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RESUMO

A presente Tese de Doutorado é composta de quatro artigos científicos em duas áreas
distintas. Em Horta, Guerre e Fernandes (2015), o qual constitui o Capítulo 2 desta Tese,
é proposto um estimador suavizado no contexto de modelos de regressão quantílica linear
(Koenker e Basset, 1978). Uma representação de Bahadur-Kiefer uniforme é obtida, a
qual apresenta uma ordem assintótica que domina aquela correspondente ao estimador
clássico. Em seguida, prova-se que o viés associado à suavização é negligenciável, no sen-
tido de que o termo de viés é equivalente, em primeira ordem, ao verdadeiro parâmetro.
A taxa precisa de convergência é dada, a qual pode ser controlada uniformemente pela
escolha do parâmetro de suavização. Em seguida, são estudadas propriedades de segunda
ordem do estimador proposto, em termos do seu erro quadrático médio assintótico, e
mostra-se que o estimador suavizado apresenta uma melhoria em relação ao usual. Como
corolário, tem-se que o estimador é assintoticamente normal e consistente à ordem

√
n.

Em seguida, é proposto um estimador consistente para a matriz de covariância assintótica,
o qual não depende de estimação de parâmetros auxiliares e a partir do qual pode-se obter
diretamente intervalos de confiança assintóticos. A qualidade do método proposto é por
fim ilustrada em um estudo de simulação. Os artigos Horta e Ziegelmann (2015a, 2015b,
2015c) se originam de um ímpeto inicial destinado a generalizar os resultados de Bathia
et al. (2010). Em Horta e Ziegelmann (2015a), Capítulo 3 da presente Tese, é investigada
a questão de existência de certos processos estocásticos, ditos processos conjugados, os
quais são conduzidos por um segundo processo cujo espaço de estados tem como elementos
medidas de probabilidade. Através dos conceitos de coerência e compatibilidade, obtém-
se uma resposta afirmativa à questão anterior. Baseado nas noções de medida aleatória
(Kallenberg, 1973) e desintegração (Chang e Pollard, 1997; Pollard, 2002), é proposto
um método geral para construção de processos conjugados. A teoria permite um rico
conjunto de exemplos, e inclui uma classe de modelos de mudança de regime. Em Horta
e Ziegelmann (2015b), Capítulo 4 desta Tese, é proposto – em relação com a construção
obtida em Horta e Ziegelmann (2015a) – o conceito de processo fracamente conjugado:
um processo estocástico real a tempo contínuo, conduzido por uma sequência de funções
de distribuição aleatórias, ambos conectados por uma condição de compatibilidade a qual
impõe que aspectos da distribuição do primeiro processo são divisíveis em uma quanti-
dade enumerável de ciclos, dentro dos quais este tem como marginais, precisamente, o
segundo processo. Em seguida, mostra-se que a metodologia de Bathia et al. (2010) pode
ser aplicada para se estudar a estrutura de dependência de processos fracamente conju-
gados, e com isso obtém-se resultados de consistência à ordem

√
n para os estimadores

que surgem naturalmente na teoria. Adicionalmente, a metodologia é ilustrada através de
uma implementação a dados financeiros. Especificamente, o método proposto permite que
características da dinâmica das distribuições de processos de retornos sejam traduzidas
em termos de um processo escalar latente, a partir do qual podem ser obtidas previsões
de quantidades associadas a essas distribuições. Em Horta e Ziegelmann (2015c), Capí-
tulo 5 da presente Tese, são obtidos resultados de consistência à ordem

√
n em relação

à estimação de representações espectrais de operadores de autocovariância de séries de
tempo Hilbertianas estacionárias, em um contexto de medições imperfeitas. Os resultados
são uma generalização do método desenvolvido em Bathia et al. (2010), e baseiam-se no
importante fato de que elementos aleatórios em um espaço de Hilbert separável são quase
certamente ortogonais ao núcleo de seu respectivo operador de covariância. É dada uma
prova direta deste fato.

Palavras-chave. Regressão Quantílica. Medidas aleatórias. Séries temporais funcionais.
Operador de covariância.
Classificação JEL. C1, C14, C22



ABSTRACT

The present Thesis is composed of 4 research papers in two distinct areas. In Horta,
Guerre, and Fernandes (2015), which constitutes Chapter 2 of this Thesis, we propose a
smoothed estimator in the framework of the linear quantile regression model of Koenker
and Bassett (1978). A uniform Bahadur-Kiefer representation is provided, with an asymp-
totic rate which dominates the standard quantile regression estimator. Next, we prove
that the bias introduced by smoothing is negligible in the sense that the bias term is first-
order equivalent to the true parameter. A precise rate of convergence, which is controlled
uniformly by choice of bandwidth, is provided. We then study second-order properties of
the smoothed estimator, in terms of its asymptotic mean squared error, and show that it
improves on the usual estimator when an optimal bandwidth is used. As corollaries to the
above, one obtains that the proposed estimator is

√
n-consistent and asymptotically nor-

mal. Next, we provide a consistent estimator of the asymptotic covariance matrix which
does not depend on ancillary estimation of nuisance parameters, and from which asymp-
totic confidence intervals are straightforwardly computable. The quality of the method is
then illustrated through a simulation study. The research papers Horta and Ziegelmann
(2015a;b;c) are all related in the sense that they stem from an initial impetus of gener-
alizing the results in Bathia et al. (2010). In Horta and Ziegelmann (2015a), Chapter 3
of this Thesis, we address the question of existence of certain stochastic processes, which
we call conjugate processes, driven by a second, measure-valued stochastic process. We
investigate primitive conditions ensuring existence and, through the concepts of coher-
ence and compatibility, obtain an affirmative answer to the former question. Relying on
the notions of random measure (Kallenberg (1973)) and disintegration (Chang and Pol-
lard (1997), Pollard (2002)), we provide a general approach for construction of conjugate
processes. The theory allows for a rich set of examples, and includes a class of Regime
Switching models. In Horta and Ziegelmann (2015b), Chapter 4 of the present Thesis, we
introduce, in relation with the construction in Horta and Ziegelmann (2015a), the concept
of a weakly conjugate process: a continuous time, real valued stochastic process driven
by a sequence of random distribution functions, the connection between the two being
given by a compatibility condition which says that distributional aspects of the former
process are divisible into countably many cycles during which it has precisely the latter as
marginal distributions. We then show that the methodology of Bathia et al. (2010) can
be applied to study the dependence structure of weakly conjugate processes, and there-
with provide

√
n-consistency results for the natural estimators appearing in the theory.

Additionally, we illustrate the methodology through an implementation to financial data.
Specifically, our method permits us to translate the dynamic character of the distribution
of an asset returns process into the dynamics of a latent scalar process, which in turn
allows us to generate forecasts of quantities associated to distributional aspects of the
returns process. In Horta and Ziegelmann (2015c), Chapter 5 of this Thesis, we obtain√
n-consistency results regarding estimation of the spectral representation of the zero-lag

autocovariance operator of stationary Hilbertian time series, in a setting with imperfect
measurements. This is a generalization of the method developed in Bathia et al. (2010).
The generalization relies on the important property that centered random elements of
strong second order in a separable Hilbert space lie almost surely in the closed linear span
of the associated covariance operator. We provide a straightforward proof to this fact.

Keywords. Quantile regression. Random measure. Functional time series. Covariance
operator.
JEL Classification. C1, C14, C22
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1 INTRODUCTION

The present Thesis is composed of four research papers in two distinct areas. The
first of these papers was written in collaboration with Professor Emmanuel Guerre and
Professor Marcelo Fernandes and dwells upon the topic of quantile regression models. The
remaining three papers were written in collaboration with Professor Flávio Ziegelmann
and stem from an effort to generalize the results in Bathia et al. (2010).

Quantile regression has emerged in its modern formulation through the seminal paper
by Koenker and Bassett (1978), and has since become both an object of theoretical inter-
est and an important tool in applications. A complete account can be found in Koenker
(2005). In recent years, quantile regression models have come to enjoy widespread ap-
plication in many areas of research. See for instance Koenker (2000), Buchinsky (1998),
Koenker and Hallock (2001), Koenker (2005) and references therein. Despite the un-
doubted generality of the linear conditional quantile model of Koenker and Bassett (1978),
which led it to reach the aforementioned success, when it comes to inference there are a few
drawbacks accompanying the standard approach. The standard quantile regression esti-
mator minimizes an empirical counterpart to the population objective function, of which
the true parameter is a minimizer. However, smoothness properties of the population
objective function are not inherited by its sample analogue, and this lack of smoothness
has implications on inferential procedures about the estimated parameter. As reviewed
for instance in Koenker (1994), Buchinsky (1995), Koenker (2005), Fan and Liu (2013),
Goh and Knight (2009), computation of asymptotic confidence intervals for components
of the standard quantile regression estimator is not straightforward. This stems from the
fact that there seems to be no canonical way of estimating the covariance matrix of the
estimator, which in turn is a consequence of non-differentiability of the standard objective
function. This issue has been widely investigated in the literature. See Koenker (2005)
and Buchinsky (1995) for a review. In recent work, a wide variety of techniques has been
proposed to tackle inferential aspects of quantile regression (Horowitz (1998), Machado
and Parente (2005), Chernozhukov and Hong (2003), Otsu (2008), Whang (2006), Port-
noy (2012), Goh and Knight (2009), Mammen et al. (2013), Fan and Liu (2013), to name
a few), whereas a related literature investigates asymptotic distributional properties of
the standard quantile regression estimator through Bahadur-Kiefer type representations
(Koenker and Portnoy (1987), Chaudhuri et al. (1991), He and Shao (1996), Knight
(2001), Guerre and Sabbah (2012), Portnoy (2012), Kong et al. (2013), Mammen et al.
(2013)). For the standard quantile regression estimator, however, the remainder term in
such expansions has poor rate, attaining at best the order n−1/4 in many cases of interest
like the iid scenario (see Koenker and Portnoy (1987), Knight (2001), Jurečková et al.
(2012)).
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In Horta, Guerre, and Fernandes (2015), Chapter 2 of this Thesis, we propose a
convolution-type smoothing of the sample objective function, an approach which in the
one-sample scenario corresponds to Nadaraya (1964). In the context of parametric and
semi-parametric quantile regression models, kernel-type methods have mostly accompa-
nied the literature tackling inferential matters, but surprisingly little attention has been
given so far to propose estimators based on simple smoothing techniques as to generalize
the quantile estimators of Nadaraya (1964) or Parzen (1979). Important exceptions are
the smoothed least absolute deviations estimator of Horowitz (1998) and the smoothed
estimating equations test of Kaplan and Sun (2012). The proposed estimator thus fills a
gap in the semi-parametric quantile regression literature.

The main contributions to be found in Horta, Guerre, and Fernandes (2015) are as
follows. It is first shown that the proposed smoothed estimator is ‘more linear’ than the
standard quantile regression estimator: the stochastic order of the remainder term in its
Bahadur-Kiefer representation is at least n−1/2. Next we prove that the bias introduced
by smoothing is negligible in the sense that the bias term is first-order equivalent to
the true parameter. A precise rate of convergence, which is controlled uniformly by
choice of bandwidth, is provided. We then study second-order properties of the smoothed
estimator, in terms of its asymptotic mean squared error, and show that it improves on
the usual estimator when an optimal bandwidth is used. As corollaries to the above,
one obtains that the proposed estimator is

√
n-consistent and asymptotically normal.

Next, we provide a consistent estimator of the asymptotic covariance matrix which does
not depend on ancillary estimation of nuisance parameters, and from which asymptotic
confidence intervals are straightforwardly computable. An aspect worth stressing is that
our asymptotic results hold uniformly both in the quantile level and in the bandwidth
parameter. Finally, we assess the quality of our method through a simulation study.

The research papers Horta and Ziegelmann (2015a;b;c), Chapters 3, 4 and 5 of this
Thesis, respectively, are all related in the sense that they stem from an initial impetus of
generalizing the results in Bathia et al. (2010). Following Hall and Vial (2006), who tackle
an identification problem in noisy functional Principal Component Analysis, Bathia et al.
(2010) propose a solution in the framework of functional time series which allows one to
recover the underlying dynamic structure of the data, via a Law of Large Numbers for
the estimator of an operator equivalent to the zero-lag covariance operator of the random
curves. The methods that we shall consider in Chapters 3, 4 and 5 are thus intrinsically
functional, in that we consider random elements in spaces of functions. Our theory lies
somewhere in-between Functional Data Analysis and Probability in Banach spaces, which
are two very important research fields in the statistics and probability literature respec-
tively. Statistical inference on objects pertaining to function spaces has come to be known
in the literature as Functional Data Analysis (fda). In recent years, fda has received
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growing attention from researchers of a wide spectrum of academic disciplines (see Dabo-
Niang and Ferraty (2008) and the cornerstone monograph by Ramsay and Silverman
(1998)). From a theoretical point of view, functional data are to be seen as realizations of
function-valued random variables. The general approach is to consider random elements
in a Banach space; classic texts include Ledoux and Talagrand (1991) and Vakhania et al.
(1987). For stationary sequences and linear processes in Banach spaces, the monograph
from Bosq (2000) is a complete account.

Initially the generalization of Bathia et al. (2010) was sought motivated by an ap-
plication, namely to model time series of density functions – bivariate densities to be
precise. At some point this objective shifted towards an inquiry of how exactly to inter-
pret a stochastic process whose state space is a set of density functions. Concurrently,
a remark in Bathia et al. (2010) reminded us that modeling kernel density estimators as
‘true, random density’ plus ‘noise’ is potentially misleading since in this setting the noise
is not a centered random element (of whatever space it lies in – kernel density estimators
are pointwise biased!). Instead, the model ‘empirical distribution function’ = ‘true (ran-
dom) distribution function’ + ‘noise’ appeared to better capture the properties we had
in mind. The adequacy of the latter approach is evinced in Lemma 4.1. Our effort to
embed such model in a good theoretical framework eventually led to ramifications which
culminated in the papers Horta and Ziegelmann (2015a;b). The key insight seems to have
been equation (4.1), which we reproduce here:

(4.1) P[Xτ ≤ x |F0, F1, . . . ] = Ft(x), τ ∈ [t, t+ 1), t = 0, 1, . . . .

The early intuition which eventually led to the above condition appeared, as mentioned,
when we were studying how to model the dynamics of distribution functions, more pre-
cisely the distribution of high frequency asset returns in financial data. Our original
indagation can be posed as follows: assuming asset returns share the same marginal dis-
tribution inside each day, but allowing these marginals to vary from day to day (possibly
in a stochastic manner), then how to give a reasonable formulation, in terms of stochas-
tic processes, of these ideas? The answer ‘is’ the model of weakly conjugate processes: a
continuous time, real valued stochastic process (Xτ : τ ≥ 0) driven by a sequence of distri-
bution functions (which are random), the connection between them being equation (4.1),
a condition that can be understood as saying that distributional aspects of (Xτ ) are di-
visible, at least conditionally, into countably many cycles during which (Xτ ) has some
prescribed (random) marginal distribution.

This led to a fruitful theory which is the content of Horta and Ziegelmann (2015b),
Chapter 4 of the present Thesis. There we show that processes satisfying equation (4.1)
– which we call weakly conjugate processes – fall smoothly, via Lemma 4.1, into the
methodology of Bathia et al. (2010), allowing us to derive

√
n-consistency results for the

natural estimators that appear in the construction. This is the content of Proposition 4.2
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and Theorems 4.1 and 4.2, the main contributions of the paper. Additionally, we illustrate
the methodology through an implementation to financial data. Specifically, our method
permits us to translate the dynamic character of the distribution of an asset returns
process into the dynamics of a latent scalar process, which in turn allows us to generate
forecasts of quantities associated to distributional aspects of the returns process.

In parallel, the probabilistic question of whether there exist, given some ‘primitive’
conditions, processes satisfying (4.1) appeared quite interesting to us. We therefore headed
towards ‘parsing’ equation (4.1) into sufficient conditions, while keeping in mind the goal
of being as general as possible. This is addressed in Horta and Ziegelmann (2015a),
Chapter 3 of this Thesis. The natural approach turned out to depend on the concept of
random measure (Kallenberg (1973; 1974)) together with the machinery of disintegration
of measures (Pachl (1978), Faden (1985), Chang and Pollard (1997), Pollard (2002)), and
eventually led to the notions of L -coherence and compatibility which permit the elegant
statement of Theorem 3.1 – an existence Theorem and the main contribution in Horta and
Ziegelmann (2015a), although a more application-inclined reader will certainly appreciate
the rich set of examples which come almost effortlessly side by side with the concept of
conjugate process.

Last but not least, Horta and Ziegelmann (2015c), Chapter 5 of the present Thesis,
is the byproduct of our initial effort of obtaining a generalization of the methodology
of Bathia et al. (2010). In the beginning the idea was to translate their results to the
general Banach space, but that sparkle was short-lived as it turns out the asymptotic
theory relies strongly on the fact that the space of Hilbert-Schmidt operators is itself a
Hilbert space – the lack of a natural concept of Hilbert-Schmidt operator in the general
Banach space spoiled our intent. A short attempt was made then to relate their work to
Reproducing Kernel Hilbert spaces but we later learned that this is restrictive: a stochastic
process whose index set is infinite never has its sample paths lying in the corresponding
rkhs (at least for Gaussian processes – see Driscoll (1973)). Nevertheless, it seemed to
us that the L2 setting was too restrictive since all the heuristics rely strongly on the
Karhunen-Loève Theorem. The point that we make is that considerations of ‘sample-
path properties’, which lie at the core of said Theorem, are dispensable. The correct way
to interpret a generalization is given by the property that centered random elements of
strong second order in a separable Hilbert space lie almost surely in the closed linear span
of the associated covariance operator: this is Theorem 5.1, certainly not a new result (it
appears for instance as an exercise in Vakhania et al. (1987) in a slightly different guise),
but a rather overlooked one. In any case the proof that we give is, to our knowledge,
new. Equipped with the latter result, we provide a reformulation of the theory of Bathia
et al. (2010) in a Hilbert space setting, culminating in Theorem 5.2 and Corollary 5.2,
which state

√
n-consistency of the proposed estimators and are the main contributions of

the paper.
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2 SMOOTHING QUANTILE REGRESSION

Eduardo Horta1 Emmanuel Guerre2

Marcelo Fernandes3

November, 2015

Abstract. We propose a smoothed estimator in the framework of the linear quantile re-
gression model of Koenker and Bassett (1978). A uniform Bahadur-Kiefer representation
is provided, with an asymptotic rate which dominates the standard quantile regression
estimator. Second order improvements are obtained, generalizing a result of Azzalini
(1981). In our setting, inference can be implemented in a canonical way. In particular,
estimation of the asymptotic covariance matrix is intrinsic to the method. A simulation
study illustrates the quality of the proposed estimator.

Keywords and phrases. Asymptotic expansion. Smoothing. Quantile regression.
JEL Classification. C1, C14

2.1 Introduction

Quantile regression has emerged in its modern formulation through the seminal paper
by Koenker and Bassett (1978), and has since become both an object of theoretical in-
terest and an important tool in applications (see Koenker (2005) and the discussions
below for theoretical aspects; for applications refer to Koenker (2000), Buchinsky (1998),
Koenker and Hallock (2001), Koenker (2005) and references therein). The standard quan-
tile regression estimator minimizes an empirical counterpart to the population objective
function, of which the true parameter is a minimizer. It is somewhat unfortunate that
smoothness properties of the population objective function are not inherited by its sample
analogue, and this lack of smoothness in turn has implications on inferential procedures
about the estimated parameter. As reviewed for instance in Koenker (1994), Buchinsky
(1995), Koenker (2005), Fan and Liu (2013), Goh and Knight (2009), computation of
asymptotic confidence intervals for components of the standard quantile regression esti-
mator is not straightforward. This stems from the fact that there is, to our knowledge,
no canonical way of estimating the covariance matrix, which in turn is a consequence of
non-differentiability of the standard objective function. Indeed the asymptotic covariance
depends on the population conditional density evaluated at the true quantile. This issue
has been widely investigated in the literature (see Koenker (2005) and Buchinsky (1995)

1Department of Statistics – Universidade Federal do Rio Grande do Sul. eduardo.horta@ufrgs.br
2School of Economics and Finance – Queen Mary, University of London. e.guerre@qmul.ac.uk
3São Paulo School of Economics – FGV and Queen Mary, University of London.

marcelo.fernandes@fgv.br
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for a survey on traditional approaches targeted at it) and is by no means settled. In recent
work, a wide variety of techniques has been proposed to tackle inferential aspects of quan-
tile regression, including bootstrap techniques (Horowitz (1998), Machado and Parente
(2005)), mcmc methods (Chernozhukov and Hong (2003)), empirical likelihood (Otsu
(2008), Whang (2006)), strong approximation methods (Portnoy (2012)), nonstandard
inference (Goh and Knight (2009)), as well as nonparametric approaches (Mammen et al.
(2013), Fan and Liu (2013)), to name a few. A related literature investigates asymptotic
distributional properties of the standard quantile regression estimator through Bahadur-
Kiefer type representations (Koenker and Portnoy (1987), Chaudhuri et al. (1991), He
and Shao (1996), Knight (2001), Guerre and Sabbah (2012), Portnoy (2012), Kong et al.
(2013), Mammen et al. (2013)). However, the remainder term in such expansions has
poor rate of convergence since the estimator is altogether highly nonlinear. The precise
order can be difficult to establish but in the iid error setting for instance it can be shown
that the remainder is at best of order n−1/4 (see Koenker and Portnoy (1987), Knight
(2001), Jurečková et al. (2012)).

An aspect that permeates some of the aforementioned literature is consideration of
smoothing techniques. The approach that we shall take here sails in this direction. We
propose a convolution-type smoothing of the sample objective function which can be
regarded as a generalization of the approach taken by Nadaraya (1964) in the one-sample
scenario. In the latter setting, consideration of smoothing methods has made its way into
the theoretical literature quite early. The most well-known smoothed quantile estimators
were introduced by Nadaraya (1964) and Parzen (1979), and are obtained respectively
by inverting a smoothed empirical cumulative distribution function (hereafter cdf) an by
smoothing the sample quantile function. Azzalini (1981) has shown that the smoothing
proposed by Nadaraya results in a quantile estimator which dominates the sample quantile
at second order (see also Cheung and Lee (2010)), with a similar result proved by Sheather
and Marron (1990) for Parzen’s estimator. Falk (1984) discusses the relative deficiency of
the sample quantiles with respect to kernel-type quantile estimators. See Kozek (2005) for
a bibliography and a convincing simulation experiment. In parallel an important literature
has established Bahadur-Kiefer type representations for smoothed quantile estimators.
See Xiang (1994), Mack (1987) and Ralescu (1997) for instance.

Kernel-type approaches are quite common in the literature dealing with nonparametric
estimation of conditional quantile functions (Mammen et al. (2013), Mehra et al. (1991),
Samanta (1989), Stute (1986)). In the context of parametric and semi-parametric quantile
regression models, smoothing methods have accompanied the literature tackling inferential
matters, but surprisingly little attention has been given so far to propose estimators based
on simple smoothing techniques as to generalize the quantile estimators of Nadaraya
(1964) or Parzen (1979). Important exceptions are the smoothed least absolute deviations
estimator of Horowitz (1998) and the smoothed estimating equations test of Kaplan and



16

Sun (2012). The approach put forth by Horowitz (1998) is to estimate the regression
quantiles by minimizing a smoothed analogue of the median regression sample objective
function, but a simple derivation will show that in the one-sample case this approach does
not correspond to either Nadaraya (1964) or Parzen (1979). Therefore there is not too
much hope to replicate the second-order improvements obtained by Azzalini (1981), and
indeed it can be shown that the smoothing adopted by Horowitz (1998) cannot improve
on the standard quantile regression estimator of the slope parameter. In contrast, the
smoothing herein proposed is equivalent to the one adopted by Nadaraya (1964) in the
absence of a covariate. Kaplan and Sun (2012) in turn propose a smoothed estimating
equation test for significance or equality of the quantile regression slope coefficients in the
instrumental variable setup, with a smoothing which is equivalent to ours.

The main contributions of the paper are as follows. We first propose a new smoothed
version of the quantile regression estimator. It is shown that the proposed smoothed
estimator is ‘more linear’ than standard quantile regression estimator, in the sense that
the stochastic order of the remainder term in its Bahadur-Kiefer representation is at
least n−1/2. Next we prove that the bias introduced by smoothing is negligible in the
sense that the bias term is first-order equivalent to the true parameter. A precise rate
of convergence, which is controlled uniformly by choice of bandwidth, is provided. We
then study second-order properties of the smoothed estimator, in terms of its asymp-
totic mean squared error, and show that it improves on the usual estimator when an
optimal bandwidth is used. This generalizes a result proved by Azzalini (1981) in the
one-sample set-up. As corollaries to the above one obtains that the proposed estimator is
√
n-consistent and asymptotically normal. Next, we provide a consistent estimator of the

asymptotic covariance matrix which does not depend on ancillary estimation of nuisance
parameters, and from which asymptotic confidence intervals are straightforwardly com-
putable. Thus our method falls into a more palatable framework (as summarized in Newey
and McFadden (1994) for instance), and Wald-type inference is easily implementable. It
is worth stressing here that our results are uniform both in the quantile level and in the
bandwidth parameter. Uniformity in the quantile level is important because it allows one
to recover the conditional cdf of the response (except perhaps for the tails) at any given
level of the covariate. Uniformity in the smoothing parameter, in turn, is crucial in that
it encompasses data driven bandwidth choices, as well as bandwidths which depend on
the quantile level, on the covariate level, etc. Finally, we assess the quality of our method
through a simulation study.

2.2 The smoothed quantile regression estimator

Let (Yi, Xi), i = 1, . . . , n, be an iid sample drawn from the distribution of (Y,X) ∈ R×Rd,
where the conditional quantile of the response Y given the covariate X = x satisfies the
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linear model

(2.1) Q(τ |x) = x′β(τ), τ ∈ (0, 1).

Here by definition Q(τ |x) := inf{q : F (q|x) ≥ τ}, and F (·|x) is the conditional cdf of Y
given the covariate, i.e. F (y|x) := P[Y ≤ y|X = x]. Set ei(b) := Yi −X ′ib and define

(2.2) R̂(b; τ) := 1
n

n∑
i=1

ρτ (ei(b)) =
∫
ρτ (t) dF̂ (t; b),

where F̂ (· ; b) denotes the discrete empirical distribution function of the error terms ei(b),
and where ρτ (u) := u(τ − I[u < 0]) is the usual check function. The standard quantile
regression estimator β̂(τ) of Koenker and Bassett (1978) minimizes the map b 7→ R̂(b; τ),
a sample analogue of the population objective function

(2.3) R(b; τ) := E[ρτ (e(b))] =:
∫
ρτ (t) dF (t; b)

of which the true parameter β(τ) is a minimizer. Here e(b) := Y − X ′b, and F (t; b) =
P[e(b) ≤ t]. Now the RHS of equation (2.3) suggests a class of quantile regression estima-
tors taken by minimizing, with respect to b ∈ Rd, objective functions that are integrals of
ρτ where the integrating measure is an estimator of the distribution function of the error
term e(b). Under this interpretation, the standard quantile regression estimator corre-
sponds to taking the discrete empirical distribution function as an estimator of F (· ; b).
The approach that we shall take here is to consider kernel-type estimators of this cdf. In
the one-sample scenario this is equivalent to Nadaraya (1964).

Consider1 a bandwidth h > 0 which goes to 0 when the sample size grows, and a
smooth kernel function k satisfying

∫
k(v) dv = 1, and set kh(v) = k(v/h)/h. Let f̂h(· ; b)

and F̂h(· ; b) denote the usual kernel pdf and cdf estimators, given respectively by

f̂h(v; b) = 1
n

n∑
i=1

kh(v − ei(b))

and

F̂h(t; b) =
∫ t

−∞
f̂h(v; b) dv.

The proposed objective function R̂h(b; τ) is then computed as R̂(b; τ) in (2.2) but using
the kernel pdf estimator f̂h( · ; b) instead of the discrete dF̂ ( · ; b). That is to say,

(2.4) R̂h(b; τ) :=
∫
ρτ (t) dF̂h(t; b) =

∫
ρτ (t)f̂h(t; b) dt.

The resulting smoothed quantile regression estimator is then

(2.5) β̂h(τ) := arg min
b∈Rd

R̂h(b; τ).

1Precise definitions, and conditions on the bandwidth parameter and the kernel function are given in
the list of assumptions below.
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An important consequence of our smoothing procedure is that it implies that the
objective function b 7→ R̂h(b; τ) is twice continuously differentiable, contrasting with the
lack of smoothness of the standard objective function b 7→ R̂(b; τ). Whereas estimation
of the covariance matrix of β̂(τ) through standard sandwich formulas is precluded, our
approach circumvents this difficulties and ensures the covariance can be estimated in a
natural fashion as discussed below. Moreover, differentiability of the smoothed objective
function implies that β̂h(τ) can be computed using standard Newton-Raphson algorithms,
avoiding computational preoccupations that arise in the context of standard quantile
regression.

Smoothness of R̂h(·; τ) can be established by observing that

R̂h(b; τ) = (1− τ)
∫ 0

−∞
F̂h(v; b) dv + τ

∫ ∞
0

(
1− F̂h(v; b)

)
dv,

from which it follows through standard arguments that the first-order b-derivative of
R̂h(b; τ) is given by

R̂
(1)
h (b; τ) = 1

n

n∑
i=1

Xi

[
K

(
−ei(b)

h

)
− τ

]
,

where K(t) :=
∫ t
−∞ k(v)dv. In the same fashion the second-order b-derivative of R̂h(b; τ)

is seen to be
R̂

(2)
h (b; τ) = 1

n

n∑
i=1

XiX
′
ikh
(
− ei(b)

)
.

As a consequence of differentiability, inference for β̂h(τ) can be implemented in a stan-
dard manner. As seen from Proposition 2.1 and Corollary 2.2 below,

√
n
(
β̂h(τ)−β(τ)

)
is

asymptotically centered normal with covariance matrix given by Σ(τ) := D(τ)−1V (τ)D(τ)−1

where D(τ) is the Hessian of the population objective function evaluated at the true pa-
rameter,

D(τ) := R(2)(β(τ); τ) ≡ EXX ′f(X ′β(τ)|X),

and V (τ) := τ(1− τ)EXX ′. In our framework Σ(τ) can be consistently estimated by

Σ̂h(τ) := D̂h(τ)−1V̂h(τ)D̂h(τ)−1

with D̂h(τ) := R̂
(2)
h

(
β̂h(τ); τ

)
and

V̂h(τ) := 1
n

n∑
i=1

XiX
′
i

K
−ei

(
β̂h(τ)

)
h

− τ
2

.

Thus for instance a 1 − α confidence interval for the kth entry βk(τ) of the regression
quantile can be computed straightforwardly via

CI1−α
(
βk(τ)

)
:= β̂kh(τ)± zα/2σ̂

k
h(τ)√
n

,
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where σ̂kh(τ) is the square root of the kth diagonal entry of Σ̂h(τ), β̂kh(τ) is the kth
component of the smoothed quantile regression estimator, and zα is the α quantile of a
standard gaussian distribution.

To further illustrate the usefulness of our smoothing procedure let us consider a one-
sample scenario, i.e. the case d = 1 and X ≡ 1. First observe that in this setting the
first-order condition solved by the smoothed estimator, namely R̂(1)

h

(
β̂h(τ); τ

)
= 0, reduces

to F̂h
(
β̂h(τ)

)
= τ , proving our prior claim that in the absence of a covariate our approach

corresponds to Nadaraya (1964). It becomes clear as well that R̂(1)
h (b; τ) is analogous to

a smooth estimator of a cumulative distribution function. This is in contrast with the
smoothing procedure put forth by Horowitz (1998), namely to substitute the indicator
function in R̂(b; τ) = n−1∑n

i=1 ei(b)(τ − I[ei(b) < 0]) by a smooth counterpart, from which
one obtains the objective function

R̃h(b; τ) := n−1
n∑
i=1

ei(b)(τ −K(−ei(b)/h)),

whose first-order b-derivative is seen to be equal to R̂(1)
h (b; τ) plus an additional term which

depends explicitly on the kernel k. Thus the first-order condition involves a quantity
analogous to a kernel-based estimator of a probability density function. As a result,
the second-order derivative of our smoothed quantile regression estimator, R̂(2)

h (b; τ), is
similar to a kernel density estimator, whereas Horowitz’s involves terms that are similar
to a kernel estimator of the derivative of a probability density function. This ensures
that our estimator has better higher-order properties than Horowitz given that the kernel
density estimator converges at a faster rate relative to the kernel derivative estimator. This
argument can straightforwardly be carried further to show that in linear approximations
the variance of Horowitz’s estimator will be greater than that of our smoothed estimator.

2.3 Main results

Before establishing our main results, it will be convenient to introduce some further
notation. The rationale will be discussed in the course of this section. Let us denote the
conditional probability density function of Y given X = x by f(·|x), and write f (j)(y|x)
for the jth derivative ∂j/∂yj f(y|x). Similarly put Q(1)(τ |x) := ∂/∂τ Q(τ |x). Let also bsc
denote the lower integer part of any positive real number s, that is to say2, the unique
integer number satisfying bsc < s ≤ bsc+ 1.

As will be argued below, it is fruitful to interpret β̂h(τ) as an estimator not of β(τ)
but rather of βh(τ) defined by

βh(τ) := arg min
b∈Rd

Rh(b; τ),

2Pay attention to the definition as bkc = k − 1 if k is an integer.
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where Rh(b; τ) := ER̂h(b; τ). We shall refer to βh(τ) as the smoothed parameter. It
will also prove convenient to introduce the quantity Ŝh(τ) := R̂

(1)
h (βh(τ); τ), and to set

Dh(τ) := R
(2)
h

(
βh(τ); τ

)
.

In what follows we let ‖·‖ denote the Euclidean norm of a vector or a matrix, namely
‖A‖ =

√
tr(AA′).

2.3.1 Assumptions

Our main assumptions are as follows

Assumption X The components of X are positive, bounded random variables, i.e. the
support of X is a bounded subset of Rd

+. The matrix EXX ′ is full rank.

Assumption Q The conditional quantile function Q(τ |x) and the conditional pdf f(y|x)
satisfy

Q1 The map τ 7→ β(τ) is continuously differentiable over (0, 1). The conditional densi-
ties f(y|x) are continuous and strictly positive over R× supp(X).

Q2 There are some s ≥ 1 and L > 0 such that f (bsc)(·|x) exists, and

sup
x,y

∣∣∣f (j)(y|x)
∣∣∣ ≤ L

with limy→±∞ f
(j)(y|x) = 0, for all j = 0, . . . , bsc. Moreover, it holds that∣∣∣f (bsc)(y|x)− f (bsc)(y + w|x)

∣∣∣ ≤ L|w|s−bsc

for all x ∈ supp(X) and all y, w ∈ R.

Assumption K The kernel function k and the bandwidth h satisfy

K1 The kernel k : R → R is even, integrable, piecewise differentiable with a bounded
derivative, and

∫
k(z) dz = 1. Moreover, it holds that

0 <
∫ +∞

0
K(z)(1−K(z)) dz <∞.

For s as in Assumption Q2,
∫
|zs+1k(z)| dz <∞, and k is orthogonal to all noncon-

stant monomials of degree up to bsc+ 1:∫
zjk(z) dz = 0.

for j = 1, . . . , bsc+ 1.

K2 h ∈
[
¯
h, h̄

]
≡
[
¯
h(n), h̄(n)

]
with 1/

¯
h = O

(
n/ log3 n

)
and h̄ = o(1).
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Some remarks on the Assumptions come in handy. First, observe that Assumptions
Q1 and X ensure that R(2)(b; τ) is positive definite for all b and any τ . Indeed R(2)(b; τ) =
E[XX ′f(X ′b|X)]. In particular, D(τ)−1 as defined above exists for all τ . Assumption
Q1 also ensures that τ 7→ Q(τ |x) is strictly increasing over (0, 1), with a strictly positive
τ -derivative via the relation

Q(1)(τ |x) = 1
f(Q(τ |x)|x) .

Notice though that the assumption that Y is supported on the real line can be relaxed
with minor adaptations. We adopt it for notational simplicity. One should also notice
that for integer s in Q2 the assumed order of differentiability of f(·|x) is bsc ≡ s − 1
and not s as may be thought, and that all the quantities that depend on h also depend
implicitly on n through Assumption K2.

A last point that is worth remarking upon is that we have so far referred to f̂h(·; b)
as an estimator of the density of the error term e(b) but strictly speaking when the
kernel k is not a density then neither will f̂h(·; b) be. Indeed except in the cases where
bsc = 0 Assumption K1 precludes the possibility of f̂h(·; b) being a density. It is however
easily shown that our estimator satisfies R̂h(b; τ) = (1/n)∑n

i=1 ρτ ∗ kh(ei(b)), where ∗ is
the convolution operation. Thus technically speaking it is more correct to interpret our
approach as a convolution-type smoothing, although some of the heuristic intuition is lost.

2.3.2 Bahadur-Kiefer representation

Our first theorem studies the remainder term of a Bahadur-Kiefer representation of the
statistic

√
n
(
β̂h(τ) − βh(τ)

)
, that is, the approximation of this quantity by the stan-

dardized sum −
√
nDh(τ)−1Ŝh(τ). A relevant aspect of Theorem 2.1 is that the stated

representation holds uniformly both in the quantile level and in the bandwidth parame-
ter. The proof of this fact relies on a powerful functional exponential inequality due to
Massart (2007).

Theorem 2.1. Let Assumptions X, Q and K hold. Then β̂h(τ) is unique for (τ, h) ∈
[
¯
τ, τ̄ ]×

[
¯
h, h̄

]
with probability tending to 1, and satisfies the following representation uni-

formly with respect to (τ, h) ∈ [
¯
τ, τ̄ ]×

[
¯
h, h̄

]
,

(2.6)
√
n
(
β̂h(τ)− βh(τ)

)
= −
√
nDh(τ)−1Ŝh(τ) +OP(%n(h)),

where

%n(h)−1 =
(
nh

log n

)1/2

+ n1/2.

An important consequence of the uniformity property in Theorem 2.1 is that if a
stochastic process

(
ĥ(τ), τ ∈ [

¯
τ, τ̄ ]

)
has its sample paths in

[
¯
h, h̄

]
with a high probability,



22

then the representation in (2.6) remains valid with h replaced by ĥ(τ). This fact is
specially important for it allows the statistician to plug in data-driven bandwidth choices,
which may or may not depend on the quantile level, while retaining the properties implied
by linearization. This is summarized in the following Corollary.

Corollary 2.1. Let
(
ĥ(τ), τ ∈ [

¯
τ, τ̄ ]

)
satisfy P

(
ĥ(τ) ∈

[
¯
h, h̄

]
for all τ

)
→ 1. Then (2.6)

holds with ĥ(τ) in place of h, uniformly in τ .

Theorem 2.1 is first relevant because it shows that the smoothed estimator β̂h(τ) is, in
a sense, more linear than β̂(τ). Indeed, the well-known Bahadur-Kiefer representation of
the standard quantile regression estimator,

√
n
(
β̂(τ)− β(τ)

)
≈ −
√
nD(τ)−1Ŝ(τ), where

Ŝ(τ) = R̂(1)(β(τ); τ) whenever this derivative exists, has a remainder term whose rate is
OP
(
n−1/4

)
in many cases of interest (see Portnoy (2012), Jurečková et al. (2012), Knight

(2001)). In contrast, the order of the remainder of (2.6) is at least n−1/2. Theorem 2.1
also implies, together with Theorem 2.2 below, that β̂h(·) gives a fair global picture of the
slope coefficients β(·), in the sense that

(2.7)
∥∥∥β̂h(τ)− β(τ)

∥∥∥ = OP

(
1√
n

+ hs+1
)
,

uniformly for τ ∈ [
¯
τ, τ̄ ] and h ∈

[
¯
h, h̄

]
. In particular, if h ≤ O

(
n−1/(2(s+1))

)
, then the

remainder in (2.7) is OP

(
n−1/2

)
.

2.3.3 Asymptotic mean squared error

The bias term. Although this paper ought to illustrate the positive aspects of smooth-
ing, any reader familiar with nonparametric approaches is probably already aware that
the benefits expected from these techniques come with potential drawbacks. Indeed, the
smoothed quantile regression estimator β̂h(τ) should not be viewed as an estimator of
β(τ), an approach which would amount to ignore the impact of smoothing. It is more
suitable to interpret β̂h(τ) as an estimator of βh(τ) as defined above, a point of view that
acknowledges that β̂h(τ) can be a biased estimator of β(τ). The next result studies the
order of the bias term βh(τ)− β(τ).

Theorem 2.2. Given Assumptions X, Q, and K, and provided that h̄ is small enough,
βh(τ) is uniquely defined for all τ ∈ [

¯
τ, τ̄ ] and satisfies, uniformly with respect to (τ, h) ∈

[
¯
τ, τ̄ ]×

[
¯
h, h̄

]
,

(2.8) βh(τ) = β(τ) +O
(
hs+1

)
.

Additionally, if s is an integer number and y 7→ f(y|x) is s times continuously differen-
tiable for all x, then the following expansion holds

(2.9) βh(τ) = β(τ)− hs+1B(τ) + o
(
hs+1

)
,
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where
B(τ) = D(τ)−1

∫
zs+1k(z) dz
(s+ 1)! E

[
Xf (s)(X ′β(τ)|X)

]
.

Theorem 2.2 settles the issue of possible side effects of smoothing: βh(τ) is eventually
uniformly close to the true parameter β(τ). This fact also serves as a further justification
for the standardization in (2.6).

Asymptotic variance. The following result shows that the large sample variance of
β̂h(τ) is smaller than that of β̂(τ) in regard to ordering of positive matrices.

Theorem 2.3. Given Assumptions X, Q and K we have, uniformly with respect to (τ, h) ∈
[
¯
τ, τ̄ ]×

[
¯
h, h̄

]
,

(2.10) Var
(√

nDh(τ)−1Ŝh(τ)
)

= Σ(τ)− ckhD(τ)−1 +O
(
h2∧s

)
,

where ck = 2
∫+∞

0 K(y)(1−K(y)) dy.

Asymptotic mean squared Error. The next result focuses on the optimal choice of
the bandwidth h when estimating a linear combination λ′β(τ). This includes in particular
estimation of each of the coefficients βj(τ) by a proper choice of the vector λ ∈ Rd. Define
the Asymptotic Mean Squared Error of λ′β̂h(τ) as

amse
(
λ′β̂h(τ)

)
= E

{
λ′
(
βh(τ)−Dh(τ)−1Ŝh(τ)− β(τ)

)}2
.

This quantity is a proxy for the mean squared error

mse
(
λ′β̂h(τ)

)
= E

{
λ′
(
β̂h(τ)− β(τ)

)}2
.

Studying the amse instead of the mse amounts to neglecting the remainder term of (2.6),
which shrinks to 0. The next result describes an optimal bandwidth choice with respect
to the amse criterion.

Theorem 2.4. Let Assumptions X, Q and K hold. If s is an integer number and y 7→
f(y|x) is s times continuously differentiable for all x, then, provided λ′B(τ) 6= 0, the
amse

(
λ′β̂h(τ)

)
is asymptotically minimal for the bandwidth h∗ given by

h∗ =
(

c
k
λ′D(τ)−1λ

2n(s+ 1)(λ′B(τ))2

) 1
2s+1

.

In this case,

amse
(
λ′β̂h(τ)

)
= 1
n
λ′
(
Σ(τ)− ckh∗D(τ)−1

)
λ+ o

(
n−1

)
.

Remark. Theorem 2.4 remains valid for bandwidths of the form h = (1 + o(1))h∗.
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2.3.4 Inference

In this section inferential aspects of β̂h(τ) are discussed. The next result deals with
estimation of the asymptotic covariance matrix of β̂h(τ). The proposed estimator is
intrinsic to the method and falls into a canonical framework. An important consequence
is that Wald-type inference is immediately applicable.

Proposition 2.1. Under Assumptions X, Q and K it holds that

Σ̂h(τ) = Σ(τ) +OP

(
1

h
√
n

+ h

)

uniformly in (τ, h) ∈ [
¯
τ, τ̄ ]×

[
¯
h, h̄

]
.

Combining Theorem 2.6 and Proposition 2.1 yields the following Corollary.

Corollary 2.2 (Central Limit Theorem). Let Assumptions X, Q and K hold. If
√
nhs+1 →

0, then
√
nΣ̂h(τ)−1/2

(
β̂h(τ)− β(τ)

)
→ N(0, Id).

Remark. Theorem 2.3 and Corollary 2.2 are to be contrasted with the asymptotic distribu-
tion of
√
nΣ(τ)−1/2

(
β̂(τ) − β(τ)

)
which is also N(0, Id). A key point in Theorem 2.3 is the

fact that the variance expansion in (2.10) includes the negative term −ckh: this implies
that the large sample variance of the smoothed β̂h(τ) is smaller than the one of the quan-
tile regression estimator β̂(τ). As already noticed by Azzalini (1981) for the univariate
quantile estimator, it then follows that the amse of λ′β̂h(τ) can be made smaller than the
one of λ′β̂(τ). In other words the smoothed quantile regression estimator improves the
standard quantile regression estimator at second order.

2.4 Simulation Study

In order to illustrate the obtained theoretical results, and to assess the quality of our
method, we simulated data from the median regression model

(2.11) Y = X ′β + ε.

The true parameter is set to β = (1, 1), and the covariate defined as X =
(
1, X̃

)
, with

X̃ ∼ U [1, 5]. Three different specifications for the distribution of the error term are
considered. These are (i) an asymmetric model, with ε = Z − log 2/

√
2, where Z ∼

Exponential
(
1/
√

2
)
; (ii) a heavy-tailed model, with ε =

√
2/3×Z, where Z ∼ t(3), and;

(iii) a heteroskedastic model, with ε = 0.25
(
1 + X̃

)
Z, where Z ∼ N(0, 1). Dgp’s (ii)

and (iii) are considered for instance in Horowitz (1998), Whang (2006) and Kaplan and
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Figure 2.1: Model = Exponential; n = 100. Relative mse (panel (a)), and empirical coverage
probabilities (panels (b)–(d)).
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Bandwidth

E
m
p
ir
ic
al

C
ov
er
ag
e

(b) Nominal = 0.90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
86

0.
90

0.
94

0.
98

Nominal
Koenker
Horowitz
Horowitz ĥ
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(d) Nominal = 0.99

Sun (2012). In all three models the conditional quantile of ε given X is zero; in models
(i) and (ii), Var ε = 2.

The simulation experiment consists of, in each of the 10000 replications, sampling
n = 100 observations from model (2.11), in each of the three error specifications above,
and then computing the three estimates of β (i.e the standard quantile regression estimator
of Koenker and Bassett (1978), the smoothed median regression estimator of Horowitz
(1998), and the smoothed quantile regression estimator (2.5)). The corresponding t-
statistics are also computed. The smoothed estimator (2.5) and the Horowitz (1998)
median regression estimator were computed with the smoothing parameter varying in a
grid of points ranging from 0.1 to 0.8 and using a Gaussian kernel k. We also computed
these estimates using a (data dependent) rule of thumb bandwidth ĥ = 1.06ŝ/n1/5, where
ŝ measures the variability of the residuals from the standard quantile regression fit to the
data (see Silverman (1986) and equations (3.28) and (3.30) therein). The standard errors
for the t-statistics were calculated respectively as described in Koenker (2005, sections
3.4.2 and 4.10.1), in Horowitz (1998, section 2), and using the square root of diagonal
entries of Σ̂h(0.5). All computations were carried out in the statistical package R.

Figures 2.1–2.3 display the simulation results. We shall explain in detail the contents
of Figure 2.1, the other ones being entirely analogous. All Figures refer to the slope
parameter β2 and associated quantities. Figure 2.1 corresponds to the Exponential model.
In Panel (a) one finds the relative Mean Squared Error (across replications) of Horowitz’s
estimator and of the smoothed estimator (2.5), that is the ratio of their mses to the mse
of standard quantile regression estimator. Panels (b)–(d) display the empirical coverage
probabilities of the t-statistics of each of the three aforementioned estimators, that is the
proportion of replications in which their absolute values lay below the thresholds of (b)
1.64; (c) 1.96, and; (d) 2.58, corresponding to the ranks at which the absolute value of a
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Figure 2.2: Model = t; n = 100. Relative mse (panel (a)), and empirical coverage probabil-
ities (panels (b)–(d)).
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Bandwidth

E
m
p
ir
ic
al

C
ov
er
ag
e

(b) Nominal = 0.90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
90

0.
94

0.
98

Nominal
Koenker
Horowitz
Horowitz ĥ
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standard normal random variable attains the nominal coverage probabilities respectively
of 0.90, 0.95 and 0.99. In all Panels, said values are plotted as a function of the smoothing
parameter h (Horowitz’s estimator and smoothed estimator) or as a point whose vertical
position is set (arbitrarily) to be the mean of ĥ across replications. The vertical bars at
the bottom of each plot correspond to the 10th to 90th percentile of the rule-of-thumb
bandwidth ĥ across the 10000 replications.

Let us now analyze the results in further detail. In all three model specifications
the relative mse of β̂h dominated both the standard quantile regression estimator and
Horowitz’s smoothed median regression estimator, for a wide range of h values and with
improvements as large as 30% for the exponential model. In particular the rule-of-thumb
bandwidth induced a smoothed estimator with improvements of at least nearly 20% in all
scenarios. In the exponential setting, coverage probabilities associated to our smoothed
estimator were very precise for bandwidths above 0.45, and not too sensible to variations
in the smoothing parameter, in contrast to Horowitz’s estimator which attains the nomi-
nal coverage for h values near 0.36 but displays a poor performance as one moves h apart
from this optimal value. When contrasted to the standard β̂, the smoothed estimator dis-
played comparable coverage for a wide range of bandwidth values. In DGP’s (ii) and (iii)
coverage probabilities associated to β̂h did not display the same degree of accuracy seen in
the Exponential setting. Nevertheless there seems to be no significant compromise when
compared to both the standard quantile regression estimator and Horowitz’s smoothed
estimator, even more when one takes into account the gains in mse. Sensitivity to vari-
ations in h appear to remain an issue for Horowitz’s estimator, whereas the empirical
coverages of β̂h at large bandwidths (values above around 0.4) were nearly constant.
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Figure 2.3: Model = Heteroskedastic; n = 100. Relative mse (panel (a)), and empirical
coverage probabilities (panels (b)–(d)).
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Bandwidth

E
m
p
ir
ic
al

C
ov
er
ag
e

(d) Nominal = 0.99

2.5 Proofs

Notice that R̂(b; τ) is integrable if and only if Y and X are integrable. This points to
the fact that the literature is not always completely rigorous when defining β(τ) as the
minimizer of R(b; τ) ≡ ER̂(b; τ). It is convenient however to assume altogether that
R̂(b; τ) and R̂h(b; τ) are integrable, such that R(b; τ) and Rh(b; τ) are well defined. If
not, Rh(b; τ) should be defined as E[R̂h(b; τ)− R̂h(0; τ)], and similarly for R(b; τ). These
quantities are finite under Assumption X. Let S denote the set Rd× [

¯
τ, τ̄ ]×

[
¯
h, h̄

]
to which

(b, τ, h) belongs. Notice that S depends on n through
[
¯
h, h̄

]
. In what follows, whenever

convenient we write EX (resp. Ex) to denote conditional expectation given X (resp. given
X = x). C is a constant which may vary from line to line.

2.5.1 The bias term

The proof of Theorem 2.2 makes use of the following Lemma.

Lemma 2.1. Assumptions X, Q2 and K1 ensure that

(i) sup
(b,τ,h)∈S

∣∣∣∣∣Rh(b; τ)−R(b; τ)
hbsc+1

∣∣∣∣∣ = O(1);

(ii) sup
(b,τ,h)∈S

∥∥∥∥∥∥R
(1)
h (b; τ)−R(1)(b; τ)

hs+1

∥∥∥∥∥∥ = O(1);

(iii) sup
(b,τ,h)∈S

∥∥∥∥∥∥R
(2)
h (b; τ)−R(2)(b; τ)

hs

∥∥∥∥∥∥ = O(1);

(iv) sup
(δ,b,τ,h)∈Rd×S

∥∥∥∥∥∥R
(2)
h (b+ δ; τ)−R(2)

h (b; τ)
‖δ‖

∥∥∥∥∥∥ = O(1).
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Proof of Lemma 2.1. Assume from now on that bsc ≥ 1, as the case bsc = 0 can be
dealt with in a similar fashion by invoking the Hölder condition for f(·|x) instead of the
one on f (bsc)(·|x) as used below. Under Assumption Q2, a Taylor expansion with integral
remainder gives

f(v + hz|x) =
bsc−1∑
`=0

f (`)(v|x)(hz)`

`! + (hz)bsc

(bsc − 1)!

∫ 1

0
f (bsc)(v + whz|x)(1− w)bsc−1 dw.

The following identity will give items (i)–(iii). Using a change of variables y = v + hz

yields, under Assumption K1,

Ex{kh(v − Y )} − f(v|x)

=
∫
kh(v − y)f(y|x) dy − f(v|x)

=
∫
k(z)(f(v + hz|x)− f(v|x)) dz

=
∫ 1

0
(1− w)bsc−1

∫ (hz)bsc

(bsc − 1)!k(z)f (bsc)(v + whz|x) dz dw

=
∫ 1

0
(1− w)bsc−1

∫ (hz)bsc

(bsc − 1)!k(z)
(
f (bsc)(v + whz|x)− f (bsc)(v|x)

)
dz dw.(2.12)

Let us establish (i). Observe that if G is an arbitrary cdf then
∫
ρτ (v) dG(v) =

(1− τ)
∫ 0
−∞G(v) dv + τ

∫+∞
0 (1−G(v)) dv. Thus one has

R(b; τ) =
∫ (1− τ)

∫ 0

−∞

∫ t+x′b

−∞
f(v|x) dv dt+ τ

∫ ∞
0

∫ ∞
t+x′b

f(v|x) dv dt

 dFX(x),

and similarly,

Rh(b; τ) =

=
∫ {

(1− τ)
∫ 0

−∞

∫ t+x′b

−∞
Ex{kh(v − Y )} dv dt+ τ

∫ ∞
0

∫ ∞
t+x′b

Ex{kh(v − Y )} dv dt
}
dFX(x).

Since by hypothesis
∫ ∣∣∣zbsc+1k(z)

∣∣∣ dz < ∞, and noting that f (bsc−2)(·|·) is Lipschitz, one
gets from equation (2.12)

∣∣∣∣∣
∫ 0

−∞

∫ t+x′b

−∞
Ex{kh(v − Y )} − f(v|x) dv dt

∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫ 1

0
(1− w)bsc−1

∫ (hz)bsc

(bsc − 1)!k(z)
∫ 0

−∞

∫ t+x′b

−∞

(
f (bsc)(v + whz|x)− f (bsc)(v|x)

)
dv dt dz dw

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
(1− w)bsc−1

∫ (hz)bsc

(bsc − 1)!k(z)
(
f (bsc−2)(x′b+ whz|x)− f (bsc−2)(x′b|x)

)
dz dw

∣∣∣∣∣∣
≤ Chbsc+1.



29

The bound for
∣∣∣∫∞0 ∫∞

t+x′b Ex{kh(v − Y )} − f(v|x) dv dt
∣∣∣ is obtained analogously. Hence it

holds that |Rh(b; τ)−R(b; τ)| ≤ Chbsc+1.

For (ii) notice that by the definition of R(b; τ) and Rh(b; τ), via the Lebesgue Domi-
nated Convergence Theorem it holds that

R(1)(b; τ) = E{X[F (X ′b|X)− τ ]} ≡
∫
x

(∫ x′b

−∞
f(y|x) dv − τ

)
dFX(x),

whereas

R
(1)
h (b; τ) = E

{
X

[
K

(
X ′b− Y

h

)
− τ

]}
≡
∫
x

(∫ x′b

−∞
Ex{kh(v − Y )} dv − τ

)
dFX(x).

(2.13)

Integrating (2.12) yields, since
∫
zbsck(z) dz =

∫
zbsc+1k(z) dz = 0 and

∫ ∣∣∣zbsc+1k(z)
∣∣∣ dz <

∞, ∣∣∣∣∣
∫ x′b

−∞
Ex{kh(v − Y )} − f(v|x) dv

∣∣∣∣∣ =

=
∣∣∣∣∣
∫ 1

0
(1− w)bsc−1

∫ (hz)bsck(z)
(bsc − 1)!

∫ x′b

−∞

(
f (bsc)(v + whz|x)− f (bsc)(v|x)

)
dv dz dw

∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0
(1− w)bsc−1

∫ (hz)bsck(z)
(bsc − 1)!

(
f (bsc−1)(x′b+ whz

∣∣x)− f (bsc−1)(x′b∣∣x)) dz dw∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0
w(1− w)bsc−1

∫ (hz)bsc+1k(z)
(bsc − 1)!

∫ 1

0
f (bsc)(x′b+ twhz

∣∣x)− f (bsc)(x′b∣∣x) dt dz dw∣∣∣∣∣(2.14)

≤ Chs+1,

by the Hölder condition on f (bsc). This implies, under Assumption X, that∥∥∥R(1)
h (b; τ)−R(1)(b; τ)

∥∥∥ ≤ Chs+1.

In order to obtain (iii), differentiate R(1)(b; τ) to get

R(2)(b; τ) = E[XX ′f(X ′b|X)] ≡
∫
xx′f(x′b|x) dFX(x),

and likewise

R
(2)
h (b; τ) = E[XX ′kh(X ′b− Y )] ≡

∫
xx′ Ex{kh(x′b− Y )} dFX(x).

Setting v = x′b in (2.12), one obtains from Assumptions X and Q2 that∥∥∥R(2)
h (b; τ)−R(2)(b; τ)

∥∥∥ ≤ C|Ex{kh(v − Y )} − f(v|x)|
≤ Chs.

This establishes the stated result.
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It remains to show the last item in the Lemma. Observe that

R
(2)
h (b; τ) = E[XX ′kh(X ′b− Y )] =

∫
k(z)

∫
xx′f(x′b+ hz|x) dFX(x) dz.

From Assumption Q2 and noting that f(·|·) is Lipschitz when bsc ≥ 1, one obtains∥∥∥R(2)
h (b+ δ; τ)−R(2)

h (b; τ)
∥∥∥ ≤ C

∫
|k(z)|

∫
‖xx′‖|x′δ| dFX(x) dz ≤ C‖δ‖,

uniformly in b, h, δ and τ . This proves item (iv).

Proof of Theorem 2.2. Notice that βh(τ) is well defined, by convexity of b 7→ Rh(b; τ).
Let us first obtain (2.8). Set

A(τ, h) :=
∫ 1

0
R(2)

(
β(τ) + w

(
βh(τ)− β(τ)

)
; τ
)
dw.

Claim: A(τ, h) has its eigenvalues bounded away from zero, uniformly in (τ, h) ∈ [
¯
τ, τ̄ ]×[

¯
h, h̄

]
.

Now since R(1)
h (βh(τ); τ) = R(1)(β(τ); τ) = 0, we have via a Taylor expansion with

integral remainder,

R(1)(βh(τ); τ)−R(1)
h (βh(τ); τ) = R(1)(βh(τ); τ)−R(1)(β(τ); τ)

= A(τ, h)
(
βh(τ)− β(τ)

)
,

and therefore the claim implies, together with Lemma 2.1 (ii), that∥∥∥∥∥βh(τ)− β(τ)
hs+1

∥∥∥∥∥ ≤ sup

∥∥∥A(τ, h)−1
∥∥∥ ·
∥∥∥∥∥∥R

(1)(βh(τ); τ)−R(1)
h (βh(τ); τ)

hs+1

∥∥∥∥∥∥


= O(1),

where the supremum is taken for (τ, h) ∈ [
¯
τ, τ̄ ]×

[
¯
h, h̄

]
. Hence (2.8) holds. Uniqueness of

βh(τ) for small h̄ will be obtained in the proof of the above claim.

To prove the claim, put c := inf f
(
x′
[
β(τ) + w

(
βh(τ)− β(τ)

)] ∣∣∣x), the infimum being
taken for (τ, h, w, x) over [

¯
τ, τ̄ ] ×

[
¯
h, h̄

]
× [0, 1] × suppX. If the map (τ, h) 7→ βh(τ) is

continuous then by Assumption Q1 it holds that c > 0 and hence

v′A(τ, h)v =
∫ 1

0

∫
(v′x)2

f
(
x′
[
β(τ) + w

(
βh(τ)− β(τ)

)] ∣∣∣∣x) dFX(x) dw

≥ c vEXX ′v > 0

by Assumption X, which implies the claim.

It remains to establish continuity of (τ, h) 7→ βh(τ). First observe that b 7→ R(2)(b; τ) ≡
EXX ′f(X ′b|X) is continuous and does not depend on τ . Moreover, for any b ∈ Rd,
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R(2)(b; τ) is an element of the open set M+
d of positive definite d× d matrices. Indeed, for

v ∈ Rd,

v′R(2)(b; τ)v =
∫

(v′x)2
f(x′b|x) dFX(x)

≥ v′EXX ′v inf
x
f(x′b|x) > 0,

where the infimum is taken over the compact set suppX and hence is larger than zero by
Assumption Q1. Now Lemma 2.1 (iii) ensures that for some C > 0 one has∥∥∥R(2)

h (βh(τ); τ)−R(2)(βh(τ); τ)
∥∥∥ ≤ Ch̄s

uniformly in (τ, h) ∈ [
¯
τ, τ̄ ]×

[
¯
h, h̄

]
. Hence for a proper choice of h̄ it holds thatR(2)

h (βh(τ); τ) ∈
M+

d uniformly in (τ, h). For such an h̄, the first order condition R
(1)
h (βh(τ); τ) = 0 and

the Implicit Function Theorem then ensure that (τ, h) 7→ βh(τ) is unique and continuous.

We now prove (2.9). Lemma 2.1 (iii) and a Taylor expansion give, sinceR(1)
h (βh(τ); τ) =

0,

−R(1)
h (β(τ); τ) = R

(1)
h (βh(τ); τ)−R(1)

h (β(τ); τ)

=
(
R(2)(β(τ); τ) +O(hs)

)
(βh(τ)− β(τ)) + o

(
hs+1

)
.

Using

f (bsc)(x′β(τ) + twhz|x)− f (bsc)(x′β(τ)|x) = f (s)(x′β(τ)|x)twhz + o(h),

together with s = bsc+ 1 and
∫
w2(1− w)bsc−1 dw = 2/(bsc(bsc+ 1)(bsc+ 2)), we get by

(2.14)
∫ x′β(τ)

−∞
Ex{kh(v − Y )} − f(v|x) dv =

= hs+1
∫ 1

0
w2(1− w)bsc−1 dw

∫ zs+1

(bsc − 1)!k(z) dz
∫ 1

0
t dt · f (s)(x′β(τ)|x) + hso(h)

= hs+1
∫
zs+1k(z) dz
(s+ 1)! f (s)(x′β(τ)|x) + o

(
hs+1

)
.

Hence (2.13) gives

R
(1)
h (β(τ); τ) = hs+1

∫
zs+1k(z) dz
(s+ 1)!

∫
xf (s)(x′β(τ)|x) dFX(x) + o

(
hs+1

)
,

so that (2.9) holds.
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2.5.2 Bahadur-Kiefer representation

This section makes use of a powerful functional exponential inequality; see Massart (2007,
Corollary 6.9). It is of technical interest on its own, so we state (a version of) it. Recall
that for real valued functions

¯
f and f̄ with

¯
f ≤ f̄ , the bracket

[
¯
f, f̄

]
is the set of all g

such that
¯
f ≤ g ≤ f̄ . For a set F and a family {Fi} of subsets of F , say that {Fi} covers

F if F ⊂ ⋃i Fi.
Theorem 2.5 (Massart (2007, Corollary 6.9)). Let Zi be an iid sequence of random
variables taking values in the measurable space Z, and let F be a class of real valued,
measurable functions on Z. Assume that

(i) there are some positive constants σ and M such that for all f ∈ F , one has

(2.15) E
[
|f(Zi)|2

]
≤ σ2 and sup

z∈Z
|f(z)| ≤M.

(ii) for each δ > 0 there exist an integer J(δ) ≥ 1 and a set of brackets
{[

¯
fj, f̄j

]
; j =

1, . . . , J(δ)
}
covering F such that for all j = 1, . . . , J(δ),

(2.16) E
[∣∣∣f̄j(Zi)−

¯
fj(Zi)

∣∣∣2] ≤ δ2 and sup
z∈Z

∣∣∣f̄j(z)−
¯
fj(z)

∣∣∣ ≤M.

Then for any r ≥ 0,

(2.17) P
(

sup
f∈F

1√
n

n∑
i=1

(f(Zi)− E[f(Zi)]) ≥ Hn + 7σ
√

2r + 2Mr√
n

)
≤ exp(−r).

where
Hn := 27

(∫ σ

0
H1/2(u) du+ 2(σ +M)H(σ)√

n

)
,

and where H is any non-negative measurable function of δ > 0 satisfying H(δ) ≥ log J(δ).

Before proceeding to the proofs, let us introduce some additional definitions, and
present a brief heuristic argument. In what follows, whenever we write sup(τ,h) we mean
the supremum is being taken over (τ, h) ∈ [

¯
τ, τ̄ ]×

[
¯
h, h̄

]
, and similarly for infima, unions,

etc. Observe that this will depend on n via
[
¯
h, h̄

]
.

Now recall that %n(h)−1 :=
(
nh

logn

)1/2
+ n1/2, and let En(r) be the event,{

√
n sup

(τ,h)
%n(h)−1

∥∥∥β̂h(τ)− βh(τ) +Dh(τ)−1Ŝh(τ)
∥∥∥ ≥ r2

}
.

Notice that En(r) depends on the sample size, n, and on a tail parameter, r, but not on
τ or h. On the complementary set of En(r), it holds that

√
n
(
β̂h(τ)− βh(τ)

)
= −
√
nDh(τ)−1Ŝh(τ) + Êh(τ),
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where the approximation error term satisfies
∥∥∥Êh(τ)

∥∥∥ ≤ %n(h)r2 uniformly in τ ∈ [
¯
τ, τ̄ ]

and h ∈
[
¯
h, h̄

]
. In particular, if P

(
En(r)

)
is small for large r as established below, then

the representation (2.6) from Theorem 2.1 holds uniformly in τ and h.
Define

E1
n(r) =

{
sup
(τ,h)

∥∥∥√n Ŝh(τ)
∥∥∥ ≥ r

}
,

E2
n(r) =

{
sup
(τ,h)

sup
{b: ‖b−βh(τ)‖≤1}

∥∥∥∥∥
√

nh

log n
(
R̂

(2)
h (b; τ)−R(2)

h (b; τ)
)∥∥∥∥∥ ≥ r

}
.

In E1
n(r), the norm is the Euclidean norm, while in E2

n(r) it is the matrix norm (the trace
norm), so that for any matrix A and conformable vector v, ‖Av‖ ≤ ‖A‖ ‖v‖. Ec stands
for the complementary event of E. We now state the functional exponential inequality.

Proposition 2.2. Given Assumptions X, Q and K, it holds that β̂h(τ) is unique for
all (τ, h) ∈ [

¯
τ, τ̄ ] ×

[
¯
h, h̄

]
with a probability tending to 1. Moreover there exist positive

constants C0 , C1 and C2 such that for all ε small enough, and all r and n large enough,

(i) P
(
En(r) ∩ E1

n(r)c ∩ E2
n(r)c

)
≤ C0 exp(−nε/C0);

(ii) P
(
E1
n(r)

)
≤ C1 exp(−r2/C1);

(iii) P
(
E2
n(r)

)
≤ C2 exp(−r log n/C2).

The proof of Proposition 2.2, of which Theorem 2.1 is an immediate corollary, relies on
Theorem 2.5 via the series of Lemmas below. It is convenient for some proofs to consider
the auxiliary objective functions,

R̂h(b; τ) = R̂h(b; τ)− R̂h(βh(τ); τ), Rh(b; τ) := E R̂h(b; τ),

which are such that β̂h(τ) = arg minb R̂h(b; τ) and βh(τ) = arg minbRh(b; τ). Similarly,
set R̂(b; τ) = R̂(b; τ)− R̂(β(τ); τ) and R(b; τ) := E R̂(b; τ). The next Lemma shows that
β̂h(τ) is close to βh(τ) uniformly for (τ, h) ∈ [

¯
τ, τ̄ ]×

[
¯
h, h̄

]
.

Lemma 2.2 (UCV). Suppose Assumptions X, Q, and K hold. Then there are some
positive constants C0 and C1 such that for all n large enough and any η ∈ [1/ log n, 1],

P
(

sup
(τ,h)

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ η

)
≤ C0 exp

(
−nη4/C1

)
.
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Proof of Lemma 2.2. We have{
sup
(τ,h)

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

}
=

⋃
(τ,h)

{∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

}

⊂
⋃

(τ,h)

{
inf

b;‖b−βh(τ)‖≥2η
R̂h(b; τ) ≤ inf

b;‖b−βh(τ)‖≤2η
R̂h(b; τ)

}

⊂
⋃

(τ,h)

{
inf

b;‖b−βh(τ)‖≥2η
R̂h(b; τ) ≤ R̂h(βh(τ); τ)

}

=
⋃

(τ,h)

{
inf

b;‖b−βh(τ)‖≥2η
R̂h(b; τ) ≤ 0

}
,

since R̂h(βh(τ); τ) = 0. Theorem 2.2 yields

{b; ‖b− βh(τ)‖ ≥ 2η} ⊂
{
b; ‖b− β(τ)‖+ sup

(τ,h)
‖βh(τ)− β(τ)‖ ≥ 2η

}

⊂
{
b; ‖b− β(τ)‖+O

(
h
s+1) ≥ 2η

}
⊂ {b; ‖b− β(τ)‖ ≥ η}

for all (τ, h) provided that n is large enough. Hence{
sup
(τ,h)

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

}
⊂

⋃
(τ,h)

{
inf

b;‖b−β(τ)‖≥η
R̂h(b; τ) ≤ 0

}
.

Now observe that

R̂h(b; τ) = 1
nh

n∑
i=1

∫
ρτ (t)k

(
t− (Yi −X ′ib)

h

)
dt

= 1
n

n∑
i=1

∫
ρτ (Yi −X ′ib+ hz)k(z) dz.

Hence, since
∫
k(z) dz = 1,

∫
|zk(z)| dz < ∞ under Assumption K1 and the fact that

t 7→ ρτ (t) is 1-Lipschitz, one has∣∣∣R̂h(b; τ)− R̂(b; τ)
∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

∫
[ρτ (Yi −X ′ib+ hz)− ρτ (Yi −X ′ib)]k(z) dz

∣∣∣∣∣
≤ h

∫
|zk(z)| dz,

for all b, τ and h. Hence from Theorem 2.2 and the Lipschitz property of b 7→ R̂(b; τ) it
follows that R̂h(b; τ) ≥ R̂(b; τ)− Ch uniformly in b and τ , and therefore{

sup
(τ,h)

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

}
⊂

⋃
(τ,h)

{
inf

b;‖b−β(τ)‖≥η
R̂(b; τ) ≤ Ch

}
.

The next step is a convexity argument which uses the change of variables b = β(τ) + ρu

with ‖u‖ = 1 and ρ ≥ η. Since b 7→ R̂(b; τ) is convex with R̂(β(τ); τ) = 0
η

ρ
R̂(β(τ) + ρu; τ) = η

ρ
R̂(β(τ) + ρu; τ) +

(
1− η

ρ

)
R̂(β(τ); τ)

≥ R̂(β(τ) + ηu; τ).
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Hence {
inf

b;‖b−β(τ)‖≥η
R̂(b; τ) ≤ Ch

}

⊂
⋃

ρ∈[η,∞)

{
inf

u;‖u‖=1
R̂(β(τ) + ηu; τ) ≤ C

η

ρ
h

}

⊂
{

inf
b;‖b−β(τ)‖=η

R̂(b; τ) ≤ Ch

}
.

and it then follows that⋃
(τ,h)

{∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

}
⊂
⋃
τ

{
inf

{b:‖b−β(τ)‖=η}
R̂(b; τ) ≤ Ch̄

}

⊂
{

inf
τ

inf
{b:‖b−β(τ)‖=η}

[
R̂(b; τ)−R(b; τ)

]
≤ Ch̄− inf

τ
inf

{b:‖b−β(τ)‖=η}
R(b; τ)

}
.

We first give an upper bound for Ch̄−infτ∈[
¯
τ,τ̄ ] infb:‖b−β(τ)‖=ηR(b; τ). Since the eigenvalues

of R(2)(b; τ) are bounded away from 0 uniformly with respect to b, with ‖b− β(τ)‖ ≤ 1
and τ ∈ [

¯
τ, τ̄ ], a second-order Taylor expansion of R(b; τ) = R(b; τ)−R(β(τ); τ) gives for

all b with ‖b− β(τ)‖ = η,

R(b; τ) = 0 +R(1)(β(τ), τ)︸ ︷︷ ︸
=0

′(b− β(τ))

+ 1
2(b− β(τ))′

[∫ 1

0
(1− t)R(2)(β(τ) + t(b− β(τ)); τ) dt

]
(b− β(τ))

≥ Cη2.

It follows that for any η2 < η, where η2 = η− ε2 with conformable ε2, and for any h̄ small
enough,

⋃
(τ,h)

{∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

}
⊂
{

sup
τ∈[

¯
τ,τ̄ ]

sup
{b:‖b−β(τ)‖=η}

∣∣∣R̂(b; τ)−R(b; τ)
∣∣∣ ≥ Cη2

2

}
.

Now let Zi = (Yi, X ′i)
′ and θ = (τ, b′)′. Then by defining f(Zi, θ) = ρτ (Yi −X ′ib) −

ρτ (Yi −X ′iβ(τ)) one obtains

R̂(b; τ)−R(b; τ) = 1
n

n∑
i=1

(
f(Zi, θ)− Ef(Zi, θ)

)
.

Under Assumption X and since η ≤ 1, it holds that for all b with ‖b− β(τ)‖ = η and
τ ∈ [

¯
τ, τ̄ ]

|f(Zi, θ)| ≤ ‖Xi‖ ‖b− β(τ)‖ ≤ C,

which also implies that Var(f(Zi, θ)) ≤ σ2 ≤ C. Observe also that Assumption X,
together with the Lipschitz condition on τ 7→ β(τ) (Assumption Q1) and on τ 7→ ρτ (u),
gives for all admissible z,

(2.18) |f(z, θ1)− f(z, θ2)| ≤ C‖θ1 − θ2‖,
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where ‖θ‖2 = ‖b‖2 + |τ |2.

Now, for δ > 0, let θj, j = 1, . . . , J(δ) ≤ Cδ−(d+1) be such that

Θ = {θ = (b, τ) : τ ∈ [
¯
τ, τ̄ ], ‖b− β(τ)‖ = η1} ⊂

J(δ)⋃
j=1
B(θj, δ),

where B(θj, δ) is the ‖·‖-ball with center θj and radius δ. Define
¯
fj(·) and f̄j(·) respectively

as

¯
fj(z) := inf

θ∈B(θj ,δ)
f(z, θ), f̄j(z) = sup

θ∈B(θj ,δ)
f(z, θ),

so that {f(·, θ) : θ ∈ B(θj, δ)} ⊂
[
¯
fj, f̄j

]
and then FΘ := {f(·, θ) : θ ∈ Θ} ⊂ ⋃J(δ)

j=1

[
¯
fj, f̄j

]
.

Observe also that (2.18) gives
∣∣∣f̄j(z)−

¯
fj(z)

∣∣∣ ≤ Cδ ≤ C and E
[∣∣∣f̄j(Zi)−

¯
fj(Zi)

∣∣∣2] ≤ Cδ2.
Then, since (2.15) and (2.16) hold, setting H(δ) = −(d+ 1) log δ + C gives, by (2.17),

P
(

sup
θ∈Θ

∣∣∣R̂(b; τ)−R(b; τ)
∣∣∣ ≥ C

1 +
√
r + r/√n√
n

)
≤ exp(−r),

and then, for n large enough with respect to η2
2,

P
(

sup
τ

sup
{b:‖b−β(τ)‖=η1}

∣∣∣R̂(b; τ)−R(b; τ)
∣∣∣ ≥ Cη2

2

)
≤ C exp

(
−Cnη4

2

)
.

Therefore,

P
(

sup
(τ,h)

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ 2η

)
≤ C exp

(
−Cnη4

2

)
,

from which the Lemma follows.

Lemma 2.3. Suppose Assumptions X, Q, and K hold. Consider r > 0 and η ∈ (0, 1].
Then, provided that n is large enough,

P
(

sup
(τ,h)

∥∥∥√nŜh(τ)
∥∥∥ ≥ C1(1 + r)

)
≤ C0 exp

(
−r2

)
,

P
(

sup
(τ,h)

sup
{b:‖b−βh(τ)‖≤η}

∥∥∥∥∥
√

nh

log n
(
R̂

(2)
h (b, τ)−R(2)

h (b, τ)
)∥∥∥∥∥ ≥ C1(1 + r)

)
≤ C0 exp(−r log n).

Proof of Lemma 2.3. Consider the first deviation probability in the Lemma. Since
R

(1)
h (βh(τ), τ) = 0,

sup
(τ,h)

∥∥∥√nR̂(1)
h (βh(τ), τ)

∥∥∥ ≤ sup
(τ,h)

sup
{b:‖b−βh(τ)‖≤η}

∥∥∥√n(R̂(1)
h (b, τ)−R(1)

h (b, τ)
)∥∥∥,

and it is sufficient to consider the upper bound. Observe that

R̂
(1)
h (b, τ) = ∂

∂b

[
1
n

n∑
i=1

∫
ρτ (Yi −X ′ib+ hz)k(z) dz

]

= 1
n

n∑
i=1

Xi

[∫
I(Yi −X ′ib+ hz < 0)k(z) dz − τ

]
.
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Hence, for θ = (b′, h, τ)′ and Zi = (Yi, X ′i)
′, one has R̂(1)

h (b, τ) = ∑n
i=1 f(Zi, θ)/n with

f(Zi, θ) = Xi

[∫
I(Yi −X ′ib+ hz < 0)k(z) dz − τ

]
,

for θ ∈ Θ :=
{
θ = (b′, h, τ); (τ, h) ∈ [

¯
τ, τ̄ ]×

[
¯
h, h̄

]
, ‖b− βh(τ)‖ ≤ η

}
.

It is sufficient to prove the bound for each of the entries of R̂(1)
h (b, τ) so that there is

no loss of generality when assuming that Xi is of dimension 1. Note that |f(Zi, θ)| ≤ C

and Var(f(Zi, θ)) ≤ σ2 ≤ C, and for all θ1, θ2, one has |f(Zi, θ2)− f(Zi, θ1)| ≤ C. Let
‖θ‖2 = ‖b‖2 + |h|2 + |τ |2, and let B(θ, δ) be the ‖·‖ ball with center θ and radius δ. Now
Assumption X gives, for any θ1, θ2 in B(θ, δ2),

(2.19) |f(Zi, θ2)− f(Zi, θ1)| ≤ C
[∫

I
(
Yi −X ′ib+ hz ∈

[
−Cδ2, Cδ2

])
|k(z)| dz + δ2

]
.

Consider a covering of Θ with J(δ2) ≤ C(δ2)−(d+1) balls B(θj, δ2) and define,

¯
fj(z) = inf

θ∈B(θj ,δ)
f(z, θ), f̄j(z) = sup

θ∈B(θj ,δ)
f(z, θ),

so that {f(·, θ) : θ ∈ B(θj, δ)} ⊂
[
¯
fj, f̄j

]
and then FΘ := {f(·, θ) : θ ∈ Θ} ⊂ ⋃J(δ2)

j=1

[
¯
fj, f̄j

]
.

(2.19) gives that, uniformly in j and δ2 ≤ σ2,

E
[∣∣∣f̄j(Zi)−

¯
fj(Zi)

∣∣∣2] ≤ C

{
δ4 + E

[(∫
I
(
Yi −X ′ib+ hz ∈

[
−Cδ2, Cδ2

])
|k(z)| dz

)2
]}
.

Now, since sup f(y|x) < ∞ by Assumption Q2,
∫
|k(z)| dz < ∞ and by the Cauchy-

Schwarz inequality,

E
[(∫

I
(
Yi −X ′ib+ hz ∈

[
−Cδ2, Cδ2

])
k(z) dz

)2
]

≤ E
[∫

I
(
Yi −X ′ib+ hz ∈

[
−Cδ2, Cδ2

])
|k(z)| dz

]
×
∫
|k(z)| dz

≤
∫

P
(
Yi ∈ xb+ hz +

[
−Cδ2, Cδ2

]∣∣∣Xi = x
)
|k(z)| dz ×

∫
|k(z)| dz

≤ Cδ2.

It then follows that, uniformly in j and δ2 ≤ σ2,

E
[∣∣∣f̄j(Zi)−

¯
fj(Zi)

∣∣∣2] ≤ C
(
δ4 + δ2

)
≤ Cδ2.

It then follows that (2.15) and (2.16) hold with logH(δ) = −2(d+ 1) log δ + C, so that
(2.17) gives

P
(

sup
θ∈Θ

∥∥∥√n(R̂(1)
h (b, τ)−R(1)

h (b, τ)
)∥∥∥ ≥ C

(
√
r + 1 + r√

n

))
≤ 2 exp(−r),

which gives the first bound stated in the Lemma for n large enough.
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For the second bound, there is no loss of generality to assume that Xi has dimension
1. Note that (nh/ log n)1/2R̂

(2)
h (b, τ) = ∑n

i=1 g(Zi, θ)/n1/2, with

g(Zi, θ) =
(

1
h log n

)1/2

X2
i k

(
X ′ib− Yi

h

)
.

Assumptions K2, K1 and X give, uniformly in θ ∈ Θ,

|g(Zi, θ)| ≤ C

(
1

h log n

)1/2

≤ C
O
(
n1/2

)
log2 n

= Mn/2.

It also follows from sup f(y|x) <∞ by Assumption Q2 that, uniformly in θ ∈ Θ,

Var(g(Zi, θ)) ≤ C
1

h log n

∫ ∫
k

(
x′b− y
h

)
f(y|x) dy dFX(x)

= C

log n ×
∫ ∫

k(v)f(x′b+ hv|x) dv dFX(x)

≤ C

log n = σ2
n.

Assumptions K1 and K2 give that g(Zi, θ) is Lipschitz over Θ with a polynomial in n

Lipschitz coefficient, that is, for any θ1, θ2 in Θ, |g(Zi, θ2)− g(Zi, θ1)| ≤ CnC‖θ2 − θ1‖.
Consider a covering of Θ with J

(
δ/nC

)
≤ C

(
δ/nC

)−(d+1)
balls B

(
θj, δ/n

C
)
and define

¯
gj(z) := inf

θ∈B(θj ,δ)
g(z, θ), ḡj(z) := sup

θ∈B(θj ,δ)
g(z, θ),

so that {g(z, θ),∈ B(θj, δ)} ⊂
[
¯
gj, ḡj

]
and then GΘ = {g(·, θ) : θ ∈ Θ} ⊂ ⋃J(δ/nC)

j=1

[
¯
gj, ḡj

]
,

with
E
[∣∣∣ḡ(Zi)−

¯
g(Zi)

∣∣∣2] ≤ Cδ2. It then follows that (2.15) and (2.16) hold with

logH(δ) = −2(d+ 1)(log δ − C log n) + C,

so that (2.17) gives, for any u > 0,

P
(

sup
θ∈Θ

∥∥∥∥∥
√

nh

log n
(
R̂

(2)
h (b, τ)−R(2)

h (b, τ)
)∥∥∥∥∥ ≥ C

(
1 +

√
u

log1/2 n
+ u

log n

))
≤ 2 exp(−u).

Setting u1/2 = t1/2 log1/2 n gives the desired result.

Proof of Proposition 2.2. Let

E3
n(ε) :=

{
sup
(τ,h)

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ ≥ ε1/4

}
,

which is such that
P
(
E3
n(ε)

)
≤ C exp(−Cnε)
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by Lemma 2.2. The bounds for P(E1
n(r)) and P(E2

n(r)) follow from Lemma 2.3. In
particular, limn→∞ P(E2

n(r)) = 0 and Lemma 2.1 ensure, under Assumption X, that
b 7→ R̂h(b; τ) is strictly convex for b in a vicinity of βh(τ), for all τ in [

¯
τ, τ̄ ] with

at least 1 − (P(E1
n(r)) + P(E2

n(r))). But Lemma 2.2 and Theorem 2.2 ensure that all
minimizers of R̂h(b; τ) lie in such a vicinity with a probability tending to 1. Since
1 − (P(E1

n(r)) + P(E2
n(r))) can be made arbitrarily close to 1 by increasing r, it follows

that β̂h(τ) is unique with a probability tending to 1 when n increases. It also follows
that when E1

n(r)c, E2
n(r)c and E3

n(ε)c are all true and n is large enough, β̂h(τ) satisfies the
first-order condition,

R̂
(1)
h

(
β̂h(τ); τ

)
= 0.

It then follows that

−R̂(1)
h (βh(τ); τ) = R̂

(1)
h

(
β̂h(τ); τ

)
− R̂(1)

h (βh(τ); τ)

=
[∫ 1

0
R̂

(2)
h

(
βh(τ) + t

(
β̂h(τ)− βh(τ)

)
; τ
)
dt
][
β̂h(τ)− βh(τ)

]
.

Now, if ε in E3
n(ε) is small enough, the eigenvalues of the above matrix are in [1/C,C] for

a large C when n is large enough, uniformly in τ and h. Hence,

β̂h(τ)− βh(τ) = −
[∫ 1

0
R̂

(2)
h

(
βh(τ) + u

(
β̂h(τ)− βh(τ)

)
; τ
)
du
]−1

R̂
(1)
h (βh(τ); τ).

This gives, on E1
n(r)c and E2

n(r)c and by Lemma 2.1,∥∥∥∥√n(β̂h(τ)− βh(τ)
)

+
[
R

(2)
h (βh(τ); τ)

]−1√
nR̂

(1)
h (βh(τ); τ)

∥∥∥∥
≤ C

∥∥∥∥∫ 1

0

(
R̂

(2)
h

(
βh(τ) + u

(
β̂h(τ)− βh(τ)

)
; τ
)
−R(2)

h

(
βh(τ) + u

(
β̂h(τ)− βh(τ)

)
; τ
))
du
∥∥∥∥

×
∥∥∥√nR̂(1)

h (βh(τ); τ)
∥∥∥

+ C

∥∥∥∥∫ 1

0

(
R

(2)
h

(
βh(τ) + u

(
β̂h(τ)− βh(τ)

)
; τ
)
−R(2)

h (βh(τ); τ)
)
du
∥∥∥∥∥∥∥√nR̂(1)

h (βh(τ); τ)
∥∥∥

≤ C


C2
(

log n
nh

)1/2

r2 + C
∥∥∥β̂h(τ)− βh(τ)

∥∥∥ · ∥∥∥√nR̂(1)
h (βh(τ); τ)

∥∥∥︸ ︷︷ ︸
≤Cn−1/2

∥∥∥√nR̂(1)
h

(βh(τ);τ)
∥∥∥2


≤ C


(

log n
nh

)1/2

+ n−1/2

r2,

which shows that En(r)c holds provided C is taken large enough.

Proof of Theorem 2.1. Uniqueness has already been established. Now observe that
P(En(r)) ≤ P(En(r) ∩ [E1

n(r)c ∩ E2
n(r)c])+P(E1

n(r))+P(E2
n(r)) which can be made arbitrar-

ily small for large n by fixing ε and increasing r.
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2.5.3 Asymptotic variance and mean squared error

Proof of Theorem 2.3. We first show that the expansion

(2.20) Var
(√

nD(τ)−1Ŝh(τ)
)

= Σ(τ)− ckhD(τ)−1 +O
(
h2
)

holds uniformly with respect to (τ, h) ∈ [
¯
τ, τ̄ ]×

[
¯
h, h̄

]
. Indeed, since E

[
R̂

(1)
h (βh(τ); τ)

]
= 0,

we have

Var
(√

nŜh(τ)
)

= Var
(√

nR̂
(1)
h (βh(τ); τ)

)
= Var

(
X

{
K

(
X ′βh(τ)− Y

h

)
− τ

})
= E

XX ′(K(X ′βh(τ)− Y
h

)
− τ

)2


= E

XX ′(K(X ′βh(τ)− Y
h

))2
− 2τE

[
XX ′K

(
X ′βh(τ)− Y

h

)]
+ τ 2E[XX ′].

Assumptions Q2 and K give, integrating by parts and using Theorem 2.2,

E
[
K

(
X ′βh(τ)− Y

h

)∣∣∣∣∣X = x

]

=
∫
K

(
x′βh(τ)− y

h

)
f(y|x) dy =

∫ 1
h
k

(
x′βh(τ)− y

h

)
F (y|x) dy

= F (x′βh(τ)|x) +
∫

(F (x′βh(τ)− hz|x)− F (x′βh(τ)|x))k(z) dz

= F (x′β(τ)|x) +O
(
hs+1

)
+O

(
hs+1

)
= τ +O

(
hs+1

)
,(2.21)

since x′β(τ) = F−1(τ |x) and arguing as in Lemma 2.1. For the term involving K(·)2,
define

K(z) = 2k(z)K(z) = d

dz

[
K(z)2

]
,

which is such that ∫
K(z) dz = lim

z→+∞
K(z)2 = 1.

Arguing as above now gives

E

K(X ′βh(τ)− Y
h

)2
∣∣∣∣∣∣X = x


=
∫ 1
h

K
(
x′βh(τ)− y

h

)
F (y|x) dy

= τ +O
(
hs+1

)
+
∫

(F (x′βh(τ)− hz|x)− F (x′βh(τ)|x))K(z) dz

= τ − h(f(x′βh(τ)|x) +O(h))
∫
zK(z) dz +O

(
hs+1

)
= τ − h

(
f(x′β(τ)|x) +O

(
h(s+1)

)
+O(h)

) ∫
zK(z) dz +O

(
hs+1

)
= τ − hf(x′β(τ)|x)

∫
zK(z) dz +O

(
h2
)
.(2.22)
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Substituting gives the variance expansion since K(−z) = 1−K(z),∫
zK(z) dz = 2

∫
zk(z)K(z) dz =

∫ 0

−∞
zd
[
K(z)2

]
+
∫ +∞

0
zd
[
(K(z))2 − 1

]
= −

∫ 0

−∞
K(z)2 dz +

∫ +∞

0

(
1− (K(z))2

)
dz

=
∫ +∞

0

(
−(1−K(z))2 + 1− (K(z))2

)
dz = 2

∫ +∞

0
K(z)(1−K(z)) dz.

We now establish (2.10). The expansion in (2.20), Lemma 2.1, Theorem 2.2, and the
Locally Lipschitz property of matrix inversion ensure that

Var
(√

nDh(τ)−1Ŝh(τ)Dh(τ)−1
)

= Σ(τ)− ckhD(τ)−1 +O
(
h2
)

+
{
Dh(τ)−1 Var

(√
nŜh(τ)

)
Dh(τ)−1 −D(τ)−1 Var

(√
nŜh(τ)

)
D(τ)−1

}
,

with ∥∥∥Dh(τ)−1 Var
(√

nŜh(τ)
)
Dh(τ)−1 −D(τ)−1 Var

(√
nŜh(τ)

)
D(τ)−1

∥∥∥
≤
∥∥∥Dh(τ)−1 −D(τ)−1

∥∥∥ · ∥∥∥Var
(√

nŜh(τ)
)∥∥∥ · (∥∥∥Dh(τ)−1

∥∥∥+
∥∥∥D(τ)−1

∥∥∥)
≤ C

∥∥∥Dh(τ)−1 −D(τ)−1
∥∥∥ = O(hs),

which yields (2.10).

Proof of Theorem 2.4. By hypothesis, (2.9) holds. The variance expansion (2.10) and
EŜh(τ) = 0 thus give

amse
(
λ′β̂h(τ)

)
= h2s+2(λ′B(τ))2 + 1

n
λ′
(
Σ(τ)− ckhD(τ)−1

)
λ+O

(
hs∧2

n

)
+ o

(
h2s+2

)
.

Writing g(h) = h2s+2(λ′B(τ))2 − n−1ckhλ
′D(τ)−1λ and differentiating yields

g′(h) = (2s+ 2)h2s+1(λ′B(τ))2 − 1
n
ckλ

′D(τ)−1λ,

and thus solving g′(h) = 0 gives the desired h∗ and the corresponding amse expansion.

2.5.4 Asymptotic covariance estimator

Lemma 2.4. Given Assumptions X, Q and K, the following holds uniformly with respect
to (τ, h) ∈ [

¯
τ, τ̄ ]×

[
¯
h, h̄

]
,

(i)
∥∥∥D̂h(τ)−D(τ)

∥∥∥ = OP

(√
logn
nh

+ 1√
n

+ hs
)
;

(ii)
∥∥∥D̂h(τ)−1 −D(τ)−1

∥∥∥ = OP

(√
logn
nh

+ 1√
n

+ hs
)
;
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(iii)
∥∥∥V̂h(τ)− V (τ)

∥∥∥ = OP

(√
logn
nh

+ 1
h
√
n

+ h
)
.

Proof of Lemma 2.4. For item (i), we have∥∥∥D̂h(τ)−D(τ)
∥∥∥ ≤ ∥∥∥R̂(2)

h

(
β̂h(τ); τ

)
−R(2)

h

(
β̂h(τ); τ

)∥∥∥+
∥∥∥R(2)

h

(
β̂h(τ); τ

)
−R(2)(β(τ); τ)

∥∥∥
Now the first term in the sum in the above sum is OP

(√
log n/(nh)

)
uniformly for (τ, h) ∈

[
¯
τ, τ̄ ]×

[
¯
h, h̄

]
, by Lemma 2.3. For the second term in the sum, we have∥∥∥R(2)
h

(
β̂h(τ); τ

)
−R(2)(β(τ); τ)

∥∥∥ ≤
≤
∥∥∥R(2)

h

(
β̂h(τ); τ

)
−R(2)

h (β(τ); τ)
∥∥∥(2.23)

+
∥∥∥R(2)

h (β(τ); τ)−R(2)(β(τ); τ)
∥∥∥.(2.24)

The term (2.24) is O(hs) by Lemma 2.1. Regarding (2.23), we have by Lemma 2.1 and
Theorems 2.2 and 2.1∥∥∥R(2)

h

(
β̂h(τ); τ

)
−R(2)

h (β(τ); τ)
∥∥∥ ≤ C

∥∥∥β̂h(τ)− β(τ)
∥∥∥

≤ C
(∥∥∥β̂h(τ)− βh(τ)

∥∥∥+
∥∥∥βh(τ)− β(τ)

∥∥∥)
= OP

(
n−1/2 + hs+1

)
.

This yields the stated result.

Item (ii) is just (i) and the locally Lipschitz property of matrix inversion.

For item (iii), define

W (b; τ) := EXX ′(I[Y −X ′b ≤ 0]− τ)2

Ŵh(b; τ) := 1
n

n∑
i=1

XiX
′
i

[
K

(
X ′ib− Yi

h

)
− τ

]2

Wh(b; τ) := EŴh(b; τ),

so W (β(τ); τ) = V (τ) and Ŵh

(
β̂h(τ); τ

)
= V̂h(τ). Now∥∥∥V̂h(τ)− V (τ)

∥∥∥ =
∥∥∥Ŵh

(
β̂h(τ); τ

)
−W

(
β(τ); τ

)∥∥∥
≤
∥∥∥Ŵh

(
β̂h(τ); τ

)
−Wh

(
β̂h(τ); τ

)∥∥∥(2.25)

+
∥∥∥Wh

(
β̂h(τ); τ

)
−Wh

(
βh(τ); τ

)∥∥∥(2.26)

+
∥∥∥Wh

(
βh(τ); τ

)
−W

(
β(τ); τ

)∥∥∥.(2.27)

For (2.27), we have by Assumption X and equations (2.21) and (2.22),

∥∥∥Wh(βh(τ); τ)−W (β(τ); τ)
∥∥∥ ≤ C

∣∣∣∣∣∣E

[
K

(
X ′βh(τ)− Y

h

)
− τ

]2− τ(1− τ)

∣∣∣∣∣∣
= O(h).
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For (2.26), since both K and K2 are Lipschitz, we have that Ŵh(b; τ) and Wh(b; τ)
are also Lipschitz, with a Lipschitz constant which is O(h−1). Thus Assumption X and
Theorem 2.1 give

∥∥∥Wh

(
β̂h(τ); τ

)
−Wh

(
βh(τ); τ

)∥∥∥ ≤ C

h

∥∥∥β̂h(τ)− βh(τ)
∥∥∥ = OP

(
n−1/2h−1

)
.

For (2.25), an argument similar to the proof of Lemma 2.3 yields the desired rate.

Proof of Proposition 2.1. We have∥∥∥Σ̂h(τ)− Σ(τ)
∥∥∥

≤
∥∥∥D̂h(τ)−1V̂h(τ)D̂h(τ)−1 −D(τ)−1V̂h(τ)D̂h(τ)−1

∥∥∥
+
∥∥∥D(τ)−1V̂h(τ)D̂h(τ)−1 −D(τ)−1V (τ)D(τ)−1

∥∥∥
≤
∥∥∥D̂h(τ)−1 −D(τ)−1

∥∥∥ · ∥∥∥V̂h(τ)D̂h(τ)−1
∥∥∥

+
∥∥∥D(τ)−1

∥∥∥ · ∥∥∥V̂h(τ)D̂h(τ)−1 − V (τ)D(τ)−1
∥∥∥

≤
∥∥∥D̂h(τ)−1 −D(τ)−1

∥∥∥ · ∥∥∥V̂h(τ)D̂h(τ)−1
∥∥∥

+
∥∥∥D(τ)−1

∥∥∥ · (∥∥∥D̂h(τ)−1
∥∥∥ · ∥∥∥V̂h(τ)− V (τ)

∥∥∥+
∥∥∥V (τ)

∥∥∥ · ∥∥∥D̂h(τ)−1 −D(τ)−1
∥∥∥).

Now since the terms
∥∥∥D(τ)−1

∥∥∥ and
∥∥∥V (τ)

∥∥∥ are O(1) uniformly for τ ∈ [
¯
τ, τ̄ ], and the

terms
∥∥∥V̂h(τ)

∥∥∥ and
∥∥∥D̂h(τ)−1

∥∥∥ are OP(1) uniformly for (τ, h) ∈ [
¯
τ, τ̄ ]×

[
¯
h, h̄

]
, we get∥∥∥Σ̂h(τ)− Σ(τ)

∥∥∥ = OP

(∥∥∥D̂h(τ)−1 −D(τ)−1
∥∥∥+

∥∥∥V̂h(τ)− V (τ)
∥∥∥),

and the result follows from Lemma 2.4.
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3 CONJUGATE PROCESSES

Eduardo Horta1 Flávio Ziegelmann2
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Abstract. In this paper we provide a general approach for construction of stochastic
processes driven by a second, measure-valued stochastic process. The theory allows for a
rich set of examples, and includes a class of Regime Switching models. Our construction
also provides a rigorous formalism for Bayesian inference.

Keywords and phrases. Random measure. Disintegration. Conditional distributions.
Stochastic Processes.
JEL Classification. C1, C14, C22

3.1 Preliminaries

The concept of random measure dates back at least to Kallenberg (1973), although ar-
guably its roots can be traced back to the theory of point processes (see Kallenberg
(1974)). Random measures are an important tool in Probability Theory, being straightly
linked to the notions of disintegration of measures and regular conditional probabilities –
see for instance Kallenberg (1988), Chang and Pollard (1997), Pollard (2002) and Kallen-
berg (2006). An account on the theory of disintegration of measures can be found in
Pachl (1978) and Faden (1985).

In this paper we provide a general approach for construction of stochastic processes
driven by a second, measure-valued stochastic process. Our main result is an existence
Theorem which states that given a measure-valued stochastic process and an appropriate
compatible family of probability measures, one can construct a probability space where a
conjugation property holds. The theory allows for a rich set of examples, including a class
of Regime Switching models, and provides a rigorous formalism for Bayesian inference.
It also yields a theoretical framework for the approach taken in Horta and Ziegelmann
(2015b).

3.2 Introduction and main results

If T is a set and (S,S) is a measurable space, we write (F ,F) ≤ (ST , π) to mean that
F ⊂ ST and that F is a σ-algebra on F for which the coordinate projections πt : f 7→ f(t)
are F \ S measurable. We will be loose on notation and use the symbol π to denote a
general projection from a function space into a coordinate; the index together with the

1Department of Statistics – Universidade Federal do Rio Grande do Sul. eduardo.horta@ufrgs.br
2Department of Statistics – Universidade Federal do Rio Grande do Sul. flavioz@ufrgs.br
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argument should clarify the intended interpretation. We let M(S) denote the set of all
probability measures on the measurable space (S,S)

Let (S,S) be a state-space, and T be an index set, and consider a ‘space of sample
paths’ (F ,F) ≤ (ST , π). Say that a family (Pλ : λ ∈ L ) of probability measures on
(F ,F) is L -coherent iff

(i) L ⊂M(S)T ;

(ii) Pλ ◦ π−1
t = λt, for each λ = (λt : t ∈ T ) ∈ L and each t ∈ T .

The family (Pλ) is to be thought of as a ‘construction rule’ for measures on F where one
‘knows what to do’ provided the marginals λ = (λt : t ∈ T ) ∈ L are specified.

Example 3.1 (Product Measure). Let L = M(S)T and Pλ = ⊗
t∈T λt. //

Example 3.2 (Copulas). Let T = {1, 2}, S = R and L = M(S) ×M(S). Let C be a
bivariate copula function. For λ = (λ1, λ2) ∈ L , let Fi be the distribution function on R
corresponding to λi. Let Pλ be the probability measure on F = R2 corresponding to the
distribution function Hλ(x, y) = C(F1(x), F2(y)). //

Example 3.3 (Copulas, again). Let T = N, S = R and F = SN. Consider a family
(Cn : n ∈ N) of n-variate copulas (n ∈ N) satisfying the compatibility condition

Cn+1(u1, . . . , un, 1) = Cn(u1, . . . , un).

Thus the Cn are uniquely associated to a consistent family of finite dimensional distri-
butions of a real valued, discrete time stochastic process having Uniform(0,1) marginals.
Now let L = M(S)N and write each λ ∈ L as λ = (F1, F2, . . . ) via identification of a
measure λi with its corresponding distribution function Fi. Write

Hλ
n(x1, . . . , xn) := Cn(F1(x1), . . . , Fn(xn)).

If each Cn is continuous, then the collection
(
Hλ
n : n ∈ N

)
determines a consistent fam-

ily of finite dimensional distributions and thus the Daniell-Kolmogorov Theorem yields a
unique probability measure Pλ on the product space

(
RN,SN

)
, having said finite dimen-

sional distributions. In the probability space
(
RN,SN, Pλ

)
the random variable πt has

marginal distribution Ft, whereas the dependence structure of the process (πt : t ∈ N)
is mostly determined by the collection (Cn : n ∈ N). Here S is the Borel σ-field on R.
Notice that this example includes the product measure (independent sequences). //

The notion of L -coherence is thus nonempty and includes at least two important
examples.
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We now want to use this ‘construction rule’ when the marginals are selected at random.
In this direction, let J be some set, and let (Tα : α ∈ J) be a partition of T (so cardT ≥
card J). Consider yet another ‘space of sample paths’ (M ,M) ≤

(
M(S)J , π

)
, this time

a space of sample paths of measures, and let Q be a probability measure on M. We
assume throughout that M(S) is endowed with a σ-algebra satisfying the requirement
that µ0 7→ µ0(A) is measurable for each A ∈ S. For µ = (µα : α ∈ J) ∈ M , define
ρ : M →M(S)T by

ρ(µ)t = µα, t ∈ Tα, α ∈ J.

Therefore ρ is an embedding of M intoM(S)T whose range is composed by some piecewise
constant maps from T to M(S) (the maps are constant over each Tα). In this setting say
that an L -coherent family (Pλ : λ ∈ L ) of probability measures on (F ,F) is compatible
with Q iff there is a Q-null set N such that ρ(M \N) ⊂ L . Compatibility thus means
that, if one selects a family µ = (µα : α ∈ J) from M according to Q, then one can
construct a probability measure on (F ,F) using Pρ(µ) and such that the random variable
πt : F → S has, conditional on the previous selection, marginal distribution µα for t ∈ Tα.

Theorem 3.1. Let (Pλ : λ ∈ L ) be an L -coherent family of probability measures on
(F ,F), compatible with the probability measure Q on (M ,M). Assume that, for each
E ∈ F, the map µ 7→ Pρ(µ)(E) from M \ N to R is Q-measurable. Then there exist
a probability space (Ω,A,P) and stochastic processes (ξα : α ∈ J) and (Xt : t ∈ T ) with
sample paths lying almost surely respectively in (M ,M) and (F ,F), and such that, for
E ∈ F,

(3.1) P[X ∈ E | ξ] = Pρ◦ξ(E).

Moreover, the process (ξα : α ∈ J) has unconditional distribution Q.

Two processes (ξα : α ∈ J) and (Xt : t ∈ T ), defined on some probability space (Ω,A,P)
and satisfying the conclusions in Theorem 3.1 are said to be conjugate. Equivalently, the
pair

(ξα : α ∈ J, Xt : t ∈ T )

is called a conjugate process.

Corollary 3.1. Assume the conditions of Theorem 3.1 hold. Let A ∈ S. If B is any
σ-algebra on Ω satisfying σ(ξα(A)) ⊂ B ⊂ σ(ξ), then

(3.2) P[Xt ∈ A |B] = ξα(A), t ∈ Tα, α ∈ J.

In particular, P[Xt ∈ A | ξα] = P[Xt ∈ A | ξ] = ξα(A).

Thus, if t ∈ Tα, the conditional marginal of Xt depends on ξ through ξα only.
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3.3 Further examples

In this section we provide a few examples of conjugate processes. In some of these ex-
amples it is implicitly assumed that the underlying probability space is the canonical one
constructed in the proof of Theorem 3.1.

Example 3.4 (Copulas, yet again: continuation of Example 3.3). The main motivation
for introducing the partition (Tα : α ∈ J) is to allow for a notion of distributional cycle.
For instance, let J = N, and consider a period p ∈ N. Let T1 = {1, . . . , p}, T2 =
{p+ 1, . . . , 2p} and so on. Let Q be any measure onM(S)N. Applying the construction of
Theorem 3.1 one obtains a conjugate process (ξn : n ∈ N, Xt : t ∈ N) with the following
properties: conditional on ξ, (i) the dependence structure of (Xt) is captured by the
family of copulas (Cn : n ∈ N), and; (ii) for t ∈ Tn = {(n− 1)p+ 1, . . . , np}, the random
variable Xt has marginal ξn: one has P[Xt ∈ A | ξ] = ξn(A). The interpretation is that
‘at the beginning of time’ a random sequence of measures (ξn) has been drawn from Q,
and thereafter the process (Xt) evolves according to the dependence structure implied by
the family of copulas from Example 3.3, with each Xt having marginal distribution ξn

during the n-th cycle, Tn. This model is potentially useful in applications where a process
admits a natural notion of a cyclic behavior, at least in a distributional sense. Horta and
Ziegelmann (2015b) consider a similar setting. //

Example 3.5 (Bayesian inference). Let T = {1, . . . , n}, and put (F ,F) = (Sn,Sn). Let
L = M(S)n and, for λ = (λ1, . . . , λn) ∈ L , define Pλ = λ1 ⊗ · · · ⊗ λn on Sn. Now
let J = {0} and T0 = T . In this scenario we want to set M := M(S){0} ≡ M(S), and
ρ(µ) = (µ, . . . , µ) ∈ L . Let Q be a prior distribution on M. Then Theorem 3.1 ensures
the existence of a M(S) valued random element ξ having distribution Q, and S valued
random elements X1, . . . , Xn such that, for Ai ∈ S,

P[X1 ∈ A1, . . . , Xn ∈ An | ξ] = ξ(A1) · · · ξ(An).

Whenever the conditional probability P[ξ ∈M |X1, . . . , Xn] is almost surely a probability
measure (as a function ofM ∈M), it is called the posterior distribution (of the parameter
ξ given the data X1, . . . , Xn). //

Example 3.6 (Bayesian inference, unconditional distribution of X). Let T be the set
N of natural numbers, and put (F ,F) =

(
SN,SN

)
. Let L = M(S)N and, for each

λ = (λ1, λ2, . . . ) ∈ L , define Pλ to be the product measure Pλ = ⊗n∈Nλn on SN. Let J be
a singleton as above, and again set M = M(S). Set ρ(µ) = (µ, µ . . . ), and letQ be a prior
distribution on M. Assume that the baricenter1 ∫ µ dQ(µ) of Q is well defined. Consider

1Recall that the baricenter of Q is defined to be the unique element µ∗ ∈M(S) such that the equality∫
ψ(x) dµ∗(x) =

∫ (∫
ψ(x) dµ(x)

)
dQ(µ) holds for each bounded measurable ψ : S → R. Notation:

µ∗ =
∫
µdQ(µ) (this is a Pettis integral).
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the processes (Xn : n ∈ N) and (ξα : α ∈ J) given in Theorem 3.1. Since J is as singleton
the latter process is in fact just a random element ξ in M(S), and here we will have Eξ =∫
µ dQ(µ). In the language of Bayesian inference, Eξ is a hyperparameter. Now notice

that, by construction, conditional on ξ the sequence (Xn) is iid ∼ ξ. Also observe that,
from Corollary 3.1, it is immediate that each Xn has unconditional marginal distribution
Eξ. It is thus tempting to conjecture that the unconditional distribution of (Xn) is Pρ(Eξ)

– i.e., that (Xn) is an independent sequence, each Xn having marginal distribution Eξ.
Unfortunately, this is not true in general. Indeed, letting E = A1× · · · ×An×S × · · · be
an element of SN we have, on the one hand,

(3.3)
∫
Pρ(µ)(A1 × · · · × An × S × · · · ) dQ(µ) =

∫
µ(A1) · · ·µ(An) dQ(µ),

whereas on the other hand, writing µ∗ =
∫
µ dQ(µ), we have

(3.4) Pρ(µ∗)(A1 × · · · × An × S × · · · ) = µ∗(A1) · · ·µ∗(An).

Since µ∗(Ai) =
∫
µ(Ai) dQ(µ), there is no particular reason for (3.3) and (3.4) to be

equal. //

Example 3.7 (Continuation of Example 3.6, Limit Theorems). Let the model be as
above, and let f be a bounded, real valued measurable function on S. Consider the
question of whether a Law of Large Numbers holds for (f ◦Xn : n ∈ N). As we have
seen, the sequence (Xn) is not necessarily unconditionally iid, so there is no reason for
this to happen. However, conditionally a lln must hold. One possible way to interpret
this fact is by saying that the ‘state of the world’ can be one and only one of [ξ = µ],
where µ ∈M(S) \N . For such µ, and for f as above, the set

Eµ
f :=

{
(x1, x2, . . . ) ∈ SN : lim

n→∞

1
n

n∑
i=1

f(xi) =
∫
f dµ

}

has Pρ(µ) probability 1. Thus if X(ω) ∈ Eµ
f , the sequence n−1∑n

i=1 f(Xi(ω)) converges to∫
f dµ. Nevertheless we cannot say that the Pρ(µ) probability of such ω is 1 since the latter

measure has domain F rather than A. The usual way of resolving this is by inducing a
measure P ′ρ(µ) on the σ-algebra A (see the proof of Theorem 3.1) which concentrates on
the set [ξ = µ], as follows: for G ∈ A set P ′ρ(µ)(G) := Pρ(µ)

{
x ∈ SN : (µ, x) ∈ G

}
.

Alternatively, notice that P[|n−1∑n
i=1 f ◦Xi −

∫
f dξ| > ε | ξ] → 0 almost surely, and

hence Lebesgue’s Dominated Convergence Theorem gives P[|n−1∑n
i=1 f ◦Xi −

∫
f dξ| > ε]→

0. //

Example 3.8 (Weak Law of Large Numbers). Let J = T = N, with L = M = M(S)N.
Assume Q is weakly ergodic in a class C of bounded measurable functions from S to R,
in the following sense: for each f ∈ C and ε > 0,

(3.5) Q

{
(µ1, µ2, . . . ) ∈M :

∣∣∣∣∣ 1n
n∑
t=1

µt(f)− µ∗1(f)
∣∣∣∣∣ > ε

}
−→
n→∞

0.
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Here µ∗1 =
∫
µt dQ(µ) is the common (by assumption) baricenter of the µt, and we have

written µt(f) for
∫
f dµt. For λ = (λt : t ∈ N) ∈ L , define Pλ as the product measure

⊗t∈Nλt. In this setting the following Weak Law of Large Numbers holds.

Proposition 3.1. In the conditions of Theorem 3.1, for each f ∈ C and ε > 0,

P
{∣∣∣∣∣ 1n

n∑
t=1

f ◦Xt − Eξ1(f)
∣∣∣∣∣ > ε

}
−→
n→∞

0,

with Eξ1 = µ∗1.

Compare with Example 3.7: there the time averages n−1∑n
t=1 f ◦ Xt converge in

probability to the conditional expectation
∫
f dξ, whereas in Proposition 3.1 the limit is

the unconditional
∫
f dµ∗1. //

Example 3.9 (Regime switching models). The concept of conjugate process encompasses
a class of regime switching models. We give an example below. Let S = R be endowed
with the Borel σ-field S, and put J = T = Z. Set L = M(S)Z and define, for each
λ = (λt : t ∈ Z) ∈ L , Pλ = ⊗t∈Zλt. Let µ(1), µ(2), . . . , µ(d) ∈ M(S) be any d distinct
regimes (d ∈ N). Let Q be the probability measure on M := {µ(1), µ(2), . . . , µ(d)}Z cor-
responding to the Markov Chain with transition probability (Qij : i, j = 1, . . . , d) and
stationary distribution (pi : i = 1, . . . , d). By Theorem 3.1 and Corollary 3.1 one can ob-
tain an independent two-sided sequence (Xt : t ∈ Z) with Xt having conditional marginal
distribution P[Xt ∈ A | ξt] = ξt(A), where (ξt) is a hidden, or latent, Markov Chain with
state space

{
µ(1), µ(2), . . . , µ(d)

}
, transition probability (Qij), and stationary distribution

(pi). The innovations (Xt) can be used to obtain more elaborate models driven by the
latent regime process. For instance, assume that for any k = 1, . . . , d one has∫

x dµ(k)(x) = 0,
∫
x2 dµ(k)(x) = σ2

k <∞,

and that, if (εt : t ∈ Z) is iid ∼ µ(k), then∑t∈Z |αεt| <∞ almost surely, as long as |α| < 1.
For such α, define Yt := ∑∞

s=0 αXt−s. Then, conditional on ξ, we have that (Yt) is an ar(1)
process, Yt = αYt−1 +Xt, with the distribution of the innovations Xt being driven by the
Markov Chain (ξt). //

Example 3.10 (Non-random ξ). Let J be a singleton, and set M = M(S)J ≡ M(S).
Let µ0 ∈M(S), and put Q = δµ0 . If T = J and F = S, then the probability space given
in Theorem 3.1 has Ω = M(S)×S, and P is a probability measure concentrating on the set
{µ0}×S. Indeed (Ω,A,P) is isomorphic to (S,S, µ0). More generally, if P is any measure
on a function space (F ,F) ≤

(
ST , π

)
, define L = {µ}, where µ =

(
P ◦ π−1

t : t ∈ T
)
,

and set Pµ := P . Putting M = L and Q = δµ yields (Ω,A,P) = (F ,F, P ). //

Example 3.11 (Conditioning on a random variable Y ). Let T and J be singletons.
Define (F ,F) = (S,S) and M = M(S). Let (N,N, ν) be a probability space, and
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let γ : N × S → R be a probability kernel from (N,N) to (S,S). Assume the map
y ∈ N 7→ γ(y, ·) ∈ M(S) is injective, and let h denote its left inverse. Induce on M(S)
the σ-field M defined by the condition

G ∈M ⇐⇒ {y ∈ N : γ(y, ·) ∈ G} ∈ N.

and put Q(G) := ν{y ∈ N : γ(y, ·) ∈ G}. The measure Q is seen to concentrate on
ran(y 7→ γ(y, ·)). In the probability space from Theorem 3.1, defining Y := h ◦ ξ gives
σ(ξ) = σ(Y ) and thus, for A ∈ S,

P[X ∈ A | ξ] = P[X ∈ A |Y ] = γ(Y,A).

Here the N -valued random variable Y is defined almost everywhere, and has law ν. It
can be interpreted for instance as a parameter (parametric Bayesian inference), or as a
(random) regressor (regression models). As a more concrete example of the latter, take
(N,N, ν) = ([0, 1],B[0, 1],Leb), and let γ(y, ·) be the normal distribution on the real line
R ≡ S having mean α + βy and variance equal to 1, for some α, β ∈ R. This gives the
regression model E[X |Y ] = α+ βY with Gaussian errors and Uniform[0, 1] regressor. //

Follow ups. Say J is a semigroup with identity element 0. Assume Q is a stationary
measure on (M ,M), that is, Q is invariant by the group action: Q(M) = Q(αM). For f
and h in some class of bounded measurable functions on S, define

Rα(f, h) =
∫
µ0(f)µα(h) dQ(µ)−

∫
µ0(f) dQ(µ)

∫
µα(h) dQ(µ).

Of particular interest is the autocovariance function R0: a crucial question is whether it
can be estimated by the data (Xt : t ∈ T ). Horta and Ziegelmann (2015b) tackle this
question in a different setting. //

3.4 Concluding remarks

The original insight of the concept of a conjugate process appeared when we were studying
how to model the dynamics of distribution functions of high frequency asset returns in
financial data; to be precise, assume asset returns share the same marginal distribution
inside each day, but allow this marginal to vary from day to day (possibly in a stochas-
tic manner). How to give a reasonable formulation of these ideas? From there to the
construction presented in this paper it was a long road but at some point, after chasing
the primitive conditions which would allow for a solid theory for describing the sort of
process just discussed, we arrived at the concept of L -coherence and compatibility which
permit the elegant statement of Theorem 3.1. The fact that the concept of conjugate
process yielded almost effortlessly a very interesting (in our opinion) set of examples may
be taken as an indicative that it is a powerful tool only waiting for minds more creative
that our own to find relevant applications in a wide variety of scientific fields.
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3.5 Proofs

Proof of Theorem 3.1. We shall assume for simplicity that ρ(M ) ⊂ L . Let Ω := M ×F

and denote by A the product σ-field on Ω. The collection
(
Pρ(µ) : µ ∈M

)
is a probability

kernel from (M ,M) to (F ,F). Thus the identity

P[M × E] =
∫
M
Pρ(µ)(E) dQ(µ), M ∈M, E ∈ F,

defines a unique probability measure P on A. See Pollard (2002, Theorem 4.20). Let
ξ and X be the projections from Ω respectively onto M and onto F (so ξα = πα ◦ ξ
and likewise Xt = πt ◦X). Clearly (ξα : α ∈ J) has its sample-paths in M , and law Q.
Likewise, (Xt : t ∈ T ) has its sample-paths in F . Moreover, for M ∈M and E ∈ F,∫

ξ−1(M)
Pρ◦ξ(ω)(E) dP(ω) =

∫
M
Pρ(µ)(E) dQ(µ)

= P[X ∈ E, ξ ∈M ],

and thus Pρ(ξ)(E) is a version of P[X ∈ E | ξ]. This establishes (3.1).

Proof of Corollary 3.1. Let t ∈ Tα and E ∈ F be of the form E = π−1
t (A) for some A ∈ S.

Notice that Pρ(µ)(E) = πα(µ)(A), and since the LHS is a measurable function of µ by
assumption, so is the RHS. The rest of the proof follows easily.

Proof of Proposition 3.1. Clearly, Eξ = µ∗1. Let Zt = f ◦Xt − ξt(f). We have∣∣∣∣∣ 1n
n∑
t=1

f ◦Xt − Eξ(f)
∣∣∣∣∣ ≤

∣∣∣∣∣ 1n
n∑
t=1

Zt

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
t=1

ξt(f)− Eξ(f)
∣∣∣∣∣.

The second term in the above sum is oP(1) by (3.5). For the first term, we have

(3.6) P
{∣∣∣∣∣ 1n

n∑
t=1

Zt

∣∣∣∣∣ > ε

}
= E

[
P
{∣∣∣∣∣ 1n

n∑
t=1

Zt

∣∣∣∣∣ > ε

∣∣∣∣∣ ξ
}]
.

But (Zt|ξ : t ∈ N) is and independent sequence with E[Zt|ξ] = 0, and therefore

P
{∣∣∣∣∣ 1n

n∑
t=1

Zt

∣∣∣∣∣ > ε

∣∣∣∣∣ ξ
}
→ 0, almost surely.

This quantity is bounded by 1 and hence the RHS in (3.6) goes to zero by Dominated
Convergence.

Remark. All the examples in the text should come accompanied by the sentence ‘if µ 7→
Pρ(µ)(E) is measurable for all E’. The reader should check that this is the case in each
given situation.
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4 WEAKLY CONJUGATE PROCESSES – THEORY AND APPLICATION
TO RISK FORECASTING

Eduardo Horta1 Flávio Ziegelmann2

November, 2015

Abstract. Many dynamical phenomena display a cyclic behavior, in the sense that time
can be partitioned into cycles in which distributional aspects of a process are homoge-
neous. The standard probabilistic approach to modeling the evolution of a system over
time usually begins with specification of a certain probability measure on the space of
sample paths, induced by a family of finite dimensional distributions. In this setting con-
sideration of conditional probabilities commonly involves the notion of ‘past information’
as summarized by a filtering or the past trajectory of the process. In contrast, the class
of models that we present here allows the marginal distributions of a cyclic process to
evolve stochastically in time, in principle separated from the observable process itself.
The connection between them is given by a compatibility condition on the conditional
marginal distributions. The methodology relates to the concept of random measure and
more generally to Probability in Banach spaces. From the inferential point of view our
method can be seen as Functional Data Analysis. We provide a constructive example
which illustrates the method. A statistical implementation of our model to risk forecast-
ing in financial data is given. Specifically, we generate forecasts of intraday asset returns
variance and Value-at-Risk. The forecasts are attainable by reducing the dimension of
the conditional distribution process into a latent scalar time series.

Keywords and phrases. Random measure. Covariance operator. Dimension reduction.
Functional time series. High frequency financial data. Risk forecasting.
JEL Classification. C1, C14, C22

4.1 Introduction

Many dynamical phenomena display a cyclic behavior, in the sense that time can be par-
titioned into cycles, over which a process ‘repeats itself’ except for certain characteristics
specific to each cycle. This idea is the starting point of the theory developed in Bosq
(2000), for instance. The standard probabilistic approach to modeling the evolution of
a system over time usually begins with specification of a certain probability measure on
the space of sample paths, induced by a family of finite dimensional distributions. In
this setting consideration of conditional probabilities usually involves the notion of ‘past
information’ as summarized by a filtering or the past trajectory of the process. We shall
take a different approach, interpreting the cyclic character of a process in a distributional
sense. We consider the following model. A sequence F0, F1, . . . , Ft, . . . of random cdf’s
evolves stochastically in time. Associated to these distribution functions is a continuous

1Department of Statistics – Universidade Federal do Rio Grande do Sul. eduardo.horta@ufrgs.br
2Department of Statistics – Universidade Federal do Rio Grande do Sul. flavioz@ufrgs.br
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time, real-valued stochastic process (Xτ : τ ≥ 0) that satisfies the following condition

(4.1) P[Xτ ≤ z|F ] = Ft(z), τ ∈ [t, t+ 1),

where F is the σ-algebra generated by F0, F1, . . . . We shall call each interval [t, t+ 1) the
t-th cycle. Of course, equation (4.1) implies that, for τ ∈ [t, t+ 1), P[Xτ ≤ z|F0, . . . , Ft] =
P[Xτ ≤ z|Ft] = Ft(z). This can be interpreted as meaning that the process (Xτ ) has
marginal conditional distribution Ft during cycle t, and that past and future information
about the F ′js is in some sense irrelevant when Ft is given. Little further probabilistic
structure is imposed on (Xτ ). From the point of view of simulation, condition (4.1) and
the latter comments say that sampling ‘all’ the Ft’s first and then generating the process
(Xτ : τ ≥ 0), or sampling the Ft’s iteratively for each t and generating (Xτ : τ ∈ [t, t+ 1))
at each cycle, is an equivalent procedure. The model is potentially useful in situations
where there is a natural notion of a cycle in the behavior of the process (Xτ ), and where
the main interest concerns statistical (i.e. distributional) aspects of the process, rather
than ‘sample-path’ aspects, within each cycle. Possible applications include temperature
measurements and intraday stock market return processes, the latter of which we illustrate
below with a real data set. This model does have a Bayesian flavor, in that the distribution
of the random variables Xτ are themselves random elements in a space of distribution
functions. From now on we will go without saying that the index sets for t and τ are
0, 1, 2, . . . and R+ respectively. A pair (Ft, Xτ ), where (Ft) is a sequence of random
distribution functions and (Xτ ) is a process satisfying the compatibility condition (4.1),
will be called a weakly conjugate process. Horta and Ziegelmann (2015a) consider a slightly
different scenario where F determines the whole distribution of the process (Xτ ) and not
only the marginals. Our condition (4.1) is always satisfied in this setting (see Corollary 1
therein).

In a sense, the method herein presented is intrinsically functional in that we consider
random elements in a space of functions. Thus our theory can be regarded both as Func-
tional Data Analysis and as Probability in Banach spaces, which are two very important
research fields in the statistics and probability literature respectively. Statistical inference
on objects pertaining to function spaces has come to be known in the literature as Func-
tional Data Analysis (hereafter fda). In recent years, fda has received growing attention
from researchers of a wide spectrum of academic disciplines; see for instance the collection
edited by Dabo-Niang and Ferraty (2008) for a discussion on recent developments and
many applications. As an example, an application to implied volatility estimation can
be found in Benko et al. (2009). The cornerstone monograph by Ramsay and Silverman
(1998) presents a thorough treatment on the topic. A central technique in this context
is that of functional principal components analysis. At short, such methodology – whose
foundation lies in the Karhunen-Loève Theorem – seeks a decomposition of the observed
functions as orthogonal projections onto a suitable orthonormal basis corresponding to
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the eigenfunctions of a covariance operator. Hall and Vial (2006) consider the case where
the observed functional data are imprecise – due to roundings, experimental measure-
ment errors, etc. – a scenario where some complications arise regarding estimation of
the covariance operator. Bathia et al. (2010), tackle this issue in a functional time series
framework. Our approach is inspired by their methodology. From a theoretical point of
view, functional data are to be seen as realizations of function-valued random variables.
The general approach is to consider random elements in a Banach space. The theory of
Probability in Banach spaces first rose from the need to interpret stochastic processes
as random variables with values in function spaces. The original insight is likely due
to Wiener, who constructed a probability measure on the space of continuous functions
(Brownian motion) yet before Kolmogorov’s axiomatization of probability theory. Classic
texts include Ledoux and Talagrand (1991) and Vakhania et al. (1987). It turns out that
a convenient and quite general approach is to consider probability measures in metric
spaces; this theory is well stablished in the classic text by Billingsley (2009), whereas a
modern account would be Van Der Vaart and Wellner (1996). For stationary sequences
and linear processes in Banach spaces, the monograph from Bosq (2000) is a complete
account. Specialized versions of the lln and clt for dependent sequences can be found
therein. The theory of Bochner and Pettis integrals is straightly linked to the theory of
probability in Banach spaces. A very clear exposition is given in the first chapters of
van Neerven (2008). For texts that blend theory and applications, see Ferraty and Vieu
(2006) and Damon and Guillas (2005).

In our framework, we consider the case where the underlying distribution process (Ft)
displays some degree of dependence. The precise meaning of this property is given in
Assumption D below. With this consideration in mind we show that the methodology
of Bathia et al. (2010) can be applied to study the dependence structure of (Ft) through
observation of the process (Xτ ) only. In applications this methodology allows one, at
the end of each cycle, to use current information to forecast distributional aspects of the
observable process (Xτ ) in the next cycle. For each t let Xit, i = 1, . . . , qt denote some
observations of the process (Xτ ) in cycle t. We define a sampling scheme in terms of the
collection {Xit} (we are being rather loose in the definition but the meaning should be
evident). Let Gt denote the empirical distribution function of the observations in cycle t,

Gt(x) := 1
qt

qt∑
i=1

I[Xit≤x].

Writing
Gt(x) = Ft(x) + εt(x),

where εt = Gt − Ft by tautology, we obtain the following properties.

Lemma 4.1. Let (Ft, Xτ ) be a weakly conjugate process satisfying Assumptions F, D and
X. Then the following holds.
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(i) Eεt(x) = 0 for all t and all x ∈ R;

(ii) Cov(Ft(x), εt+k(y)) = 0 for all t, all integers k and all x, y ∈ R;

(iii) Cov(εt(x), εt+k(y)) = 0 for all t and all x, y ∈ R provided k 6= 0.

In summary, Lemma 4.1 can be interpreted as saying that, under weak assumptions,
the intra-cycle empirical cdf’s of weakly conjugate processes are decomposable as ‘under-
lying, true cdf’ plus ‘noise’. Notice though that in general (εt) is not white noise since
when k = 0 in item (iii) the covariances may depend on t.

In this setting, for a fixed, finite measure µ on R, let Rµ be the operator acting on
L2(µ) defined by Rµf(x) :=

∫
Rµ(x, y)f(y) dµ(y), where

(4.2) Rµ(x, y) :=
p∑

k=1

∫
Ck(x, z)Ck(y, z)dµ(z),

and Ck is the k-th lag autocovariance function of (Ft), that is

(4.3) Ck(x, y) := Cov(Ft(x), Ft+k(y)).

Under Assumptions F and D below, Ft admits the representation

(4.4) Ft(x) = F (x) +
d∑
j=1

ηtjψj(x),

where

(4.5) F (x) := EFt(x),

and the ψj are the eigenfunctions of the positive, finite-rank operator Rµ. Here ηtj :=〈
Ft − F, ψj

〉
is a scalar, zero-mean random variable, and p is some fixed integer. We

shall use the notation 〈·, ·〉 and ‖ · ‖ respectively for the inner-product and the norm in
L2(µ). Representation (4.4) is similar to the well-known Karhunen-Loève expansion (of
each Ft seen as a process x 7→ Ft(x)) but the latter is associated to the zero-lag covariance
operator of Ft rather than with Rµ. Notice that although not explicitly indicated, the
eigenfunctions ψj and the scalar random variables ηtj will depend on the measure µ. See
the discussion on Assumption D below for further justification of introducing the operator
Rµ. Observe that in our setting representation (4.4) holds uniformly, almost surely, as
stated in Proposition 4.1.

The rationale for introducing the measure µ is to make it possible to see the random
variables Ft as taking values in a suitable Hilbert space, and thus take advantage of the
richer structure of such spaces. The measure µ is, in fact, at choice of the statistician,
and should be chosen in such a way that important features of the weakly conjugate
process (Ft, Xτ ) can be captured; ideally one would take µ not too far from the measure
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corresponding to F , but the latter is generally unknown. A very important case occurs
when the process (Xτ ) is bounded. In this case there is an interval [a, b] such that the Ft
satisfy Ft(x) = 0 for x ≤ a and Ft(x) = 1 for x ≥ b whereas 0 < Ft(x) < 1 if x ∈ (a, b);
the same holds for F . In this situation one can take µ = Lebesgue measure restricted
to [a, b] and representation (4.4) becomes easier to interpret. In fact the only reason to
introduce more general measures µ is to allow for consideration of unbounded processes
(Xτ ).

4.2 Assumptions and main results

We consider a given probability space (Ω,A ,P) where a weakly conjugate process (Ft, Xτ )
is defined and satisfies the following conditions

F (Ft) is a stationary sequence of random elements taking values in a finite dimensional
subspace of the space Cb(R) of bounded, continuous functions on R. Moreover Ft is a
cdf with probability 1, for all t;

X conditional on F , the random variables Xτ1 and Xτ2 are independent if bτ1c 6= bτ2c.

In addition to the above, and in order to exploit the dynamic structure of the process
(Ft), we shall find it fruitful to impose an extra condition, one similar to the requirement
in Proposition 1 in Bathia et al. (2010). In this direction, let Ω0 be a P-null set such that

∨
{F ω

0 − F ; ω /∈ Ω0} =
∨
{ϕ1, . . . , ϕd}

for some minimal linearly independent set ϕ1, . . . , ϕd in Cb(R). Let ξtj be the (random)
coefficient of Ft − F with respect to ϕj, that is Ft − F = ξt1ϕ1 + · · · + ξtdϕd almost
surely. Notice that Eξtj = 0 for all t and all j. The following assumption summarizes our
requirement that the sequence (Ft) displays ‘enough’ dependence.

D for some integer k ≥ 1 the matrix (Eξ0iξkj)ij is of rank d.

Notice that this property is independent of the choice of basis ϕ1, . . . , ϕd. This condi-
tion is easier to appreciate in the case where Ft−F lies in a one-dimensional subspace of
Cb(R), that is the case d = 1. In this setting the matrix (Eξ0iξkj)ij is indeed a scalar, and
the condition that it is full-rank for some k means that the univariate time series (ξt1) is
correlated at some lag k. Otherwise we would find ourselves in the not very interesting
scenario (for our purposes at least) of an uncorrelated scalar time series.

Assumption F above gives a precise meaning to our notion of a ‘sequence of random
cdf’s which evolve stochastically in time’. First, the hypothesis that the process (Ft) takes
its values in a finite dimensional space has a statistical motivation, relating to functional
pca and identification of finite dimensionality in functional data. See Hall and Vial (2006)
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and Bathia et al. (2010) for a discussion. As for the specific choice of a finite dimensional
subspace of Cb(R), it is motivated mostly by adequacy. One could as well take as model,
in place of Cb(R), the space of càdlàg functions with the Skorokhod metric, or the space
of real probability measures with the weak∗ topology (with a few modifications, this is
the approach taken in Horta and Ziegelmann (2015a)), but in terms of structure Cb(R)
grants us a few properties that are rather convenient for us to further develop the theory,
such as (i) the Ft are separably valued; (ii) Ft(x) ≡ δx◦Ft are real random variables, from
which; (iii) the Bochner expectation EFt is well defined and (EFt)(x) = E(Ft(x)) holds;
(iv) given any finite measure µ on R, each Ft is a strongly measurable random element
in L2(µ), and moreover the expectation EFt ∈ Cb(R) ‘works’ as the expected value in
L2(µ). Finally, the hypothesis of weak stationarity implies that the mean function (4.5)
and the autocovariance functions (4.3) are well defined and time-invariant. In particular
the covariance function is continuous and induces a Mercer kernel on L2(µ).

Assumption X appears quite restrictive at first but as seen in the proofs section it
is crucial in establishing item (iii) in Lemma 4.1 and the lln in Theorem 4.1. In this
regard an important remark is that it does not imply that if Xτ1 and Xτ2 are in distinct
cycles they will be unconditionally independent: conditional independence does not imply
unconditional independence. See Horta and Ziegelmann (2015a) for a discussion in a
similar setting.

Introducing the operator Rµ in turn is justified in the same fashion as in Bathia et al.
(2010), and has an inferential motivation. The aim is to obtain representation (4.4) as an
alternative to the Karhunen-Loève representation of Ft. To see why we want to achieve
this, let

(4.6) Ĉk(x, y) = 1
n− p

n−p∑
t=1

(
Gt(x)− F̂ (x)

)(
Gt+k(y)− F̂ (y)

)
,

where

(4.7) F̂ (x) = 1
n

n∑
t=1

Gt(x).

It is clear that Ĉ0 is generally an illegitimate estimator for C0, since Cov(Gt(x), Gt(y)) =
C0(x, y)+Cov(εt(x), εt(y)). For integers k 6= 0, however, it holds that Cov(Gt(x), Gt+k(y)) =
Ck(x, y) by Lemma 4.1, and so Ĉk is indeed legitimate as an estimator of Ck. From here
defining Rµ via (4.2) gives that Rµ is a positive operator with Ran

(
Rµ
)

= ∨{ϕ1, . . . , ϕd},
as stated in Proposition 4.1, which finally yields (4.4). The strategy becomes thus to
estimate Rµ, its associated eigenvalues and eigenfunctions, and most importantly to use
the latter to recover the vector time series ηt := (ηt1, . . . , ηtd). Regarding the integer p, it
reflects the fact that in general it is not known the precise value of k for which assumption
D holds. Using some of the lagged Ck in the definition of Rµ is a parsimonious way to
overcome this.
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Proposition 4.1. Let (Ft, Xτ ) be a weakly conjugate process satisfying assumptions F, X
and D. If µ is a finite measure on R, equivalent to Lebesgue measure, then provided p is
large enough there are some continuous bounded functions ψ1, . . . ψd which are orthonormal
in L2(µ) and satisfy

(i) ∨dj=1 ψj = ∨d
j=1 ϕj;

(ii) Rµψj = θjψj, for some θj > 0, j = 1, . . . , d.

In particular, representation (4.4) holds uniformly in x almost surely, for zero-mean ran-
dom variables ηtj satisfying Eηtiηtj = 0 for i 6= j and Eη2

ti = θi.
Moreover, if supp(X0) is bounded, say supp(X0) ⊂ [a, b], then the above statement

remains true if µ is equivalent to Lebesgue measure restricted to [a, b].

In view of Proposition 4.1, in all that follows we shall assume that µ is equivalent either
to Lebesgue measure or to the restriction of Lebesgue measure to [a, b] ⊃ supp(X0).

From an inferential viewpoint, especially if the goal is forecasting, a crucial aspect of
the presented model is that the dynamic behavior of (Ft) is entirely determined by the
vector process ηt := (ηt1, . . . , ηtd). In other words, the (in principle) infinite-dimensional
process of random cdf’s is driven by a d-dimensional process, from which dynamic aspects
of the former can be studied. In applications this property can also be interpreted as an
identification condition, which serves as further justification for modeling the Ft as taking
values in a finite dimensional space. Unfortunately neither the distribution process (Ft)
nor the latent process (ηt) are observable by the statistician. Indeed in a first stage all
one observes is the process (Xτ ) in each cycle, and its associated empirical distribution
function Gt. As shown in Proposition 4.2 below however, under suitable conditions one
can hope to recover the ηtj’s through observation of (Xτ ) only. In this direction, define

(4.8) R̂µ(x, y) =
p∑

k=1

∫
Ĉk(x, z)Ĉk(y, z)dµ(z).

and let R̂µ be the integral operator with kernel R̂µ. Denote by ψ̂1, . . . , ψ̂d0 its orthonormal
eigenfunctions. For large sample sizes one will have d0 ≥ d typically. See Section 4.2.1
below for a straightforward estimation procedure which relies on simple matrix analysis.
Now put

η̂tj :=
〈
Gt − F̂ , ψ̂j

〉
.

The following result shows that there is a bound on how far η̂tj and ηtj can be one from
another.

Proposition 4.2. Let (Ft, Xτ ) be a weakly conjugate process satisfying Assumptions F,
D and X. Then

(4.9) |η̂tj − ηtj| ≤ ‖Gt − Ft‖+ ‖F̂ − F‖+ 2|µ|1/2‖ψ̂j − ψj‖.
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If supp(X0) is bounded and the Ft are absolutely continuous with respect to µ ≡ Lebesgue
measure restricted to [a, b], with F ′t continuous over (a, b), then

(4.10) |η̂tj − ηtj| ≤
∣∣∣∣∣E[Ψ(X1t)|F ]− 1

qt

qt∑
i=1

Ψ(Xit)
∣∣∣∣∣+ ‖F̂ − F‖+ 2(b− a)1/2‖ψ̂j − ψj‖,

where Ψ(x) =
∫ x
a ψ(v)dv. The bounds in (4.9) and (4.10) hold for j = 1, . . . , d and

t = 1, . . . , n, almost surely.

Proposition 4.2 shows that the accuracy of approximating the ηtj’s by η̂tj will depend
on further assumptions on (Ft, Xτ ). Asymptotics on n alone will in general not suffice: one
must also control for the term ‖Gt−Ft‖ via a (conditional) Glivenko-Cantelli type result,
or for the term in (4.10) via a (conditional) Law of Large Numbers. In any case, this will
depend on qt. Let us first consider convergence of the terms ‖F̂ − F‖ and ‖ψ̂j − ψj‖. An
important property of weakly conjugate processes is that a lln for (Gt) holds under weak
assumptions on the sampling scheme.

Theorem 4.1. Let (Ft, Xτ ) be a weakly conjugate process satisfying Assumptions F, D
and X. Suppose further that the sampling scheme satisfies the following conditions.

(i) the sequence (Ft) is
√
n-ergodic in probability: ‖n−1∑n

t=1 Ft − F‖ = OP

(
n−1/2

)
;

(ii) the intra-cycle sample sizes are uniformly bounded on t: qt ≤ q∗ for all t;

(iii) for k = 1, . . . , q∗ the limit limn→∞(1/n)#{t ≤ n : qt = k} exists.

Then it holds that
‖F̂ − F‖ = OP

(
n−1/2

)
.

In particular, the above holds when qt = q∗ for all t.

Regarding ‖ψ̂j−ψj‖ further assumptions on the process (Ft, Xτ ) may be needed. The
following result, which is a corollary to Theorem 1 in Bathia et al. (2010), gives sufficient
conditions for

√
n-consistency of ψ̂j.

Theorem 4.2 (Bathia et al. (2010), Theorem 1.). Let (Ft, Xτ ) be a weakly conjugate
process satisfying Assumptions F, D and X and the following conditions.

(i) (Gt) is a strongly stationary ψ-mixing sequence with the mixing coefficient satisfying
the condition ∑∞k=1 k ψ

1/2(k) <∞;

(ii) the nonzero eigenvalues of Rµ are all distinct.

Then it holds that
‖ψ̂j − ψj‖ = OP

(
n−1/2

)
for all j = 1, . . . , d.
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The conditions in Theorem 4.2 correspond to assumptions C1 and C3 from Theorem 1
in Bathia et al. (2010). These are quite technical and can be hard to check in each given
example. It is important to notice though that since C1 imposes restrictions on the
process (Gt), it will likely involve properties of both Ft and Xτ jointly.

It remains to consider the term ‖Gt − Ft‖. First notice that whereas Theorem 4.1
and Theorem 4.2 ensure unconditional consistency of F̂ and ψ̂j respectively, one can
in principle only expect that Gt → Ft conditionally (on F ), by making qt large and
imposing some ergodicity condition on the process (Xτ |F : τ ∈ [t, t+ 1)). To illustrate
how to bound ‖Gt − Ft‖ unconditionally, assume that (Xτ |F : τ ∈ [0, 1)) is iid F0. If this
process can be sampled at an arbitrary rate (which means we can make q0 → ∞), then
the Glivenko-Cantelli Theorem gives

lim
q0→∞

P[‖G0 − F0‖ > ε|F ] = 0, almost surely.

But P[‖G0 − F0‖ > ε|F ] is bounded by 1 almost surely, and thus the Lebesgue Dominated
Convergence Theorem gives P[‖G0 − F0‖ > ε]→ 0.

The above example shows that for ‖Gt − Ft‖ = oP(1) to hold (unconditionally),
one will typically need to rely on a not too strong dependence structure of the pro-
cess (Xτ |F : τ ∈ [t, t+ 1)), and on the possibility of sampling at a rate such that qt can
be taken large. In that regard let us say that a weakly conjugate process (Ft, Xτ ) is δ-
conjugate if there exist a δ > 0 and a sampling scheme {Xit} such that P[‖Gt − Ft‖ > δ] ≤
δ, for all t. We can now state the following.

Corollary 4.1. Let (Ft, Xτ ) be a weakly δ-conjugate process satisfying Assumptions F, D
and X. Then, for all ε > 0, provided n is large enough,

P
[

max
1≤t≤n

|η̂tj − ηtj| > δ + ε
]
≤ δ + ε,

for all j = 1, . . . , d.

Of course every weakly conjugate process satisfying condition F is δ-conjugate with
δ =

√
|µ|, but in general we will be thinking of the least such δ. What the Corollary says

is that for weakly δ-conjugate processes the sample paths of (η̂tj) and (ηtj) are eventually
uniformly close, with a large probability and an approximation error of at most δ+ ε, for
arbitrary ε > 0.

An important remark on the present methodology is that although the random vari-
ables ηtj can be recovered under an adequate sampling scheme and large sample sizes,
recovering the cdf’s Ft is not as straightforward as it would seem. First of all, there is the
issue of estimating the dimension d which is unknown to the statistician. Secondly, even
if d were known, the natural estimator F̂t := F̂ +∑d

j=1 η̂tjψ̂j will generally not satisfy any
restriction on its shape, as it should in the present case. That is, even though F̂t will be
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close to Ft in the L2(µ) norm, nothing grants that it will be nondecreasing or have its
values strictly between 0 and 1. If the interest were to obtain estimators for the true Ft
(other than Gt), then a convolution type filter would have to be applied to F̂t to obtain
a cdf.

4.2.1 Estimation procedure

This section describes how one can obtain estimates of the ψj and ηtj through straight-
forward matrix analysis. This approach is adopted by Bathia et al. (2010). The idea is
to represent the operator R̂µ as an infinite matrix acting on the canonical Hilbert space
`2, and then obtain a (n− p)× (n− p) matrix whose spectrum coincides with that of R̂µ.
The construction relies on the fact that given any operators A and B, it is always true
that AB∗ and B∗A share the same nonzero eigenvalues. The representation of R̂µ is given
by the ∞×∞ matrix

1
(n− p)2G0

p∑
k=1
G′kGkG

′
0,

where Gk =
[
g1+k . . . gn−p+k

]
and gt is a canonical representation of Gt − F̂ in `2 such

that g′tgs = 〈Gt − F̂ , Gs − F̂ 〉. Now apply the duality discussed above with A = G0 and
B = ∑p

k=1G
′
kGkG

′
0 to obtain the (n− p)× (n− p) matrix

(4.11) M := 1
(n− p)2

p∑
k=1
G′kGkG

′
0G0.

To be explicit, the entry (t, s) of G′kGk is the inner product
〈
Gt+k − F̂ , Gs+k − F̂

〉
. The

preceding heuristics establishes the first claim of the following Proposition.

Proposition 4.3 (Bathia et al. (2010), Proposition 1.). The (n− p) × (n− p) matrix
M shares the same nonzero eigenvalues with the operator R̂µ. Moreover, the associated
eigenfunctions of R̂µ are given by

(4.12) ψ̃j(x) =
n−p∑
t=1

γjt
(
Gt(x)− F̂ (x)

)
,

where γjt is the t-th component of the eigenvector γj associated to the j-th largest eigen-
value of M .

Proof. See Bathia et al. (2010, app. B).

We then let ψ̂j := ψ̃j/‖ψ̃j‖ denote the normalized eigenfunctions of R̂µ. Notice that
in order to obtain the matrix M all one needs is to calculate the inner products 〈Gt −
F̂ , Gs − F̂ 〉 with t and s ranging from 1 to n. An important aspect in our context is
that, unlike it is common in general Functional Data Analysis methodologies, the explicit
formulas for this coefficients can be easily derived. Indeed,〈

Gt − F̂ , Gs − F̂
〉

= 〈Gt, Gs〉 − 〈Gt, F̂ 〉 − 〈Gs, F̂ 〉+ 〈F̂ , F̂ 〉,
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with

〈Gt, Gs〉 = 1
qtqs

qt∑
i=1

qs∑
j=1

µ
[
Xit ∨Xjs, +∞

)
,

〈F̂ , F̂ 〉 = 1
n2

n∑
t=1

n∑
s=1
〈Gt, Gs〉,

〈Gt, F̂ 〉 = 1
n

n∑
s=1
〈Gt, Gs〉.

The norms ‖ψ̃j‖ can be calculated as well through

‖ψ̃j‖2 =
n−p∑
t=1

n−p∑
s=1

γjtγjs〈Gt − F̂ , Gs − F̂ 〉,

and finally the coefficients η̂tj are given by

η̂tj = 1
‖ψ̃‖

n−p∑
s=1

γjs〈Gt − F̂ , Gs − F̂ 〉.

4.3 An example

In order to illustrate some further properties of weakly conjugate processes, let us con-
struct a simple example. Some of the arguments of this section will motivate our appli-
cation to real data below. In this construction µ is Lebesgue measure restricted to the
interval I = [−1, 1]. Let d = 1 and write ψ1 ≡ ψ, and likewise ηt1 ≡ ηt. Assume η0, η1, . . .

is a stationary AR(1) process, ηt = αηt−1 +ut, where ut is some centered iid real sequence.
Let F be a fixed cdf on I with

∫
x dF (x) = 0, and let ψ be some bounded function on

[−1, 1] with ψ(−1) = ψ(1) = 0. Write Ft(x) = F (x) + ηtψ(x). A straightforward calcu-
lation yields Ft(x) = (1− α)F (x) + αFt−1(x) + utψ(x), that is, (Ft) is a linear process
as well. It is clear that some restrictions on ψ and on the process (ηt) must be imposed
to ensure that the Ft are indeed cdfs, but we relegate the details on how to achieve this
to our simulation below. Assuming further that

∫
ψ(x) dx = 0 we obtain

∫
xdFt(x) = 0.

Thus any process (Xτ : τ ≥ 0) satisfying (4.1) will be such that E[Xτ |F ] = 0. Notice
that this assumption is not restrictive. In this context an important object of interest in
applications may be the variances σ2

t :=
∫
x2 dFt(x). Under the linearity conditions just

introduced these random variables will satisfy

σ2
t = β0 + β1ηt(4.13)

= β0 + β1αηt−1 + β1ut(4.14)

= (1− α)β0 + ασ2
t−1 + β1ut,(4.15)

where β0 =
∫
x2 dF (x) and β1 =

∫
x2 dψ(x). Thus (σ2

t ) is also a linear process, and σ2
t

and ηt are entirely determined one by another. Now, given observations Xit, i = 1, . . . , qt,
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t = 1, . . . , n from the process (Xτ ), is it possible to estimate the parameters α, β0 and β1?
One possible way to achieve this is to set β̂0 and β̂1 equal to

∫
x2 dF̂ (x) and

∫
x2 dψ̂(x)

respectively. Alternatively, let σ̂2
t be the sample variance of X1t, . . . , Xqt,t and consider

the sample counterparts to equations (4.13), (4.14) and (4.15) above,

σ̂2
t = β0 + β1η̂t + (eσt − β1e

η
t )(4.16)

= β0 + β1αη̂t−1 + β1ut + (eσt − β1αe
η
t−1)(4.17)

= (1− α)β0 + ασ̂2
t−1 + β1ut +

(
eσt − αeσt−1

)
,(4.18)

and likewise

(4.19) η̂t = αη̂t−1 + ut + (eηt − αeηt−1),

where eσt := σ̂2
t − σ2

t and eηt := η̂t − ηt. The idea is that the latter quantities can be made
small if (Ft, Xτ ) is δ-conjugate. Thus, if the aim is to forecast future values of σ2

t , one
could use the identities above to propose some forecasting strategies, such as

Strategy 1

(Step 1) Estimate α from data (η̂1, . . . , η̂n);

(Step 2) Estimate β0 and β1 from data (σ̂2
t , η̂t : t = 1, . . . , n);

(Step 3) Use the estimated α̂ to forecast η̂n+1. Use this forecast together with β̂0 and
β̂1 to forecast σ̂2

n+1 through (4.16).

Strategy 2

(Step 1) Estimate β0 and β1α from data (σ̂2
t : t = 2, . . . , n), and (η̂t : t = 1, . . . , n− 1);

(Step 2) Use η̂n and (4.17) to obtain the forecast for σ̂2
n+1.

Strategy 3

(Step 1) Estimate (1− α)β0 and α from data (σ̂2
1, . . . , σ̂

2
n);

(Step 2) Obtain the forecast for σ̂2
n+1 through (4.18).

The approaches described above give a benchmark for proposing forecast procedures in
more general situations, as in our application to financial data below, where the ar(1)
specification may not be the more adequate one, and where

∫
x dFt(x) 6= 0.

Narrowing a little further, let us consider the following special case of the above
example. Let F be the cdf corresponding to the uniform distribution over [−1, 1], and
let ψ(x) :=

∫ x
−1(1/2− |v|) dv. Let ηt be a stationary AR(1) process as above, with the

innovations ut being iid uniformly distributed over [−1 + |α|, 1− |α|]. We may assume
that the process (ut) is indexed for t ∈ Z and set ηt = ∑∞

k=0 α
kut−k. Now put Ft = F+ηtψ.
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Figure 4.1: Residuals η̂t − ηt with (a) n = 100, q = 100; (b) n = 100, q = 200; (c) n = 200,
q = 100; (d) n = 200, q = 200. Grey: sample path of η̂t.
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(b) n = 100, q = 200
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(d) n = 200, q = 200

This model specification is easier to appreciate if we consider the derivatives of F and ψ
over (a, b), that is, we gain better insight if we differentiate Ft and study the resulting
equation, ft = f + ηtψ

′, with f(x) = (1/2)I[−1,1](x) and ψ′(x) = (1/2)− |x|. First notice
that |ηt| ≤ 1 by construction. Now ft is a probability density function obtained by adding
to the Uniform[−1, 1] density a random deformation where the deforming ‘parameter’ is
the function ψ′ and the random weights are given by the ηt which lie in [−1, 1]. The
extreme cases correspond to ηt = 1, in which case ft is the triangular distribution over
[−1, 1], and to ηt = −1, in which case ft is a V-shaped distribution, ft(x) = |x|I[−1,1](x).
Any possible realization of ft is thus a convex combination of the latter two densities. The
interpretation is that ψ adds mass to the center of the uniform distribution when ηt > 0
and adds mass to the ‘tail’ of that distribution when ηt < 0. Observe that the proposed
ψ is not normalized, but this does not matter since the rescaling would be passed to the
ηt’s.

To illustrate, we set α = 0.5 and generated a sample F1, . . . , F200 from the above model
and then, for each t, we sampled the Xit, i = 1, . . . , 200, independently from Ft. Sampling
independently is a simplification but not inconsistent with the present framework, as it
may be the case that the process (Xτ ) admits an independent sampling scheme at each
cycle. Next, we estimate ηt and ψ restricting the data set to n ≤ 200 cycles and q ≤ 200
intracycle observations. We consider the following configurations: (i) n = 100, q = 100;
(ii) n = 100, q = 200; (iii) n = 200, q = 100 and; (iv) full sample n = 200, q = 200.
Figure 4.1 shows the residuals η̂t−ηt , and Figure 4.2 displays the dispersion plots of (ηt, η̂t)
in each of these configurations. In this figures it is apparent that increasing the intra-
cycle sample sizes will result in more accurate estimates for the ηt, as one would expect
from Proposition 4.2. Figure 4.3 displays the true eigenfunction ψ and the estimates ψ̂,
together with the deviations ψ̂−ψ for each one of the specifications (i)–(iv). These figures
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Figure 4.2: Dispersion plots of (ηt, η̂t) with (a) n = 100, q = 100; (b) n = 100, q = 200; (c)
n = 200, q = 100; (d) n = 200, q = 200.
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point to the fact that, although Theorem 4.2 ensures that asymptotics on n will suffice
for consistency of ψ̂, increasing the intra-cycle sample size may have a positive impact on
estimation as well. In this simulation study and in the empirical application below, all
computational work was carried out through the softwares R and Julia.
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Figure 4.3: True eigenfunction ψ (dotted), estimated eigenfunction ψ̂ (solid) and deviation
ψ̂ − ψ (dashed). (a) n = 100, q = 100; (b) n = 100, q = 200; (c) n = 200, q = 100; (d)
n = 200, q = 200.
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4.4 Application to financial data

We apply our methodology to forecast risk in intraday stock market trading. Our sample
consists of 5–minute returns for the itub4 asset prices; the raw data is available at the
Bovespa ftp site. itub4 is the main asset in the composition of the Bovespa index. Our
sample ranges from July 1st 2012 to April 30 2015, encompassing 719 business days. At
each day t the sample X1t, · · · , Xqt,t consists of qt = 79 observations of the 5–minute
return process, defined as the difference of logarithm prices over 5 minutes, ranging from
10:30 am to 5:00 pm. There are 3 carnival days during the sampling period, at which the
intra-day sample sizes are q170 = 47, q433 = 46 and q670 = 47 respectively. Our working
assumption is that the Xit are sampled from a weakly conjugate process (Ft, Xτ ). The
empirical distribution functions of 5–minute returns for the first two days in our sample,
G1 and G2, are plotted in Figure 4.4. In what follows µ is the Laplace(0,1) distribution
on the real line.

Figure 4.4: The empirical cdf of 5–minute returns. (a) Day 1; (b) Day 2.
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Figure 4.5: Estimated eigenvalues. (a) 1st–10th; (b) 2nd–11th
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Figure 4.6: Estimated eigenfunction ψ̂.
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4.4.1 Data analysis

Figure 4.5 displays the largest estimated eigenvalues θ̂j of R̂µ. The drop in scale from the
largest to the second largest eigenvalue is markedly steep, whereas from the second to the
third largest and so on it decays smoothly. Moreover, the p-value from the Ljung-Box
test for independence is nearly zero for the time series (η̂t1), t = 1, 2, . . . , n, whereas for
(η̂t2) it is 0.8818. This indicates that indeed there is dynamic dependence in the direction
of ψ1 but not in the remaining ones. Observe though that this interpretation must be
taken with caution as pointed in Bathia et al. (2010, remark 3). The sample path of the
estimated η̂1t are found in Figure 4.7. The plot of the estimated eigenfunction ψ̂1 is shown
in Figure 4.61. It displays a plausible shape whereas the eigenfunction ψ̂2 is very irregular
(the plot is not reported here). In any case we assume d = 1 and write η̂t ≡ η̂t1, and
likewise ψ̂ ≡ ψ̂1. We then perform the augmented Dickey-Fuller test to the time series η̂t,
and the obtained p-values are virtually zero whatever specification is used, be it with a
drift component, a drift and a trend component, or neither. Therefore we take η̂t to be
stationary. Figure 4.8 displays the acf and pacf plots for η̂t.

We are first interested in forecasting the variance σ2
t and the 0.05-th quantile ζt corre-

sponding to Ft. The forecasting strategies which we propose follow closely the arguments
of Section 4.3. However in the more general scenario the identities (4.13), (4.14) and
(4.15), as well as their empirical counterparts, can become more involved. In particular
when

∫
x dF (x) 6= 0, that is when Xτ

∣∣∣F is not zero-mean, the relationship between σ2
t

and ηt is no longer linear but rather of the quadratic form

(4.20) σ2
t = β0 + β1ηt + β2η

2
t ,

1This plot was obtained by considering a centered version of the returns data. If the original data is
used instead (as in the rest of our analysis), the resulting eigenfunction appears slightly noisier.
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Figure 4.7: Estimated coefficients η̂t.
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Figure 4.8: Correlation functions of η̂t. (a) acf; (b) pacf.
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where the coefficients βj are functions of first and second moments of F and ψ. Equations
(4.14) and (4.15) in turn will depend on the dynamic behavior of ηt, and even slight
deviations from an ar(1) model, say an arma(1,1) model, will give expressions with
crossed terms in place of (4.14) and (4.15). The empirical equations (4.16), (4.17) and
(4.18) will suffer from the same complications if we intend to generalize.

That said, we adopt an exploratory approach to model the time series of η̂t, σ̂2
t , and ζ̂t,

as well as the interdependence between them. Here σ̂2
t and ζ̂t are respectively the variance

and the 0.05-th quantile of the distribution function Gt. Figure 4.9, panel (a) displays
the dispersion plot of (η̂t−1, η̂t). One sees that a linear model may give a parsimonious
description of (η̂t). Together with the acf and pacf plots from Figure 4.8, as well as
the results from the augmented Dickey-Fuller tests discussed above, we feel authorized to
assume that (η̂t) is an arma process. We choose the arma(1,2) specification based on
the aic criterium. The estimation results can be found in Table 4.1.

The dispersion plots of
(
σ̂2
t−1, σ̂

2
t

)
and

(
log σ̂2

t−1, log σ̂2
t

)
are displayed in Figure 4.9,

panels (c) and (d) respectively. It is apparent that the relationship between σ̂2
t and its

lagged value is highly heteroskedastic; the logarithmic transformation stabilizes and lin-
earizes this interaction, as seen in panel (d). The p-values of the augmented Dickey-Fuller
test for both series are virtually zero in each specification (be it with a drift component,
a drift and a trend component, or neither). The acf and pacf plots of (σ̂2

t ) and (log σ̂2
t )

are both nearly identical to those of (η̂t) and are not reported here. From this analyses
we find it adequate to assume that (log σ̂2

t ) is an arma process, and based on the aic
criterium we select the arma(2,1) specification.

In Figure 4.9, panel (b), the dispersion plot of
(
ζ̂t−1, ζ̂t

)
is shown. It is seen that a

linear model may not be the more adequate description of how ζ̂t interacts with its past
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Figure 4.9: Dispersion plots of time series (a) (η̂t); (b)
(
ζ̂t

)
; (c)

(
σ̂2

t

)
and; (d)

(
log σ̂2
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Figure 4.10: Dispersion plots: (a)
(
η̂t, σ̂

2
t

)
; (b)

(
η̂t−1, σ̂

2
t

)
; (c)

(
η̂t, ζ̂t

)
and; (d)

(
η̂t−1, ζ̂t
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values, but it is also true that such a model may provide a parsimonious approximation
to the actual dgp. As with the time series discussed above, the augmented Dickey-Fuller
tests for the data

(
ζ̂1, . . . ζ̂n

)
reject the null of unit root in every specification. The acf

and pacf plots for
(
ζ̂t
)
are again nearly identical to those of

(
η̂t
)
and are not reported

here. Less confidently that in the previous cases, we assume an arma(3,1) for
(
ζ̂t
)
based

on the aic criterium.
Figure 4.10 displays the dispersion plots of (a) (η̂t, σ̂2

t ); (b) (η̂t−1, σ̂
2
t ); (c)

(
η̂t, ζ̂t

)
; (d)(

η̂t−1, ζ̂t
)
. Panels (a) and (b) indicate that σ̂2

t depends on η̂t and on η̂t−1 in a nonlinear way,
as one would expect from the identity (4.20). Panels (c) and (d) indicate that the 0.05-
th quantile ζ̂t depend linearly on both η̂t and on η̂t−1, although some heteroskedasticity
appears to be at play.

In order to obtain one-step-ahead forecasts for the quantities σ2
t and ζt we adopt some

forecasting strategies similar to the ones described in Section 4.3. We give the details of
how we produce the forecasts for σ̂2

t+1. The case of ζ̂t+1 is entirely analogous. Letting
n0 := 350, we generate forecasts σ̂2

t+1|t,a, σ̂2
t+1|t,b and σ̂2

t+1|t,c, with t ranging in n0, . . . , n−1,
as defined according to the following strategies.

Strategy 1. log σ̂2
t+1|t,a is the one-step-ahead forecast obtained from an arma(2,1)

fit to the data (log σ̂2
1, . . . , log σ̂2

t );

Strategy 2. σ̂2
t+1|t,b = h(η̂t), where h is the local polinomial regression function

obtained from fitting the data ((η̂1, σ̂
2
2), . . . , (η̂t−1, σ̂

2
t ));

Strategy 3. σ̂2
t+1|t,c = h

(
η̂t+1|t

)
where h is the local polinomial regression function

obtained from fitting the data ((η̂1, σ̂
2
1), . . . , (η̂t, σ̂2

t )), and η̂t+1|t is the one-step-ahead
forecast of an arma(1,2) fit to the data (η̂1, . . . , η̂t).

We are aware that the approach in Strategy 1 is not in the best statistical practice since
applying the inverse transformation to a regression fit is not generally valid, but in a
comparison (not reported here) the ar(1) regression curve and the median regression
curve obtained for the data (log σ̂2

1, . . . , log σ̂2
n) were nearly identical, partially validating

our approach. In the case of ζ̂t, the forecasts are obtained from an arma(1,3) fit to the
untransformed data

(
ζ̂1, . . . , ζ̂t

)
.

The mean squared errors and relative (to Strategy 1) mean squared errors from each
forecast strategy are reported in Table 4.2. Notice that the ‘true’ quantity being forecasted
(for example σ2

t+1) is not observable, not even ex post. Thus our forecasts are contrasted
with empirical realizations, which are taken as proxies for their population counterparts;
for instance the mean squared error of forecasting Strategy 2 above is calculated as

n−1∑
t=n0

(
σ̂2
t+1|t,b − σ̂2

t+1

)2
.
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Figure 4.11: Volatility forecasts.
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Heuristically, one would expect that the forecasting strategies which use the η̂t in their
formulation would display better forecasting power since each of the η̂t is constructed
using full sample information, whereas σ̂2

t and ζ̂t only use information from day t. This
reasoning is partially supported as seen from the results displayed in Table 4.2. In any
case, applying the Diebold-Mariano test pairwise to each of the obtained forecasts, we
cannot reject the null of equal forecasting accuracy. Figure 4.11 contrasts the realized σ̂2

t

with the forecast values obtained through each of the described strategies. Figure 4.12
has a similar interpretation but for ζ̂t instead of the empirical variance.

A last comment on how to interpret the obtained forecasts may come in handy. At
the end of day t, the statistician can apply our methodology and obtain, say, a forecast
σ̂2
t+1|t for the variance σ2

t+1. The latter quantity is the variance of a 5-minute return at any
instant during day t+1, as implied by the common marginal distribution of these returns.
Thus someone who negotiates in the market in 5-minute intervals has ‘typical’ variance
equal to σ2

t+1; this is the quantity that we are forecasting, and thus σ̂2
t+1|t estimates the

‘typical’ variability someone who negotiates at each 5 minutes would expect to find next
day. In this regard it is convenient to mention that a forecast obtained through a garch
fit to the data available up to the end of day t would have a different interpretation and
thus would not be comparable to our method. Indeed at the end of day t the model
will give a forecast for the variance of the “opening” return rather than averaging over
day t+ 1.
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Figure 4.12: 0.05-th quantile forecasts.
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Table 4.1: Coefficient estimates and standard errors of an arma(1,2) fit to the data
(η̂1, . . . , η̂n).

ar1 ma1 ma2 intercept

Coef. 0.9709 -0.6452 -0.1302 0e+00
s.e. 0.0115 0.0378 0.0352 5e-04
aic = -6963.55

Table 4.2: Mean squared error and relative (to Strategy 1) mean squared error for each of
the three forecasting strategies: variance (top 3 rows) and 0.05-th quantile (bottom 3 rows).

mse rmse

σ̂2
t+1|t,a (strategy 1) 5.424022e-12 (3) 1
σ̂2
t+1|t,b (strategy 2) 5.022838e-12 (1) 0.9260357
σ̂2
t+1|t,c (strategy 3) 5.112571e-12 (2) 0.9425793

ζ̂t+1|t,a (strategy 1) 8.711426e-07 (3) 1
ζ̂t+1|t,b (strategy 2) 7.876192e-07 (2) 0.904122
ζ̂t+1|t,c (strategy 3) 7.256247e-07 (1) 0.8329574
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Recall that, as argued, in the framework of weakly conjugate processes, a question of
its own interest is identification of the dimension d and characterization of the dynamics
of (η̂t). In this regard, we can say that there is some evidence in the data that the true
dimension is indeed equal to one, and that the latent process (ηt) is linear. Testing these
hypotheses is beyond the scope of the present paper.

4.5 Proofs

In the following proof we use the fact that Cb(R) ⊂ L2(µ) for any finite measure µ on R.
Also recall that ‖ · ‖∞ is finer than ‖ · ‖2 and thus a random element in Cb(R) is also a
random element in L2(µ).

Proof of Proposition 4.1 . Recall that the property in Assumption D is independent of the
choice of basis, as long as the basis is taken to be minimal. Let ϕ1, . . . , ϕd be a minimal
linearly independent set in Cb(R) such that Ft−F = ξt1ϕ1 + · · ·+ξtdϕd almost surely. Let
Cµ

0 be the covariance operator of Ft, acting on L2(µ), i.e Cµ
0 f(x) :=

∫
C0(x, y)f(y) dµ(y),

where C0 is the covariance function C0(x, y) = Cov(F0(x), F0(y)). On the one hand it
holds that Ft − F ⊥ NullCµ

0 almost surely in L2(µ), and so ∨dj=1 ϕj ⊂ RanCµ
0 . On the

other hand, C0(x, y) = ∑d
i=1

∑d
j=1(Eξ0iξ0j)ϕi(x)ϕj(y), and thus ∨dj=1 ϕj = RanCµ

0 . By
Mercer’s Theorem (Ferreira and Menegatto (2009), Theorem 1.1), the eigenfunctions of
Cµ

0 are continuous on suppµ. The condition that µ is equivalent to Lebesgue measure
ensures that continuity of the eigenfunctions holds on R. Moreover any eigenfunction of
Cµ

0 is easily seen to be bounded. Thus we can assume to begin with that ϕ1, . . . , ϕd is an
orthonormal set of continuous bounded eigenfunctions of Cµ

0 .
For simplicity and without loss of generality, assume p = 1 and that Assumption D

holds for k = 1. Thus Rµ is the integral operator with kernel

Rµ(x, y) =
∫
C1(x, z)C1(y, z) dµ(z).

It is easily seen that Rµ = Cµ
1 (Cµ

1 )∗ where Cµ
1 is the integral operator with kernel C1(x, y)

and ∗ means adjoining. Then RanRµ = RanCµ
1 . But

C1(x, y) =
d∑
i=1

d∑
j=1

(Eξ0iξ1j)ϕi(x)ϕj(y)

which implies that RanRµ is finite dimensional, and a subspace of ∨dj=1 ϕj. Since (Eξ0iξ1j)ij
is full-rank, the reverse inclusion holds. The details can be found in the proof of Propo-
sition 1 in Bathia et al. (2010).

In the following we use the fact that δx ∈ Cb(R)∗ to justify that E[Ft(x)|F ] = Ft(x).
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Proof of Lemma 4.1. For item (i), we have

Eεt(x) = E{E[Gt(x)− Ft(x)|F ]} = E{E[Gt(x)|F ]− Ft(x)}.

Now

(4.21) E[Gt(x)|F ] = 1
qt

qt∑
i=1

E
[
I{Xit≤x}|F

]
= Ft(x).

For (ii), write

E[Ft(x)εt+k(y)] = E{E[Ft(x)Gt+k(y)− Ft(x)Ft+k(y)|F ]}

= E{Ft(x)E[Gt+k(y)|F ]− Ft(x)Ft+k(y)} = 0

by (4.21).
To establish (iii) write

E[εt(x)εt+k(y)] = E[(Gt(x)− Ft(x))(Gt+k(y)− Ft+k(y))]

= E{E[Gt(x)Gt+k(y)|F ]− Ft+k(y)E[Gt(x)|F ]}

+ E{Ft(x)Ft+k(y)− Ft(x)E[Gt+k(y)|F ]}

= E{E[Gt(x)Gt+k(y)|F ]− Ft+k(y)Ft(x)}

via (4.21) again. Then

E[Gt(x)Gt+k(y)] = 1
qtqt+k

qt∑
i=1

qt+k∑
j=1

E
[
I[Xit≤x]I[Xj,t+k≤y]|F

]
,

but

E
[
I[Xit≤x]I[Xj,t+k≤y]|F

]
= P[Xit ≤ x, Xj,t+k ≤ y|F ]

= Ft(x)Ft+k(y)

by Assumption X. This yields the stated result.

Proof of Proposition 4.2. Recall that ‖ψj‖ and ‖ψ̂j‖ are equal to 1 by construction, and
notice that both ‖F̂‖ and ‖Gt‖ are bounded by |µ|1/2 almost surely, where |µ| = µ(R).
Also notice that both ψj and −ψj are normalized eigenfunctions of Rµ. We assume that
the ‘right’ one has been picked.

Now we have

|η̂tj − ηtj| =
∣∣∣〈Gt − F̂ , ψ̂j

〉
−
〈
Ft − F, ψj

〉∣∣∣
≤
∣∣∣〈Gt − Ft, ψj

〉∣∣∣+ ∣∣∣〈Gt, ψ̂j − ψj
〉∣∣∣+ ∣∣∣〈F, ψj〉− 〈F̂ , ψ̂j〉∣∣∣.

The second term in the RHS above is bounded by ‖Gt‖ · ‖ψ̂j −ψj‖, whereas the last term
is ∣∣∣〈F, ψj〉− 〈F̂ , ψ̂j〉∣∣∣ =

∣∣∣〈F − F̂ , ψj〉+
〈
F̂ , ψj − ψ̂j

〉∣∣∣
≤ ‖F − F̂‖ · ‖ψj‖+ ‖F̂‖ · ‖ψj − ψ̂j‖.
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Noticing that
∣∣∣〈Gt − Ft, ψj

〉∣∣∣ ≤ ‖Gt − Ft‖ · ‖ψj‖ establishes (4.9).
Assume now that µ is Lebesgue measure restricted to I := [a, b], and that the Ft are

differentiable on (a, b) with a continuous derivative. We can especialize the expression for∣∣∣〈Gt − Ft, ψj
〉∣∣∣. First fix some ω ∈ Ω. Then

〈
Gω
t , ψj

〉
= 1
qt

qt∑
i=1

〈
I[Xit≤·](ω), ψj

〉
,

with〈
I[Xit≤·](ω), ψj

〉
=
∫ b

a
I[Xit≤v](ω)ψj(v) dv =

∫ b

Xit(ω)
ψj(v) dv = Ψj(b)−Ψj(Xit(ω))

since I[Xit≤v](ω) = I[Xit(ω),+∞)(v). Regarding
〈
Ft, ψj

〉
write

(FtΨj)′ = F ′tΨj + Ftψj.

Integrating by parts yields
〈
Ft, ψj

〉
=
∫ b

a
Ft(v)ψj(v) dv

=
∫ b

a
(FtΨj)′(v) dv −

∫ b

a
F ′t(v)Ψj(v) dv

= Ft(b)Ψj(b)− Ft(a)Ψj(a)− E[Ψj(X1t)|F ]

= Ψj(b)− E[Ψj(X1t)|F ],

as F (b) = 1 and F (a) = 0. Thus

〈
Gt − Ft, ψ̂j

〉
= E[Ψj(X1t)|F ]− 1

qt

qt∑
i=1

Ψj(Xit),

from which (4.10) follows.

Proof of Theorem 4.1. We will consider the case qt = q∗ ≡ q for all t. The general case
can be obtained through a similar argument by summing t over the sets {t ≤ n : qt = k}.
Let

Zit(x) := I[Xit≤x] − Ft(x).

Observe that Zit is a strong order 2 random element in the Hilbert space L2(µ). Now
notice that

‖F̂ − F‖ ≤ 1
q

q∑
i=1

{∥∥∥∥∥ 1
n

n∑
t=1

Zit

∥∥∥∥∥+
∥∥∥∥∥ 1
n

n∑
t=1

Ft − F
∥∥∥∥∥
}
.

The second term in the above sum is OP
(
n−1/2

)
by assumption. For the first term, we

will need the following result.
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Lemma 4.2 (Hilbert space Hoeffding Inequality. Boucheron et al. (2013, p. 172)). Let
W1, . . . ,Wn be independent, centered random elements in a separable Hilbert space H. If
for some c > 0 one has ‖Wi‖ ≤ c/2 for all i, then for each ε ≥ c/2 it holds that

P
[∥∥∥∥∥

n∑
i=1

Wi

∥∥∥∥∥ > √nε
]
≤ exp

(
−(ε− c/2)2

c2/2

)
.

By Assumption X, conditional on F , (Zit : t = 1, 2, . . . ) is an independent sequence
of centered random elements in L2(µ), with ‖Zi‖ ≤

√
|µ|. Thus, for c = 2

√
|µ|, we have

P

∥∥∥∥ n∑
t=1

Zit

∥∥∥∥ > √nε
∣∣∣∣∣∣F
 ≤ exp

(
−(ε− c/2)2

c2/2

)
, almost surely.

Taking expectation on both sides yields the stated result.

Proof of Theorem 4.2. Notice that condition C2 in Bathia et al. (2010) is immediately
satisfied in our setting. Their conditions C1 and C3 correspond to the assumptions in
Theorem 4.2. Condition C4 there is item (ii) in our Lemma 4.1. It only remains to
observe that their proof is valid in any separable Hilbert space and not only in L2([a, b]).
See Horta and Ziegelmann (2015c).
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5 IDENTIFYING THE SPECTRAL REPRESENTATION OF
HILBERTIAN TIME SERIES

Eduardo Horta1 Flávio Ziegelmann2

November, 2015

Abstract. We provide
√
n-consistency results regarding estimation of the spectral rep-

resentation of covariance operators of Hilbertian time series, in a setting with imperfect
measurements. This is a generalization of the method developed in Bathia et al. (2010).
The generalization relies on an important property of centered random elements in a sep-
arable Hilbert space, namely, that they lie almost surely in the closed linear span of the
associated covariance operator. We provide a straightforward proof to this fact. This
result is, to our knowledge, overlooked in the literature. It incidentally gives a rigorous
formulation of pca in Hilbert spaces.

Keywords and phrases. Covariance operator.
√
n-consistency. Hilbertian Time Series.

Dimension reduction.
JEL Classification. C1, C14, C22

5.1 Introduction

In this paper, we provide theoretical results regarding estimation of the spectral represen-
tation of the covariance operator of stationary Hilbertian time series. This is a generaliza-
tion of the method developed in Bathia et al. (2010) to a setting of random elements in a
separable Hilbert space. The approach taken in Bathia et al. (2010) relates to functional
pca and, similarly to the latter, relies strongly in the Karhunen-Loève (K-L) Theorem.
The authors develop the theory in the context of curve time series, with each random
curve in the sequence satisfying the conditions of the K-L Theorem which, together with
a stationarity assumption, ensures that the curves can all be expanded in the same basis –
namely, the basis induced by the zero-lag covariance function of the curves. The idea is to
identify the dimension of the space M spanned by this basis (finite by assumption), and
to estimateM , when the curves are observed with some degree of error. More specifically,
it is assumed that the statistician can only observe the curve time series (Yt), where

Yt = Xt + εt,

whereas the curve time series of interest is actually (Xt). Here Yt, Xt and εt are random
functions (curves) defined on [0, 1]. Estimation of M in this framework was previously
addressed in Hall and Vial (2006) assuming the curves are iid (in t), a setting in which the
problem is indeed unsolvable in the sense that one cannot separate Xt from εt. Hall and

1Department of Statistics – Universidade Federal do Rio Grande do Sul. eduardo.horta@ufrgs.br
2Department of Statistics – Universidade Federal do Rio Grande do Sul. flavioz@ufrgs.br
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Vial (2006) propose a Deus ex machina solution which consists in assuming that εt goes
to 0 as the sample size grows. Bathia et al. (2010) in turn resolve this issue by imposing
a dependence structure in the evolution of (Xt). Their key assumption is that, at some
lag k, the k-th lag autocovariance matrix of the random vector composed by the Fourier
coefficients of Xt in M , is full rank. In our setting this corresponds to Assumption (A1)
(see below).

In Bathia et al. (2010) it is assumed that the stochastic processes (Xt(u) : u ∈ [0, 1])
satisfy the conditions of the K-L Theorem (and similarly for εt), and as a consequence the
curves are in fact random elements with values in the Hilbert space L2[0, 1]. Therefore,
since every separable Hilbert space is isomorphic to L2[0, 1], the idea of a generalization
to separable Hilbert spaces of the aforementioned methodology might seem at first rather
dull. The issue is that in applications transforming the data (that is, applying the iso-
morphism) may not be feasible nor desireable. For instance, the isomorphism may involve
calculating the Fourier coefficients in some ‘rule-of-thumb’ basis that might yield infinite
series even when the curves are actually finite dimensional.

The approach that we take here relies instead on the key feature that a centered
Hilbertian random element of strong second order, lies almost surely in the closed linear
span of its corresponding covariance operator. This result allows one to dispense with
considerations of ‘sample path properties’ of a random curve by addressing the spectral
representation of a Hilbertian random element directly. In other words, the Karhunen-
Loève Theorem is just a special case1 of a more general phenomena. The result below
(which motivates – and for that matter, justifies – our approach) is not a new one: it
appears, for example, in a slightly different guise as an exercise in Vakhania et al. (1987).
However, it is in our opinion rather overlooked in the literature. The proof that we give
is straightforward and, to our knowledge, a new one. In this paper H is always assumed
to be a real Hilbert space, but with minor adaptations all stated results hold for complex
H.

Theorem 5.1. Let H be a separable Hilbert space and ξ be a centered random element in
H of strong second order, with covariance operator R. Then ξ ⊥ ker(R) almost surely.

Corollary 5.1. In the conditions of Theorem 5.1, let (λj) be the sequence of nonzero
eigenvalues of R, and (ϕj) be the associated sequence of orthonormal eigenvectors. Then

(i) ξ(ω) = ∑∞
j=1〈ξ(ω), ϕj〉ϕj in H almost surely;

(ii) ξ = ∑∞
j=1〈ξ, ϕj〉ϕj in L2

P(H).

Moreover, the scalar random variables 〈ξ, ϕi〉 and 〈ξ, ϕj〉 are uncorrelated if i 6= j.
1This is not entirely true since the Karhunen-Loève Theorem states uniform (in [0, 1]) L2(Ω) conver-

gence.
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Proofs to the above and subsequent statements are presented in section 5.7.

Remark. Although it is beyond the scope of this work, we call attention to the fact
that Theorem 5.1 and Corollary 5.1 provide a rigorous justification of pca for Hilbertian
random elements.

We can now adapt the methodology of Bathia et al. (2010) to a more general setting.

5.2 The model

In what follows (Ω,F ,P) is a fixed complete probability space. Consider a stationary
process (ξt : t ∈ T) of random elements with values in a separable Hilbert space H. Here
T is either N ∪ {0} or Z. We assume throughout that ξ0 is a centered random element in
H of strong second order. Of course these conditions are true for all the ξt as well, by the
stationarity assumption. Now let

Rk(h) := E〈ξ0, h〉ξk, h ∈ H,

denote the k-th lag autocovariance operator of (ξt), and let (λj, ϕj) be the sequence of
eigenvalue / eigenvector pairs of R0 (with the ϕj being orthonormal). Corollary 5.1 and
the stationarity assumption ensure that the spectral representation

ξt =
∞∑
j=1

Ztjϕj

holds almost surely in H, for all t, where the Ztj := 〈ξt, ϕj〉 are centered scalar random
variables satisfying EZ2

tj = λj for all t, and EZtiZtj = 0 if i 6= j. In applications, an
important case is that in which the above sum has only finitely many terms: that is, the
case in which R0 is a finite rank operator. In this setting, the stochastic evolution of
(ξt) is driven by a vector process (Zt : t ∈ T), where Zt = (Zt1, . . . , Ztd), in Rd (here d
is the rank of R0). The condition that R0 is of finite rank models the situation where
the statistician’s measurements lie (in principle) in an infinite dimensional space, but it
is reasonable to assume that they in fact lie in a finite dimensional subspace which must
be identified inferentially.

We are interested in modeling the situation where the statistician observes a process
(ζt : t ∈ T) of H valued random elements, and we shall consider two settings; the simplest
one occurs when

(5.1) ζt = ξt.

This is to be interpreted as meaning that perfect measurements of a ‘quantity of interest’
ξt are attainable. A more realistic scenario would admit that associated to every mea-
surement there is an intrinsic error – due to rounding, imprecise instruments, etc. In that
case observations would be of the form

(5.2) ζt = ξt + εt.
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In fact, the latter model nests the ‘no noise’ one if we allow the εt to be degenerate.
Equation (5.2) is analogous to the model considered in Hall and Vial (2006) and in Bathia
et al. (2010). Here (εt : t ∈ T) is assumed to be noise, in the following sense: (i) for all t,
εt ∈ L2

P(H), with Eεt = 0; (ii) for each t 6= s, εt and εs are strongly orthogonal. Moreover
we also assume that εt and ξs are strongly orthogonal, for all t and s.

In the above setting, for h, f ∈ H one has E〈h, ζt〉〈f, ζt〉 = 〈R0(h), f〉 + E〈h, εt〉〈f, εt〉
and thus estimation ofR0 via (ζt) is spoiled (unless the εt are degenerate). This undesirable
property has been addressed by Hall and Vial (2006) and Bathia et al. (2010) respectively
in the iid scenario and in the time series (with dependence) setting. The clever approach
by Bathia et al. (2010) relies on the fact that E〈h, ζt〉〈f, ζt+1〉 = 〈R1(h), f〉 (lagging filters
the noise) and therefore R1 can be estimated using the data (ζt). Now an easy check
shows that ran(R1) ⊂ ran(R0). The key assumption in Bathia et al. (2010) is asking that
this relation hold with equality:

(A1) ran(R1) = ran(R0).

Assume (A1) holds. Consider the operator S := R1R
∗
1, where ∗ denotes adjoining.

It is certainly positive, and compact (indeed nuclear) since ran(R1R
∗
1) = ran(R1). Thus,

letting (ψj) denote the orthonormal sequence of eigenvectors of S, the representation

ξt =
∞∑
j=1

Wtjψj

is seen to hold, for all t, almost surely in H for centered scalar random variables Wtj =
〈ξt, ψj〉. Again, when R0 is finite rank, say rank(R0) = d, then the stochastic evolution of
ξt is driven by the vector process (W t : t ∈ T) in Rd, where W t = (Wt1, . . . ,Wtd).

5.3 Main results

Before stating the main result, let us establish some notation. Define the estimator
Ŝ := R̂1R̂

∗
1, where R̂1 is given by

R̂1(h) := 1
n− 1

n−1∑
t=1
〈ζt, h〉ζt+1, h ∈ H.

Let (θj, ψj) and
(
θ̂j, ψ̂j

)
denote the eigenvalue / eigenvector pairs respectively of S and

Ŝ (dependence on n and on the sample is implied by the ‘hat’ in notation). For a closed
subspace V ⊂ H, let ΠV denote the orthogonal projector onto V . Let M := ran(R0), and
for conformable k put M̂k := ∨kj=1ψ̂j.

Theorem 5.2. Let (A1) and the following conditions hold.

(A2) (ζt : t ∈ T) is strictly stationary and ψ-mixing, with the mixing coefficient satisfying
the condition ∑∞k=1 k ψ

1/2(k) <∞;
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(A3) ζt ∈ L4
P(H), for all t;

(A4) ker(S − θj) is one-dimensional, for each nonzero eigenvalue θj of S;

(A5) εt and ξs are strongly orthogonal, for all t and s.

Then,

(i)
∥∥∥Ŝ − S∥∥∥

2
= OP

(
n−1/2

)
;

(ii)
∥∥∥ψ̂j − ψj∥∥∥ = OP

(
n−1/2

)
, for all j such that θj > 0;

(iii)
∣∣∣θ̂j − θj∣∣∣ = OP

(
n−1/2

)
, for all j such that θj > 0.

Moreover, if S is of rank d <∞, then

(iv) θ̂j = OP(n−1), for all j > d;

(v)
∥∥∥ΠM

(
ψ̂j
)∥∥∥ = OP

(
n−1/2

)
, for all j > d.

Remark. See Remark 2.1 in Mas and Menneteau (2003) for a comment on Assump-
tion (A4).

Remark. In (ii) it is assumed that the ‘correct’ version of ψj (among ψj and −ψj) is being
picked. See Lemma 4.3 in Bosq (2000).

Remark. It is important to notice that the operator Ŝ is almost surely of finite rank.
Hence items (iii) and (iv) imply the following. If rank(S) = d <∞, then for j = 1, . . . , d,
θ̂j is eventually non-zero and arbitrarily close to θj, and the remaining nonzero θ̂j for
j > d (if any) are eventually arbitrarily close to zero. Otherwise (if all the eigenvalues θj
are nonzero) then eventually θ̂j > 0 for all j (but notice that this cannot occur uniformly
in j). This property can be used to propose consistent estimators of d.

Corollary 5.2. Let Nj := ker(S − θj) and N̂j := ker
(
Ŝ − θ̂j

)
. Then,

(i)
∥∥∥Π

N̂j
− Π

Nj

∥∥∥
2

= OP
(
n−1/2

)
, for all j such that Nj is one-dimensional;

(ii) if S is of rank d <∞,
∥∥∥Π

M̂d
− Π

M

∥∥∥
2

= OP
(
n−1/2

)
;

(iii) if S is of rank d <∞, there exists a metric ρ on the collection of finite-dimensional
subspaces of H such that ρ

(
M̂d,M

)
= OP

(
n−1/2

)
.

Remark. Observe that, when the process (ξt) is not centered, evidently all the above
results would still hold by replacing ζt by ζt − Eξ0 and ξt by ξt − Eξ0, but this is not
practical since in general Eξ0 is not known to the statistician. However, this does not
pose a problem, since under mild conditions we have 1/n∑n

t=1 ζt
a.s→ Eξ0, and thus all the

results still hold with ζt and ξt replaced respectively by ζt−1/n∑n
t=1 ζt and ξt−1/n∑n

t=1 ζt.
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Remark. The key assumption in Bathia et al. (2010) would be translated in our setting to
the condition that, for some k ≥ 1, the identity ran(Rk) = ran(R0) holds. For simplicity
we have assumed that k = 1, but of course the stated results remain true if we take k to be
any integer ≥ 1 and redefine S and Ŝ appropriately. Indeed the stated results remain true
if we define S = (n− p)−1∑p

k=1RkR
∗
k, where p is an integer such that ran(Rk) = ran(R0)

holds for some k ≤ p. In statistical applications, a recommended approach would be
to estimate S defined in this manner. In any case, computation of the eigenvalues and
eigenvectors of Ŝ can be carried out directly through the spectral decomposition of a
convenient n − p × n − p matrix. The method is discussed in Bathia et al. (2010).
Notice that if R0 is of rank one, then asking that ran(Rk) = ran(R0) holds for some k
corresponds to the requirement that the times series (Zt1 : t ∈ T) is correlated at some
lag k. Otherwise we would find ourselves in the not very interesting scenario (for our
purposes) of an uncorrelated time series.

5.4 Concluding remarks

In this paper we have provided consistency results regarding estimation of the spectral
representation of Hilbertian time series, in a setting with imperfect measurements. This
generalizes a result from Bathia et al. (2010). The generalization relies on an important
property of centered random elements in a separable Hilbert space – see Theorem 5.1.
Further work should be directed at obtaining a Central Limit Theorem for the operator
Ŝ, which would have the important consequence of providing Central Limit Theorems for
its eigenvalues (via Theorem 2.2 in Mas and Menneteau (2003)), potentially allowing one
to propose statistical tests for these parameters.

5.5 Notation and mathematical background

As in the main text we let (Ω,F ,P) denote a complete probability space, i.e. a probability
space with the additional requirement that subsets N ⊂ Ω with outer probability zero
are elements of F . We assume that (Ω,F ,P) is large enough that it supports all the
random variables considered; by Kolmogorov’s Extension Theorem this assumption is
legitimate. Let H be a separable Hilbert space with inner-product 〈·, ·〉 and norm ‖ · ‖.
A Borel measurable2 map ξ : Ω → H is called a random element with values in H (also:
Hilbertian random element). For q ≥ 1, if E‖ξ‖q < ∞ we say that ξ is of strong order
q and write ξ ∈ LqP(H). In this case, there is a unique element hξ ∈ H satisfying the
identity E〈ξ, f〉 = 〈hξ, f〉 for all f ∈ H. The element hξ is called the expectation of ξ and
is denoted be Eξ. If Eξ = 0 we say that ξ is centered. If ξ and η are centered random
elements in H of strong order 2, they are said to be (mutually) strongly orthogonal if, for
each h, f ∈ H, it holds that E〈h, ξ〉〈f, η〉 = 0.

2There are notions of strong and weak measurability but for separable spaces they coincide.
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Denote by L(H) the Banach space of bounded linear operators acting on H. Let
A ∈ L(H). If for some (and hence, all) orthonormal basis (ej) of H one has ‖A‖2 :=∑∞
j=1‖A(ej)‖2 < ∞, we say that A is a Hilbert-Schmidt operator. The set L2(H) of

Hilbert-Schmidt operators is itself a separable Hilbert space with inner-product 〈A,B〉2 =∑∞
j=1〈A(ej), B(ej)〉, with ‖·‖2 being the induced norm. An operator T ∈ L(H) is said

to be nuclear, or trace-class, if T = AB for some Hilbert-Schmidt operators A and B.
If ξ ∈ L2

P(H), its covariance operator is the nuclear operator Rξ(h) := E〈ξ, h〉ξ, h ∈ H.
More generally, if ξ, η ∈ L2

P(H), their cross-covariance operator is defined, for h ∈ H, by
Rξ,η(h) := E〈ξ, h〉η. In the main text we denote by Rk the cross-covariance operator of ξ0

and ξk.
For a survey on strong mixing processes, including the definition of ψ-mixing, we refer

the reader to Bradley et al. (2005).
Below is a statement of Mercer’s Lemma and the Karhunen-Loève Theorem. It is to

be contrasted with Theorem 5.1.

Theorem 5.3 (Mercer Lemma and Karhunen-Loève Theorem). Let (Ω,F ,P) be a prob-
ability space. Let (ξ(u) : u ∈ [0, 1]) be a real stochastic process satisfying the following
conditions.

(KL1) the map (ω, u) 7→ ξ(ω, u) is measurable;

(KL2) Eξ(u)2 <∞ and Eξ(u) = 0 for all u ∈ [0, 1];

(KL3) the covariance function r(u, v) := Eξ(u)ξ(v) is continuous for u, v ∈ [0, 1].

Then there exists a sequence (ϕj) os continuous functions on [0, 1] and a non-increasing
sequence (λj) of nonnegative numbers such that∫ 1

0
r(u, v)ϕj(v) dv = λjϕj(u), u ∈ [0, 1], j ∈ N,

with, for i 6= j, ∫ 1

0
ϕj(u)2 du = 1 and

∫ 1

0
ϕi(u)ϕj(u) du = 0.

The covariance function r admits the representation,

r(u, v) =
∞∑
j=1

λjϕj(u)ϕj(v), s, t ∈ [0, 1],

where the series converges uniformly on [0, 1]2. Hence
∞∑
j=1

λj =
∫ 1

0
r(u, u)du <∞.

Moreover,

sup
u∈[0,1]

E
(∣∣∣ξ(u)−

n∑
j=1

Zjϕj(u)
∣∣∣2) −→

n→∞
0,
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where (Zj) is a sequence of mutually uncorrelated real valued, zero mean random variables
with EZ2

j = λj. In particular, ξ defines a random element with values in the Hilbert space
L2[0, 1].

5.6 Comments and references

Probability in Banach spaces first rose from the need to interpret stochastic processes as
random variables with values in function spaces. An early insight is due to Wiener. It
turns out that a convenient and quite general approach is to consider probability mea-
sures in metric spaces. This is well stablished in Billingsley (2009). A modern account
can be found in Van Der Vaart and Wellner (1996). Observe that, as in the real and finite
dimensional case, the approach is twofold and mostly a matter of convenience; one may
either consider the random variables taking values in that spaces, or the (push-forward)
probability measures induced by the random variables (and forget about random variables
altogether). Usually considering the probability measures alone ends up being a more ele-
gant treatment of the topic, but at the sacrifice of the intuitive appeal that the ‘language’
of random variables brings. Ledoux and Talagrand (1991) give a thorough account of the
slightly more restrictive case of random variables taking values in Banach spaces (and
hence of the probability measures in those spaces), and the authors are mostly interested
in independent draws (product measures) of such random variables. A lln for indepen-
dent sequences of random elements in a Banach space appears there as a Corollary. A clt
in Hilbert spaces is given in Bosq (2000). For stationary sequences and linear processes
in Banach spaces, the monograph from Bosq (2000) is a complete account. Specialized
versions of the lln and clt for dependent sequences can be found therein. The theory
of Bochner and Pettis integrals (expectation in Banach spaces) is straightly linked to
the theory of probability in Banach spaces. A very clear exposition is given in the first
chapters of van Neerven (2008).

The Mercer Lemma appeared rather early in Mercer (1909), when the connection with
operator theory wasn’t yet completely clear. A quite general statement can be found in
Ferreira and Menegatto (2009). The connection between Mercer kernels and the theory
of Reproducing Kernel Hilbert Spaces is clarified in Ferreira and Menegatto (2012). Bosq
(2000) gives a proof to the Karhunen-Loève Theorem 5.3.

In the literature (Bosq (2000), Mas and Menneteau (2003), Vakhania et al. (1987))
the term nuclear operator is often employed; the notion of nuclear (and of p-nuclear,
0 < p ≤ 1) operator is one that applies more generally to Banach spaces and is due to
Grothendieck. For Hilbert spaces, there is also the notion of p-Schatten-von Neumann
operators (0 ≤ p < ∞). The cases p = 1 and p = 2 deserve special names, respectively
trace-class operator and Hilbert-Schmidt operator. The relevant fact is that, for p = 1, an
operator acting on H is 1-nuclear if and only if it is trace-class. Notice that the definition
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of a trace-class operator that appears in Vakhania et al. (1987) is not the most generally
used. For a review, see Hinrichs and Pietsch (2010).

The term ‘spectral’ in the title of this work refers, of course, to the spectral represen-
tation of the operator S and not to the spectral representation of the time series (ξt) in
the usual sense.

5.7 Proofs

Proof of Theorem 5.1. Let (ej) be a basis of ker(R). It suffices to show that E|〈ξ, ej〉|2 = 0
for each j. Indeed, this implies that there exist sets Ej, P(Ej) = 0 and 〈ξ(ω), ej〉 = 0
for ω /∈ Ej. Thus 〈ξ(ω), ej〉 = 0 for all j as long as ω /∈ ⋂Ej with P(⋂Ej) = 0. But
E|〈ξ, ej〉|2 = E〈ξ, ej〉〈ξ, ej〉 = E〈〈ξ, ej〉ξ, ej〉 = 〈E〈ξ, ej〉ξ, ej〉 = 〈R(ej), ej〉 = 0.

Proof of Corollary 5.1. Item (i) is just another way of stating the Lemma. For item (ii),
first notice that the functions ω 7→ 〈ξ(ω), ϕj〉ϕj, j ≥ 1, form an orthogonal set in L2

P(H)
(although not orthonormal). We must show that

∫
‖ξ(ω)−∑n

j=1〈ξ(ω), ϕj〉ϕj‖2dP(ω)→ 0.
Let gn(ω) := ‖ξ(ω) − ∑n

j=1〈ξ(ω), ϕj〉ϕj‖. By item (i) gn(ω) → 0 almost surely. Also,
0 ≤ gn(ω) ≤ 2‖ξ(ω)‖. So g2

n(ω) → 0 and g2
n(ω) ≤ 4‖ξ(ω)‖2. Now apply Lebesgue’s

Dominated Convergence Theorem.

Proof of Theorem 5.2. One only has to consider an isomorphism U : H → L2[0, 1]. The
proof is the same as in Bathia et al. (2010). See also Theorem 2.1 and Proposition 3.1 in
Mas and Menneteau (2003).

Proof of Corollary 5.2. Items (i) and (ii) follow from Proposition 3.1 in Mas and Men-
neteau (2003). Item (iii) is just Theorem 2 in Bathia et al. (2010).

Remark. The hypothesis that ξ is centered in Theorem 5.1 cannot be weakened, as the
following simple example shows. LetH = R2 and let ξ = (ξ1, ξ2) where ξ1 is a (real valued)
standard normal and ξ2 = 1 almost surely. Then R ≡ (Rij) is the matrix with all entries
equal to zero except for R11 which is equal to 1, and obviously one has P(ξ ⊥ ker(R)) = 0.
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6 CONCLUDING REMARKS

The present Thesis is composed of four research papers in two distinct areas. The
first of these papers, Horta, Guerre, and Fernandes (2015) – Chapter 2 of this Thesis –
deals with the topic of quantile regression models. Quantile regression has emerged in
its modern formulation through the seminal paper by Koenker and Bassett (1978), and
has since become both an object of theoretical interest and an important tool in appli-
cations (see Koenker (2005)). The standard quantile regression estimator minimizes an
empirical counterpart to the population objective function, of which the true parameter
is a minimizer, but unfortunately smoothness properties of the population objective func-
tion are not inherited by its sample analogue, a drawback when it comes to inference.
As reviewed for instance in Koenker (1994), Buchinsky (1995), Koenker (2005), Fan and
Liu (2013), Goh and Knight (2009), computation of asymptotic confidence intervals for
components of the standard quantile regression estimator is not straightforward, an issue
which has been widely investigated in the literature (Koenker (2005), Buchinsky (1995)).
In Horta, Guerre, and Fernandes (2015), we propose a convolution-type smoothing of the
sample objective function, from which a smoothed estimator is attainable. We provide
a uniform Bahadur-Kiefer representation of the proposed estimator and show that its
asymptotic rate dominates that of the standard quantile regression estimator. Next, we
prove that the bias introduced by smoothing is negligible in the sense that the bias term
is first-order equivalent to the true parameter. A precise rate of convergence, which is
controlled uniformly by choice of bandwidth, is provided. We then study second-order
properties of the smoothed estimator, in terms of its asymptotic mean squared error, and
show that it improves on the usual estimator when an optimal bandwidth is used. As
corollaries to the above, one obtains that the proposed estimator is

√
n-consistent and

asymptotically normal. Next, we provide a consistent estimator of the asymptotic co-
variance matrix which does not depend on ancillary estimation of nuisance parameters,
and from which asymptotic confidence intervals are straightforwardly computable. The
quality of the method is then illustrated through a simulation study. As for future work,
important inquiries remain open. Obtaining an Edgeworth expansion for the t-statistic
associated to the smoothed estimator, thus giving a finer qualitative assertion about its
asymptotic normality, is a primary goal. Such expansions can be obtained, for example,
through strong approximation methods as in Portnoy (2012). It is also important to study
data-driven bandwidth choices, for instance bandwidths selected through cross-validation
methods, as well as bootstrap techniques aimed at refined inferential results.

The research papers Horta and Ziegelmann (2015a;b;c) are all related in the sense
that they stem from an initial impetus of generalizing the results in Bathia et al. (2010).
In Horta and Ziegelmann (2015a), Chapter 3 of this Thesis, we address the question of
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existence of conjugate processes (that is, stochastic processes driven by a second, measure-
valued stochastic process), given some primitive conditions. The positive answer to this
question, Theorem 3.1, is the main contribution of the paper, and relies on the concept of
random measure (Kallenberg (1973; 1974)) together with the machinery of disintegration
of measures (Pachl (1978), Faden (1985), Chang and Pollard (1997), Pollard (2002)).
A rich set of examples is provided. Subsequent work should focus in applications, both
theoretical (through construction of probability models) and statistical (inference-oriented
models aimed at implementations to real data sets that are potentially well described by
the concept of conjugate process). In Horta and Ziegelmann (2015b), Chapter 4 of the
present Thesis, we show that processes satisfying equation (4.1) – which we call weakly
conjugate processes – fall smoothly into the methodology of Bathia et al. (2010). The main
contributions of the paper are Proposition 4.2 and Theorems 4.1 and 4.2, which provide
√
n-consistency results for the natural estimators appearing in the theory. Additionally,

we illustrate the methodology through an implementation to financial data. Specifically,
our method permits us to translate the dynamic character of the distribution of an asset
returns process into the dynamics of a latent scalar process, from which forecasts of
quantities associated to distributional aspects of the returns process can be obtained.
Further work should be directed towards empirical research. In particular, an important
question is whether other financial assets display a similar representation as the one
considered in our implementation, that is, can the evolution of distributional character
of asset returns be described by a latent univariate time series? What about linearity?
It is also relevant to provide interpretations to the shape of the associated eigenfunctions
since this is related to the type of information one can extract from forecasts. Horta
and Ziegelmann (2015c), Chapter 5 of this Thesis, is the byproduct of our initial effort
of obtaining a generalization of the methodology of Bathia et al. (2010). Relying on the
property that centered random elements of strong second order in a separable Hilbert
space lie almost surely in the closed linear span of the associated covariance operator
(Theorem 5.1), we provide a reformulation of the theory of Bathia et al. (2010) in a Hilbert
space setting, culminating in Theorem 5.2 and Corollary 5.2, which state

√
n-consistency

of the proposed estimators and are the main contributions of the paper. An important
question that remains open is whether the conditions of Theorem 5.2 are also necessary
for
√
n-consistency. Clearly (A1) must hold, but likely the ψ-mixing requirement can be

weakened. An answer to this question can potentially settle the matter of estimation
of the dynamic space associated to Hilbertian time series in the ‘noisy measurements’
framework.
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