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ABSTRACT

Electronic design automation (EDA) tools play a fundamental role in the increasingly
complexity of digital circuit designs. They empower designers to create circuits with sev-
eral order of magnitude more components than it would be possible by designing circuits
by hand as was done in the early days of microelectronics. In this work, two important
EDA problems are addressed: gate sizing and timing-driven detailed placement. They
are studied and new techniques developed. For gate sizing, a new Lagrangian-relaxation
methodology is presented based on local timing information and sensitivity propagation.
For timing-driven detailed placement, a set of cell movement methods are created using
drive strength-aware optimal formulation to driver/sink load balancing. Our experimental
results shows that those techniques are able to improve the current state-of-the-art.

Keywords: Discrete Gate Sizing, Timing-Driven Detailed Placement, Lagrangian Relax-
ation, EDA, Microelectronic.





RESUMO

Dimensionamento de Portas Discreto e Posicionamento Detalhado Dirigido a
Desempenho para o Projeto de Circuitos Digitais

Ferramentas de projeto de circuitos integrados (do inglês, electronic design automa-
tion, ou simplesmente EDA) têm um papel fundamental na crescente complexidade dos
projetos de circuitos digitais. Elas permitem aos projetistas criar circuitos com um número
de componentes ordens de grandezas maior do que seria possı́vel se os circuitos fossem
projetados à mão como nos dias iniciais da microeletrônica. Neste trabalho, dois impor-
tantes problemas em EDA serão abordados: dimensionamento de portas e posicionamento
detalhado dirigido a desempenho. Para dimensionamento de portas, uma nova metodo-
logia de relaxação Lagrangiana é apresentada baseada em informação de temporarização
locais e propagação de sensitividades. Para posicionamento detalhado dirigido a desem-
penho, um conjunto de movimentos de células é criado usando uma formação ótima atenta
à força de alimentação para o balanceamento de cargas. Nossos resultados experimentais
mostram que tais técnicas são capazes de melhorar o atual estado-da-arte.

Palavras-chave: Dimensionamento de Portas Discreto, Posicionamento Detalhado Diri-
gido à Desempenho, Relaxação Lagrangiana, EDA, Microeletrônica.
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1 INTRODUCTION

During the 1950-70’s, humanity has experienced a shift from analog and mechanical
components to digital in the mainstream technology. This change marks the beginning
of the Digital Revolution, which, as the Agriculture and Industrial counterparts, brought
several improvements in the well-being of the mankind.

The digital technology allows much faster, reliable and cheap computation and com-
munication. Digital signals are more tolerant to noise. Data can be sent through long
distances and even tolerate errors by sophisticated error-correcting methods. Moreover
by using only two discrete values to represent information, the systems are simplified
making them easier to design, test and produce compared to an analog circuit with about
the same number of components.

Two technological breakthroughs can be pointed out as the main milestones in the
Digital Revolution: the invention of transistor and the very-large scale integration (VLSI).

The transistor was invented in 1947 by American physicists John Bardeen, Walter
Brattain, and William Shockley. It is a semiconductor device that can be used as a switch
enabling fast, non-mechanical computation. It is the basic building-block of modern cir-
cuits.

But was not until the late 60’s and early 70’s that the real impact of transistors took
place as new technologies enabled several transistors and other components to be built out
of the same block. From that point on, the number of components integrated into a same
chip has been doubled approximately every two years, following Moore’s observation
from 1975 referred to as Moore’s Law (MOORE, 1975).

As the number of components grew, the complexity of designing an integrated circuit
also increased. First designs were literally designed by hand, but this soon became a bot-
tleneck and the first software to aided the circuit design were created in mid-1970’s. In
early 1980’s, the idea of using programming languages and compiling them to hardware
started to consolidate (MEAD; CONWAY, 1979). This notion further pushed the devel-
opment of computer-aided design (CAD) software for chip design, currently known as
Electronic Design Automation (EDA) software. Today all digital circuit designs are done
using EDA tools from the translation of high-level hardware description languages to the
output file format used to fabricated them.

Several steps are required to design an integrated circuit, each step being composed by
one or more EDA tools which are run in a sequential or iterative way. Other tools are also
used to measure the circuit performance, power consumption among other characteristics.
These steps and measurement tools compose the design flow of digital circuits.

In this work, new observations and techniques for gate sizing and timing-driven de-
tailed placement steps of the design flow are presented. These techniques are implemented
as stand-alone EDA tools and the results obtained are reported and analysed.
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1.1 Design Flow of Digital Synchronous Circuits

The design flow is a set of steps performed to convert a design specification to a low-
level description which is not just ready to be fabricated, but is optimized and meet the
requirements from the specification.

A typical design flow for digital synchronous circuits using the standard cell method-
ology is presented in Figure 1.1. Standard cell methodology, which is the dominant de-
sign methodology, translates a design description to a description where pre-characterized
components or cells from a library are used. Other methodologies do exists as full-custom
and library-free automatic generation, but they are out of scope of this work.

Figure 1.1: Design Flow of Digital Synchronous Circuits
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It should be noted that the flow presented in Figure 1.1 is only a reference flow, the
actual flow used by designers may vary, although the overall idea is the same.

The design flow is divided into three main phases – (1) high-level synthesis, (2) logic
synthesis and (3) physical synthesis – responsible to bring the design state gradually more
closely to the optimized and low-level state required for fabrication.

In the high-level synthesis phase, the circuit specification is translated into a register-
transfer level (RTL) abstraction. RLT represents the circuit as data and control signals
flowing through logical operations between storage elements (referred to as registers).
This representation is closely related to the final design implementation in the sense that
it uses the two basic components of circuit designs: storage and logic elements.

Logic synthesis takes the RTL representation, optimizes it and create an implementable
design representation by mapping the storage and logic elements to a library of standard
elements previously built for the target technology. After mapping, more optimizations
are performed. Among the techniques used during logic synthesis are logic minimization,
sizing, restructuring, retiming, buffering.

Finally, during the physical synthesis a floorplanning for the optimized and mapped
circuit is defined. After that, elements are placed and the interconnections between them
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are generated.
In general, each phase is broken down into steps, which may be further subdivided.

A step is composed by a core method responsible to achieve the specific goal of that step
combined with calls to other more general optimization procedures.

Several optimization methods are available and used throughout the flow as structur-
ing, re-time, gate sizing, buffer insertion, placement optimization, routing optimization.
These methods can be called several times during the design flow and a typical flow may
have several different implementation of each kind of optimization method applying dif-
ferent strategies.

Measurement tools as timing analysis, power analysis, verification among others sup-
port the steps and optimization techniques providing up-to-date information about the
current state of the design. Many methods use built-in analysis tools, though usually
these built-in tools use more simplified models to trade-off accuracy and runtime.

1.1.1 Logic and Physical Synthesis Merging

In early days, logic synthesis and physical synthesis were two completely separated
phases. However this wall between them – as some authors referred it to – started to
be teared down due to the increase of interconnection importance to define the circuit
characteristics in newer technologies.

This merge happened in both ways. Logic synthesis methods start to use more ac-
curate interconnection and physical information and physical synthesis methods start to
call optimization methods that were only called during logic synthesis before. So, beside
the iterations, the flow itself is now designed in such a way to allow this kind of iteration
between logic and physical synthesis.

1.1.2 Design Flow Iterations

The design of an integrated circuit usually takes several iterations over the design flow
to be finished. An iteration happens any time the flow is restarted in an early stage to use
more precise or detailed data obtained in a later stage. This processes and the increase of
modeling accuracy is depicted in Figure 1.2.
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Figure 1.2: Iterations over the Design Flow with Increasing Levels of Accuracy
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1.2 Contributions and Scope of This Thesis

In this work the gate sizing and placement optimization method are studied and new
techniques are developed. They are developed intended to be used in early stages of the
design flow, although they can be extended to work on more sophisticated models suitable
for late stages. Both method have an important impact on the timing closure of the design,
playing a direct role to meet the timing requirements.
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2 STATIC TIMING ANALYSIS (STA)

Static timing analysis (STA) is a fast method for asserting and verifying the timing of
a circuit independently of the stimulus applied to it. The analysis is called static as the
timing characteristics of elements are usually computed assuming that other signals are
not changing. STA computes the upper and lower bounds of the amount of time signals
take to propagate inside the circuit through its several elements and interconnections.
These bounds are then used to guarantee that the circuit will work properly in the specified
frequency.

STA is generally available as a sign-off tool in the design flow as shows Figure 2.1,
although some methods may implement their own simplified, built-in static timing anal-
ysis for performance reasons. It is executed several times during the design flow using
different levels of accuracy depending on the physical information available or the accu-
racy required. It is not uncommon to perform a STA using simplified timing models even
if detailed timing information is already available to trade-off accuracy and runtime.

Figure 2.1: Static Timing Analysis in the Design Flow
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2.1 Timing Graph

For the purpose of static timing analysis, a digital circuit is composed by combina-
tional and sequential cells whose pins are connected via interconnections allowing signals
to propagate.

A static timing analysis is performed on a directed graph where nodes represent the
cell pins and edges represent the path connecting such pins. A design and its respective
graph model is exemplified in Figure 2.2.

Figure 2.2: A combinational circuit and its timing graph.
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Source: from author (2015)

Edges are also more commonly referred to as timing arcs and they are classified in
two categories depending on the element that the edge describes. If an edge connects two
pins of a same cell, it is called a cell timing arc. On the other hand, if an edge connects
two pins of different cells it is called a net timing arc.

2.2 Timing Mode

A static timing analysis is performed typically in two modes: late and early. These
two modes compute the upper and lower propagation delay bounds representing the worst
and best case scenarios respectively. Some other methods as Statistical Static Timing
Analysis (SSTA) (GULATI; KHATRI, 2009) may be used to compute the circuit delay
using variability ranges, but they are out of the scope of this work.

In general, different characterizations for cells and interconnections are used for each
timing mode. For early mode, the interconnections and cells are supposed to work on
their best case scenario, i.e, as fast as possible. On the other hand, for late mode, the
interconnections and elements are expected to work on their worst case scenario, i.e. as
slow as possible.

2.2.1 Late (Max)

The late mode computes the worst case scenario returning the maximum time signals
take to propagate through the timing graph.

The late mode is used to verify the maximum frequency the circuit can operate – a
central goal in circuit design. That is why it is the most common mode and many times
during the flow it is the only mode being asserted.
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2.2.2 Early (Min)

The early mode compute the best case scenario returning the minimum time signals
take to propagate through the timing graph. This information is useful to eliminate some
kind of timing violations caused when a pin changes its state before the storage element
has time to store the value.

2.3 Timing Sense

Cell timing arcs have a timing sense, which indicates the direction of an output transi-
tion w.r.t. the direction of the input transition assuming that the other inputs are constant.
The direction of a transition can be either rising or falling. The timing senses are depicted
in Figure 2.3.

Figure 2.3: Timing Sense
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Source: from author (2015)

A timing arc is positive unate if the direction of the signal is kept when propagating
through the arc. Timing arcs of non-inverting buffers, ORs, ANDs are positive unate.

A timing arc is negative unate if the direction of the signal is inverted when propagat-
ing through the arc. Timing arcs of inverters, NORs, NANDs are negative unate.

The arc is called non-unate when it may be inverting or non-inverting depending on
the values of other inputs. Timing arcs of XOR, XNOR are non-unate. By definition,
the timing arcs from clock to the data output of sequential elements are also marked as
non-unate as the signal does not actually propagates through them, but depends on the
data stored.

2.4 Timing Information

Typically a STA tool provides several information about pins and timing arcs that
designers and tools can made use of to identify violations and room for improvements.
For timing arcs, the delay and slew are provided. Table 2.1 summarizes the typical data
provided for pins.

By definition, the late and early slack at pin P are defined as in Equation (2.1) and
Equation (2.2).
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Table 2.1: Information provided by a STA tool for pins.

Data Symbol Description
arrival time atP The maximum (late mode) or minimum (early mode) time

a signal takes to reach the pin P .
required time ratP The time a signal is required to reach pin P to avoid timing

violation.
slack slackP Indicates the amount of time the signal reaching pin P can

be delayed (late mode) or sped up (early mode) without
causing violation. Negative values indicate the amount of
time required to fix the violation.

slew slewP Indicate the slew at pin P .

slackearlyP = atP − ratP (2.1)

slacklateP = ratP − atP (2.2)

2.5 Timing Propagation

The models used to define the timing characteristics of elements and hence the timing
characteristics of timing arcs may vary, but the overall idea of timing propagation in STA
is the same.

Starting from primary inputs, the delay is propagated through timing arcs by summing
the arrival time at the input pin of the timing arc with the timing arc delay. When multiple
timing arcs converge to a same pin, the maximum delay for late mode or the minimum de-
lay for early mode is propagated. Similarly, the largest slew for late mode or the smallest
slew for early mode are propagated to a pin when multiple timing arcs converge. The ba-
sic arrival time propagation method for static timing analysis for late mode can be written
as in Algorithm 2.1.

Algorithm 2.1: Arrival Time Propagation
1 set arrival time of path startpoints
2 for each pin j in topological order do
3 atj ← −∞
4 for each timing arc i→ j do
5 atj ← max{atj, ati + delayi→j}

Then, from endpoints to startpoint, require times are propagated by subtracting the
timing arcs delays. Wherever two or more timing arcs converge to a same pin, the maxi-
mum required time is propagated for early mode and the minimum required time is propa-
gate for late mode. The basic required time propagation method for static timing analysis
for late mode can be written as in Algorithm 2.2.
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Algorithm 2.2: Required Time Propagation
1 set required time of path endpoints
2 for each pin i in reverse topological order do
3 ati ← +∞
4 for each timing arc i→ j do
5 rati ← min{ratj, rati − delayi→j}

2.5.1 False Paths

Some paths represented in the timing graph may never be stimulated in the actual
design. This may be caused due to logical contradictions or simply because the design
does not use them. Such paths are called false paths. Usually STA tools allow designers to
define such paths by disabling some timing arcs so that signal does not propagate through
them.

2.6 Timing Tests

Once the arrival times have been propagated through the timing graph, the slack at
endpoints are verified. A timing violation occurs whenever the slack at an endpoint is
negative. For late mode, a timing violation occurs when the arrival time at an endpoint is
larger than the required time at that same endpoint. Analogously, for early mode, a timing
test fails when the arrival time is smaller than the required time.

For the discussion in this work, a D-type register (flip-flop) as shown in Figure 2.4 is
assumed where D is the input pin, CK is the clock pin and Q is the output pin. Other
types of flip-flops can be handled in a similar way.

Figure 2.4: D-type Register (Flip-Flop)
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Source: from author (2015)

In order to retain the data correctly, the data signal at D must be stable before and
after the clock signal reaches the storage element via CK pin as illustrated in Figure 2.5.
The time required before is defined as the setup time (tsetup) and the time required after is
defined as the hold time (thold).

When the clock signal is received, the data stored by the register is not immediately
available at its output pin. The time required to the data to be available after the clock
signal arrives is defined as dCK→Q (usually read as “clock to Q”). The CK → Q timing
arc is modeled in the same way as the a non-unate combinational timing arc.

For sequential elements, in the late mode, the required time is defined as a specified
clock period, T plus the clock signal latency to reach the sequential cell, learlyo , less the
setup time as in Equation (2.3).
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Figure 2.5: Timing diagram for a positive edge-triggered register (flip-flop).
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ratsetupD = ratlateD = T + learlyo − tsetup (2.3)

In the early mode, the required time is defined as the clock latency, llateo , plus the hold
time as in Equation (2.4).

ratholdD = ratearlyD = llateo + thold (2.4)

2.7 Timing Models

STA can be used with several different timing models for cells and interconnections.
In this section, some of the most common models are presented.

2.7.1 Cells

Cell delays can be modeled as simple as a constant value, linear equations or non-
linear equations usually described by look-up tables. Look-up tables are the standard
industry model for synthesis. Basically it is a two-dimensional table containing several
samples of a timing characteristic of a cell (i.e. delay, output slew). The data is generated
by accurate electrical simulation. The table is addressed by a load (capacitance) and an
input slew as shown in Figure 2.6.

Figure 2.6: Lookup Table

Load 1 Load 2 ... Load n

Slew 1

Slew 2

...

Slew m

Increasing

Source: from author (2015)



31

The timing characteristic of a timing arc are represented in Figure 2.7. Delay is mea-
sured from the time the input signal reaches 50% of the logical-one voltage value to the
time the output signal reaches 50%. Slew is typically measured as the amount of time
required for a signal to go from 10% to 90% (or 20% to 80%) and vice versa.

Figure 2.7: Timing characteristics of a timing arc.
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2.7.2 Interconnections

The interconnection simulation for sophisticated models is the most timing consum-
ing part of a STA. Several models may be used depending on the accuracy required or
the information available. Sophisticated models can handle several aspects of intercon-
nections including crosstalk, noise and can fairly estimate the values from a full electrical
simulation.

2.7.2.1 Lumped

The lumped model is not actually a delay model as it represents the interconnection
by a single capacitance. This capacitance is summed to the load a cell is driving. In
spite of its simplicity and inaccuracy, it is used as a fast estimate of the delay due to
interconnection mainly in early stages of the design flow.

2.7.2.2 Elmore Delay

Electrical simulation is very timing consuming. Generally the timing information is
required to be updated several times in the design flow, and therefore, for highly-iterative
methods, electrical simulation may be prohibitive.

The Elmore delay model (ELMORE, 1948) can be used as a fast, upper bound ap-
proximation of the actual delay of an RC network.

For trees-like networks (acyclic networks), the Elmore delay,D(Pj), at a pin Pj can be
computed recursively as shown in Equation (2.5) where Ri→j is the resistance connecting
Pi to Pj and Cdown is the sum of all capacitances from Pi down to the tree leaves.

D(Pj) = D(Pi) +Ri→jCdown (2.5)

For mesh-like networks (cyclic networks), it can be computed throughout a nodal
analysis replacing capacitances by current sources of same magnitude and removing all
voltage sources (MUSTAFA CELIK LARRY PILEGGI, 2002). The node voltage is the
Elmore delay of the respective node.
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Therefore we can find the Elmore delay for each RC network node, ~τ , by solving the
linear system presented in Equation (2.6) where G is the conductance matrix of the RC
network and ~c is the capacitance associated with each network node.

G~τ = ~c (2.6)

Since the Elmore delay is related to the RC value of nodes, we can write the Equation
(2.6) in a more straightforward fashion. The inverse of G is the resistance matrix, R, so
we can write Equation (2.6) as in Equation (2.7).

G~τ = ~c→ ~τ = G−1~c→ ~τ = R~c (2.7)

For an RC network with n nodes, the conductance matrix G is an n × n symmetric
matrix, which is built as follow. Let rij be the resistance connecting node i to node j and
ri the resistance connecting node i to ground (drive resistance) so the conductance matrix,
G = [gij], is defined by Equation (2.8).

gij =

{
− 1
rij

i 6= j
1
ri

+
∑n

k=1,k 6=i
1
rik

i = j
(2.8)

Now we present a simple example on how to build the Elmore system for the RC
network shown in Figure 2.8. The corresponding linear system is shown in Equation
(2.9).

Figure 2.8: A Simple RC Network
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Source: from author (2015)
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Since matrix G is sparse and positive semi-definite (BHATIA, 2006) we can use the
Incomplete Cholesky Conjugate Gradient method (SHEWCHUK, 1994) to solve the lin-
ear system in Equation (2.6).
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2.7.2.3 Model Order Reduction (MOR)

Model order reduction works by creating a simplified (or reduced) model of the in-
terconnection as exemplified in Figure 2.9. This reduced model is then simulated using
electrical simulation.

Figure 2.9: Model Order Reduction
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MOR techniques can be classified into two types: (1) moment matching-based MOR
techniques and (2) node elimination-based MOR techniques (KIM; KIM, 2009).

MOR techniques based on moment matching reduce an interconnection into a small
model by matching some of the interconnection moments. Some moment matching-based
MOR techniques are Asymptotic Waveform Evaluation (AWE) (PILLAGE; HUANG;
ROHRER, 1989), Passive Reduced-order Interconnect Macromodeling Algorithm (PRIMA)
(ODABASIOGLU; CELIK; PILEGGI, 1998), Pade via Lanczos (FELDMANN; FRE-
UND, 1995). As the important moments are preserved, these techniques usually present
a good accuracy. However the macro-model does not represent directly a linear RLC
interconnection, which may be an issue for some applications.

Node elimination-based MOR techniques reduce an interconnection directly by re-
moving less important nodes. The reduced model represent a linear RC interconnection.
Although they are less accurate when compared with the moment matching techniques,
these methods are more efficient. Some examples of node elimination-based MOR tech-
niques are TICER (SHEEHAN, 1999) and R2-Power (CHE et al., 2009).
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3 GATE SIZING

Gate sizing also referred as gate selection is a process where the sizes of the design
components are set as illustrated in Figure 3.1. It is a very effective way to tune the design
to meet timing and reduce area and power consumption by selecting proper components
sizes as the component sizes define how fast the component will be and how much pow-
er/area it will use.

Figure 3.1: Gate Sizing Problem
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Source: from author (2015)

Roughly speaking, the larger the component size, the faster it is at expense of more
power consumption and area occupied. However by just sizing all components to the
largest size one does not guarantee the fastest design as a larger component imposes a
larger load to its driver, which then become slower. This dependency among component
delays makes the gate sizing problem very challenging. A good gate sizing method must
understand this delay dependency and trade-off the components speeds with the energy
or area consumed by them.

3.1 Sizing Problem Classification

Sizing can be divided into two categories: (1) transistor sizing and (2) gate sizing.
Each category can be solved into two different domains: (1) continuous and (2) discrete.
These combinations are summarized in Table 3.1.

Usually the continuous sizing is associated to the transistor sizing problem and the dis-
crete sizing is associated to the gate sizing problem, but this is not mandatory. Moreover
the continuous modeling is more suitable for the full-custom design methodology whereas
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Table 3.1: Sizing Classification

Component
Domain

Continuous Discrete

Transistor
Gate

the discrete modeling is applied typically to the standard-cell methodology. Continuous
modeling also find their role in several discrete algorithms where they are used directly or
indirectly to guide the discrete optimization.

Continuous modeling almost always use convex models that can be solved optimally
in polynomial time. On the other hand, the discrete modeling is proved to be NP-Hard
(LI, 1993) so that no polynomial time algorithm can be devised, unless P = NP . This
imposes several challenges to the development of efficient discrete sizing algorithms. In
the continuous version, the issue is the correlation between the convex models and the
actual behaviour of the components. In the discrete version the major concern is keeping
the runtime under control.

3.2 Sizing Formulation

Gate sizing is usually formulated in one of three basic ways:

• minimize either area or power subject to performance constraint;

• maximize performance subject to area and/or power constraints;

• maximize performance.

These formulations can be extended to handle other constraints as maximum load,
maximum transition time, etc and other objective function as well, but they describe
the core idea of the sizing problem. The formulation aiming only performance with no
constraints is used to verify the limits of the design performance and be used as a starting
point for power and area optimization.

The circuit performance is usually measured by means of a Static Timing Analysis
(STA) as explained in Chapter 2. The analysis may use different gate and wire models.
Most common gate models for delay are the equivalent driver resistance, RC tree and
look-up tables generated from accurate electrical simulation. Interconnections are most
commonly modeled via lumped capacitance or RC tree. Tree delays are computed using
Elmore delay or reduced-order models.

3.3 Gate Sizing for Leakage Power Minimization

In this work, the gate sizing for leakage power minimization under speed constraints is
studied. A new flow for gate sizing and threshold voltage assignment is developed using
as basic the Lagrangian Relaxation formulation for gate sizing.

Power consumption has been a major barrier for circuit performance. Although the
overall power dissipated by a circuit decreases for a new technology, the power dissi-
pated per unit area usually increases. This power-limited performance scenario combined
with the rise of the mobile era and with the need for low-power devices, highlights the
importance of power minimization techniques (BUTZEN; RIBAS, 2005).
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The power consumed by components can be broken down into two components: dy-
namic power and static power. Dynamic power is the power consumed by the components
when they are changing states. For instance, the output of a logic cell transitioning from
zero to one is causing dynamic power consumption. On the other hand, the static power
or leakage power is consumed constantly independent of state changes.

Leakage power has become a main concern in deep submicron process technology
nodes (65nm and below), where it could account for 30-50% of the total design power
consumption (SHIFREN, 2011). Leakage power is mainly caused by unwanted sub-
threshold currents in the transistor channel when the transistor is turned off. Figure 3.2
presents the sources of leakage power for a planar technology.

Figure 3.2: Sources of Leakage Current

Source: (BUTZEN; RIBAS, 2005)

Gate sizing is a standard and effective technique for power minimization and hence
suitable for addressing the aforementioned problems. For a standard-cell based design
flow, the gate sizing task is to select the right versions for the gates available in a library
so that the power is minimized while keeping the circuit performance within the specifi-
cation. However, the gate selection problem was shown to be NP-Hard (LI, 1993), so that
no optimal, polynomial time algorithm can be designed unless P = NP . This combina-
torial optimization problem becomes even more challenging as the designs get more and
more complex and the number of sizable components keep growing. Therefore efficient
and effective heuristics need to be developed.

3.3.0.1 A Word on FinFet Technology

In recent years, the FinFET technology consolidated and is now in production mode.
This technology brings more control over the leakage power and hence a significant re-
duction in the leakage power consumption by up to 50% is achieved so that dynamic
power has become the main concern.

However, this does not mean the leakage power still has no impact on the total power
consumption. Improvements on leakage power can still provide a good increase in battery
life of mobile devices. Moreover, not all designs have being converted to FitFET as this
decision involves other factors, but ultimately the cost factor is the most prominent.

Although the focus of this method is leakage power, it can be extended to handle
dynamic power as well if switch activity is available. Therefore, although FinFET tech-
nology may shadow the improvements brought by this work, the techniques and the flow
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presented in this thesis still can provide power savings or be extended to handle dynamic
power and other objectives associated with transistor sizes.

3.4 Challenges

The challenges of the gate sizing for high performance designs can be summarized as
follows (OZDAL; BURNS; HU, 2011):

1. Discrete cell sizes: Standard-cell based-flow is the dominant methodology to de-
sign digital circuits implying that only a limited number of gate types are available.
The limited number of gate types rather than easing the problem, makes it combi-
natorial in nature and hence hard to solve efficiently.

2. Cell timing models: Standard-cell delay is typically non-linear and non-convex so
that direct and efficient application of mathematical optimization as linear and con-
vex programming is only possible on simplified delay models. Over simplification
may lead to far from optimal results.

3. Complex timing constraints; In high-performance designs several timing constraints
must be handled such as timing overrides, multi-cycle paths, transparent paths, mul-
tiple clock events, false paths, etc. If the method does not take into account such
constraints, it may become too inaccurate.

4. Interconnect timing models: Interconnect delay is a major contributor to the over-
all design delay. Ignoring it or using simplified interconnect delay models such as
lumped capacitance and Elmore delay may lead to incorrect timing information and
to over designing as simplified model usually overestimates the actual interconnect
delay.

5. Many near-critical paths: In high performance design many paths are near-critical
decreasing the efficiency of sizing methods that rely only on the optimization of the
critical path. In this case, when the critical path is fixed, other paths may start to
violate timing. Therefore sizing engines should handle many paths at same time to
avoid dead-locks.

6. Large design sizes: Designs or even blocks in designs can easily reach the million
gates count so that the sizing engines must scale to handle such huge number of
components. Methods that rely on frequent timing updates may not be suitable for
such designs.

3.5 Related Work

In this chapter, some of the works on transistor and mainly gate sizing are reviewed
and summarized. The early works on gate sizing focused on the continuous domain
where individual transistors or gates can be set to any size within a lower and an upper
limit. Along with simplified models, a convex mathematical formulation can be devised
(SCHEFFER; LAVAGNO; MARTIN, 2006), which can then be solved in some extent
efficiently in polynomial time (BOYD; VANDENBERGHE, 2004). The continuous for-
mulation was a straightforward fit for the full-custom methodology, which was the main
methodology for the early days of circuit design.



39

Later on, methods for discrete gate sizing started to be developed as the standard-cell
methodology consolidated. In the discrete formulation, the gate sizing problem becomes
an assignment problem where sizes or, more generally, implementations of the gates are
picked up from a library. Differently from the continuous counterpart, the discrete formu-
lation is proved to be a NP-hard problem (LI, 1993).

Many discrete methods are inspirited by the continuous formulation or use it directly
to guide the optimization process. This is not surprising as the assumptions made in the
continuous side can be seen as a relaxation of the discrete formulation.

Several different approaches for gate sizing have been used in the literature:

• simulated annealing;

• linear programming;

• network flow;

• convex optimization (including geometric programming);

• Lagrangian relaxation;

• sensitivity and

• slew budgeting.

Lagrangian relaxation, sensitivity and network flow based approaches seem to be the
most suitable ones for current design sizes as they scaled well and can be used for the
discrete gate sizing problem.

Simulated annealing was successfully applied in the ISPD 2012 Gate Sizing Contest,
but it suffers from scalability issues and do not seem to be an acceptable method for
current designs. Although the method won the contest, later works achieved much better
results in much less time.

Convex optimization including geometric programming only works on simplified con-
vex or posynomial models which may not capture the non-linear, non-convex nature of
the gate delays. On the other hand, they guarantee the optimal solution (under the sim-
plified model) and can be used in the early stages of the design flow or as guide for the
discrete gate sizing.

3.5.1 Early Work

One of the first works automating the gate sizing problem was developed by Ruehli
et al.1 from IBM (RUEHLI; WOLFF; GOERTZEL, 1977) aiming power minimization
under timing constraint. In that initial work, gate delay is proportional to the inverse of
the gate size and the power is directly proportional to the size. Lumped capacitance is
used to model the wires. The authors report gains of 3 up to 10 times in power when
compared to an unoptimized design that meets timing. The main drawback is that the
timing model does not consider that a change in a gate size changes the load capacitance
of its driver.

Almost a decade later, the transistor sizing method, TILOS, was published (FISH-
BURN; DUNLOP, 1985). TILOS can operate in three modes (1) area minimization under

1Out of curiosity. The last author of the paper, Gerald Goertzel, had worked in the Manhattan Project.
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timing constraint, (2) timing minimization under area constraint and (3) area-delay prod-
uct minimization. Gate delay is modeled using RC networks and the authors show that this
model leads to a convex delay model for the entire circuit. Even though the authors cite
that the convex model can be solved by general purpose solvers, they indeed developed a
sensitivity-based heuristic to trade-off accuracy and runtime. The method works by siz-
ing the transistor with the largest delay to size sensitivity on the most critical path. First,
TILOS is used to generate a rough initial solution. Then, in the second phase, the siz-
ing problem is converted to a mathematical optimization problem in a smaller parameter
space where a method of feasible directions is applied to find the optimal solution. TILOS
was chosen one of the best works of the 20 years of ICCAD conference (KUEHLMANN,
2003).

In 1987, Aesop (HEDLUND, 1987) tool for transistor sizing using linear model is
presented. Berkelaar and Jess (BERKELAAR; JESS, 1990) present a method to power
minimization under timing constraint using linear programming. The non-linear gate
delay is broken into a piecewise linear function, which is suitable to formulate the problem
as a linear program.

The first work to cope directly with discrete gate sizing was developed by Chan
(CHAN, 1990) in 1990. Previous works only handled discrete gate sizing by rounding
the sizes obtained from continuous formulation. Chan, on the other hand, proposed a
traverse algorithm to propagate timing constraints, then backward substitution applying
cell sizes available in a library. The proposed algorithm runs in pseudo-polynomial time
for tree structures. For non-tree structures, multiple-fanout cells are implicitly cloned to
create a tree like structure where the algorithm for trees can be used. The algorithm does
not depend on a specific gate delay model. Also the cost for a gate size is generic and can
be, for instance, the cell area or cell power. However, as the algorithm needs to propagate
a list of possible gate sizes, it becomes impractical for large circuits.

In 1993, the tool ASAP (DUTTA; NAG; ROY, 1994) for transistor sizing using simu-
lated annealing was presented using the Alpha-Power Law MOSFET Model (SAKNRAI;
NEWTON, 1990). Also in 1993, different from previous approach, Sapatnekar et. al
(SAPATNEKAR et al., 1993) took full advantage of the convex formulation by using
convex programming to find an exact solution.

In 1996 (COUDERT, 1996) and 1997 (COUDERT, 1997), Oliver presented a greedy
algorithm for discrete gate sizing aiming industrial designs. Different from previous
works, Oliver used an accurate gate delay based on look-up tables. The greedy algo-
rithm works by traversing the circuit, selecting new sizes for gates, but without resizing
them. Every size change is stored as a move. After all gates have been processed, the
moves that minimize power keeping the circuit performance are selected.

A sequential quadratic programming (SQP) approach to concurrent gate and wire siz-
ing was presented by Menezes in 1997 (MENEZES; BALDICK; PILEGGI, 1997). In
their work, the authors present an efficient way to compute the sensitivities to feed the
SQP.

Chen, et at. (CHEN; CHU; WONG, 1999), published a key work on gate sizing in
1999. They presented a concise formulation for the gate sizing problem avoiding the
exponential grow of path delay constraints. With this new formulation, the number of
constraints grows linearly with the number of pins. Moreover, the authors shown how the
Lagrangian Relaxation formulation could be significantly reduced using Karush-Kuhn-
Tucker (KKT) conditions. Then a fast and optimal algorithm was designed to solve the
gate and wire sizing simultaneously.
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In 2002, Tennakoon et at. (TENNAKOON; SECHEN, 2002) proposed a fast gradient-
based pre-processing step for Lagrangian relaxation that provides an effective set of ini-
tial Lagrange multipliers, which improved the runtime up to 200× compared to previous
works.

3.5.2 State-of-the-Art

The gate options are a combination of transistor widths and threshold voltages (Vth)
available in a gate library. Some recent works (LIU; HU, 2010; OZDAL; BURNS;
HU, 2011; RAHMAN; TENNAKOON; SECHEN, 2011) apply Lagrangian Relaxation
to solve the discrete gate sizing problem using KKT conditions (CHEN; CHU; WONG,
1999) to simplify the Lagrangian Relaxation Sub-problem (LRS). In our approach KKT
conditions are also applied and combined with the proposed method.

A Lagrangian Relaxation based formulation for gate sizing and device parameter se-
lection is presented in (OZDAL; BURNS; HU, 2011). The objective is to minimize leak-
age power on high-performance industrial designs. Lagrangian Relaxation and Dynamic
Programming (DP) are used to find the optimized solution. In the LR formulation, timing
constraints are introduced in the objective function. An accurate sign-off timer is used to
compute the slack values after each LR iteration. The LRS is modeled as a graph and
the discrete gate version characteristics are based on timing tables provided by the gate
library. A DP algorithm based on critical tree extraction is proposed to solve the LRS
optimization problem for discrete gates.

In (RAHMAN; SECHEN, 2012), a threshold voltage (Vth) assignment algorithm that
employs a cost function which is globally aware of the entire circuit is presented. The
objective of the post-synthesis algorithm is to minimize leakage power while solving the
delay constraints. Gates are swapped to a higher Vth to absorb the available slack in
the design without sacrificing delay. The delay constraint is iteratively pushed out by δ
time units, each time enabling additional gates to have their threshold voltages increased.
The leakage power is iteratively reduced to a minimum value and then starts to increase
substantially. Gate upsizing is required to re-establish the original delay target.

In (REIMANN et al., 2013), (HU et al., 2012), (LI et al., 2012) and (LIVRAMENTO
et al., 2013) the infrastructure based on the ISPD 2012 Gate Sizing Contest is used.
(REIMANN et al., 2013) presents a flow composed by a set of heuristic algorithms to
address the discrete gate sizing and Vt assignment problem. The proposed flow combines
the Fanout-of-4 rule, the Logical Effort concept and uses Simulated Annealing (SA) as
the main engine. The solution achieved the second and first positions in the two rankings
of the ISPD Contest in 2012.

A sensitivity-guided meta-heuristic approach to gate sizing that integrates timing and
power optimization is presented in (HU et al., 2012). The proposed heuristic has two
stages: Global Timing Recovery and Power Reduction with Feasible Timing. Global
Timing Recovery seeks violation-free solutions, and then Power Reduction with Feasi-
ble Timing iteratively reduces total leakage power of sizing solutions by local search. At
each stage of the optimization flow, the space of sensitivity functions is parametrized and
transversed to find the best configurations of sensitivity by independent multistarts. After
each multistart, all obtained solutions are compared and the best/non-dominated solu-
tions are retained. This is accomplished by adapting the go-with-the-winners (ALDOUS;
VAZIRANI, 1994) meta-heuristic. The optimization is purely deterministic in that the
multistart procedure begins with the small set of the best-seen solutions. Solutions after
each stage are ensured to be feasible, which enables pruning of dominated solutions by
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go-with-the-winners. The results are comparable to other works, but the method is slow
compared to (LI et al., 2012).

A framework for gate-version selection in modern high-performance low-power de-
signs with library-based timing model is presented in (LI et al., 2012). The framework
can be divided into three stages. First, the best design performance with all possible gate-
versions is achieved by a Minimum Clock Period Lagrangian Relaxation method, which
extends the traditional LR approach to control the difficulties in the discrete scenario.
Upon a timing-valid design, the timing-constrained power optimization problem is solved
by min-cost network flow. Finally, a power pruning technique is used to take advantage
of the residual slacks due to the conservative network flow construction. The technique
produces good power results, but worse than (HU et al., 2012), however in a faster way
with a linear empirical runtime.

(LIVRAMENTO et al., 2013) proposes a Lagrangian Relaxation formulation for leak-
age power minimization that incorporates into the objective function the maximum gate
input slew and the maximum gate output capacitance constraints in addition to the usual
timing constraints. A fast topological greedy heuristic to solve the Lagrangian Relaxation
Subproblem and a complementary procedure to fix the few remaining slew and capaci-
tance violations is proposed. Despite all the improvements achieved by recent research
works, there is still significant room for improvements. This can be observed as the best
results for some of the benchmarks are found by different algorithms. They also differ
a lot in terms of runtime, and it is desirable to identify which operations are consuming
computational effort without contributing to the solution.

3.5.3 Summary

In Table 3.2 the main characteristics of continuous sizing methods are shown. In Table
3.3 the main characteristics of discrete sizing methods are shown.

Table 3.2: Summary of Works on Continuous Gate Sizing
Work Year Sizing Type Gate Model Net Model Optimization Methods

(RUEHLI; WOLFF; GOERTZEL, 1977) 1977 Gate Inverse of Size Lumped Capacitance Newton
(FISHBURN; DUNLOP, 1985) 1985 Transistor RC N/A Sensitivity
(BERKELAAR; JESS, 1990) 1990 Gate Pice-Wise Linear Linear Linear Programming
(SAPATNEKAR et al., 1993) 1993 Transistor RC (Elmore De-

lay)
N/A Convex Programming

(MENEZES; BALDICK; PILEGGI, 1997) 1997 Gate Driver Resistance RC Tree (Elmore) Sequential Quadratic Pro-
gramming

(CHEN; CHU; WONG, 1999) 1999 Gate Driver Resistance RC Tree (Elmore) Lagrangian Relaxation
(SRIVASTAVA; SYLVESTER; BLAAUW, 2004) 2000 Transistor Alpha-Power

Law MOSFET
Model

N/A Sensitivity Based

(TENNAKOON; SECHEN, 2002) 2002 Gate Driver Resistance RC Tree (Elmore) Lagrangian Relaxation
(BOYD et al., 2005) 2005 Gate Transistor RC RC Tree (Elmore) Geometric Programming

(POSSER et al., 2012) 2012 Transistor Driver Resistance RC Tree (Elmore) Geometric Programming
(ALEGRETTI et al., 2013) 2013 Transistor Driver Resistance RC Tree (Elmore) Geometric Programming
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Table 3.3: Summary of Works on Discrete Gate Sizing
Work Year Sizing Type Gate Model Net Model Optimization Methods

(CHAN, 1990) 1990 Gate [Generic] N/A Greedy
(COUDERT, 1996) 1996 Gate Lookup Table N/A Multiple Moves
(COUDERT, 1997) 1997 Gate Lookup Table N/A Multiple Moves

(NGUYEN et al., 2003) 2003 Gate Lookup Table N/A Sensitivity Linear Program-
ming

(SHAH et al., 2005) 2005 Gate Equivalent Driver
Resistance (El-
more)

N/A Geometric Programming

(CHOU; WANG; CHEN, 2005) 2005 Transistor Posynominal Ap-
proximation

N/A Lagrangian Relaxation

(CHINNERY; KEUTZER, 2005) 2005 Gate Lookup Table Lumped Capacitance Sensitivity Linear Program-
ming

(REN; DUTT, 2008) 2008 Gate Driver Resistance Lumped Capacitance Network Flow
(LIU; HU, 2010) 2009 Gate Lookup Elmore Greedy

(HU; KETKAR; HU, 2009) 2009 Gate Elmore Delay N/A Dynamic Programming
(OZDAL; BURNS; HU, 2011) 2011 Gate [Generic] [Generic] Dynamic Programming La-

grangian Relaxation
(HUANG; HU; SHI, 2011) 2011 Gate RC (Elmore De-

lay)
N/A Lagrangian Relaxation

(ZHOU et al., 2011) 2011 Gate Linear Fit RC Tree (Elmore) Dynamic Programming
(RAHMAN; TENNAKOON; SECHEN, 2011) 2011 Gate Logical Effort Lumped Capacitance Lagrangian Relaxation

Branch-and-Bound
(OZDAL; BURNS; HU, 2012) 2011 Gate [Generic] [Generic] Dynamic Programming La-

grangian Relaxation
(RAHMAN; SECHEN, 2012) 2012 Gate Lookup RC Tree Greedy

(HU et al., 2012) 2012 Gate Lookup Lumped Capacitance Sensitivity
(LIVRAMENTO et al., 2013) 2013 Gate Lookup Lumped Capacitance Lagrangian Relaxation

(REIMANN et al., 2013) 2013 Gate Lookup Lumped Capacitance Simulated Annealing
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4 GATE SIZING VIA LAGRANGIAN RELAXATION

4.1 Lagrangian Relaxation

Lagrangian Relaxation is a useful mathematical technique to find or to approximate
the optimum solution of optimization (minimization or maximization) problems with hard
constraints. It has been successfully applied to solve several problems in EDA such as
floor-planning, placement, routing and gate sizing among others.

The main idea behind Lagrangian Relaxation is to rewrite the optimization problem
in an easier version, removing the hard constraints and adjusting the objective function to
take into account the constraint violations.

Given the optimization problem, also called the primal problem, in Equation (4.1),

minimize f(x)

subject to gi(x) ≤ 0 i = 1, 2, ..., n
hj(x) = 0 j = 1, 2, ..., m

(4.1)

a simpler or relaxed problem is written moving the hard constraints to the objective as
shown in Equation (4.2)

minimize L(x, λ, µ)

subject to λi ∈ <+ i = 1, 2, ..., n
µj ∈ < j = 1, 2, ..., m

(4.2)

where

L(x, λ, µ) = f(x) +
∑

λigi(x) +
∑

µjhj(x) (4.3)

.
The relaxed constraints are multiplied by the so called Lagrange multipliers, λi and

µj , which can be seen as a weight indicating how much that specific constraints is being
violated. Not all constraints need to be moved to the objective and the choice of which
constraints should be relaxed is problem dependent. However the relaxed version should
be easier to solve than the original problem.

The key property of the relaxed problem is that its solution is always a lower bound to
the solution of the original problem for any set {λi, µj}. That is,

L(x̃, λ, µ) ≤ f(x̂) (4.4)

where x̃ is the optimal solution for the relaxed problem and x̂ is the optimal solution of
the original problem.
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Considering this propriety, the main idea of Lagrangian relaxation is to find the max-
imum lower bound, which may ultimately approach the optimal solution of the original
problem. This leads to another optimization problem, called the dual problem, which
aims to find the largest lower bound as defined by Equation (4.5).

maximize min f(x) +
∑

λigi(x) +
∑

µjhj(x)

subject to λi ≥ 0 i = 1, 2, ..., n
µj ∈ < j = 1, 2, ..., m

(4.5)

For convex problems, the maximum lower bound is equal to the optimal solution of
the original problem. For non-convex problems, the maximum lower bound is only close
to the optimal solution and the difference between the maximum lower bound and the
optimal solution is called duality gap.

4.1.1 Solving the Lagrangian Dual Problem

Typically the dual problem is solved iteratively by interleaving Lagrangian multiplier
update and solving the relaxed problem. Then the relaxed problem is solved assuming
the Lagrangian multipliers are fixed. The Lagrangian multipliers are updated so that the
lower bound provided by the relaxed problem is increased w.r.t. the previous iteration.
This basic procedure is depicted in Figure 4.1.

Figure 4.1: Basic algorithm to solve the Lagrangian dual problem.

Initialize Lagrange Multipliers
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Update Lagrange Multipliers
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End
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Source: from author (2015)

The subgradient optimization algorithm (BEASLEY, 1993) is presented in Algorithm
4.1 is a common method used to solve the dual problem. Note that it follows the recipe
presented in the Figure 4.1.
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Algorithm 4.1: Subgradient optimization algorithm.
1 Initialize α ∈ (0, 2];
2 Initialize λ = 0;
3 Initialize ZUB with an appropriate upper bound;
4 Initialize ZLB with the solution of LRS/λ (λ = 0);
5 while N (v) ≤ ε do
6 β = α(ZUB−ZLB)

N(v)2
;

7 λ = λ+ βN (v);
8 ZLB ← LRS/λ;

4.2 Applying Lagrangian Relaxation in the Gate Sizing Problem

For gate sizing, the design is described using an acyclic directed graph where nodes
are the pins in the design and the edges are the timing arcs connecting the pins as exempli-
fied in Figure 4.2. There are two types of timing arcs: (1) cell timing arcs which connect
the input pins to output pins of a cell and (2) net timing arcs which connect cells.

Figure 4.2: An example circuit.
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Source: from author (2015)

The gate sizing problem under clock frequency constraint can be formulate straight-
forwardly as in Equation (4.6) where x is the vector of gate sizes (or types) and f(x) is a
generic objective function, usually power, area or performance.

minimize
x

f(x)

subject to Di ≤ T, i ∈ Paths
xi ∈ Sizesi

(4.6)

However, imposing a constraint on the delay of each timing path explicitly is pro-
hibitive as the number of paths grows exponentially with the number of cells in the de-
sign. A more concise way to represent timing constraints is by imposing chronological
constraints on arrival times. In this case, arrival times are seen as variables by the opti-
mization problem as shown in Equation (4.7).
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PP :

minimize
x,a

f(x)

subject to ai + di→j ≤ aj,∀i→ j ∈ Arcs
ai ≤ T,∀i ∈ Endpoints
xi ∈ Sizesi

(4.7)

Chronological constraints ensure that the arrival time at a timing arc’s input pin plus
the timing arc delay will be less or equal to the arrival time at the timing arc’s output
pin. Note that for each timing arc a constraint of such kind must be set. An additional
constraint is included for each path’s output node such that the arrival times at them will
be less or equal to the clock period.

4.2.1 Lagrangian Relaxation

By relaxing the arrival time constraints, the objective function can be rewritten as in
Equation (4.8) where λi→j and λi are the Lagrange multipliers.

Lλ(x, a) = f(x) +
∑
∀i→j

λi→j (ai + di→j − aj) +
∑
∀i∈PO

λi (ai − T ) (4.8)

So that, the relaxed gate sizing version of PP can be defined as in Equation (4.9).

LRSλ :

minimize
x,a

Lλ(x, a)

xi ∈ Sizesi

(4.9)

4.2.2 Simplification of LRSλ
Chen et al (CHEN; CHU; WONG, 1999) shown that the LRSλ can be greatly sim-

plified by using the Karush–Kuhn–Tucker (KKT) conditions for optimality. The KKT
conditions implies that ∂L/∂ak = 0 at the optimal solution of PP . The derivative of L is
given by Equation (4.10).

∂L
∂ak

=
∑
∀k→j

λk→jak −
∑
∀i→k

λi→kak (4.10)

Therefore the optimal solution has the property as shown in Equation (4.11), which im-
plies that the sum of inwards Lagrange multipliers of a pin must be equal to the sum of
outward ones. ∑

∀k→j

λk→jak =
∑
∀i→k

λi→kak (4.11)
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5 NEW DISCRETE GATE SIZING AND VTH ASSIGNMENT
FLOW USING LAGRANGIAN RELAXATION

Lagrangian formulation has been extensively used in the gate sizing and is the core of
many methods present in the literature. Assuming convex delay models and continuous
sizing, it can even efficiently provide an optimal solution. However, for the discrete case,
many challenges emerge. The most prominent consequence is that the gate sizing prob-
lem becomes NP-complete and, unless P = NP, this means that no efficient and optimal
algorithm can be designed for the general case.

Therefore, in discrete case, Lagrangian Relaxation is used as a heuristic to find good
solutions rather than the optimal one. And, as most heuristics, several tricks and adapta-
tions are required to make it work properly.

5.1 Contributions

In this thesis, the gate sizing method for timing minimization presented by Li Li et al
(LI et al., 2012). is adapted and extended to handle leakage power minimization.

The underlying LR framework is similar to that one used by Li Li and also other
works in the literature (OZDAL; BURNS; HU, 2011) (LIVRAMENTO et al., 2013), but
the overall flow presents some novelties in the way the LR is controlled to improve con-
vergence to a good solution. The controllability is a main issue for any heuristic based
on LR, so much that Li Li et al. use LR only to improve timing with no regards to other
metrics as they say the constrained LR formulation is hard to control.

Even though other works have applied the Lagrangian Relaxation (LR) to solve the
gate sizing problem before, it is still a complex task to use LR efficiently and effectively
to solve the discrete gate sizing problem.

The main contributions for the gate sizing field of this thesis can be summarized as
follow.

• A local slack-based technique to filter out bad sizing and threshold voltage options,
which improves the LR convergence.

• A sensitivity based method to estimate the global changes of the delay given a
change on a cell implementation (i.e. size or threshold voltage).

5.2 Scope

The gate sizing techniques and the flow presented in this thesis aim on leakage power
minimization under timing constraints. The flow is developed to be executed during the
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early stages of the design flow as after technology mapping or during and after placement
as shown in Figure 5.1.

Figure 5.1: Gate Sizing in the Design Flow
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At these stages precise timing and power information may not be available due to the
lack of routing information so that simplified methods are typically used to estimate those
metrics. However simplified methods can also be used for sake of runtime and as long as
they correlate well to the actual models, this does not invalidate the gains obtained at this
stage.

Although the scope was limited to the early stages, a subsequent work by Reimann
(REIMANN; SZE; REIS, 2015) shown that this flow can be extended to work also in final
stages of the design cycle.

This flow can also be used during the exploration phase where the goal is to get a
glimpse of a design characteristics as maximum frequency and power consumption.

In the gate sizing flow, only late violations are directly optimized. However, since the
objective is power minimization, this forces the non-critical late paths to become slower,
which indirectly leads to a reduction in early violations.

5.3 Background

A typical standard cell library contains a few hundreds cells that implement a small
set of logical functions. Each different logical function is implemented by several cells,
but with different timing, area and power characteristics. These different implementations
are used to trade-off the design performance with power consumption and area usage.

Besides different sizes, a cell library also contains different threshold voltage versions
for same size cells. Different Vths (threshold voltages) for the same gate may be used as
an efficient way to reduce leakage power. The relationship between speed and leakage
can be used to produce designs with the desired power/delay trade-off. Gates that are not
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on the critical path often do not need the performance of high-leakage implementations,
therefore slower and less leaky versions can be used instead (PANGRLE; KAPOOR, Jun.
2005).

To optimize the leakage power in a circuit making use of the different available cell
versions, a simultaneous gate sizing and Vth assignment method may be used. Assigning
properly the gate size and Vth for each gate has major influence on power consumption.
Besides maintaining timing constraints, the gate sizing tool has also to consider other
design constraints, such as maximum gate fan-outs and transition times. The discrete
gate sizing problem is a combinatorial optimization problem and is proved to be NP-Hard
(LI, 1993). Therefore, approximation and heuristic algorithms are essential to efficiently
address it.

In this chapter, an algorithm for discrete gate sizing and Vth assignment is presented.
The core method is developed upon the Lagrangian Relaxation methodology, however, as
non-convex modeling functions are used, only the weak duality holds.

5.4 Performance Optimization

In its simpler version, the LR-based gate sizing formulation can be used to find the
fastest implementation of a design. Although the final solution is likely to be prohibitive
in terms of power consumption and area, it may be a good starting point for some methods
aiming to optimize power.

Li Li et al. presented a greedy method to solve the LRS/λ problem. The basic idea is
to traverse the design in topological order and for each cell test all candidates keeping the
one that provides the best gain in terms of delay.

When the implementation of a cell (i.e. its size or threshold voltage) is changed, the
impact on timing can propagate throughout many cells in the design due to slew depen-
dency. One can rerun the timing analysis for each implementation change, but as several
changes are tested for each cell, this soon becomes prohibitive in terms of runtime.

A common strategy to avoid the runtime penalty is to analyze the timing change only
locally. Besides of being much faster than a global analysis, the fact that most of the
timing perturbation is absorbed in a few logic levels (OZDAL; BURNS; HU, 2011) also
makes this strategy very attractive.

To compute the impact of an implementation change, Li Li et al. analyze the delay
change on the driver, side and sink timing arcs as shown in Figure 5.2.
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Figure 5.2: Local timing evaluation after a gate has been sized.

Source: from author (2015)

5.5 Definitions

For the purpose of this work, a circuit is described by its logical and memory elements
called gates or cells and the connections between them called nets. Only logical elements
are considered for sizing. Gates are attached to nets at specific points of the net topology
named driver and sink nodes. A gate is composed by one or more timing arcs which
describe the timing characteristics of the gate. Table 5.1 summarizes the definitions and
notation used throughout this work.

Table 5.1: Definitions of some terms used in this work.
T clock period
TNS total negative slack
STA static timing analysis
i→ j timing arc from node i to node j
di→j delay of timing arc i→ j
ai arrival time at node i
qi require time at node i
slewi slew at node i
λ Lagrange Multiplier
∆Di→j delay change given a change in input slew of arc i→ j
∆Dn delay change given a change in slew of net n
δdi→j

δslewi
delay sensitivity to input slew of arc i→ j

δslewj

δslewi
output slew sensitivity to input slew of arc i→ j

φ cumulative back-propagated arc delay sensitivity

When connections are modeled using a simple lumped capacitance, timing informa-
tion (arrival, required and slew) at sink nodes is equal to the values at the driver node. In
this case, driver and sinks share the same name borrowed from the net which connects
them.

Moreover, to keep notation clean, rise and fall transitions are not shown, but they are
considered properly in the proposed method.
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5.6 Flow Overview

Figure 5.3 depicts a high-level view of the flow developed in this work. It starts
by setting all gates to the lowest leakage version. Load and slew violations are then
removed without regarding to timing closure. This solution is passed to our Lagrangian
Relaxation method to optimize leakage power under performance constraints. Next, any
timing violations left are eliminated by a Timing Recovery method. Finally the leakage
power is further reduced by a Power Reduction algorithm.

Every method developed in this work has a linear complexity per iteration. The num-
ber of iterations for each iterative method is hard to predict, but for most cases only a few
(tens to hundreds) are required.

Figure 5.3: High-level view of our gate selection flow.
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Source: from author (2015)

In order to improve convergence rate at the Lagrangian Relaxation step, load and slew
violations are removed from the initial minimum leakage solution. In this way our LR
method may concentrate more on reducing leakage power and meeting timing constraints.

The removal is performed by means of the iterative method presented in (LI et al.,
2012) (with α = 0.7). The procedure visits all gates, one at a time, from outputs to
inputs. For each gate, the gate version with less leakage that respects both slew and load
constraints is selected. In our implementation, as the gates are visited, timing is updated
only locally as explained in Section 5.9.1.

The αL ∈ (0, 1] parameter is used to control the ratio between driver strength and the
load capacitance. Smaller is the αL value, larger should be the driver strength. A smaller
value improves convergence as it tends to oversize gates. In this work we set αL = 0.7.

5.7 Lagrangian Relaxation

Lagrangian Relaxation is a useful mathematical technique to find or to approximate
the optimum solution of minimization problems with hard constraints.

The original problem, also called Primal Problem (PP), is simplified by removing
hard constraints and incorporating them into the objective function. For each incorpo-
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rated constraint, a weight – the Lagrange Multiplier (λ) – is assigned. Weights, which
must be non-negative, may be interpreted as the penalties for not satisfying the respective
constraints. The simplified problem is called a Lagrangian Relaxed Subproblem (LRS)
for each fixed set of λs, where the optimal solution for each LRS is a lower bound to the
Primal Problem (CHEN; CHU; WONG, 1999).

A corresponding maximization problem, the Lagrangian Dual Problem (LDP), is then
formulated where the goal is to maximize the solution of LRS instances by selecting
appropriate sets of λs. This is commonly achieved iteratively by fixing λs, solving the
LRS for the fixed set of λs (LRS/λ), updating λs, solving LRS/λ again and so on and
so forth (OZDAL; BURNS; HU, 2011).

The concern in this work is leakage power minimization under timing constraints.
However the ideas presented here can be easily adapted to handle different objective func-
tions.

A concise way to represent timing constraints is by imposing chronological constraints
on arrival times. In this case, arrival times are seen as variables by the optimization
problem.

Chronological constraints ensure that the arrival time at a timing arc’s input node plus
the timing arc delay will be less or equal to the arrival time at the timing arc’s output
node. Note that for each timing arc a constraint of such kind must be set. An additional
constraint is included for each path’s output node such that the arrival times at them will
be less or equal to the clock period.

The gate selection problem for total leakage power minimization can be formulated
as shown in Equation (5.1).

Primal Problem (PP):

minimize leakage

subject to ai + di→j ≤ aj, for each timing arc i→ j

ak ≤ T, for each path output node k

(5.1)

By applying the Lagrangian Relaxation technique we obtain the LRS as in Equation
(5.2).

LRS:

minimize leakage +∑
λi→j(ai + di→j − aj) +∑
λk(ak − T )

(5.2)

Chen et al. (CHEN; CHU; WONG, 1999) have shown that the problem in Equation
(5.2) can be further simplified by applying the KKT conditions to optimality as shown in
Equation (5.3).

LRS (simplified):

minimize leakage+
∑

λi→jdi→j
(5.3)

Hereafter the sum
∑
λi→jdi→j is referred to lambda-delay. So, the relaxed version

of the sizing problem can be viewed as the selection of gate versions which minimizes
leakage plus lambda-delay with no explicit information about arrival times. Finally, LDP
is simply the maximization of LRS where λ is also variable as shown in Equation (5.4).



55

LDP: maximize LRS (5.4)

5.8 Solving LDP

Algorithm 5.1 presents an overview of the iterative method used to look for a competi-
tive solution to LDP . The idea of the LDP solver is straightforward. At each iteration λs
are updated to reflect how much a constraint, now incorporated to the objective function,
is being violated. This generates a new instance of LRS/λ which is then solved by the
method presented in Section 5.9.

Different from the continuous sizing problem (CHEN; CHU; WONG, 1999), the
sub-gradient method can no longer guarantee the optimality of the LDP maximization.
Considering that, other methods for the λ update process are presented in the literature
(TENNAKOON; SECHEN, 2002) and in this work. Improving this method leads to direct
improvement in convergence and quality of the final solution.

In our current implementation the initial λ value is set to 12. A solution is said to be
better than another one if its TNS is less than 10% of T and it has smaller leakage.

Lagrange Multipliers update is accomplished in two steps: (1) slack scaling and (2)
KKT projection. Algorithm 5.2 presents the method used to update them.

5.8.0.1 Slack Scaling

Initially Lagrange Multipliers are scaled according to the slack of the respective timing
arcs. The idea is to increase proportionally the importance (λ value) for timing arcs with
negative slack and to decrease the importance for those with positive slack. The higher
is the λ value the higher is the impact of the respective timing arc delay in the objective
function.

5.8.0.2 KKT Projection

KKT projection is performed to ensure that λs obey the KKT conditions to optimality.
These conditions imply that the sum of λs driving a net must be equal to the sum of λs
being driven by that net (CHEN; CHU; WONG, 1999).

In our flow the projection is performed by traversing the circuit in reverse topological

Algorithm 5.1: LDP Solver
1 store initial solution
2 set an initial value for λs
3 update timing (STA)
4 update λs // Alg. 5.2
5 repeat
6 solve LRS/λ // Alg. 5.4
7 update timing (STA)
8 update λs // Alg. 5.2
9 if new solution is better than stored one then

10 store solution

11 until convergence;
12 restore best solution found
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Algorithm 5.2: Updating Lagrange Multipliers
1 for each timing arc i→ j do
2

λi→j ← λi→j ×

{(
1 +

aj−qj
T

)+1/k
aj ≥ qj(

1 +
qj−aj
T

)−k
aj < qj

3 KKT projection

order distributing proportionally the sum of λs being driven by a net to the ones driving
the net as outlined in Algorithm 5.3.

Algorithm 5.3: Update Lambdas KKT (CHEN; CHU; WONG, 1999)
1 for each net n of the circuit do
2 Compute sum of driver timing arc lambdas of net n
3 Compute sum of sink timing arc lambdas of net n
4 Update driver arcs
5 for each edge (rise and fall) do
6 if sum of driver timing arc lambdas > 0 then
7 for each driver timing arc do
8 λarc = sum sink lambdas ∗ λarc/sumλdrivers)

9 else
10 for each driver timing arc do
11 λarc = sumλsinks/num sinks

5.9 Solving LRS/λ

To find a solution for each LRS/λ instance the greedy method presented in Algorithm
5.4 is employed. It works by traversing all gates in topological order trying to properly
select a new version to each of them. The new selected version is the one which locally
minimizes leakage power and the lambda-delay.

Since a full STA would be required to compute the actual impact on lambda-delay, it
would be infeasible to use updated information every time a gate version is changed to get
the real impact of that change. So, the greedy method relies on local timing information
and global estimation to approximate the global impact on lambda-delay.

In most cases, the timing impact of a version change is absorbed within few logic
levels (OZDAL; BURNS; HU, 2011). And therefore the global impact on circuit timing
can be fairly estimated considering only local information. However, to deal with the
cases where a local change greatly affects the overall timing – e.g.. a change in a critical
gate – a global sensitivity-based lambda-delay function is developed.

5.9.1 Local Timing Update

For this work, a local timing update comprises the timing update of a gate, its driver
nets and arcs and its sink net in the same way a STA would perform, but without timing
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Algorithm 5.4: LRS/λ Solver
1 compute lambda-delay sensitivities // Eq. 5.11
2 for each gate g in topological order do
3 select a gate version for g // Alg. 5.5

Figure 5.4: Lambda-Delay Cost Computation
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propagation. Notice that this approach does not guarantee that the final timing will match
the one provided by the STA even if gates are being visited in a topological order as the
STA would do. For instance, a driver gate of the current gate may directly or indirectly
drive other driver gates. For example, in Figure 5.4, both gates 5 and 8 are drivers of gate
10, but gate 5 is also a driver of gate 8. But ignoring such dependencies does not generate
any convergence problem in the proposed flow.

5.9.2 Lambda-Delay Cost

The objective of the LRS problem is the minimization of the lambda-delay plus leak-
age power. So when a gate version is changed we are concerned on how the total leakage
power and lambda-delay are affected. Since the leakage power is modeled as constant for
each cell and a change in a cell does not affect other cell’s leakage power, it is straightfor-
ward to compute the change in the total leakage.

The lambda-delay cost of a gate version indicates how much the gate version impacts
on lambda-delay. As mentioned early, to be computed exactly, a full STA would be
required and this would easily lead to huge runtime, therefore the cost is computed relying
most on local impact, although a method to account for global impact is also presented.

The lambda-delay cost for the current version of a gate g (e.g. darker gate in Figure
5.4), lambdaDelayCost(g), is shown in Equation (5.5).

lambdaDelayCost(g) =∑
i→j∈driverArcs(g)∪gateArcs(g)∪sinkArcs(g)

λi→jdi→j+∑
i→j∈sideArcs(g)

∆Dλ
i→j +

∑
n∈drainNets(g)

∆Dλ
n

(5.5)

where
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Figure 5.5: Delay Sensitivity Computation
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Source: from author (2015)

• driverArcs(g) is the set of arcs driving the driver nets of gate g (e.g. arcs {0, 1} → 6,
{2, 3} → 5 and {5, 4} → 8 in Figure 5.4);

• sinkArcs(g) is the set of arcs which are driven by gate g (e.g. arcs 10 → {12, 13} in
Figure 5.4);

• sideArcs(g) is the set of arcs which are driven by gate g’s driver nets but which do
not belong to g itself (e.g. arcs 6→ 9 and 5→ 8 in Figure 5.4);

• gateArcs(g) is the set of arcs which belong to gate g (e.g. arcs {6, 5, 8} → 10 in Figure
5.4);

• drainNets(g) is the set of nets driven by sink gates of g (e.g. nets 12 and 13 in Figure
5.4).

5.9.3 Lambda-Delay Sensitivity

In order to improve the accuracy of the cost computation, a method to account for the
changes in the fan-out cone of the current cell is designed. The aim of this method is
to compute the timing arc sensitivities and combine them as the circuit is traversed from
outputs to inputs. This aggregated sensitivity can be used then to fast estimate the changes
in the delay of downstream arcs.

The timing arc sensitivity measures how the delay/slew of an arc changes given a
change on its context (i.e. input slew, output load). It linearly approximates the delay/slew
from the look-up table at around the current context. Sensitivities can be combined and
propagated back from path outputs to inputs. This allows, using a single operation, to
consider how a local change affects the whole logic cone timing.

The cumulative sensitivity of an arc estimates how the delay of the logical cone start-
ing at such arc changes given a change on its input slew. For sensitivity computation, a
lumped capacitance interconnection model is assumed.

5.9.3.1 Example

Figure 5.5 is used to show how sensitivities are propagated back from path outputs
to inputs. To simplify notation, in this example, λs are not shown, but they are easily
accounted for just by multiplying each arc delay sensitivity to input slew by its respective
Lagrange Multiplier.

The delay change due to an input slew change of timing arc 2 → 3, is simply the
timing arc sensitivity itself times the input slew change, as in Equation (5.6).

∆D2→3 = ∆slew2
δd2→3

δslew2

(5.6)

Similarly, for timing arc 1→ 2, the delay change is the input slew change times timing
arc delay sensitivity plus the delay change for timing arc 2→ 3 as in Equation (5.7).



59

∆D1→2 = ∆slew1
δd1→2

δslew1

+ ∆D2→3 (5.7)

Combining (5.6) and (5.7), and noting that Equation (5.8) holds

∆slew2 ≈ ∆slew1
δslew2

δslew1

(5.8)

we end up with the Equation (5.9) that depends on only one unknown, ∆slew1.

∆D1→2 = ∆slew1

(
δd1→2

δslew1

+
δslew2

δslew1

δd2→3

δslew2

)
(5.9)

Finally, the delay change for timing arc 0→ 1 is shown in Equation (5.10).

∆D0→1 = ∆slew0

[
δd0→1

δslew0

+
δslew1

δslew0

(
δd1→2

δslew1

+
δslew2

δslew1

δd2→3

δslew2

)] (5.10)

Note that such propagation could continue on for as many levels as necessary till
reaching the path input. Note also that D0→1 provides the whole path delay change due
to a change in the slew at net 0.

5.9.3.2 Generalization

In general terms, the back-propagate lambda-delay sensitivity of a timing arc i → j
is defined by the recurrence Equation (5.11) for every timing arc i′ → j′ driven by arc
i → j. Note that, differently from the aforementioned example, the λ associate to the
timing arc is now being shown.

φi→j = λi→j
δdi→j
δslewi

+
δslewj
δslewi

{∑
φi′→j′ dominant arc
0 otherwise (5.11)

To handle multiple fanout nets and in order to avoid counting multiple times the delay
change, only the arc with the worst slew rate – the dominant one – propagates back the
cumulative sensitivity. The remaining arcs see the cumulative sensitivity as zero since
they are likely dominated by the one with worst slew and hence, they should not affect
the timing of gates ahead.

The delay change of timing arc i→ j is then defined as in Equation (5.12).

∆Dλ
i→j = ∆slewiφi→j (5.12)

For a net, the delay change is equal to the sum of the delay change of all timing arcs
driven by it, as shown in Equation (5.13).

∆Dλ
n = ∆slewn

∑
φi→j (5.13)
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Algorithm 5.5: Gate Version Selection
1 originalSlack ← computeLocalNegativeSlack(g)
2 bestCandidate← version(g)
3 bestCost← lambdaDelayCost(g) + leakage(g)
4 for each gate version t ∈ versions(g) do
5 version(g)← t
6 if load violation has increased then
7 go to the next version

8

9 update timing locally
10

11 slack ← computeLocalNegativeSlack(g)
12 if slack < γ ∗ originalSlack then
13 go to the next version

14

15 cost← lambdaDelayCost(g) + leakage(g)
16 if cost < bestCost then
17 bestCandidate← t
18 bestCost← cost

19 version(g)← bestCandidate
20 update timing locally

5.9.4 Gate Version Selection

Algorithm 5.5 presents the method that selects a new gate version. In this method, all
candidate versions are tested.

To improve overall convergence and guide our flow to a good solution, there are two
conditions that a gate version should obey to be qualified to replace the current version:
(1) not increase load violation and (2) not impact so much the local negative slack as we
explain below.

5.9.4.1 Load Violation

Most load violations lead to slew violations which are hard to keep track as they may
be generated at many logic levels ahead of the perturbation. They may be also propagated
throughout the circuit. Prohibiting the increase of load violations avoids the method from
wandering through solutions with lots of slew violations which are difficult to recover
back.

Also, load violations may require extrapolation on timing calculations from the de-
lay/slew look-up table. Extrapolations may generate exaggerated delay/slew values that
affect the overall convergence of the flow.

In order to replace the current version, the new one must not increase the load violation
(line 12). As our flow starts with a solution with no load violations, this implies that no
load violations should be ever generated.
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Algorithm 5.6: RC Interconnection Model
1 compute effective capacitance for driver node
2 obtain delay and slew from look-up table for driver node using effective

capacitance
3 for each node n (6= driver) in topological order do
4 R← resistance connecting n to parent node C ← downstream capacitance

delayn ← delayparent +RC slewn ←
√
slew2

parent + 1.93 ∗ (RC)2

5.9.4.2 Local Negative Slack

Similarly to slew violations, timing violations generated due to a single perturbation
may spread out. This is more apparent when critical paths are passing through the vicinity
of the current gate. To keep TNS under control, a gate version must not increase too much
the local negative slack (line 12).

As keeping track of slack globally would require to run an incremental STA, our
method looks only at the slack perturbation in the vicinity of the current gate. Local neg-
ative slack is defined simply as the sum of negative slacks (positive slacks are discarded)
of the driver nets and the sink net of the current gate.

To allow some sort of ”hill climbing” like in stochastic methods, the local negative
slack is allowed to increase a small amount controlled by the parameter γ as defined in
Equation (5.14). The idea is to allow larger changes at the first iterations when the timing
violations are likely to be high and to avoid them as the method converges to a low timing
violation solution.

γ = (−(min(0, worstSlack))/T + 1) (5.14)

The local negative slack constraint indirectly controls the balancing between leakage
and lambda-delay in the objective function. It avoids choosing a version which reduces
locally the objective function but is likely to cause a large impact on timing violation.

5.9.5 Modeling Interconnections

Our interconnection modeling is based on Elmore delay (ELMORE, 1948; GUPTA
et al., 1995) and is fast enough to be used several times during the optimization process.
The method described in (QIAN; PULLELA; PILLAGE, 2006) is used to compute the
effective capacitance in the net driver node and the method presented in (PURI; KUNG;
DRUMM, 2002) is used to calculate the delay and slew degradation. These methods
were selected as they are reasonably accurate and sufficiently fast to be used several times
during the optimization process.

However, as the selected methods provide only a fairly estimation, extra post-processing
Timing Recovery and Power Reduction method are added to the flow. Both methods work
in the very same way to the ones presented in Section 5.10.1 and Section 5.10.2 respec-
tively, but now using timing information provided by an external (e.g. commercial) tool.

It starts by computing the effective capacitance for the driver node of the net using the
method presented in (QIAN; PULLELA; PILLAGE, 2006). The effective capacitance is
then used to obtain delay and slew information from the look-up table. Next, delay and
slew are propagated in topological order to the sink nodes. Algorithm 5.6 presents the
interconnection timing calculation.
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In our current implementation, when interconnections are taken into account, lambda-
delay sensitivities are dropped. Since there is slew degradation on the interconnections
our sensitivity calculation should yet to be adapted to take into account these effects.

5.10 Improving the Lagrangian Relaxation Solution

The solution provided by using sensitivity combined with LR can be improved using
two other methods, Timing Recovery and Power Reduction.

5.10.1 Timing Recovery

The Timing Recovery step is executed only if the Total Negative Slack (TNS) is higher
than ε (ε = 1e-6), i.e., the solution has negative slack.

Algorithm 5.7 shows the Timing Recovery algorithm. The nets n are sorted in de-
creasing order of the number of critical paths passing through n (timing endpoints with
negative slack). The algorithm tries to upsize the gate driver of n by changing the current
gate-version to the next larger gate size with the same Vth.

In this method, Vth decrease is not applied since it would lead to a high leakage power
increase. At the same time, iteratively increasing gate sizes is efficient enough to solve
small timing violations left by the LR while not increasing leakage power too much.

A gate g is upsizable if by changing the original gate version to another it does not
generate slew and/or load violation. Moreover, TNS generated by this change must be
smaller than the TNS using the previous gate size.

5.10.2 Power Reduction

To find a solution with the smallest leakage power, a greedy Power Reduction algo-
rithm is also finally executed, as presented in Algorithm 5.8. For each gate g it tries to
increase the Vth of the gate c and/or to downsize the gate c.

Vth is increasable if the gate with new Vth does not generate slew and/or load violation
and the TNS is smaller than or equal to previous TNS.
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Algorithm 5.7: Timing Recovery
1 g ← most critical gate
2 while g do
3 previousTNS ← TNS
4 if g is upsizable then
5 upsize g
6 run incremental STA
7 if TNS < previousTNS and no load/slew violations generated then
8 previousTNS ← TNS
9 re-sort gates

10 else
11 undo

12 g ← next critical gate

Algorithm 5.8: Power Reduction
1 repeat
2 changedCounter ← 0
3 for each gate g of the circuit in topological order do
4 if Vth of g is increasable then
5 increase Vth of g
6 update timing (STA)
7 if TNS ≥ 0 and no load/slew violations generated then
8 changedCounter + +
9 else

10 undo

11 for each gate g of the circuit in topological order do
12 if g is downsizable then
13 downsize g
14 update timing (STA)
15 if TNS ≥ 0 and no load/slew violations generated then
16 changedCounter + +
17 else
18 undo

19 until changedCounter = 0;
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5.11 Experimental Setup

Our flow and techniques are empirically validated using the ISPD 2012 and 2013 gate
sizing contest infrastructure.

5.11.1 Assumptions and Limitations

For these contests, an ideal clock distribution is assumed so that no skew is present at
registers. This kind of assumption is reasonable during the early stages of the optimization
processes where cells were not placed yet and/or a clock net was not routed. A way to
account for clock skew is by tightening the target clock period.

For the 2012 contest, wires were modeled by a lumped capacitance. Again this is rea-
sonable and a common practice before placement is performed. The lumped capacitance
can be estimated via wire load models, which define a load capacitance depending on
the number of pins in a net and if the net cross or not modules. The wire load model is
provided by foundries and it is built statistically by measuring the wire length and hence
load of positioned designs.

The 2013 contest added the interconnection modeling via RC trees and the final timing
evaluation is performed using the commercial tool PrimeTime. PrimeTime uses model
order reduction (MOR) to accurately and quickly (compared to Spice simulation) compute
interconnection delay.

The main drawback of the contest infrastructure is the provided library, which is over-
simplified although it tries to capture a more or less valid scenario. Moreover the delay
functions are linear w.r.t. gain (ratio between the load and input capacitance). Logical
effort theory success is based on this linear relation, but it typically only holds in approx-
imate terms.

5.12 Results on ISPD 2012 Contest Benchmarks

First the results for the whole gate sizing flow are presented and analyzed. Next the
impact of the techniques developed in this thesis w.r.t. quality of results and convergence
is reported.

In this subsection, we evaluate our flow using the infrastructure and benchmarks from
ISPD 2012 Discrete Gate Sizing Contest. The number of combinational gates in those
circuits ranges from 23K to 861K gates as shown in Table 5.2.

Table 5.2 shows the outcome of this flow for the ISPD 2012 benchmark set and in-
frastructure. As can be seen this flow finds the best results among all published works
with a 9.53% and 12.45% reduction on leakage power on average. The results are more
prominent for fast benchmarks where the clock period is tight and hence harder to opti-
mize which more clearly indicate the superiority of this flow. For slow benchmarks, as
the clock period is not very tight, it easier to find a low power version that meets timing
so that the gain of this flow over other published works are less significant.

For the 2012 contest, interconnections are modeled as simple lumped capacitance so
the RC interconnection model presented in Section 5.9.5 is not used. As the lambda-delay
sensitivities technique is compatible with the lumped capacitance model, it is applied in
the experimental results presented in this subsection.

Leakage power results in watts (W ) are presented in Table 5.2. The results of these
benchmarks are compared with recent works that are also based on the ISPD 2012 Con-
test, (HU et al., 2012) and (LI et al., 2012). The proposed methods can find the best
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Table 5.2: Leakage power (W ) and runtime (min) results on ISPD 2012 benchmarks
suite. Hu (HU et al., 2012) and Li (LI et al., 2012) runtimes are taken from the corre-
sponding papers.

Benchmark
# of Clock Leakage Power (W ) Power Saved (%) Runtime (min) Speedup (X)

Comb. Period Hu Li Ours Comp. Comp. Hu Li Ours Comp. Comp.
Gates (ps) to Hu to Li to Hu to Li

DMA slow 23K 900 0.145 0.153 0.132 8.73 13.50 9.90 0.60 0.79 12.53 0.76
DMA fast 23K 770 0.299 0.281 0.238 20.29 15.19 13.90 0.60 0.92 15.11 0.65
pci bridge32 slow 30K 720 0.111 0.111 0.096 13.31 13.31 10.20 1.20 0.87 11.72 1.38
pci bridge32 fast 30K 660 0.183 0.167 0.136 25.51 18.37 13.00 1.20 0.92 14.13 1.3
des perf slow 102K 900 0.614 0.671 0.570 7.14 15.03 70.10 6.00 25.31 2.77 0.24
des perf fast 102K 735 1.842 1.93 1.395 24.27 27.73 82.70 6.60 16.37 5.05 0.4
vga lcd slow 148K 700 0.351 0.375 0.328 6.61 12.59 87.50 7.80 5.67 15.43 1.38
vga lcd fast 148K 610 0.471 0.46 0.413 12.22 10.12 45.60 10.20 8.37 5.45 1.22
b19 slow 213K 2500 0.583 0.604 0.564 3.28 6.64 213.90 10.20 9.15 23.38 1.11
b19 fast 213K 2100 0.771 0.784 0.717 7.06 8.61 206.50 12.00 11.75 17.57 1.02
leon3mp slow 540K 1800 1.341 1.4 1.334 0.53 4.72 1,274.00 43.80 38.98 32.68 1.12
leon3mp fast 540K 1500 1.487 1.64 1.443 2.99 12.04 1,323.20 54.60 46.62 28.38 1.17
netcard slow 861K 1200 1.77 1.78 1.763 0.41 0.97 299.90 48.00 34.39 8.72 1.40
netcard fast 861K 1900 1.861 2.18 1.841 1.07 15.55 1,096.90 88.80 47.41 23.14 1.87
Avg. - - 0.845 0.895 0.784 9.53 12.45 - - - - -
Sum (h) - - - - - - - 79.12 4.86 4.13 19.18 1.18

(HU et al., 2012)
(LI et al., 2012)

solution among all algorithms, i.e., the solution with smallest leakage power compared
with the state-of-the-art works. Power saving of up to 27.73% can be obtained. Com-
pared to (HU et al., 2012), our solution saves on average 9.53% in leakage power and
compared to (LI et al., 2012), our solution reduces leakage power by 12.45%, on average.

Considering the small circuits (DMA, pci bridge32, des perf and vga lcd), our ap-
proach reduces leakage power by 14.76%, on average, compared to (HU et al., 2012) and
15.73% compared to (LI et al., 2012). As (HU et al., 2012) stated, the timing constraints
for larger circuits are tighter than for the smaller ones, and thus it is more difficult to
reduce leakage power keeping a violation-free circuit in the former case.

Table 5.2 also shows the runtime results. Our solution is 19X faster than (HU et al.,
2012) and 1.18X faster than (LI et al., 2012) considering the total runtime for all bench-
marks. A fast timer based on Synopsys PrimeTime R© was developed and is used in our
approach to speed up the timing updates during the gate selection execution. This fast
timer combined with local and incremental timing updates helps our method to achieve
the presented runtime efficiency.

As we can see, the method described herein presents the best results for power and
runtime compared with the state-of-the-art works.

5.12.1 Impact of Slack Filtering

The slack filtering technique proposed in this thesis was developed with the main goal
of improving the convergence of the extended Lagrangian Relaxation formulation from
Li Li (LI et al., 2012).

Table 5.3 shows the impact on results for the ISPD 2012 benchmark set when the
slack filtering technique is disabled. The results are taken after Lagrangian Relaxation and
before timing and power recovery. Clearly there is a huge impact on convergence where
WNS and TNS are worsen by 2675.47% and 86735.41% respectively when compared to
the baseline flow at the same point. For most designs, however, TR is able to eliminate
those timing violations, but at cost of runtime spent in hundreds of iterations. A typical
timing recovery on the baseline algorithm takes only a few dozen iterations.
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Table 5.3: Results of this flow when the slack filtering is disabled.

Benchmark Leakage WNS TNS

DMA slow 1.42% 6794.90% 248295.59%
pci bridge32 slow 4.02% 5853.70% 139380.54%

des perf slow 4.39% 762.84% 2573.43%
vga lcd slow 1.15% 1291.01% 8319.48%

b19 slow 0.47% 4988.07% 107301.85%
leon3mp slow 1.11% 2131.67% 1765.54%

netcard slow 1.01% -768.18% -100.00%
DMA fast 5.37% 4957.89% 34337.63%

pci bridge32 fast 3.77% 3434.12% 300253.16%
des perf fast 5.88% 1058.14% 7159.13%
vga lcd fast 1.21% 1267.29% 22980.71%

b19 fast 0.91% 1466.42% 43869.79%
leon3mp fast 2.76% 1309.09% 245862.04%

netcard fast 0.61% 2909.68% 52296.92%
avg 2.43% 2675.47% 86735.41%

5.12.2 Impact of Lambda-Delay Sensitivity

The lambda-delay sensitivity technique proposed in this thesis was introduced to give
a more global view of the effects of sizing a gate on the global timing. Since in this flow
the timing is updated only locally for sake of runtime. The main goal is to make a better
prediction of the actual timing change.

Table 5.4 shows the impact on results for ISPD 2012 benchmarks when the lambda-
delay sensitivity is deactivated. The results are taken after Lagrangian Relaxation and
before timing and power recovery. One can see that in fact this technique worsen sig-
nificantly the WNS and TNS by 165.20% and 249.43% respectively on average and only
provided a small reduction of 0.81% on average for the leakage.

However, when one compares the final leakage power using lambda-delay sensitivity
after timing and power recovery, the gains on leakage power are kept as shown in Table
5.5. For some designs, the leakage improvement can pass 3% and for all but one designs
there are gains in leakage power. It is important to note that these small gains are over
already very optimized designs. The impact on runtime of lambda-delay sensitivity is
negligible.

5.12.3 Slack Histogram and Slack Compression

The proposed flow has the desired property of compression the slacks at around the
zero slack as shown Figure 5.6 for design DMA fast. This property indicates that this flow
is not just reaching timing closure, but it is consuming the positive slack on non-critical
paths to improve power.

5.12.4 Size and Vth Changes in Each Iteration

Figure 5.8 shows how the sizes and threshold voltages change between iterations of
Lagrangian Relaxation method for DMA fast benchmark. Groups of bars represent size
changes and within a group, bars represent threshold voltage changes. Each group has 5



67

Table 5.4: Results of this flow when lambda-delay sensitivity is disabled.

Benchmark Leakage WNS TNS

DMA slow -0.62% 4.26% -36.19%
pci bridge32 slow -3.14% -44.33% -82.13%

des perf slow -0.79% 305.98% 445.36%
vga lcd slow -0.47% 376.53% 752.82%

b19 slow -0.14% 93.41% 26.82%
leon3mp slow -0.07% -19.71% 30.78%

netcard slow 0.00% 816.67% 1610.53%
DMA fast -1.75% 78.13% 411.26%

pci bridge32 fast -1.71% 13.33% 27.49%
des perf fast 0.10% 22.16% 8.92%
vga lcd fast -0.99% 70.36% 83.16%

b19 fast -0.59% 693.28% 202.36%
leon3mp fast -0.96% -16.77% -9.34%

netcard fast -0.19% -80.50% 20.18%
avg -0.81% 165.20% 249.43%

Table 5.5: Leakage power improvement using lambda-delay sensitivity on final results.

Benchmark Sensitivities No sensitivities Improvement

DMA slow 0.136319 0.140711 3.22%
pci bridge32 slow 0.13234 0.132975 0.48%

des perf slow 1.33391 1.33266 -0.09%
vga lcd slow 1.44257 1.45093 0.58%

b19 slow 1.39488 1.39587 0.07%
leon3mp slow 0.238322 0.242331 1.68%

netcard slow 0.413457 0.420279 1.65%
DMA fast 0.0962305 0.099212 3.10%

pci bridge32 fast 0.570168 0.573817 0.64%
des perf fast 0.563872 0.564284 0.07%
vga lcd fast 1.84101 1.84476 0.20%

b19 fast 1.76276 1.76282 0.00%
leon3mp fast 0.327798 0.329421 0.50%

netcard fast 0.716531 0.719399 0.40%
avg 0.89%
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Figure 5.6: Slack Compression

Iteration 1 Iteration 25

Iteration 50 Iteration 100
Source: from author (2015)

bars corresponding to the possible changes in the threshold voltage:

• -2: low→ high

• -1: low→ standard or standard→ high

• 0: no change

• +1: high→ standard or standard→ low

• +2: high→ low

For instance, if a cell has its size decreased by 4 and threshold voltage changed from high
to low it is accounted in the bar +2 in the group of bar at -4.

Analyzing the histogram, one can see that the sizes and threshold voltages changes
drastically in the first iterations, however after just few iterations, the changes start to
be restricted to neighbouring sizes, that is, cells are usually not increased or decrease by
more than a factor of 2. Also after initial iterations, the threshold voltages do not change
a lot. This indicates that the method can be improved in terms of runtime by testing only
a few candidates without significant impact on the quality of results.

5.12.5 Runtime Breakdown

Figure 5.10 shows the runtime breakdown of this flow when averaging all the ISPD
2012 benchmarks. As it can be seen, the Lagrangian Relaxation is the most timing con-
suming step in this flow.
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Figure 5.8: Sizes and Vth Changes

Iteration 1 Iteration 25

Iteration 50 Iteration 100
Source: from author (2015)

Figure 5.10: Runtime Breakdown

Source: from author (2015)

5.13 Results on ISPD 2013 Contest Benchmarks

Table 5.6 shows the outcome of this flow for the ISPD 2013 benchmark set and in-
frastructure. Again, this flow provides the best results in terms of leakage power for all
benchmarks when compared to the official results from the contest. Beside this work, the
best know-results for those benchmarks are generated by the 1st place team, which is a
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previous version of the flow presented in this theses. On average this flow can provide on
average a leakage power reduction of almost 10%.

For ISPD 2013, the lambda-delay sensitivity technique did not show any significant
improvement and the main reason it is because its was not devised to handle RC trees. An
extension to this idea is left as a future work

Table 5.6: Leakage power (W ), runtime (min) and clock period (ps) on ISPD 2013 bench-
marks comparing the contest results and our new results using accurate timing information
in TR and PR algorithms.

Benchmark
# of Clock Leakage Power (W ) Power Runtime (min) Speedup

Comb. Period Best ISPD Ours Ours Saved* Best ISPD Ours (X)Gates (ps) 2013 Contest New (No Runtime Limit) (%) 2013 Contest New
usb phy slow 510 450 0.0010745 0.0010740 0.0010685 0.05 0.58 0.49 1.18
usb phy fast 510 300 0.0016080 0.0015540 0.0015335 3.36 0.58 0.42 1.38
pci bridge32 slow 28K 1000 0.0578945 0.0569625 0.0569495 1.61 14.28 10.53 1.36
pci bridge32 fast 28K 750 0.0965110 0.0854375 0.0850370 11.47 87.03 22.62 3.85
fft slow 31K 1800 0.0903405 0.0866000 0.0865460 4.14 36.63 25.71 1.42
fft fast 31K 1400 0.2262075 0.1943070 0.1939070 14.10 52.15 40.43 1.29
cordic slow 42K 3000 0.3237910 0.2705140 0.2656670 16.45 94.70 69.04 1.37
cordic fast 42K 2626 1.4305775 1.000994 0.9801770 30.03 94.81 117.08 0.81
des perf slow 104K 1300 0.3530055 0.3304245 0.3272890 6.40 96.05 132.27 0.73
des perf fast 104K 1140 0.7939960 0.6488235 0.6444955 18.18 280.94 347.87 0.81
edit dist slow 121K 3600 0.4474025 0.4254925 0.4160390 4.90 116.23 123.90 0.94
edit dist fast 121K 3000 0.5963225 0.5397870 0.5354735 9.48 185.50 352.96 0.53
matrix mult slow 153K 2800 0.4697325 0.4442710 0.4429125 5.42 243.40 226.13 1.05
matrix mult fast 153K 2200 2.1300790 1.6109320 1.5415690 24.37 416.52 395.96 1.05
netcard slow 884K 2400 5.2456660 5.1552390 5.1548345 1.72 549.40 483.55 1.14
netcard fast 884K 2000 5.3178395 5.2001545 5.1815870 2.21 613.25 400.89 1.53
Avg.a 1860 9.62 180.13 171.87 1.28
Avg.b 1677 14.15 216.35 209.78 1.41

* Our solution with runtime limit compared to ISPD 2013 Contest.
a Considering all benchmarks.
b Considering only the benchmarks with ”fast” constraints.

5.14 Conclusions

Gate sizing is a step of the digital circuit flow where the proper sizes for circuit com-
ponents are defined so that it meets the desired performance and power consumption. In
its discrete incarnation, it becomes a NP-complete problem where one select the sizes or
threshold voltages from a library.

Lagrangian relaxation has been successfully applied to the gate sizing problem. For
continuous sizing and convex delay models, LR can even find the optimal solution. How-
ever for the discrete case it can be only used as a heuristic to find good solutions.

Lagrangian Multipliers distributed according to the KKT optimality conditions emerge
as an effective way to define which parts of the design need more attention.

This work presents a flow for simultaneous gate size selection and Vth assignment
based on the Lagrangian relaxation formulation. The well-know LR formulation is used
to guide our greedy algorithm to escape from local minima. To avoid large runtime, only
local timing is updated to compute the impact of change a cell size or threshold voltage.
However a method to propagate delay sensitivities is also proposed, so that the global
change can also be estimated.

The flow initially attempts to produce a solution without slew and load violations.
Then, the Lagrangian Relaxation guided greedy method using lambda-delay sensitivities
is applied to reduce the leakage power and to meet the circuit performance constraints.
After that, any remaining timing violations are handled by a path-based Timing Recovery
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method algorithm. Finally a power reduction technique is executed to reduce the circuit
power consumption without degrading the circuit timing.

The power savings achieved with the changes in the proposed flow and algorithms
is on average 9.62% compared to the best solutions from the ISPD 2013 Discrete Gate
Sizing Contest. The proposed approach is also the first to report violation-free solutions
for all benchmark circuits provided in the Contest.

The power saved using our algorithms reaches 28% compared to the most recent
works. On average, our solution could improve power in 9.53% compared with (HU
et al., 2012) and 12.45% compared with (LI et al., 2012). The method is, on average, 19x
faster than (HU et al., 2012) and 1.18x faster than (LI et al., 2012).

Though the contest formulation is simplified if one compare it with the requirements
at later stages of an industrial design flow, it still reflect the reality during early design
flow steps where precise information may not be available.

Moreover, the general idea of the LR formulation and the techniques presented in
this thesis to control the problem are still valid if one use a more precise engine to get
timing and power information. This extensibility can be seen in the work (REIMANN;
SZE; REIS, 2015) where authors extend and improve the flow presented here to handle
an industrial environment.

Similar to the work of Mustafa et. at (OZDAL; BURNS; HU, 2011), this work can be
extended with a few changes to use a sign-off timer which can then handle more complex
timing as crosstalk, false paths, multiple clock domain, etc. Since most sign-off timers
do not provide a local timing update, an internal, probably simplified timer would be still
required to select the best candidate.

The main drawback of the current flow is its inability to perform incremental opti-
mization. This means that it cannot take an already optimized solution and then further
optimize it. Defining “good” initial Lagrange multipliers so that the Lagrangian formu-
lation does not perturb a lot the current solution, but take advantage of it, is still an open
question. The authors of (REIMANN; SZE; REIS, 2015) explore this idea, but a more
detailed analysis is still required.

If the sizing is ran after placement, the placement needs to be adjusted if a cell is
upsized and it does not fit the current space. In this work, such effects were ignored
and the integration between the sizing and placement needs to be explored. However,
considering the large amount of white space left in the design to allow exactly this kind of
changes, performing a legalization step after the sizing may have a non-significant impact
o the quality of results. However this need to be further analyzed.

Lambda distribution can be further explored. Although KKT optimality conditions
imply a relation between the input and output lambdas of pin, it does not say how this
lambda should be updated or distributed. An example can be seen in a buffer chain. Due
to KKT conditions, all lambdas must be the same and, as in the case of slack, they are not
useful to indicate which cell provides the best delay gain with the least amount of power
consumption.
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6 PLACEMENT

Placement is the stage where the positions of the design components are defined. It
has a major impact on the design performance as it is the main responsible to define the
interconnection lengths, which nowadays play a major role in the definition of design
performance. Moreover a bad placement may lead to a design that cannot be routed as
the demand of interconnections surpass the available routing spaces. A bad and a good
placement for the same small design are depicted in Figure 6.1. Clearly the bad solution
may lead to much more congestion and delay than the good one where connected cells
are closer to each other.

Figure 6.1: Influence of Placement on Wirelength
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The placement step can be divided into three main sub-steps: (1) global placement; (2)
legalization and (3) detailed placement. These phases and their outputs are represented in
Figure 6.3.

Global placement roughly defines the component positions allowing some overlap
among them. The main goal is to minimize the wirelength, which indirectly improves
timing and congestion. However, as the timing information and congestion becomes
available, the global placement uses this information to produce even better results al-
ready aiming congestion and timing.

During legalization overlaps are removed and the components are moved to legal po-
sitions. A typical goal of legalization is to minimize the total displacement of cells w.r.t.
the non-legalized position. Although other metrics can be applied as wirelength mini-
mization, minimizing the displacement is usually a good strategy as the initial placement
can be optimized not just for wirelength.

After legalization, detailed placement further improves the placement solution by ap-
plying more local optimizations techniques keeping the circuit legalized. Different from a
global placement only a few components are usually handled. Also more precise routing
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Figure 6.3: Main Steps of a Placement Stage
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or timing information is used to perform the optimization improving the correlation with
the final design solution.

6.1 Timing-Driven Detailed Placement

A timing-driven placement is any placement method that takes into account timing
information. During global stages the timing information is usually used to increase the
weight of critical nets or to add virtual nets to mimic critical paths (VISWANATHAN
et al., 2010). In detailed placement, since fewer cells are handled, one can rely on more
sophisticated timing information.

Timing-driven detailed placement (TDDP) seeks to improve timing by moving some
cells to new legal positions fine-tuning the design after global placement and legalization.
A pure TDDP can improve timing by reducing the wirelength of critical paths and bal-
ancing the loads of critical cells based on their drive strength. However the shortening of
an interconnection typically comes at the cost of increased wirelength on other intercon-
nections. As many critical paths interact with each other by improving a path one may
worsen other paths so a TDDP should meticulously trade-off the wirelengths.
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6.2 Related Works

Most of the timing-driven placement techniques are divided into 2 groups: net-based
(KONG, 2002; TSAY; KOEHL, 1991; BURSTEIN; YOUSSEF, 1985) and path-based
approaches (PAPA et al., 2008; WANG; LILLIS; SANYAL, 2005; WILLIAM SWARTZ,
1995).

The former group prioritizes nets with timing violations by assigning them higher
weights during global wirelength-driven placement or by assigning a max wirelength for
them. These techniques can deal with a lot of violations at the same time, keeping a global
view of the problem. However, while these nets are optimized, other violations may show
up and, thereby, new constraints need to be created. At the end, the problem may be over
constrained, and the solution may be a local minima. Over constrained solutions also may
lead to congestion and can affect routability.

On the other hand, path-based approaches focus on fixing a set of critical or near
critical paths. The idea is to straighten the critical paths in order to reduce their length.
The procedure can be done by heuristic local search or linear programing techniques.

ITOP (VISWANATHAN et al., 2010) proposes various techniques in order to achieve
timing closure. The first one is a netlist transformation in which virtual 2-pin nets are
created linking cells in critical paths to raise attraction between them in global placement.
Furthermore, an incremental path smoothing algorithm locally moves critical modules
trying to achieve local improvements. Unlike most algorithms, after changing the solu-
tion, small movements are performed to mitigate congestion and to ensure routability.
Finally, the authors combine other techniques, like buffering and sizing (repowering), to
further improve the solution quality.

A set of local search algorithms was proposed by (BOCK et al., 2015). Their work
rely on two strategies: path straightening and clustering. The goals of clustered movement
are to speed up the execution time and to escape from suboptimal solutions. The idea is
to minimize the euclidean distance between the most critical upstream and downstream
pins of a cluster.

A formulation using Lagrangian Relaxation to mitigate Timing-Driven Placement
(TDP) timing violations was proposed by (GUTH et al., 2015). The proposed technique
updates dynamically net’s weights according to Lagrange multipliers.
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7 DRIVE STRENGTH AWARE CELL DISPLACEMENT FOR
TIMING-DRIVEN DETAILED PLACEMENT

A timing-driven detailed placement takes an already legalized placement solution and
tries to further improve it by applying small local changes keeping the placement legal-
ized.

7.1 Contributions

In this thesis, several techniques for early and late timing violations are developed and
integrated into a flow to improve the overall design timing.

For late violations, the following new techniques are presented:

• drive strength aware single cell placement based on an analytical formulation to
find the optimal position to place a cell in order to minimize delay;

Although early violations may be best handled by other techniques as wire snaking,
gate sizing or even retiming, some techniques for early violation reduction during detailed
placement are developed for completeness:

• register-to-register path fixing by optimal displacement among the input and output
registers;

• register swapping by optimal assignment algorithm where registers driven by the
same local clock buffer are swapped to take advantage of useful skew.

Moreover a new way to weight the importance of pins and hence cells is devised. This
can be used to determine which cells are more import for timing closure. The importance
factor is also used to filter out bad perturbations caused by noise due to re-routing or
model imprecision.

Although a timing-driven detailed placement flow is presented, the techniques can be
independently implemented in any timing-driven detailed placement flow.

7.2 Scope

The techniques developed in this thesis are designed to be executed just after the
legalization step, but prior to routing as illustrated by Figure 7.1.

Routing is estimated via minimum Steiner trees, which correlate well with the final
routing (CHU; WONG, 2008). The Elmore delay is used to model the interconnection
delays.
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Figure 7.1: Timing-Driven Detailed Placement in the Design Flow
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Since the Elmore model is just an upper bound of the actual delay, an optimization
of the Elmore delay may not be seen in the actual delay. However, as the Elmore delay
precision increases for small fanout nets and for short wires and those are goals of a design
flow, the improvements on Elmore delay are likely to be reflected in the actual delay.

The empirical validation of the flow is also done before routing using the simplified
interconnection model based on Elmore delay. However, by the nature of techniques
created, they can be seamlessly run on a more sophisticated timing engine making them
suitable even for later stages of the design flow.

7.3 Criticality and Centrality

The criticality ∈ [0, 1] of a pin is the negative slack of the pin divided by the worst
negative slack found in the design. The normalized centrality ∈ [0, 1] of a pin is a rough
measure of how many critical endpoints are affected by the pin. It can be seen as the
importance of such pin to the Total Negative Slack (TNS). The importance of a pin p is
then defined as in Equation (7.1).

2× centrality(p) + criticality

3
(7.1)

The centralities are computed by traversing the design in reverse topological order.
By definition, the centrality at endpoints is set as the endpoint criticality. The centrality
of an output pin is simply the sum of centralities of the pins it drives. The centrality of
the output pin is then proportionally distributed among the input pins of the respective
cell according to the input pin criticalities. Centrality values can be seen as the endpoint
criticalities flowing through the circuit, which is a standard technique used by timing
driven optimization methods based on Lagrangian Relaxation (AHUJA; MAGNANTI;
ORLIN, 1993) to obey the KKT optimally conditions.
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7.4 Moves

The techniques developed in this work are called moves as they typically move a
single cell at a time aiming timing improvement. The moves presented in this work are
summarized in the Table 7.1.

Table 7.1: Moves Developed in this Thesis

Move Goal Description

Skew Optimization Early Move register at end of critical timing path closer
to the local buffer that drivers it in order to re-
duce clock latency and hence improve timing vi-
olation.

Iterative Spreading Early Iteratively seeks a best position to a cell moving
it tentatively to north, south, east and west.

Register Swap Early Swap registers connected to the same lock clock
buffer in order to take advantage of useful skew.

Reg-to-Reg Path Fix Early Fix critical paths connecting directly two regis-
ters by moving away the input register. It uses
an analytical formulation to identify how much
the input register must be moved away from the
output register.

Buffer Alignment Late Find a best position to place a buffer between its
driver and sink. An analytical formulation is pro-
vided to find the optimal displacement w.r.t. the
driver.

Cell Alignment Late Extend the buffer alignment algorithm to handle
general cells with multiple fanouts.

Load Reduction Late Move non-critical sinks closer to the driver in or-
der to reduce the load and hence improve timing.

7.4.1 Legalization

After a move is executed, the cell is likely to overlap other cells and a legalization
needs to be performed. To avoid perturbing the already placed cells, the cell is placed in
the nearest available white space as depicted by Figure 7.2.

Current designs have a lot of white space left there to improve routablity, making it
easier to perform incremental changes such as sizing and detailed placement. The moves
presented in this thesis take advantage of this precious resource to reduce the impact on
already legalized cells and hence to reduce the noise caused due to rerouting.

Other possible solution would be to allow cells to overlap and then perform a full
legalization at the end of the flow, but the legalization may destroy the fine tuned im-
provements obtained by a single move. Other drawback of a full legalization is that it
does not allow filtering out bad moves before committing them.

7.4.2 Filtering out Bad Moves

A cell movement may cause the Steiner trees connected to the cell to change dras-
tically and hence huge timing variation may occur, which misleads some optimization
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Figure 7.2: Legalization via Nearest White Space Search

Before After

Source: from author (2015)

methods. To avoid timing degradation caused by such changes and also by legalization
noise, local timing is evaluated and the move is optionally committed only if the local
timing does not degrade.

The degradation is computed as ∆cost where the cost is the sum of the weighted
arrival times of the neighboring pins of the cell. In this work, the weight is set to
centrality+criticality, which gives more importance to TNS-critical pins. This weight-
ing function also helps to avoid focusing too much on Worst Negative Slack (WNS) im-
provement which may cause large degradation on TNS.

7.5 Late Optimization

In this section we present a set of techniques that targets to decrease wire load capac-
itance and resistance of the critical nets. We also propose an analytical formulation to
explore driver strength in critical nets to reduce late violations. We obtain the optimum
local position where the late timing violation is locally minimized.

7.5.1 Buffer Balancing

After buffer insertion, the circuit may contain several buffer chains. However place-
ment is not always aware of the different driver strengths of cells that compose the chain
including the initial and final possible non-buffer cells, which may degrade timing. The
general idea of buffer balancing is shown in Figure 7.4 where the delay of the path seg-
ment is reduced if the buffer is placed closer to its sink.

To find the displacement where the delay is minimum, an analytical formula is de-
vised. This formula takes into account the cell strengths assuming that the interconnec-
tion is modeled as an RC tree and its delay is computed via Elmore delay (ELMORE,
1948). We assume the buffer’s driver and its sink are fixed while the buffer can freely
move between them. Moreover the driver is also assumed to drive only the buffer. This
idea can be applied iteratively so that buffer chains with arbitrary number of buffers can
be handled. In our experiments, only a few iterations are necessary to align all the buffers
in the design.

Figure 7.6 shows a single buffer chain, whose delay,D can be described as in Equation
(7.2) using the Elmore delay model.
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Figure 7.4: Buffer Balancing Technique aims to find a buffer position that minimizes
timing violation.
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Source: from author (2015)

Figure 7.6: Buffer Balancing Technique Modeling

Source: from author (2015)

D = R0 (C1 + d0Cw) + d0Rw

(
C1 +

d0Cw
2

)
+ p0

+R1 (C2 + d1Cw) + d1Rw

(
C2 +

d1Cw
2

)
+ p1

(7.2)

whereR0 is the resistance of the buffer’s driver, C1 is the input pin load capacitance of the
buffer, d0 is the wirelength from driver to buffer, Rw is the wire resistance per unit-length,
Cw is the wire capacitance per unit-length,R1 is the buffer resistance, d1 is the wire length
from the buffer to its sink, C2 is the load capacitance on the input sink pin, p0 and p1 are
parasitic delay of the driver and buffer, respectively.

Considering that d = d0 + a + d1 where a is the distance of input and output buffer
pins, the minimum delay is obtained by setting ∂D

∂d0
= 0 as described by Equation (7.3),

which for practical purposes is clamped in the range [0, d].

d0 =
Cw (R1 −R0) +Rw [C2 − C1 + Cw (d− a)]

2CwRw

(7.3)

Equation (7.4) defines the optimal displacement of the buffer w.r.t. its driver. As Manhat-
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tan routing is commonly used, this may lead to multiple optimal positions. However by
placing the buffer on the straight line connecting the driver and sink may help straight-
ening the path which is a very common way to improve delay. Therefore, the buffer is
placed on the straight line by setting its position to

Pb = Pd +
d0
d
× (Ps − Pd) (7.4)

where Pb is the new buffer position, Pd is the driver position and Ps is the sink position.

7.5.2 Cell Balancing

In this section, we extend the formulation of buffer balancing to handle more general
cases, i.e, non-buffers cells with multiple input pins and driving multiple sinks. To do so,
we first compute the cell position for each timing arc individually and then combine the
results to obtain the best cell position.

We restrict the region of a cell movement between the point it connects to its driving
tree, here called driver point, and the point it connects to the sink tree, sink point, as shown
in Figure 7.7.

Figure 7.7: Cell Balancing Technique Modeling

driver point

sink point

Source: from author (2015)

Let Rup be the upstream resistance of the driver point (i.e. the sum of the resistance
from the driver point up to the root of the tree, which includes the driver resistance). Let
Dup be the delay at the driver point when the branch from the driver point to the cell
is removed. Let Cdown be the downstream capacitance of the sink point excluding any
capacitance added by the branch connecting the cell to the sink point (i.e. sum of all
capacitances from the sink point down to all leaf points including pin capacitances). Then
the delay, D, from the driver cell being considered and the sink point is given by Equation
(7.5)

D = D0 +D1 (7.5)



83

where
D0 =Dup +Rup (C1 + Cwd0)

+ d0Rw

(
C1 +

d0Cw
2

)
+ p0

(7.6)

is the delay from the driver cell to the input of current cell and

D1 = R1 [Cdown + d1Cw] + d1Rw

[
Cdown +

d1Cw
2

]
+ p1 (7.7)

is the delay from the current cell to the sink point, C1 is cell input pin capacitance, d0 is
the wirelength between the driver point and the cell, d1 is wirelength from the cell to the
sink point, R1 is the cell resistance and p0 and p1 are the driver and cell parasitic delay,
respectively.

To a reason that will be apparent later D0 and D1 are weighted by w0 and w1 respec-
tively so that the weighted delay is given by Equation (7.8).

D = w0D0 + w1D1 (7.8)

Considering that d = d0 + a+ d1 where a is the distance of input and output cell pins,
the minimum delay is obtained by setting ∂D

∂d0
= 0 as described by Equation (7.9) which

for practical purposes is also clamped in the range [0, d].

d0 =
w1CwR1 − w0RwC1 + w1Rw [Cw(d− a) + Cdown)]

RwCw(w0 + w1)

− w0RupCw
RwCw(w0 + w1)

(7.9)

Note that Equation (7.9) reduces to Equation (7.3) for a single buffer chain. The final
position is obtained in the same way as in the buffer alignment technique.

Since we may have several target positions, one for each input pin, they are combined
by their weighted average. Where the weight of each position is the importance of the
input pin.

The reason to weight the partial delays is due to the effect on the delay of side cells. By
minimizing the delay of a tuple driver-cell-sink we may degrade the delay of other cells
nearby. For instance, if the critical sink of the driver is not the cell we are handling and
if the cell moves away from the driver it will probably increase the delay on the critical
cell due to the increased load capacitance. Here we use the driver’s output pin importance
as w0 and the cell’s output pin importance as w1. Note that if the driver is more critical
than the sink, the cell will likely get close to the driver, reducing its load capacitance and
hence improving its delay.

7.5.3 Load Optimization

For critical nets with more than two cells, the sink cells with no late violations (i.e.
positive slack) are moved closer to their driver cells in order to improve timing as shown
in Figure 7.8. The main idea behind this approach is to reduce the interconnection load
capacitance of critical nets and therefore improve the delay of the driver cell. Since the
sinks moved are non-critical, the paths passing through them are likely to not generate
new violations.

The movements are accepted only if they actually reduce timing violations in critical
nets and do not cause timing violation in the sink cells. Otherwise, non-critical sink cells
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are kept in their initial position. To accomplish that, after routing trees are re-built, the
timing is updated locally.

Figure 7.8: Load Reduction of critical nets. Non-critical sinks (gray cells) are moved
closer to their driver cell (D).
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Source: from author (2015)

7.6 Early Optimization

In this section, techniques for early violation mitigation are presented. Let us consider
a timing path between two registers. The register at the beginning of the path is called
input register and the register at the end, output register. The early slack in a register-to-
register path is defined by Equation (7.10)

slackearlyD = atearlyD − ratearlyD

slackearlyD = learlyi + dearlypath − l
late
o − thold

(7.10)

where atearlyD and ratearlyD are the early arrival and required time respectively at the data
input pin of the input register, learlyi and llateo are the early and late clock latency at the
clock pin of input and output registers respectively, dearlypath is the early delay among the
registers and thold is the hold time of the output register.

According to Equation (7.10), the early slack can be improved by (1) increasing the
path delay, (2) increasing the clock latency at the input register, (3) decreasing the clock
latency on the output register and (4) decreasing hold time. In this work, hold time is
considered constant. The difference among the clock latencies is called clock skew.

In this section, techniques for early violation mitigation during the placement are also
presented. We present four algorithms targeted to minimize early violations. The pro-
posed algorithms explore wire load capacitance and resistance of the critical nets and
useful clock skew to minimize early timing violations.

7.6.1 Skew Optimization

The early slack can be improved by decreasing the clock latency on the output register.
One way to achieve that is by moving the register closer to the clock source (e.g. a local
clock buffer) as depicted in Figure 7.10.

Although the latency on the moved register is typically reduced, there might be side
effects as latency changes on other registers and it can impact on other data path delay.
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Figure 7.10: Useful Clock Skew Optimization by Moving Registers Closer to Local Clock
Buffers.
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Source: from author (2015)

Also a register can be both the start and end point of different paths. So a reduction on
the latency may improve the slack on the incoming path, but may worsen the slack on the
outgoing path. However, our experimental results showed that this technique is effective
to improve early slack, on average.

7.6.2 Iterative Spreading

The iterative cell spreading tentatively moves all cells with early timing violation to
north, south, east and west as shown in Figure 7.12. If a better position is not found,
the search area is increased. It is limited by maximum cell displacement. The cost of
a position is calculated updating timing locally and checking if the arrival time in the
involved pins have increased.

Figure 7.12: Iterative Spreading

Source: from author (2015)

7.6.3 Register Swap

Register swap tries to avoid the side effect on clock latency present in useful clock
skew optimization (Section 7.6.1). Assuming that the registers are all the same (e.g. same
size, Vth), by swapping the registers driven by a same clock source, the clock tree and its
timing characteristics will not change. Hence the latency on each tree endpoint can be
seen as constant.
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The register swap is modeled as an assignment problem similar to (HELD; SCHORR,
2014), which can be optimally solved in polynomial time by the Hungarian algorithm
(KUHN, 1955). The current register positions are seen as the slots to where the register
should be assigned as illustrated by Figure 7.13. The goal is to minimize the total cost of
the assignment.

Figure 7.13: Register Swap by Optimal Assignment
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The cost to assign a register i to a slot k is set as in Equation (7.11) where criticalityearlyD

and criticalityearlyCK are the criticality of the data and clock pins of the register, respec-
tively. The maximum displacement constraint can be modeled by setting an infinity cost
whenever an assignment violates the maximum allowed displacement.

cost(i, k) = llatecriticalityearlyD − learlycriticalityearlyCK (7.11)

The idea behind this cost function is as follows. When the register acts as the output
register (path ends at the data pin), according to Equation (7.10), its clock latency should
be decreased to improve slack. In terms of assignment cost, a larger latency should imply
a larger cost (+llatecriticalityearlyD ). Similarly, when the register acts as the input register
(path starts at the clock pin), its clock latency should be increased. From an assignment
cost point of view, a larger latency should imply a smaller cost (−learlycriticalityearlyCK ).
The latencies are weighted by pin criticalities to optimize latency based on the influence
of registers on timing violations.

7.6.4 Register-to-Register Path Fix

A common source of hold violations is a path connecting directly two registers, i.e.
no combinational logical cells between them, as show Figure 7.14.

Besides skew optimization, early (hold) violations can be fixed by increasing the tim-
ing path delay. By setting the early slack to zero in Equation (7.10), the path delay that
eliminates the violation is given by Equation (7.12).
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Figure 7.14: Register-to-Register Early Violation Path Fix
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Source: from author (2015)

dearlypath = llateo + thold − learlyi (7.12)

In the case of a direct path between registers, the timing path delay is simply composed
by the cell delay plus the wire delay and it can be increased by moving the registers apart.
Assuming that the cell delay is modeled via its driver resistance and the wire via Elmore
delay, Equation (7.12) can be rewritten as in Equation (7.13) where x is the distance
between the input and output registers and K = llateo + thold − learlyi .

K = Ri (xCw + Co) + xRw

(
xCw

2
+ Co

)
(7.13)

Assuming that the latencies do not change as the registers are moved apart and that
the hold time is also constant (i.e. K is constant), Equation (7.13) can be solved w.r.t. x
as in Equation (7.14).

x =

√
2CwRwK + Co

2Rw
2 + Cw

2Ri
2 − CoRw − CwRi

CwRw

(7.14)

Once the optimum displacement is calculated, the input register is moved away from
the output register following the straight line formed by the two registers.

7.7 Flow

The techniques presented in this thesis are combined in a flow for timing-driven de-
tailed placement as shown in Figure 7.15. The diamond shape indicates that the steps are
run until the quality of the result is not improved. The circle shape indicates that the qual-
ity of the result can degrade a certain number of times before exiting. The best solution
found is restored.

Since the techniques are independent from each other, they can be combined in any
order, although a specific combination may lead to better results than others. The partic-
ular order used in this work was chosen empirically and intuitively so that techniques can
cooperate, instead of compete with each other.

The flow is divided into two main phases: early optimization and late optimization.
Usually after each optimization technique the quality of results is asserted; if it degraded
the current solution is discarded and the previous one recovered. This way we can filter
bad results caused any imprecision in the present techniques. After each step, the routing
and timing are updated incrementally.



88

Figure 7.15: Timing-Driven Detailed Placement Flow
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The first method during the early optimization is the iterative local search, which is
the only step allowed to degrade the quality of result. The rationale is that the clock skew
has a large influence on early violations which may introduce a large noise in the timing
change estimate. Experiments show that is better to allow degradation and keep track
of the best solution than to stop immediately when a degradation occurs. If the iterative
local search was not able to remove all the early violations, the register swap and optimal
shifting are executed.

Late optimization comprises a loop composed of one iteration of the three techniques
for late violation presented in this thesis: buffer alignment, cell alignment and load opti-
mization. The load optimization was defined to run last as it may get harder to a cell to be
aligned if its non critical sink are placed next to it.

7.8 Experimental Setup

Our flow and techniques are empirically validated using the ICCAD 2015 timing-
driven detailed placement contest infrastructure.
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7.8.1 Quality Score

Quality score proposed by International Conference on Computer Aided Design (ICCAD)
2014 Contest is used to evaluate our timing-driven detailed placement flow. The quality
score of a placement solution is defined by the Equation (7.15)

Q = 100× wabu (abu′ − abu)

 ∑
i∈{tns, wns}

wi Qi

 (7.15)

where

Qwns =
∑

j∈{early, late}

wj

(
1−

WNS′j
WNSj

)
(7.16)

indicates how much the current WNS has improved from the initial WNS’ and

Qtns =
∑

k∈{early, late}

wk

(
1− TNS′k

TNSk

)
(7.17)

indicates how much the current TNS has improved from the initial TNS’. In the infras-
tructure of the ICCAD 2014 and 2015 contest (KIM; HUJ; VISWANATHAN, 2014;
KIM; HU; VISWANATHAN, 2015), the weighting factors are defined as: wtns = 2.0,
wwns = 1.0, wabu = 1.0, wearly = 1.0, and wlate = 5.0. The maximum quality score ob-
tained from slack improvement is 1800 points when all timing violations are eliminated.

7.8.2 Benchmarks

In Table 7.2 the configuration of the circuits from ICCAD 2015 Contest is presented.
The set of benchmarks is composed by eight circuits that have from 760K to 1.9M cells.
The algorithms were evaluated for two maximum displacement (MaxDis). One of them
is very restricted, less than 50µm, and the second one has more room to search for a
solution, up to 500µm.

Table 7.2: Configuration of the ICCAD 2015 Contest benchmarks.
Benchmarks Data Ratio of Timing Violations

Circuits #Gates Tclk
(ns)

MaxDis
(µm)

ABU
Penalty

STWL
(um)

Max
Util.

Early (ps) Late (ps) Early (×10−3) Late

WNS TNS WNS TNS WNS/
Tclk

TNS/
Tclk

WNS/
Tclk

TNS/
Tclk

superblue16 768068 5.5 20-400 3.34E-2 9.33E+7 0.85 -10.65 -113.75 -4.58E+3 -7.76E+5 1.94 20.68 0.83 141.10
superblue18 981559 7.0 30-400 4.01E-2 5.77E+7 0.85 -19.01 -283.00 -4.55E+3 -1.03E+6 2.72 40.43 0.65 147.83
superblue4 795645 6.0 50-500 4.40E-2 7.15E+7 0.90 -12.55 -519.39 -6.22E+3 -3.48E+6 2.09 86.56 1.04 579.45

superblue10 1876103 10.0 20-400 4.17E-2 2.05E+8 0.87 -8.62 -620.95 -1.65E+4 -3.32E+7 0.86 62.10 1.65 3,315.28
superblue7 1931639 5.5 50-400 2.97E-2 1.40E+8 0.90 -7.65 -1,985.85 -1.52E+4 -1.86E+6 1.39 361.06 2.77 337.71
superblue1 1209716 9.5 40-500 5.37E-2 9.59E+7 0.80 -9.34 -317.44 -4.98E+3 -4.60E+5 0.98 33.41 0.52 48.39
superblue3 1213253 10.0 40-400 2.87E-2 1.14E+8 0.87 -78.36 -1,458.78 -1.01E+4 -1.50E+6 7.84 145.88 1.01 150.28
superblue5 1086888 9.0 30-400 2.08E-2 1.08E+8 0.85 -36.77 -591.42 -2.57E+4 -6.97E+6 4.09 65.71 2.86 773.91

7.8.3 Assumptions and Limitations

The main limitation of this thesis’ approach is the use of Elmore model to estimate the
interconnection timing characteristics. Although in absolute terms Elmore delay may not
be an accurate estimation of interconnection delay, still optimizing it will faithfully lead
to the optimization of the actual interconnection delay.

Also Elmore delay is more accurate for short wires and nets with small number of
pins, which is the vast majority of nets in a design as big nets are usually buffered and
wirelength minimization is a target during the flow optimization.
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On the bright side, Elmore delay is fast to compute when compared to MOR and Spice
simulation. So, in spite of its inaccuracy, it allows more optimization transformations to
be done in the same amount of time.

The contest setup also imposes a hard constraint on the maximum displacement al-
lowed to a cell. The main reason is to avoid large perturbations on the global solution,
which may be optimized for other metrics as congestion and/or goals as power islands.
However this also imposes an artificial bound on the achievable improvements, but, on
the other hand, allows one to identify which techniques work better for small or large
displacements.

7.9 Library Characterization

The drive strength aware techniques proposed in this thesis use the switch gate level
to model each arc of cells. This model uses a single resistance, usually called driver
resistance, to approximate the arc delay. The smaller this resistance, the larger the arc
drive strength (ability to draw current) and hence the faster it is.

Since arcs may have different drive strengths depending on the transition, a separate
drive resistance is computed for rise and fall transitions. However, for clarity, this is
hidden in the following description.

To obtain the driver resistance, the arc delay is sampled for several loads and approx-
imated by a linear function using least square fit as shown in Figure 7.16.

Figure 7.16: Estimating the Driver Resistance of a Timing Arc (Cell)

gain

delay

Source: from author (2015)

The arc delay is then described by Equation (7.18) where p is the intrinsic or parasitic
delay, Rdriver is the driver resistance and Cload is the load.

d = p+RdriverCload (7.18)

The delay samples are obtained directly from the 2D lookup-table that describe each
timing arc in the Liberty file. As this table requires also an input slew besides the output
load, a reference slew is computed to characterize the common and expected slew in the
design.

The reference slew is obtained from the output slew of the smallest inverter available
in the library driving itself until the slew converges at the output as shown in Figure 7.17.
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Figure 7.17: Reference Slew Computation

Source: from author (2015)

Table 7.3 presents the actual delay from look-up table and the delay computed via the
RC modeling for a cell in the library. As it can be seen, for the library used in the contest
the model predicts almost precisely the delay from library for the reference slew. This
behavior is also seen for other arcs in the library.

Table 7.3: Comparison between the actual delay and the delay estimated via driver resis-
tance.

Gain Look-up Table Model Error (%)

1 22.9493 22.9431 -0.03%
2 29.1893 29.193 0.01%
4 41.6933 41.6928 0.00%
8 66.6893 66.6924 0.00%

16 116.693 116.692 0.00%
32 216.689 216.69 0.00%

The linear relation of delay with respect to the gain is a well-known and useful prop-
erty as presented in the Logical Effort theory. Although the relation usually does not hold
as precisely as in the library used for the ICCAD contest, it can still provide a fair estimate
of cell delays. For this reason, this flow is expected to work with other libraries as well.

Table 7.4 presents the improvements of this flow w.r.t. the initial placement for the
long maximum displacement. As it can be seen this flow can provide on average 10.25%
reduction on WNS and 32.8% on TNS for late timing mode with an impact of just 1.74%
on wirelength and an increase of 11.66% on density as measured by ABU.

Table 7.5 presents the improvements of this flow w.r.t. the initial placement for the
short maximum displacement. As it can be seen this flow can provide on average 4.33%
reduction on WNS and 13.23% on TNS for late timing mode with an impact of just 0.23%
on wire length and an increase of 4.41% on density as measured by ABU.

Table 7.6 presents the comparison of this flow and the 1st place of ICCAD 2015 Con-
test for long displacement. As it can be seen this flow provides a clear improvement over
the best contest results in terms of quality score of almost 60% on average. Most of qual-
ity score gains however comes from improvements on early violations. On late violations,
this flows can provide almost 2% improvement on WNS and almost 10% improvement
on TNS on average. The gains on WNS are bounded as some cells on the critical paths of
benchmarks are fixed reducing the room for improvement and flattening the improvement
results. This is more evident on the benchmark superblue7 where all cells in the critical
path are fixed.
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Table 7.4: Improvement of this flow over the initial placement results for long maximum
displacement.

Benchmark ABU StWL eWNS eTNS lWNS lTNS QS

superblue16 16.92% 1.50% -100.00% -100.00% -18.61% -70.33% 1,090.21
superblue18 2.28% 0.99% -100.00% -100.00% -17.46% -39.39% 780.46

superblue4 19.26% 4.78% -100.00% -100.00% -8.60% -32.10% 658.35
superblue10 11.32% 2.43% -100.00% -100.00% -5.51% -15.79% 483.11

superblue7 1.68% 0.47% -9.40% -2.84% 0.00% -27.40% 288.90
superblue1 22.33% 2.17% 0.00% -88.41% -10.65% -26.17% 485.83
superblue3 7.22% 0.52% -83.77% -99.13% -17.09% -37.16% 737.50
superblue5 12.28% 1.04% -100.00% -100.00% -4.10% -14.06% 459.96

avg 11.66% 1.74% -74.15% -86.30% -10.25% -32.80%

Table 7.5: Improvement of this flow over the initial placement results for short maximum
displacement.

Benchmark ABU StWL eWNS eTNS lWNS lTNS QS

superblue16 8.95% 0.27% -92.13% -98.91% -4.94% -38.29% 695.41
superblue18 0.61% 0.10% -17.88% -67.92% -8.91% -8.55% 283.70
superblue4 3.55% 0.34% 6.24% -76.50% -3.80% -10.69% 272.25

superblue10 5.53% 0.26% -26.09% -57.62% -1.12% -3.69% 183.42
superblue7 1.58% 0.14% -9.40% -2.86% 0.00% -14.21% 157.14
superblue1 7.27% 0.42% 0.00% -85.07% -7.37% -17.01% 375.64
superblue3 1.74% 0.09% -65.39% -72.03% -7.18% -9.89% 344.03
superblue5 6.04% 0.20% -2.25% -50.05% -1.31% -3.54% 144.11

avg 4.41% 0.23% -25.86% -63.87% -4.33% -13.23%
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A drawback of this flow is the increase of density as measured by ABU. The ABU
metric has a small impact on quality score, but this increase indicates that some regions
of the design are being over filled,which will lead to congestion issues. The main culprit
of such increase is the load optimization technique, which moves non-critical sinks closer
to its driver. Preliminary analysis show that this can be mitigated by scaling the total
displacement of the sinks the the importance of the driver. That is, the more critical the
driver, the more the sink is moved. Applying this simple scaling scheme, the impact on
ABU is reduced, but with negative impact on WNS e TNS, although the overall quality
score is still better than the 1st place.

Table 7.6: Comparison of this flow and results from the 1st place at ICCAD 2015 contest
for long maximum displacement.

Benchmark ABU StWL eWNS eTNS lWNS lTNS QS

superblue16 -3.28% 1.07% -100.00% -100.00% -3.04% -13.31% 21.84%
superblue18 -8.19% 0.78% -100.00% -100.00% -1.56% -19.16% 27.30%
superblue4 8.79% 4.59% -100.00% -100.00% -1.32% -4.21% 29.77%

superblue10 7.26% 2.32% -100.00% -100.00% -3.09% -11.42% 166.42%
superblue7 -3.86% 0.35% 2.58% -1.47% 0.00% -10.74% 43.93%
superblue1 16.75% 1.99% -43.89% -54.52% -2.73% -3.36% 40.16%
superblue3 -0.58% 0.32% -3.19% -94.06% -3.36% -18.59% 33.67%
superblue5 10.48% 0.83% -100.00% -100.00% 1.47% 2.45% 156.21%

avg 3.42% 1.53% -68.06% -81.26% -1.70% -9.79% 64.91%

For short maximum displacement, as it can be seen in Table 7.7, this flow still provides
the best results on average in terms of quality score, but now the results are less expressive.
Since cells are allowed to be moved, the maximum achievable improvements are expected
to be smaller.

Table 7.7: Comparison of this flow and results from the 1st place at ICCAD 2015 contest
for short maximum displacement.

Benchmark ABU StWL eWNS eTNS lWNS lTNS QS

superblue16 -10.33% 0.03% -89.99% -95.96% -0.20% -6.87% 32.53%
superblue18 -5.55% 0.02% 310.12% 30.84% 0.58% 0.29% -22.33%

superblue4 1.14% 0.32% 119.35% -29.82% 0.70% -2.83% -5.32%
superblue10 1.32% 0.19% -26.08% -27.12% 0.71% -1.80% 63.97%

superblue7 -2.94% 0.09% 2.58% -0.75% 0.00% -6.48% 59.56%
superblue1 -0.70% 0.26% 144.18% 14.04% -1.28% 1.93% -16.07%
superblue3 -5.09% -0.02% -58.74% -40.31% -0.20% -1.37% 41.47%
superblue5 2.37% 0.16% -2.25% -49.57% 1.16% -0.90% 254.37%

avg -2.47% 0.13% 49.90% -24.83% 0.18% -2.26% 51.02%

7.9.1 Move Gains

In this section, the individual gains for each move are presented. These results are
generated by applying each move directly on the initial solution. Note, however, that
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the combined results for some moves may be dependent on the improvement of other
methods.

Table 7.8 shows the average improvement of each move and some variations on all
ICCAD 2015 benchmarks considering the long maximum displacement. As it can be seen
the most effective method for early mitigation is the Iterative Spreading which reduces on
average 30.94% and 56.38% the early WNS and TNS respectively. For late mitigation the
Cell Balancing technique is the most effective one. Two versions are shown: Steiner and
Driver-Sink. The Steiner version is the one used in the flow, where the reference points
are the Steiner point of the driver and sink net. The Driver-Sink version uses the driver
and sink pin as the reference points. The Steiner version has better performance on TNS
reduction while the Driver-Sink has a better performance on WNS reduction.

Table 7.8: Average improvement on quality score per move type for long maximum dis-
placement.

Move Goal QS ABU StWL eWNS eTNS lWNS lTNS

Iterative Spreading Early 143.70 -0.04% 0.01% -30.94% -56.38% 0.00% 0.00%
Skew Optimization Early 132.39 -0.11% 0.01% -29.91% -51.24% 0.00% 0.00%

Register Swap Early 73.71 0.00% 0.04% -15.88% -28.99% 0.00% 0.01%
Reg-to-Reg Path Fix Early 99.21 -0.04% 0.02% -9.82% -44.69% 0.00% 0.00%

Buffer Balancing Late 88.65 0.00% 0.01% 0.00% 0.00% -3.92% -6.90%
Cell Balancing (Steiner) Late 212.27 -0.45% 0.17% 0.00% -0.01% -7.31% -17.57%

Cell Balancing (Driver-Sink) Late 205.81 -0.13% 0.19% 0.00% -0.01% -7.70% -16.73%
Load Reduction (Driver) Late 115.40 7.65% 1.39% 0.00% -0.17% -2.41% -10.32%

Load Reduction (Steiner) Late 49.75 1.04% 0.18% 0.00% -0.04% -1.01% -4.46%

Two versions of Load Reduction are also presented. The Driver version is the one
used in the flow where the non-critical sink are moved towards the driver. The Steiner
version move non-critical sinks towards the Steiner points where they connect to. As it
can be seen the Driver reduction has a much more expressive gain in terms of TNS, but
this comes at a cost of a large increase in the placement density. Load Reduction is the
main culprit of the large increase of density seen in the final results.

7.9.2 Impact of Pin Importance (Criticality and Centrality)

The importance of pins indicates how much it is important for the timing closure of the
design. Two metrics are used to compound the pin importance: criticality and centrality.

Table 7.9 shows the improvements of this metric when used for weighting in the Cell
Balancing technique compared to the Cell Balancing without weighting. To generate such
result, the Cell Balancing was executed 5× on the initial placement solution. Note that
by weighting the displacements by the pin importance one can improve quality score by
13.72% on average, which comes from a reduction of 1.29% and 3.68% in late WNS and
late TNS respectively.

7.9.3 Impact of Filtering Out Bad Moves

After a move is executed it may be filtered out if the impact on local timing indicates
that it may lead to a timing degradation. Even though moves are trying to optimize timing,
noises caused by rerouting or imprecision in the modeling may lead to worse results. That
is why after each move the time is checked locally to filter out potentially bad moves.

Table 7.10 shows the degradation in the quality score and other metrics when the
filtering is disabled. As it can be seen, if the filtering is disabled the quality score can be
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Table 7.9: Impact on results when pin importance (criticality and centrality) is used in
Cell Balancing.

eWNS eTNS lWNS lTNS ABU QS StWL

superblue16 0.00% 0.00% -5.71% -16.28% -0.95% 22.79% 0.04%
superblue18 0.00% 0.00% -0.20% -0.30% -0.30% 1.61% 0.01%
superblue4 0.00% 0.00% -1.02% -1.57% 0.56% 6.22% 0.07%

superblue10 0.00% 0.00% -0.11% -0.33% 0.90% 2.60% 0.05%
superblue7 0.00% 0.00% 0.00% -2.27% -0.30% 11.32% 0.01%
superblue1 0.00% 0.00% -0.36% -4.96% -0.15% 15.50% 0.03%
superblue3 0.00% 0.00% -2.94% -3.13% 0.14% 44.44% 0.01%
superblue5 0.00% 0.00% 0.04% -0.59% -0.14% 5.24% 0.05%

avg 0.00% 0.00% -1.29% -3.68% -0.03% 13.72% 0.03%

reduced on average by 13.40%. This empirically shows the efficiency of filtering out bad
moves.

Table 7.10: Impact on results when bad move filtering is disabled.

Benchmark QS ABU StWL eWNS eTNS lWNS lTNS

superblue16 -21.28% 8.98% 1.60% - - 2.15% 74.16%
superblue18 -9.97% 0.36% 0.88% - - 2.29% 11.46%
superblue4 -17.50% 6.40% 3.75% - - -7.79% 22.00%

superblue10 -8.43% 1.84% 2.59% - - 2.14% 3.62%
superblue7 -44.05% 1.82% 0.37% 0.00% 0.00% 0.00% 16.98%
superblue1 -20.60% 9.72% 1.80% 0.00% 0.00% 5.70% 10.47%
superblue3 19.53% 5.31% 0.64% 0.00% 0.00% -10.77% -14.50%
superblue5 -4.89% 8.75% 0.85% - - -0.65% 2.89%

avg -13.40% 5.40% 1.56% 0.00% 0.00% -0.87% 15.89%

7.10 Conclusions

Placement is the stage in the design flow where the component positions are defined.
Usually it is divided into three major steps: global placement, legalization and detailed
placement. Detailed placement takes the current legal placement solution and tries to fur-
ther improve it by applying local changes. A timing-driven detailed placement performs
local changes in order to improve the circuit timing.

In this thesis, several single cell move-based techniques were presented to early and
late negative slack mitigation. Although these techniques work on one cell at a time, iter-
atively they can be applied to achieve a good overall result as the empirical experiments
showed.

Results were empirically validated using the ICCAD 2015 timing-driven detailed
placement contest setup. Experimental results show that our flow can significantly re-
duce the timing violation from the wirelength global placement and compared to the 1st
place in the ICCAD 2015 contest.

Similar to the ISPD gate sizing contest, the ICCAD contest simplifies the placement
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formulation by using Elmore delay for interconnections, ignoring false paths, assuming
an ideal clock network.

However such simplifications are used and assumed even in industrial design flows in
early stages for two main reasons: runtime and lack of precise information. Moreover the
filtering out of bad moves used in the flow presented in this thesis can be performed using
a more precise timing engine, making it suitable for late stage in the design flow, although
at cost of runtime.

The validity of such simplifications can be seen in the division of placement in global
and detailed placement. A global placement usually use a more simplified routing es-
timation than the detailed placement, but still the final solution of the global placement
correlates well with the desired output of a detailed placement.
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8 FINAL REMARKS

In this thesis new techniques for gate sizing and timing-driven detailed placement
were presented.

The Lagrangian Relaxation formulation is a well-known and very effective way to
solve the gate sizing problem and can even produce the optimal solution for the continuous
gate sizing problem. However, for the discrete case, Lagrangian Relaxation only can be
used as a heuristic to find good solutions and the optimality is not guaranteed anymore.

A great challenge when applying LR to the discrete gate sizing problem is to achieve
convergence. It is easy to implement a LR for timing minimization, but when other ob-
jectives are taken into account as leakage power, the convergence becomes an issue. To
cope with that a slack filtering scheme was developed where candidate cells are pruned
if they worsen significantly the slack on vicinity cells. Moreover a lambda-delay sensi-
tivity was presented to estimate the global timing change caused by a change on a cell
implementation.

These techniques were combined in a flow which was empirically evaluated using the
ISPD 2012 and 2013 gate sizing contest benchmarks. In those set of benchmarks this flow
was able to improve significantly the results over other state-of-the-art methods.

New techniques for timing-driven detailed placement were also presented for mitigat-
ing early and late timing violations. The main technique uses the drive strength of cells
to find the optimal placement of a cell with respect to its driver and sink so that the path
segment delay is reduced.

These techniques were combined in a flow which was empirically validated using the
ICCAD 2015 timing-driven detailed placement contest. For those set of benchmarks, this
flow was able to improve significantly the results over the 1st place in that contest.
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