, for Kleisli structas, the
function7" does not need be an endofunctorhrniWe can select some objects frahto
apply the constructor.

Definition 3.1.2 A Kleisli structure(I, F, G, n**¢, *F*%) on a category is given by:
e anindex sef € Set,
e families of objects indexed by F',G : I — Obj(C),
e afamily of morphisms indexed by I: /"% : F(i) — G(i),
e afamily of functions indexed hy; € I:

i Gli) — G)

7j

for {19 ¢ F(i) — G(j).

)
which are subject to the following equations:

1. ’I]Zf’c = Z'de(i)

2. 0% f0C = 159 wheref72C L F(i) — G(j).

) @]

3. f;f’G;g;i’G = (fhe, *FG)ﬁ;G WherefiFfG cF(i) — G(y), gf;f : F(5) — G(k).

)

Z’j ’ ]7k

Note that Kleisli triples are a special case of Kleisli sttwes wherd = Ob;(C) and
Fis the identity.
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Now, the definitions ofeturn and>>= in Haskell would be rephrased as:
return € forall a.F (a) = a — m a
>= ¢ forall a b.(F (a),F (b)) = ma— (a—mb)—mb
That is, for alla for which F' (a) holds we can apply the constructar, and for alle and
b for which F' (a) and F' (b) hold we can apply>=. In terms of type classes we would
like to rewrite theMonad class indexed in such a way:
class IMonad m where
return € F a = a — m a
(>>=)e(Fa,Fb)=ma—(a—mb)—mb
Fortunately, in the new version of GHC (Glasgow Haskell Coenp 6.5), the types
for return, >=, and>> used in thedo-notation may be overloaded to have our proper
types. Therefore, we can define dodexed monadand still usedo-notation for that

type.

3.2 Arrows

To handle situations where monads are inapplicable, HUghd&HES, 2000) intro-
duced a new type class generalising monads, caliedvs Indeed, in addition to defining
a notion of procedure which may perform computational éfearrows may have a static
component, or may accept more than one input.

Arrows were first introduced as an abstract interface foregsttia and Duponcheel’s
parsing library (SWIERSTRA; DUPONCHEEL, 1996), which cdulot be modelled
using monads. Essentially, they defined an efficient padgangry in the sense that the
space leaks, caused in parsing grammars that define nomédsmia alternatives, are
substantially reduced. The solution they proposed wasdiodie a static component to
the parser with some information about the tokens whichdabalaccepted as the first in
the input. Unfortunatelly, they coudn't define= € Parser s a — (a — Parser s b) —
Parser s b using this representation (herstands to thetatic component The problem
is that the static properties of the resultiRgrser s b depend on the static properties of
boththe first and the second arguments. Yet in the definitios=ef while we have acces
to the static properties of the first argument, we cannotiollte static properties of the
second one without applying it to a value of type

Just as we think of a monadic type « as representing @omputatiordelivering an
a, SO we think of an arrow type b c as representing a computation with input of type
delivering ac. Arrows make the dependence on input explicit.

Formally, arrows give rise toFreyd-categoriedo model notions of computations.
Here we present a simplified version of Freyd-categoriesedimet in (PATERSON,
2001), which is equivalent to the definition of Power and Rsbn (POWER; ROBIN-
SON, 1997).

Definition 3.2.1 (Freyd-category) A Freyd-category is a structui®’, C, inc, x ), where:

e a category) with finite products (the value category),
e a categoryC with the same objects a4 (the computation category),

e afunctorinc :: V — C that is the identity on objects,
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e afunctorx :: C x V — C such that
incx Xy =inc(xr X y)
and the following natural isomorphismsin

assocy : (AxB)xC=Ax(BxC(C)
unitry : AX1=A

extend to natural isomorphism @

incassocy : (AXB)xC=Ax (BxC(C)
incunitry : Ax1=A

The object preserving functenc corresponds to thkft of functions from values to
values to functions from computations to computationsuitiviely, the functorx corre-
sponds to say that we can always augment the state spacecbbhsifrom computations
to computations by applying@ogramthat does nothing to the extra computations.

C C
Tinc TIX
Y CxV

The last two axioms correspond to the naturality requertstn the category.

3.2.1 Arrows in Haskell

In Haskell, the arrow interface is defined using the follogvatass declaration:
class Arrow a where

arr € forall b c.(b—¢) — abc

(>>)eforallbcdabec—acd—abd

first € forall b ¢ d.abc— a(b,d) (c,d)
In other words, to be an arrow, a typenust support the three operatiang, >, andfirst
with the given types. Mirroring the naturality axioms in dhition 3.2.1, these operations
must satisfy the following equations:

arrid>f = f
f>arrid = f
(f>qg)>h = f>(g>h)
arr(g. f) = arr f>arrg
first (arr f) = arr (f xid)
first(f > g) = first f>> firstyg
first f >> arr (id x g) = arr (id x g) >> first f
first f > arrfst = arrfst>> f
first (first f) >> arr assoc = arr assoc>> first f

where the functions andassocare defined as follows:

(f xg) (a,0) = (f a,9 b)
assoc ((a,b),c) = (a, (b,c))

Graphically the functions associated with the arrow typethe following:
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arr >SS first

b :’”/’f’\”‘l c b ! f c ' d b | ; . C
A | al | |
o J G l d | d

(@) (b) ()

The functionarr allows us to introduce “pure” arrows which are simple fuans from
their inputs to their outputs. The functioz- is similar to>>=: it composes two computa-
tions. The functiorirstis the critical one for our purposes: it allows us to apply anw
to a component of thglobal state The equations above ensure that these operations are
always well-defined even with arbitrary permutations arahgfe of associativity.

Given these three basic functions, we can define more usefobimators. For in-
stance, we can define a combinator that applies its arguraghtetsecond component
instead of the first:

second € Arrow a = a b c— a(d,b) (d,c)

second f = arr swap > first f >> arr swap

where swap (z,y) = (y, )

and a combinator which processes both components of a pair:

() € Arrow a = abc—ade— a(bd)(ce)

[ # g = first f >> second g
which is equivalent to first apply to the first argument and then applyto the second
argument.

Also, we can define a combinator which builds a pair from tlsailts of two arrows:

(&) € Arrowa=abc—abd—ab(cd)
f8&g = arr (Ab — (b, b)) >> (f # g))

Now suppose we want to choose between two arrows on the Basismput. For that
Hughes (HUGHES, 2000) introduced a dynamic choice ope&atdinstead of enlarging
the existingArrow class further, he defined a new class calledowChoice. In this way
we can define arrow types which do not support the dynamicehaperator.

The definition of the choice combinator uses the pre-defineskell’s sum type:

data Fither a b = Left a | Right b
Then, the new class (which can be viewed asubclassof Arrow) requires aleft
function:
class Arrow a = ArrowChoice a where
left € a b ¢ — a (Either b d) (Fither ¢ d)
whereleft f invokesf only on Left inputs, and leaveRight inputs unchanged.
Using Left and the other combinators we can derive some more integestimbina-
tors:
right € ArrowChoice a = a b ¢ — a (Either d b) (Fither d c)
right f = arr mirror >> left f >> arr mirror
where mirror (Left ) = Right x
mirror (Right y) = Left y
similarly right f invokesf only on Right inputs, and leaveseft inputs unchanged.

The last interesting function we show herg id| ¢ which passeg.eft inputs tof and

Right inputs tog:
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(II) € ArrowChoice a = a b d — a ¢ d — a (Fither b ¢) d
Flllg =f-+H+g> arr untag
where untag (Left ) = x
untag (Right y) =y
(++) € ArrowChoice a = a b ¢ — a b’ ¢ — a (Either b V') (¢ )
f 4+ g = left f >> right g

3.2.2 A Better Notation for Arrows

Following the Haskell’s monadido-notation, Paterson (2001) presented an extension
to Haskell with an improved syntax for writing computatiamsng arrows. He defined
a preprocessor, that reads as input a Haskell script augah@nth arrow notation, and
outputs a plain Haskell script. We concentrate only on thaamation of new forms
which we use in our examples. Here is a simple example tdriltesthe notation:

ope Ty (T, T)(Th, T)
op = proc (a,b) — do
r—f<a
returnA < (r, b)
The do-notation simply sequences the actions in its body. ThetfongeturnA is the
equivalent for arrows of the monadic functiesturn. The two additional keywords are:

e thearrow abstractionproc which constructs an arrow instead of a regular function.
¢ thearrow application< which feeds the value of an expression into an arrow.

Paterson (2001) shows that the above notation is generalgbnim express arrow
computations and the preprocessor is implemented such titzatslates the new syntax to
regular Haskell. In the case op above, the translation to Haskell produces the following
code:

ec Ty (T, T) (T, T)

e = first f
for f € Ty T} Ti. As the example shows, the output of the preprocessor is Qpk
timised. However, the preprocessor should be executed aifigrand it is not strictly
necessary to add types to the expressions.

The notation is also implemented directly in GHC, from vensb6.2, where it is en-
abled by the-farrows option. Hence, if our types are an instance of theow class we
can use the arrow notation directly in the Haskell code.

3.2.3 The Arrow Transformers

Arrows have the same property we present in Section 3.1.&forads, that is, we
can definarrow transformersvhich map simpler arrow types to more complex ones. An
arrow transformer is, by analogy with a monad transformest @n arrow type parame-
terised on another arrow type, such that we can lift opanatom the parameter type to the
new type. For instance, any arrow type can be lifted to amatype supporting failures:

newtype MaybeArrowT a b ¢ = MAT (a b (Maybe c))
unMAT (MAT ¢) = ¢
That is, the result of the arrow can indicate failure. We ¢fimirows to this type using:

liftMaybe € Arrow a = a b ¢ — MaybeArrowT a b ¢
liftMaybe f = MAT (f >> arr Just)



37

Again, in general, the arrow operators in the new type arenééfin terms of the
operators in the parameter type. Moreover, the arrow opesaheed to handle failures,
which means they need to make dynamic decisions, and therefost require that the
parameter arrow type supports choice:

instance ArrowChoice a = Arrow (MaybeArrowT a) where
arr f = liftMaybe (arr f)
f>>qg=Ilet fo = unMAT f
go = unMAT g
in MAT (fo >> arr (Az — case z of
Just ¢ — Left c
Nothing — Right Nothing) >>
(90 I arrid))
first (MAT f) = MAT (first f >>
arr (A(c, d) — case c of
Just ¢ — Just (¢, d)
Nothing — Nothing))

3.2.4 Indexed Arrows

As we have presented the definition of indexed monads,Kleisli structures we
want to define indexed arrows. Recall definitb.1, whereinc is afunctorfrom ) to C.
It is because ofnc that we have the quantifigiorall in the definition of thedrrow class
in Section 3.2.1. But again, suppose we wansétectsome elements frony to build
our computations. For that purpose we define here a geratrafisof Freyd-categories
which we callindexed Freyd-categoriegssentially, a indexed Freyd-category is build on
top of anindexedcategory of values.

An indexed category is a well know construction from catggbeory, which model
uniformly defined families of categories (TARLECKI; BURSIA; GOGUEN, 1991).

Definition 3.2.2 (Indexed Category) An indexed categor§ over an index is a functor
I°? — Cat. Given an index € I, we may writeC; for the categoryC(:), and given an
index morphisnw :: i — j, we may writeC, for the functorC(o) : C(j) — C(i). Also,
we may call’; thei’* component category 6f

Definition 3.2.3 (Indexed Freyd-category)A indexed Freyd-category is a structurg,
V,C,inc, X) with:

e a category) with finite products (the value category),

anindex sef € Set, taken as a trivial category and used as the index category,

an indexed category;, such that € I,

a categoryC; with the same objects ag (the computation category), such that
1€ 1,

a family of functorgnc indexed byi € I, withinc; :: V; — C; that is the identity
on objetcs,

a family of functorsx indexed by, j € I, with x; ; :: C; x V; — C; ;) such that

inc; T X;; Yy = incg (T X y)
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and the following natural isomorphisms, indexed:by k € I,inV

assock 1 (A; X Bj) x Cp =2 A; x (B; x C)
unitry : A; x 1= A

extend to natural isomorphism in the indexed categbry

inc assocy : (A X Bj) x Cp = A; x (Bj x Cy)
nc unitry - A; x 1= A;

Below, we show the diagram for an indexed Freyd-category:

C; Cig)
Tz‘nc T[Xz},j

Now, the definitions otirr, >, andfirst in Haskell could be rephrased as:

arr € forall b; ¢;.(b; = ¢j) — a b; ¢;

(>>) € forall b; ¢; dy..a b; ¢; — a ¢j d, — a b; dy,

first € forall b; ¢; di.a b; ¢; — a (b, dy) (¢j, dy)
suchthat, j, k € I.

In terms of type classes we would like to rewrite therow class to become a indexed

Arrow class allowing us to write, for instance:
class IArrow m where
arr € (I b,I¢c)=(b—c)—abc
>)ye(Iblcld)=abc—acd—abd
firste (I b,]c,Id)=abc—al(bd) (cd)

Unfortunately, in the current version of GHC (6.5), the typer arr, =>>, and first
used in the arrow notation maytbe overload to have our proper types. This is a problem
related to “rebindable syntax in GHC” (SABRY, 2006), anceiéms that it is quite hard to
solve. Therefore, we can define andexed arrow$ut wecan notrun programs directly
into Haskell based on them for the moment. As an option to dentiperm manually to
pure Haskell we still can use Paterson’s preprocessor.

3.3 Summary

In this Chapter we have presented two mathematical notimesiadsand arrows,
which are now widely used in computer science, mainly in progning language se-
mantics and design. For us these constructions are integes a tool to structure and
elegantly model computational effects introduced by quientomputations. Specially
we have presented generalisations of these concepts, whidallindexed monadge-
spective to Kleisli structures (ALTENKIRCH; REUS, 1999))caindexed arrowswhich
are the right structures to model finite complex vector spécéid over a computational
basis set (that is, the set of classical observable values).
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4 QML: QUANTUM DATA AND QUANTUM CONTROL

This chapter is based on (ALTENKIRCH et al., 2005), where weetbped a sound
andcompleteequational theory for a pure (omitting measurements) sighiage of QML.

The language QML was introduced in (ALTENKIRCH; GRATTAGE)(5) and
(ALTENKIRCH; GRATTAGE, 2005b). QML is a first order functiahlanguage which
features both quantum data structures and quantum comtuaitwes, in particular a
guantum conditional structui€® - which analyses quantum data without measuring, and
hence without changing the data.

QML’s type system is based atrict linear logig, that is linear logic with contraction,
but without implicit weakening.

The chapter is divided in three parts: i) an informal view loé tanguage; ii) proof
of completeness for a classical sublanguage of QML; angnadf of completeness for a
pure sublanguage of QML.

A next step would be generalise this approach to the full Q&tluding measure-
ments. In next chapters we structure a model for generdu@imy measurements) and
complete (including quantum and classical data as well asrtterchanging between
quantum and classical worlds) quantum computations usiogva. We hope to integrate
the results of next chapters with a quantum programmingdage like QML.

4.1 The Language QML

We consider some interesting examples to give furthertiotuebout the semantics
of the language. We present the examples using global ursctefinitions.
The following three functions correspond to simple rotasion qubits:
gnot x = if° x then false else true
had x = if° z then ((—1) x true + false) else (true + false)
zx = 1if° z then (i x true) else false
The first is the quantum version of boolean negation: it beba@s usual when applied to
classical values but it also applies to quantum data. Etiayanot (k  false + v x true)
swaps the probability amplitudes associated vfithe and true. The second function
represents the fundamentéhdamardmatrix, and the third represents theasegate.
The function:
cnot ¢ x = if° ¢
then (true, qnot )
else (false, )
is the conditional-not operation, which behaves as follofvthe control qubitc is true
it negates the second quhit otherwise it leaves it unchanged. When the control qubit
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is in some superposition dfue and false, the result is a superposition of the two pairs
resulting from the evaluation of each branch of the condélo For example, evaluating
cnot (false + true) false produces thentangledoair (false, false) + (true, true).

To motivate the main aspects of the QML type system (which reegnted in the next
chapter), we examine in detail the issues related to commagdiscarding quantum data.

4.1.1 Copying Quantum Data

A simple example where quantum data appears to be copiedlation of theno-
cloningtheorem (NIELSEN; CHUANG, 2000), is:

let x = false + true

in (z, )
As the formal semantics of QML clarifies, this expressionsduogt actually clone quantum
data; rather isharesone copy of the quantum data. With this interpretation, cae c
freely duplicate variables bound to quantum data. Wherslaéed to the type system,
this means that the type system imposes no restrictionssomsth of the structural rule of
contraction

4.1.2 Discarting Quantum Data

In contrast, a simple example where quantum data appeaesdistarded is:

let (z,y) = {(false, false) | (true, true)}

inx
Indeed the quantum data boundstas discarded, which according to both the physical
interpretation of quantum computation and the QML semamtkplained in next chapters
corresponds to measuremertdf y. This measurement could be made explicitin the QML
syntax by writing:

let (z,y) = {(false, false) | (true, true)}

in meas y in z
Since measurement is semantically quite complicated tbwltdg they should be explic-
itly represented in the syntax and typing judgments. Thadype system is designed to
reject the first expression and accept the second. This nieanhthe structural rule of
weakenings controlled and can only be used when it corresponds to plicéxneasure-
ment.

Of course, the situation is more subtle than just syntatfichecking whether a vari-
able is used or not. Consider the expression:

if® z then true else true

The expression appears, syntactically at least, taruséowever given the semantics of
if® which returns a superposition of the branches, the exne$&ippens to returtrue
without reallyusingany information about. In order to maintain the invariant that all
measurements are explicit, the type system rejects theeabquession. In more detail,
an expression:

if° z then t else u

is only accepted if andu areorthogonalquantum values. This notion intuitively ensures
that the conditional operator does not implicitly discany anformation about: during
the evaluation.
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4.2 The Classical Sublanguage

4.2.1 Syntax

By the classical sublanguage, we mean a classical first-tudetional language. The
syntax of terms is the following:

(Variables) x,y,... € Vars

(Patterns) p,q ==z | (z,y)

(Terms)  tyu,e ==z | ()] (t, u)
| letp=tinu
| if ¢ then u else v’
| false | true

The classic sublanguage consists of varialdleisexpressions, unit, pairs, booleans,
and conditionals.

4.2.2 Type System

The main role of the type system is to control the use of e® The typing rules
of QML are based on strict linear logic, where contractioresimplicit and weakenings
are not allowed when they correspond to information losseXdained in the previous
section, weakenings correspond to measurements, whiaioaseipported in the subset
of the language discussed in this work.

We useo, 7, p to vary over QML types which are given by the following grammma

o= | |o®T
As apparent from the grammar, QML types are first-order antkfithere are no higher-
order types and no recursive types. The only types we camsept are the types of
collections of qubits.

Typing contextsI(, A) are given by:

=e|[z:0
wheree stands for the empty context, but is omitted if the contexiaa-empty. For
simplicity we assume that every variable appears at most.o8ontexts correspond to
functions from a finite set of variables to types. We intragltite operator, mapping
pairs of contexts to contexts:

Tz:o)@(Ayjz:0) = IT'®A),z:0 (4.1)
Nz:o)@A = (T®A),z:0 ifz¢dom(A) (4.2)
XA = A (4.3)

This operation is partial: it is only well-defined if the twortexts do not assign
different types to the same variable. Whenever we use tl@sabq@ we implicitly assume
that it is well-defined.

Figure 4.1 presents the rules for deriving valid typing jectgntsl’ - ¢ : 0. The
only variables that may be dropped from the context are tles onhtypeQ, which, by
definition, carry no information. Otherwise the type systences every variable in the
context to be used (perhaps more than once if it is shared).

To see how the type system works in more details considerdll@ving derivation
where the same variable is being used twice:
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'Ft:o Ax:obFu:r

—— var let
riobr:io ' Abletz=tinu:T
unit 'tt:o AFu:m
. ®-Intro
oF():Q @Ak (tu):o®T
FFt:o®T Az:oy:Thu:p )
®-elim
'@ AlFlet (z,y)=tinu:p
f-intro —t-intro
o | false : Oy o - true: 9,
I'kec: Qs AbFtu:o Ne:O1Ft:o )
if° wk-unit
I'® AF if° ¢ then t else u:o 'Ht:o

Figure 4.1: Typing classical terms

var var
_ z: Qo x: 9, T: Qo bz Oy
——t-intro ®
o true: Qs 0,£¢Qz"($7$)392®921
et
eRel let x =truein (z,x) : Qy ® Qy

The key point here is the context. Note that we can only praewith the empty context.
Intuitively this means that the context cannot includeafales which are never used. The

let expression introduces the variahlén the context, and using the operati@nwe can
sharethis variable:

0 17:Q; = eRe x:Q, (by 4.3)
= (o,2:Qy)® (o,2Q,) (by4.1)

4.2.3 The Category of Typed Terms

The set of typed terms can be organised in an elegant catagstructure, which
facilitates the proofs later. The objects of the categoeycantexts; the homset between
the objectd” and A, denotedI'm I"' A, consists of all the termssuch thatl” - ¢ : |A]
where|A| views the context\ as a type. This latter map is naturally defined as follows:

o] = O
z:0] = [IN®o
For each context, the identityl € TmI'T' is defined as follows:

le = (
1F,x:o = (11‘,37)

To express composition, we first define:
let" e = uin t t
let" T,z:0=uint let (z,,z) =uinlet' T'=2z,int
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Givend € Tm AT ande € TmTI' ©, the compositiore o d € Tm A O is given by the
termlet* I' = d in e.

For example, consider we want to model in this category the e - let z =
false in (((),x),z) : (Q1 ® Q2) ® Q. Then, we need the following objects:

I'=oe
O=e1y:0Qsz2:0Q>
such that
Tl =
O] =(]o|® Q) ® Q= (Q1® Q2) ®Qy
and we have that the term is the arrow below:

let x=false in (((),x),x)

r S

Now, as the typing rules suggest the let expression abowe isdme as the composi-

tion of e - ((), false) : Q1 ® Qs with Q1 ® Qs F (((),2),z) : (Q1 ® Qo) ® Qy, that is,
given

A = e 1:Q,
Al = || ® Q=01 ® Dy

we want the following diagram to comute:

let x=false in (((),x),z)

r )

((),false))

A

Checking: the compositiof{(), z), ) o (z, false) is
let" A = (z, false) in (((), z), x)
(by definition of A)
=let* o,z : Qs = ((), false) in (((), z), x)
(by definition of let”)
=let (z,,z) = ((), false) in let” @ =z, in (((), z), x)
(by definition of let”)
= let (z,, ) = ((), false) in (((), z), )
(by B equation)
=let z, = () in let z = false in (((), z), z)
(by substitution)
= let z = false in (((), z), x)

4.2.4 Semantics

The intention is to interpret every typeand every context' as finite set§o] and
[T], and then interpret a judgemdnt- ¢ : o as a functiodI' ¢ : o] € [T'] — [o].
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In the classical case, the tyg® is simply the type of booleans; the types are inter-
preted as follows:
[Q:] = {0}

[[QQ]] {07 1}
[cor] = [o] x[7]
We use the abbreviatigi'] for [|T']].
The meaning function is defined in Figure 4.2 by inductionrdiie structure of type
derivations. It uses the following auxiliary maps:

e id: S — Sdefined byid(a) = a
e id*: S — [Q;] xS andits inverseéd, defined byid*(a) = (0,a) andid.(0,a) = a

e Fora € S, the family of constant functionsonsta : [Q;] — S defined by
(consta)(0) = a.

e §:5— (5,95)defined byi(a) = (a,a)

e swap : S x T — T x S defined byswap(a,b) = (b, a). We will usually implicitly
useswapto avoid cluttering the figures with maps which just re-stathlues.

e For any two functionsf € S; — T; andg € Sy — Ts, the function(f x g) :
(S1 x S3) — (T x Ty) is defined as usual:

(f xg)(a,b) = (fa,gb)

o opa: [I'®A] — [I'] x [A]. This map is defined by induction on the definition of
I' ® A as follows:

5F’,A’ xo if'= F,,SL’ o andA = A/,I‘ o
dra=1 O6paxid ifI=1I"2:0andzx ¢ dom(A)
Wt ifI'=e
Intuitively, the mapir A takes an incoming environment for an expression, creates
shared copies of the appropriate values, and rearranges(the shuffling is im-
plicit and not shown in the above definition) into two envinoents that are then
passed to the subexpressions.

e Foranytwo functiong, g € S — T, we define the conditiondl|g € ([Qs] xS) —

T as follows:
(flg) (L,a) = fa
(flg) (0,a) = ga

4.2.5 Examples

We interpreted some simple QML expressions as explainedealidonsider the fol-
lowing function representing boolean negation:
gnot x = if° x then false else true
Formally, this function can be written as the type judgeniehbw:

r: Qo if° x then false else true: O,
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[eF(): Q1] = const0
[o I false : Q5] = const0
[o - true: Q2] = constl
[x:0bFz:0] = id.
[T®AFletz=tinu:7] = go(f xid)odra
where f = [['Ft:0]
g = [Az:obu:T]
[T®AF (t,u):o®@7] = (fxg)odra
where f = [['Ft:0]
g = [Atwu:7]
[T®AF1let (z,y) =tinu:p] = go(f xid)odra
where f = [THt:0®7]
g = [Az:0y:THu:p]
[’ ®AF if° ¢ then t else u:0] = (glh)o (f x id)odpra
where f = [['Fc: Q5]
g = [AFt:0]
h = [AFu:o]
[THt:0] = foud
wheref = [,z : Q, Ft: 0]

Figure 4.2: Meaning of classical derivations

Because the initial empty context is omitted if the contexhon-empty, we have
e, 1 : Q,, Which is equivalent to:

01r:Q; = (e®e) z:Qy (by4.3)
= (e,z:Qy)®e (by4.2)

Therefore, we shall interpret the type judgement rewrigten

[(e,z: Q) ®eF if° x then false else true: Qs
= (glh) o (f X id) © 0(a.2:02).0
where f = [e,x: Qb x: Qo] = id.
g = [el false: Q5] = const0
h = [ek true: Q] = constl
5(.@@2)7. = 5.7. X id = id* X id
= (const0|constl) o (id, X id) o (id™ X id)
— by definition ofid, andid*
= (const0|constl) o (id x id)
= (const0|constl) :: ([Qa] x [Q1]) — [Q2]

defined as

(const0|constl) (1,0) = const00 =0
(const0|constl) (0,0) = constl 0 =1

which exactly behaves as the boolean negation.
Other example is the function which copies classical 4ata

1This will be interesting to compare with the semantics inribgt chapter for quantum data
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[e @ @t let z =truein (z,7) : @y ® Qs
=go(fxid)odes
where f = [eF true: Q,] = constl
g = [e,x:Q:F (x,2): Qs ® Q5]
- by definition of ® on contexts
= [[0@0,1‘ : QQ - ({L‘,l‘) : QQ@ QQ]]
- by definition of ® on contexts
= [(e,2: Q)@ (e, 2: Qo) F (z,2) : Oy ® Qo]
= (f'xg)o 5(-@:92),(-@:/@2)

where ff= [e,x: Qb x: Qo] =id.
g = [e,x: Qb x: Qs =id.
Oow:00) (02:0) = Oue X0 =1d" X §

Remember that the shuffling is implicit in the definition &f,. Basically, for the
case above, that is @y, ,.0,),(e,2:0.), Where the variable is being shared, we will need
the following function:

rew :: Q1 X Q1 X Qg X Qg — Q1 X Qs X Q1 X Qs

rew = id X swap X id

The final interpretation for theget can be analyzed in the diagram below:

ﬂo@oﬂgﬂo@)o M>[[Q2®o]]

swap

[e ® Q5]

lid*x&

= [e 2 0® Qy® Qs

g lrew

[e ® Oy @ @@ Qs

let z=true in (z,z)

[Qs ® Q5]
4.2.6 Equational Theory

We present the equational theory for the classical subkggwand then show its
soundness and completeness. The equations refer to a sgttatte values defined
as follows:

val € ValC =z | ()| false | true | (valy,vals)

Definition 4.2.1 Theclassical equationare grouped in four categories.

e let-equation

let p =valin u = u [val / p]

e [-equations

letz=tinlet y=uine
u
t

let (z,y) = (t,u) in e
if° false then t else u
if® true then t else u
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e 7-equations

() = t --iftt 9
let z=tinz = t
let (z,y) =tin (z,y) = t
if° ¢t then true else false = t
e Commuting conversions
let p=tinlet g=uine = let g=uinletp=tine
let p =if° ¢t = if° ¢
then ug then let p =ugin e
else u; else let p =ujine

in e

We writel' -t =wu:oif I' - t,u: 0 and the equation = u is derivable at the type
g.

Lemma 4.2.1 (Soundness)he equational theory is sound: Iif - ¢ = u : o then the
functions[I" - ¢ : o] and[I" - u : o] are extensionally equal.

Proof. By induction on the derivatioh -t =u : o.

e let-equation

let p = val in u = u [val / p]

Note that this equation is a bit restrictive.can only be bound to galue This is
because we want to use all these equations for the languagel adth quantum
data. The key point here is the well-known “non-cloning” peaty of quantum
states (NIELSEN; CHUANG, 2000). Imagine thais bound to quantum data, and
that it is being used more than once in the ternThis would correspond to make
copies of qubits, which is physically not realizable.

To prove soundness for that we will interpret substitutisruaual. From the rules
on Figure 4.1 we can derive the following substitution rule:

'Foval:0 Ap:obu:r
I'® AFufval/p]:

Subs

whereu[val /p] denotes the result of substitutingl for p in «, which is interpreted
as:

[T ® At ufval/p] : 7] =
[A;p:obwu:7]o([I'Fwval: o] xid)odra

That is, exactly as given the meaning fet p = val in u in Figure 4.2.
e (-equations

1. let (z,y)=(t,u)ine=letz=tinlet y=wuine
First, the left hand side.
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lhs =T A® A"t let (x,y) = (t,u) ine: p|
= ge © (ftw) X 1d) 0 d(rgn),ar

where
ge = [Az:oy:THu:p]
fow = [TOAF(tu):0®7]
= (ftxfu>05F,A
where

fi = [CFt:0]
fu = [Abtwu:7]

Then, we have:

lhs = ge © (((ft X fu)) o 5F7A) X Zd) e} 5(F®A),A/
To the right hand side:
rths =[FT® A®A'Fletz=tinlety=wuine: g
= (et © (ft X Zd) o) 5F,(A®A’)
where
fi = [TEt:0]

Jlet [A@ A z:oF lety=wuine: g
o (fu X Zd) o 5A,(A’,m:a)

where
fu = [AbFwu:7]
ge = [Ax:0y:THe: ]

Then, we have:

rhs = (e © (fu X Zd) 0] 5A,(A/,m:0) o (ft X Zd) © 5F7(A®A/)

Finally, because parallel composition is extensionallyatp sequential com-
position using identity in the extra wires, we have that Issextensionally

equal to rhs:
FroeAA
TeA) A I'e (Ao A)
51’*7A><7;d lftxzd
FroAQ A oc®(A®A)
fex fuxid léA,(A’,zzo)

fuxid
J®T®A/<—XA®<A/®U)

lge

p




2. if° false then t else u = u

First the left hand side:

lhs =[I'® Ak if° false then t else u: 0]
= (g[h) o (f xid) 0 bp A

where

f = [eF false: Q5]
= const0

g = [AFt:0]

h = [AFu:o]

Then, using the conditional definition and becalise empty:
lhs = (g|h) o (const0 x id) o id" = h
Now, the right hand side:
ths = [e®@ At u: o] =h.
The proof can be easily compacted in the diagram below:

id*

oA

o (e®A)
lconstOxid

h QQ@(‘@A)

l(gh)

o
3. if° true then t else u =t

First the left hand side:

lhs = ® AF if° true then t else u: o]
= (g[h) o (f x id) o op A

where

f = [eF true: Q5]
constl

g = [AFt:0]

h = [AFu:o]

Then, using the conditional definition and becalise empty:

lhs = (g|h) o (constl x id) o id™ =g
Now, the right hand side:

ths =e@ AkFt:o]=g.

49
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Again, the proof can be easily compacted in the diagram helow

0®A id*

e (e A)

lconst 1x1id

g QQ@('@A)

l(glh)

g
e 7-equations

l.letz=tinz =1t

lhs =[®AFletz=tinz: o]
:go(fxid)oép,A
where
f = [TkHt:o]
g = [Ax:0kFz:0]

= [e,z:0tFx:0]
= 1d,

then, knowing that\ is empty, we have:

lhs = id.o(f xid)odr.

and

ths =[T'®ett:0]
=[Tkt:0o]
=/

The proof is illustrated by the diagram:

id

I'Re oRI'Re

lfxid

cRe
lid*
2. let (z,y)=tin (z,y) =1

lhs =T ® At let (x,y) =t in (z,y) : o]
=go(fxid)odra

where



f = [THt:o®7]

g = [Az:oy:7F (z,y): 0]
= [e,z:0y:7F (2,9): 0]
== (g:v X gy) < 5o,mza,y:7—
where

9o = [r:obx:o]=1id,
gy = y:7Fy:7]=1d.

then
lhs = (id. x id,) oid" o (f X id) o id"

Using the facts thaf\ is empty and thap = o ® 7, we have:

eRl'®e
fxid
CRTR e
id*
eRNIORORT
id X ids

oRT

'Re

3. if° t then true else false = t

lhs = [F'® AF if° t then true else false: Qs
= (glh) o (f x id)odra

where
f = [CFt: Q]
g = [eF true: Qs
= constl
h = Jet false: Q)]
= const0

Then, using the conditional definition and becatsis empty:

lhs = (constl|const0)o (f x id) o id”
=
= [[F X e I— t: QQ]]
= rhs

More specifically, we have the following diagram:

51
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I'®e RNl Re

lfxid
QR e

l (const1|const0)
Qs

e Commuting conversions

l.letp=tinlet g=uine
= let g=uinlet p=tine

lhs = [TRA®RA'Fletp=tinletg=wuine: ]
= gleto(ftXid)Oér,A@)A'

where
fi = [IFt:0]
Gt = [A®p:o,A'Fletg=wuine: ]
= Ge© (fu X Zd) O[[5A7(p10'7A/) ]]
fu = [AFu:T
Wherege = [p:oq:7,AFe:p]
then
lhs = e © (fu X Zd) o 5A,(p:U,A/) o (ft X Zd) o 5F,A®A’
Now,

rths = [T®A®A'Fletg=wuinletp=tine: p]
= Jlet © (fu X Zd) © 5A,F®A’
= geo (fe X id) 0 Op,(g:r,any © (fu X id) 0 62 rear

Therefore, the diagram commutes:

ATRQA

F'®(A®A) 2% P o Ag A — 2T A g (Do A)
Jixid fuxid
o (AR A) T (e A)
A, (pio,aT) Op, (gir, A7)
A®(c®A) I'e(reA)
Juxid fixid
cRTRAN cRTRN

p
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2. let z = if° t then u, else u;
ine =
if° ¢
thenlet z = upin e
elselet z = u; in e

lhs = [T®A®A'Fletr = if° t then u, else u
ine: 7]
= (ge© (fzf X Zd) o 5(F®A),A’

where

fir = [FT®AF if° t then u, else u;: 0]

= (fuolfur) o (ft X id) o bp A
ft = [[P Ft: QQ]]

fuo = [AF ug:o]

fu = [Atup:o]

ge = [Ax:0ke:T]
Therefore:

lhs = gco (((fuolfur) o (fi X id) o 6p.a) X id)o
d(reA),A”

Now, the right hand side:

ths = [FTA®AF if° ¢t
then letx =1ugine
else letz =wu; ine: 7]
(glet1|hlet2) o (ft X Zd) © 5F7(A®A/)

where
ft = [[P l_ t: QQ]]
Gt = [ARA'Fletx=wugine: 7]
= (O (qu X Zd) (¢] 5A,A/
fuo = [AF ug:o]
ge = [Alx:oke:T]
hiew = [ARA'Fletx=wu;ine: 7]
= e 0 (fur X id) 0 da ar
fu = [AtFuy:o]
Therefore:

rhs = ((ge o (fuo X id) 0 0a,.ar)[(ge © (fur X id) 0 0a.Ar))
O(ft X Zd) o 5F,(A®A/)

Finally, both sides of the equation are extensionally eggahows the com-
mutative diagram below:
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T @A) @ ALY b A ga— TR g (A gAY
dr,axid lfﬁmd
reses - QR (AR A
fexidxid P - /<$A’A/>
QAR A //// Rk
(fug | fuy ) x id <gzet1\hiet/2)/ -
7EA /// = woxid | wixid

b
7
7
b
\}\\ L e T
.

ge

o® A

We note that the equation

e Commuting conversion farf®

if° (if° ¢ then ug else u;) then ¢ else e; =
if° ¢

then (if° uy then ¢, else ¢)

else (if° u; then e else e;)

is derivable from the ones given above.

Proof. Assume that we have the following equivalence:
let z = e in if° z then e; else e; = if° e then ¢; else e; (%)
Then we can prove the commuting conversioniféras follows:
if° (if° e; then e, else e3) then e, else 5
= (assumed eq.x)
let z = if° e; then e, else e; in if° z then e, else e5
= (commuting conversion let — if° (def.4.4.1))
if° e; then (let z = e; in if° z then e, else e;)
else (let = e3 in if° z then ¢4 else e5)
(assumed eq twice)
if° e; then (if° e, then e, else e;5)
else (if° e3 then e, else ;)
So really we only need to prove (*). We do the proof by cases.on e

e If eis avalue then both sides are equivalentifo:e then e¢; then es.
e If e = (e3,e4), then the equation is not well-typed.

o If ¢ = (let p =e3in ey), thenthe lhs is:
let z = (let p = e3 in e4) in if° z then e; else e,
= (n equation for if°)
let z = (if° (let p = e3 in e4) then true else false)
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in if° z then e; else e,
= (commuting conversion for let — if°)
if° (let p = e3 in ey)
then (let z = true in if° z then e; else e,)
else (let © = false in if° z then e; else e;)
= (0 equations)
if° (let p = e3 in e4) then e; ey
= rhs

o If e =if° ¢t then u else 4/, then the lhs is:

let © = (if° ¢ then v else «’) in if° z then e; else ey
= (n equation for if°)
let z = if° (if° ¢ then u else ')
then true else false
in if° z then e; else e,
= (commuting conversion for let — if°)
if° (if° ¢ then u else ')
then (let z = true in if° z then e; else e5)
else (let z = false in if° x then e; else e,)
= (5 equations)
if° (if° ¢ then u else ')
then e;
else e,
= rhs

4.2.7 Completeness of the Classical Theory

The equational theory isompletein a strong technical sense: as we prove in the
remainder of the section, any equivalence implied by theaseics is derivable in the
theory. The proof technique is based on current work by TibarAltenkirch with Tarmo
Uustalu (ALTENKIRCH; UUSTALU, 2004). The proof we presentends and simpli-
fies the method presented in that work.

4.2.7.1 Proof Technique

The ultimate goal is to prove the following statement.

Proposition 4.2.1 (Completeness)f [T ¢ : o] and[I" - u : o] are extensionally equal,
thenwe canderivE -t =u: o.

In model theory (BRIDGE, 1997), in general one starts witkemantic structure and
then from that defines the language (i.e., the syntacticttre). In this context, one
wants to define aepresentativeor inversefunction to show how semantic objects are
represented in the syntactic structure.

However, in programming languages design, it is naturaltow a contrary path. We
start with a syntactic structure (the language) and themthie semantics using a meaning
or evaluation function as we do here.
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Therefore, in order to prove the statement above, we defimecidngZ which inverts
evaluation by producing a canonical syntactical repregiet In fact, we define the
functiongf such that it maps a denotati@fi - ¢ : o] to the normal form of.

Definition 4.2.2 Thenormal formof ¢ is given by rff(¢t) = ¢Z([T' - ¢ : o]).

The normal form is well-defined: given an equatibn- ¢t = u : o, we know
by soundness thdf" + ¢ : o] is extensionally equdll’ - « : o] and hence we get that
nfl(t) = nfZ(u). If we can now prove that the syntactic theory can prove thetyeterm
is equal to its normal form, then we can prove the main corepksts result. Indeed given
the following lemma, we can prove completeness.

Lemma 4.2.2 (Inversion) The equatiod’ - nfZ(t) =t : o is derivable.

Proof. Proof of Proposition 4.2.1 (Completeness) We have:

'Ft=q¢i[T+t:0]:0  byinversion
FF@CHt:0]=¢[TFu:0]:0  byassumption
I'F¢f[l'Fu:o]=wu:0  byinversion

0

To summarise we can establish completeness by defining &éidang that inverts
evaluation and that satisfies Inversion Lemma 4.2.2. Esdlgnthe approach can be
analyzed in Figure 4.3. Consider we have two different sstidderms ¢, ¢;) and that
they are given the same denotatigf).( Then, we can use the function which inverts
evaluation ) to map the meaning back to the normal form of the terms (riihally, we
have completeness if we can derive the dashed arrows (irytii@d from the equational
theory.

Syntax i
y ] Denotation

(DX

Figure 4.3: Diagram for completeness proof technique.

4.2.7.2 Adequacy

We begin by defining a family of functiong (“quot€) which invert the evaluation
of closedterms and prove a special case of the inversion lemma foedltesms, called
adequacy These functions and the adequacy result are then used me#ttesection to
invert the evaluation of open terms and prove the generatson lemma.
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Definition 4.2.3 Thesyntactic representations of denotatiegiven by:
¢’ € [o] — Val“s

defined by induction over:

qu 0 = ()
q20 = false
g1 = true

qU®T (a’a b) = (qg a,q" b)
The version of the inversion lemma for closed terms is cadléequacy It guaran-

tees that the equational theory is rich enough to equatg elesed term with its final
observable value.

Remark 4.2.1 Note thate € [I'® A] is different fromg € [I'] andd € [A]. But
drae = (g,d). Forinstance, considel’ = e,z : Q;, A = e,z : Q;,y : O, then
F®A:.,I‘ZQ1,yIQ1.

Lemma4.2.3Fore € [I'® A] andg € [I'], d € [A], such thavr ae = (g,d), then

e Forlet
let* T®A=¢"®¢cinletz =tinu

let z = (let' T =¢'gint) in let* A = ¢*d in u.

e For product
let* T @ A = ¢"®2ein (t,u)

(let" T =¢"(g) int,let* A = ¢2(d) in u).
Proof. The proof is by induction over the definition gf on contexts.
e BaseCasese ® A = A

— Forlet: if d € [d], andd, ad = id"d = (0,d), then

lhs =let* e @A = ¢***dinletz =tin u
= (by ®)

let* A =¢”dinlet x =tinu

rhs =letx = (let* e = ¢*0int) in let* A = ¢*d in u
= (bylet")
let z =tinlet* A =¢”dinu
= (by Commuting)
let* A =¢”dinlet z =tinu

— Forproduct if d € [d], andd, ad = id*d = (0, d), then
lhs =let* A =q¢”din (t,u)

(let* @ = ¢*(0) in ¢, let* A = ¢”(d) in )
(t,let* A = ¢”(d) in u)

= (by let case above

let* A = ¢®din (¢,u)

rhs
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e Induction hypothesis: assume the lemma holdgfap A), such that’ € [I' ® A]
andg € [I'], d € [A], such thatr ae’ = (g, d).

e Inductionstep 1(I'z:0) @ A = (T'® A),z: oif x ¢ dom(A)

— Forlet:ife € [(I'® A),z : o], andd(r z:0),n€ = ((g, 5), d), then

lhs =let" (T ®A),z:0=q"®*%cinlet r; =t in u.

rhs =letz; = (let" T,z :0 = ¢""(g,s)int) inlet"* A = ¢®d in u
= (bylet”)
let 7; = (let (z,,7) = (¢"g,¢°s) inlet* T' = x, in 1)
in let* A =¢~din u
= (by g equation
let 7; = (let z = ¢°sinlet* T' = ¢ gint)
inlet" A =¢®dinu
= (by commuting conversign
let 7, = (let'* T =¢'ginlet z = ¢°s in t)
in let* A =¢~din u

= (by hypothesis
let' (I ® A) =¢T®2¢ inlet 2, = (let + = ¢”s in t)
inu

— Forproduct if e € [(I'® A), z : o, andd(r z.0),ae = ((9, 5), d), then

lhs =let" (T ®A),z:0=q¢ =% in (t,u)

rhs = (let' T,z :0 = ¢"""(g,s) int, let" A = ¢®d in u)
= (

by let”)
(let (z,,7) = (¢*g,¢°s) inlet* T =z, in t, let* A = ¢*d in u)
= (by g equation

(let z = ¢°sinlet* T = ¢'gin ¢, let" A = ¢®d in u)
= (by commuting conversign
(let' T'=¢'ginlet z = ¢°sin t, let* A = ¢®d in u)

= (by hypothesis
let* T ® A = ¢"®2¢" in (let x = ¢°s in t, u)
= (by let")

let* T ® A = ¢"®2¢ in (let* o, 2 : 0 = ((),¢°s) in t,u)
= (by let case)

let* o,7:0® (I'® A) = ¢**7@T@Ne in (¢, u)

= (by ® on context$

let'(T ® A),z: 0 = ¢'®2)%% in (¢, u)

e Inductionstep 2(I',z: 0) ® (A,z:0) = (' @A),z : 0.

— Forlet: if e € [(I'® A), 2z : o], andd(r 4:0),(a,z:00€ = ((9,5), (d, s)), then
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lhs =let" (T ®A),z:0=q"®*cinlet z; =t in u.

rhs =let x; = (let' T,z :0 =q¢""(g,s) in t)
inlet" A,x:0=¢>"(d,s)inu
= (by let”)
let 7, = (let (z,,7) = (¢"g,¢°s) inlet* ' = z, in t)
in let (7,,7) = (¢°d,q’s) inlet* A =z, in u
= (by (5 equation
let ;= (let z = ¢°sinlet* T'=¢'g in ¢)
inlet x = ¢°sinlet* A = ¢®dinu
= (by commuting conversign
let 7, = (let* T =¢'ginlet 2 = ¢°s in t)
inlet* A =¢”dinlet x = ¢°sinu
= (by hypothesis
let (T ® A) = ¢T®e inlet 2, = (let v = ¢”s in t)
inlet x =¢°sin u
= (by let")
let' (@A) =qT®e inlet 2, = (let* o,7: 0 = ((),¢%s) in t)
let* o,z :0 =((),q%s) inu
= (by commuting conversion
let 2, = (let* o,z : 0 = ((),¢%) int)inlet" (T ® A) = ¢®A)¢!
let" o, : 0 =((),¢°s) inu
= (by base cage
let* o,7: 0 @ (I' ® A) = ¢*=®I®A¢in let 2; = t in u
= (by ® on context$
let* T®A),z:0=q¢T®)%%inlet 2; =t in u

Lemma 4.2.4 (Adequacy)The equatio ¢°([F ¢ : 0] 0) = ¢ : o is derivable.

Proof. The proof is by induction over ¢ : . Therefore, we need to generalize the
statement, that is, during the proof we encounter open tédmatanust be closed before
they are “quoted.” First we have to exteqtb contexts by identifying a context with the
product of all its components, i.e., we ugll. The idea we use in the proof is: given an
open termi” I- ¢ : o, and a semantic value representing an environmeat][I'], we can
generate a closed instance of the term by calculatifi¢y) and then generating nested
let-expressions. For convenience, we letewhich is defined in 4.2.3.

Note that we could have done this using iterated substitatas follows: giveni® =
Ty 1 01,%y 1 O9,..,%, : o, then forallv; € [o1],vs € [oo],...,v, € [o,]. Then
¢ ([t](x1 — v1,..., 20 — v,)) = tlxy = ¢ vy,..., 2, = ¢°"v,] This would have
worked in the classical case but not in the quantum case wvilere is a globa¢ntangled
quantum state. Imagine what happenb #= x : Qy,y : Qs with let (z,y) = (0,0) +
(1,1) in.... The idea oflet” is to maintain the global state with “pointers” to specific
values.

So in fact the statement to prove by induction is the follayvin

If g [I]thent ¢°([LFt:0]g)=let' T =¢"(g)int:o
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1. ¢ () : Q;. Then, we need to show

¢? ([oF (): ©1]0) = let* @ = ¢21(0) in() : Q.

The Ihs is equal to:

g2 ([o - () : 2]0)

The rhs is equal to:

let” o = ¢91(0) in() : &

(by the meaning function in Figure2)
q<*(const0 0)

(by const0)

q94(0)

(by q)

9)

(by q)

let* e = ()in () : Q
(by let*)

0

2. o |- false: Q,. Then, we need to show

q22([e - false: Q,]0) = let* @ = ¢<2(0) in false: Q,.

The lhs is equal to:

q<([[e - false: ©,]0)

The rhs is equal to:

(by the meaning function in Figure2)
q<2(const0 0)

(by const0)

q92(0)

(by q)

false

let* ¢ = ¢92(0) infalse : @, = (bygq)

let" o = falsein false: O,
(by let*)
false

3. o | true : Q,. Then, we need to show

g% ([e I- true : Q,]0) = let* @ = ¢°*(0) in true : Q,.

The Ihs is equal to:
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q<2([e - true : ©Q,J0) = (bythe meaning function in Figure2)
q<(constl 0)

(by constl)

q%(1)

(byq)

true

The rhs is equal to:

let* e = ¢22(0) intrue : Q@ = (bygq)

let” @ = truein true : QO
(by let”)

true

4. ¢ :0F x: 0. Then, we need to show

C(r:obx:o]g)=let'z:0=¢(¢9g)inz:o0.

Actually, because the empty context is omitted if the coneron-empty, then we
really need to show that if € [e,z : 0] = {0} x [o] then

¢ ([e,2:0F x:0](0,s)) = let*(e,z: o) = ¢¢¥?(0,s) in z : 0.

¢([e,z:0F z:0](0,s)) = (byFigure4.2)
q°(id. (0, s))
= ¢(s)
Therhsis:

let(e,x: 0) =q¢2®°(0,s)inz = (bygq)
let'(e,z2:0) = ((),¢°s)inz = (bylet")
let(z,,z) = ((),¢°s) inlet" e =2, inz =  (bylet)

let(z,,z) =((),¢°s)inz = (bygeq.)
let z, =()inlet x =¢°sinz =  (bylet)
y

—~
(e}

=

~—

let = ¢°sin z& =
q’s

5. T® Ak letxz =t inwu: 7. We want to show that: ¥ € [I' ® A] then
([F'®AkFletx=tinu:7]e)

Iet* I'®A=¢"®inlet z =t in w.

By induction hypothesis we have: if € [I'], s € [¢] andd € [A], such that
dr.ae = (g,d), then

@ ¢°([CFt:o]g) =let* T =¢"(g) in t.
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0) (A x:0Fu:T](ds)=let" Ax:0=¢>7(d,s) in u.

Now developing the lhs:

=

(TeAFletz=tinu: 7]e)

= (by the meaning function in Figure2)
([Ayz:oFu:T]o([I'Ft:0o] xid)odrae)
= (by simplification

T ([Ax:obu:7](d, [T Ft:0o]g))

= (by hypothesis 1.

let* A,z :0=q¢>°(d, [T Ft:o]g)inu

= (by q)

let* A,z : 0 = (¢°d,¢°[T Ft:0]g)inu

= (by hypothesis a.

let* A,z : 0 = (¢°d,let* T = ¢"(g) in t) in u

= (bylet")

let (z,,7) = (¢®d,let* T = ¢"(g) int) inlet* A =z, inu
= (by (5 equation

let 7, = ¢® dinlet v = (let" T = ¢'(g) int) inlet"* A =z, inu
= (by let equation

let 7 = (let" T =¢"(¢g) int) inlet* A = ¢®*dinu

= (by Lemma4.2.3)

let" T® A =¢"®*¢cinlet z =t in u.

6. T®AF (t,u) : 0 ® 7. We want to show that: if € [I' ® A] then
([T @A (tu): o T]e)

let* T ® A = ¢"®2¢cin (t,u).

By induction hypothesis we have:gfe [I'], andd € [A], suchthabr ae = (g, d),
then

@ ([T +t:0]g) =let' T =q¢"(g) in ¢.
(0) ¢ ([AF u:7]d) = let* A = ¢”(d) in w.

Now developing the lhs:

([T @A (t,u): 0@ T]e)

= (by the meaning function in Figure2)
CT([TFt:0] x [AFw:7])odrae)

= (by simplification

([T Ft:o]g, [AF u:T]d)

= (byq)

(°[T'Ft:0o]g,¢"[AF u:T]d)

= (by hypothesis a. and pb.

(let* T = ¢"(g) in t,let* A = ¢”(d) in )
= (by Lemma4.2.3)

let T ® A = ¢"®2¢c in (¢,u).
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4.2.7.3 Inverting Evaluation

As explained earlier, the main ingredient of the proof of pteteness is the function
g7 which inverts evaluation. To understand the basic idea wfthe inverse of evaluation
is defined, consider the following example. llebe the environment : (Qs ® Qs), vy :
Q, and letf € [I'] — [Q2]. To find a syntactic term correspondingftpwe proceed as
follows:

e flatten all the products by introducing intermediate nartt@s;produces an updated
environmenfl” = z; : Oy, 75 : Oy, 7y : Qy, and an updated semantic functigh

such that:
F (0, 21), 22),y) = £ (0, (1, 72)),y)

e enumerate all possible values for the variables, and applp each enumera-
tion to produce a result in the sp@,]. For example, it could be the case that
f((0),(1,1)),1) = 0. The result of each enumeration can be inverted to a syatacti
term usingg® from Definition 4.2.3.

e Put things together using nested conditions representitigeapossible values for
the input variables. In the example we are considering, we ge

let (x1,20) =z

in if° z;
then if° z,
then if° y then false
else
else
else

The idea is formalised in the following definition.
Definition 4.2.4 The function
g € (I'] — [o]) » TmTo
for inverting evaluations defined by analysing the context:

9 (f) = ¢ (f(0))

420, (f) = af (h)  whereh(g) = f(g,0)
@ a0, (f) = (if° x then ¢f (M) else ¢f (ho))
whereh;(g) = f(g,4) fori € {0,1}
qg,a}:(n@m)(f) = (J‘et ('Tl? x2) =2 in qg,x1:7’1,1‘2:7’2<h)

whereh(g, x1,z2) = f(g, (z1,x2))

The base case is straightforward: the evaluation producéssad value which can be
inverted using théquote” function of Definition 4.2.3. If the context includes a vénla

x of type Q;, then we supply the only possible value for that variabled@yl inductively
construct the term with the variabtebound to(). The result is of the correct type because
we can add or drop bindings of variables of ty@e to the environment. If the context
includes a variable of type O,, then we supply the two possible values for that variable
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—— z-intro Ihtio Thtu:o
— ) ———prob ———sup
o 0:0 Thrxt:o THttu:o

Figure 4.4: Typing quantum data (I)

0 and 1. A conditional is then used to select the correct lralepending on the actual
value ofz. Finally, if the context includes a variable of typex 7, then we simply flatten
the product and proceed inductively. The functigndoes indeed satisfy the inversion
lemma.

4.3 Quantum Data and Control

The QML pure sublanguage terms consist of those presenteekition 4.2, extended
with quantum data and quantum control. The full language @sludes quantum mea-
surement, which we do not consider in this work. The syntathefquantum constructs
is the following:

(Prob.amplitudes) k,t,...€ C
(Terms) tbu =
—
0 |k*xt|t+u

Quantum data is modelled using the construcist, 6), andt + u. The terms x ¢
wherex is a complex number associates prebability amplitude< with the termt¢. It is
convenient to have a special constantfor terms with probability amplitude zero. The
termt + w is a quantunsuperpositiorof ¢ andu. Quantum superpositions are first-class
values: when used as the first subexpression of a conditiegiturn the conditional into
aquantum controtonstruct. For exampléf® (true + false) then ¢ else u evaluates
both¢ andw and combines their results in a quantum superposition.

We develop the typing rules and semantics of the quantunmieag of QML in two
stages. First we extend the judgements ¢ : o and the semantics of Section 4.2.4 to
handle quantum data in a straightforward manner. This @rmphtment is only however
an intermediate step in the development as it admits quaptograms that are not real-
isable on a quantum computer. We then refine both the typemyahd the semantics to
identify exactly the realisable quantum programs.

4.3.1 The CategoryVec

As a first approximation to a type system for QML programs, wesider the type
system of Figure 4.1 extended with the rules in Figure 4.4.

Unlike the classical case, a judgemént- ¢ : o is notinterpreted as a function in
[I'] — [e]. Rather, because we now have superpositions of terms witiplex proba-
bility amplitudes, we interpret such judgements as fumgio [I'] — [¢]° where[o]°
represents the complex vectors over the basgedetin other words[o]? is defined to
be[o] — C which is sometimes denotﬂéﬂ]. We call the structure described above the
categoryVec.

Naturally this change requires that we revisit the semautithe classical terms given
in Figure 4.2 so that each denotation returns a complex xeEtr example, we should
have:

[o F false : Q,]? = constv  wherev 0 =1andv 1 =0

Instead of mapping the value representing the empty cotdéxé denotation ahlse, we
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[[O}—WIO'HQ = constv whereVa € Jo].va=0
[CFrxt:0]° = ¢ where ga = kx*(fa)
f = [+Ht:0o]°
[CHt+u:0]° = h where ha = fa-+ga
f = [[Ft:0]°
g = [[Fu:o]®

Figure 4.5: Meaning function for quantum data

now return a vector which associates the denotationfelse with probability amplitude
1 and the denotation afue with probability amplitude O.

This change can be done systematically by noticing thatriesponds to a monad
whose unit and lift operation are defined below:

returna (b) = 1if a = b and 0 otherwise

f[r(w) = Ba.(va)x*(fa)

More precisely every value that is returned in Figure 4.2xglieitly tagged with the
monadicreturn and when two functions are composed in Figure 4.2 ugirgg, the
composition is replaced bf* o g.

The meaning of the new constructs for quantum data is givéigiare 4.5.

4.3.2 Orthogonality

The type system presented so far does indeed correctly thaeckses of variables
and prevents variables from being weakened; yet the siuadi more subtle. It turns
out that the type system accepts terms which implicitly grenf measurements and as a
consequence accepts programs which are not realisabl@agiqucomputations.

Consider the expressiaft’ = then true else true: this expression appears, syntacti-
cally at least, to use. However given the semanticsif, which returns a superposition
of the branches, the expression happens to retumwithout reallyusingany informa-
tion aboutz. In order to maintain the invariant that all measuremerdgsaplicit, the type
system should reject the above expression as well.

More precisely, the expressidfi’ z then t else u should only be accepted if
and u are orthogonalquantum valuest(_L «). This notion intuitively ensures that the
conditional operator does not implicitly discard any imf@tion about: during the eval-
uation. Because of a similar concern, the two branches oparposition should also be
orthogonal.

The typing rules for conditionals and superpositions arelifiedl as in Figure 4.6.
This modification also achieves that programs are norndlise, the sum of the proba-
bilities of a superposition add up to 1.

In Figure 4.7 we define the inner product of terms, which to paiy of termsl’ +
t,u : o assigns(tju) € CU {?}. This is used to define orthogonality: L « holds if
(tlu) = 0.

The judgemenit° is not automatically closed under the equality judgemesricle we
add the rule (subst). Our philosophy is that we allow eqentiepresentations of QML
programs which do not satisfy the orthogonality criteriedlty, as long as the program as
a whole is equivalent to one which does satisfy the criteria.
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I'H°c: Oy AF°tu:o tLlu

IT'® AF® if° ¢ then t else u: o

P tuio tlu [P+ |lsl* =1

if®

TF Axt+Kk*xu:o

T'F°t:o T'Ft=u:0o
subst

T u:o

sup

Figure 4.6: Typing quantum data (II)

(tlt) = 1 st + N st/ [u) = N (tu) + N % (t|u)
(false[true) = 0 (t|k*xu+rK xu) Kk o* (tlu) + & (t|u')
(true|false) = 0

. - Astlu)y = X (tu)
<_0> |true) 0 = (true| 2) (tHA*xu) = At|u)
(0lfalse) = 0= (false| 0) {t+tu) = (tu)+ {t'|u)
(0|x) 0=(x/0) (tlu+u') = (thu) + (t|u')
(&) | (w)) = (tlu) = (') () =7 otherwise

Figure 4.7: Inner products and orthogonality

4.3.3 The CategoryQ®

The restriction of the set of typable terms requires a sinsdéemantic restriction. All
we need to do is to restrict the morphisms in the category ofpdex vectors to satisfy
the following two conditions:

e Linearity: If f ¢ A — B,a € C,andv, vy, vy € A, thenf (v +vs) = f(v1)+f(v2)
andf(av) = a(f v).

e Isometry: If f € A — B anduvy, v, € A, then(v;|vs) = (f v1|f w). (In other
words, f preserves inner products of vectors.)

Two morphismsf,g € A — B are orthogonalif for all vector v € A, we have
(f v|g v) = 0. We call the resulting category, the categ@¥ of strict quantum computa-
tions. The homset of morphisms ] — [¢]° satisfying the above conditions is called
Q° [T [o]°.

The meaning function is given as before but with the mapspnéted in the category
Q°, i.e., the meaning of a derivatidn - ¢ : o is a morphisn{I' - ¢ : ¢]° € Q° [I'] [¢]°.
The requirement for orthogonality in the type system is oééld semantically: for isome-
tries f, g, we have thaf|g is an isometry, iff andg are orthogonal.

4.3.4 Quantum Equational Theory

The equational theory for the quantum language inherithalequations for the clas-
sical case. This can be informally verified by noting thatrtieaning function in the case
of the quantum language is essentially identical to thesadascase. Formally, the proof
technigue explained in Section 4.2.7 applies equally veethe quantum case and yields
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the same equations for the classical core plus additionsadteans to deal with quantum
data.

Definition 4.3.1 Thequantum equationare:
(if°)

if® (A xto + Kk *x t1) then ug else u;
A« (if° to then ug else uy) + k * (if° ¢; then ug else u;)

(superpositions)

t+u = u+1
ﬁ

t+ 0 = 4

t+ (u+v) = (t+u)+wv

Ax (t+ u) = Axt+A*u

Axt+ Kt = A+ rK)*xt
é

0xt = 0

Lemma 4.3.1 (Soundness)he equational theory is sound: Iif - ¢ = u : o then the
isometried[" -t : o]? and[I' - u : o] are extensionally equal.

The additional equations are used to prove equality betaieEment quantum values.
Semantically, two quantum values are the same if they dghetsame vector, which is
the case if the sum of the paths to each classical value isthe.sFor example, to find a
simplified quantum value equivalent to:

(false + true) + (false + (—1) x true)
we first normalise to:

(1/v2) % (1 /V2) * false + (1 / \/2) * true) +

(1/v2)* ((1/V2) * false + (—1 / V/2) * true)
This term has two paths tfulse; along each of them the product of the amplitudes is
(1/+2) % (1/+/2) whichis1 /2. The sum of all the paths tfalse is 1, and the sum of
all the paths tarue is 0. In other words, the entire term is equivalent to simfaljge. The
above calculation proves that the Hadamard operationfisrserse, as discussed in the
introduction.

4.3.5 Quoting quantum values

We will now adapt the techniques developed in section 4@tA¢ quantum case. A
classical value € Val®s is simply a term representing an elemenf}. A quantum
value represents a vector[ﬂnT]Q, hence we have to close values under superpositions. We
defineVal® ¢ C Tm ¢ inductively as a subset of closed terms of type

veValo
[ ]

valv € Val® o

e 0cVallc

v,we Valo
[ ]

v+w e Val®o



68

Figure 4.8: Value tree fo@, ® Q,

ve Val®o

k*v e Vallo

We write Val%o for isometric quantum values which satisfy the restrictiotiroduced in
Figure 4.6.

We have already seen that there is a monadic structuré -end — C. Correspond-
ingly, we have a Kleisli structure o¥al®; val € Val®c — Val®s is the return and bind
is defined as given € Val% andf € Val®c — Val9r, we definev >= f € Val® 7 by
induction oven:

(valz)>=f=fz

0 >f=0

vtw >=f=(w>=f)+(w>=Ff)
Kxv >=f=rx(v>=f)

Lemma 4.3.2 (Val®, Val?, val, (>=)) is a Kleisli structure, i.e. it satisfies the following
equations:

lLuwle>=f=fx
2. v>=Xrowal z =v
Bovs=Xt.(fe)>=g=(v>=f)>=gyg

Proof. Case (i) follows from the definition. Cases (ii) and (iiiyxdae shown by induction
over the structure aof.

While the classical definition of° (def. 4.2.3) was completely straightforward, its
quantum counterpart is a bit more subtle, in particular endhse of tensor products. As
a special case considg?>®<2, given an element

Ve [Q: ® QQ]]Q = [Q2] x [Q2] — C

we have to construct a valyé&2®% v’ ¢ Val? Q, ® Q,. This can be done by calcu-
lating the probabilities that the first qubitisfst " i € R*, given by

fst v i = \/W(z’,O)P + |0 (i, 1)

creating the first level of the value as a tree, and then foséicend level normalising the
amplitudes wrt. the probabilities of the previous leveg Bgure 4.8 for the corresponding
tree. We write[o]” = [o] — R for the set of probability distributions, obviously we
have[o]” C [o]°. We observe thast v € [¢]P. Generalising the idea given above we
arrive at the following definition of quote:
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Definition 4.3.2 Thesyntactic representations of denotatiegiven by
¢° € [0]° — Val®o

defined by induction over:

¢2 v = (V0)x()
¢ v = (W 1)x*true+ (v 0)* false
v = ¢ (fst V)

s=\z € [o].(1/(fst ¥) 2) * " (\y. 7 (2, y))
>=\y.val (z,y)

where:
fst € [o®7]°— [o]°
fst v = /Sy.|v(x,y)

1/= € [o]” = [o]”
/72 = Mifpr=0thenOelsel/(p )

To show adequacy we have to establish a number of propefti€s we have to show
that it is linear and isometric and that it preserves tensodyects. This is summarised in
the following proposition:

Proposition 4.3.1

1. ¢ (kx0)=k*(¢°7)
2. ¢ (V+ W) =(¢" V) + (¢ W)
3. (VW) = (¢" V¢ W)

The proof of the above proposition again isn’t completetgightforward, e.g. linear-
ity cannot just be proven by induction over It is essential that we first establish some
properties of renormalising a vector wrt. a probabilitytdigition. We define the product
of a probability distributiorp € [¢]P and a vectorv’ € [o]° as:

pxv € [o]°
px v = v € [o].(pz)* (V)

Itis not hard to see that an analogous operation can be defineglues, given € Val® o
andp € [o]" as above, we define:

pxv € Va9
pxv = v>=\r € [o].(pz) * (valz)

The key property we establish is

Lemma 4.3.3 Givenp € [o]® and @ € [o]°

p*(q”?)zq”(p*?)
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which can be verified by induction overand observing that whilé/— isn't a proper
inverse, it nevertheless satisfies the following property

/p+q)*(+q =1/p)*p

Using the fact thai is isometric we can show that it produces values satisfyheg t
orthogonality constraints:

Proposition 4.3.2 Givenv € [o]°

g

Feq°v:o
4.3.5.1 Adequacy
We define a syntactic counterpart to:
ora € Q7 [T ® A]([T]° @ [A]%)

as:
ora € Tm (I @A) (IT] @ |A])

let (g,d) = opain ((g,2),(d,z)) fT =I"z:0
andA =A"z: 0o

5[‘7A = let (g, d) = 6p ain ((g,2),d) fI=1"z:0
andzx ¢ dom A
In fl=e

To establish thag” commutes with the context operations we have to show that con
traction corresponds e Q° [o] ([¢]° @ [¢]9).

Lemma 4.3.4 Givenv € [¢]° we have

let z =¢ vin (z,7) = ¢"®"v

Proof. By induction ono.
Exploiting this property we can show that the context openstcommute with quote:

Lemma 4.3.5Givenw’ € [I' ® A]°
JUER (50 A T) = b0 p gTBA T
Theorem 4.3.3If ' -t : o0 andg € [I']? then
F([LHt:o]%) =let* T =¢" gint:o.

Proof. By induction over the derivation df - ¢ : o, as an example consider the case for
let:

¢ ([T®AFletz=tinu: p]°)

= {definition of .. .]?}

¢° ([u]®o ([t]° ® id) o dr,a)

= {induction hypothesis for and¢}

uo (tog ®q>)odra)

= {lemma4.3.5}

wo (t®id) o dp.a o qI"®!

let v =t inu) o ¢I'®A
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The other cases use the same style of reasoning to deal wisitrtictural properties and
exploit proposition 4.3.1. Note that the casefiftfrcan be reduced to linearity.

Corollary 4.3.4 (Adequacy) If -t : o then- ¢°([Ft: 0]?) =t : o

4.3.5.2 Completeness and normalisation

The development here follows closely the one in the clabs&se as presented in
Section 4.2.7.3.

Definition 4.3.3 The function:
¢ € Q°[I][0]® — TmTlo
for inverting evaluations defined by analysing the context:
w@(f) = ¢ 1(f (return0))
qf",:v:Ql (f) = (bI_’,ic:Ql © (qu‘> © q)RIEZQl
@ r0,(f) = <bif;92 o (gF X qf) o Prag,
qg,a::(n@rg)(f) = ¢E,ZE:T1®TQ © qlq,mlzn,mgzm © (I)F,JEIT1®7'2
The auxiliary isomorphisms are defined as follows:

¢reo, € Tm(z:Q1)o— Tmlo

fraot = letz=() int
ort =t
brao, € Tm(T,z:Qy0) — {(to,t1) € (TmT 0)? | to L t1}
Gr.0,t = (letz =false in t,1let x = true in t)
le:,%c:QQ(tau) = if° x then t else u

bromen € Thm(lio:m@m)p—Tm (L2 7,201 )
braoment = letx = (xy,29) int
gb;;:n@m(t) = let (xy,m9) =z in ¢
The semantic map corresponding to ea&cis written ®.

For the inversion proof we only need the provability of orgesof the isomorphisms
which follows from then-equalities.

Lemma 4.3.6 The following family of equalities is derivable

or'(ort) =t
Definition 4.3.4 Thenormal formof ¢ is given by rff(t) = ¢Z([I" -t : o]9).

Lemma 4.3.7 (Inversion) The equatioi’ - nfZ(¢) = t is derivable.

Proof. By induction over the definition ofZ. In the case of' = e the result follows
from adequacy, Corollary 4.3.4. In all the other cases wdogdpemma 4.3.6.

Since all our definitions are effective nf indeed gives risa hormalisation algorithm.
As a consequence, our equational theory is decidable, mathdiding equalities of the
complex number terms which occur in our programs. We alse thatt as in the classical
case, our theory is complete:

Proposition 4.3.5 (Completeness)f [I" - ¢ : o] and[I" I u : o] are extensionally equal,
thenwe canderivE -t =u: o.
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4.4 Summary

In this chapter we presented a sound and complete equatimaly for a subset of
QML excluding measurements. This enables syntactic réagabout quantum pro-
grams using standard classical tools from semantics agiclgprogramming languages.
A next step would be generalise this approach to the full QNluding measurements.
In next chapters we structure a model for general and comgleintum computations us-
ing arrows. We hope to integrate the results of next chaptiihsa quantum programming
language like QML.
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5 MODELLING QUANTUM EFFECTS I: STATE VECTORS
AS INDEXED MONADS

The traditional model of quantum computing is based on vesgaces, wittnormal-
ized vectorso model computational states anditary transformationso model physi-
cally realizable quantum computations. The idea is thatrm&tion processing is physi-
cally realized via a&losed quantum system

In a closed quantum system, the evolutioreigersible(also calledstrict or pure), that
is, itis only given by means of unitary gates; measuremevtissh model thenteraction
with external world, are not considered. Therefore, in dustext, the quantum compu-
tational process is considered like a black box, where métion can be input and then
read at the end of the process.

As explained in Chapter 2 there are some intrinsic diffeesrimetween classical and
quantum programming due to the nature of quantum statesgerdtions acting on these
states. Using the traditional model we can emphasize twao oferacteristics of quantum
programming:

e quantum parallelism, which is caused by the quantum supéi@o phenomenon
and expressed byectorstates.

¢ global (possible entangled) quantum state, which is why not allpmsead vectors,
that model a quantum state, can be decomposed into theiabm this way, each
operation is global, yet in quantum circuits this global@tis hidden. Abstractly,
the application of a specific operation to a speafibspacef the vector space is
achieved by the application of an operation to the whole spauch carries the
identity to the remaining subspaces. The semantics of aagtqm programming
language needs to take care of that.

In this chapter we present a monadic approach for quantugrgmoming in Haskell.
We show how to structure quantum state vectors using monddaskell, in such a way
that the application of unitary transformations to statetees is modelled by the monadic
bind operation.

5.1 Vectors

Given a set: representing observable (classical) values, ileasisset, a pure quan-
tum state is a vectar — C which associates each basis element with a complex proba-
bility amplitude.

In Haskell, a finite set: can be represented as an instance of the @&ass, shown
below, which has the constructéasis € [a] explicitly listing the basis elements. The
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basis elements must be distinguishable from each othechwdiplains the constraint
Eq a on the type of elements below:

class Eq a = Basis a where basis € |a]

type K = C Double

type Veca =a — K
The typeK (notation from the base field) is the type of probability artoles.

As we saw in Chapter 3, from a programming perspective, a th(raKleisli triple)

Is a way to structureomputationgn terms of values and sequences of computations using
those values.

Because we can only build vectors oveset which is a basis (that is, a set of ob-
servable values), our computations have the additionatcaint that they are indexed
by Basis. Therefore, the type constructdfec corresponds to &leisli structure (AL-
TENKIRCH; REUS, 1999) or, to amdexed monagsee Section 3.1.4).

Recall the class for indexed monads:

class IMonad m where
return € F a= a— m a
(>=)e(Fa,Fb)=ma—(a—mb)—mb
Therefore to make our vectors an instanc€dfonad class we need to define:
instance IMonad Vec where

return € Basis a = a — Vec a

return a b = if a = b then 1.0 else 0.0

(>=) € (Basis a, Basis b) = Vec a — (a — Vec b) — Vec b

va>=f=Xb— sum [(va a)* (f a b) | a < basis]
return just lifts values to vectors, andnd, given a linear operator represented as a func-
tion a — Vec b, and given alec a, returns aVec b. Using the functional representation
for vectors and the definition above fbind we can easily extend any linear operator to
act in a bigger space as we explain in detail in next section.

Proposition 5.1.1 The indexed monadlec satisfies the required equations for monads
(see Section 3.1.1).

Proof.

e Firstmonad law{(returnz) >= f = fuz

(return x) >= f = Xb — sum [(return z a) * (f a b) | a < basis]
= Ab — sum [(if z = a then 1.0 else 0.0) * (f a b) |
a < basis]
— M= fzb
—fu

e Second monad lawm = return = m

m = return = Ab — s um [(m a) x (return a b) | a < basis]
= Ab — sum [(m a) * (if a = b then 1.0 else 0.0) |
a « basis]
=Ab—-mb

=m

e Thirdmonad law:(m >= f) >= g = m >= (Az.fz >= g)
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(m >=f) >= g=\b—sum|[(ma)*(f ab)]|a basis]) >= g
= Xc — sum [(sum [(m a) * (f a b) | a < basis])
x (g bc)| b« basis]
=Xc— sum [(ma)*(f ab)x(gbec)
a < basis, b < basis]

m >= (At —fz >= g)=Ac—sum|[(ma)*((fa >= g)c)]
a «— basis|
=Xe — sum [(m a)* (sum [(f a b)* (g b c) |
b « basis]) | a < basis]
=Xe—sum[(ma)x(fab)x(gbc)|
a < basis, b < basis]

O
The indexed monads have additional properties abstrastdtiindexed version of
the Haskell clasd/onadPlus:
class IMonad m = IMonadPlus m where
mzero € F a = m a
mplus € Fa=ma— ma—ma
Instances of this class support two additional metheas:ro and mplus which provide
a “zero” computation and an operation to “add” computations
instance IMonadPlus Vec where
mzero € Basis a = Vec a
mzero = const 0.0

mplus € Basis a = Vec a — Vec a — Vec a
mplus v1 V9 a = V1 a + Vs a
whereconst € t — t; — t is a Haskell's polymorphic function. Analogously, we can
also definenminus:
mminus € Basis a = Vec a — Vec a — Vec a
MMINUS V1 Vg @ = V1 & — Vg @
As we are modelling vector spaces in Haskell, we would likdgbneproductsover
vectors: thescalarproduct$x, thetensorproduct(x), and thedot product(-):
($%) € K — Vec a — Vec a
pa $x v =X a — pa * (v a)
((x)) € Vec a — Vec b — Vec (a, b)
v1(%)vy = A(a, b) — (v1 a) * (vg b)
((.)) € Basis a = Vec a — Vec a — K
v1{.)vg = sum [conjugate (vy a) * (v a) | a < basis]
Examples of vectors over the set of booleans may be definexdllaws:
instance Basis Bool where
basis = [ False, True]
qFalse, qTrue, gF'T, gFmT € Vec Bool
qgFalse = return False
qTrue = return True
qFT = (1 /V?2) $x (qFalse ‘mplus* qTrue)
gFmT = (1 /v/2) $x (qFalse ‘mminus* qTrue)
The first two are unit vectors corresponding to basis elesmdhk last two represent
states which are in equal superpositiongFofse and True. In the Dirac notation, these
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vectors would be respectively written a&alse, | True), %(| False+ | True)), and
5 (|[Falsg— [True)).
Multidimensional vectors can be easily described usinge¢hsor product on vectors

or the Cartesian product on the underlying bases:

instance (Basis a, Basis b) = Basis (a, b) where

basis = [(a, b) | a < basis, b — basis]

p1, P2, ps € Vec (Bool, Bool)

p1 = qFT(x)qFalse

pe = qFalse(x)qF'T

ps = qFT{x)qF'T

epr € Vec (Bool, Bool)

epr (False, False) =1 / \/2

epr (True, True) =1/+/2

epr _ =0
In contrast to the first three vectors, the last vector dessrarentangledquantum state
which cannot be separated into the product of independamitgm states.

5.2 Linear Operators

Given two base setd and B a linear operatof € A — B is a function mapping
vectors overA to vectors overB. We represent such operators as functions mapping

values to vectors which is similar to the representatioml ligeKarczmarczuk (2003) and
which mirrors amatrix

type Lin a b =a — Vec b
fun2lin € (Basis a, Basis b) = (a — b) — Lin a b
fun2lin f a = return (f a)
The functionfun2lin converts a classical (reversible) function to a linear afmer For
example, the quantum version of the boolean negation is:
gnot € Lin Bool Bool
gnot = fun2lin not
Linear operations can also be defined directly, for example:
phase € Lin Bool Bool
phase False = return False
phase True = (0 41) $x (return True)
hadamard € Lin Bool Bool
hadamard False = qF'T
hadamard True = gFmT

zgate € Lin Bool Bool

zgate False = qFalse

zgate True = —1 $x qTrue

The definition of a linear operation specifies its action ochaadividual element of

the basis, as a matrix. To apply a linear operafido a vectorv, we use thedind op-
eration to calculate >= f. For examplg ¢F'T >= hadamard) applies the operation
hadamard to the vectorgF'T', which can be calculated as follows:

qF'T >= hadamard

= \b — sum [(¢FT a) (hadamard a b) | a < [False, True]]

= \b — if b = False then sum [(¢FT False) (hadamard False False) +
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(¢FT True) (hadamard True False)]
else sum [(¢qFT False) (hadamard False True) +
(¢FT True) (hadamard True True)]
= \b — if b = Fulse then 1
else 0
that is, it produces the vectgFulse as a result.

It is possible to write higher-order functions which congiimear operators and pro-
duce new linear operators. A very importante example of fwattions extends the space
of action of a linear operator:

extend € (Basis a, Basis b) = Lin a a — Lin (a,b) (a,b)

extend f = Nay,by) — (f a1 >= Aay — return (az, by))
The definition ofbind gives us this possibility of easily extending a linear op&réo act
in a bigger space. A function similar to that is used indaenotation for the implemen-
tation of the circuit for the Toffoli gate in next section.

Another example produces the so-caléemtrolled operations

controlled € Basis a = Lin a a — Lin (Bool, a) (Bool, a)

controlled f (b, a) = (return b)(x)(if b then f a else return a)
The linear operatof is transformed to a new linear operator controlled by a gquant
boolean value. The modified operator returns a pair whodectiraponent is the input
control value. The second input is passed tonly if the control value is true, and is
otherwise left unchanged. For examplgF'T (x) qFalse) >= (controlled qnot) ap-
plies the familiarcontrolled-notgate to a vector over two values: the control value is a
superposition ofFulse and True and the data value iBalse. As one may calculate, the
result of this application is thepr vector.

Linear operations can be combined and transformed in dewasss which we list
below. The function*( produces the linear operator corresponding toathier product
of two vectors. The function&nplus andlintens are the functions corresponding to the
sum and tensor product on vectors. Finally the functi@omposes two linear operators.

adjoint € (Basis a, Basis b) = Lin a b — Lin b a
adjoint f b a = conjugate (f a b)
()x() € (Basis a, Basis b) = Vec a — Vec b — Lin a b
(v1)(vg) a b = (vy a) * (conjugate (vy b))
linplus € (Basis a, Basis b) = Lin a b — Lin a b — Lin a b
linplus f g a = f a ‘mplus‘ g a
lintens € (Basis a, Basis b, Basis ¢, Basis d) =
Lin a b — Lin ¢ d — Lin (a,c) (b, d)
lintens f g (a,c) = f a(x)g c
o € (Basis a, Basis b, Basis ¢) = Lin a b — Lin b ¢ — Lin a c
of ga=(fa>=g)

5.3 Example: A Circuit for the Toffoli Gate

Modelling state vectors as monads we can define quite elegerttum programs
using monadsdo-notation. For instance, consider we want to program a itifouthe
Toffoli gate, as in Figure 5.1. The circuit diagram uses tadatto standard notation for
specifying quantum computations. Each line carries onatgua bit (Qubit); we refer to
the three qubits in the circuit a&sp, middle, andbottom. The values flow from left to
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rightin steps corresponding to the alignment of the boxés;chwepresent quantum gates.
The gates labeled/, V, VT, and Not represent the quantum operatiohsiamard,
phase, adjoint phase, andgnot respectively. Gates connected via a bullet to another wire
arecontrolledoperations.

Not

Figure 5.1: A Circuit for the Toffoli Gate.

In general all three qubits in the circuit may be entangled laence the state vector
representing them cannot be separated into individuad stattors. This means that,
despite the appearance to the contrary, it is not possibtgpéoate on any of the lines
individually. Instead the circuit defines a linear opematan the entire state. However,
as one can observe below, usihg-notation we can elegantly program the circhitling
rewiring and the global state action of each quantum operato

toffoli € Lin (Bool, Bool, Bool) (Bool, Bool, Bool)
toffoli (top, middle, bottom) =
do b; < hadamard bottom
(mq, bg) < controlled phase (middle, by)
(t1,mo) < controlled qnot (top, my)
(mg, b3) «— controlled (adjoint phase) (ms, by)
(t2, m4) < controlled qnot (t1, ms)
(t3,by) < controlled phase (tz,bs)
bs <+ hadamard by
return (ts, m4, bs)
Note that we are using indices in the value variables. Thietause monaddo-notation
simulates an imperative routine. The evolution of the iadim the circuit can be analysed
in the figure below:

top top top ‘ i 1 ‘ 7 o 3 13
middle ‘middle  m1 | | : | 3

3 " Not m2 ? 3m3 Not m4 3m4 : m¢
bottom [ | b1[, b2 b2[ b3 by, [b4[ |65

Figure 5.2: The evolution of values in the circuit for the fedifgate.

Runningtoffoli, which behaves like a controlled-controlled not as ex@dim Sec-
tion 2.3.2, applied to the following entangled state
emt € Vec (Bool, Bool, Bool)
emt = (1 / /2 $x return ( True, True, True)) mplus’
(1 / /2 $* return (False, False, False))

!In Dirac’s notation:1//2(|000) + [111)).
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produces:
haskell) emt >= toffoli
[((False, False, False), 0.5 :4-0.0),
((True, True, False), 0.5 :+0.0)]

5.4 Summary

We have shown the use of monads to structure the probabifggte of quantum
state vectors. The approach reveals an elegant underlyunguge for quantum compu-
tations. This structure can be studied in the context ofgratetheory and exploited in
the design of calculi for quantum computation (TONDER, 2(84; VALIRON, 2004;
ALTENKIRCH; GRATTAGE, 2005).

Unfortunately in the monadic model of quantum computing \eeehused so far, it
is difficult or impossible to deal formally with another ctasf quantum system, which
present effects including measurements, decoherencejs®,rsay to b@pen quantum
systemslin the next chapter we consider density matrices and sppeators as a model
for general quantum computations.

2In Dirac’s notation:1/4/2(|000) + [110)).
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6 MODELLING QUANTUM EFFECTS II: SUPEROPERA-
TORS AS INDEXED ARROWS

While the state vector model of quantum computing is stillely considered as a
convenient formalism to describe quantum algorithms,gsmeasurements to deal with
decoherence or noise, to make quantum computingignactiveprocess, and even to
steer quantum computations has been considered a nowaladilte, for instance see
(AHARONOQV; KITAEV; NISAN, 1998; RAUSSENDORF; BROWNE; BRIEEL, 2001,
2003; KASHEFI; PANANGADEN; DANOS, 2004; DANOS et al., 2006AY; NA-
GARAJAN, 2006).

In this chapter we review the general model of quantum coatputs, including mea-
surements, based on density matrices and superoperaftese®pressing this more gen-
eral model in Haskell, we establish that the superoperaises to express all quantum
computations and measurements are an instance of the ¢afcegexed arrowsa gen-
eralisation of monads (see Chapter 3). The material predeot this chapter has been
published in (VIZZOTTO; ALTENKIRCH; SABRY, 2006).

6.1 Density Matrices and Superoperators

We review, using Haskell, a generalised model of quantumpedation where the
state of computation is represented usingeasity matrixand the operations are repre-
sented usinguperoperatorfAHARONOV; KITAEV; NISAN, 1998). Using these no-
tions, theprojectionsnecessary to express measurements become expressibtettéth
model.

6.1.1 Density Matrices

Intuitively, density matrices can be understood as a $itzlperspective of the state
vector. In the density matrix formalism, a quantum state tised to be modelled by a
vectorv (as presented in Section 5.1) is now modelled by its outedymoin such a way
that theamplitudes of the state vector turn into a kind of probabpitlistributions of state
vectorst.

type Dens a = Vec (a, a)

pureD € Basis a = Vec a — Dens a
pureD v = lin2vec (v)x(v)

lin2vec € (a — Vec b) — Vec (a, b)
lin2vec = uncurry

1The construction in this chapter is build on the construciioChapter 5.
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The functionpureD embeds a state vector in its density matrix representakoncon-
venience, we uncurry the arguments to the density matrihabit looks more like a
“matrix.” For example, the density matrices correspondmthe vectorsyFualse, qTrue,
andgF'T presented in Section 5.1 can be visually represented asvil|

10 0 0 1/2 1/2
(0 O) (01) (1/2 1/2)
and written as:
qFalseD, qTrueD, gF'TD € Dens Bool
qFalseD = pureD qFulse
qTrueD = pureD qTrue
qFTD = pureD qFT
In Haskell, we use the a following pretty printing for thosatnces:
[((False, False), 1.0 :40.0)]

[((True, True), 1.0 :+0.0) |

((
[((False, False), 0.5 :40.0),
((False, True), 0.5 :4-0.0),
((True, False), 0.5 :4-0.0),
((True, True), 0.5 :+0.0) |

The appeal of density matrices is that they can represetgssteher than the pure
ones above. In particular if we perform a measurement ont#tte se2presented byF'T',
we should gefalse with probability1/2 or True with probability1/2. This information,
which cannot be expressed using vectors, can be represeyntia following density

matrix:
(162 8)*(8 192):<1é2 192)

Such a density matrix representnaed statevhich corresponds to the sum (and then
normalisation) of the density matrices for the two resuftde observation.

6.1.2 Superoperators

Operations mapping density matrices to density matricesaltedsuperoperators

type Super a b = (a,a) — Dens b

lin2super € (Basis a, Basis b) = Lin a b — Super a b

lin2super f (a1, a2) = lin2vec (f a1)*(f as)
As we have done for unitary operators in Section 5.2, we sspriea superoperator mir-
roring a big matrix, so mapping values to density matriceat(is, Super a b = (a, a) —
(b,b) — K). The functionlin2super constructs a superoperator from a linear operator
on vectors. For instance:

hadamardS € Super Bool Bool

hadamardS = lin2super hadamard
lifts the unitary operatohadamard to a superoperator.

6.1.3 Tracing and Measurement

In contrast to the situation with the state vector model @rgum computing, it is pos-
sible to define a superoperator which “forgefsdjects or traces outpart of a quantum
state. Essentially, this corresponds to turn the dimensidhe state space in considera-
tion smaller. To do such an operation, we need first to unaiedstow tomeasureart of
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the quantum state which we would like to trace out. Measworgesponds to setting the
secondary diagonal of the density matrix to zero leavingy dmé classical probabilities
corresponding to the possible measurement outputs in tiredigggonal (same indexes).

meas € Basis a = Super a (a, a)

meas (a1, az) = if a1 = ay then return ((a1,a1), (a1, a1)) else mzero
Note that we are consideringojectivemeasurements which are described by a set of
projections onto mutually orthogonal subspaces. This kihdheasurement returns a
classical value and a post-measurement state of the quaggiem. The operatiameas
is defined in such a way that it can encompass both resultaglilse fact that a classical
valuem can be represented by the density maltrix(m| the superoperataneas returns
the output of the measurement attached to the post-measuotrsiate.

Now, it is easy to understand the operation below which figrgart of the quantum

state. Before forgetting we measure:

trL € (Basis a, Basis b) = Super (a,b) b

trL ((a1,b1), (ag,be)) = if a1 = ay then return (b, by) else mzero

For example, the sequence:

pureD qF'T >= meas >= trL
first performs a measurement on the pure density matrix septang the vectonF'T.
This measurement produces a vector with two componentdirgés the resulting col-
lapsed quantum state and the second is the classical obbsexre. The last operation
forgets about the collapsed quantum state and returnss$h# of the classical measure-
ment. As explained earlier the resulting density matrix is:

( 162 192 )

6.2 Why Density Matrices are not Monads?

Remember that for a type to be a monad, it would support thaitiefi of

class Monad m where

return € forall a.a — m a

(>=) € forallabbm a — (a — m b) > m b
But, as also explained for vectors is Section 5.1, becausigedfasis constraint over the
types with which we build density matrices, the type cordtruDens would corresponds
in fact to aindexed monadwvhere:

return € (Basis a) = a — Dens a

return = pureD .return
However, the monadic bind operation needed to model thecapipin of a superoperator
to a density matrix can only be achieved with an operatiotaimntg@ated to the following
type:

(>=) € (Basis a, Basis b) = Dens a — ((a,a) — Dens b) — Dens b

da >= s = \(by,by) — sum [(da (a1,az2)) * (s (a1, as) (b1, b))

| a; < basis, as — basis]

As one can observe, this type does not correspond to thereelype for computations
like s, which consume multiple input valués this case(a, a)). This observation is
reminiscent of Hughes’s motivation for generalising maamarrows (HUGHES, 2000)
(see Section 3.2). Indeed, in addition to defining a notiqgegro€edure which may perform
computational effects, arrows may have a static compomelgpendent of the input, or
may accept more than one input.
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6.3 Superoperators as Indexed Arrows

Just as the probability effect associated with vectors idetied by anndexed monad
because of thé&asis constraint, the typ&uper is modelled by anndexed arrowas the
following types include the additional constraint requgithe elements to form a set of
observables:

instance [Arrow Super where

arr € (Basis b, Basis ¢) = (b — ¢) — Super b ¢

arr f = fun2lin (A(by,b2) — (f b1, f b2))

(>>) € (Basis b, Basis ¢, Basis d) = Super b ¢ — Super ¢ d — Super b d

(>) = o

first € (Basis b, Basis ¢, Basis d) = Super b ¢ — Super (b, d) (¢, d)

first f ((b1,dy), (be,d2)) = permute ((f (b1, b2))(*)(return (dy,ds)))

where permute v ((by,b2), (d1,ds)) = v ((b1,dq), (be, ds))

The functionarr constructs a superoperator from a pure function by applyiagunction
to both the vector and its dual. The composition of arrowsngpl/ the composition of
linear operators (the operatienis defined in Section 5.2). The functidinst applies the
superoperato)f to the first component (and its dual) and leaves the secong@oemt
unchanged. The definition calculates each part separatdlyhen permutes the results
to match the required type.

Proposition 6.3.1 The indexed arrowbuper satisfies the required equations for arrows
presented in Section 3.2.1.

Proof. See Appendix C.

The proposition implies that we can use the arrow combisdtostructure our quan-
tum computations. For instance, the first few steps of thauttifor the Toffoli gate of
Section 5.3 would now look like:

toffoli € Super (Bool, Bool, Bool) (Bool, Bool, Bool)
toffoli = let hadS = lin2super hadamard
cphaseS = lin2super (controlled phase)
cnotS = lin2super (controlled qnot)
in arr (A(ag, by, co) — (co, (ag, bo))) =>>
(first hadS > arr (M(e, (ag, bo)) — ((bo, c1),a0))) =>>
(first cphaseS > arr (A((by, c2),a0) — ((ag,b1),c2))) >
(first cnotS 3> arr (AM((a1,b2), c2) — ((ba, c2),a1))) >> ...

Clearly this notation is awkward as it forces us to explcithanipulate the entire
state and to manually permute the values. However, all theds code can be generated
automatically as we explain next.

6.4 Examples: Toffoli and Teleportation

Using the arrow notation presented in Section 3.2.2, weasgimwo well known quan-
tum algorithms elegantly.

6.4.1 Toffoli

The following code mirrors the structure of the circuit ahd structure of the monadic
computation expressed earlier in Section 5.3:
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toffoli € Super (Bool, Bool, Bool) (Bool, Bool, Bool)
toffoli = let hadS = lin2super hadamard
cnotS = lin2super (controlled gnot)
cphaseS = lin2super (controlled phase)
caphaseS = lin2super (controlled (adjoint phase))
in proc (ag, by, co) — do
c; < hadS < ¢
(b1, co) « cphaseS < (bg, 1)
(a1,by) < cnotS < (ao, by)
(b3, c3) «— caphaseS < (ba, ca)
(ag,by) < cnotS < (ay, bs)
(a3, cq) < cphaseS < (ag, c3)
cs5 «— hadS < ¢4
returnA < (as, by, ¢s5)
Lets runtoffoli, applied to the vectoemt from Section 5.3 lifted to a density matrix:
demt € Dens (Bool, Bool, Bool)
demt = pureD emt

haskell) d >= toffoli
As expected, this produces the matrix:

[(((False, False, False), (False, False, False)), 0.5 :+0.0),
(((False, False, False), (True, True, False)), 0.5 :4-0.0),
(((True, True, False), (False, False, False)), 0.5 :4-0.0),
(((True, True, False), ( True, True, False)), 0.5 :40.0)]

6.4.2 Quantum Teleportation

The idea of quantum teleportation is to make disappear atgoeinformation (quan-
tum state) in one place making a perfect replica of it somegvkése. Indeed quantum
teleportation (BENNETT et al., 1993) enables the transimmssising a classical commu-
nication channelof an unknown quantum state via a previously shagedpair.

In the following diagram, Alice and Bob initially have acee® one of the qubits of
an entangledpr pair, and Alice aims to teleport an unknown quptb Bob:

Alice | EPR | Bob

D o—

} ‘ } ‘Not z q
et 2
A !
q H ‘ | ml
| |
I I
I I

The calculation proceeds as follows. First Alice interaeiih the unknown qubit
and her half of thepr state. Then Alice performs a measurement collapsing hermtqgoa
state and getting two classical bitg andm, that she transmits to Bob using a classical
channel of communication.
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Upon receiving the two classical bits of information, Boterracts with his half of the
epr State with gates controlled by the classical bits. The dirauhe figure can be shown
to re-create the quantum statevhich existed at Alice’s site before the experiment.

Our main interest in this circuit is that it is naturally egpsed using a sequence of
operations on quantum values which include a non-unitaagisuremerit the middle.

We use the machinery we have developed to express the telgporcircuit. We
break the algorithm in two individual proceduresgice and bob. Besides the use of the
arrows notation to express the action of superoperatorpecifec qubits, we incorporate
the measurement in Alice’s procedure, and trace out thiewaiat qubits from the answer
returned by Bob.

alice € Super (Bool, Bool) (Bool, Bool)
alice = proc (eprL, q) — do
(q1,e1) < (lin2super (controlled qnot)) < (q, eprL)
¢ < (lin2super hadamard) < ¢
((g3, €2), (m1, 1)) < meas < (g2, €1)
(ma2,n2) — trL ((gs, e2), (M1, 1))
returnA < (ma, n2)
bob € Super (Bool, Bool, Bool) Bool
bob = proc (eprR,my,n;) — do
(ng, e1) < (lin2super (controlled gnot)) < (nq, eprR)
(ma, e3) «— (lin2super (controlled zgate)) < (my,e;)
q' — trL < ((ma,n2), €2)
returnA < ¢’
teleport € Super (Bool, Bool, Bool) Bool
teleport = proc (eprL, eprR, q) — do
(my,ny) < alice < (eprL, q)
q' < bob < (eprR,my,ny)
returnA < ¢’

As an example, suppose we want to teleport the sta(|0) + |1)). Then the three
qubits state to be passed to the procedelegort is1/+/2(]0)+|1))®1/4/2(|00)+|11)) =
1/2(|000) + |011) + |100) + |111)), pretty printed in Haskell as:

gtele € Vec (Bool, Bool, Bool)

gtele = [((True, False, False),1 ] 2),
((True, True, True), 1/ 2),
((False, False, False),1 / 2),
((False, True, True), 1/ 2)]

dgtete € Dens (Bool, Bool, Bool)
dgtele = pureD gtele

The application of the procedure recreates the densitybafatrthe qubit one wants to
teleport:

haskell) dgtele >= teleport
[((False, False), 0.5 :40.0),
((False, True), 0.5 :4-0.0),
((True, False), 0.5 :4-0.0),
((True, True), 0.5 :+0.0)]
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6.5 Typing Rules

The category of superoperators is considered to be an agagodel of non-reversible
quantum computation (SELINGER, 2004). Our constructiagspnted so far seems to
suggest that this category corresponds to a functionalikge with arrows, and so that
we can accurately express quantum computation in such &fvark. But as we explain
below, this is not quite the whole story.

First consider the well-known “non-cloning” property ofaptum states (NIELSEN;
CHUANG, 2000). The arrow notation allows us to reuse vagalshore than once, and
we are free to define the following operator:

copy € Super Bool (Bool, Bool)

copy = arr (A\z — (z, 1))
But can this superoperator be used to clone a qubit? The arssvexplained in Section
1.3.5 of the classic book on quantum computing (NIELSEN; @iNIG, 2000), is no.
The superoperatatopy can be used to copy classical information encoded in quantum
data, but when applied to an arbitrary quantum state, famgk@gF' T, the superoperator
does not make two copies of the statéT’ but rather it produces thepr state which is
the correct and desired behaviour. Thus, in this aspecetnastics of arrows is coherent
with quantum computationg., the use of variables more than once models entanglement,
not cloning.

In contrast, in our model there is nothing to prevent the dedimof:

weaken € Super (Bool, Bool) Bool

weaken = arr (MN(z,y) — y)
This operator is however not physically realizable. Apptyiveaken to epr givesqF'T.
Physically forgetting about corresponds to a measurement: if we measure the left qubit
of epr we should get;Fulse or ¢True or the mixed state of both measurements, but never
qF'T.

This suggests that we need something more than only the aomlinators to make
our quantum computations compatible with Quantum Meclsanite propose a simple
type system for the arrow combinators. First, suppose we bhwosen a univeral set of
unitary operations{.

u:Linbc €U
Lift

lin2super u : Super b ¢

b€ Basis c€ Basis f:b—c

arr  if dim(b) < dim(c)
arr f: Super bc

f:Superbc g: Supercd

>
f>g: Superbd

f : Super bc d e Basis
first f: Super (b,d) (c,d)

first

Figure 6.1: Typing arrow combinators for quantum compotai

The critical typing rule isarr which selects only a class dfasic functiongo be lifted
to superoperators, i.e., those ones which do not forgeavi@s. That is imposed by the
restrictiondim(b) < dim(c).
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6.6 Summary

We have argued that a realistic model for quantum compuisistould accommo-
date both unitary operations and measurements, and we havwe shat such general
quantum computations can be modelled usitgxed arrowsThis is an extension of the
previously-known observation that one can model pure gquargrobabilities using in-
dexed monads. Establishing such connections betweenuquammputations and mon-
ads and arrows enables elegant embeddings in currentaalbiEsiguages, and exposes
connections to well-understood concepts from the sensmafi¢classical) programming
languages.

We also have demonstrated the use of indexed arrows to éiegaodel two exam-
ples in Haskell, including the teleportation experimenichhinterleaves measurements
with unitary operations. However, for the case of telegaota this model is not faithful.
The procedurelice is implemented such that at the end of its processing thexgis-
jective measurement of her two qubits. Everything is veril eecept the facthere is no
classical information explicitly being communicateetween Alice and Bob. That is,
andn, are classical values represented by the density matfiieds (m;| and|n,)(n|,
respectively. That is, they are classical informationespnted in a form typically used to
represent quantum information. Yet as noted by (GAY; NAGARA, 2005; UNRUH,
2005) acompletemodel for expressing quantum algorithms should accomneoolath
measurements and combined interactions of quantunclasdical data In the next two
chapters we propose to structure two alternative generabl{iing measurements) and
complete (involving both quantum and classical data) aggres focombinedjuantum
and classical computations as arrows.
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7/ MODELLING QUANTUM EFFECTS Ill: MIXED PRO -
GRAMS WITH DENSITY OPERATORS AND CLASSICAL
OUTPUTS AS INDEXED ARROWS

The model presented in last chapter is purely quantum. Hekyearious quantum
algorithms are explained in terms of tinerchangingof quantum and classical informa-
tion . For instance, quantum teleportation is a traditional galaraf an algorithm which
is based on two quantum process communicatinghldasical data There is interest to
consider anixedmodel for guantum computations involvingeasurementnd thanfor-
mation flonbetween quantum and classical processes (for instang&®ABS SENDOREF,;
BROWNE; BRIEGEL, 2003; KASHEFI; PANANGADEN; DANOS, 2004;IELSEN,
2003; GAY; NAGARAJAN, 2005; UNRUH, 2005)).

On the other hand, the finding of a representation that ialsi@for representing both
the results of unitary transformations and measuremematipas should also be put into
perspective.

That is, we would like that the same representational fraonkewe able to take care
of both: (1) the task of representing theantum stateesulting from a unitary operation
applied to a given quantum state, and (2) the task of reptiegeie pair of information
coming out from a measurement, namely: (2a) that correspgrid themeasurement
valueproduced by the measurement (one of the eigen-values oféhsurement opera-
tor), and (2b) thequantum stateéhat results from the projection imposed on the original
quantum state by the measurement (one of the eigen-vedttve measurement opera-
tor).

The main problem introduced by the need of that uniformityhiat measurement
results (both value and state results) are of a probabikstid, needingsets of possible
resultsfor their representation. The usual alternative solutimrsiich problem is the
density matrix formalism.

Hence, in this Chapter we present a modelnfixedor combinedquantum computa-
tions based on a measurement approach over density maweesll mixed or combined
guantum computation any computation transforming a coetbstate, with classical and
quantum data. Essentially, the idea is to have a densityagpeaepresenting the (global)
quantum part, and a probability distribution of classicaues representing the classical
part of the state. A quantum program acting on this combinaie $s interpreted by a
specialtracing superoperatqrwhich in the general case traces out part of the state, re-
turning a classical output, and leaving the system in a nate $possibly in a space with
reduced dimension).

!By interchanging we mean, for instance, a measurement imitidle of the computation.
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7.1 Mixed Programs with Density Matrices

Because the tracing superoperator in gentrajetspart of the state, we define a
relation between bases which we cBlic (from decompositiof
class (Basis a, Basis b) = Dec a b where
dec € [a] — [b]
specifying thate can be decomposed in a part Then, a quantum program fromto
b, parameterized by, the type of the input classical probability distributi@md o, the
part to be measured, is represented by a superoperatornftorh, delivering a classical
probability distribution ovep, the part ofa which is measured.
type DProb ¢ = [(c, Prob)]
type QProgram i o a b = (DProb i, (a,a)) — (DProb o, Dens b)
Note that our quantum programs should satisfy the resinidec a o, and thatDProb i
is used in classical operations or quantum operations aitedrby classical data.
We can lift density matrices to combined states by:
dens2combst € (Basis a) = Dens a — (DProb (), Dens a)
dens2combst d = ([], d)
Suppose F'T'D as presented in Section 6.1.1, théms2combst ¢F'TD produces:
([1, [(((False, False), (False, False)), 0.5 :4-0.0),
(((False, False), (True, True)), 0.5 :+0.0),
(((True, True), (False, False)), 0.5 :+0.0),
(((True, True), (True, True)), 0.5 :40.0)])
which is a combined state with an empty classical part.
As any type can be decomposed into thet (), and can be decomposed into itself,
and also can be decomposed into one of its parts, we havellbwifg instances:
instance (Basis a) = Dec a () where
dec _ =]
instance (Basis a) = Dec a a where
dec [ =1

instance (Basis a, Basis b) = Dec (a, b) b where
dec [] =]
dec ((z,y): 1) =1y:decl
Any unitary operator, as represented in Section 5.2, caiftee to a guantum program
which traces ouf).
uni2qprog € (Basis a, Basis b, Basis i, Sub a ()) =
Lin a b — QProgram i () a b
uni2qprog f (dp, (a1, as)) = let d = lin2vec (f a1 )x(f as)
in (d,[])
The functionuni2gprog constructs a mixed quantum program from a function reptesen
ing a unitary operator. The idea is to apply the default qoiesion to build a superop-
erator from a unitary transformation (see Section 6.1.2)teNhat the classical input is
ignored and the classical output is empty: there is no inteEnawith the classical world
when considering unitary transformations.
For instance:
hadamardP € QProgram i () Bool Bool
hadamardP = uni2qprog hadamard

lifts the unitary operatohadamard to a quantum program acting on a combined state.
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Given a quantum state over a basis geth), the quantum progranrR forgets the
right component, returning a new state owerThe subspace is measured before being
discarded outputting a classical probability distribotmver the basis which forms that
subspace. In this case, the input classical data is justegino

trR € (Basis a, Basis b, Basis i) = QProgram i b (a,b) a
trR (dp, ((a1,b1), (az, b)) = let d = if by = by then vreturn (aq, az)
else vzero
p=1[(b1,1) | b1 = bs]
in (p, d)
trA € (Basis a, Basis i) = QProgram i a a ()
trA (dp, (a1,az2)) = let d = if a; = ay then vreturn ((),()) else vzero
p=[(a1,1) | a1 = a]
in (p, d)
Similarly, the progranirA forgets (measures) all quantum state returning only aicklss
probability distribution as the result. To construe thessieal probability distribution we
consider that any value from the type being measgethappear in the output quantum
state. Hence each value from the basis is attached to thalghtyp1. The real probability
to appear in the final state is calculated by the functipm below, which given anixed
program and @&ombinedstate calculates the new density matrix and the classisaltre
(if there is some).
app € (Basis a, Basis b, Basis i, Basis 0, Sub a 0) =
((DProb i,(a,a)) — (DProb o, Dens b)) —
(DProb i, Dens a) — (DProb o, Dens b)
app p (d;, da) = let fdb = [(b, sum [let (po, db) = p (d;, a)
po = vlookup b db
p1 = vlookup a da
in p; xpy | a — basis))
| b« basis]
[ =map (Aa — let pp = vlookup (a, a) da
in if pp # 0 then p (d;, (a, a))
else ([],[])) basis
(Ip, ld) = unzip [
flp = concat (filter (Aa — if (a = [])
then False
else True) Ip)
in (flp, dbf)
The output density matriflb (from final densityof type b) is calculated by simple matrix
multiplication: the superoperator matrix by the input dgnsiatrix. Note that the over-
all operation may depend on the classical state. Then, taegdnobability distribution
of classical valuegip is calculated by analysing the inputted density madkiband by
applyingp to the observables ;.

7.2 Mixed Programs with Density Matrices as Indexed Arrows

We define the three functionsyr, >, andfirst, over Q) Program i o as follows:
arr € (Basis b, Basis ¢, Sub b ()) = (b — ¢) — QProgram i () b c
arr = uni2qprog.funllin

(>>) € (Basis a, Basis b, Basis ¢, Basis i, Basis o,
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Basis 09, Sub a 0, Sub b 09) =
QProgram 1 0o a b — QProgram o 0, b ¢ — QProgram i oy a c
(f >> g) (dpi, (a1, a2)) = app g (f (dpi, (a1, a2)))
first € (Basis a, Basis b, Basis ¢, Basis i, Basis o, Sub a o, Sub (a, ¢) 0) =
QProgram i 0o a b — QProgram i o (a,c) (b, c)
first p (pi, ((a1, 1), (as, ¢2))) =
let (po, db) = p (pi, (a1, az))
vee = vreturn (cq, ¢z)
dbe = [(((by, c1), (ba, c2)), db (b1, be) * vee (c1,¢2)) |
(b1, 1), (ba, c2)) < basis]
in (po, dbc)
The functionarr just lifts basic functions tanixedprograms. The classical input is ig-
nored and the classical output is empty. The functisncomposes two mixed programs,
and first augments the state space of the quantum part of a mixed pndgya:. The
action of the new augmented mixed program is defined as tlyghatiprogram oven
with identity overec.

Proposition 7.2.1 The indexed arrow)) Program ¢ o satisfies the required equations for
arrows.

7.3 Example: Teleportation

Recall the teleportation circuit in Section 6.4.2. Rementhat the original algorithm
involves a measurement in the middle of the computation anthaunication of classical
information (the classical result of the measurement) betwAlice (the sender) and Bob
(the receiver). Using this model of mixed programs actingo@mbined states structured
as arrows we can faithfully express the teleportation dtigor as follows. The main
procedure receives no classical data and three entangbétd;ghen passes a qubit of the
epr pair and the qubit to be teleported to Alice, which realizmsie quantum operations
and measures its two qubits, returning only classical wala¢he main procedure, which
will be communicated to Bob.

teleportation € QProgram () () (Bool, Bool, Bool) Bool
teleportation = proc (eprL, eprR, q) — do
cs « alice < (eprL, q)
q' < bob < (eprR, cs)
returnA < ¢’
alice € QProgram () (Bool, Bool) (Bool, Bool) ()
alice = proc (eprL, q) — do
(q1,€1) < gcnotP < (q, eprlL)
g2 < hadamardP < ¢,
cs — trA < (e1,q2)
returnA < cs
where gcnotP is the mixed version of the linear operataintrolled gnot defined in
Section 5.2.
qenotP € QProgram () () (Bool, Bool) (Bool, Bool)
qenotP = uni2qprog (controlled qnot)

Bob is a procedure which receives a classical data @ves!/, Bool) and a qubit. The

procedure analyses the classical data and depending calues applies or not a certain
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quantum operation to the input qubit.
bob € QProgram (Bool, Bool) () ((), Bool) Bool
bob = A(pbb, db) — let (p1,dy) = if (lookup True (unzipL pbb) pbb > 0)
then (gnotP ([((),1)], db))
else ([((),1)], vreturn db)
(p2,ds) = if (lookup True (unzipR pbb) > 0)
then (zgateP ([((),1)], db))
else st;
in (p27 d2)
Again we are using a mixed version of a linear operator deéided Section 5.2
zgateP € QProgram () () Bool Bool
zgateP = uni2prog zgate
The functionsunzipL and unzipR take a list of tuples and return a list with the left
elements of the tuples and a list with the right elements ettiples, respectively.
unzipL € [((a,b), p)] — [a]
unzipL | = let (b, Ip) = unzip |
(las, lbs) = unzip b
in las
unzipR € [((a, ), p)] = [1]
unzipR | = let (Ib, Ip) = unzip |
(las, lbs) = unzip b
in [bs

7.4 Summary

In this Chapter we introduced a model for mixed quantum cdatmns acting on
a combined state with a quantum and a classical part. Thetwugpart of the state is
represented by a density matrix which can efficiently expties probabilistic distribution
of quantum states resulting from measurements. We justifiedmportance of using
mixed programs and combined states based on the structaoena important quantum
algorithms like teleportation.

However, there is a (possibly not minor) conceptual probierihe adoption of the
density matrix formalism, namely: a density matrix is suggubto represent a sen-
semblé of quantum systems whose probability distribution of etathe density matrix
represents; however, from a programming theoretic poimteaf, one usually thinks of a
quantum algorithm as being performed by one single quanystes, not an ensemble
of quantum systems each possibly behaving in a differentagagrding to a probability
distribution.

We feel that the quantum programmer’s intuition of prograngrne single quantum
system at a time, while elaborating his algorithms, may kapp be not appropriately
captured by the density matrix formalism. We feel (but weehaw definite argument)
that a representation modelled on the usual set-theoegiresentation of states of non-
deterministic machines, adjusted to explicitly represbatprobability of occurrence of
each deterministic state, may happen to capture in a bedtethe quantum programmer’s
intuition.

So, in next Chapter we introduce another way of dealing mitkedquantum compu-
tations, which is based on explicit probability distritmris over sets of quantum states.
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8 MODELLING QUANTUM EFFECTS IV: MIXED PRO -
GRAMS WITH PROBABILITY DISTRIBUTIONS OF QUAN-
TUM VECTORS STATES AS ARROWS

As motivated in the previous chapter before, we presentismdapter another way
of representing combined states. Basically, the quantuingbdhe combined state is
represented by an explicit probability distribution oveagtum states.

The idea is to have a combined state, where the classicaigag before (i.e. a
probability distribution of classical values), and the quen part is represented by this
explicity probability distribution over quantum states. mixed program acting on this
combined state can act on the quantum part, on the classidabp on both parts.

Mixed programs acting only on quantum data are of two kinddd unitary transfor-
mations, which reversibly transform the state vector arttling happens to the classical
probability; and ii) measurements, which probabilisticgleld one of theeigenvaluesf
the observable being measured, émdwsthe system into the correspondeimenstate
Yet one can have quantum operations controlled by classaaks as well as purely
classical operations.

8.1 Mixed Programs with Probability Distributions

The probabilistic quantum programming model that we defnigaised on data type
to represenprobability distributions of quantum state vectors
type EV = Double
type Prob = Double
newtype PDQst a = PDQ{unPDQ € [([EV], Vec a, Prob)]}
More specifically, a probability distribution over a baset 8 is represented by a pair
formed by: a list of real valueg'V/, the eigenvalues which are the outputs of previously
performed measurements, and a state veétara. We chose to keep a list of eigenvalues
EV to maintain a history of measurements. For now this list sm¢$nclude information
about the source of eigenvalues, i.e., about the positidimeofjubit which was measured
in the global state.
An example of simple distribution over a basic vector may éfened as follows:
return € (Basis a) = a — PDQst a
return a = PDQ [([], return a,1)]
qdFalse € PDQst Bool
qdFalse = return False
Also we can define basic distributions over simple supetjpos and over-dimensional
vectors:
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qdF'T € PDQst Bool

eprd € PDQst (Bool, Bool)

eprd = PDQ [([], epr, 1)]
Note that the list of eigenvalues is empty for basic distidns. This is because the
eigenvalues start to appear in distributions only after aehmeasurements involved.

A mixed quantum prograis represented by two kinds of transformations:

data PDQTrans a b = Transform ((PDQst a) — (PDQst b))
| Meas ((PDQst a) — (PDQst b))
We made the difference explicit because the semantics dyiagpunitary transforma-
tions is different from the semantics of applying measumase

A simple unitary transformation can be defined in such a wayfttie transformation
is applied to all vectors in the distribution. The probaillistribution over eigenvalues
is preserved. For instance, a simple quantum unitary toamsftion asiadamard can be
defined as:

hadamardD € PDQTrans Bool Bool

hadamardD =

Transform (Ax — PDQ [(121,v2,p1) | (121,v1,p1) < unPDQ x,
let vy = v; >= hadamard])
We can test the function above using an application operatio

appD € (Basis a, Basis b) = PDQTrans a b — PDQst a — PDQst b

appD f =Xz — f x
Applying hadamardD to qdF'T produces:

([], [(False, 1.0 :+0.0), (True, 0.0 :40.0)]) — 1.0
using a pretty printing fo’DQst: on the left are the list of eigenvalues and the vector,
and on the right, after the arrow, is the probability.

Measurements are the operations which produce eigenvaseésssical outputand
return a new classical probability distribution over eiggates of the observable according
to eachvector in the distribution.

The measurement of a simple qubit realized by an observabieh hasqFalse (|0))
andqTrue (|1)) as its eigenvectors, can be implemented as follows:

measqD € PDQTrans Bool Bool
measqD = Meas (Ax — PDQ [(evalue : 121, evector, ps) |
(121, v1,p1) < unPDQ =,
(evalue, evector) «— [(0, gFalse), (1, ¢True)],
letp2 = ifpl 7_é 0
then (((magnitude (evector(.)v1)) xx 2) % p;) else 0])
The two possible outputs abecollapsing the vector tgFulse or 1 collapsing the vector to
qTrue. Note that the new probability, is calculated using the formula presented in Sec-
tion 2.1.3 multiplied by the previous probability as it isep@ndent event. This operation
may augment the number of vectors in the distribution, fetanceuppD measqD qdF'T
returns:
([0.0], [(False, 1.0 :4-0.0)]) — 0.5
([1.0], [( True, 1.0 :40.0)]) — 0.5
Moreover we can define a function which discards a qubit,
discgD € PDQTrans Bool ()
Of course, discarding a qubit physically corresponds tosmeag it, returning a real
value for the probability distribution. The definition ofisifunction is similar tomeasqD
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except for the fact that there is no vector returned.

8.2 PDQTrans as Indexed Arrows

We define the three functionsyr, >>, andfirst, over PDQTrans as follows:
arr € (Basis by, Basis by) = (by — by) — PDQTrans by be
arr | = Transform (Ax — PDQ [(e1,vq, p) | (e1,v1,p) «— unPDQ =,
let fu = fun2vecfun f,
let vy = fu v1])

(>>) € (Basis by, Basis by, Basis b3) =
PDQTrans by by — PDQTrans by b3 — PDQTrans by b3
(Transform f) >> (Transform g) = Transform (Ax — let d = f z in g d)
(Meas f) > (Tmnsform g) = Transform (Az — let d = f zin g d)
(Transform f) >> (Meas g) = Meas (A\x — let d = f x in g d)
(Meas f) >> (Meas g) = Meas (\x — let d = f zin g d)
first € (Basis by, Basis by, Basis bs) =
PDQTrans by by — PDQTrans (b1, b3) (bs, bs)
first (Transform f) =
Transform (Az — let fg = getvbs (Transform f)
fext = firstl fg
in PDQ [(le,v,p) | (121,v1,p1) < unPDQ z,
let (le7v7p) = (l217[((b7c)7k1*k2) |
((a,c), k1) «— vy, let dy = fext (a,c),
(lez, va, p2) < unPDQ ds,
((b,¢) k2) = wa],p1)])
first (Meas f) =
Meas (A — let  fg = getvbs (Meas f)
fext = firstl fg
in zipgd (PDQ [(le, v, p) | (121, v1,p1) < unPDQ =,
((a, c), k1) < vy, let dy = fext (a, c),
(lea, v2, p2) — unPDQ do,
let (le, v) = (leg 124,
[((bv C)> ky x kQ) | ((b> C)v k2) - UQ])?
let p = py * py * (((*%2).magnitude) k1)]))
The first two functions are straightforward:r constructs aeversibletransformation
from a basic function, where
fun2vecfun € (Basis a, Basis b) = (a — b) — (Vec a — Vec b)
funZvecfun f va = let fa = fun2lin f
in va >= fa
converts a “matrix” to a function mapping vectors to vectarsd > just composes two
PDQTrans. The functionfirst is a bit more subtle, the idea is to transform a function
which acts inpart of a quantum state (sayec b;) to a function which acts in thglobal
state (sayVec (b, b3)). The implementation is based in the following two functdn
getvbs € PDQTrans a b — (a — PDQst b)
getvbs (Transform f) = Aa — let d = dreturn a in f d
getvbs (Meas f) = Aa — let d = dreturn a in f d

1The functionwlk a v just lookups the amplitude probability afin vectorv.
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firstbs € (a — PDQst b) — (a,c) — PDQst (b, c)
firstl f (a,c) =1let db=f a
dc = dreturn c
in PDQ [(le,va, p % q) | (le, vb,p) < unPDQ db,
(-, ve, q) «— unPDQ dc,
let vy = [((b, ¢), vlk b vb * vk ¢ ve) | (b, ¢) < basis]]
Given aPDQTrans, getvbs determines how that behaves for basic vectors. Then, given
the basis’ elementgirstbs extends the transformation. Essentially, wfiait does is to
calculate theextendedunction for the inputPD(Q Trans using firstbs, and then to cal-
culate the output, correctly applying the extend&d( Trans to the inputed probability
distribution of state vectors. The trick fgirst is that we have made an explicit differ-
ence between measurements and unitary transformatiotise lihputed function isiot
a measurement the calculation is standard, but ifithatmeasurement then the number
of states vectors in the distribution is augmented and wd teese the functionipqd,
which combines all state vectors that are tagged with theesagenvalue.

Proposition 8.2.1 The given implementation fanr, >, and first satisfy the required
equations for arrows.

We can use the arrow combinators to structure quantum catiguos modelled by
mixed computationsver combined states.

8.3 Example: Teleportation

Now we model the algorithm for teleportation usiR@ () Trans as arrows.
alice € PDQTrans (Bool, Bool) ()
alice = proc (eprL, q) — do
(q1,€e1) <« controlled_notD < (q, eprL)
qs < hadamardD < ¢,
ul «— discgD < qo
ey «— simplgD < (ul,e;)
Ug «—  discqgD < e
returnA < us
bob € PDQTrans Bool Bool
bob = PDQTrans (Ax — PDQ [((121,v3),p1) | (({21,v1),p1) < unPDQ z,
let vy = if ((head (2;) = 1) then v, >= gnot else vy,
let v3 = if ((head (tail [21)) = 1) then vy >= 2 else vy])
teleportation € PDQTrans (Bool, Bool, Bool) Bool
teleportation = proc (eprL, eprR, q) — do
ul « alice < (eprL, q)
q «— bob < eprR
returnA «— ¢

A running of teleportation of the qubit%(\O} + |1)) produces the following output

1
([0.0,0.0], [(False,1 / /2), (True,1 / v/2)]) — 0.25
([1.0,0.0], [(False, 1 / v/2), (True,1 / v/2)]) — 0.25
([0.0,1.0], [(False,1 / v/2), (True,1 / v/2)]) — 0.25
([1.0,1.0], [(False,1 / v/2), (True,1 / v/2)]) — 0.25
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that is, if we sum the probabilities the final state in Bob® 38 100% in a uniform
superposition of'alse andTrue. Note that at the end there is a list of all classical results
of the measurements.

8.4 Summary

This Chapter presents an alternative model for mixed quarmmmputations acting
on a combined state with quantum and classical data, sutlhgguantum part of the
state is represented by an explicit probability distribas over quantum states.

Although we feel this model using explicit probability disutions of vectors is more
intuitive for a programmer, it remains to be analysed howcigffit, as the size of these
states will in general greatly increase in the number of mmeasents performed and
as they may represent, in different probabilities, vecteingch are not observationally
different.
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9 CONCLUSION

In this thesis we have modelled and explained quantum pnogiag using well es-
tablished constructions of classical programming langaamnd semantics.

9.1 Contributions

9.1.1 High-level Languages for Quantum Computation

It took many years for a classical programming languagevelde sophisticated pro-
gramming abstractions, compiler technology, type syst@md connections to semantic
constructions like monads. In this thesis we formalize som@ortant connections be-
tween classical and quantum computations and we hope thildwelp much of the
constructs and tools used for classical programming to dnestered to the domain of
guantum programming languages.

In Section 4 we have developed a technique for reasoningt @u@ntum programs,
written in a pure subset of QML, using algebraic laws.

We have also noted that a general purpose quantum programamguage that can
faithfully express quantum algorithms would genera) with respect measurements, and
complete with respect the interchanging between quantum and ckds$ata. Addition-
aly, we shown that two approaches for general and completetgm computations can
be structured using indexed arrows.

9.1.2 Main Differences between Quantum and Classical Progmming

Previous work on quantum programming seems to declare hieanew approach
is completely disjoint with classical programming constions. In some sense this is
true for two reasons: (1) quantum computing is based on a &drghrallelism caused
by the non-local character of quantum information whichuslgatively different from
the classical notion of parallelism, and (2) quantum conmguihas a peculiar notion of
observation in which the observed part of the quantum stadesgiery other part that is
entangled with it immediately lose their choerence.

Interestingly it seems that none of the other differences dne often cited between
guantum and classical computing are actually relevant seoadly. For example, even
though we do not often think of classical computation as érsible,” it is just as re-
versible as quantum computing. Both can be implemented byt seversible universal
gates (see (NIELSEN; CHUANG, 2000), section 1.4.1), buteither model should the
user be required to reason about reversibility.

The two properties of quantum computing discussed abovainbrgo beyond “pure”
classical programming. In this thesis we have establishatddquantum parallelism can
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be elegantly structured using indexed monads, and thattgmameasurement can be
modelled using a generalisation of monads called index@avar In summary, our con-
struction relates “unusual” quantum features to well-fieoh semantic constructions and
programming languages. We hope it will serve as a usefulttoflrther understand the
nature and structure of quantum computation.

However as pointed in Section 6.5 it seems there is a trickyagtteristic in quantum
programming, which is related to forgetting variables jfgiog to operate on them) in
quantum programs, as the quantum state is global and ppesifaingled, and forgetting a
part of the quantum state corresponds to measure it and sthpodestroy entanglement.

9.1.3 High-level Executable Models of Quantum Computation

Developing executable models for quantum computation nedyy im a better under-
standing of quantum algorithms and may give inspirationdiagrammers to develop
new quantum algorithms. Also, showing how quantum progrargroan be integrated
to classical programming constructions, based on a soutidematical semantics, may
help the structuring of simulators for quantum computers.

9.2 Future Work
9.2.1 Quantum Haskell

As an obvious future work we plan to develop further the lifpfar general and com-
plete quantum computation structured as indexed arroweci8lfy implementing a type
system to control decoherence, adding quantum control diével data structures.

9.2.2 QML

We presented in Section 4.1 a functional quantum program@nguage, called
QML developed by Altenkirch and Grattage (ALTENKIRCH; GRFAGE, 2005). Es-
sentially, QML is explained by translating functional prams with quantum effects into
guantum circuits using additional registers for initiahpeand final garbage of the compu-
tation. These circuits can be translated into superopasadad this translation turns out
to be full,i.e., every superoperator is given by a computation. A QML cosergibs been
implemented by Grattage in Haskell (GRATTAGE; ALTENKIRCEDO05), its output are
quantum circuits which can be simulated using a standardlator for quantum circuits.
The present work is complementary: it provides a direct an@ntation of superoper-
ators in Haskell, by passing the need to simulate circuitse details of implementing
QML using the library of superoperators presented herebeikubject of further work.
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APPENDIX A LINEAR VECTOR SPACES

In this appendix, we review the essential notions on vegtaces needed to a basic
understanding of the principles of quantum mechanics. fview is based on Chapter
1 from (SHANKAR, 1994).

A.1 Basics

Intuitively, a vector space is a very useful mathematicalevm model scenarios from
the real world - we can model the scenes and preview how thaygeh The cleverness
of vectors spaces is that they may abstract an approprietd general properties of the
scenarios.

Definition A.1.1 (Linear Vector Space) A linear vector spacé is a collection of ob-
jectst |1),]2),...,|V),...,|[W),..., called vectors, for which there exists:

1. Adefinite rule for forming the vector sum, denotediby+ |[17)

2. A definite rule for multiplication by scalars b, . . ., denoted by:|V') with the fol-
lowing features:

e The result of these operations is another element of theespmdeature called
closure |V) 4+ |W) € V.

e Scalar multiplication idistributivein the vectorsa(|V) + |W)) = a|V) + a|W).
e Scalar multiplication igistributivein the scalars:(a + b)|V) = a|V) 4+ b|V).

e Scalar multiplication isassociativea(b|V')) = ab|V).

e Addition iscommutative |V') + |WW) = |W) + |V).

e Addition isassociative |V) (W) + |Z)) = (|]V) + |W)) + | Z).

e There exists aull vector|0) obeying|V) + |0) = |V).

e For every vectotV') there exists amverseunder addition| — V'), such thatV’) +
|—V)=0.

'Here we are using thieraketDirac’s notation. The symbdV') is called aketand denotes a generic
vector.
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The numbers:, b, . .. are called thdield over which the vector space is defined. If the
fiel consists of real numbers, we haeal vector spacesf they are complex, we have a
complex vector space

By one hand, one can, of course, associate an objgcwith an arrow-like object
such that addition of two arrows corresponds to put the faithe second arrow on the
tip of the first. Scalar multiplication corresponds to sthéng the vector by a factar.
This is a real vector space since stretching by a complex pumiakes no sense. Since
these operations acting on arrows give more arrows, we halesare. The null vector is
the arrow of zero length, while the inverse of a vector is teetor reversed in direction.
Hence one can think the objects of a vector space are neibgsseows. However, no
reference has been made to magnitude or direction. The goihat while the arrows
have these qualities, members of a vector space need noindtance, consider the set
of all 2 x 2 matrices. We know how to add them, multiply them by scalan§fzat the
corresponding rules obey closure. In other words, theyttatesa genuine vector space,
which do not have an obvious length or direction associatiéutivem.

Now consider linear dependence of vectors:

Definition A.1.2 (Linear Dependence)A set of vectors is said to be linearly independent
if the only linear relation such that

n

S adi) = o)

i=1

is the one with alk; = 0. If the set of vector is not linear independent, we say they ar
linearly dependent.

The definition tells that it is not possible to write any memabiethe linearly independent
set in terms of the others. For instance, consider two noalphvectors|1) and |2)

in a plane. These form a linearly independent set. There iwayoto write one as a
multiple of the other, or equivalently, no way to combinenth® get the null vector. On
the other hand if the vectors are parallel, we can clearlyevame as multiple of the other
or equivalently play them against each other to|ggt

Definition A.1.3 (Dimension of a Vector Space)A vector space has dimensianif it
can accommodate a maximumrolinearly independent vectors.

For example, the plane is two-dimensional and the sgk@fmatrices is a four-dimensional
vector space, which can have the following linearly indejssm set of vectors:

v-[os] mefio] we[va] wefi]

Note that it is impossible to form a linear combination of ahgee of them to give the
fourth any three of them. So the space is at least four-diraeak and it can not be bigger
since any arbitrarg x 2 matrix can be written in terms of them:

[ ‘7 } — all) +b[2) + |3) + dJ4).

If the scalars:, b, ¢, d are real, we have gal four-dimensional spacéf they are
complex we have aomplex four-dimensional space
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Definition A.1.4 (Basis) a set ofn linearly independent vectors inradimensional space
Is called abasis

Thus we can write aniqueexpansion:

n

V)= uli)

i=1

for any vector, such that the vectdis form a basis.

A.2 Inner Product Spaces

The2 x 2 matrix example of a vector space in the section below haffiethathat a
vector space need not to have a preassigned length or dirdatiits elements. However,
one can make up quantities that have the same propertiethéhlngths and angles do
in the case of arrows.

Based on the definition of thaot productfor arrows? there is a generalisation called
the inner productbetween any two vectoid”) and|V) that is denoted by the symbol
(V|W). The inner product is a number (generally complex) depermtethe two vectors
and obey the following axioms:

o (VIW) = (W|V)* 3 (skew-symmetry)
o (V|V)>=0o0r0iff |VV) =|0) (positive semidefiniteness)
o (V|(a|lW)+10b|Z)) = (V]|aW +0Z) = a(V|W) 4+ b{V|Z) (linearity in ket)

Definition A.2.1 (Inner Product Vector Space) Aninner product spads a vector space
with an inner product.

Notice that we have not yet presented an explicit rule fanabt evaluating the inner
product, we just posted that any rule must have these prepetiets analyse the axioms
closer. The first one ensures that|V') is real. The second axiom says tH&t|\)
is not just real but also positive semidefinite, vanishingy ohthe vector itself does.
The last axiom expresses the linearity of the inner produstwa linear superposition
alW) +b|Z) = |aW + bZ) appears as the second vector.

Definition A.2.2 (Orthogonality) Two vectors arerthogonalor perpendicular if their
inner product vanishes.

Definition A.2.3 (Norm) The norm or length of a vector is defined g§V[V) = |V|.
A normalized vector has unit norm.

Definition A.2.4 (Orthonormal Basis) An orthonormal basis is a set of basis vectors all
of unit norm which are pairwise orthogonal.

24 . B= |A||B] cos 6, which is defined in terms of the lengths of the arrows and tisine of the angle
between the arrows.
3Wheresx is the conjugate complex.
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We present now a concrete formula for the inner product @ ehlled the dot prod-
uct). Given|V') and|IV)
V) =¥, uili)
(W) =225 vild)

Following the axioms obeyed by the inner product we have:
(VW) = Z Z viw; (il f).

Then, we have to know the inner product between basis ve¢iors That depends on the
details of the basis vectors and all we know for sure is thag Hre linearly independent.
But note that if we use an orthonormal basis only diagonahsdike (i|:) will survive.

Theorem A.2.1 (Gram-Schmidt) Given a linearly independent basis we can form linear
combinations of the basis vectors to obtain an orthonornaaif

To verify the proof of the theorem see (NIELSEN; CHUANG, 2p(®ection . Assuming
that the procedure has been implemented and that the cbasistis orthonormal:

a1 fori=j
{ilg) = { 0 fori#j
we will use the following formula for the inner product:

(VW) = Zv w;.

Since the vectopl”) is uniquely specified by its components in a given basis, wg ma
in this basis, write it as a column vector:

V) —

in this basis. Likewise

W) —

in this basis. Hence, the inner product is given by the madroduct of the transpose
conjugate of the column vector representiig with the column vector representing
[W):

(VIW) = [v}, 03, vy

r n
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A.3 Dual Spaces and Dirac Notation

Column vectors are concrete manifestations of an absteatbs 1) or ket in a basis.
We can also work backwards and go from column vectors to teeaadi kets. But then it
is similarly possible to work backward and associateva vectorwith an abstract object
(W|, calledbra-WW. Therefore, associated with every Két) is a column vector, and
taking itsadjoint, or transpose conjugate, we form a row vector, which is tis¢rabt bra,
(V|. Thus, there are two vector spaces, the space of kets andahephce of bras, with
a ket for every bra and vice-versa. There is a basis of veptofsr expanding kets and
a similar basigi| for expanding bras. The basis Kétis represented in the basis we are
using by a column vector with all zeros except far & the:th row, while the basis bra
(1] is a row vector with all zeros except forlahe theith column.

All this may be summarized as follows:

U1
(3
VYo | 2| el v o (V]

1 Un
Un

where«— means “within a basis”.

A.4 Subspaces

Definition A.4.1 (Subspace)Given a vector spac¥, a subset of its elements that form
a vector space among themselves, such that vector additids@alar multiplication are
defined in the same way in the subspace a$,iis called a subspace.

Remark A.4.1 We denote a particular subspacef dimensionality:; by V7.

Definition A.4.2 (Composite Spaces)Given two subspaceg;” and V;.”", thenV!"
V;.”j (read® as tensor) is a; x m; dimensional vector space. The elemenfg’zb@VT"
are linear combinations of tensor produ¢t$®|w) of elementv) € Vi and|w) € V7.
In particular, if |i) and|) are orthonormal bases for the spacé} andV’" then|i)® ;)
is a basis forV;" @ V7.

Remark A.4.2 We often use abbreviated notatiops|w),
tensor productv) ® |w).

v, w) or evenlvw) for the

A.5 Linear Operators

An operator(2 is an instruction for transforming any given vectdf) into another
vector|V’). The action of the operator is represented as follows:

Qv = V7).

One says that the operat@has transformed the két') into the ket V’). We will restrict
our attention throughout to operatdeghat do not take us out of the vector space, i.e., if
|V} is an element of a spadg so is|V’) = Q|V).

Operators can also act on bras:
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(V|©r = (V"]
Linear operatorsare the operators which obey the following rules:
o QalVj) = aQ|Vi)
o HalVi) +6|V))} = aQVi) + 5QVi)
o (Va2 = (Vi[Qa
o ((Vilor + (V3[0)2 = (V3|2 + (V[ €.
The simplest operator is the identity operatiQiwhich carries the instruction:

I — leave the vector alone!

Thus,
IlV) = |V) for all kets|V)

and

(V|I = (V| forall bras(V|.

The nice feature of linear operators is that once their aabio the basis vectors is
know, their action on any vector in the space is determinfed. |

Qi) = i)

for a basig|1),[2),...,|n) in V" (wheren is the dimension of the space), then for nay

V) = 22iwild)
QV) = ZQUM = vam = Zvih"}.

A.5.1 Matrix Elements of Linear Operators

We are accustomed to the idea of an abstract vector beingseqted in a basis by an
n-tuple of numbers, called its components, in terms of whithextor operations can be
carried out. We shall now see that in the same manner a lipesiator can be represented
in a basis by a set of* numbers, written as anx n matrix, and called itenatrix elements
in that basis.

The start point is the observation made earlier, that theracif a linear operator is
fully specified by its action on the basis vectors. If the basictor suffer a change

Qi) = |')
then any vector in this space undergoes a change that isyreattiulable:

QV) = szm) = vam = wuli).

i

As the vectoli’) is know, its components in the original basis

(4li") = (31920d) =
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are know. The:> numbers§?; ; are thematrix elements of?2 in this basis. If
QV) = [V)

then the components of the transformed k&t are expressible in terms of the compo-
nents(2;; and|V):

o= (V) = 0V = Gl i)

= 225 v5(il€5)
= Z]—Qijvj.
Summarizing, we can form the following matrix fox.
v (1) (1Q[2) .. (A[Qfn) | | v
o | | el @e2) .. 2ok || e

Notice that the components of the first column are simply th@monents of the first
transformed basis vector’) = Q1) in the given basis. Likewise, the components of the
jth column represent the image of tfth basis vector afteR acts on it.

Now we can have the feeling about what an object |iké| is. WhereagV|V’) =
(1 xn matrix) x (n x 1 matrix) = (1 x 1 matrix) is a scalar|V")(V”| == (n x 1 matrix) x
(1 xn matrix) = (n x n matrix) is an operator. The inner produgdt|V’) represents a bra
and ket that have found each other, while (V’|, sometimes called theuter product
has the two factors looking the other way.

A.5.2 The Adjoint of an Operator
Recall that given a ket|1/) the corresponding bra is
(Vl]a*(not(V|«a)
In the same way, given a ket
Q)

the corresponding bra is

(viaf

which defineghe operatof)'. In other words, if2 turns a ketV/) to [V’), thenQ' turns
the bra(V| into (V’|. Just asy anda*, |V') and(V/| are related but distinct objects, so are
Q andQf. The relation betweef? and2f, called theadjoint of 2 or “omega dagger”, is
best seen in a basis:

QN = (il975) = (i)
= (l&0)" = (2"
SO
Qf =

That means that the matrix representidigis the transpose conjugate of the matrix rep-
resenting.
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A.5.3 Hermitian, Anti-Hermitian and Unitary Operators

We now turn our attention to certain special classes of apexghat will play a major
role in quantum mechanics.

Definition A.5.1 (Hermitian) An operator() is Hermitian if Qf = Q.

Definition A.5.2 (Anti-Hermitian) An operator is anti-Hermitian ifQf = —.

The adjoint is to an operator what the complex conjugate rutobers. Hermitian and
anti-Hermitian operators are like pure real and pure imagimumbers.

Definition A.5.3 (Unitary) An operatorU is unitary if
Uut = 1.
The equation above tells us tHatandU are inverses of each other. Consequently,
U'u = 1.
Theorem A.5.1 Unitary operators preserve the inner product between trators they
act.

A.5.4 The Eigenvalue Problem

Consider some linear operatQracting on an arbitrarponzerdket |V/):
Q) =1|V').

Unless the operator happens to be a trivial one, such as ¢éméitidor its multiple, the
vector will suffer a nontrivial change, i.¢\”’) will not be simply related tdV’). Each
operator, however, has certain kets of its own, calle@igenketson which its action is
simply that of rescaling:

QV) =w|V).

In this case we say th&t’) is aneigenkebf 2 with eigenvaluev. Given an operatof?
we can systematically determine all its eigenvalues aneheigctors.
For instance, consider the trivial case wh@re- 1. Since

V) =1{V)
for all V'), we conclude that
1. the only eigenvalue dfis 1;

2. all vectors are its eigenvectors with this eigenvalue.

The solution of thesigenvalue problemis given by the following calculation. The
equation
det(Q —wl) =0

which is the condition for nonzero eigenvectors, will detare the eigenvalues.

The eigenvalues, which are the roots of the polynomial ajpaneebasis independent.
And because every-order polynomial has roots, not necessarily distinct and not nec-
essarily real, every operator Wi* hasn eigenvalues. Once the eigenvalues are know, the
eigenvectors may be found, at least for Hermitian and Uyb@erators.
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Theorem A.5.2 The eigenvalues of a Hermitian operator are real.

Theorem A.5.3 To every Hermitian operatdr, there exists (at least) a basis consisting
of its orthonormal eigenvectors. It is diagonal in this eagasis and has its eigenvalues
as its diagonal entries.
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APPENDIX B A HASKELL PRIMER

We use Haskell as a precise mathematical (and executalétjamo

It is useful to think of a Haskell type as representing a nratiecal set. Haskell
includes several built-in types that we use: the tjfpelecan whose only two elements are
False and True; the typeComplex Double whose elements are complex numbers written
a + b where bothu andb are elements of the typBouble which approximates the real
numbers. Given two types andb, the type(a,b) is the type of ordered pairs whose
elements are of the respective types; the type> b is the type of functions mapping
elements ofz to elements ob; and the typda] is the type of sequences (lists) whose
elements are of type. For convenience, we often use the keywoygbe to introduce a
new type abbreviation. For example:

type PA = C Double
introduces the new typ®&A as an abbreviation of the more verboSemplex Double.
A family of types that supports related operations can beiged in a Haskeltlass.
Individual types can then be madeiastance of the class, and arbitrary code can require
that a certain type be a member of a given class.

The syntax of Haskell expressions is usually self-explanyagxcept perhaps for the
following points. A function can be written in at least two yga Both the following
definitions define a function which squares its argument:

sgn=mnxn

s¢ =An—mnx*xn
A function f can be applied to every element of a list usingp or usinglist comprehen-
sions If zs is the list[1, 2, 3, 4], then both the following:

map Sq TS

[sq z | © «— x5]
evaluate td1, 4, 9, 16].

Usually, a functionf is applied to an argument, by writing f «. If the function
expects two arguments, it can either be applied to both & fiie, b) or one at a time
f a b depending on its type. When convenient the function syméolae placed between
the arguments using back quotes" b.



APPENDIX C PROOFS

C.1 Proof of Proposition 6.3.1

Proof.

e First arrow equationarr id >> f = f.
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arr id 3> f = fun2lin (A(a1, a2) — (id a1,id ag)) ‘o° f (by arr and =>>)
= fun2lin id ‘o* f (by simp.)
= return ‘o‘ f (by fun,@lm)
= Aa — return o >=f (by‘o*)
=Xa—fa (bymlawl)
=f

e Second arrow equatiorf: >> arr id = f.

> arrid = f ‘o fun2lin (\(by, be) — (id by, id by)) (by arr and =)
= f ‘o fun2lin id (by simp.)
= f ‘o' return (by fun2lin)
= \a — [ a >=return (by o)
=Xa—fa (by m.law 2.)
=f
e Third arrow equation(f >> g) S>> h=f> (9> h).
(f>g)>h=(f0g)0 (by >>)
:)\bﬁ()\afa>>:g) b>=h (by o)
M (fbs=g)>=h (b B)
f>>(g>>h)=[0" (g0 h) (by>=)
:)\aﬁfa»()\bﬁgb»h) (by o)
=Xa— (fa>=g)>=h (by m.law 3.)

e Fourth arrow equationarr (g.f) = arr f >> arr g.

arr (g.f) = fun2lin (A(b1, b2) — ((9.f) by, (9.f) b2)) (by arr)
= return.(A(by, b2) — ((g.f) b1, (g.f) b2)) (by fun2lin)
= A(by, by) — return ((g.f) b1, (g.f) ba)  (simp.)

arr f > arr g = fun2lin (A(by,b2) — (f by, f ba)) ‘0
fun2lin (M(by,by) — (g by, g b2))
— (by >= and arr)
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= return.(A(by, be) — (f b1, f b2)) ‘o
return.(A(by, ba) — (g by, g b))
— (by fun2lin)
= A(by,by) — return (f by, f by) >=
(b1, be) — return (g by, g ba))
— (by o)
= )\(bl, bg) — ()\(bl,bg) — return (g bl, q bg)) (f bl,f bg)
— (by m.law 1.)
= A(b1, by) — return ((g.f) b1, (g.f) ba)

e Fifth arrow equationfirst (arr f) = arr (f x id).

first (arr f) = {ibrst (ﬂ;n,@lm (A(b1,b2) — (f by, f b2)))

— (by arr

= first (return.(A(by,b2) — (f b1, f b2)))

— (by funllin)

= first (A(b1,by) — return (f by, f bs))

— (by simp.)

- A((bla d1)> (b27 dQ)) - )‘((xa y)v (wv z)) -
return (f by, f by) (z, w) * return (dy,ds) (y, 2)

— (by first)

= )‘((blv d1>7 (b27 d2)) - )‘( Z, y)v <w7 Z)) -
if ((f blaf b2)7 (dladQ)) = ((x’ w), (yv Z))
then 1 else 0

— (by return)

arr (f X ld) = {un,@lm)()\((bl, dl), (bg, dg)) — ((f bl, dl), (f bg, dg)))

— (by arr

= return.()\((bl, dl), (bg, dg)) — ((f bl, dl), (f bg, d2)))

— (by funlin)

= )\((bl, dl), (bg, dg)) — return ((f bl, dl), (f bg, dg))

— (by return)

= )‘<<blv dl)? (b27 d2)) - )‘( Z, y)v (
if ((f b17d1>7 (f 627d2)) = ((I7 Y
then 1 else 0

— (by return)

w,2)) —
),

(w,2))

e Sixth arrow equationfirst (f =>> g) = first f =>> first g. In the following proofs
assumend! ((bl, dl), (bg, dg)) = (bl, bg) andad?2 ((bl, dl), (bg, dg)) = (dl, dg)

first (f ‘o* g) = {érst ())\a.f a>=gq)

—(by o

=Ab— AM(z,y), (w,2)).(f (adl b) >=g) (z,w) *
return (ad2 b) (y, z)

— (by first)

=Xb— A(z,y), (w, z)) — (Ac — sum [(f (adl b)) ax*
g ac|a< basis])(z,w) * return (ad2 b) (y, 2)

— (by>=)

=Ab— A(z,y), (w, 2)) — sum [(f (adl b)) a *
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g a(z,w)| a« basis]* return (ad2 b) (y, 2)
— (by )

first f ‘o first g = Aa — first f a>=A\b — first g b
— (by*o')
=Xa — M(z,y), (w,2)) — f (adl a) (z,w) *
return (ad2 a) (y,z) >= b — A(z,y), (w,2)) —
g (adl b) (z,w) * return (ad2 b) (y, z)
— (by first)
=Xa — AN(z,y), (w, 2)) — sum [f (adl a) (m,0) *
return (ad2 a) (n,p) * (A ((z,y), (w,z)) —
g (1, 0) (z, w) % return (n, p) (3, 2)) (&), (w,2)) |
((m, ), (0, p))  basis]
— (by>=)
=Xa — AN(z,9), (w, 2)) — sum [f adl a) (m, o) *
return (ad2 a) (n,p) * g (m, o) )
return, (n,p) (9,2 | ((m, n), (0,p
~ N A((#,y), (1.2)) — sum [F
g ay (z,w) * etum (ad2 a) ay *
return as (y, z) | ay < basis, ay < basis|
— (by simp.)
=Xa — MN(z,y), (w,2)) — sum [f (adl a) ay *
g ay (z,w) | ap « basis] x return (ad2 a) (y, 2)
— (by simp.)

e Seventh arrow equatiotfirst f =>> arr (id x g¢) = arr (id\ x g¢) =>> first f.
lhs = first f ‘o‘ arr (id x g)

lhs = X((a1,b1), (az,b2)) — first f ((a1,b1), (ag,ba)) >=
fun2lin (A((a, b), (¢, d)) — ((a,g b),(c, g d)))
— (by ‘o and arr)
= A((a1,br), (az,b2)) — first f ((a1,b1), (az, b)) >=
A(a,b),(c,d)) — return ((a,g b),(c,g d))
— (by funllin)
= )‘((ahbl)v (a27 b2)) - )‘((xv y)v (’LU, Z)) - f (a17a2) (:L’, w) *
return (by,b2) (y, z) >= A((a, b), (¢, d)) —
return ((a,g b),(c,g d))
— (by first)
= A(ay,b1), (az, b)) — Ac — sum [f (a1, as) (m, 0) *
return (by, by) (n, p) * return ((m, g n), (0,9 p)) c |
((m,n),(0,p)) < basis]
— (by>=)
= A((611 bi), (az,b2)) — (2, y), (w, 2)) — sum |
f (a1,as) (m, o) * return (bl by) (n,p) *
return ((m, g n), (0,9 p)) ((z,y), (w, 2)) |
((m,n), (o, p)) « basis]
— (by simp.)
= M(an,br), (a2, b)) — A((3, 9), (w, 2)) —
sum [f (a1, az2) (m, o) * [if (by,by) = (n,p) then 1 else 0] *
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[if ((m, g n), (0,9 p)) = ((z,9), (w, 2))
then 1 else 0] | ((m, n), (0, p)) < basis]

— (by return)

= )‘((alabl)a (aQa 62)) - )\((l‘, y)> (w7 Z)) -
ifi (9 01,9 b2) = (y,2) then [ (a1,a2) (z,w)
else 0

rhs = arr (id x g) ‘o* first f

rhs = X((aq,b1), (az, b2)) — fun2lin (A((a,b), (¢, d)) —
(6,9 b), (¢, g d)))((ar, br), (a2, bo)) >= first f
— (by ‘o* and arr)
= M(a1, b1), (az, b)) — return ((a1, g b1), (az, g b))
>= first f
(by fun2lin)
A((a1,br). (a2,52)) — first f ((ar, g by). (a2, g b))
(by monad law 1.)
Al ((ala bl)? (a27 bZ)) - )\((I, y)v (wv z)) -
f (a1, a2) (z,w) * return (g by, g ba) (y, z)
(by first)
)‘((ala bl)’ (aQ’ 62)) - )\((l‘, y)> (w7 Z)) -
[ (ar,a2) (z, w) + [if (g b1, g b2) = (y, 2)
then 1 else 0]
— (by return)

e Eighth arrow equationfirst f =>> arr fst = arr fst >> f.
lhs = first f ‘o* arr (A(a, b) — a)

lhs = X((a1,b1), (az,b2)) — first f ((a1,b1), (ag, b)) >=
arrA(a,b) — a
— (by o)
= M(a1,b1), (az,b2)) — first f ((a1,b1), (a2, b2)) >=
A(a, b),(¢c,d)) — return (a, c)
(by arr)
)‘((alv b1>7 (a27 b2)) - A((Iv y)v (’LU, Z)) - f (a’lv a’2) (:L’, w) *
return (by,bs) (y, z) >= X((a, b), (¢, d)) — return (a, c)
— (by first)
= A(ay,b1), (az,b2)) — A(c1, ¢2) — sum [f (ay,as) (m, 0) *
return (by, by) (n, p) * return (m, o) (¢1, ¢2) |
(m,n),(0,p)) < basis]

A(a1,b1), (az,b2)) — Aer, e0) — sum [f (a1, a2) (m, 0) *
[if (by,by) = (n, p) then 1 else 0] *

[if (m, 0) = (¢1,¢2) then 1 else 0] |

((m, n), (0, p)) « basis]

— (by return)

= A(a1, 1), (a,b2)) = Acr, ¢2) — f (a1, a2) (1, ¢2)

— (by simp.)

rhs = arr fst ‘o' f
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rhs = X(a, b), (¢, d)) — return (a,c) ‘o‘ f
— (by arr)
- )‘((alabl)’ (aQ’ 62)) - ()‘)‘ ((a’v b)> (Ca d)) -
return (a, c))((a1, b1), (az, b)) >=f
(by o)
A(a1, 1), (az,b2)) — f (a1, a2)
(by monad law 1.)
A(a1, br), (ag, b2)) — Aler, c2) — [ (ar, az2) (c1,c2)

e Ninth arrow equationfirst (first f) =>> arr assoc = arr assoc > first f

lhs = M((a1,b1),¢1), ((az, be), o)) — first (first f)
(((ah bl)? Cl)? <<a27 b2)7 02)) >=arr ()\((CL, b)? C) - (CL, (b7 C)))

lhs = M(((a1,b1),¢1), ((ag, b2), c2)) — first (Ab —
AM(z,y), (w,2)) — f (adl b) (z,w) * return (ad2 b) (y, 2))
(((a1,01), c1), ((az, b2), c2)) >= A(((a1, b1), 1), ((az,b2), c2)) —
return ((a1, (by,c1)), (ag, (ba, c2)))
— (by first)
= A(((a1,b1), c1), ((az, b2), c2)) —
)‘<<m17n1)7p1) ((m27n2)7p2) - (>‘b - )\((LL’, y)v <w7 Z)) -
f (ad1 b) (z,w) * return (ad2 b) (y,2)) ((a1,b1), (ag, bs))
((m1,n1), (M2, na)) * return (c1, c2) (p1, pe) >=
A((a1,b1), e1), ((az, b2), c2)) —
return ((a1, (by,c1)), (ag, (ba, c2)))
— (by first)
= M((a1,b1), 1), ((az,b2), €2)) = A((ma1, na), p1) ((m2, n2), p2) —
[ (a1, a2) (my,mg) * return (by, by) (ny,ng) *
return (c1,ca) (p1, pa) >=
A((a1,b1), e1), ((az, b2), ¢2)) — return ((a1, (b1, c1)), (az, (b2, c2)))
— (by B)
= M((a1,b1), c1), (a2, b2), c2)) —
A(z1, (1, 21)), (22, (Y2, 22))) —
sum [f (a1, az) (my,ma) * return (b, by) (ny,ng) *
return (c1, ca) (p1, p2) * return ((mq,ny), p1) ((Ma, na), p2)
((z1, (Y1, 21)), (22, (Y2, 22))) |
((m1,n1),p1) ((M2,n2), p2) < basis]
— (by>=)
= AM((a1,b1), 1), (a2, b2), c2)) —
(@1, (1, 21))s (2, (Y2, 22))) — sum [f (a1, az) (M, ma) *
if (b1,b2) = (n1,n2) then 1 else 0] *
[if (c1,¢2) = (p1, p2) then 1 else 0] *
[if ((m1,n1),p1) (M2, n2), p2) = (21, (41, 21)), (2, (Y2, 22)))
then 1 else 0] | ((m1,n1),p1) ((m2,n2), p2) < basis]
— (by return)
= A(((a1, b1), c1), ((az, b2), c2)) —
A(@1, (Y1, 21)), (22, (Y2, 22))) = [ (a1, a2) (21, 22) *
return ((by, c1), (b, c2)) (41, 21), (Y2, 22))
(

rhs = A(((a1,b1), c1), ((az, ba), c2)) —
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return ((ay, (b1, c1)), (ag, (b, c2))) ‘o* first f

ThS = )\(((al, bl), Cl>, ((CLQ, bQ), 02)) —
return ((a1, (b1, 1)), (ag, (ba, ¢2))) >= first f

— (by o)
A(((a1,b1),c1), ((a, ba), c2)) — first f ((a1, (b1, c1)), (az, (b2, c2)))
(by monad law 1.)
AM((a1,01), e1), ((az, ba), ca)) — A((@1, (y1, 21)), (22, (Y2, 22))) —
f (a1, a) (x4, 22) * return ((by, c1), (b2, c2)) ((y1, 21); (Y2, 22))
— (by first)
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APPENDIXD ESTRUTURANDO COMPUTAC OES QUAN-
TICAS VIA SETAS

Nesta tese, discutimos que um modelo realistico para c@oies quanticas deve ser
geral e completg considerando medidas e a comunicacao entre 0 munddicu&no
mundo classico, respectivamente. Assim sendo, explisa@struturamos computacdes
quanticas gerais e completas em Haskell utilizando cog@#s conhecidas da area de
semantica e linguagens de programacao classicas, comadase setas

Nessa se¢ao apresentamos brevemente os trés prirzapéislos da tese mostrando
o desenvolvimento incremental que levou as principaisritan¢des e conclusoes finais.

D.1 Introducao

A computado guantica(NIELSEN; CHUANG, 2000) pode ser entendida copro-
cessamentda informacao codificada fisicamente através de um sésfisino guantico
A idéia basica é codificar dados binarios usando bigstjads (qubits). Diferentemente
do bit classico, o bit quantico pode estar em wuperposigo de estados basicos, tor-
nando possivel o “paralelismo quantico”. O paralelismn@rgico € uma caracteristica
importante da computagao quantica, pois & um dos poegmonsaveis pelo possivel
aumento da eficiéncia informagao codificada fisicametra/@s de um sisteniésico
quantico. A idéia basica é codificar dados binarios usando bigtjaos (qubits). Difer-
entemente do bit classico, o bit quantico pode estar em suparposigo de estados
basicos, tornando possivel o “paralelismo quantico’paalelismo quantico & uma car-
acteristica importante da computacao quantica, @ais'dos pontos responsaveis pelo
possivel aumento da eficiéncia em relagdo ao tempo degsamento dos algoritmos
quanticos. Entretanto, dados quanticos sao compualonente interessantes nao so-
mente pela superposicao de estados. Existem outrager@sticas impares comonae-
didae oemaranhamento

Nesta tese, discutimos que um modelo realistico para c@oies quanticas deve ser
geral e completo considerando medidas e a comunicagao entre 0 munddicu&no
mundo classico, respectivamente. Assim sendo, explisa@struturamos computagdes
quanticas gerais e completas em Haskell utilizando cog@#s conhecidas da area de
semantica e linguagens de programacao classicas, comadas(MOGGI, 1989) ese-
tas(HUGHES, 2000).

Em mais detalhes, este trabalho tem como foco as seguimésboozOes: i)en-
tendimento de efeitos guaticos utilizando constrd@gs conhecidas narea de sem@ntica
de linguagens de programag classicas O paralelismo quantico, o emaranhamento
e a medida sao nog¢des que certamente vao aléem dos twencenhecidos em lingua-
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gens funcionais “puras”. Com este intuito, mostramos quaralelismo quantico pode
ser modelado utilizando uma generalizacao de monadasatemodnadas indexadas

ou Estruturas Kleisli Além disso, mostramos que a medida quantica pode ser expl
cada através de uma generalizacado mais radical de mémddmadasetas mais es-
pecificamentesetas indexadasonceito este definido nesta tese. Este resultado conecta
efeitos quanticos, como a superposicao e a medida, sirogbes semanticas de lingua-
gens de programacao classicas.Uipa interpretago computacional para a méaaica
guantica Einsten, Podolsky, e Rosen demonstraram em (BELL, 19&neds pro-
priedades nao-intuitivas da mecanica quantica. Aaidiisica discutida pelos autores &
que duas particulas emaranhadas parecem sempre conalgicaa informacao mesmo
gquando elas estao separadas por uma distancia adi#®dnalmente ainda existem sérios
debates na comunidade fisica sobre esse topico, masréssante notar que, como pro-
posto por Amr Sabry (SABRY, 2003), o emaranhamento podenesgmente ser mode-
lado através de atribuicBes a variaveis globais. &teste, discutimos sobre esse assunto
e modelamos o0 emaranhamento usando no¢des gerais @s efaputacionais expres-
sados em monadas e setas.

D.2 Modelando Efeitos Quanticos I: Vetores de Estado como Mnadas
Indexadas

O modelo tradicional de computacao quantica é baseadespacos vetoriais, com
vetores normalizadopara modelar estados computacionatsagsformaes uniérias
para modelar computagdes quanticas fisicamente agalz” A idéia € que o0 processa-
mento da informacao é fisicamente realizadosiééemas ganticos fechadaos

Em um sistema quantico fechado, a evolugc&versvel (também chamadsastritaou
pura), isto €, ela somente acontece por meio de portas urstaimedida, a qual & uma
operacao que modelamteragdo do sistema com mundqg nao & considerada. Portanto,
nesse contexto, o processo computacional quantico &desado como uma caixa preta,
que lé informacao de entrada e ao final do processo a 8a@larnada.

Devido a natureza dos estados quanticos e operacOedoagin tais estados, exis-
tem algumas diferencas intrinsecas entre programeéasica e programacao quantica.
Podemos enfatizar duas caracteristicas principais mggr@acao quantica: i) paralelismo
quantico, o qual & caracterizado pelo fendmeno da sopedo de estados quanticos e
expressado peleetorde estado; ii) estado quantigtobal (possivelmente emaranhado),
0 qual & caracterizado pelo fato de que nem todos os vetongsastos, que modelam o
estado quantico, podem ser decompostos em suas subp@aids.operacao quantica &
sempre global. Em termos abstratos isto pode ser explicelddato de que a aplicagcao
de uma operacao em usnbespac@specifico do espacgo vetorial em questao é realizada
através da aplicacado de uma operacao em todo o espagstablos. A operacao identi-
dade é aplicada nos subespacos nao atingidos peladmawagfao. Portanto, a semantica
de linguagens de programacao quantica precisa ne@asate considerar este fato.

Nesta secao, apresentamos uma abordagem baseada edampae programacao
quantica em Haskell. Para tanto, mostramos como estrutetares de estado quantico
usando mbnadas. Aidéia & que a aplicacao de transfdesainitarias a vetores de estado
€ modelada pela operagao monadica.
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D.2.1 Monadas Indexadas

Monadas sao utilizadas para formular definicdes e esaunoges de computées
(possivelmente nao-funcionais) em linguagens de proggam Neste contexto, upfo-
grama o qual apresenta nocdes de computacdes (como efei@sm@is por exemplo),
pode ser visto como unfangio de valores para computaes Por exemplo, um pro-
grama com excec¢oes pode ser visto como uma funcao geleereien valor e retorna uma
computado que pode suceder ou falhar.

Em Haskell, uma mdnada é representada utilizando-sguamdnstrutor para computacoes
m e duas funcoes:

return € forall a.a — m a

>= ¢ forallabbm a — (a — mb) - m b
A operacaas= (pronunciada “bind”) especifica como sequencializar caimgies eeturn
especifica comelevarvalores em computagdes. Os requerimelfitosl! nas definicdoes
representam que o construtor € induzido poraemdofuntor” em alguma categoria de
valoresC. Entdo,m & um tipo construtor agindo etodos os objetosla categoria de
valores.

Entretanto, algumas vezes precisamekecionaralguns objetos (conjuntos) da cat-
egoriaC para aplicar o construtdf. Esta nocao & um pouco mais geral que monadas
e é capturada pela definicao estrutura Kleisli(?). Basicamente, pamadnadas index-
adas(ou estrutura Kleisli), a funca®d nao precisa ser necessariamente um endofunctor
na categori&€. Em contraste, podemos selecionar alguns objetdspdea aplicar o con-
strutor. Esta idéia representa exatamente a no¢cao qus@mos para modelar vetores de
estado quantico (funcao que associa cada estado lw@sicama determinada amplitude
de probabilidade). O construtor para um vetor quanticosageente sobre os tipos que
podem constituir um conjunto de bases para o espaco Metoria

Para monadas indexadas, as definicOesetien e >= em Haskell podem ser ree-
scritas como:

return € forall a.F a = a — m a

>=¢€ foralla b.F a,Fb=ma— (a—>mb)—mb
isto &, para tode o qualF’ « vale podemos aplicar o construter, e para toda e b para
0s quaist’ a e F' b valem, podemos aplicas=. Além disso, para formar uma moénada
indexada, as funcdesturn e >= devem safisfazer as leis monadicas (MOGGI, 1989):

m >=return = m
(returnx) >=f = fx
(m>=f)>=g = m> (\x — fz>=g)

D.2.2 \Vetores

Dado um conjunta representando valores classicos de observaveis, i.eonjunto
de basesum estado quantico puro & um vetor— C, que associa cado elemento do
conjunto de bases com uma amplitude de probabilidade camptan Haskell, um con-
junto finito a pode ser representado como uma instancia da classe, como mostrado
abaixo. Essa classe tem um constritstis € [a], 0 qual lista explicitamente os elemen-
tos do conjunto. Os elementos da base devem ser difereriatvs dos outros, por isso
temos a restricad@q a sobre o tipo de elementos:

class Eq a = Basis a where basis € |a]
type K = C Double
type Veca=a — K
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O tipo K (aqui utilizamos a notagao de campo basico) € o tipo deigeis amplitudes de
probabilidade.
As fungbes monadicas para vetores sao definidas como:
return € Basis a = a — Vec a
return a b = if a = b then 1.0 else 0.0

(>=) € (Basis a, Basis b) = Vec a — (a — Vec b) — Vec b
va>=f = Xb— sum [(va a) * (f a b) | a < basis]
return € 0 construtor de vetores basicosyied, dada umaperag@o unitaria (matriz)
representada como uma func@e— Vec b, e dado um vetoWec a, retornaVec b (i.e.,
ela specifica como univec a pode ser transformado em uWac b).

Proposition D.2.1 A mbnada indexadd’ec satisfaz as equégs moadicas.

Exemplos de vetores sobre o conjunto dos booleanos podelefsedos como segue:
instance Basis Bool where
basis = [ False, True]

qFalse, qTrue, qF'T, gF'mT € Vec Bool

qFalse = return False

qTrue = return True

qFT = (1 /V?2) $x (qFalse ‘mplus* qTrue)
Os primeiros dois sao vetores unitarios basicos; e oduiosos representam estados em
superposicao coerente delse e True. Na notacao de Dirac, esses vetores podem ser
escritos, respectivamente, confealse, | True), %(\ False+ |True), e %(\ False — |
True)). As operacoe$« e ‘mplus’ sdo definidas como produto escalar e soma de vetores,
respectivamente.

Operac0des unitarias também podem ser definidas diegti@ypor exemplo:
type Uni a b =a — Vec b

hadamard € Uni Bool Bool
hadamard False = qF'T
hadamard True = gFmT

D.3 Modelando Efeitos Quanticos Il: Superoperadores como Setas
Indexadas

Enquanto o modelo de computacao quantica baseado ereydmestado € ainda bas-
tante considerado como um formalismo conveniente paraelesalgoritmos quanticos,
a utilizacao da medida para modelar ruido ou decoesierdratar computacao quantica
como um processoterativo, tem sido uma alternativa bastante interessante (AHARQONOV
KITAEV; NISAN, 1998; RAUSSENDORF; BROWNE; BRIEGEL, 2003ANOS et al.,
2005).

Nesta secao, revisamos o modelo para computacdesicpsgagerais, incluindo a
operacao de medida, baseado em matrizes de densidaderepmradores. Depois de
expressar tal modelo em Haskell, mostramos que os supadupes, utilizados para ex-
pressar todas as computacdes e medidas, sao uma iaglanmonceito desetas index-
adas uma generalizagao de monadas. O material apresenésda secao foi publicado
em (VIZZOTTO; ALTENKIRCH; SABRY, 2006).
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D.3.1 Setas Indexadas

Para tratar situacdes onde as mdnadas sao inapb¢cd¥eghes (HUGHES, 2000)
introduziu uma nova abstracao generalizando monatiamadasetas Realmente, em
adicao a definicao da noc¢ao de procedimento que padizae efeitos computacionais,
setas podem ter um componente estatico, ou aceitar maiswgentrada.

Da mesma maneira como definimos um tipo monadicerepresentando un@mmputado
retornando um valor, podemos pensar em uma seta do tipé c representando uma
computacao com entrada do tiparetornando unme. Setas tornam a dependéncia na
entrada explicita:

arr € forall b c.(b—¢) — a b c

(>>) € forallbcdabc—acd—abd

first € forall b ¢ d.abc— a(b,d) (c, d)
Em outras palavras, para ser uma seta, umiig@ve suportar as trés operacaoes, >>, e
firstdos tipos como declarados acima. A funa@iopossibilitaelevarmoguncdes “puras”
em computacdes. A funcas> compde duas computacoes. A fungaet possibilita a
aplicacao de uma seta no contexto de outros dados.

Observe os requerimentos fleall nas definicdes. Eles significam que podemos con-
struir computag¢des sobtedasas fungdes agindo sobre valores. Entretanto, como no
caso das mdnadas, precisamos selecionar alguns fupgées especificas. Este €& ex-
atamente o0 caso para computacdes quanticas: precigdenvas funcdes simples agindo
sobre conjunto de bases em funcdes agindo em vetoresesdgag bases. Consequente-
mente, definimosetas indexadas

arr € (I b,]¢c)=(b—c)—abc
sYye(Iblcld)=abc—acd—abd
first e (I b,Ic,Id)=abc—a(bd)(cd)

As operac0es para setassatas indexadatevem satisfazer as leis das setas (HUGHES,
2000), tal que essas operacdes sao bem definidas sobratpedes arbitrarias e trocas
associativas.

D.3.2 Superoperadores como Setas Indexadas

Intuitivamente, matrizes de densidade podem ser entendigao uma perspectiva es-
tatistica do vetor de estado. No formalismo de matrizesedsidade, um estado quantico
que era modelado como um veto® transformado em uma matriz de tal forma que as am-
plitudes do vetor de estado se transformam em um tipo debdigtio de probabilidade
sobre vetores de estado.

type Dens b = Vec (b, b)
Mapeamentos entre matrizes de densidade sao chamadopeateperadores
type Super b ¢ = (b,b) — Dens c
A idéia é representar superoperadores comomaiaiz grande mapeando valores a ma-
trizes de densidade (i.&uper b ¢ = (b, b) — (¢, ¢) — K).

Da mesma forma como o efeito da amplitude de probabilidasteceslo com vetores
€& modelados por umadnada indexadaslevido a restricdo ddasis, 0 tipo Super €
modelado por umaeta indexadaAs definicdes derr, >, e first paraSuper seguem
abaixo:

arr € (Basis b, Basis ¢) = (b — ¢) — Super b ¢
arr f = fup (A(b1, ba) — return (f by, f bs))
(>>) € (Basis b, Basis ¢, Basis d) = Super b ¢ — Super ¢ d — Super b d
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(f >>g) (b1,b2) = (f (b1,b2) >=g)

first € (Basis b, Basis ¢, Basis d) = Super b ¢ — Super (b, d) (¢, d)

first f ((b1,dy), (be,d2)) = permute ((f (b1, b2))(*)(return (dy,ds)))

where permute v ((by,b2), (dy,ds)) = v ((by,d1), (b, d2))

A funcaoarr constrbi um superoperados dada uma funcao pura, agbcarfuncao a
ambos vetor e seu dual. A composicao de setas simplesapit® dois superoperadores
em sequéncia. A funcdost aplica o superoperadgrao primeiro componente e deixa o
segundo componente como estava. A definicao calcula catlageparadamente e entao
permuta os resultados para formar o tipo requerido.

Proposition D.3.1 A seta indexad&uper satisfaz as equégs requeridas para setas.

Usando este modelgeral para computagdes quanticas estruturado como setas, pod
mos expressar de maneira elegante computacgoes quaaticalvendo medidas. Entre-
tanto, este trabalho & somente baseado em dados quartioda nao conseguimos ex-
pressar algoritmos com interacdes combinadas de dpsapanticas e classicas. Como
ja notado por (GAY; NAGARAJAN, 2005; UNRUH, 2005) um modetompletopara
expressar algoritmos quanticos deve acomodar ambos aaseslinteracdes combinadas
de dados classicos e quanticos.

D.4 Modelando Efeitos Quanticos Ill: Programas Mistos como Setas
Indexadas

O modelo apresentado na secao acima é puramente gudstitetanto, diversos al-
goritmos quanticos sao explicados em termos dadaeagdoentre informacao classica e
quantica (por exemplo, uma medida no meio da computathin)exemplo de algoritmo
que apresenta tal interacao € a teleportacao qaarksse algoritmo apresenta dois pro-
cessos quanticos se comunicandodaao chssico Existe interesse na consideracao de
um modelanistopara computac¢des quanticas envolvelaalidase ofluxo de informago
entre o processos classicos e quanticos (veja (RAUSSER)DBROWNE; BRIEGEL,
2003; GAY; NAGARAJAN, 2005; UNRUH, 2005)).

Portanto, gostariamos de uitameworkcapaz de representar ambos: (Egiado
qguanticoresultante de uma operagao unitaria aplicada em um degtado quantico, e
(2) o par de informacao retornado por uma medida, ist@&) ¢orrespondendo a@lor
de medidgproduzido pela operacao de medida (um auto-valor do vasgel), e (2b) o
estado ganticoque resulta da projecao imposta no estado quanticanatigela medida.

O principal obstaculo introduzido pela necessidade desfarmidade & que os resul-
tados da medida (ambos valor e estado) sao do tipo prodtadm| necessitandmnjuntos
de poséveis resultadopara sua representacao. A alternativa usual & o formalse ma-
trizes de densidade.

Consequentemente, nesta se¢cao apresentamos um mogdeloopgputacaanistas
ou combinadashaseado em uma abordagem de medida sobre matrizes de densida
Chamamos de computac¢des mistas ou combinadas qualquputagao transformando
um estado combinado, com dados classicos e quanticendtalnente, aidéia & ter uma
matriz de densidade representando a parte do estadoguégitibal) e uma distribuicao
de probabilidade de valores classicos representanddegassica do estado. Um pro-
grama quantico agindo neste estado combinado é intadargtor unsuperoperador de
traco, o qual projeto parte do estado quantico, retornando uida stassica, e deixando
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0 sistema em um novo estado (possivelmente em um espacoigmnsdes reduzidas).
O material apresentado nesta secao foi publicado em @T40; COSTA; SABRY,
2006).

D.4.1 Programas com Matrizes de Densidade

Pelo motivo que o superoperador de trago em ge@gliec@arte do estado, definimos
uma relacao entre as bases a qual chamamaégdée decomposigo):
class (Basis a, Basis b, Basis 0) = Dec a b o where
dec € [a] — [(b,0)]
especificando que um conjunto basicescrito pode ser escrito conio, o). Entao, um
programa quantico de parab,parametrizado pof, o tipo da distribuicdo de probabil-
idade classica no sistema antes da operacag,aeparte a ser medida, & representado
por um superoperador deparab, retornando uma distribuicao de probabilidade cl@ssic
sobreo.
type DProb ¢ = [(c, Prob)]
type QProgram i o a b = (DProb i, (a,a)) — (DProb o, Dens b)
Note que os programs devem satisfazer a restrigé@oa b o, e queDProb i € utilizado
na operacao classica ou operacdes quanticas cat@opor dados classicos.
Qualquer operador unitario pode agora se definido como wgrgma agindo no
estado misto quesquece).
uni2qprog € (Basis a, Basis b, Basis i, Dec a b ()) =
Lin a b — QProgram i () a b
A idéia é aplicar o método padrao para construir um sagenador a partir de uma
operacao unitaria. Note que a entrada classica éagiaoe a saida classica € vazia: nao
existe interacao com dados classicos quando consideraansformacoes unitarias. Por
exemplo:
hadamardP € QProgram i () Bool Bool
hadamardP = uni2qprog hadamard
constréi um programa agindo no estado combinado a pattiadsformacao deadamard.
Dado um estado quantico sobre o conjunto de bases, o programa quantica R
esquece o componente da direita, retornando um novo esthdeis O subespaco &
medido antes antes de ser descartado retornando um digidbde probabilidade so-
bre o conjunto basico que forma o subespaco. Neste casgjodi entrada classico é
ignorando.
trR € (Basis a, Basis b, Dec (a,b) a b) = QProgram i b (a,b) a
trA € (Basis a, Basis i, Dec a () a) = QProgram i a a ()
Similarmente, o programarA esquece (mede) todo o estado quantico, retornando uma
distribuicdo de probabilidade classica como resultado
Assim podemos definir as trés funcaes, =>>, e first:
arr € (Basis b, Basis ¢, Sub b ()) = (b — ¢) — QProgram i () b c
arr = uni2qprog.funllin
(>>) € (Basis a, Basis b, Basis ¢, Basis i, Basis o,
Basis 09, Sub a 0, Sub b 09) =
QProgram 1 0o a b — QProgram o 0, b ¢ — QProgram i oy a c
(f >> g) (dpi, (a1, a2)) = app g (f (dpi, (a1, a2)))
first € (Basis a, Basis b, Basis ¢, Basis i, Basis o, Sub a o, Sub (a, ¢) 0) =
QProgram i 0o a b — QProgram i o (a,c) (b, c)
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first p (pi, ((a1, 1), (as, ¢2))) =
let (po, db) = p (pi, (a1, a2))
vee = vreturn (cq, ¢z)
dbe = [(((by, c1), (ba, c2)), db (by, be) % vee (c1,¢2)) |
(b1, 1), (ba, c2)) < basis]
in (po, dbc)
A funcao arr constroi programas a partir de fun¢des simples. A eatrdassica é ig-
norada e a saida classica fica vazia. A fungi&ocompde dois programas mistogiest
aumenta o espaco do estado quantico de um prograniaA a¢cao do novo programa
(aumentado) & definida como o programa original selrem identidade sobre

Proposition D.4.1 A seta indexadd&)Program i o satisfaz as equégs requeridas para
setas.

D.5 Conclusio

Apresentamos um modelo geral e completo para computagiedo sobre um estado
combinado (classico e quantico). Este trabalho & unogagsal para o desenvolvimento
de uma linguagem geral trabalhando com dados classicoargicps, possibilitando a
interacao entre os dois sistemas fisicos.



