
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FERNANDO STEFANELLO

Heuristic approaches for network
problems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dra. Luciana S. Buriol
Coadvisor: Prof. Dr. Mauricio G. C. Resende

Porto Alegre
2015

CIP — CATALOGING-IN-PUBLICATION

Stefanello, Fernando

Heuristic approaches for network problems / Fernando
Stefanello. – Porto Alegre: PPGC da UFRGS, 2015.

115 f.: il.

Research supported by CAPES and project PRH PB-217
of Petrobras, Brazil.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do
Sul. Programa de Pós-Graduação em Computação, Porto
Alegre, BR–RS, 2015. Advisor: Luciana S. Buriol; Coadvisor:
Mauricio G. C. Resende.

1. Heuristic. 2. Network problems. 3. BRKGA. 4. Cloud
computing. I. Buriol, Luciana S.. II. Resende, Mauricio G. C..
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

A minha família e

minha amada Doralice.

AGRADECIMENTOS

Agradeço a minha orientadora, Luciana Buriol, pela oportunidade da realização do

doutorado, orientação, ajuda e incentivo. Agradeço também ao meu coorientador Mauricio

G. C. Resende, especialmente pelo inestimável apoio durante a realização do doutorado

sanduíche.

Agradeço a minha família. Vocês foram e são a base forte nos momentos difíceis e

fonte de inúmeras alegrias. Mais especificamente agradeço aos meus pais Edemar e Clede.

Se fisicamente não pude estar mais presente, meu coração sempre esteve e estará com

vocês. Vocês são a base de tudo, meu porto seguro, meus exemplos. Aos meus irmãos

Edevandro e Sandra, o apoio de vocês foi mais que decisivo para que hoje eu pudesse estar

concluindo mais esta etapa. Vocês são especiais! Aos meus cunhados Maicon e Gisele.

Vocês são mais que cunhados, são meus irmãos. Aos meus afilhados Gustavo, Gabriela e

minha sobrinha Letícia (e Larissa que está por vir). Vocês representam muito para mim.

Aos meus colegas de laboratório, em especial ao Árton com quem dividi um

apartamento barulhento por anos. Obrigado a todos pelas inúmeras discussões e ideias.

À querida Lúcia Resende, que juntamente com o Mauricio me receberam tão bem

no meu período de sanduíche nos EUA. Agradeço ainda, à Julliany Brandão e ao Carlos

Eduardo de Andrade pela valiosa companhia e amizade.

A todos os professores, colaboradores e revisores que contribuíram no desenvolvi-

mento deste trabalho.

A CAPES e ao projeto PRH PB-217 da Petrobras pelo suporte financeiro. Ao

Instituto de Informática da UFRGS pela oportunidade e pela infraestrutura fornecida. A

AT&T Lab Research pela oportunidade da realização do doutorado sanduíche.

A todos os meus amigos e amigas que estiveram presentes me aconselhando e

incentivando com carinho e dedicação. A todas as pessoas que, direta ou indiretamente,

contribuíram de uma forma ou de outra para a conclusão desta tese, o meu mais profundo

e sincero muito obrigado.

Por fim, gostaria de dedicar um agradecimento especial a minha amada noiva

Doralice Gall pelo inestimável apoio, paciência, carinho e compreensão durante essa longa

jornada. Sempre faltarão palavras para te agradecer. Te amo!

ABSTRACT

In our highly connected world, new technologies provide continuous changes in the speed

and efficiency of telecommunication and transportation networks. Many of these technolo-

gies come from research on network optimization problems with applications in different

areas. In this thesis, we investigate three combinatorial optimization problems that arise

from optimization on networks. First, traffic engineering problems in transportation

networks are addressed. The main objective is to investigate the effects of changing the

cost of some links in the network regarding some well-defined user behavior. The goal is

to control the flow in the network and seek a better flow distribution over the network

and then minimize the traffic congestion or maximize the flow on a subset of links over

network conditions. The first problem considered is to install a fixed number of tollbooths

and define the values of tariffs to minimize the average user travel time. The second

problem considered is to define the values of tariffs to maximize the revenue collected

in the tolled arcs. In both problems, users choose the routes based on the least cost

paths from source to destination. From telecommunication networks, a placement problem

subjected to network conditions is considered. The main objective is to place a set of

resources minimizing the communication cost. An application from cloud computing is

considered, where the resources are virtual machines that should be placed in a set of data

centers. Network conditions, such as bandwidth and latency, are considered in order to

ensure the service quality. For all these problems, mathematical models are presented and

evaluated using a general-purpose commercial solver as an exact method. Furthermore,

new heuristics approaches are proposed, including some based on biased random-key

genetic algorithm (BRKGA). Experimental results demonstrate the good performance of

the proposed heuristic approaches, showing that BRKGA is an efficient tool for solving

different kinds of combinatorial optimization problems, especially over network structures.

Keywords: Heuristic. Network problems. BRKGA. Cloud computing.

Abordagens heurísticas para problemas em redes

RESUMO

Em nosso mundo altamente conectado, novas tecnologias provêm contínuas mudanças

na velocidade e eficiência das redes de telecomunicações e de transporte. Muitas dessas

tecnologias são originárias de pesquisas em problemas de otimização em redes aplicadas a

diferentes áreas. Nesta tese, investigamos três problemas de otimização combinatória que

podem ser abordados como estruturas de redes. Primeiramente, são abordados problemas

de engenharia de tráfego em redes de transporte. O objetivo principal é investigar os

efeitos de alterar o custo de um subconjunto de arcos da rede, considerando que os clientes

desta rede agem com um comportamento bem definido. O objetivo é controlar o fluxo na

rede de modo a obter uma melhor distribuição do fluxo, minimizando o congestionamento

ou maximizando o fluxo em um subconjunto de arestas. No primeiro problema considera-

se instalar um número fixo de postos de pedágios e definir os valores das tarifas para

minimizar o tempo médio de viagem dos usuários. No segundo problema abordado, o

objetivo é definir os valores das tarifas para maximizar a receita arrecadada nos arcos com

pedágios. Em ambos os problemas, os usuários escolhem as rotas com base nos caminhos

de menor custo da origem para o destino. Em redes de telecomunicações, um problema de

alocação sujeito às condições da rede é considerado. O objetivo é alocar um conjunto de

recursos, minimizando o custo de comunicação. Uma aplicação de computação em nuvem

é considerada, onde os recursos são máquinas virtuais que devem ser alocadas em um

conjunto de centros de dados. Condições da rede como largura de banda e latência são

consideradas de modo a garantir a qualidade dos serviços. Para todos estes problemas, os

modelos matemáticos são apresentados e avaliados usando um solver comercial de propósito

geral como um método exato. Além disso, abordagens heurísticas são propostas, incluindo

uma classe de algoritmo genético de chaves aleatórias viciadas (BRKGA). Resultados

experimentais demonstram o bom desempenho das abordagens heurísticas propostas,

mostrando que o BRKGA é uma ferramenta eficiente para resolver diferentes tipos de

problemas de otimização combinatória, especialmente sobre estruturas de rede.

Palavras-chave: Heurística. Problemas em redes. BRKGA. Computação em nuvem.

LIST OF FIGURES

Figure 1.1 General scheme of BRKGA evolution . 16

Figure 2.1 Cost function and piecewise-linear cost functions 32

Figure 3.1 Network structures: (a) Grid network; (b) Voronoi network; (c) Delaunay
network. 52

Figure 4.1 Input data representation . 63
Figure 4.2 Example of decoding for decoder D2 . 79
Figure 4.3 Dispersion of scaled cost for each algorithm . 90
Figure 4.4 Dispersion of scaled cost for each algorithm . 93
Figure 4.5 Dispersion of scaled cost for each algorithm . 95
Figure 4.6 Cumulative probability distribution . 97
Figure 4.7 Cumulative probability distribution for BRKGA-PR and GRASP-PR

running times . 102

LIST OF TABLES

Table 2.1 Attributes for the instances set. 35
Table 2.2 Computational results for MM1 and LMM1 . 36
Table 2.3 Computational results for LMM2 to SPT and SPTF 38
Table 2.4 Parameter values in tuning experiment . 40
Table 2.5 Average of relative gaps obtained for different parameters 40
Table 2.6 Detailed results of SPT and SPTF for BRKGA+LS 42
Table 2.7 Approximation of the lower bound with tolls . 43
Table 2.8 Detailed results of best solution found by BRKGA+LS algorithm 44

Table 3.1 Computational results for the mathematical model 54
Table 3.2 Comparison of the solution obtained with the relaxed model and 1000

randomly generated solutions . 55
Table 3.3 Computational results for the BRKGA . 57

Table 4.1 CPLEX detailed results for small instances . 84
Table 4.2 CPLEX detailed results for median and large instances 86
Table 4.3 Percentage of feasible solutions found by GRASP for different constructive

heuristic and local search strategy . 87
Table 4.4 Percentage of feasible solutions found by GRASP with the DC-Greedy

constructive heuristic . 89
Table 4.5 Values of medians, p-values, and difference in median location for cost

distributions using a confidence interval of 99% for GRASP algorithm 92
Table 4.6 Values of medians, p-values, and difference in median location for cost

distributions using a confidence interval of 99% for BRKGA algorithm 94
Table 4.7 Comparison of percentage gap and last improve time for BRKGA-PR and

GRASP-PR . 96
Table 4.8 CPLEX results for GQAP instances . 100
Table 4.9 Comparison algorithms for GQAP . 101

CONTENTS

1 INTRODUCTION . 10
1.1 Definitions and main techniques . 11
1.2 Biased random-key genetic algorithm . 14
1.3 Results and thesis organization . 17
2 THE TOLLBOOTH PROBLEM . 20
2.1 Introduction . 22
2.2 Problem formulation . 24
2.2.1 Model for minimization of average user travel time (MM1) 26
2.2.2 Model for the tollbooth problem (MM2) . 27
2.2.3 Piecewise-linear functions for the models . 29
2.3 A biased random-key genetic algorithm . 32
2.4 Computational results . 34
2.4.1 Results for models MM1 and LMM1 . 35
2.4.2 Results for the tollbooth problem with piecewise-linear cost (LMM2) 37
2.4.3 Results for the biased random-key genetic algorithm 39
2.5 Concluding remarks . 45
3 STACKELBERG NETWORK PRICING PROBLEM 46
3.1 Introduction . 47
3.2 The Stackelberg Network Pricing Problem . 49
3.3 A biased random-key genetic algorithm . 51
3.4 Computational results . 52
3.4.1 Results for the mathematical model . 53
3.4.2 Results from the biased random-key genetic algorithm 56
3.5 Concluding remarks . 58
4 VMPLACEMENT PROBLEM . 59
4.1 Introduction . 60
4.2 Virtual Machine Placement Problem . 62
4.2.1 Quadratic mathematical model . 63
4.2.2 Linear mathematical model I - LMVMP . 65
4.2.3 Linear mathematical model II - LMVMP-II . 67
4.3 Heuristic Approaches . 69
4.3.1 Local search procedures . 69
4.3.2 Path-relinking . 72
4.3.3 Greedy Randomized Adaptive Search Procedure - GRASP 75
4.3.4 Biased random-key genetic algorithm - BRKGA . 78
4.3.4.1 Decoders . 78
4.3.4.2 Hybrid BRKGA and path-relinking . 79
4.4 Computational results . 80
4.4.1 Data set . 81
4.4.2 CPLEX results . 83
4.4.2.1 Results for small size instances . 83
4.4.2.2 Results for median and large size instances . 85
4.4.3 GRASP results . 87
4.4.4 BRKGA results . 92
4.4.5 Additional comparison . 95
4.4.6 Results for the Generalized Quadratic Assignment Problem 98
4.5 Concluding remarks . 103
5 CONCLUDING REMARKS . 104
REFERENCES . 108

10

1 INTRODUCTION

In our highly connected world, new technologies provide continuous changes in the

speed and efficiency of telecommunication and transportation networks. Many of these

technologies come from research on network optimization problems with applications in

different areas. Connections as roads in transportation networks, links between computers

in telecommunication networks, and the relation between people in social networks are

some examples of connections that can be modeled as a network topology. These networks

have common aspects as, for example, be easily represented by graphs, allowing to represent

many different optimization network problems over this mathematical structure.

In a transportation network, predicting the flow distribution in the network allows

a service distribution company to guide some agents to take alternative routes and thus

minimize the transportation costs. Also, estimating the user behavior makes it possible to

determine the flow in the network, allowing network administrators agents make decisions

to reduce congestion at peak hours. In general, knowing how the flow behaves in a network

helps to predict the behavior and provides information for decision-making, enabling the

economy of resources, a better usage of the infrastructure, a better quality of services

among other numerous benefits. Having knowledge of how the flow moves in a network,

we can control it. Control the flow means having at hand the possibility to make decisions

to supply a demand, reduce costs, or achieve a desired goal.

Telecommunication networks comprise the telephone system and data transmission

systems over the Internet, for example. In these networks, the flow can mean data packets

or phone calls travelling through computers or mobile phones. Ensuring connections

between the source and destination nodes, allowing the exchange of information without

violating the network capacity while the operational cost is minimized is an example of a

optimization problem coming from these networks. In general, the objective is to obtain a

least cost network configuration ensuring that constraints related to the network flow such

as delay, reliability, and link capacity are respected.

This thesis investigates some optimization problems that can be described over

network structures. Traffic engineering problems in transportation networks are considered.

The main objective is to investigate the effects of changing the cost of some links in the

network regarding some well-defined user behavior. The goal is to control the flow in

the network seeking a better flow distribution over the network and then minimizing the

traffic congestion or maximizing the flow on a subset of links over network conditions.

11

From telecommunication network, a placement problem subjected to network conditions

is considered. The goal is to define a placement for a set of resources minimizing the

communication cost, that implies a direct impact on the network structures.

The problems studied in this thesis are described in a contextualized manner over

applications in networks. At the same time, we also provide the description through a

formal mathematical structure, defining the problem more accurately. The main objective

is to develop algorithms to obtain solutions for the problems, so that the algorithm can

solve every instance of the problem, including the practical scenarios. Algorithms are

used to find optimal solutions or analyze which scenarios can be solved exactly. As an

exact approach, we use mathematical programming considering a nonlinear model with

a convex cost function, a bilevel model, a quadratic model, and linear models. The

linear models are reached from the previously cited nonlinear models using reformulations

techniques while piecewise-linear functions have been proposed to approximate the convex

cost function. When it is not possible to solve a problem optimality, heuristic algorithms

are proposed to obtain near-optimal solutions. A class of evolutionary algorithm called

biased random-key genetic algorithm is widely used in this work to successfully solve theses

problems. Intensification strategies as local search and path-relinking methods are also

used to improve the quality of the obtained solution.

In the next subsections, we review some basic concepts considered in the following

chapters. Section 1.1 reviews some concepts of combinatorial optimization and the main

techniques used to solve problems of this class. Section 1.2 presents a general framework

of the biased random-key genetic algorithm that is the most used technique to solve the

problems addressed in this thesis. Finally, Section 1.3 presents the organization and the

main contributions of this thesis.

1.1 Definitions and main techniques

Combinatorial optimization is a lively field of applied mathematics with the objective

to solve optimization problems over discrete structures, by combining techniques from

combinatorics, linear programming, and the theory of computation. One of the main

challenges of combinatorial optimization is to develop efficient algorithms, with their

corresponding running times bounded by a polynomial of the same the size as their

representation (POP, 2012). In general, the objective is to solve problems related to

resource allocation, typically limited to achieve certain goals. Such problems arise in many

12

practical areas, such as the development of digital circuits, scheduling, facility location,

assignment, transportation planning, among others. The importance of these problems

in the industry cannot be underestimated. For example, Anbil et al. (1991) describes a

crew scheduling problem in an airline whose operating costs are in the order of billions

of dollars, and even small improvements in staffing efficiency can lead to substantial cost

reduction.

Combinatorial optimization problems are often easy to describe but difficult to solve.

The difficulty comes from finding a solution that receives the highest rating possible and at

the same time satisfy all the imposed constraints. This solution is called optimal solution.

Whereas there is a discrete and usually finite set of solutions, a combinatorial optimization

problem can be solved generating, evaluating and comparing solutions. Thus, inspecting

all solutions of the problem domain ensures to find the best solution or proves problem

infeasibility. Therefore, any problem can be solved in principle, but that does not mean

it can be solved in an acceptable time. This is mainly addressed in Complexity Theory

(GAREY; JOHNSON, 1979), which deals with the efficiency of computing algorithms and

classify them according to the difficulty to solve.

Since many combinatorial optimization problems are characterized as NP-hard,

combinatorial optimization has challenged researchers from different areas, including

mathematics, computer science, engineering, economics and management. There are several

methods for solving combinatorial optimization problems, and the solution approaches are

basically exact and heuristic.

Exact algorithms have an important feature that is the guarantee of finding the

optimal solution when carried out completely. However, these methods are often effective

only in small and medium-size instances, since the runtime often increases exponentially

with the size of the instance, limiting the practical use of these algorithms. Methods such

branch-and-bound (LAWLER; WOOD, 1966), branch-and-cut (GOMORY, 1958), and

branch-and-price (BARNHART et al., 1998), are among the most used exact algorithms.

These algorithms check the gap between the lower and upper bound values for feasible

solutions, and use techniques to prune the search space.

Many of these techniques are designed to be flexible and independent of the problem

domain, to be applicable to a wide variety of practical problems without an intensive

use of specific strategies. Research on independent domain techniques for combinatorial

optimization has resulted in general purpose tools to mixed integer programming such as

13

CPLEX1, GUROBI2, COIN3, LINDO4, GLPK5, to name a few. Once these techniques

operate with mathematical models to represent a problem, they provide the possibility to

quickly adapt the change of requirements that often occurs in real environments.

A heuristic is a method to obtain good solutions for a given problem, however,

without offering a guarantee in the quality of this solution. In general, a heuristic

takes into account the problem structure and improvement steps are done considering

this structure. Constructive heuristics are methods to obtain an initial solution to a

given problem, in which the solution is built element by element following a well-defined

sequence of steps. Local search heuristic usually starts from a feasible solution and, at each

iteration, explores the search space using one or more neighborhood structures seeking

for changes that lead to improvement in the solution. While heuristics are developed

to a particular problem, metaheuristics are developed to be a more general approach to

guide in a more efficiently way the search process. Techniques as the genetic algorithm

(GOLDBERG, 1989), simulated annealing (KIRKPATRICK et al., 1983; ČERNÝ, 1985),

ant colony optimization (DORIGO et al., 1996), tabu search (GLOVER, 1986; GLOVER;

LAGUNA, 1993), greedy randomized adaptive search procedure (FEO; RESENDE, 1989;

RESENDE; RIBEIRO, 2010), variable neighborhood search (MLADENOVIĆ; HANSEN,

1997; HANSEN et al., 2010), and biased random-key genetic algorithm (GONÇALVES;

RESENDE, 2011) are some examples of metaheuristics successfully applied to combinatorial

optimization problems. In general, these techniques are specialized for solving a specific

class of optimization problems, unlike the exact methods that are more general in the sense

that they can be applied to various types of structures. The utilization of a metaheuristic

is, in many cases, the only way to find good solutions for large instances. In this case, the

guarantee of finding optimal solutions is sacrificed for the sake of obtaining good solutions

in a reasonable time. In Blum and Roli (2003), Talbi (2009), Gendreau and Potvin (2010)

the authors present an overview of heuristic methods.

Among classes of heuristic methods, approximation algorithms can produce, in

polynomial time, a solution with quality guarantee. These algorithms provide solutions

with an approximation factor to the optimal solution. This thesis does not address

approximation algorithms, but an interested reader can find more details and examples in

Vazirani (2003) and Williamson and Shmoys (2011).

1<www.cplex.com>
2<www.gurobi.com>
3<www.coin-or.org>
4<www.lindo.com>
5<www.gnu.org/software/glpk>

www.cplex.com
www.gurobi.com
www.coin-or.org
www.lindo.com
www.gnu.org/software/glpk

14

1.2 Biased random-key genetic algorithm

In this section, we describe the general framework of the biased random-key genetic

algorithm (BRKGA), since this algorithm is widely used to solve the problems addressed

in this thesis. The algorithm can be described in problem-dependent component and

problem-independent component. In this section, we describe the problem-independent

part, while the problem-dependent part are presented in the corresponding chapter of the

problem.

A biased random-key genetic algorithm is a metaheuristic for finding optimal or

near-optimal solutions to optimization problems. BRKGAs encode solutions as vectors of

random keys, i.e. randomly generated real numbers in the interval (0, 1].

Algorithm 1 presents a general scheme of a BRKGA. The algorithm starts with a

set (or population) of p random vectors of size n (line 2). Parameter n depends on the

encoding while parameter p is user-defined. Starting from the initial population (lines 2

and 3), the algorithm generates a series of populations. Each iteration of the algorithm

is called a generation (lines 4 to 10). The generation starts sorting the solution by they

fitness value (line 5) and classifying the solutions as elite and non-elite (line 6). Following,

elite solutions are copied to the next population (line 7), and mutants are added to the

next population (line 8). The remaining individuals are generated by combining pairs of

solutions from one generation to produce offspring solutions for the following generation

(lines 9 and 10). The algorithm returns the best solution found during the process (line 11).

Algorithm 1: Pseudo-code of BRKGA
1 Procedure BRKGA()

2 Generate p vectors of random keys;
3 Decode each vector of random keys;
4 while stopping criterion is not satisfied do
5 Sort solutions by their fitness;
6 Classify solutions as elite and non-elite;
7 Copy elite solutions to next population;
8 Generate mutants in the next population;
9 Combine an elite and a non-elite and add offspring to next population;

10 Decode each vector of random keys;

11 return best solution S;

BRKGAs rely on decoders to translate a vector of random keys into a solution of

the optimization problem being solved. A decoder is a deterministic algorithm that takes

as input a vector of random keys and returns a solution of the optimization problem as

15

well as its cost (or fitness). The complexity of the decoder can range from very simple

and direct as a mapping between the random-key and the solution, to a very complex

construction that combine algorithms, or even black box computation.

At each generation k, the decoder is applied to all newly created random keys

and the population is partitioned into a smaller set of pe elite solutions, i.e., the fittest

pe solutions in the population and another larger set of p − pe > pe non-elite solutions.

Population k + 1 is generated as follows. All pe elite solutions of population k are copied

without change to population k + 1. This elitist strategy maintains the best solution on

hand. In biology, as well as in genetic algorithms, evolution only occurs if mutation is

present. As opposed to most genetic algorithms, BRKGAs do not use a mutation operator,

where each component of the solutions is modified with small probability. Instead pm

mutants are added to population k + 1. A mutant is simply a vector of random keys,

generated in the same way a solution of the initial population is generated.

With pe + pm solutions accounted for population k + 1, p − pe − pm additional

solutions must be generated to complete the p solutions that make up population k + 1.

This is done through mating or crossover (line 9). A parent-A is selected randomly from

the elite solutions, and the parent-B is selected randomly between the set of non-elite

solutions. A child C is produced by combining the parents using parameterized uniform

crossover. Let ρA > 1/2 be the probability that the offspring solution inherits the key

of parent-A and ρB = 1− ρA be the probability that it inherits the key of parent-B, i.e.

ci = ai with probability ρA or ci = bi with probability ρB = 1− ρA, where ai and bi are,

respectively, the i-th key of parent-A and parent-B, for i = 1, . . . , n.

Random-key genetic algorithms (RKGA) were first introduced in Bean (1994).

BRKGA differs from the original approach in the way parents are chosen from the

population and how the child inherits the key (GONÇALVES; RESENDE, 2011). Though

the difference between RKGAs and BRKGAs is small, the resulting heuristics behave quite

differently. Experimental results in Gonçalves et al. (2012) show that BRKGAs are almost

always faster and more effective than RKGAs.

Figure 1.1 illustrates the evolutionary scheme of one iteration of BRKGA. On the

left of the figure is the current population. After all vectors are sorted by their fitness

values, the population is partitioned into two subsets, the elite and the non-elite. The elite

vectors from the population k are copied without modification to the population k + 1.

After, the mutants are generated and added to the next population. The remainder of the

population of the next generation is generated by crossover.

16

Figure 1.1 – General scheme of BRKGA evolution

Non-Elite

Elite

P
o

p
u

la
ti

o
n

 s
iz

e

Population K

Offspring

Elite

Mutants

Population K+1

Random

Crossover

Source: from the author (2015).

Gonçalves and Resende (2011) describe BRKGA as a general-purpose metaheuristic

framework, where the framework has a clear division in a problem-dependent and problem-

independent part. The problem-independent part operates without knowledge of the

problem being solved. This involves the generation if the initial population, sort the

population by fitness, classify in elite and non-elite, copy elite vector to the next population,

generate the mutants, and the crossover operator that combines an elite and a non-elite

to produce an offspring and add to next population. The only portion of the algorithm

that has connection with the problem is the decoder process, which takes a random-key

vector and produce a solution to the combinatorial optimization problem. To describe

a BRKGA heuristic, one need only show how solutions are encoded and decoded, what

choice of parameters were made, and how the algorithm stops.

The parameters that must be specified are the chromosome size n which define

how the solution is encoded, population size p, the percentage of the elite vectors pe, the

percentage of the mutants vectors pm, and the inheritance probability ρA. Additional

parameters to restart the population after n generations without improvement and the

number of the independent population also must be chosen if these features are used.

The stop criterion for the algorithm can be defined as a time limit, a fixed number of

generation, a number of generations without improvement, a number of restarts of the

population, or a target solution value. Advice for the parameter setup can be found in

Gonçalves and Resende (2011).

Biased random-key genetic algorithms have been successfully applied to many

combinatorial optimization problems. For example, Resende (2012), Andrade et al. (2014),

17

Andrade et al. (2015b), Andrade et al. (2015a), and Andrade (2015) uses BRKGA on some

telecommunication problems. Buriol et al. (2010) use this technique for a transportation

network problem. Gonçalves and Resende (2013) apply to 2D and 3D bin packing problem.

Martinez et al. (2011) uses BRKGA for capacitated arc routing problem, while Ruiz et

al. (2015) uses for capacitated mininum spanning three problem. Gonçalves and Resende

(2011), Resende (2013), and Gonçalves et al. (2012) detail some experiments with the

BRKGA framework and components, and provide an extended survey of applications and

decodes for many applications of BRKGA. Toso and Resende (2014) proposed algorithms

written in C++ on top of the BRKGA.

1.3 Results and thesis organization

This thesis presents a study of three optimization problems that can be represented

over network structures. Chapters 2 and 3, present two problems with applications on

transportation network planning. Chapter 4 presents a problem on telecommunication

networks that is also an application on cloud computing. Each chapter is self-contained

presenting the respective study of each problem, except for the references of the biased

random-key algorithm that are presented in Section 1.2. Each chapter starts with a brief

introduction to contextualize the application and also related works in the literature.

Next, each problem is defined in terms of the mathematical formulation. Algorithms,

experimental results and concluding remarks of each chapter are also presented.

Chapter 2 presents the Tollbooth problem. Supposing that users of a transportation

network always select the least cost path from the source to the destination, in this bilevel

problem we seek to install a fixed number of tollbooths and define the value of each toll

with the objective of minimize a measure function of traffic congestion. This problem

was first introduced in Buriol et al. (2010). From this work, we formalize mathematically

the problem and propose two piecewise linear functions to approximate the convex cost

function used to evaluate the congestion cost. Furthermore, we present a large study with

the previously proposed biased random-key genetic algorithm considering a new arc weight

value to calculate shortest paths. We also present a review of the algorithm components,

such as the local search, and a more detailed review of the behavior of the algorithm,

including a new set of instances and an analysis of characteristics of the final solutions.

We reported these contributions in two papers. The first (STEFANELLO et al.,

2012), two piecewise linear functions are proposed and tested in general models of traffic

18

flow. Experiments with BRKGA are also presented, including a new set of instances.

The second (STEFANELLO et al., 2015c) presents the mathematical formulation for

the problem, and a new arc weight value is considered. An evaluation of each BRKGA

component is also presented.

Chapter 3 investigates the Stackelberg network pricing problem. Given a transporta-

tion network, supposing that the users always choose the least cost path route, in this

problem the objective is to determine the values of tariffs of a given subset arcs in order to

maximize the revenue collected in the tolled arcs. In this chapter, after the formalization

of the problem, a biased random-key algorithm is proposed to solve this problem. An

initial solution based on the values of tariffs obtained by solving the relaxed model is

used to improve the algorithm. Experimental tests with a commercial solver show that

this exact approach is limited to small instances, while the proposed BRKGA was an

efficient approach in large instances. These results were reported in a conference paper

(STEFANELLO et al., 2013).

Chapter 4 considers the problem of placement of virtual machines across geo-

separated data centers (VMPlacement problem). In this problem, the objective is to

minimize the traffic cost in a network. More specifically, give a set of geo-separated data

centers, the goal is to select the best data center for allocating a set of virtual machines in

order to minimize the communication cost between each pair of data centers. Additional

network requirements that ensure the service quality are added to the problem. To the

best of our knowledge, we are the first to introduce this problem considering a specific cost

function and set of constraints, which is a generalization of the classic generalized quadratic

assignment problem (GQAP). We formalize the problem mathematically using a quadratic

model and two mixed integer linear models extended from the GQAP. Also, we propose

local search with an intensive exploration of the neighborhood, and a path-relinking as

an intensification method incorporated in two metaheuristic approaches. The first is

a greedy randomized adaptive search procedure (GRASP), and the second is a biased

random-key genetic algorithm. An extensive set of experiments is performed to evaluate

different configurations of the algorithms. We test our algorithms in a set of synthetic

instances where we show that the exact approach based on mathematical programming has

limited performance. We also compare our approaches with a state-of-art algorithm for a

set of instances from the literature for GQAP. We observe a good performance showing

that the proposed approaches are competitive to produce good quality solutions. We

reported the first experiments with BRKGA in a conference paper on genetic algorithms

area (STEFANELLO et al., 2015a). A new mathematical formulation and comparison

with the previously proposed mathematical model were reported in a national conference

(STEFANELLO et al., 2015b). Finally, a new paper based on Chapter 4 is being prepared

to be submitted to European Journal of Operational Research (EJOR).

Finally, Chapter 5 reviews and summarizes the main contributions. We also report

some studies and strategies that did not obtain significant results or are promising direction

for future research since they are not explored in depth in this work.

20

2 THE TOLLBOOTH PROBLEM

Urban transportation systems, which is composed of the network infrastructure,

and public transport, is developed to provide mobility for users, beyond the carriage of

products and consumer goods. Changes in the transport system involve considerable

costs, besides to affecting user behavior that needs spend a time to adapt and follow

the new rules. Therefore the importance of making changes that actually improve the

traffic condition, with a correct estimation of the impact regarding congestion, travel time,

emissions, safety and other factors.

These estimates are made using models of transportation systems, providing a

simplified description based on the behavior of the users. These models developed for

traffic assignment can be categorized as microscopic, mesoscopic and macroscopic. In

microscopic models, the trajectory and behavior of each vehicle are described in detail,

including position, speed, and acceleration. The simulation of the interaction between

each vehicle in the system is a result of the relationship between the flow and travel

time. This relationship can not be expressed through well-defined functions since this

relationship depends on the interaction and behavior of users over time. These models

are often used to design new roads configurations, and analyze the interactions between

traffic components. In macroscopic models, the traffic conditions are described in terms of

measures as flow and speed. Also, measures that express the relation between cost and

flow are generally described in a simplified manner. Mesoscopic models represent a balance

between microscopic and macroscopic models. Usually model a single vehicle behavior or

in groups.

Macroscopic model is divided into static and dynamic. If the demand and the

flows are not time-dependent, the model is considered static. Static models are used to

describing the average journey times, traffic flows, and the flow demand for a single period.

On the other hand, if the time-dependence is considered, the model is considered dynamic.

Dynamic models can describe a flow congestion over time and allow the introduction of

the time dependence for travellers, for the flow, and for the traffic demand. Naturally,

dynamic models are more complex, both computationally and conceptually, that static

models. Even that the flow is never time-independent, for a particular analysis, such as

analysis of the flow in peak time, static models can provide good approximation.

The demand matrix in equilibrium problems and traffic allocation are often divided

into two cases: fixed demand and elastic demands. In the fixed demand case, the origin-

21

destination demand matrix is assumed given. For elastic demands, the demands are

modelled as a function of least travel cost between each origin-destination pair.

Another important topic to be addressed in transportation networks is the cost

that a flow unit has to transverse a link, i.e., the cost to user define your route. In general,

the cost is a composition of n different factor. Mathematically, the cost in a arc ‘a’ can

be represented by w′
a(ℓa) =

∑n
i=1 γifi(ℓa), where γi is a conversion factor for the unit

cost of the function fi, that in general depends of ℓa. However, in the cases where is

flow-independent, w′
a can be a constant value.

In this chapter, we address the Tollbooth problem that is an approach to control and

guide the flow in a transportation network. Our approach is based on static macroscopic

models, considering fixed demand matrix, and constant values for link costs. Supposing

that, in general, users choose your routes based on a well-defined creation, as the shortest

path route for example, changing the cost of some roads or arcs in the network it is possible

to induce users to take alternative routes, i.e., guide the flow to take different paths and

consequently obtain a better distribution of the flow in the network. Knowing how the flow

is distributed over the network, it is possible to evaluate this distribution by many objective

cost function, as congestion cost, the level of pollutants emission, fuel consumption, delays,

etc. In this work, the focus is to obtain a flow distribution such that the average user

travel time delay is minimized. To control the flow we evaluate different scenarios by the

number of arcs that the cost is changed. In the analogy to the transportation network, we

evaluate install tolls on a different number of roads and evaluate the efficiency to induce

users to take alternative routes and the quality of the objective function. We extend the

experiments of Buriol et al. (2010), by including different ways to evaluate the shortest

path route, formalization of the problem through mathematical formulation, and extensive

experiments with the biased random-key genetic algorithms. This chapter is based on

Stefanello et al. (2015c).

22

2.1 Introduction

Transportation systems play an important role in modern life. Due to population

growth and the massive production of vehicles, traffic congestion problems in metropolitan

areas have become a common daily occurrence. To a commuter or traveler, congestion

means loss of time, potentially missed business opportunities, and increased stress and

frustration. To an employer, congestion means lost worker productivity, reduced trade

opportunities, delivery delays, and increased costs (WEN, 2008). For example, a significant

aspect is the value of wasted fuel and loss of productivity. In 2010, traffic congestion cost

about US$115 billion in the 439 urban areas of the United States alone (SCHRANK et al.,

2011).

Minimizing driving time directly impacts quality of life. One way to reduce travel

time is by lowering congestion through the redistribution of traffic throughout the network.

Improvements in transportation systems require a careful analysis of several factors.

Different alternatives are evaluated using models that attempt to capture the nature of

transportation systems and thus allow the estimation of the effect of future changes in

system performance. Performance measures include efficiency in time and cost, security,

and social and environmental impact, among others.

Several strategies have been proposed to reduce traffic congestion. Among them,

the deployment of tolls on certain roads can induce drivers to choose alternative routes,

thus reducing congestion as the result of better traffic flow distribution. Naturally, tolls

can increase the cost of a trip, but this can be compensated with less travel time, reduced

fuel cost, and lower amounts of stress. In the 1950s, Beckmann et al. (1956) proposed the

use of tolls with this objective. This idea has made its way into modern transportation

networks. In 1975, Singapore implemented a program called Electronic Road Pricing or

ERP. Several cities in Europe and the United States, such as in London and San Diego,

have begun to charge toll on their transportation networks (BAI et al., 2010). In fact,

tolls are being deployed for traffic engineering in many small as well as large cities around

the world.

Determining the location of tollbooths1 and their corresponding tariffs is a combina-

torial optimization problem. This problem has aroused interest in the scientific community

not only because of its intrinsic difficulty, but also because of the social importance and

1We use the term tollbooth to refer to both traditional tollbooths as well as to sensors that read radio-
frequency identification (RFID) tags from vehicles.

23

impact of its solution.

The optimization of transportation network performance has been widely discussed

in the literature. The minimum tollbooth problem (MINTB), first introduced by Hearn

and Ramana (1998), aims at minimizing the number of toll locations to achieve system

optimality. Yang and Zhang (2003) formulate second-best link-based pricing as a bi-level

program and solve it with a genetic algorithm. In Bai et al. (2010) it is shown that the

problem is NP-hard and a local search heuristic is proposed. Another similar problem is

to minimize total revenue (MINREV). MINREV is similar to MINSYS, but in this class of

problems tolls can be negative as well as positive, while MINSYS does not accept negative

tolls (HEARN; RAMANA, 1998; DIAL, 1999; DIAL, 2000; HEARN; YILDRIM, 2002;

BAI et al., 2004). For a complete review of the design and evaluation of road network

pricing schemes we refer the reader to the survey by Tsekeris and Voß (2008).

Two important transportation network concepts were introduced by Wardrop (1952):

user equilibrium (UE) and system optimal (SO). The former is related to the equilibrium

obtained when each user chooses a route that minimizes his/her costs in a congested

network. In an UE state, any user can reduce his/her own travel cost by changing routes.

Differently, SO is related to a state of equilibrium with minimum average journey time.

This occurs when the users cooperate to choose their routes. However, the user usually

chooses his/her own route in a non-cooperative manner. In a simplistic modeling behavior,

users can choose their routes by different criteria. One possible simplification assumes

that users choose their routes considering only fixed costs such as time to travel, or a

value that depends on the congestion, or even only the toll values. These situations do not

correspond to user equilibrium, but model different behaviors of the users.

In this work, we approach the tollbooth problem by routing on shortest paths

as first studied in Buriol et al. (2010). The objective is to determine the location of a

fixed number K of tollbooths and set their corresponding tariffs so that users travel on

shortest paths between origin and destination, reducing network congestion. We calculate

shortest paths according to two weight functions. In the first, the weights correspond

to the tariffs of the tolled arcs. The second function considers as the weight of each arc

its toll tariff added to its free flow time, where free flow time of an arc is defined to be

the congestion-free time to traverse the arc. We also present a mathematical model for

the minimum average link travel time and the tollbooth problem. We further propose

two piecewise-linear functions that approximate an adapted convex travel cost function of

the Bureau of Public Roads (1964) for measuring link congestion. Finally, we extend the

24

work in Buriol et al. (2010) presenting a larger set of experiments, considering a new arc

value to calculate shortest paths, a review of the algorithm components, such as the local

search, and a more detailed review of the behavior of the algorithm, including a new set

of instances and an analysis of characteristics of the final solutions.

This chapter is organized as follows. In Section 2.2 we present mathematical models

for the minimum average link travel time, the tollbooth problem, and two approximate

piecewise-linear functions for travel cost. The biased random-key genetic algorithm with

local search proposed in Buriol et al. (2010) is presented in Section 2.3. Computational

results are reported in Section 2.4. Finally, conclusions are drawn in Section 2.5.

2.2 Problem formulation

A road network can be represented as a directed graph G = (V,A) where V

represents the set of nodes (street or road intersections or points of interest), and A the

set of arcs (street or road segments). Each arc a ∈ A has an associated capacity ca, and a

time ta, called the free flow time, necessary to transverse the unloaded arc a. To calculate

the congestion on each link, a potential function Φa is computed as a function of the

load or flow ℓa on arc a, along with αa and βa, two real-valued arc-tuning parameters.

The parameters αa and βa intensify or mitigate the delay penalty value for the traffic

congestion for the potential function BPR proposed by Bureau of Public Roads (1964)

and described in the Subsection 2.2.1. Parameter β (often set to 0.15) is the ratio of travel

time per unit distance, and parameter α (often set to 4) determines how fast the estimated

average link speed decreases from free-flow to congested conditions. In addition, let

K = {(o(1), d(1)), (o(2), d(2)), . . . , (o(|K|), d(|K|)} ⊆ V × V

denote the set of commodities or origin-destination (OD) pairs, where o(k) and d(k)

represent, respectively, the origination and destination nodes for k = 1, . . . , |K|. Each

commodity k has an associated demand of traffic flow dk = do(k),d(k), i.e., for each OD pair

(o(k), d(k)), there is an associated flow dk that emanates from node o(k) and terminates

in node d(k). In this work we address the problem in which all the demand is routed on

the network, such that traffic congestion is minimized. To encourage traffic to take on

particular routes, we resort to levying tolls on selected street or road segments.

Before we describe our mathematical models, some notation is introduced. We

25

denote by IN (v) the set of incoming arcs to node v ∈ V , by OUT (v) the set of outgoing

arcs from node v ∈ V , by a = (at, ah) ∈ A a directed arc of the network, where at ∈ V

and ah ∈ V are, respectively, the tail and head nodes of arc a, by S =
∑|K|

k=1 dk the total

sum of demands, and by Q ⊆ V the set of destination nodes. Moreover, we denote by Φa

the traffic congestion of arc a ∈ A, and by K the number of tollbooths to deploy (tolls are

levied on users of the network at tollbooths). The values of ϕu
a and ϕl

a are approximations

of traffic congestion cost on arc a ∈ A given by piecewise-linear functions. We note that

throughout the chapter we refer to flow and load interchangeably, as we do for commodity

and demand.

In the following we summarize the notation and variables used in this section.
Notation:

V set of nodes G;
A set of arcs;
v node ∈ V ;

IN (v) set of incoming arcs to node v;
OUT (v) set of outgoing arcs from node v;

a = (at, ah) a directed arc of the network;
at, ah tail and head node of arc a, respectively;

ca capacity of arc a;
ta free flow time of arc a;

αa, βa arc-tuning parameters;
K set of commodities or OD pairs;
k commodity ∈ K;

o(k), d(k) origination and destination node of commodity k, respectively;
dk = do(k),d(k) demand of commodity k;

Q ⊆ V set of destination nodes;
S =

∑|K|
k=1 dk total sum of demands;

Φa traffic congestion of arc a;
ϕl

a, ϕu
a underestimation and overestimation of Φa, respectively;
K number of tollbooths to deploy;
Ca fix weight cost of arc a;

M1, M2, M3 sufficiently larger values;
Pl, Pu minimum and maximum tariff values, respectively.

Variables:
ℓa flow on arc a;
xq

a flow on arc a to destination q ∈ Q;
wa toll tariff levied on arc a;
δq

v the shortest-path distance from node v to destination node q ∈ Q;
yq

a indicate if the arc a belongs to the shortest path to destination q ∈ Q;
pa indicate if a tollbooth is deployed on arc a ∈ A.

In the next subsection we present a mathematical model of a relaxation of the

tollbooth problem that does not take into account shortest paths. In Subsection 2.2.2 a

26

complete model for the tollbooth problem is presented and in Subsection 2.2.3 we propose

two piecewise-linear functions that approximate the convex cost function.

2.2.1 Model for minimization of average user travel time (MM1)

The evaluation of the traffic congestion cost can be defined in different ways

according to specific goals. In this work we use the potential function

Φ =
∑

a∈A Φa, where Φa = ℓa

S
ta

[

1 + βa(ℓa

ca
)αa

]

, for all a ∈ A,

which is the convex travel cost function of the Bureau of Public Roads (1964) for measuring

link congestion scaled by the term ℓa/S. This way, the potential function evaluates the

average user travel time over all trips. Function Φa is convex and nonlinear and is a strictly

increasing function of ℓa.

A mathematical programming model of average user travel time is

min Φ =
∑

a∈A

ℓata
[

1 + βa(ℓa/ca)αa

]

/S (2.1)

subject to:

ℓa =
∑

q∈Q

xq
a, ∀a ∈ A, (2.2)

∑

a∈OUT(v)

xq
a −

∑

a∈IN(v)

xq
a = dv,q, ∀v ∈ V \{q}, ∀q ∈ Q, (2.3)

xq
a ≥ 0,∀a ∈ A, ∀q ∈ Q, (2.4)

ℓa ≥ 0, ∀a ∈ A. (2.5)

Its goal is to determine flows on each arc such that the average user travel time is minimized.

In this model, decision variables xq
a ∈ R

+ represent the total flow to destination q ∈ Q on

arc a ∈ A, and variables ℓa ∈ R
+ represent the total flow on arc a ∈ A. Objective function

(2.1) minimizes average user travel time. Constraints (2.2) define total flow on each arc

a ∈ A taking into consideration the contribution of all commodities. Constraints (2.3)

guarantee flow conservation, and (2.4)–(2.5) define the domains of the variables.

This model computes flow distribution without taking into account that users take

a least cost route, providing a lower bound for the tollbooth problem to be described in

the next subsection.

27

2.2.2 Model for the tollbooth problem (MM2)

A mathematical programming model for the tollbooth problem is

min Φ =
∑

a∈A

ℓata
[

1 + βa(ℓa/ca)αa

]

/S (2.6)

subject to:

ℓa =
∑

q∈Q

xq
a, ∀a ∈ A, (2.7)

∑

a∈OUT(v)

xq
a −

∑

a∈IN(v)

xq
a = dv,q, ∀v ∈ V \{q}, ∀q ∈ Q, (2.8)

Ca + wa + δq
ah
− δq

at
≥ 0, ∀a ∈ A, ∀q ∈ Q , (2.9)

δq
q = 0, ∀q ∈ Q, (2.10)

Ca + wa + δq
ah
− δq

at
≥ (1− yq

a)/M1, ∀a ∈ A, ∀q ∈ Q, (2.11)

Ca + wa + δq
ah
− δq

at
≤ (1− yq

a)M2, ∀a ∈ A, ∀q ∈ Q, (2.12)

M3y
q
a ≥ xq

a, ∀a ∈ A, ∀q ∈ Q, (2.13)

M3y
q
a +M3y

q
b ≤ 2M3 − x

q
a + xq

b, ∀a, b ∈ A
2
OUT(v),∀v ∈ V, ∀q ∈ Q, (2.14)

Plpa ≤ wa ≤ Pupa, ∀a ∈ A, (2.15)
∑

a∈A

pa = K, ∀a ∈ A, (2.16)

xq
a ≥ 0, ∀a ∈ A, ∀q ∈ Q, (2.17)

ℓa ≥ 0, ∀a ∈ A, (2.18)

wa ∈ N, ∀a ∈ A, (2.19)

δq
v ≥ 0, ∀q ∈ Q, ∀v ∈ V, (2.20)

yq
a ∈ {0, 1} ∀a ∈ A,∀q ∈ Q, (2.21)

pa ∈ {0, 1}, ∀a ∈ A. (2.22)

This model seeks to levy tolls on K arcs of the transportation network such that the

average user travel time is minimized if traffic is routed on least-cost paths. Here, the cost

of a path is defined to be the sum of the tolls levied on the arcs of the path, or the sum of

tolls and free flow times. We later describe in more detail these arc weight functions and

how they are considered in the model using the fix weight cost Ca.

28

The decision variables for this model determine whether an arc will host a tollbooth

and the amount of toll levied at each deployed tollbooth. Denote by wa ∈ {0, Pl, Pl +

1, . . . , Pu} the toll tariff levied on arc a ∈ A, where Pl, Pu ∈ N
+ are the minimum and

maximum tariff values, respectively. For convenience we define Pl = 1. If no toll is levied

on arc a, then wa = 0. The binary decision variable pa = 1 if a tollbooth is deployed on

arc a ∈ A. The auxiliary binary variable yq
a = 1 if arc a ∈ A is part of a shortest path to

destination node q ∈ Q. Finally, auxiliary variable δq
v is the shortest-path distance from

node v ∈ V to destination node q ∈ Q, and the constants M1, M2, and M3 are sufficiently

larger numbers.

Objective function (2.6) minimizes average user travel time. Constraints (2.7) define

the total flow on each arc a ∈ A while constraints (2.8) impose flow conservation. The

other constraints force the flow of each commodity to follow the shortest path between

the corresponding OD pair. An arc a belongs to the shortest path to destination q if the

distance δq
ah
− δq

at
is equal to the arc cost, which in this case is Ca + wa. Thus, constraints

(2.9) define the shortest path distance for each node v ∈ V and each destination q ∈ Q.

For consistency, constraints (2.10) require, for all q ∈ Q, that the shortest distance from q

to itself be zero. Constraints (2.11) and (2.12) together with (2.9) and (2.10) determine

whether arc a ∈ A belongs to the shortest path and thus determine the values of yq
a, for

q ∈ Q. Constraints (2.11) require that an arc that does not belong to the shortest path

have reduced cost Ca + wa + δq
ah
− δq

at
> 0. Constraints (2.12) assure that if the reduced

cost of arc a ∈ A and destination q ∈ Q is equal to zero, then arc a belongs to the shortest

path to destination q, i.e. yq
a = 1. In the computational experiments of Subsection 2.4.2,

we used M1 = 100 and M2 = 1000. Constraints (2.13) assure that flow is sent only on

arcs belonging to a shortest path. Constraints (2.14) are the even-split constraints. They

guarantee that flow is split evenly among all shortest paths. In these constraints, A
2
OUT(v)

is the set of all ordered groups of two distinct elements of OUT (v). We later discuss these

constraints in more detail. Constraints (2.15) limit the minimum and maximum tariff for

a deployed tollbooth. Constraints (2.16) require that exactly K tolls be deployed. The

remaining constraints define the domains of the variables.

Constraints (2.14) come in pairs for each node v ∈ V . For every pair of outgoing

links a ∈ OUT (v) and b ∈ OUT (v): {a, b} ∈ A
2
OUT(v) and {b, a} ∈ A

2
OUT(v), there are

two corresponding constraints. They model load balancing by assuring that if the flow

from node v ∈ V to destination q ∈ Q is routed on both arcs a ∈ A and b ∈ A, i.e. if

yq
a = yq

b = 1, then the flow on these arcs must be evenly split, i.e. xq
a = xq

b. To see this,

29

suppose yq
a = yq

b = 1. The constraint for pair {a, b} ∈ A
2
OUT(v) implies that xq

a ≤ xq
b. By

symmetry the constraint for pair {b, a} ∈ A
2
OUT(v) implies that xq

a ≥ xq
b. Consequently,

xq
a = xq

b. Note that taking M3 = maxq∈Q (
∑

v∈V dv,q) we assure that the right-hand-side

of constraint (2.14) is bounded from below by M3, making these constraints redundant

for pairs of links with at most one of either yk
a or yk

b equal to one. Note that the even

split constraints are part of the definition of shortest path in this work, since we seek to

simulate the probability of user decision in an intersection.

A model for OSPF routing, which also considers shortest paths and even flow

splitting, was previously proposed in Broström and Holmberg (2006). In their model

a shortest path graph is built for each OD pair, while we opted for building a shortest

path graph from all nodes to each node q ∈ Q. This modification reduces the number of

variables and constraints of the model.

We evaluate shortest paths according to two weight functions. In the first approach,

called SPT (Shortest Path Toll), we define the weight of an arc a ∈ A to be the tariff wa

levied on that arc. In this case, we set Ca = ǫ, a sufficiently small value. This way, when

there are one or more zero-cost paths, the flow is always sent along paths having smallest

hop count. In the second approach, called SPTF (Shortest Path Toll+Free flow time), we

define the weight of an arc a ∈ A to be the tariff wa levied on the arc plus the free flow

time ta of the arc, i.e. parameter Ca = ta + ǫ. The value ǫ > 0 is added to the cost with

the same goal as in the case of SPT since it is possible that ta = 0 for one or more arcs

a ∈ A.

2.2.3 Piecewise-linear functions for the models

The performance of mixed integer linear programming solvers has improved consid-

erably over the last few years. The two mathematical programming models presented so

far have a nonlinear objective function Φ. To apply these solvers, one must first linearize

Φ, resulting in an approximation of the nonlinear objective function. One possible option

is to approximate the nonlinear function by a piecewise linear function. Fortz and Thorup

(2004) proposed a piecewise-linear function for a general routing problem to approximate

network congestion cost. Ekström et al. (2012) describe an iterative approximation by

piecewise linear function for the travel time and total travel time, resulting in a mixed

integer linear program.

30

In this subsection, we propose two piecewise-linear approximations of the function

Φ =
∑

a∈A Φa. The first linearization ϕu, is an overestimation, and under certain conditions

is an upper bound of Φ. The second linearization ϕl is an underestimation and provides a

lower bound of Φ. It is possible to apply these linearizations to any model with this type

of nonlinear function. We apply them to models MM1 and MM2.

Let Ω be the set of constraints (2.2)–(2.5) or (2.7)–(2.22) of the previously described

mathematical models. For the case where Ω represents the constraints of the MM1 model

the approximation is called LMM1. On the other hand, when Ω represents the constraints

of the MM2 model, we call the approximation LMM2.

In approximation ϕu, the cost function of each arc a ∈ A is composed of a series of

line segments sequentially connecting coordinates

(X0,Φa(X0)), (X1,Φa(X1)), . . . , (Xn,Φa(Xn)),

where values X0, X1, . . . , Xn are given such that X0 = 0, and for i = 1, . . . , n, Xi ∈ R and

Xi > Xi−1.

If we denote the cost on arc a ∈ A by the variables ψa, then the resulting mathe-

matical programming model of the overestimation ϕu =
∑

a∈A ϕ
u
a is

minϕu =
∑

a∈A

ψa (2.23)

subject to:

Constraints Ω are satisfied, (2.24)

(mi
a/ca)ℓa + bi

a ≤ ψa, ∀a ∈ A, ∀i = 1, . . . , n, (2.25)

ψa ≥ 0, ∀a ∈ A, (2.26)

where

mi
a = (Φa(Xi)− Φa(Xi−1))/(Xi −Xi−1),

bi
a = Φa(Xi)−Xim

i
a,

where

Φa(Xi) = Xicata(1 + βa(Xi)αa)/S

for X0 = 0 < X1 < · · · < Xn. Objective function (2.23) minimizes the approximation

of average user travel time. Constraints (2.25) evaluate the partial cost on each arc by

31

determining the approximate value ϕu
a for Φa according to load ℓa. Constraints (2.26)

define the domain of the variables.

The linearization requires the definition of the terms X0, X1, . . . , Xn whose values

are computed as a function of ℓa/ca. These values are input parameters, and can be

defined by a predefined set for all arcs, or even a set defined for each arc based on the

estimation for the relation ℓa/ca. The number of these terms can be arbitrarily defined

according to the accuracy required for the linearization of the cost function, or according

to characteristics of the set of instances. This linearization requires a balance between

the accuracy of the computed solution and the time to compute the linearization. With a

large number n, the linearization tends to provide a better approximation of the original

value, while a small value of n can save time while solving the model since each element

entails |A| additional constraints.

A second linearization, which we denote by ϕl
a, is an underestimation and gives us

a lower bound on Φa. The mathematical model of this linearization is similar to that of

the overestimation. However, to estimate ϕl
a, we first compute the slope ma(x) of Φa at

x = (Xi−1 +Xi)/2, for i = 1, . . . , n, as

ma(x) =
∂Φa

∂x
=
ta
S

+
(αa + 1)taβax

αa

cαa

a S
.

Given x and ma(x), the independent term can be easily computed.

Linearizations ϕl and ϕu produce, respectively, an underestimation and an overesti-

mation of Φ, as Proposition 1 states.

Proposition 1 Let ϕu =
∑

a∈A ϕ
u
a, ϕl =

∑

a∈A ϕ
l
a, and as before Φ =

∑

a∈A Φa. Let

X0, X1, . . . , Xn be the values for which the approximation is computed. If ℓa/ca ≤ Xn,∀a ∈

A, then ϕl ≤ Φ ≤ ϕu.

Proof. As Φ is convex, by construction ϕl
a ≤ Φa, since each line segment is tangent of

Φ, then Φ =
∑

a∈A Φa ≥
∑

aA∈ ϕ
l
a = ϕl. Thus Φ ≥ ϕl. Furthermore, if ℓa/ca ≤ Xn,

then by construction ϕu
a ≥ Φa, since each line segment is secant of Φ, which implies that

ϕu =
∑

a∈A ϕ
u
a ≥

∑

a∈A Φa = Φ. Thus ϕu ≥ Φ. Therefore ϕl ≤ Φ ≤ ϕu. �

Note that in the Proposition 1 the underestimation ϕl is always a lower bound of Φ,

while the overestimation ϕu requires that ℓa/ca ≤ Xn,∀a ∈ A be true for the proposition

to hold. This can be easily obtained defining Xn = S/ca,∀a ∈ A.

A representation of the functions ϕu
a, ϕl

a, and Φa is depicted in Figure 2.1. It

shows the cost function Φ (solid line) as well as the piecewise-linear cost functions

32

ϕu and ϕl for an arc a ∈ A with ta = 5, ca = 200, αa = 4, βa = 0.15, and S = 1000

using with {X0, X1, . . . , X6} = {0, 0.65, 1, 1.25, 1.7, 2.7, 5}. Observe that there is a higher

concentration of points X in the range la
ca

= [0.65; 1.25]. This dense concentration of points

in this region is used because the flow on the majority of the arcs is concentrated around

their capacity. Thus, to obtain a good approximation requires that several X values be set

to values around la
ca

= 1. Note that a ratio of la
ca
> 1 indicates that the arc is overloaded.

Figure 2.1 – Comparison of the cost function with the linear piecewise-linear cost function

0

100

200

300

400

500

600

0.65 1 1.25 1.7 2.7 5

0

5

10

15

20

25

30

35

0.65 1 1.25 1.7 2.7

Source: from the author (2015).

The potential function Φ is based on the BPR function (Bureau of Public Roads,

1964) that is the most used function to estimate the traffic congestion in transportation

networks. This function has no asymptotic behavior in relation to the road capacity.

In this case, even allowing capacity overloading, the function allows to analyze different

situations and costs including roads with a high occupation or even infeasible cases. In

contrast to the non-asymptotic behavior of the BPR, Davidson (1966) proposed a cost

function with asymptotic behaviour for the capacity. However, this can result in infeasible

solutions for some networks.

2.3 A biased random-key genetic algorithm

In this section we describe the biased random-key genetic algorithm (BRKGA) for

the tollbooth problem. The general framework is described in section 1.2. Following we

describe the encoding and decoding procedures. The values for parameters as well as the

stopping criterion are given in Section 2.4.

33

Solutions are encoded as a 2× |A| vector X , where |A| is the cardinality of the set

A of arcs in the network. The first |A| keys correspond to the random keys which define

the toll tariffs while the last |A| keys correspond to a binary vector b, with K positions set

to one, used to indicated tolled arcs.

The decoder has two phases. In the first phase tolls are selected and arc tariffs are

set directly from the random keys. In the second phase, a local improvement procedure

attempts to change the tariffs with the goal of reducing the value of the objective function.

Each tolled arc a has a tariff in the interval [1, wmax], where wmax is an input parameter.

The tariff for arc a is simply decoded as ba · ⌈Xa ·wmax⌉. In an initial solution, the K tolled

arcs are selected randomly by uniform distribution. In a crossover, if both parents have a

toll in arc a, the same arc is tolled in the child. The remaining tolls are selected randomly

among the arcs whose parents have different values.

Demands are routed forward to their destinations on shortest weight paths. For

SPT, tolled links have weights equal to their tariffs and untolled links are assumed to

have weight zero. For SPFT, we add to the tariff the free flow time to define the weight of

all tolled arcs, while each untolled arc has weight equal to its free flow time. Depending

on the number of tolls and the network, there can be several shortest paths of cost zero

(especially for SPT). In this case, we use the path with the least number of hops. Traffic

at intermediate nodes is split equally among all outgoing links on shortest paths to the

destination. After the flow is defined, the fitness of the solution is computed by evaluating

the objective function Φ.

The second phase of the decoder is a local improvement. Local search is applied to

the solution produced in the first phase of the decoder. In short, it works as follows. Let

qls be an integer parameter and A∗ ⊆ A be the q = min{|A|, qls} arcs having the largest

congestion costs Φa, i.e. |A∗| = q and Φa∗ ≥ Φa, for all pairs {a∗, a} such that a∗ ∈ A∗ and

a ∈ A \A∗. For each arc a∗ ∈ A∗, in case it is tolled, its weight is increased by one unit at

a time, to induce a reduction of its load. The unit-increase is repeated until either the

weight reaches wmax or Φ no longer improves. If no improvement in the objective function

is achieved, the weight is reset to its initial value. In case the arc is not currently tolled, a

new toll is installed on the arc with initial weight one, and a toll is removed from some

other link tested in circular order. If no reduction in the objective function is achieved, the

solution is reversed to its original state. Every time a reduction in Φ is achieved, a new

set A∗ is computed and the local search restarts. The procedure stops at a local minimum

when there is no improved solution changing the weights of the candidate arcs in set A∗.

34

In the local improvement, every time a weight is changed (added by one unit,

inserted or removed) the current shortest paths are updated (BURIOL et al., 2008) instead

of recomputed from scratch, thus saving a considerable amount of running time.

2.4 Computational results

In this section we present computational experiments with the models and algo-

rithms introduced in the previous sections. Initially, we describe the dataset used in

the experiments. Then, we detail three sets of experiments. The first set evaluates the

mathematical models MM1 and LMM1. The second set of experiments evaluates the full

model MM2 with piecewise linear function, which considers the shortest-path constraints

with even split of loads. The last set of experiments evaluates the biased random-key

genetic algorithm presented in Section 2.3.

The experiments were done on a computer with an Intel Core i7 930 processor

running at 2.80 GHz, with 12 GB of DDR3 RAM of main memory, and Ubuntu 10.04 Linux

operating system. The biased random-key genetic algorithms (BRKGA) were implemented

in C and compiled with the gcc compiler, version 4.4.3, with optimization flag -03. The

commercial solver CPLEX 12.32 was used to solve the proposed linearizations of the

mathematical linear models, while MOSEK3 was used to solve the mathematical model

MM1 (with convex objective function).

To test model LMM2, we created the instances from set S1 from instance SiouxFalls

of S2 by removing from SiouxFalls some of its nodes and their adjacent links as well as

all OD pairs where these nodes are either origin or destination nodes. Let n < |V | be the

new number of nodes. We choose to remove nodes

v ∈ V : v =
⌊

k |V |
|V |−n

+ 1
⌋

with k = 0, . . . , |V | − n− 1.

Let a, b ∈ A, and v ∈ V be nodes such that a ∈ OUT (v) and b ∈ IN (v). Furthermore,

let at and ah be, respectively, the tail and head nodes of a links a. We create a link a′

from ah to bt if there does not already exist a link between ah and bt and furthermore

|OUT (bt)| < 4 or |IN (ah)| < 4. Link a′ has the same characteristics (ta, ca, etc.) of link a.

After all extensions, we remove from the network all arcs a ∈ OUT (v) ∪ IN (v) and v.

2<www.cplex.com>
3<www.mosek.com>

www.cplex.com
www.mosek.com

35

Table 2.1 details six synthetic instances (S1) and ten real-world instances (S2)

considered in our experiments and made available at <www.bgu.ac.il/~bargera/tntp/>.

Table 2.1 – Attributes for the instances are given in each column. For each instance, its row
lists the set identification (S1 or S2), instance name, number of vertices, links, OD pairs,

number of vertices in which traffic originates (Source nodes), and number of nodes in which
traffic terminates (Sink nodes)

Set Instance Vertices Links OD pairs Source nodes Sink nodes

SiouxFalls_08 8 16 48 8 8
SiouxFalls_09 9 26 68 9 9
SiouxFalls_10 10 36 84 10 10

S1 SiouxFalls_12 12 38 126 12 12
SiouxFalls_14 14 36 172 14 14
SiouxFalls_16 16 50 218 16 16

SiouxFalls 24 76 528 24 24
Friedrichshain Center 223 514 506 23 23
Prenzlauerberg Center 350 717 1406 38 38
Tiergarten Center 361 749 644 26 26
Mitte Center 398 857 1260 36 36

S2 Anaheim 416 914 1406 38 38
MPF Center 974 2153 9505 98 98
Barcelona 1020 2522 7922 97 108
Winnipeg 1052 2836 4345 135 138
ChicagoSketch 933 2950 9351 386 386

Source: from the author (2015).

2.4.1 Results for models MM1 and LMM1

The first set of experiments evaluates the models when solved with commercial

solvers. Table 2.2 presents, for each instance, the objective functions Φ, and the lower and

upper bounds ϕl and ϕu, respectively.

In the first two columns after the name of the instance, we present the objective

function values Φ and the computational times for model MM1 obtained with the nonlinear

solver MOSEK 6.0 using the modeling system GAMS4. A few nonlinear solvers are part of

the GAMS system and we evaluated the performance of all of them. Some of them are

general nonlinear solvers, and have no specific routines for convex functions. Most were

not able to solve the larger instances. MOSEK presented the best performance in terms of

running times and for this reason we report only the results obtained with MOSEK. The

next columns present results for CPLEX 12.3 with the proposed piecewise-linear functions

ϕl and ϕu, respectively the lower and upper estimations of function Φ. In each case, we

4<www.gams.com>

www.bgu.ac.il/~bargera/tntp/
www.gams.com

36

show the objective function values in columns ϕl and ϕu, as well as Φ{ϕl} and Φ{ϕu},

the values of Φ considering the arc loads obtained by the different approximations. The

computational times are reported in seconds.

Table 2.2 – Computational results for MM1 and LMM1

MM1 LMM1-lower estimate LMM1-upper estimate

Instance Φ Time(s) ϕl Φ{ϕl} Time(s) ϕu Φ{ϕu} Time(s)

SiouxFalls_08 8.77 0.0 8.69 8.77 0.0 8.97 8.77 0.0
SiouxFalls_09 6.32 0.0 6.26 6.32 0.0 6.46 6.32 0.0
SiouxFalls_10 6.71 0.0 6.62 6.72 0.0 6.81 6.71 0.0
SiouxFalls_12 11.46 0.0 10.92 11.47 0.0 12.69 11.72 0.0
SiouxFalls_14 64.69 0.0 45.87 64.79 0.0 119.34 64.79 0.0
SiouxFalls_16 10.11 0.0 9.97 10.15 0.0 10.33 10.18 0.0
SiouxFalls_18 10.70 0.0 10.37 10.93 0.0 11.16 10.87 0.0

SiouxFalls 19.95 0.1 18.10 20.77 0.1 21.68 20.52 0.1
Friedrichshain Center 42.47 7.7 39.57 43.34 0.0 47.61 43.11 0.1
Prenzlauerberg Center 59.90 70.3 56.98 61.07 0.1 67.21 60.81 0.1
Tiergarten Center 52.57 164.5 47.63 53.63 0.1 59.68 52.91 0.1
Mitte Center 62.36 30.8 58.76 63.59 0.2 71.08 63.11 0.3
Anaheim 12.46 204.8 12.26 12.49 0.5 12.91 12.48 0.5
MPF Center 65.88 1,988.0 60.94 67.63 2.8 75.11 66.57 3.7
Barcelona 6.87 6,174.8 6.54 11.75 1.9 6.54 11.75 1.9
Winnipeg 13.67 2,189.0 12.25 20.83 4.7 12.25 20.83 4.7
ChicagoSketch 14.24 2,004.9 14.09 14.31 1,154.6 14.50 14.30 2,465.1

Source: from the author (2015).

From the results in Table 2.2, three main observations can be made. First, there

are small gaps between ϕl and Φ{ϕl}, as well as between ϕu and Φ{ϕu}, i.e. both

piecewise-linear functions ϕl and ϕu have values that are, respectively, close to Φ{ϕl} and

Φ{ϕu}. The gap is the absolute difference between two values divided by the minimum

of both values. In a small number of cases the gap is significant and we observe that,

as expected, this occurs in instances with higher average or higher maximum utilization

(ℓa/ca), like Barcelona and Winnipeg. Second, we compare the results for models MM1

and LMM1. The gaps between ϕl and Φ, and between ϕu and Φ, are also small, which

means that the piecewise functions have similar values to the original convex function

Φ. However, for most of the instances, the computational times spent by MOSEK on

the convex function are two to four orders of magnitude greater than the time spent by

CPLEX on the piecewise-linear functions. The only case where solving the model with a

piecewise linear function (computing ϕu with CPLEX) took longer than solving the model

with the convex function Φ (using MOSEK) was for instance ChicagoSketch. However,

CPLEX found good solutions quickly, and spent most of the time certifying optimality. For

example, CPLEX found solutions with a gap of 3% with respect to the optimal solution in

about 650 seconds, while MOSEK needed more than 1600 seconds to reach this gap.

37

The last important observation is that the MM1 model is a relaxation of MM2.

Moreover, the shortest paths and even-split constraints (Eqs. 2.14) of model MM2 add a

considerable number of variables and constraints to the model. Thus, evaluating MM2

with a convex function became impracticable in terms of computational time, and for this

reason no corresponding results are reported. In the next experiment we evaluate both

approximations for the full model (MM2).

2.4.2 Results for the tollbooth problem with piecewise-linear cost (LMM2)

This set of experiments tests the performance of CPLEX on LMM2, the model that

includes shortest paths and even-split constraints. The main objective is show that even

for the approximation in very small instances, the solver has a limited performance. We

run the model considering both weight functions to calculate shortest paths (SPT and

SPTF) and both piecewise-linear functions introduced in Section 2.2.3.

Table 2.3 present results for model LMM2 when the shortest path is calculated

considering only the toll tariffs (SPT), and for tariffs plus the free flow time (SPTF),

respectively. For each instance, we tested several scenarios of K. For each scenario we

present the objective function values of approximations ϕl and ϕu obtained by CPLEX,

the corresponding Φ{ϕl} and Φ{ϕu} values (as described in the previous subsection), the

gap returned by the solver for a time limit of 1800 seconds, and finally the running times

in seconds. The null values (-) indicate that a feasible solution was not found within the

time limit.

Table 2.3 illustrates the difficulty in solving these instances with CPLEX. For most

of the instances no optimal solution was found within 30 minutes, and for many of them

not even a feasible solution was found in this time limit. A small increase in the instance

size implies in a large increase in the computational effort spent to solve the model. We

observe that for SPT the solver has more difficulty in finding an initial solution, and the

gap returned by the solver is slightly higher in comparison with SPTF. Furthermore, the

computational time is slightly reduced for SPTF, and ϕl was computed slightly faster

than was ϕu.

38

Table 2.3 – Computational results for LMM2 to SPT and SPTF

Approx. Obj. Function Solver gap Time(s)

Type Instance K ϕl ϕu Φ{ϕl} Φ{ϕl} ϕl ϕu ϕl ϕu

S
P

T

2 6.47 6.70 6.52 6.52 0.00 0.00 91.7 8.1
5 6.35 6.58 6.38 6.38 0.00 0.00 12.4 94.4

SiouxFalls_09 10 6.27 6.47 6.33 6.33 0.00 0.00 4.1 35.2
15 6.27 6.46 6.32 6.32 0.00 0.00 1.3 15.3
20 6.27 6.46 6.32 6.32 0.00 0.00 0.4 3.5

3 - - - - - - 1,800.0 1,800.0
7 - - - - - - 1,800.0 1,800.0

SiouxFalls_10 14 - - - - - - 1,800.0 1,800.0
21 6.70 6.90 6.76 6.78 0.59 0.42 1,800.0 1,800.0
28 6.70 6.90 6.76 6.78 0.23 0.21 1,800.0 1,800.0

3 - - - - - - 1,800.0 1,800.0
7 - - - - - - 1,800.0 1,800.0

SiouxFalls_12 15 - - - - - - 1,800.0 1,800.0
22 - - - - - - 1,800.0 1,800.0
30 - - - - - - 1,800.0 1,800.0

3 46.72 120.69 65.69 65.69 1.63 0.94 1,800.0 1,800.0
7 46.24 120.08 65.13 65.13 0.75 0.60 1,800.0 1,800.0

SiouxFalls_14 14 - - - - - - 1,800.0 1,800.0
21 46.14 - 64.96 - 0.49 - 1,800.0 1,800.0
28 46.14 - 64.96 - 0.39 - 1,800.0 1,800.0

S
P

T
F

2 6.28 6.47 6.33 6.33 0.00 0.00 0.5 0.3
5 6.27 6.46 6.32 6.32 0.00 0.00 0.4 0.4

SiouxFalls_09 10 6.27 6.46 6.32 6.32 0.00 0.00 0.2 573.3
15 6.27 6.46 6.32 6.32 0.00 0.00 0.4 0.4
20 6.27 6.46 6.32 6.32 0.00 0.00 0.4 0.4

3 6.73 6.93 6.79 6.79 0.00 0.00 92.7 176.4
7 6.70 6.90 6.76 6.78 0.00 0.15 203.2 1,800.0

SiouxFalls_10 14 - 6.90 - 6.78 - 0.31 1,800.0 1,800.0
21 6.70 6.90 6.76 6.78 0.32 0.51 1,800.0 1,800.0
28 6.70 6.90 6.76 6.78 0.04 0.51 1,800.0 1,800.0

3 11.19 13.09 11.67 11.82 0.00 1.87 1,748.4 1,800.0
7 11.18 13.05 11.66 11.83 0.39 2.44 1,800.0 1,800.0

SiouxFalls_12 15 - - - - - - 1,800.0 1,800.0
22 - - - - - - 1,800.0 1,800.0
30 11.18 - 11.66 - 1.64 - 1,800.0 1,800.0

3 46.24 119.73 65.09 65.09 0.00 0.00 1,019.3 133.3
7 46.14 119.65 64.96 64.99 0.48 0.25 1,800.0 1,800.0

SiouxFalls_14 14 - - - - - - 1,800.0 1,800.0
21 - - - - - - 1,800.0 1,800.0
28 - 119.65 - 64.99 - 0.13 1,800.0 1,800.0

Source: from the author (2015).

39

Results for instances SiouxFalls_06 and SiouxFalls_08 were found for ϕl and

ϕu in a less than one second, and for this reason they were omitted from the table. On the

other hand, results were omitted for SiouxFalls_16, for both piecewise-linear functions

and shortest-path evaluations SPT and SPTF, since the solver was unable to find any

feasible solution within the time limit.

In summary, Table 2.2 shows that solving the simplified model MM1, i.e. MM2

without the shortest paths computation and even-load constraints, takes a considerable

time, while their corresponding linearized versions ϕl and ϕu are calculated very quickly

for almost all cases. Table 2.3, on the other hand, shows that the linearizations ϕl and

ϕu of the full model MM2 takes a long time even for small instances. Thus, these results

motivated us to propose a heuristic solution to solve the tollbooth problem, and the results

of the proposed biased random-key genetic algorithm are presented in the next subsection.

2.4.3 Results for the biased random-key genetic algorithm

This section presents results for the biased random-key genetic algorithm applied

on instances from class S2. We extended the experimental study performed by Buriol et

al. (2010) in which results for only three of these instances were presented. Moreover, we

provide an analysis of the best solution for each combination of instance, value of K, and

problem type (SPT or SPTF).

To tune the parameters, a set of experiments was performed. The experiment

consisted of two steps. In the first step, we determined the fixed running time for each

triplet: instance (SiouxFalls, Prenzlauerberg Center, and Anaheim), value of K, and

problem type (SPT or SPTF). To define the fixed time, we ran the BRKGA with local

search using a set of predefined parameters: population size p = 50, elite set of size

pe = 0.25p, mutant set of size pm = 0.05p, elite key inheritance probability ρA = 0.7,

and a restart parameter r = 10. At every r generations we verify whether the best three

individuals in the population have identical fitness (within 10−3 of each other). If they

do, then the second and third best are replaced by two new randomly-generated solutions.

The BRKGA was run for at least 500 and at most 2000 generations, stopping after 100

generations without improvement of the incumbent solution. The fixed time is defined to

be the average of five independent runs.

The running time defined in the first step of the tuning phase is used in the second

step to determine the best combination of parameter values. We ran the BRKGA for this

40

fixed amount of time with parameters taken from the sets of values shown in the third

column of Table 2.4. All combinations of parameter values were considered.

Table 2.4 – Parameter values in tuning experiment

Description Parameter Values

Population size p {50,100}
Elite size pe {0.15p, 0.25p}
Mutation size pm {0, 0.05p, 0.10p}
Inheritance probability ρA {0.5, 0.7}
Restart r {0, 10}
Local Search qls {0*, 2, 5, 10}

*Indicates that no local search is applied.

Source: from the author (2015).

Given a set of triples, each consisting of an instance, a value of K, and a problem

type (SPT or SPTF), we run the BRKGA on each triple using all combinations of the

parameters in Table 2.4. The relative gaps of the fitness values from each run to the best

fitness over all runs for each triple is computed. We observe that using a local search in

the BRKGA results in better solutions than using no local search. In the case of qls = 0,

the average relative gap is 29.86, while for qls = 2, 5, and 10, the relative gap was 6.70,

5.96, and 5.88, respectively. Therefore, we analyze the remaining parameters considering

only runs where qls = 10. Table 2.5 shows the average relative gaps for these remaining

parameters. The best observed parameter values (in bold) were p = 100 for population

size, pe = 0.15p for elite population size, pm = 0.05p for mutant population size, ρA = 0.70

for inheritance probability, and r = 10 for restart.

Table 2.5 – Average of relative gaps obtained for different parameters

Description Parameter Value Gap

Population size p
50 6.04

100 5.72

Elite size pe
0.15p 5.82
0.25p 5.93

Mutation size pm

0 6.39
0.05p 5.49
0.10p 5.76

Inheritance probability ρA
0.5 5.91
0.7 5.85

Restart r
0 6.23

10 5.53

Source: from the author (2015).

41

Once the parameters were set, we ran the BRKGA with local search (BRKGA+LS)

with a time limit of 3600 seconds (except for ChicagoSketch, the largest instance, for

which we ran with a time limit of 7200 seconds). We allow the maximum number of

generations to be 2000, and the maximum number of generations without improvement to

be 100.

Table 2.6 shows averages over five runs of BRKGA+LS and a comparison between

SPT and SPTF. For each value of K, it lists the best solution value (Best Φ) over the five

runs, average fitness value (Avg Φ), standard deviation (SD), and average running time in

seconds.

The first observation is that as the value of K increases, the value of Φ tends to

decrease and have less variance. In fact, in most cases, the best solutions were found

for K ≥ |A|
2

. With small K it is easy for flow to bypass tolled arcs, which impairs traffic

engineering. On the other hand, the search space increases considerably for larger K values,

making the problem hard to solve. Since there are
(

|A|
K

)

configurations for the location

of K tolls and for each configuration each toll can have 20 different values, then the size

of the solution space is σ(K) =
(

|A|
K

)

20K. Thus, the solution space size is much larger for

K ≥ |A|
2

than for K < |A|
2

. Furthermore, even though the maximum of σ(K) is achieved for

a value of K < |A|, in all of the instances, σ(K′) > σ(K) for all K′ > K, where K′ is the

largest K value tested. For example, for the SiouxFalls instance, for which the largest

value of K tested was 70, σ(K) =
(

76
K

)

20K, which achieves a maximum for K = 73.

In most entries of Table 2.6 the standard deviation is small, showing robustness of

the algorithm. The table also shows that for small values of K, SPTF has smaller Φ than

SPT. This occurs because, for small values of K, SPT has many zero-cost paths, making

it difficult to influence flow distribution with tolls.

42

Table 2.6 – Detailed results of SPT and SPTF for BRKGA+LS

SPT SPTF

Instance K Best Φ Avg Φ SD Time (s) Best Φ Avg Φ SD Time (s)

10 52.38 54.48 2.88 34.83 25.19 25.19 0.00 27.57
20 32.14 38.01 6.08 59.52 22.72 22.86 0.10 30.26

SiouxFalls 30 27.05 28.37 1.90 68.43 22.10 22.30 0.17 32.34
50 21.59 21.90 0.27 41.81 21.64 21.83 0.18 48.74
70 21.38 21.53 0.15 32.39 21.55 21.94 0.23 17.18

10 56.44 56.80 0.34 263.53 46.38 47.23 0.68 218.38
50 46.59 48.32 2.44 526.92 43.45 43.52 0.06 226.39

Friedrichshain 100 43.52 43.93 0.37 710.33 43.41 43.50 0.07 273.65
Center 300 42.90 43.45 0.33 395.85 43.38 43.59 0.14 209.36

500 44.04 44.46 0.38 207.16 43.56 44.01 0.37 236.48

10 79.19 80.18 0.99 924.55 65.99 66.13 0.14 682.22
50 68.21 69.95 1.80 1,780.96 61.72 62.61 0.75 890.95

Prenzlauerberg 100 63.31 63.72 0.26 1,344.99 61.58 61.65 0.07 785.03
Center 450 61.82 62.18 0.26 1,015.67 61.63 61.81 0.16 735.60

700 62.42 63.26 0.81 1,066.42 63.03 63.68 0.44 703.19

10 61.97 62.00 0.07 418.51 53.24 53.28 0.06 401.85
50 56.45 56.69 0.23 1,148.33 52.88 52.92 0.03 534.28

Tiergarten 100 54.14 54.79 0.47 1,499.94 52.92 53.04 0.13 505.92
Center 450 53.11 53.26 0.13 764.01 52.87 52.93 0.06 444.03

700 53.60 53.98 0.25 578.06 52.97 53.10 0.12 331.22

10 79.78 80.11 0.26 805.12 65.84 66.47 0.38 807.10
50 69.74 70.58 0.67 1,880.73 63.86 64.03 0.21 1,096.38

Mitte Center 100 68.39 68.71 0.33 2,233.21 63.75 63.94 0.19 1,536.11
400 63.94 64.11 0.15 2,323.10 63.90 64.17 0.22 955.07
800 64.19 64.47 0.34 1,102.89 63.96 64.30 0.22 879.13

10 15.39 15.42 0.01 785.38 12.72 12.73 0.01 1,328.61
50 14.01 14.05 0.04 2,611.93 12.58 12.60 0.02 2,058.35

Anaheim 100 13.41 13.54 0.09 3,406.09 12.58 12.60 0.01 2,034.47
500 12.73 12.89 0.11 3,602.11 12.62 12.68 0.05 3,601.32
800 12.60 12.65 0.05 3,096.01 12.57 12.63 0.05 3,041.08

10 91.64 92.03 0.28 3,616.48 70.73 71.14 0.24 3,615.19
100 82.28 82.62 0.51 3,616.98 66.64 66.73 0.07 3,611.59

MPF Center 250 82.54 82.84 0.25 3,616.24 66.76 66.93 0.12 3,615.17
1000 75.08 75.89 0.90 3,612.88 67.92 68.39 0.38 3,611.87
2000 71.21 72.58 0.90 3,607.61 68.11 68.58 0.30 3,602.20

10 15.84 15.84 0.00 3,622.16 7.82 7.91 0.13 3,618.36
100 9.41 9.48 0.05 3,622.80 7.25 7.26 0.01 3,613.41

Barcelona 500 9.62 9.87 0.23 3,619.05 8.15 8.24 0.13 3,613.71
1500 9.65 10.32 0.43 3,615.32 9.20 9.40 0.13 3,612.30
2500 8.05 8.23 0.19 3,605.98 7.85 8.00 0.13 3,607.16

10 32.34 35.22 2.09 3,627.08 17.45 17.59 0.10 3,625.19
100 20.41 20.90 0.41 3,627.86 15.50 15.62 0.09 3,619.40

Winnipeg 500 26.76 31.68 4.59 3,629.67 19.45 19.69 0.17 3,617.72
1500 20.34 21.70 1.02 3,616.06 18.96 19.92 0.87 3,618.39
2800 16.67 16.72 0.06 3,607.96 16.04 16.49 0.29 3,606.33

10 100.18 100.30 0.07 7,267.29 19.24 19.44 0.12 7,254.08
100 22.14 22.58 0.41 7,257.85 16.62 16.70 0.05 7,268.57

ChicagoSketch 500 22.77 24.29 0.96 7,268.40 17.99 18.25 0.26 7,277.62
1500 76.87 154.37 62.94 7,243.13 19.27 20.46 0.77 7,246.76
2900 16.95 17.51 0.45 7,218.88 15.72 16.04 0.20 7,212.14

Source: from the author (2015).

43

Table 2.7 presents, for each instance, the shortest average user travel time using

tolls obtained by BRKGA for the tollbooth problem in comparison with the optimal

distribution flow obtained by solving linear program MM1. An optimal solution for MM1

is a lower bound for the tollbooth problem. The results show that with tolls it is possible

to obtain a near-optimal flow distribution.

Table 2.7 – Approximation of the lower bound with tolls

Instance Lower Bound BRKGA+LS

SiouxFalls 19.95 21.38
Friedrichshain Center 42.47 42.90
Prenzlauerberg Center 59.90 61.57
Tiergarten Center 52.57 52.87
Mitte Center 62.36 63.59
Anaheim 12.46 12.57
MPH Center 65.88 66.64
Barcelona 6.87 7.25
Winnipeg 13.67 15.50
ChicagoSketch 14.24 15.72

Source: from the author (2015).

We next explore the main characteristics of the near-optimal solutions found by

BRKGA+LS. For the best solution found in the five runs, Table 2.8 lists the average

number of paths for each OD pair (#Path), the average number of hops among all OD

shortest paths (#Hop), the average sum, over all OD pairs, of the tariffs on the shortest

paths (#Toll), and the average number of distinct arcs used, over all OD pairs (#UArc).

Columns #Path in Table 2.8 show that when K increases, a strong reduction in

the number of shortest paths is observed for SPT, while for SPTF, the reduction is not as

pronounced. Again, this occurs because of the large number of zero-cost paths present in

SPT when K is small. Of these, traffic flows on one or more paths of minimum hop count.

On the other hand, for SPTF, the inclusion of free flow time to the arc weight leads to

paths of distinct cost, with a few of minimum cost (in many cases a single minimum cost

path).

Columns #Hop in Table 2.8 show the minimum hop count distance between OD

vertices. For large values of K we observe that as the number of installed tolls increases,

the hop count decreases in both SPT and SPTF. This occurs because with a large number

of tolls it is possible to do better traffic engineering. For small values of K in SPT, the hop

count is small because it corresponds to a minimum hop-count path among the zero-cost

shortest paths.

44

Table 2.8 – Detailed results of best solution found by BRKGA+LS algorithm

SPT SPTF

Instance K #Path #Hop #Toll #UArc #Path #Hop #Toll #UArc

0 1.97 2.51 - 4.97 1.05 2.14 - 3.24
10 1.78 2.58 0.21 4.84 1.07 2.10 0.38 3.25

SiouxFalls 30 1.32 2.48 1.12 4.00 1.13 2.25 1.09 3.46
50 1.13 2.28 1.89 3.50 1.09 2.22 1.88 3.34
70 1.10 2.34 2.96 3.45 1.06 2.20 2.71 3.30

0 1.96 9.36 - 11.94 1.52 12.24 - 12.82
10 1.91 9.99 0.21 12.21 1.63 13.63 0.31 13.04

Friedrichshain 100 1.42 11.43 1.76 12.58 1.48 12.49 2.14 12.48
Center 300 1.17 11.50 5.39 12.33 1.00 10.68 5.57 11.68

500 1.03 10.35 10.39 11.20 1.00 10.44 10.49 11.44

0 2.75 14.72 - 17.11 1.79 18.67 - 18.00
10 2.61 15.65 0.07 18.02 1.53 16.48 0.38 17.19

Prenzlauerberg 100 1.60 16.41 2.08 17.33 1.30 16.06 2.20 17.02
Center 450 1.15 15.85 8.07 16.69 1.07 15.86 7.95 16.70

700 1.12 15.00 15.14 15.97 1.01 14.57 14.69 15.62

0 1.92 15.40 - 17.32 1.12 17.43 - 18.51
10 2.07 17.20 0.00 18.57 1.07 15.76 0.42 17.23

Tiergarten 100 1.20 16.37 1.01 18.08 1.04 15.98 2.35 17.26
Center 450 1.03 15.74 8.14 16.98 1.00 16.11 8.95 17.11

700 1.00 15.81 13.74 16.83 1.00 15.97 15.20 16.97

0 2.79 14.95 - 17.75 1.33 17.49 - 17.81
10 3.12 16.81 0.00 18.99 1.38 17.37 0.48 17.60

Mitte 100 1.34 15.83 0.45 17.61 1.14 16.13 2.53 16.84
Center 400 1.05 15.84 6.65 16.77 1.00 15.29 6.58 16.29

800 1.02 15.12 13.21 16.11 1.02 15.48 14.21 16.32

0 8.71 15.64 - 21.45 1.35 15.67 - 17.46
10 16.79 19.71 0.00 23.19 1.35 15.16 0.07 16.96

Anaheim 100 3.29 18.31 0.02 20.61 1.39 15.52 0.74 16.51
500 1.05 14.78 6.48 15.89 1.04 14.31 6.43 15.45
800 1.01 14.32 11.85 15.41 1.00 14.50 12.20 15.50

0 5.09 24.35 - 27.54 2.28 31.51 - 29.17
10 5.25 26.00 0.00 27.95 2.15 30.50 0.23 28.48

MPF Center 250 3.54 27.98 0.54 29.08 1.34 27.47 2.29 27.37
1000 1.10 24.98 8.63 25.87 1.21 26.63 9.40 26.33
2000 1.09 23.79 20.41 24.21 1.00 24.00 20.90 25.00

0 7.37 15.85 - 20.82 1.16 18.73 - 20.73
10 7.00 18.28 0.01 24.80 1.13 18.70 0.07 20.85

Barcelona 500 5.02 21.25 0.14 25.03 1.14 19.01 0.69 20.58
1500 1.38 19.51 8.36 20.35 1.03 18.37 7.21 19.35
2500 1.08 15.87 16.45 16.77 1.01 16.12 16.69 17.10

0 3.92 20.72 - 25.96 1.04 24.98 - 25.73
10 4.22 21.96 0.00 27.15 1.05 24.80 0.15 25.36

Winnipeg 500 3.02 31.04 0.82 32.02 1.17 25.69 2.32 26.11
1500 1.65 31.76 9.83 25.91 1.11 24.78 9.82 24.84
2800 1.04 19.77 20.12 20.82 1.01 20.15 20.60 21.14

0 20.04 14.86 - 23.69 1.01 12.30 - 13.32
10 21.24 15.23 0.00 24.35 1.01 12.19 0.09 13.20

ChicagoSketch 500 9.88 15.72 0.49 22.49 1.00 12.33 0.95 13.35
1500 2.64 19.38 4.82 17.57 1.00 12.52 4.97 13.53
2900 1.16 12.23 12.91 13.22 1.00 11.54 12.23 12.55

Source: from the author (2015).

The columns #Toll in Table 2.8 show the average number of tolls that a user

traverses on an OD shortest path. Clearly, this value increases with K. Since an increase

in K leads to a decrease in the number of shortest paths (column #Path), the number of

distinct arcs (column #UArc) consequently decreases.

2.5 Concluding remarks

In this chapter we presented an extensive study of the tollbooth problem. Math-

ematical formulations for different versions of the tollbooth problem were presented, as

well as linearizations that give lower and upper bounds for their objective functions.

Computational tests were conducted taking into account the original and the linearized

models, applied on two sets of synthetic and real-world instances. Moreover, a random-key

genetic algorithm was run for this same set of instances.

When analyzing the results for the mathematical models, we concluded that the

model MM2, which includes shortest paths and even-split constraints, has a large number

of variables and constraints, making it difficult to be solved with general-purpose solvers,

even when we limit ourselves to small instances. On the other hand, if shortest paths and

even-split constraints are removed from the model, giving rise to a simplified version of

the problem, the linearized versions of the problem can be solved efficiently with CPLEX.

However, results obtained with the biased random-key genetic algorithm for the complete

model shows it has a good tradeoff between computation time and solution quality on this

problem.

Finally, considering that users naturally take the least costly path, toll setting

can be used to better distribute the flow in the network and consequently reduce traffic

congestion.

46

3 STACKELBERG NETWORK PRICING PROBLEM

Bilevel programming is a suitable framework to model asymmetric games, where

one player (the leader) is the first to make a decision, taking into account the optimal

reaction of the second player (the follower). In network optimization problems, especially

in transportation networks, this framework is often used to model the reactions of the

users in a network subjected to changes made by an agent that controls traffic. In a more

general way, this framework is suitable for modeling problems with conflict of interest

where an objective predominate over secondary objectives.

Bilevel programming problems are introduced by Heinrich von Stackelberg (STACK-

ELBERG, 1934) when to investigating the problem known as Stackelberg game. From the

combinatorial optimization community, bilevel programming first appears in Bracken and

McGill (1973), although the term bilevel and multilevel programming are only introduced

by Candler and Norton (1977). More recently, Colson et al. (2005), Colson et al. (2007)

present a review of bilevel problems with applications and resolution methods. The book

Foundations of Bilevel Programming (DEMPE, 2002) gives the main foundations, examples

of applications and theoretical results for bilevel problems. The book Metaheuristics for

Bi-level Optimization (TALBI, 2013) provide a background to implement metaheuristics

for this type of problems with examples for many real-world applications.

In this chapter, we address the Stackelberg network pricing problem, a bilevel

problem with application in the transportation networks. In this hierarchical problem,

the two decision-making levels are conflicting. The lower level (followers), always take

the decision that minimize your cost. The higher level (leader), considering the optimal

decision on the lower level to make the decision seeking to maximize an objective. In

analogy with transportation networks, the lower level decision can be a set of users traveling

in a network choosing your routes based on the least cost path. The higher level can be

an agent that controls the tariffs in a set of tolled arcs with the objective to maximize

the revenue collected in these arcs. In this work, we apply a biased random-key genetic

algorithm for large instances of this problem. The experimental results show that the

algorithm found good solutions for large instances in a short time. This chapter is based

on Stefanello et al. (2013).

47

3.1 Introduction

Transportation is an important component of the economy, a promoter of wealth,

the development and the welfare of populations. Reducing the problems related to

transportation networks has challenged not only traffic engineers but also researchers from

several areas. Many rules and procedures are currently in use aiming at improving the

traffic flow in a city or road. They can also attend other interests. Motivating the use

of bicycle, for example, reduces traffic congestion and improves lifestyle. In spite of the

world effort in reducing traffic flow, the high traffic still generating congestion problems in

almost all cities and main roads. Another alternative to reduce some problems is applying

tolls on some arcs of the network.

The main idea is that the deployment of tolls on certain roads can induce drivers

to choose alternative routes, thus reducing congestion as the result of better traffic flow

distribution. Naturally, tolls can increase the cost of a trip, but this can be compensated

with less travel time, reduced fuel cost, and lower amounts of stress. In the 1950s,

Beckmann et al. (1956) proposed the use of tolls with this objective. This idea has made

its way into modern transportation networks. In 1975, Singapore implemented a program

called Electronic Road Pricing or ERP. Several cities in Europe and the United States,

such as in London and San Diego, have begun to charge toll on their transportation

networks (BAI et al., 2010). Tolls are also applied in some small European towns, like

Perugia (Italy), to reduce the number of people driving in downtown areas.

The optimization of transportation networks using tolls is addressed by many works.

The goal of the minimum tollbooth problem (MINTB), first introduced by Hearn and

Ramana (1998), is to minimize the number of toll locations to achieve system optimality.

Yang and Zhang (2003) formulate second-best link-based pricing as a bi-level program

and solve it with a genetic algorithm. In Bai et al. (2010) it is shown that the problem

is NP-hard and a local search heuristic was proposed. In Stefanello et al. (2015c), an

extension of Buriol et al. (2010), the authors deal with the problem of locating a fix number

K of tolls, as well as defining their tariffs. For a complete of road pricing optimization

problems, we refer the reader to the survey by Tsekeris and Voß (2008).

Another class of problems on flow networks is defined when only a given subset of

the arcs can be tariffed. This is the case of the network pricing problem (NPP) introduced

by Labbé et al. (1998), which is further explored in this work. In an NPP, an authority

imposes charging tolls in a given set of arcs with the objective of maximizing the revenue,

48

supposing that travellers always take the shortest cost path. The shortest path is computed

considering the tolls and a fix link cost. In game theory, a similar problem is known as

the Stackelberg game (STACKELBERG, 1952). In this game there is a leader and a

follower. The leader plays first choosing the best strategy supposing that the follower

reacts in an optimal way to its choice. Knowing the decision of the leader, the follower

chooses a strategy considering its own benefit. Similar problems and applications are

found in toll optimization systems (DEWEZ, 2004), long-distance freight transportation

overseas (BROTCORNE et al., 2000), airline charging (CASTELLI et al., 2013), and in

telecommunication networks (BASAR; SRIKANT, 2002; BOUHTOU et al., 2007).

A bilevel NPP was first introduced by Labbé et al. (1998) for a multicommodity

network. The problem consists in determining the tariffs to tolls on a subset of arcs of a

network, with the objective of maximizing the profit, given that users travel on shortest

cost paths. In this problem, the authority is supposed to fix its toll prices first, and

then the users choose their paths having the complete knowledge of all network costs.

In Labbé et al. (1998) the general problem was proved to be NP-complete, while particular

instances are polynomially solvable, as the single toll arc case. In the same work, it was

also showed how the lower level optimization problem can be replaced by its primal and

dual constraints and its optimality conditions, stating that the primal and dual objective

functions must be equal, yielding a single level formulation. In Roch et al. (2005) the

NPP with lower bound constraints on tolls was proved to be strongly NP-hard even for

one single commodity. Other results can be found for instance in Bouhtou et al. (2007),

Dewez (2004), Heilporn et al. (2010), and Brotcorne et al. (2012).

In this chapter, we approach the multicommodity network pricing problem named

as Stackelberg network pricing problem. The objective is to determine the tariff of a given

subset of arcs of the network maximizing the revenue computed by travelers that choose

their shortest cost path routes. This work proposes a biased random-key genetic algorithm

(BRKGA) to solve large scale instances from the bilevel multicommodity network pricing

problem. We further present a set of experiments, providing some conclusions and research

directions.

This chapter is organized as follows. In Section 3.2 we present an overview and a

mathematical formulation for the Stackelberg network pricing problem. The biased random-

key genetic algorithm to solve this problem is presented in Section 3.3. Computational

results are reported in Section 3.4, and conclusions are drawn in Section 3.5.

49

3.2 The Stackelberg Network Pricing Problem

Consider a network represented by a directed graph G = (V,A, c) where V represents

the set of nodes (i.e., vertices or points of interest), and A the set of arcs (i.e., links or

road segments). The set A is partitioned into two subsets, i.e., A = A1 ∪ A2. Subset A1

contains the K = |A1| arcs that can be tariffed, and belongs to the leader while A2 is

owned by another agent in the network and the arc costs ta are known a priori. Besides

the tariffs, arcs from K = |A1| also has a cost ta. Thus, the arcs belonging to A1 have cost

ta + wa, while the arcs that belong to A2 have cost ta, where ta is the fix cost of the arc

and wa is the tariff in the arc a.

In addition, let K = {(o(1), d(1)), (o(2), d(2)), . . . , (o(|K|), d(|K|)} ⊆ V × V denote

the set of commodities or origin-destination (OD) pairs, where o(k) and d(k) represent,

respectively, the origin and destination nodes for k = 1, . . . , |K|. Each commodity

k = 1, . . . , |K| has an associated demand of traffic flow dk, i.e., for each OD pair (o(k), d(k)),

there is an demand dk that emanates from node o(k) and terminates in node d(k).

To ensure that the problem is bounded, it is assumed that for each commodity

k ∈ K there is an upper bound on the amount the customer is willing to pay, or there

exists a path from origin to destination that uses only fixed cost arcs a ∈ A2.

The multicommodity NPP has been formulated as follows (LABBÉ et al., 1998):

max
∑

k∈K

∑

a∈A1

wax
k
a (3.1)

min
∑

k∈K







∑

a∈A1

(ta + wa)xk
a +

∑

a∈A2

tax
k
a







(3.2)

∑

a∈IN(v)

xk
a −

∑

a∈OUT (v)

xk
a =































−dk, if v = d(k)

dk, if v = o(k)

0, otherwise

∀v ∈ V, ∀k ∈ K, (3.3)

xk
a, wa′ ∈ ℜ+ ∀a′ ∈ A1, ∀a ∈ A, ∀k ∈ K . (3.4)

Here IN(v) is the set of arcs entering v, and OUT (v) is the set of arcs leaving v. In

this model, the variables wa represent the values of tolls on arcs a ∈ A1 and the variables

xk
a represent the flow of commodity k ∈ K on arc a ∈ A.

This model is a bilinear bilevel program since the upper level is linear in the tariff

variables and the lower level is linear in the arc choice variables (HOESEL, 2008), resulting

in a nonlinear formulation in the combination of these variables.

50

Observe that once the tariffs are defined, one can easily choose among all s-t paths

of minimum total cost one path that maximizes the revenue. In other words, we assume

that the follower always makes the best choice for the leader. A natural extension of the

NPP is to allow negative tariffs. In this case, the values are incentives to travelers take

this routes. In this work we limit only to non-negative tariffs.

A mixed integer linear formulation is provided for this problem in Labbé et al.

(1998). This model was obtained by replacing the lower level problem by its optimality

conditions and the flow variables in the upper level for proportion of the demand assigned

to the tolled arcs. Thus, an arc formulation for NPP has been formulated as follows:

max
∑

k∈K

∑

a∈A1

dkw
k
a (3.5)

subject to

λk
i − λ

k
j ≤ ta +Wa ∀a = (i, j) ∈ A1,∀k ∈ K (3.6)

λk
i − λ

k
j ≤ ta ∀a = (i, j) ∈ A2,∀k ∈ K (3.7)

∑

a∈A1

(

tax
k
a + wk

a

)

+
∑

a∈A2

tax
k
a = λk

d(k) − λ
k
o(k) ∀k ∈ K (3.8)

∑

a∈IN(v)

xk
a −

∑

a∈OUT (v)

xk
a =































−1, if v = d(k)

1, if v = o(k)

0, otherwise

∀v ∈ N,∀k ∈ K (3.9)

−Mxk
a ≤ wk

a ≤Mxk
a ∀a ∈ A1,∀k ∈ K (3.10)

−M
(

1− xk
a

)

≤ wk
a −Wa ≤M

(

1− xk
a

)

∀a ∈ A1,∀k ∈ K (3.11)

xk
a ∈ {0, 1} , w

k
a,Wa ∈ ℜ

+ ∀a ∈ A1,∀k ∈ K (3.12)

xk
a ≥ 0 ∀a ∈ A2,∀k ∈ K (3.13)

λk
v ≥ 0 ∀v ∈ V, ∀k ∈ K (3.14)

Objective function (3.5) maximizes the revenue of the demand for each commodity

that traverses the tariffed arcs. Constraint set (3.6) and (3.7) defines the weight distance

from the vertices, since variables λ store the distance from vertice i to the destination of

the commodity k. Variables Wa represent the value of the tariff for the arc a while wk
a is

used to calculate the tariff for each commodity. Constraint set (3.8) helps to define the

tariffs of the tariffed arcs based on the vertices distances. Constraint set (3.9) guarantees

flow conservation. Constraint set (3.10) and (3.11) set the tariffs only on arcs with flow,

and the last constraint sets define the domain of the variables (3.12)–(3.14).

51

This model can be improved in the case of having many commodities to the same

destination. The set of variables λk
v ,∀ v ∈ V and ∀k ∈ K can be replaced by a set of

variables λq
v,∀v ∈ V and ∀q ∈ Q where Q is the set of all destination nodes. For a large

number of commodities |Q| ≪ |K| this modification reduces the number of variables in

comparison to the original model.

3.3 A biased random-key genetic algorithm

In this section we describe the biased random-key genetic algorithm (BRKGA)

proposed to solve the Stackelberg network pricing problem. The general framework of

this method is described in Section 1.2. Next, the encoding and decoding procedure are

described, and the values of parameters, as well as the stopping criterion, are given in

Section 3.4.

Solutions are encoded as an n-vector of random keys, where n = |K| is the cardinality

of the tariffed arcs (A1) in the network. Each random-key corresponds to a tariff that is

decoded by ⌊Xi ∗wmax⌋, where Xi is the random-key associated with the tolled arc i ∈ A1.

Let d0
k the shortest distance from node s to node t of the commodity k when the tariffed

arcs are defined to zero and d∞
k the shortest distance from s to t for commodity k when

the tariffed arcs are defined to a sufficiently large value. Thus, a natural upper bound

wmax on the value of a tariff on the network is given by

wmax = max
k∈K

{

d∞
k − d

0
k

}

.

With the tariffs for each tolled arc defined, demands are routed forward to their

destinations on shortest weight paths. Tariffed links have weights equal to their fixed

costs plus their tariffs (ta + wa), and untariffed links have only a fixed cost (ta). For each

commodity, all paths of minimum cost are evaluated, and the demand is sent by the higher

cost path. In the case of a tie, the path with the higher number of tariffed arcs is selected.

Finally, in the case of a second tie, the tie is break using the outgoing arc with the lowest

index. Once the demands are routed, the revenue of each tolled arc can be computed for

all commodities. The solution fitness value is then calculated and associated with the

respective vector of random-key.

Two kinds of initial solutions are generated. Note that any set of positive tariffs

produces feasible solutions. First, the model (3.5)-(3.14) is solved with constraint (3.12)

52

relaxed. We observed that the values of tariffs of this solution were, in most cases, an

upper approximation of the tariffs of the optimal solution. The values of tariffs resulted

from the solver are recoded to the first random-key vector. The remaining solutions are

randomly generated, i.e., each random-key is a random number in the interval [0, 1].

3.4 Computational results

In this section we present computational experiments with the models and algorithms

presented in the previous sections. Initially, we describe the dataset used in the experiments.

Then, we detail some experiments with CPLEX applied on the mathematical model

(3.5)–(3.14) and a component based on the relaxation of this model added to a basic

implementation of the BRKGA that help to improve the results. Finally, preliminary

results for the BRKGA are reported with some considerations.

The experiments were done on a computer with an Intel Core i5 2300 processor

running at 2.80 GHz, with 4 GB of DDR3 RAM of main memory, and Ubuntu 12.10 Linux

operating system. The BRKGA was implemented in C++ and compiled with the g++

compiler, version 4.7.2. We used CPLEX 12.41 (API C++) with default configuration.

Three types of networks are used in the first experiment, as show in Figure 3.1:

Figure 3.1 – Network structures: (a) Grid network; (b) Voronoi network; (c) Delaunay network.

Source: from the author (2015).

For each edge from the original structure two directed arcs with opposite directions

were created. A random weight ta ∈ [1, tmax] is assigned to each one. Distinct origin and

destination nodes of each commodities are also randomly chosen, as well as the demand is

randomly generated in the interval [1, dmax] (by default dmax = 20).

1<www.cplex.com>

www.cplex.com

53

Tariffed arcs are selected based on the description provide on Brotcorne et al. (2000).

However, some changes were applied to increase the number of travelers through tariffed

arcs for increasing the difficulty to solve the problem. Shortest paths are then calculated.

The frequency that each arc belongs to the shortest path is computed. The first |A1|/2

arcs are selected considering the decreasing order of frequencies and the weights of these

arcs are increased by a large value (usually a maximum integer representation). Their

frequency count are also increased by a large value (it was used |A|). Next, considering

the new values of weights, the demands are routed again, and the frequencies are updated.

Finally in a decreasing order of frequencies, the tariffed arcs are selected. Once an arc

is tariffed, a test is performed to check if there is at least one untariffed path from each

commodity. If there is no such a path, the toll is removed and the next arc is selected to

receive the toll. This process is repeated until K tariffs are assigned.

Sets of instances are created with 200, 500 and 1000 arcs (the exact number of arcs

can vary according to the network structure). The fixed maximum weight of arcs tmax

is defined to 10 and 30. The number of origin-destination pairs is selected from 50, 200

and 500, and the proportion of tariffed arcs from 10% and 20%, generating a total of 108

instances2.

3.4.1 Results for the mathematical model

This subsection reports experiments with CPLEX running the model (3.5)–(3.14)

considering the subset of instances with 200 arcs from Table 3.1.

The columns present the name of the instances, the CPLEX gap and the computa-

tional time (limited to 1h run). The name of each instance is composed by the network

structure, #arcs, #o-d pairs, and the max arc weight tmax. A ‘-’ in the table indicates the

cases in which the computer memory was exceeded and then the run was interrupted.

Table 3.1 shows, as expected, that a higher number of tariffed arcs increases the

difficulty of the solver to prove optimality. The same is observed for the number of

commodities. This occurs because the variables of this model are directly related to these

parameters. In general, as higher the number of variables, more difficult is to solve the

problem.

2Available at <www.inf.ufrgs.br/~fstefanello>

www.inf.ufrgs.br/~fstefanello

54

Table 3.1 – Computational results for the mathematical model

K = 10% K = 20%

Instance gap Time(s) gap Time(s)

Grid-0200-0050-10 0.00 9.94 3.46 3,600.23
Grid-0200-0050-30 0.00 2.69 0.00 126.57
Grid-0200-0200-10 - - 200.09 3,600.66
Grid-0200-0200-30 54.24 3,600.32 286.44 3,600.98
Grid-0200-0500-10 451.26 3,601.28 366.22 3,600.13
Grid-0200-0500-30 734.92 3,600.06 1,974.75 3,600.08

Delaunay-0200-0050-10 0.00 1.44 0.00 2.88
Delaunay-0200-0050-30 0.00 11.33 0.00 105.05
Delaunay-0200-0200-10 0.00 104.75 13.41 3,606.50
Delaunay-0200-0200-30 1.74 3,601.21 11.37 3,605.06
Delaunay-0200-0500-10 118.84 3,602.50 731.74 3,600.06
Delaunay-0200-0500-30 - - 604.50 3,601.28

Voronoi-0200-0050-10 0.00 1.57 0.00 169.75
Voronoi-0200-0050-30 0.00 6.67 0.00 1,099.20
Voronoi-0200-0200-10 5.08 3,600.49 117.19 3,600.79
Voronoi-0200-0200-30 3.99 3,600.39 92.02 3,600.58
Voronoi-0200-0500-10 - - - -
Voronoi-0200-0500-30 - - - -

Source: from the author (2015).

A relaxed version of the model was also solved. Defined the tariffs obtained by

the solver, that can be fractional numbers, the demands are routed and the revenue is

computed. Table 3.2 shows a comparison of the solution obtained by the relaxed model

and 1000 randomly generated solutions for two values of K.

In average, the solution value is about 40% less of the optimal values found in the

previous experiment. Also, the relaxed solutions are in average, better than a randomly

generated solution. In a set of 1000 random solutions for each instance, the average gap

quality is around 64% less than the revenue of the relaxed solution. For the best of 1000

random solutions, the gap is still 20% less than the revenue of the relaxed solution.

55

Table 3.2 – Comparison of the solution obtained with the relaxed model and 1000 randomly
generated solutions

K = 10% K = 20%

relaxed Random relaxed Random
Instance model avg max model avg max

Grid-0200-0050-10 2,227.0 928.9 2,191.0 4,094.1 825.3 1,981.0
Grid-0200-0050-30 4,508.1 1,199.5 3,229.0 10,704.0 2,719.5 7,367.0
Grid-0200-0200-10 5,537.4 1,512.2 5,043.0 8,470.5 1,916.3 6,026.0
Grid-0200-0200-30 13,129.1 5,294.6 13,176.0 25,584.2 8,114.9 20,491.0
Grid-0200-0500-10 10,586.6 5,363.2 13,535.0 17,619.1 5,195.5 12,702.0
Grid-0200-0500-30 27,783.2 10,326.9 25,983.0 41,060.2 14,674.6 32,904.0

Delaunay-0200-0050-10 652.0 234.3 511.0 1,090.0 325.6 773.0
Delaunay-0200-0050-30 1,290.3 461.5 965.0 2,526.0 536.9 1,198.0
Delaunay-0200-0200-10 1,666.0 702.7 1,486.0 2,179.4 845.2 1,706.0
Delaunay-0200-0200-30 4,560.0 1,413.1 3,075.0 8,293.9 3,143.2 6,409.0
Delaunay-0200-0500-10 3,722.6 1,985.1 3,618.0 6,125.5 2,646.3 5,049.0
Delaunay-0200-0500-30 8,500.8 4,327.0 8,873.0 14,621.5 6,787.2 11,437.0

Voronoi-0200-0050-10 1,263.8 400.6 986.0 2,799.0 469.1 1,345.0
Voronoi-0200-0050-30 2,896.1 832.1 2,099.0 7,251.5 1,342.3 3,389.0
Voronoi-0200-0200-10 3,621.4 1,431.4 2,881.0 7,423.3 3,257.3 5,888.0
Voronoi-0200-0200-30 11,523.0 4,751.9 11,726.0 23,367.5 6,647.6 14,742.0
Voronoi-0200-0500-10 7,248.7 2,757.8 6,088.0 21,236.2 9,992.7 20,699.0
Voronoi-0200-0500-30 22,606.0 10,611.1 22,064.0 42,007.3 14,405.6 29,920.0

Source: from the author (2015).

Analysing the value of tariffs of the relaxed model, we observed that, in most arcs,

tariffs are higher or equal than the optimal tariffs values. Comparing the values of tariffs

obtained from the relaxed model with the tariffs of the optimal solutions obtained in the

previous experiment, we observe that 42.5% of the values of tariffs are equal, 43.7% are

higher, and only 13.8% of the tariffs for the relaxed model are smaller that the optimal

solution. Furthermore, the average of the difference between the values is 3.21 units,

meaning that the obtained tariff values are close to the optimal values. Thus, these values

can be used to provide good approximations for the tariff values. The time to compute

this solution is less than 2 seconds for the instances from Table 3.1. This time represents

less than 3% of the BRKGA time reported in the next subsection.

56

3.4.2 Results from the biased random-key genetic algorithm

This subsection presents results obtained with the biased random-key genetic

algorithm applied to a set of large scale instances of the NPP. The experiments with the

BRKGA were done with a population size of p = 50, an elite set of size pe = 0.25p, a

mutant set of size pm = 0.05p, an elite key inheritance probability of ρA = 0.7, and the

restart parameter equal to 50 (number of generations without improvement).

Table 3.3 shows the results of the BRKGA. The results are an average over ten

runs with different random seeds and using as stopping criterion of 2000 generations. In

this table we report the best know solution value (Best) found by the CPLEX in the

previous experiment (optimal values are given in bold), or an extended execution of the

BRKGA to 3000 generations. The columns Relax and Time(s) report the CPLEX results

for the relaxed model (3.5)–(3.14). The column Relax shows the total revenue calculated

with the tariffs obtained by the solver. Since the tolls values in the relaxed version can be

non-integer, the revenue can also be fractional. The column Time(s) show the running

time of the solver in seconds. The columns Avg, Max, SD and Time(s) report respectively

the values of the average revenue, best revenue, standard deviation and the computational

time in seconds for the BRKGA. The reported running time is not cumulative with the

running time of the relaxed model. Finally, we report results for the cases where 10% and

20% of the arcs are tariffed.

57
Table 3.3 – Computational results for the BRKGA

K = 10% K = 20%

Instance Best Relax Time(s) Avg Max SD Time(s) Best Relax Time(s) Avg Max SD Time(s)

Delaunay-0200-0050-10 747 652.0 0.1 747.0 747 0.0 39.4 1473 1,090.0 0.1 1,472.6 1,473 1.3 37.7
Delaunay-0200-0050-30 1,814 1,290.3 0.1 1,799.0 1,807 5.7 37.4 3144 2,526.0 0.1 2,985.3 3,114 82.4 38.1
Delaunay-0200-0200-10 2,236 1,666.0 0.5 2,236.0 2,236 0.0 86.4 3339 2,179.4 0.7 3,270.6 3,331 30.2 83.9
Delaunay-0200-0200-30 6,451 4,560.0 0.7 6,388.6 6,451 47.4 76.7 14001 8,293.9 0.8 13,612.4 13,876 148.1 75.4
Delaunay-0200-0500-10 6,473 3,722.6 2.7 6,473.0 6,473 0.0 169.7 9599 6,125.5 2.6 9,432.4 9,599 111.2 153.5
Delaunay-0200-0500-30 15,507 8,500.8 2.8 15,419.4 15,492 52.1 143.9 24540 14,621.5 4.3 23,799.0 24,540 457.2 142.4
Delaunay-0500-0050-10 1,227 1,008.0 0.4 1,222.1 1,227 4.5 105.4 2048 1,710.0 0.5 2,028.9 2,048 12.1 109.3
Delaunay-0500-0050-30 3,849 2,224.4 0.5 3,756.4 3,847 52.2 94.5 4774 3,457.0 0.6 4,611.0 4,774 146.3 96.6
Delaunay-0500-0200-10 3,089 2,160.5 3.1 3,058.5 3,089 12.8 241.4 6495 4,304.7 4.0 6,318.0 6,430 99.8 237.0
Delaunay-0500-0200-30 11,961 8,044.6 3.5 11,786.6 11,961 101.1 219.5 19756 12,595.3 3.9 19,199.4 19,663 208.0 220.4
Delaunay-0500-0500-10 7,354 4,446.9 9.3 7,256.6 7,343 69.1 354.6 13980 8,046.2 11.0 13,546.2 13,861 153.5 358.4
Delaunay-0500-0500-30 26,640 13,822.5 10.4 26,167.9 26,619 432.9 334.9 39004 21,382.8 10.8 37,988.9 38,890 586.6 327.4
Delaunay-1000-0050-10 1,696 1,239.4 1.5 1,688.3 1,696 6.3 232.2 2388 1,971.0 2.1 2,359.5 2,383 15.8 237.0
Delaunay-1000-0050-30 4,410 3,277.0 1.6 4,309.8 4,407 72.0 216.4 7580 6,050.0 3.1 7,417.1 7,515 69.4 218.8
Delaunay-1000-0200-10 5,601 3,763.5 7.0 5,536.4 5,600 51.7 654.0 9155 6,300.9 11.5 8,964.6 9,102 104.8 646.4
Delaunay-1000-0200-30 15,018 8,189.4 11.5 14,716.6 14,949 158.9 609.3 29476 19,014.3 13.2 28,696.3 29,389 478.2 612.4
Delaunay-1000-0500-10 16,612 9,064.0 24.2 16,290.5 16,486 222.2 943.3 25151 13,970.9 36.2 24,656.9 25,149 304.7 939.9
Delaunay-1000-0500-30 25,710 16,614.3 27.2 25,373.7 25,685 269.1 907.1 61565 34,601.9 35.9 60,098.7 61,015 551.0 895.9

Grid-0200-0050-10 38,93 2,227.0 0.2 3,893.0 3,893 0.0 51.2 5525 4,094.1 0.2 5,313.7 5,441 81.8 52.1
Grid-0200-0050-30 65,43 4,508.1 0.2 6,496.7 6,501 2.9 45.6 14151 10,704.0 0.2 13,694.5 14,012 162.9 49.2
Grid-0200-0200-10 10,454 5,537.4 1.0 10,407.9 10,454 39.5 109.6 15898 8,470.5 1.3 15,620.3 15,898 252.1 110.7
Grid-0200-0200-30 23,760 13,129.1 1.0 23,065.9 23,672 421.9 99.4 49638 25,584.2 1.3 48,745.1 49,638 1,054.4 101.8
Grid-0200-0500-10 18,945 10,586.6 2.9 18,825.5 18,945 82.3 206.1 34367 17,619.1 3.3 33,905.8 34,342 259.2 203.2
Grid-0200-0500-30 56,834 27,783.2 3.7 55,965.1 56,580 614.8 186.6 94813 41,060.2 4.4 91,049.2 93,937 1,869.4 192.4
Grid-0500-0050-10 6,779 3,834.0 1.1 6,711.6 6,779 54.6 133.8 10103 5,395.2 1.7 9,719.6 10,065 316.9 136.2
Grid-0500-0050-30 7,223 4,312.0 0.9 7,099.1 7,211 76.7 123.7 16499 13,211.4 1.3 15,890.0 16,370 363.3 126.1
Grid-0500-0200-10 11,227 6,321.8 4.8 11,067.3 11,213 72.4 344.9 23527 11,657.4 4.2 23,002.8 23,450 368.3 355.7
Grid-0500-0200-30 40,486 21,479.2 4.8 38,827.3 40,301 913.1 335.8 75548 32,123.7 5.9 73,920.6 75,464 1,241.8 332.3
Grid-0500-0500-10 17,662 8,457.0 14.2 17,491.9 17,636 109.5 539.1 54182 18,837.3 16.2 52,598.8 53,999 1,041.1 601.5
Grid-0500-0500-30 79,060 36,411.6 14.1 77,912.9 79,007 795.7 524.9 129323 57,971.3 21.7 125,633.8 128,804 2,106.5 534.4
Grid-1000-0050-10 5,612 4,040.0 4.1 5,508.6 5,608 55.3 276.2 11697 8,743.0 7.3 11,336.8 11,665 150.5 277.5
Grid-1000-0050-30 12,731 8,129.0 4.7 12,342.1 12,604 280.6 264.4 24309 20,187.3 9.5 22,152.5 23,716 796.9 300.7
Grid-1000-0200-10 20,265 8,740.1 15.5 20,008.7 20,237 158.4 865.8 37919 16,049.5 25.3 36,895.8 37,300 298.8 895.9
Grid-1000-0200-30 53,043 20,330.4 13.9 51,180.6 53,012 939.0 840.3 91484 47,980.6 24.0 87,838.7 91,253 2,780.3 828.7
Grid-1000-0500-10 40,893 13,270.9 54.0 40,353.4 40,844 406.6 1,497.0 71311 26,301.5 76.2 69,605.2 70,894 753.4 1,501.9
Grid-1000-0500-30 80,735 33,753.0 45.3 79,056.6 80,327 1,108.0 1,369.6 192204 71,360.8 66.3 185,104.5 190,730 3,046.9 1,363.6

Voronoi-0200-0050-10 15,59 1,263.8 0.2 1,559.0 1,559 0.0 58.1 3643 2,799.0 0.2 3,391.4 3,511 76.9 60.5
Voronoi-0200-0050-30 42,59 2,896.1 0.2 4,149.2 4,204 27.1 54.8 8550 7,251.5 0.2 7,980.6 8,333 163.5 57.9
Voronoi-0200-0200-10 5,563 3,621.4 1.0 5,518.9 5,563 40.7 130.6 11535 7,423.3 1.4 11,423.1 11,535 91.2 134.5
Voronoi-0200-0200-30 20,048 11,523.0 1.1 19,826.0 20,048 290.8 120.4 37669 23,367.5 1.5 37,009.2 37,665 506.6 119.0
Voronoi-0200-0500-10 11,002 7,248.7 3.4 10,785.7 11,002 183.4 195.2 42877 21,236.2 3.5 41,801.0 42,546 763.4 206.3
Voronoi-0200-0500-30 45,009 22,606.0 3.9 44,417.0 44,987 617.3 195.8 80054 42,007.3 4.3 78,602.0 79,849 638.9 198.3
Voronoi-0500-0050-10 4,064 2,949.2 1.3 4,001.2 4,064 29.5 137.2 8315 5,663.6 1.6 8,116.0 8,290 85.6 141.4
Voronoi-0500-0050-30 9,144 5,500.7 1.1 8,785.9 9,089 215.3 157.3 21317 19,580.0 1.7 21,100.9 21,313 156.0 164.0
Voronoi-0500-0200-10 7,940 4,599.3 5.3 7,828.0 7,940 84.6 416.4 18080 12,411.0 5.0 17,610.7 18,033 266.9 421.4
Voronoi-0500-0200-30 33,699 18,590.5 4.6 32,539.8 33,547 640.0 411.5 72276 44,523.4 6.6 70,345.8 71,915 1,226.7 417.1
Voronoi-0500-0500-10 20,377 10,262.8 14.3 19,927.3 20,244 252.7 681.1 48475 24,588.8 18.6 47,365.8 48,111 597.1 702.6
Voronoi-0500-0500-30 75,253 32,314.0 17.5 73,406.3 74,777 943.8 674.9 138913 55,682.3 23.0 135,419.4 137,742 1,753.8 674.1
Voronoi-1000-0050-10 4,795 3,492.3 2.6 4,737.8 4,784 22.7 320.5 10806 9,382.0 4.6 10,721.7 10,777 39.7 337.9
Voronoi-1000-0050-30 11,162 9,787.0 3.2 11,071.0 11,161 91.9 322.7 22135 18,066.0 7.2 21,183.6 22,119 650.4 335.5
Voronoi-1000-0200-10 12,014 7,579.0 15.6 11,496.6 11,984 261.1 985.8 31665 20,183.9 28.2 30,933.8 31,490 348.8 998.1
Voronoi-1000-0200-30 40,808 26,114.4 15.2 39,592.2 40,488 510.3 1,038.8 71007 44,108.7 21.5 68,606.4 70,347 821.8 1,050.3
Voronoi-1000-0500-10 32,399 15,755.9 48.6 31,902.9 32,299 354.3 1,869.8 83231 44,191.7 66.9 81,426.4 82,926 1,093.8 1,934.6
Voronoi-1000-0500-30 88,483 38,070.3 61.1 85,783.4 88,051 1,625.9 1,827.7 226550 146,376.1 65.2 218,943.5 223,702 2,974.4 1,890.9

Source: from the author (2015).

For the small instances, the BRKGA found the optimal solution or slightly less

revenue than the optimal solution value. This indicates that at least for this set of

instances, the proposed algorithm has a good performance, and we expect similar behavior

for the other sets of instances. Related to the network structure, we observed that the

grid networks have an average of standard deviation and running times slightly worse

than the other structures. This occurs because in this kind of network the path length for

each commodity tends to be higher than in Voronoi and Delaunay networks. By the same

reason, in this kind of structures the revenue tends to be higher.

In the instances with weights ta between [1, 30] we observed that the standard

deviation is worse than in the case of the weight between [1, 10]. Naturally this behavior

is expected because in the first case a higher variation of the tariff values and revenue is

observed.

3.5 Concluding remarks

In this chapter we presented a study of the Stackelberg network pricing problem.

A biased random-key genetic algorithm is proposed to solve the problem, and a set of

experiments was performed in a set of large scale network instances.

In the experiments, we observed that the relaxation of the arc formulation math-

ematical model solved by CPLEX provides a high-quality initial solution and a good

approximation for the tariff values. Furthermore, CPLEX was not able to solve the mixed

integer version of this model for the large scale networks instances, motivating the use of

heuristics for solving the problem.

Finally, the BRKGA shows a good performance, reaching the optimal solution or a

good approximation of the best revenue, even without include local search methods. We

also evaluate some characteristics and behaviors of the proposed algorithm on the tested

instances.

59

4 VMPLACEMENT PROBLEM

With the massive growth of data utilization over telecommunication networks, to

provide a better use of the network resources has been a significant challenge for many

service providers over the Internet. To apply techniques to minimize the traffic in a network

can mean reduce operational costs or even become economically viable a new service. In

this scenario, virtualization techniques become popular and cloud services continue to

grow rapidly. To satisfy this demand, more and more data centers are being built across

the world to supply the growing workload. However, the service providers have to match

the requirements of different applications to the placement of virtual machines with the

limited bandwidth links between geographically separated data centers while minimizing

their cost.

In this chapter we approach the problem of allocating devices in the nodes of the

network. These devices need to communicate with each other, consuming resources of

the network. These resources are limited, and there is a cost for this communication that

depends on the amount of flow between each pair of devices and the link used for this

communication. Thus, the objective is to choose a placement for each device that minimize

the communication cost. Additional requirements ensure that the minimum service quality

is achieved. In analogy with an application on cloud computing over the telecommunication

network, devices can be understood as virtual machines, while the nodes of the network

are data centers. The objective is to place a set of virtual machines in a set of data

centers that minimize the communication cost between the virtual machines, which, in

general, means reduce the traffic over the entire network structure. To ensure that the

bandwidth capacity, the latency requirements, and the data center capacity are respected

are additional quality service requirements for this problem. To solve the virtual machine

placement problem (VMPlacement), we use a Biased Random-Key Genetic Algorithm

(BRKGA), as well as, a Greedy Randomized Adaptive Search Procedure (GRASP), both

combined with a path-relinking strategy and an intensive local search procedure. An

extensive set of experiments is provided to show the efficiency of our approach. This

chapter is based on an extension of Stefanello et al. (2015a) and Stefanello et al. (2015b).

60

4.1 Introduction

Virtualization of physical servers have gained prominence in enterprise data centers.

This is because virtualization offers virtually unlimited resources without any upfront

capital investment and a simple pay-as-you-go charging model. Long term viability

of virtualization depends, among other factors, on cost and performance. In order to

attain performance guarantees, application providers can offer requirements for a number

of virtual machines, bandwidth/latency requirements between virtual machines, and

latency requirements between users of the service and virtual machines. Having all these

performance guarantees for the application can help give an optimized service to the users.

However, the service provider has to match the requirements of different applications to

the placement of virtual machines with the limited bandwidth links between geographically

separated data centers while minimizing its cost.

Unfortunately, today’s public cloud platforms such as Amazon EC21 do not provide

any performance guarantee, which in turn affects tenant cost. Specifically, the resource

reservation model in today’s clouds only provisions CPU and memory resources but ignores

networking completely. Because of the largely oversubscribed nature of today’s data center

networks (e.g., Greenberg et al. (2009)), network bandwidth is a scarce resource shared

across many tenants. In order to meet the reliability and the demand requirements, the

data centers have to be placed all across the world. For instance, a teleconference call

connects people from all over the world, and a data center within a reasonable distance

to the end users is needed. For distributed data centers, networking cost is the major

cost, which has not been accounted in the prior works on virtual machine placement to

the best of our knowledge. With the limited bandwidth links between the data centers,

networking intensive phases of applications collide and compete for the scarce network

resources, which leads to their running times become unpredictable. The uncertainty in

execution time further translates into unpredictable cost as tenants need to pay for the

reserved virtual machines (VMs) for the entire duration of their jobs.

Placement of virtual machines within a data center have been widely explored

Guo et al. (2010), Ballani et al. (2011), Xie and Hu (2012). These papers account for

the networking needs in addition to the CPU and memory needs within a data center.

For example, Guo et al. (2010) proposes bandwidth reservation between every pair of

VMs. Ballani et al. (2011) proposes a simpler virtual cluster (VC) model where all virtual

1<http://aws.amazon.com/ec2/>

http://aws.amazon.com/ec2/

61

machines are connected to a virtual switch with links of bandwidth B. Xie and Hu (2012)

extends these approaches to consider time-varying network requirement. However, all these

works account for a single data center where the bandwidths are much larger as compared

to the bandwidths across data centers. Instead, this work deals with the placement of

virtual machines across geo-separated data centers.

In this work, we consider multiple data centers that are connected with limited

bandwidth links. The latency between every pair of data centers is known. In order to meet

the application’s quality of service guarantees, there is a required minimum bandwidth

and maximum latency between each pair of virtual machines. We assume that there are

multiple users who would use these services, and users are connected to some data center.

In order to meet the overall application performance, there is an additional requirement of

maximum latency between users and the virtual machines. Intuitively, if there is a set

of VMs needed by a user and the set does not have any requirement with any other user

or VM, it can be placed in a single data center. However, a VM interacts with multiple

VMs which may be needed by other users, thus increasing the set of options for placement.

There is a cost of transferring data between data centers and the placement minimizes

this cost thus preferring placement of all VMs in a single data center which may not be

feasible due to the quality of service requirements.

This problem has similarity with the problem of Virtual Network Embedding (VNE),

since the set of virtual machines and the relation between then can be considered as the

Virtual Network (VN), while the set of data centers and the links can be mapped as the

Substrate Network (SN). Fischer et al. (2013) describe a general framework for VNE. The

VMPlacement problem can be described using this framework, but the problem has some

differences from other works since we consider a complete graph connecting the data center,

a quadratic cost function for the communication cost, and latency constraints that usually

are ignored from other works.

This problem is a generalization of the NP-hard Generalized Quadratic Placement

Problem (GQAP) given in Lee and Ma (2004). Solving this problem optimally is possi-

ble only in very small instances, which may not represent the size found in real-world

applications. Thus, we propose heuristic methods based on local search for solving the

Virtual Machine Placement Problem. We extend the BRKGA proposed in Stefanello et al.

(2015a) and proposed a new GRASP algorithm, both coupled with a path-relinking and an

extensive local search procedure. We test the performance of both algorithms in a dataset

comprised of instances of sizes ranging from small to large. Both algorithms have similar

62

performance, although a slight advantage for BRKGA was observed in small instances

while GRASP has a slight advantage in larger instances. We show that the algorithms are

able to quickly find feasible solutions and find high-quality final solutions, especially when

the path-relinking procedure is used.

The rest of the chapter is organized as follows. In Section 4.2, we present math-

ematical models for the Virtual Machine Placement Problem in multiple data centers.

Two metaheuristics are proposed in Section 4.3. Computational results are presented in

Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.2 Virtual Machine Placement Problem

In the Virtual Machine Placement Problem (VMPlacement), the objective is to

place a set K of virtual machines (VM) in a set N of data centers (DC) in order to

minimize the communication cost among virtual machines over the network.

In this problem, each data center has a capacity ai, which represents the number

of virtual machines that can be placed in DC i. Also, between two data centers i and j,

there are a bandwidth capacity (Bij), a latency (Lij), and a cost Cij to transfer a data

unit between the pair of data centers.

In order to meet the reliability and demand requirements of the applications, certain

bandwidth and latency requirements can be imposed on the different VMs that are placed

on the data centers. Each pair of virtual machines v and w has a required bandwidth

(bvw) whose sum overall VMs placed between DCs i and j cannot exceed Bij. Furthermore,

there is a required latency (lvw), such that VMs v and w cannot be placed in data centers

i and j if the required latency is greater than the respective data center latency.

Finally, there is a set U of users who access the system. Each user u is located at a

data center d(u) and has a required latency tuv for each VM v.

Figure 4.1 shows a representation of the input data components: the data centers

(Figure 4.2a), and the virtual machines (Figure 4.2b). The first component is composed

by three data centers (rounded rectangles). Each data center has a number of users and a

capacity (represented as a number of spots where VMs can be placed). The connection

between each pair of DCs represents the bandwidth capacity, latency, and cost. The second

component is composed by eight virtual machines, where each link represents the required

bandwidth and the required latency.

63

Figure 4.1 – Input data representation

DC 02DC 01

DC 03

(a) Data centers. (b) Virtual machines.

Source: from the author (2015).

In the next subsections, we present three mathematical formulations for the VM-

Placement problem. We first present a quadratic formulation, followed by two mixed

integer linear formulations. Since VMPlacement is a generalization of the NP-hard Gener-

alized Quadratic Assignment Problem, we extend the linear mathematical models proposed

for the GQAP in Lee and Ma (2004) to VMPlacement. The models in Lee and Ma (2004)

were also extended from the mixed integer linear programming formulation from Kaufman

and Broeckx (1978) and Frieze and Yadegar (1983) to the Quadratic Assignment Problem,

all of them based on the formulation for the QAP described in Koopmans and Beckmann

(1957).

4.2.1 Quadratic mathematical model

A natural formulation for VMPlacement is based in a quadratic formulation as

a generalization of GQAP. In what follows we summarize the parameters and present a

quadratic mathematical model for VMPlacement (QMVMP) introduced in Stefanello et

al. (2015a).

64

Parameters:

N : set of data centers;

K : set of virtual machines;

U : set of users;

ai : capacity in number of VMs that DC i can host;

Bij : bandwidth between DCs i and j;

Lij : latency between DCs i and j;

Cij : cost of transferring a data unit between DCs i and j;

bvw : required bandwidth between VMs v and w;

lvw : required latency between VMs v and w;

d(u) : DC which hosts user u;

tvu : required latency between user u and VM v;

civ : cost of placing a VM v in a DC i.

Equations (4.1)-(4.7) present the quadratic mathematical model for the VMPlace-

ment (QMVMP), where the binary decision variable xiv = 1 if VM v is located into DC i,

and xiv = 0 otherwise.

min
∑

i∈N

∑

v∈K

civxiv +
∑

i∈N

∑

j∈N

∑

v∈K

∑

w∈K

xivxjwCijbvw (4.1)

subject to:
∑

v∈K

xiv ≤ ai ∀ i ∈ N, (4.2)

∑

i∈N

xiv = 1 ∀ v ∈ K, (4.3)

∑

v∈K

∑

w∈K

xivxjwbvw ≤ Bij ∀ i, j ∈ N, (4.4)

∑

i∈N

∑

j∈N

xivxjwLij ≤ lvw ∀ v, w ∈ K, (4.5)

∑

i∈N

xivLi,d(u) ≤ tvu ∀ u ∈ U, ∀ v ∈ K, (4.6)

xiv ∈ {0, 1} ∀ i ∈ N, ∀ v ∈ K. (4.7)

Objective function (4.1) minimizes the cost of placing each pair of virtual machines

v and w to DCs i and j. Constraints (4.2) require that the number of VMs in each DC

must not exceed the DC capacity. Constraints (4.3) require that each VM must be assigned

to exactly one DC. Constraints (4.4) require that the given bandwidth between each pair i

65

and j of DCs should not be surpassed by the total sum of bandwidth required among the

virtual machines placed in these DCs. Constraints (4.5) assure that the latency required

between each pair of VMs should be respected, i.e, if VMs v and w are placed respectively

to DCs i and j, then the latency between DCs i and j should not exceed the required

latency between VMs v and w. Constraints (4.6) require that the latency between a VM

v and the DC where the user u is located be respected, i.e, a VM v can be only placed on

a DC i if the latency between i and d(u) is less than or equal to a given latency between

the VM v and the user u. Finally, constraints (4.7) define the variables domain.

The performance of mixed integer linear programming solvers has improved consid-

erably over the last few years. CPLEX2 is a general-purpose black-box solver based on

simplex and a branch-and-bound algorithm with the state-of-the-art exact algorithms for

integer programming and has been successfully applied in many combinatorial optimization

problems. To analyze the CPLEX performance and provide baseline results for comparison

of heuristic methods, the following subsections present two linear mathematical models for

VMPlacement problem.

4.2.2 Linear mathematical model I - LMVMP

Based on model L3 from Lee and Ma (2004) for GQAP, and from Frieze and

Yadegar (1983) for QAP, we present a mixed-integer linear model for the VMPlacement.

Let yivjw = xivxjw, ∀ i, j = {1, . . . , N} and v, w = {1, . . . , K}, the mixed-integer linear

mathematical model for VMPlacement named as LMVMP can be formulated as the

following:

2<www.cplex.com>

www.cplex.com

66

min
∑

i∈N

∑

v∈K

civxiv +
∑

i∈N

∑

j∈N

∑

v∈K

∑

w∈K

yivjwCijbvw (4.8)

subject to:
∑

v∈K

xiv ≤ ai ∀ i ∈ N, (4.9)

∑

i∈N

xiv = 1 ∀ v ∈ K, (4.10)

∑

i∈N

yivjw = xjw ∀ v, w ∈ K, ∀ j ∈ N, (4.11)

yivjw = yjwiv ∀ v, w ∈ K, ∀ i, j ∈ N, (4.12)
∑

v∈K

∑

w∈K

yivjwbvw ≤ Bij ∀ i, j ∈ N, (4.13)

∑

i∈N

∑

j∈N

yivjwLij ≤ lvw ∀ v, w ∈ K, (4.14)

∑

i∈N

xivLi,d(u) ≤ tvu ∀ u ∈ U, ∀ v ∈ K, (4.15)

xiv ∈ {0, 1} ∀ i ∈ N, ∀ v ∈ K, (4.16)

0 ≤ yivjw ≤ 1 ∀ i, j ∈ N, ∀ v, w ∈ K. (4.17)

The LMVMP is obtained by replacing the product xivxjw by yivjw from QMVMP.

In addition four extra sets of constraints are considered. Constraints (4.11) and (4.12)

define the relation between variables x and y. Constraints (4.12) impose the symmetry

relation to variables y. Finally, constraints (4.17) define the domain of variables y.

We note that the model QMVMP has quadratic constraints, while LMVMP not.

The objective function also changes from a quadratic function in QMVMP to linear in

LMVMP. However, the mixed-integer linear problem LMVMP has a considerable higher

number of variables, having variables yivjw in addition to the previous variables xiv. Thus,

the number of variables changes from O(NK) in QMVMP to O(N2K2) in LMVMP. We

note that if the optimal solution of LMVMP is (x∗
iv, y

∗
ivjw), then (x∗

iv) is the optimal solution

for QMVMP. The proof that both models are equivalent can be obtained by extending

the proof for QAP provided in Lee and Ma (2004).

67

4.2.3 Linear mathematical model II - LMVMP-II

Next we present a second linearization for VMPlacement problem (LMVMPII).

This linear model is derived from Kaufman and Broeckx (1978) for QAP, which is probably

the linearization for QAP with a lower number of variables and constraints. In Lee and

Ma (2004) the authors extend the formulation for GQAP.

In this model, each binary decision variable xiv is set to one when VM v is located

into DC i, and zero otherwise. The auxiliary variables yiv aggregate the cost for each

placed VM v in a DC i, and nijb aggregate the bandwidth from VM v between data centers

i and j.

min
∑

i∈N

∑

v∈K

civxiv +
∑

i∈N

∑

v∈K

yiv (4.18)

subject to:
∑

v∈K

xiv ≤ ai ∀ i ∈ N, (4.19)

∑

i∈N

xiv = 1 ∀ v ∈ K, (4.20)

∑

j∈N

∑

w∈K

Cijbvwxjw − yiv ≤ miv(1− xiv) ∀ v ∈ K, ∀ i ∈ N, (4.21)

∑

w∈K

bvwxjw − nijv ≤M(1− xiv) ∀ v ∈ K, ∀ i, j ∈ N, (4.22)

∑

v∈K

nijv ≤ Bij ∀ i, j ∈ N, (4.23)

Lijxiv ≤ lvw + Lij(2− xiv − xjw) ∀ v, w ∈ K, ∀ i, j ∈ N, (4.24)
∑

i∈N

xivLi,d(u) ≤ tvu ∀ u ∈ U, ∀ v ∈ K, (4.25)

xiv ∈ {0, 1} ∀ i ∈ N, ∀ v ∈ K, (4.26)

yiv ≥ 0 ∀ i ∈ N, ∀ v ∈ K, (4.27)

nijv ≥ 0 ∀ v, w ∈ K, ∀ i, j ∈ N. (4.28)

where

miv ≥
∑

j∈N

∑

w∈K

Cijbvw, ∀ i ∈ N, ∀ v ∈ K.

Constraints (4.21) impose the cost between the data centers i and j to the vari-

ables yij. Constraints (4.22) and (4.23) imposed the bandwidth constraints while con-

straints (4.24) imposed the latency constraints. The constraints (4.24) can be replaced by

68

xiv + xjw ≤ 1 ∀ i, j ∈ N, ∀ v, w ∈ K if Lij > lvw. (4.29)

We observe that CPLEX converts (4.24) into (4.29) in the pre-processing phase. Finally,

constraints (4.26), (4.27), and (4.28) define the domain of variables.

This model is not used in practice since it uses big-M constraints (4.21), and the

root-node bound is always zero. However, a stronger formulation can be obtained by

adding the following cuts

yiv ≥ Yivxiv ∀ i ∈ N, ∀ v ∈ K, (4.30)

where Yiv is defined as the optimal value of the following generalized assignment model:

Yiv = min
∑

j∈N

∑

w∈K

Cijbvwxjw (4.31)

subject to:
∑

w∈K

xjw ≤ aj ∀ j ∈ N, (4.32)

∑

j∈N

xjw = 1 ∀ w ∈ K, (4.33)

∑

j∈N

∑

w∈K

bvwxjw ≤ Bij ∀ w ∈ K, (4.34)

(4.24), (4.25) (4.35)

xiv = 1 (4.36)

xjw ∈ {0, 1} ∀ j ∈ N, ∀ w ∈ K. (4.37)

These additional cuts were applied for the 3-dimensional assignment problem in

Mittelmann and Salvagnin (2015). Note that these cuts can also be applied for GQAP

suppressing the constraints (4.22)–(4.25) and (4.28) from LMVMPII, and (4.34)–(4.35)

from the assignment model, which are the specific constraints for VMPlacement.

69

4.3 Heuristic Approaches

In this section we propose two metaheuristics approaches to solve the VMPlacement

problem. Initially, the local search procedures are described in detail. Next, two path-

relinking strategies are presented. Finally, in the following subsection is described the

Greedy Randomized Adaptive Search Procedure (GRASP), followed by the Biased Random-

Key Genetic Algorithm (BRKGA).

Place a virtual machine into a data center can violate some of the constraints.

To deal with this situation, we use a penalization strategy to minimize the number of

violated constraints. Thus, the cost of placing a VM v in DC i is calculated by the regular

placement cost added by a sufficiently large number M for each violated constraint. This

penalization strategy is applied whenever a solution is evaluated. In our experiments we

use M = 1010. Also, the notation for a solution S represents a vector of size |K| with

S = {n1, . . . , n|K|}, with nv representing the label (or index) of the data center where the

virtual machine v is placed.

4.3.1 Local search procedures

Local search is a general approach for finding and improving solutions to hard

combinatorial optimization problems. The most basic strategy of local search algorithms

is to start from an initial solution and iteratively replace the current solution by a better

neighbor solution, until no improvement can be reached. A neighbor solution can be

obtained by applying moves defined by a neighborhood structure. In this work we define

four neighborhood structures to obtain neighbor solutions, namely shift, swap, chain2L,

and chain3L.

Shift. A shift operation moves a virtual machine from the current data center to a

different data center. In a shift search, we select a virtual machine v in a circular order of

their indexes (starting from index zero), and calculate the cost to move it from the current

data center to each other data center. The virtual machine v is moved to the data center

that produces the greatest improvement in the objective function or maintained in its

original data center. In the next step, a new virtual machine is selected, and the evaluation

is repeated. The procedure stops when no shift move can improve the solution. Note that

the search is performed as a partial best improvement since the best movement is chosen

for each virtual machine, instead choose the best move among all virtual machines.

70

Swap. A swap operation interchanges the positions of two virtual machines. In a

swap search, we evaluate the cost of all swap moves between two virtual machines v and

w in a circular order of their indexes (starting from index zero). When an improvement

is reached, the virtual machine positions are interchanged, and the search continues by

selecting a next pair of virtual machine. The procedure ends when no swap move can

improve the solution. The evaluation of symmetrical movements is avoided.

Chain2L. A chain operation is a composition of two shift moves applied sequentially.

In a chain2L search, the first shift move selects a virtual machine v from the data center i

to move to a data center j. In the second shift move, a virtual machine w from j is moved

to a data center k. We evaluate all compositions of two shift moves. When an improvement

is reached, the moves are applied to the solution and the process is restarted with the new

solution. Note that this neighborhood includes the swap search when k is equal to i.

Chain3L. The last neighborhood proposed extends the concept of the chain moves

to a composition of three shift moves applied sequentially. A chain3L search involves four

virtual machines and up to four data centers. This search also comprises three shift moves

between two data centers, or a circle move among three data centers.

Given a solution S, the worst case time complexity to evaluate the cost to insert

or remove a virtual machine v in S is O(|K|). This complexity is reached because is

necessary to evaluate whether the latency requirement is satisfied between v and w ∈ S.

Also, is necessary evaluate the bandwidth cost between v and w ∈ S. Capacity constraints,

uniqueness in the placement, and user latency requirements can be evaluated in constant

time. Therefore, for the shift search a number of |K| removals and |K| ∗ |N | insertions

are evaluated, resulting in a complexity of O(|K|2|N |) (for the case where there is no

improvement during the search). For the swap search the time complexity is O(|K|3),

while for chain2L search is O(|K|3|N |). Finally, the chain3L search has a complexity of

O(|K|4|N |).

Naturally, in all searches described above, the processing time can be reduced

avoiding to evaluate moves that lead to a worse solution. Also, heuristic strategies do

not need to explore the whole neighborhood, and only evaluate a subset of the neighbor

solutions. This is done in the chain3L search prohibiting the insertion of a virtual machine

in some data centers, and thus, reducing the search space.

Two heuristic strategies to reduce the amount of explored neighbor solutions in the

chain3L search are proposed. The first reduce heuristic strategy is based in the cost Yiv

described in the Model (4.31)-(4.37) from Subsection 4.2.3. Given a parameter α3L ∈ [0, 1],

71

we allow to insert a virtual machine v in a data center i only if i belongs to the ⌊N ∗ α3L⌋

data centers with the lowest cost Yiv. A low value of α3L indicates a restricted search

only in data centers with low values of Yiv. A high value of α3L indicates a more broad

search. An analyzis for the instances described in Section 4.4.1 with their respective best

known solutions corroborate for this heuristic strategy. In these solutions, more than

50% of the virtual machines are placed in the 30% data centers with lowest cost Yiv, and

approximately 75% are placed in the 50% data centers with the lowest cost.

The second reduce heuristic strategy is based on the communication cost assigned

to the data centers. Given a solution S, let Ci be the sum of the communication cost

from i to all other data centers. We only evaluate compositions of movements that start

from a virtual machine that belongs to the β3L data center with the highest cost Ci. In

summary, the idea is to limit the search to movements that reduce the communication cost

of the most required data centers. Combining both reduction heuristics, the search space

is considerably reduced, but the heuristics are still able to visit solutions in a promising

search space. By default, we use α3L = 0.3 and β3L = 3.

To take advantage of all these neighborhoods, two strategies are used. In the first

(called R), every neighborhood is applied sequentially and only once, starting from the

lowest to highest complexity neighborhood (shift, swap, chain2L, and chain3L). The second

approach (called V), is based on the idea of Variable Neighborhood Descent (HANSEN

et al., 2010), where the neighborhood searches are applied sequentially, but the search is

restarted with the first neighborhood if an improvement is reached.

We name each local search strategy using two characters. The first character is a

number that indicates the highest complex neighborhood applied. The second character

indicates how these searches are integrated. For example, the name 3R indicates that we

consider local search procedures shift search, swap search, and chain2L search applied

sequentially on mode R.

Note that using a penalization strategy described in the previous subsection, the

local search is also applied to infeasible solutions. In this case, the local search also works

as a repair procedure.

72

4.3.2 Path-relinking

Path-relinking (PR) is an approach to integrate intensification and diversification

in the search. It consists in exploring trajectories that connect high-quality solutions.

Starting from an initial solution, the scheme moves from one solution to another until the

target solution is reached. The objective consists in finding a solution that is better than

both the initial and target solutions.

The path-relinking was first suggested for tabu search in Glover (1989) and then

formalized in Glover and Laguna (1993). Since then, this strategy was applied for a large

number of combinatorial optimization problems and related studies as Glover (1997),

Glover et al. (2000), Resende and Ribeiro (2005), Resende et al. (2010), Festa and Resende

(2013), and Glover (2014), just to name a few.

The Algorithm 2 shows the pseudo-code for the path-relinking operator between

solutions S and T , where S is the initial solution and T the guiding solution. In line 2 the

incumbent solution is initialized. The loop between the lines 3 and 10 is repeated while

the distance between both solutions is greater than an input parameter δlim. The distance

∆{S, T} is the minimum number of moves needed to transform S into T or vice-versa. We

use δlim = ∆{S, T}/2 defined at the beginning of the procedure, since we observed that

the probability to find an improved solution is greater in the first steps of the path. In

line 4 a movement is applied to the solution S in direction to the solution T . Basically, we

analyze all changes in S to T that reduce the distance ∆{S, T} by one, and apply in S

the change with the least cost.

Several studies have experimentally found that it is convenient to add a local search

exploration from some of the generated solutions in the path (MARTÍ et al., 2006). Since

two consecutive solutions obtained by a relinking step are often very similar, it is generally

not efficient to apply the local search at every step of the relinking process. Thus, in line 7

the local search is applied at each n iterations, where n = (|K| ∗ 0.5)/(4 + |K|/50). The

parameter n is rounded up to the first even number. This ensures that the local search

is applied to S and T each time, since, in line 10, the solutions are interchanged to use

back-and-forward strategy (FESTA; RESENDE, 2013). Finally, in line 8 the incumbent

solution is updated and returned in line 11.

73

Algorithm 2: Pseudo-code for a greedy path-relinking operator
1 Procedure PathRelinkingOperator(S,T)

2 S∗ ← S;
3 while ∆{S, T} ≥ δlim do
4 S ← MakeMovement(S, T);
5 S′ ← S;
6 if LSCondition then
7 S′ ←LocalSearch(S′);

8 if f(S′) < f(S∗) then
9 S∗ ← S′;

10 Swap(S, T);

11 return S∗;

Algorithm 3 and 4 describe two frameworks of how to administrate the elite set E ,

and how solutions are selected for the path-relinking operator. In the first approach, the

path-relinking operator is applied between a provided solution S and a selected solution T

from the elite set. In the second approach, the path-relinking operator is applied multiple

times, between a provided solution S and every solution from the elite set.

To simplify the notation, we name by path-relinking the general process to adminis-

trate the elite and make the path-relinking operator between two solutions. Regarding to

the specific administration procedures, we name the fist approach by PRS and the second

approach by PRM. The first two letters indicate that the algorithm is related to the path-

relinking and the last letter indicates the framework for administrate the path-relinking

operator. In the first, S indicates the application of a single path-relinking operator and in

the second, M indicates the application of a multiple path-relinking operator.

In the beginning of the Algorithm 3, the elite set E is empty. The maximum size

δmax of the elite set is an input parameter. A solution S is added to E if it improves the

best solution or is sufficiently different from each solution in E (lines 3, 6, and 11). We

define that two solutions are sufficiently different if ∆{S, T} > δdis. We denote by S 6≈ E

if ∆{S, T ′} > δdis,∀ T
′ ∈ E . In our case, we use δdis = ⌊|K| ∗ 0.1⌋. If the elite set has a

minimum number of solutions (δmin = 2 in line 2), and S is sufficiently different, a solution

T is selected for the path-relinking operator between S and T .

In line 4, solutions are ordered by a linear rank r(Ti), ∀ i = 1 . . . |E|, where the

best solution has rank r(T1) = |E| and the worst solution has rank r(T|E|) = 1. A solution

T ∈ E is selected using the roulette wheel criterion, i.e, T is selected from the elite set

with probability of r(T)/
∑

i∈r(Ti). With this criterion, better solutions have more chance

to be chosen. Since T is selected, the path-relinking operator is applied between S and T .

74

Lines 6 to 9 update the elite set after the path-relinking operator is applied.

Line 6 evaluates whether S is sufficiently different or improves the best solution. If

this is the case, S is added to E . Line 8 is responsible for maintaining the cardinality

of the elite set. T ′ is the most similar solution to S with worst solution than S, i.e,

T ′ ← {T ′′ ∈ E | f(T ′′) > f(S) and ∆{T ′′, S} ≤ ∆{T ′′, S ′}, ∀ S ′ ∈ E}. Finally, in line 13

the solution S is returned.

Algorithm 3: Pseudo-code for the PR administration framework PRS

1 Procedure PathRelinking(S)

2 if |E| > δmin then
3 if S 6≈ E then
4 Select T ∈ E ;
5 S ←PathRelinkingOperator(S, T);
6 if S 6≈ E then
7 E ← E ∪ {S};

8 if |E| > δmax then
9 Remove T ′ ∈ E ;

10 else
11 if S 6≈ E then
12 E ← E ∪ {S};

13 return S;

Another approach is outlined in Algorithm 4. The main difference from the previous

approach is that when a solution S is added to E , the path-relinking operator is applied

between all pair of solutions from E to which the operator was not previously applied.

This is done in the loop in lines 5 and 13. The flag hasPairsST can be easily updated

using memory structures, and it indicates whether there are S ′ and T ′ in the elite set that

the path-relinking operator was not applied. In line 6 two solutions are selected. Pairs

with better objective functions are selected first. The insertion operation (line 11) and

the removal operation (line 13) follow the same rules than in the previous algorithm. In

line 14 a solution is removed from the elite set in case it is full. We also use roulette

wheel criterion by rank, where the best solution has rank equal to zero, and the worst

solution has rank |E| − 1. This ensures that the best solution are kept in the pool, and

the worst solution has a high probability to be removed. Finally, in line 18 the solution S

is returned.

75

Algorithm 4: Pseudo-code for the PR administration framework PRM

1 Procedure PathRelinking(S)

2 if |E| > δmin then
3 if S 6≈ E then
4 E ← E ∪ {S};
5 while hasPairsST do
6 Select S′ and T ′;
7 S′ ←PathRelinkingOperator(S′, T ′);
8 if f(S′) < f(S) then
9 S ← S′;

10 if S′ 6≈ E then
11 E ← E ∪ {S′};

12 if |E| > δmax then
13 Remove T ′ ∈ E ;

14 Remove T ′ ∈ E ;

15 else
16 if S 6≈ E then
17 E ← E ∪ {S};

18 return S;

Note that Algorithm 3 and 4 are designed in independent components, requiring

only few configuration parameters (as local search strategy and elite size), and a procedure

that provides different solutions. For this reason, these path-relinking strategy can be

easily included in many different heuristic and metaheuristic frameworks. In the next

subsections, we describe the GRASP and BRKGA metaheuristics which uses the path-

relinking strategies.

4.3.3 Greedy Randomized Adaptive Search Procedure - GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) is a multi-start meta-

heuristic for combinatorial optimization problems (FEO; RESENDE, 1989; FEO; RE-

SENDE, 1995; FESTA; RESENDE, 2009a; FESTA; RESENDE, 2009b; RESENDE;

RIBEIRO, 2010; MARTÍ et al., 2013; RESENDE; RIBEIRO, 2014). The algorithm is

basically composed of two phases: construction and local search. The construction phase

builds a feasible solution following a greedy randomized criterion, whose neighborhood is

investigated until a local minimum is found during the local search phase. These phases

are repeated over the iterations and the best local optimum found is returned as the

heuristic solution. Its basic implementation is memoryless, because it does not make use

76

of information collected in previous iterations. One way to add memory to GRASP is its

hybridisation with path-relinking. A large review of this technique is presented in Festa

and Resende (2013).

A high-level description of GRASP is presented in Algorithm 5. GRASP iterations

are carried out in lines 3 to 8. In line 4, the procedure attempts to build a greedy

randomized solution. A solution S is used as the starting solution for the local search in

line 5. In line 6 the path-relinking is applied if a hybrid approach is used. If the local

optimum S is better than the incumbent solution, then, in line 8 the incumbent solution

is updated. In line 9, the best solution found overall GRASP iterations is returned as the

GRASP solution.

Algorithm 5: Pseudo-code for GRASP
1 Procedure GRASP()

2 S∗ ← ∅;
3 while stopping criterion is not satisfied do
4 S ← GreedyRandomized();
5 S ← LocalSearch(S);
6 S ← PathRelinking(S);
7 if f(S) < f(S∗) then
8 S∗ ← S;

9 return S∗;

The Algorithm 6 shows a general pseudo-code for the greedy randomized constructive

heuristic. The construction builds a solution S, one element at a time. In line 2, solution

S is initialized empty. In line 3, the set of candidate list is initialized, as well as, the cost

of placing each candidate element in a data center is calculated in line 4. The solution is

built in the loop in lines 5 to 10. In line 6, a restricted candidate list (RCL) is build, and

in line 7 a candidate is selected. In line 8 this element is added to the partial solution. In

line 9, the candidate is removed from the set of candidates C. In line 10 the placement

costs for each candidate is re-evaluated. Finally, in line 11 the solution S is returned.

77

Algorithm 6: Pseudo-code for a greedy randomized constructive solution
1 Procedure GreedyRandomized()

2 S ← ∅;
3 Initialize set of candidates C;
4 Evaluate the incremental cost of candidates;
5 while C 6= ∅ do
6 Build the RCL;
7 Select c ∈ RCL;
8 Add c to solution: S ← S ∪ {c};
9 Update candidates: C ← C\{c};

10 Re-evaluate the incremental costs;

11 return S;

Based on this framework, four constructive heuristic are developed to generate

initial solutions in line 4 of GRASP procedure.

Random. In the first constructive heuristic, on each placement step a non-placed

virtual machine is randomly selected and placed in a random data center. Note that this

constructive approach is not a greedy heuristic. We decide to evaluate this approach since

it is one of the simplest constructive methods, and we use as a baseline for comparing

more sophisticated constructive methods.

Greedy. In the second constructive heuristic, on each placement step a non-placed

virtual machine is randomly selected and placed in the data center that produces the

least increase in the objective function. In this case, the RCL is composed only by one

candidate that is the best data center for a specific randomly selected virtual machine.

DC-Greedy. In the third constructive heuristic, on each placement step a non-

placed virtual machine is randomly selected and placed in one of the n data centers from

the RCL. The RCL contains the candidates that produce lowest incremental placement

cost. By default, we use n = max{3, |N |∗0.2}. The value of n can variate on each iteration

since we consider some additional conditions. First, candidates with the same cost to the

first n candidates are also added to RCL. Second, if at least one candidate can be added

to the solution keeping it feasible, then candidates that generate infeasibilities are ignored.

VM-Greedy. In the last constructive heuristic, on each placement step, all

possible placements of virtual machines to data centers are evaluated, and one of the n best

candidates is randomly selected. In this constructive heuristic, we use n = max{5, |K|∗0.1}

for the RCL size, but the effective value of n can variate since we also include both

additional conditions described in the previous constructive heuristic.

In these constructive heuristic, any random selection is based on uniform distribution.

78

Note that these constructive heuristic can generate infeasible solutions, and the repair

process is made by the local search procedure.

4.3.4 Biased random-key genetic algorithm - BRKGA

In this section, we describe the biased random-key genetic algorithm (BRKGA) for

the VMPlacement problem. The general framework is described in Section 1.2 while two

decoders strategies and a hybrid BRKGA with path-relinking are described in the next

subsections.

4.3.4.1 Decoders

Solutions of the optimization problem are encoded as a vector X with n = |K|

random keys. To translate this vector into the solution of the VMPlacement problem, we

propose two decoders, as described next.

Greedy Ordered Decoder - D1: In this decoder, the keys provide the order of

placement. Following this order, a greedy strategy is used, placing each VM to the DC

which produces the least increase in the objective function.

The decoder starts with a list whose each element is composed of the random key

and the index of the virtual machine. The list is sorted by the keys. Now, the sorted list of

index of virtual machines is used as an order in which virtual machines should be placed.

Following this order, the next step is to place each virtual machine v to a DC. This is done

by placing virtual machine v in DC i which produces the least increase in the objective

function. Note that the cost to insert the VM v in each DC considers the previous virtual

machines placed. When all VMs are placed, the decoder returns the fitness value for the

respective vector X of random keys.

Location Decoder - D2: In this decoder, each key is decoded as the data center

in which the virtual machine should be placed. Let ki be the key corresponding to the

VM of index i in X , then this decoder simply places the VM of index i to DC ⌊ki ∗ |N |⌋.

Figure 4.2 shows an example of decoding for the decoder D2 for 3 data centers, 8 virtual

machines and a vector X of random keys.

79

Figure 4.2 – Example of decoding for decoder D2

DC 02 (Ind 1)DC 01 (Ind 0)

DC 03 (Ind 2)

4

1

3

6

2

7

5

8

4

1

3

6

2

7

5

8

VM

0.8

0.4

0.5

0.5

0.1

0.9

0.8

0.2

Source: from the author (2015).

Since both decoders are deterministic, we always obtain the same solution S ′ from

a vector of random keys X . In the case where a deterministic local search strategy is

applied to S ′, a solution S ′′ can be obtained using the decoders and the local search, and

thus, S ′′ can be associated to X . However, depending on the decoder, its is possible to

use a process called recode in X , to obtain S ′′ only by using the decoder (without local

search). In decoder D1, the recode can be computationally expensive and then we decided

to maintain the local search as part of the decoder. In decoder D2, the recode can be

applied by calculating the value of the key that will correspond to a data center in S ′′. Let

i′ the index of DC i, lb = i′/|N | and lu = (i+ 1)′/|N |, a key that corresponds to DC can

be given by lb+ (lu− lb)/2 or any number in the interval [lb, ub). Experiments including

the recode process are presented in the Subsection 4.4.4. To simplify the notation, we

denote by D3 the decoder D2 with recode process.

4.3.4.2 Hybrid BRKGA and path-relinking

Path-relinking is an approach to integrate intensification and diversification in the

search and can be incorporated on many metaheuristic frameworks. Path-relinking is

frequently used with GRASP algorithms (LAGUNA; MARTÍ, 1999; OLIVEIRA et al., 2004;

MATEUS et al., 2010; FESTA; RESENDE, 2013), but references can be found for other

metaheuristics as Scatter Search (GLOVER et al., 2003), Tabu Search (ARMENTANO et

al., 2011), VNS (PÉREZ et al., 2007). Regarding GAs, we find several papers where the

path-relinking technique is applied, like for example Basseur et al. (2005), Zhang and Lai

(2006), and Vallada and Ruiz (2010), just to name a few.

In this work, we propose a new approach that hybridise the path-relinking with

BRKGA algorithm. In our approach, we include the procedure 3 or 4 at n generations

80

of BRKGA. By default we use n = 1, i.e., we apply the path-relinking each time a

new generation is produced. Since both path-relinking procedures require a solution S,

we randomly select S by uniform distribution among all elite solutions of the BRKGA

population. In the case that the path-relinking returns a solution S ′ better than S, then

the corresponding vector X of S is recoded to be adjusted to S ′.

In Section 4.4, experiments with both path-relinking strategies in comparison with

the standard approach are presented in detail. Since the path-relinking uses the recode

process, experiments are performed only with decoder D3.

4.4 Computational results

The experiments were conducted on a computer with an AMD FX-8150 Eight-Core

3.6 GHz CPUs, with at least 32 GB of RAM running GNU/Linux, except for experiments

with CPLEX which we use a computer with quad-core Intel Xeon E5530 2.4 GHz CPUs,

with at least 48 GB of RAM running GNU/Linux. Algorithms are implemented in C++,

with optimization flag -O3. For BRKGA we use the API described in Toso and Resende

(2014). The commercial solver IBM ILOG CPLEX Optimizer version 12.6.0.0 (C++ API)

was used to evaluate the mathematical models. All experiments used a single thread but

multiple experiments were run in parallel.

Experiments were conducted with two main objectives. The first was to investigate

the CPLEX performance considering the different mathematical models described in Sec-

tion 4.2. The second was to evaluate the performance of the heuristic approaches described

in Section 4.3 and some hybridisation variants, including metaheuristic approaches, local

search strategies, and path-relinking procedures.

Initially we describe the method to generate the dataset used in the experiments.

In the following we report results for CPLEX, for each metaheuristic approach, and then

we report the best results of each method. Finally, we use our best approaches on a set of

instances of GQAP, comparing with the state-of-the-art results for the problem described

in Mateus et al. (2010).

81

4.4.1 Data set

In this subsection we present an instance generator that we proposed and imple-

mented to generate the data set used in the computational experiments reported by this

work. For generating each instance the generator receives as input four parameters: |N |,

|K|, |U |, and P (the latter represents the percentage of the overall data center occupation).

To ensure the generator creates instances that admit feasible solutions, we generate

the data for each instance based on n sets of pre-placed virtual machines to data centers

(by default n = 3). Given a capacity of each data center, each set of pre-placed s ∈ S is

generated by randomly placing each virtual machine to a data center, with probability

proportional to the data center capacity, ensuring the capacity is not violated. Biased on

these pre-placements, we generate the remaining data respecting the constraints of the

problem, ensuring at least n feasible solutions for each instance.

Considering a random numbers generator using uniform distribution, and M ′ be

a sufficiently large number, we generate the parameter data for each instance using the

following steps.

Data center capacity: The total number of available virtual machines is given

by n′ = max
(

|N |,
⌈

|K|
|P |

⌉)

. Thus, to define the values of ai for each DC i, we start with

all ai = 0 and select n′ times a random data center i, and increase ai by one. We also

ensure that each data center has a capacity ai greater or equal to one. At this step, the n

pre-placements described before are generated.

Required virtual machine bandwidth: For each pair of virtual machine v ∈ K

and w ∈ K the bandwidth bvw is a random number in the interval [0 : 9]. This matrix is

symmetric, i.e, bvw = bwv, and bvv = 0.

Data center bandwidth: Having defined the bandwidth between each pair of

virtual machines in the previous step, we generate the values of data center bandwidth

based in the pre-placements S. Let bs
ij be the sum of bandwidth between all virtual

machines pre-placed to i and j in s ∈ S. For each pair of data centers ij, we associate a

bandwidth Bij = max{bs
ij}, ∀s ∈ S. This matrix also is symmetric, i.e Bij = Bji, with

Bii = M ′.

Data center latency: For each pair of data center ij, the latency Lij is a random

number selected the interval [5 : 20]. This matrix is symmetric, i.e, Lij = Lji, with Lii = 0.

Required virtual machine latency: Let lsvm be the latency Lij between the

data centers ij where v is placed in i and w is placed in j in the pre-placement s ∈ S.

82

We randomly select n = |K| ∗ 2 distinct pairs vw to associate a required latency lvw =

max{lsvm}, ∀s ∈ S. The remaining latency lvw is defined as M ′, indicating that no latency

is required. We also ensure that lvw = lwv, and lvv = 0.

Users in data centers: Users are allocated at random to data centers chosen

with probability proportional to their capacity. More than one user can be located at the

same data center.

Required user latency: For each user, we randomly select a virtual machine v to

define a required latency. Let i(s) be the data center where v is placed in s ∈ S, thus the

required latency between u and v is given by tvu = max{Ld(u),i(s)},∀s ∈ S. The remaining

user required latency t is set to M ′.

Transferring data center cost: For each pair of data center ij, the cost Cij is a

random number in the interval [10.00 : 100.00]. This matrix is symmetric, i.e Cij = Cji,

and Cii = 0.

The parameters |N | and |K| can be used to define the instances sizes, while

parameters |U | and P can be used to adjust how the problem should be restricted.

Finally, we generate a sets of instances by combining values from N = {5, 10, 25}, K =

{15, 20, 25, 50, 100, 150, 200}, U = {Ki ∗ 0.5, Ki, Ki ∗ 1.5}, and P = {70, 90}. Tables 4.1

and 4.3 contains all instances we generated, and the values of |N |, |K|, |U | and P are

encoded in the name of instance in this respective order. All instances and their best

known solutions are available at <www.inf.ufsm.br/~stefanello/instances/>.

Part of the objective function from Equation (4.1) is in fact not used for these

instances since we are not considering the fix cost civ ∈ R of placement or installation a

VM to a DC. Thus, without loss of generality, for these instances of the VMPlacement

problem we may assume civ = 0, ∀ i ∈ N and v ∈ K. However, these values can be

different for GQAP instances, or a more general case of VMPlacement instances that

consider installation cost.

www.inf.ufsm.br/~stefanello/instances/

83

4.4.2 CPLEX results

In this section, we investigate the CPLEX performance for the both linear math-

ematical models described in Section 4.2. We seek to carry out an empirical study to

analyze which size of instances the CPLEX can handle and prove optimality, and which

model provides better integer solutions and lower bounds when CPLEX ends by a time

limit. The objective is also to obtain baseline results for comparison of heuristic methods.

We first analyze the results for the small size instances, followed by the set of the medium

size instances and large size instances. We run CPLEX for QMVMP model. Since the

performance of linear models was considered better than for the quadratic model, we

report only results for the mixed-integer linear model.

4.4.2.1 Results for small size instances

In the first experiment we evaluated the performance of CPLEX with the mathe-

matical models described in Section 4.2. We used the standard CPLEX solvers for models

LMVMP and LMVMPII. The running time limit was set to three hours per run (10, 800

seconds) and the number of threads was set to one. The remaining parameters were

maintained on the default values.

In Fischetti and Monaci (2014) the authors exploited erraticism in search and how

to take advantage of this behavior. Also, the authors show that CPLEX can have a wide

contrast in its behavior due randomized initial conditions. Thus, to better evaluate the

CPLEX performance we perform ten runs for each instance, each one with a different

random seed defined by the CPLEX parameter RandomSeed.

Table 4.1 shows CPLEX results. The first column shows the name of the instances.

The second column (BKS) shows the objective function of the best known solution value

for each instance (optimal solutions are showed in boldface). The next two columns show

the average running times of CPLEX to solve each instance for each mathematical model.

Numbers in parenthesis denote the number of runs that the solver did not prove optimality

within the time limit. The next two columns show the average running times that CPLEX

spent to find the BKS value. The average is over ten runs or the number of times that

CPLEX found BKS (indicated by the number in parenthesis). A signal ‘−’ indicates

that no run found a solution as good as BKS within the time limit. Finally, the last two

columns show the best running times over all runs that CPLEX spent to find the BKS.

84

Table 4.1 – CPLEX detailed results for small instances

AVG Time(s) AVG BKS Time(s) MIN BKS Time(s)

Instance BKS LMVMP LMVMPII LMVMP LMVMPII LMVMP LMVMPII

05_015_007_70 25,844.02 2.9 6.2 2.3 2.2 1.1 0.4
05_015_007_90 23,557.30 26.0 61.9 17.4 15.4 10.2 1.4
05_015_015_70 10,904.78 0.4 1.0 0.3 0.4 0.2 0.3
05_015_015_90 24,354.96 4.2 6.9 3.1 1.8 2.3 0.8
05_015_022_70 14,163.60 0.2 0.7 0.1 0.1 0.1 0.0
05_015_022_90 32,318.02 22.4 21.3 21.2 5.2 12.7 0.9
05_020_010_70 38,572.62 292.8 701.7 232.4 138.1 6.4 1.2
05_020_010_90 64,710.80 68.3 107.3 58.5 24.7 31.2 1.9
05_020_020_70 55,288.76 134.5 437.6 100.9 212.4 10.5 37.8
05_020_020_90 57,574.90 1.7 2.1 1.3 0.4 0.8 0.4
05_020_030_70 28,433.34 11.1 17.4 7.1 3.7 2.8 0.4
05_020_030_90 66,088.70 1.9 2.6 1.8 0.7 1.2 0.3
05_025_012_70 43,300.76 1271.5 4,025.5 1,063.8 862.6 195.0 2.2
05_025_012_90 100,865.02 10,800 (10) 10,800 (10) 9,902.6 (4) 6,165.6 (8) 9,746.0 28.7
05_025_025_70 42,890.40 58.4 126.7 52.5 39.0 26.9 1.3
05_025_025_90 103,791.96 10,800 (10) 10,800 (10) 9,764.3 (1) – 9,764.3 –
05_025_037_70 97,335.12 161.4 592.8 117.0 161.2 19.6 2.8
05_025_037_90 73,363.56 10,262 (7) 10,800 (10) 8,993.2 3,782.8 (9) 5,916.3 33.8

Source: from the author (2015).

We can draw three main observations from this experiment. First, for both models,

the solver tends to increase significantly the time spent to prove optimality for instances

with 5 or more data centers, and 25 or more virtual machines. This indicates a baseline

for the size of instances that this version of CPLEX can handle and prove optimality using

these models in this computer. The second observation is that CPLEX performance for

both models was relatively similar. CPLEX was able to prove or not the optimality in the

same instances, except for instance 05_025_037_90 which CPLEX proved optimality in

three runs for LMVMP, while for LMVMPII CPLEX has an average gap of 8%. However,

considering the time that each model spent to find a solution with objective function

equal to BKS, in most cases CPLEX with LMVMPII spent less time than considering

the model LMVMP. Finally, the last observation is about the variance of time to find the

BKS. With the randomized initial conditions, CPLEX presented a large variance in its

behavior. For example, for the instance 05_025_012_70 and LMVMPII, in the best case

CPLEX found BKS in 2.2 seconds, while in the worst case it took 3, 458.01 seconds to find

the same solution. For this instance, the time to prove optimality also have large variance,

alternating between a minimum of 3, 685.67 and a maximum of 4, 828.05.

We also evaluate the model LMVMPII without including the additional set of

cuts (4.30). In comparison with the model with the cuts, we observed a higher decrease in

the performance of CPLEX. For six instances CPLEX was not able to prove optimality in

any of the ten runs. For these cases, the gap of CPLEX is still high. For example, for the

instance 05_025_012_90, the average gap was 53%, confirming that the relaxation quality

85

of this model is low. Furthermore, the time to find BKS increased around 8 times, and the

number of nodes explored within the time limit or to prove optimality increased around 7

times in comparison with the model that includes the set of cuts (4.30).

4.4.2.2 Results for median and large size instances

In this subsection we present results for CPLEX when applied to a set of median

and large instances. In this experiment, we evaluate CPLEX for each model and each

instance with one run for a time limit of one day (86, 400 seconds).

Table 4.2 shows for each instance the BKS obtained over all experiments, including

the reported in this work for heuristic methods and additional non-reported experiments

used to evaluate the previous version of the algorithms. The column FO shows, for each

model, the objective function value of the best integer solution found by CPLEX. Column

CPLEX GAP shows the gap returned by CPLEX. The last column shows the gap from

BKS to the best integer solution returned by CPLEX.

The first observation from this experiment is that for instances with 10 data centers,

CPLEX was able to start solve the models, but still with a high gap even after 24 hours of

computation. However, we observed that the gap returned by CPLEX as well as the gap

to BKS are lower for LMVMPII in comparison with the values of LMVMP. The average

gap returned by CPLEX with LMVMPII was around half of the average gap for LMVMP.

The average gap to BKS was 2.19 for LMVMPII, while for LMVMP the gap was 4.96.

The second observation is that for instances with 25 data centers and LMVMP

model, CPLEX spent the whole time in the presolve phase without solving the root

relaxation node. Instead for LMVMPII, CPLEX was able to start a node exploration and

found feasible solutions. For instances with 25 data centers, CPLEX explored an average

of approximately 34800 nodes for instances with 100 VMs, 5700 nodes for instances with

150 VMs, and 1000 nodes for instances with 200 VMs. Even CPLEX maintaining a high

gap, the gap from BKS was relatively small, considering the size of the instance and the

difficulty to find feasible solutions (STEFANELLO et al., 2015a).

86

Table 4.2 – CPLEX detailed results for median and large instances

FO CPLEX GAP BKS GAP

Instance BKS LMVMP LMVMPII LMVMP LMVMPII LMVMP LMVMPII

10_025_012_70 114,582.50 116,264.44 115,734.58 42.37 24.29 1.47 1.01
10_025_012_90 84,461.30 88,087.12 85,814.72 53.92 28.31 4.29 1.60
10_025_025_70 90,997.90 93,729.48 92,407.94 29.59 19.30 3.00 1.55
10_025_025_90 124,763.66 125,365.26 125,335.92 31.18 16.56 0.48 0.46
10_025_037_70 100,801.80 104,350.38 100,801.80 24.16 15.04 3.52 0.00
10_025_037_90 106,617.94 107,558.00 107,471.04 24.06 20.06 0.88 0.80
10_050_025_70 414,535.12 442,548.40 435,929.26 83.22 39.98 6.76 5.16
10_050_025_90 458,879.74 480,146.00 477,439.06 75.60 30.79 4.63 4.04
10_050_050_70 360,102.12 374,071.02 366,972.40 68.85 43.23 3.88 1.91
10_050_050_90 400,233.16 420,173.88 416,615.52 72.88 36.32 4.98 4.09
10_050_075_70 349,135.78 362,853.92 353,979.20 54.03 35.20 3.93 1.39
10_050_075_90 498,190.58 513,161.02 510,062.50 54.45 25.23 3.01 2.38
10_100_050_70 1,647,975.00 1,884,262.62 1,732,985.94 91.55 42.59 14.34 5.16
10_100_050_90 1,792,257.68 1,916,126.76 1,826,484.56 89.56 34.79 6.91 1.91
10_100_100_70 1,463,498.00 1,546,897.78 1,500,763.50 86.22 47.12 5.70 2.55
10_100_100_90 2,126,993.26 2,256,408.46 2,169,460.06 82.73 31.03 6.08 2.00
10_100_150_70 1,563,152.40 1,702,573.74 1,586,082.86 78.44 45.02 8.92 1.47
10_100_150_90 1,847,076.66 1,968,341.96 1,883,289.84 70.74 33.59 6.57 1.96

Average - - - 61.86 31.58 4.96 2.19

25_100_050_70 1,887,688.24 - 1,976,649.48 - 44.15 - 4.71
25_100_050_90 2,116,849.00 - 2,184,190.20 - 34.89 - 3.18
25_100_100_70 1,953,155.20 - 2,056,428.04 - 44.55 - 5.29
25_100_100_90 2,021,228.76 - 2,091,723.56 - 35.72 - 3.49
25_100_150_70 1,967,364.52 - 2,061,181.36 - 43.91 - 4.77
25_100_150_90 2,160,014.54 - 2,235,936.02 - 35.35 - 3.51
25_150_075_70 4,603,163.50 - 4,768,514.02 - 42.99 - 3.59
25_150_075_90 4,618,491.80 - 4,786,179.50 - 36.54 - 3.63
25_150_150_70 3,882,650.94 - 4,085,463.10 - 46.34 - 5.22
25_150_150_90 4,706,129.66 - 4,899,667.66 - 36.82 - 4.11
25_150_225_70 4,340,090.18 - 4,530,866.46 - 46.00 - 4.40
25_150_225_90 4,523,393.44 - 4,708,994.42 - 35.51 - 4.10
25_200_100_70 6,937,008.98 - 7,539,073.36 - 50.79 - 8.68
25_200_100_90 9,034,147.98 - 9,391,760.06 - 34.93 - 3.96
25_200_200_70 7,146,330.32 - 7,579,453.48 - 49.13 - 6.06
25_200_200_90 8,578,620.94 - 8,909,349.84 - 36.53 - 3.86
25_200_300_70 7,638,447.16 - 8,033,640.92 - 42.32 - 5.17
25_200_300_90 8,195,152.30 - 8,579,652.20 - 38.94 - 4.69

Average - - - - 40.86 - 4.58

Source: from the author (2015).

87

4.4.3 GRASP results

This subsection presents results and analyzes feasibility for different construc-

tive heuristic combined with different local search procedures embedded in the GRASP

framework. Also, we report experiments with the path-relinking procedure.

The main goals of the following experiments are show how difficult is to find feasible

solutions using a constructive heuristic, and explore the effect of embedding a local search

procedure to obtain a feasible solution. Finally, the last main objective is to evaluate the

impact of each component added to the framework, i.e., constructive heuristic, local search

method, and path-relinking strategy.

In the first part of our experiment, we evaluate the performance of each constructive

heuristic described in Subsection 4.3.3, embedded in the GRASP algorithm. We performed

one run for each instance, combination of constructive heuristic, and local search method.

The stopping criterion of each run was a time limit of |K| ∗ |N | ∗ θ seconds, where θ = 0.8.

We use this stopping criterion in all experiments in order to provide a fair comparison for

all strategies evaluated.

Table 4.3 shows the average of the percentage of feasible solutions found on each run

of the algorithm for all instances and combinations of local search (rows on first column)

and constructive heuristic (columns 2 to 5).

Table 4.3 – Percentage of feasible solutions found by GRASP for different constructive heuristic
and local search strategy

LSType Random Greedy DC-Greedy VM-Greedy Average

NoLS 0.00 1.02 1.96 0.57 0.89
1R 23.70 22.12 27.88 21.96 23.91
2R 75.50 76.25 78.28 76.61 76.66
2V 77.26 78.02 79.72 78.41 78.35
3R 81.95 81.90 83.35 82.29 82.37
3V 82.93 82.66 84.06 83.20 83.21
4R 82.75 82.53 84.16 82.95 83.10
4V 84.08 83.61 84.98 84.19 84.22

Average 63.52 63.51 65.55 63.77 64.09

Source: from the author (2015).

The first observation from Table 4.3 is that the probability of finding a feasible

solution using only a constructive heuristic without local search is low (row NoLS). In

average, the percentage of feasible solutions was less than 1%, with an average of less

than 2% for the constructive heuristic DC-Greedy. However, the main observation is that

88

the constructive heuristic has a lower impact on the percentage of feasibility solution in

comparison with the impact of any local search method. When a local search procedure is

considered (also used as repair procedure), the percentage of feasible solutions increase

considerable. For example, using 2R or 2V the percentage of feasible solutions is higher

than 75% or higher than 82% for 3V. This occurs even with the random constructive

heuristic, showing that the local search has a performance that is not high-dependent of

the initial solution. We also analyze the quality of the feasible solutions found on each

strategy. The conclusions are similar to the percentage of feasible solutions, where the

solution quality are similar for all constructive heuristic and tends to be better when

we consider a more complex neighborhood search. Thus, in the remaining experiments

we adopted the DC-Greedy constructive heuristic as default since it presents the highest

percentage of feasible solutions.

Table 4.4 shows the percentage of feasible solutions for each instance for the

constructive heuristic DC-Greedy.

Even with a significant increase in the percentage of feasible solutions found when

the local search is applied, some instances still have a low percentage of feasible solutions.

This shows that the set of instances used to evaluate the algorithms are diverse and not

trivial to solve. We also observed that, as expected, most instances with a higher percentage

of data center occupation has a low percentage of feasible solutions in comparison with

the respective instance with a low percentage of occupation.

89

Table 4.4 – Percentage of feasible solutions found by GRASP with the DC-Greedy constructive
heuristic

Instance NoLS 1R 2R 2V 3R 3V 4R 4V

10_025_012_70 10.90 60.50 89.92 90.88 95.62 95.75 96.06 96.24
10_025_012_90 1.27 24.57 90.13 92.25 94.79 95.68 95.09 96.18
10_025_025_70 25.75 92.23 99.09 99.44 99.70 99.78 99.80 99.86
10_025_025_90 0.08 6.09 46.20 52.23 58.34 62.96 59.35 64.72
10_025_037_70 2.91 59.80 76.71 81.60 84.88 86.55 86.02 88.67
10_025_037_90 0.06 4.93 37.30 44.24 50.14 57.58 54.19 63.35
10_050_025_70 4.38 42.79 94.06 94.45 95.43 95.80 95.73 96.17
10_050_025_90 0.13 21.10 88.04 88.80 92.41 92.63 92.59 93.11
10_050_050_70 0.34 23.77 69.28 71.09 76.80 76.97 78.49 78.78
10_050_050_90 0.05 13.24 54.16 56.53 64.63 65.21 65.01 65.81
10_050_075_70 1.50 49.55 68.47 72.63 76.83 77.26 78.12 78.96
10_050_075_90 0.07 10.02 67.46 68.59 71.43 72.29 73.02 74.02
10_100_050_70 3.34 65.63 98.34 98.49 98.91 98.96 98.79 98.62
10_100_050_90 0.01 3.07 80.76 80.60 86.31 86.54 86.63 86.99
10_100_100_70 1.66 39.19 86.97 87.45 91.79 91.28 93.50 93.38
10_100_100_90 0.00 7.45 83.73 84.02 86.42 86.81 87.11 86.66
10_100_150_70 0.82 41.94 82.79 83.35 85.92 86.01 86.27 86.89
10_100_150_90 0.00 1.46 73.12 73.33 73.85 74.18 75.44 75.63

25_100_050_70 8.10 77.11 96.44 95.89 97.79 98.03 98.31 98.46
25_100_050_90 0.00 13.16 82.81 84.37 88.04 87.90 87.78 89.16
25_100_100_70 0.56 40.15 86.63 88.12 90.76 91.93 91.77 91.82
25_100_100_90 0.00 3.08 64.58 66.90 72.86 74.69 73.30 75.48
25_100_150_70 1.23 46.98 92.22 93.80 96.07 96.42 96.78 97.31
25_100_150_90 0.00 2.78 64.08 66.30 72.35 73.97 72.45 75.14
25_150_075_70 5.84 60.39 94.84 95.35 96.05 96.03 96.81 97.12
25_150_075_90 0.01 6.60 84.01 84.39 87.36 87.73 87.88 88.13
25_150_150_70 0.77 31.90 79.71 79.68 83.50 84.00 84.65 85.29
25_150_150_90 0.00 5.23 63.12 64.75 68.89 70.49 70.48 69.27
25_150_225_70 0.53 31.81 79.31 80.36 83.05 83.15 82.89 83.33
25_150_225_90 0.00 1.59 48.00 47.46 56.87 57.90 58.14 56.01
25_200_100_70 0.21 31.49 83.76 85.27 88.58 86.11 90.90 90.86
25_200_100_90 0.00 21.90 94.83 95.36 97.16 97.76 96.91 97.36
25_200_200_70 0.07 22.82 72.57 75.00 81.10 80.57 81.96 81.38
25_200_200_90 0.00 21.36 93.03 93.51 95.24 95.41 95.02 95.36
25_200_300_70 0.00 13.36 64.51 66.92 72.57 72.53 73.12 73.55
25_200_300_90 0.00 4.49 86.92 86.54 88.24 89.12 89.31 90.08

Average 1.96 27.88 78.28 79.72 83.35 84.06 84.16 84.98

Source: from the author (2015).

90

In the next set of experiments, the main objective is to evaluate the path-relinking

component in the GRASP procedure. For each experiment, we performed five independent

runs totalling an amount of 180 samples for each experiment. We also use θ = 0.8 as

stopping criterion The local search strategy used in the path-relinking is always the same

used after the construction phase in GRASP procedure. Experiments are chosen to analyze

the performance for different combination of algorithms and to show the impact of each

component.

To compare the results with respect to the best solution found on each run, we

first scale the objective function value to the range [0, 1] since each instance can have very

different values. The scale is a simple transformation where for each instance, the largest

cost over all analyzed experiments is scaled to 1 and the lowest is scaled to 0.

Figure 4.3 shows the distribution of the scaled cost for each algorithm. The box

plots show the location of the minimum value, lower quartile, median, upper quartile,

and maximum value of each experiment. The dots are the outliers. Experiments are

represented on the horizontal axis and are labelled as composition of main algorithm name,

path-relinking type, local search strategy, and size of elite set parameter. Experiments

ended with “∗” use a full exploration on the neighborhood chain3L, i.e, α3L = 1 and

β3L = |N |. Also, note that the first three experiments are a simple GRASP procedure and

does not include the path-relinking component.

Figure 4.3 – Dispersion of scaled cost for each algorithm

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
c
a

le
d

 c
o

s
t

G
RASP−2V

G
RASP−3V

G
RASP−4V

G
RASP−PRS−3V−e06

G
RASP−PRS−3V−e08

G
RASP−PRS−3V−e10

G
RASP−PRS−4V−e10

G
RASP−PRM

−2V−e08

G
RASP−PRM

−3V−e06

G
RASP−PRM

−3V−e08

G
RASP−PRM

−3V−e10

G
RASP−PRM

−4V−e06

G
RASP−PRM

−4V−e10

G
RASP−PRM

−4V−e06

G
RASP−PRM

−4V−e10**

Source: from the author (2015).

The first observation is about the relation between the intensification of the neigh-

borhood exploration and restarting the search. On the one hand, from Table 4.3 and 4.4 we

91

observe that the local search mode V overcomes in most cases the mode R in the percentage

of feasible solutions. Since both strategies are executed for the same time, is natural that

the local search mode R has a higher number or iterations than mode V, which has a more

intensive exploration in high-quality solutions. This is an indication that is preferable

to invest in the exploration of the neighborhood of a high-quality solution instead of

making a full restart to a new point of the search space. One the other hand, even with a

higher ability of the local search 4V in producing feasible solutions and exploring a large

neighborhood, when we consider the best solution found in the experiments, the local

search 3V produces better results than the search 4V. This indicates that for the proposed

neighborhood strategies, there is a trade-off between intensification of the neighborhood

exploration and time spent on each local search strategy. This can be used to guide the

search and select the best strategies for a general proposed method.

The second observation is that the path-relinking component improves significantly

the results in comparison with the case without this strategy (case GRASP-2V, GRASP-

3V, and GRASP-4V). We also observe that both path-relinking strategies have similar

performance. Furthermore, the results have a low influence by the values of elite size in

the tested interval.

To confirm the results presented in Figure 4.3, we use the R package to test the

normality of these distributions using the Shapiro-Wilk test and apply the Mann-Whitney-

Wilcoxon U test. For all tests, we assume a confidence interval of 99%. Shapiro-Wilk tests

indicate that no cost distribution fits a normal distribution since the p-values for all tests

are less than 0.01. Therefore, we applied the U test which assumes as null hypothesis that

the location statistics are equal in both distributions. We also use a p-value correction

procedure based on false discovery rate (FDR) to minimize the number of false positives.

Table 4.5 shows U test results for each pair of algorithms. The structure of this

table is as follows: Each row and column is indexed by one algorithm. Each element

in the diagonal (bold) is the median of the scaled cost of the corresponding algorithm.

The upper-right diagonal elements are the differences in location statistics for each pair

of algorithms. A negative difference indicates that the “row algorithm” has its location

statistics lower (better) than the “column algorithm”, and the positive difference is the

opposite. The bottom-left diagonal elements are the p-values of each test. Math signals

indicate when p<0.01 for a U test between “row algorithm” and “column algorithm” for the

respective signal alternative hypothesis. The case “less” indicates that the “row algorithm”

overcome the “column algorithm”, or the opposite in the case “greater”.

92

Table 4.5 – Values of medians, p-values, and difference in median location for cost distributions
using a confidence interval of 99% for GRASP algorithm

GRASP GRASP-PRM GRASP-PRS

2V 3V 4V 2V-e08 3V-e06 3V-e08 3V-e10 4V-e06 4V-e10 5V-e06 5V-e10 3V-e06 3V-e08 3V-e10 4V-e10

2V 0.911 0.311 0.265 0.683 0.755 0.756 0.751 0.683 0.679 0.676 0.642 0.730 0.728 0.734 0.647
3V < 0.593 -0.048 0.379 0.452 0.456 0.448 0.387 0.379 0.360 0.332 0.424 0.422 0.427 0.342
4V < > 0.644 0.426 0.496 0.498 0.489 0.434 0.421 0.416 0.389 0.468 0.465 0.476 0.393

PRM-2V-e08 < < < 0.203 0.075 0.081 0.069 -0.001 0.003 -0.014 -0.051 0.056 0.053 0.061 -0.035
PRM-3V-e06 < < < < 0.119 0.002 -0.006 -0.077 -0.075 -0.085 -0.121 -0.022 -0.029 -0.017 -0.118
PRM-3V-e08 < < < < 0.839 0.113 -0.010 -0.077 -0.082 -0.086 -0.125 -0.027 -0.028 -0.022 -0.119
PRM-3V-e10 < < < < 0.568 0.353 0.128 -0.072 -0.075 -0.082 -0.116 -0.020 -0.017 -0.012 -0.110
PRM-4V-e06 < < < 0.930 > > > 0.201 -0.007 -0.014 -0.049 0.051 0.054 0.058 -0.039
PRM-4V-e10 < < < 0.846 > > > 0.582 0.190 -0.015 -0.045 0.056 0.055 0.058 -0.037
PRM-5V-e06 < < < 0.409 > > > 0.376 0.294 0.171 -0.041 0.063 0.058 0.067 -0.031
PRM-5V-e10 < < < > > > > > > > 0.220 0.100 0.093 0.096 0.006
PRS-3V-e06 < < < < 0.075 0.040 0.089 < < < < 0.139 -0.004 0.003 -0.097
PRS-3V-e08 < < < < 0.016 0.010 0.091 < < < < 0.737 0.144 0.009 -0.097
PRS-3V-e10 < < < < 0.065 0.066 0.243 < < < < 0.774 0.384 0.146 -0.102
PRS-4V-e10 < < < > > > > > > 0.056 0.774 > > > 0.253

Source: from the author (2015).

Table 4.5 confirms that the difference between the results of the standard GRASP

procedure and the procedure that includes the path-relinking component are statistically

significant for confidence interval of 99%. Tests between cases with local search 3V and

different elite sizes indicate that the difference are not significant, even for both path-

relinking strategies. However analyzing the values of median and median location, we

conclude that there is a very low advantage for the PRM strategy with elite size equal to 8.

A report for the solution quality obtained with this strategy is showed in the

Subsection 4.4.5. Next we report results for the BRKGA.

4.4.4 BRKGA results

This subsection presents results for the biased random-key genetic algorithm. The

objective is analyze different procedures, decoders, the recode process, and the path-

relinking procedure introduced in the algorithm. The experiments follow the rules and the

objectives explained in the previous subsection.

BRKGA parameters was set to the same parameters as described in Stefanello et al.

(2015a) which are similar to the values suggested by Gonçalves and Resende (2011), i.e.,

the elite size pe = 0.24p, the set of mutants pm = 0.12p, and the probability of inheriting

ρA = 0.6. The restart parameter was disable and the population size p = 75. The stopping

criterion for all runs was a time set to |K| ∗ |N | ∗ θ seconds (where θ = 0.8).

We run experiments that include different local searches, decoders and path-relinking

procedures. In each experiment, we performed five independent runs with different random

seed for each instance, given a total of 180 runs. To compare the results we scale the

93

values of the objective function for the best solution found on each run to the range [0, 1],

as described in the previous subsection.

Figure 4.4 shows the box plot for the distribution of the scaled cost for each algorithm.

Algorithms are represented on the horizontal axis and are labelled as a composition of

main algorithm name, path-relinking strategy, decoder method, local search strategy, and

size of elite set parameter.

Figure 4.4 – Dispersion of scaled cost for each algorithm

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
c
a

le
d

 c
o

s
t

BRKG
A−D1−2V

BRKG
A−D1−3V

BRKG
A−D2−2R

BRKG
A−D2−2V

BRKG
A−D2−3R

BRKG
A−D2−3V

BRKG
A−D2−4R

BRKG
A−D2−4V

BRKG
A−D3−3R

BRKG
A−D3−3V

BRKG
A−D3−4V

BRKG
A−PRM

−D3−3V−e06

BRKG
A−PRM

−D3−3V−e08

BRKG
A−PRM

−D3−3V−e10

BRKG
A−PRM

−D3−4V−e08

BRKG
A−PRS−D3−3V−e06

BRKG
A−PRS−D3−3V−e08

BRKG
A−PRS−D3−3V−e10

Source: from the author (2015).

The first observation is that the recode process helps to improve the results, since

all experiments with decoder D3 have medians lower than the respective correspondent

algorithm with decoders D1 and D2. Note for example that without the recode, one

modification in a random key can influence in one or more placements (since the local search

can apply many changes). Using the recode, when one key is changed, the modification is in

only one placement. This well-defined behavior helps to keep a more accurate information

of each individual. The second observation is that for the local search strategies, the same

conclusions from the GRASP can be taken for BRKGA. Experiments that include mode V

overcomes the mode R, as well as, using local search 3V provides better results than the

other local search strategies. Finally, strategies that include the path-relinking procedure

are more effective to produce better results than the standard counterpart. However,

differently as observed in GRASP, the difference between PRM and PRS is significant. We

attribute the worst performance of PRS due to the small number of applications of the

path-relinking since it is limited to the number of generations. Also, after some iterations

of BRKGA, the solutions in the elite set of BRKGA tend to be similar, and fail in

94

the similarity check with the solution in the elite set of path-relinking, and thus, the

path-relinking operator is not performed.

Table 4.6 shows U test results for each pair of algorithms. We present the values of

medians, p-values, and the difference in median location for the scaled cost distributions

using a confidence interval of 99% for all experiments. The organization of this table

follows the description of Table 4.5 presented in the previous subsection. For layout reasons

we omit in this table the data for experiments with local search 2R, 3R, and 4R, since

the mode V for the respective neighborhood level always overcome the mode R. We also

omit the decoder D3 in the label of the experiments with BRKGA-PR, since we perform

experiments only with this decoder.

Table 4.6 – Values of medians, p-values, and difference in median location for cost distributions
using a confidence interval of 99% for BRKGA algorithm

BRKGA BRKGA-PRM BRKGA-PRS

D1-2V D1-3V D2-2V D2-3V D2-4V D3-3V D3-4V 3V-e06 3V-e08 3V-e10 4V-e08 3V-e06 3V-e08 3V-e10

D1-2V 0.810 0.231 0.002 0.224 0.197 0.468 0.413 0.623 0.641 0.646 0.591 0.487 0.476 0.471
D1-3V < 0.546 -0.223 0.001 -0.026 0.228 0.170 0.382 0.403 0.407 0.366 0.251 0.242 0.239
D2-2V 0.888 > 0.792 0.222 0.182 0.454 0.397 0.604 0.624 0.626 0.579 0.473 0.462 0.458
D2-3V < 0.920 < 0.545 -0.033 0.229 0.173 0.390 0.410 0.415 0.367 0.249 0.244 0.239
D2-4V < 0.017 < > 0.586 0.250 0.194 0.414 0.433 0.439 0.391 0.272 0.264 0.260
D3-3V < < < < < 0.256 -0.056 0.166 0.190 0.185 0.130 0.028 0.013 0.017
D3-4V < < < < < > 0.338 0.212 0.243 0.241 0.188 0.083 0.067 0.069

PRM-3V-e06 < < < < < < < 0.142 0.018 0.021 -0.025 -0.138 -0.148 -0.153
PRM-3V-e08 < < < < < < < 0.081 0.101 0.001 -0.040 -0.159 -0.170 -0.174
PRM-3V-e10 < < < < < < < 0.038 0.888 0.112 -0.043 -0.163 -0.177 -0.176
PRM-4V-e08 < < < < < < < 0.040 > > 0.166 -0.106 -0.116 -0.119
PRS-3V-e06 < < < < < 0.011 < > > > > 0.252 -0.014 -0.014
PRS-3V-e08 < < < < < 0.166 < > > > > 0.102 0.256 -0.002
PRS-3V-e10 < < < < < 0.066 < > > > > 0.112 0.804 0.273

Source: from the author (2015).

This table confirms the considerations described above showing that the best

approaches consider the path-relinking component (PRM). Also, as mentioned for GRASP in

the previous subsection, the experiments for different elite sizes indicate that the differences

are not statistical significant for a confidence interval of 99%. However, analyzing the

values of the median, and median location we conclude that using the size of elite set equal

to 8, the procedure tends to produce better results.

In Stefanello et al. (2015a) this problem was first introduced, and the first version

of BRKGA is presented. From the original approach, three main improvements are made.

First, we added a new neighborhood search. In the original approach, we described a local

search that includes only shift and swap moves (namely LSW that correspond to 2V in this

work). We observe from the results in Figure 4.4 and in the Table 4.6 that the inclusion of

this new neighborhood strategy (chain search) helps to improve significantly the results

(comparison between BRKGA-D2-2V and BRKGA-D2-3V). Second, the inclusion of the

recode procedure in the decoder D2 (defined as decoder D3), also improves significantly

95

the results (comparison between BRKGA-D2-2V and BRKGA-D3-2V, as well as, BRKGA-

D2-3V and BRKGA-D3-3V). Finally, we included a path-relinking component that in the

best of our knowledge, is the first experiment that consider this hybrid approach between

BRKGA and path-relinking.

A final observation about running times of BRKGA is that results are reported

using single-thread in order to provide a fair comparison with the GRASP and CPLEX

results. However, the BRKGA API provides an efficient multi-thread decoding Toso

and Resende (2014), that could be used to reduce substantially the running times when

multiple processors are available.

4.4.5 Additional comparison

In this subsection we report an overview over the best strategies for BRKGA and

GRASP, providing addition comparisons and informations for both algorithms. Figure 4.5

shows an overview for the experiments for both strategies reported in the previous

subsections.

Figure 4.5 – Dispersion of scaled cost for each algorithm

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
c
a
le

d
 c

o
s
t

BRKG
A−D1−2V

BRKG
A−D1−3V

BRKG
A−D2−2R

BRKG
A−D2−2V

BRKG
A−D2−3R

BRKG
A−D2−3V

BRKG
A−D2−4R

BRKG
A−D2−4V

BRKG
A−D3−3R

BRKG
A−D3−3V

BRKG
A−D3−4V

BRKG
A−PRM

−D3−3V−e06

BRKG
A−PRM

−D3−3V−e08

BRKG
A−PRM

−D3−3V−e10

BRKG
A−PRM

−D3−4V−e08

BRKG
A−PRS−D3−3V−e06

BRKG
A−PRS−D3−3V−e08

BRKG
A−PRS−D3−3V−e10

G
RASP−D3−2V

G
RASP−PRM

−4V−e10*

G
RASP−D3−3V

G
RASP−D3−4V

G
RASP−PRM

−2V−e08

G
RASP−PRM

−3V−e06

G
RASP−PRM

−3V−e08

G
RASP−PRM

−3V−e10

G
RASP−PRM

−4V−e06

G
RASP−PRM

−4V−e10

G
RASP−PRS−3V−e06

G
RASP−PRS−3V−e08

G
RASP−PRS−3V−e10

G
RASP−PRS−4V−e10

G
RASP−PRM

−4V−e06*

Source: from the author (2015).

As depicted in Figure 4.5 and reported in subsections 4.4.3 and 4.4.4, the best

approach for both algorithms is consider the local search 3V and include the path-relinking

component with elite size equal to 8. Thus, Table 4.7 presents supplementary information

for the experiments with both strategies. The first column shows the instance. The

second column shows the best-known solution value (BKS) for each instance. The next

96

columns show the minimum, average and maximum of percentage gap for both algorithms.

The percentage gap is calculated by the formula (FO-BKS)*100/BKS, were FO is the

respective value of the objective function for the considered algorithm. Finally, columns

Time shows the minimum and average time in seconds in which each algorithm obtained

the last improvement in the objective function.

Table 4.7 – Comparison of percentage gap and last improve time for BRKGA-PR and
GRASP-PR

BRKGA-PR GRASP-PR

GAP (%) Time (s) GAP (%) Time (s)

Instance BKS min Avg Max Min Avg min Avg Max Min Avg

10_025_012_70 114,582.50 0.00 0.00 0.00 1.6 22.7 0.00 0.00 0.00 1.3 38.7
10_025_012_90 84,461.30 0.00 0.32 0.54 1.8 35.9 0.00 0.00 0.00 16.1 49.2
10_025_025_70 90,997.90 0.00 0.00 0.00 0.5 0.8 0.00 0.00 0.00 48.5 111.3
10_025_025_90 124,763.66 0.00 0.15 0.18 1.9 45.1 0.00 0.04 0.18 19.1 59.8
10_025_037_70 100,801.80 0.00 0.00 0.00 0.7 0.8 0.00 0.00 0.00 0.4 1.0
10_025_037_90 106,617.94 0.00 0.00 0.00 0.7 13.3 0.00 0.00 0.00 1.1 2.3
10_050_025_70 414,535.12 0.11 0.26 0.47 12.5 86.5 0.00 0.08 0.13 47.9 190.9
10_050_025_90 458,879.74 0.00 0.02 0.07 38.3 76.0 0.00 0.09 0.16 87.5 193.6
10_050_050_70 360,102.12 0.00 0.10 0.49 11.4 36.0 0.00 0.00 0.00 4.5 92.4
10_050_050_90 400,233.16 0.00 0.37 0.64 21.2 32.9 0.00 0.28 0.62 32.9 185.6
10_050_075_70 349,135.78 0.00 0.00 0.00 4.7 29.8 0.00 0.00 0.00 7.7 62.1
10_050_075_90 498,190.58 0.39 0.58 0.87 47.9 153.7 0.00 0.26 0.47 18.1 147.8
10_100_050_70 1,647,975.00 0.00 1.98 3.32 82.8 395.4 1.12 2.26 3.37 457.5 652.2
10_100_050_90 1,792,257.68 0.01 0.18 0.31 98.1 380.7 0.14 0.31 0.55 292.5 493.0
10_100_100_70 1,463,498.00 0.00 0.08 0.37 50.9 271.7 0.00 0.03 0.14 518.3 624.6
10_100_100_90 2,126,993.26 0.00 0.23 0.48 433.7 656.5 0.12 0.28 0.53 60.6 483.5
10_100_150_70 1,563,152.40 0.00 0.13 0.40 190.1 437.5 0.06 0.30 0.59 198.7 537.4
10_100_150_90 1,847,076.66 0.01 0.12 0.32 137.2 429.0 0.08 0.26 0.39 252.6 575.8

Average 0.03 0.25 0.47 63.1 172.5 0.08 0.23 0.40 114.7 250.0

25_100_050_70 1,887,688.24 0.18 0.43 0.78 160.3 1,128.9 0.12 0.30 0.47 953.2 1,464.6
25_100_050_90 2,116,849.00 0.03 0.52 0.81 904.3 1,615.4 0.26 0.37 0.46 741.2 1,326.4
25_100_100_70 1,953,155.20 0.36 0.62 0.83 284.5 770.2 0.00 0.35 0.75 253.9 1,122.9
25_100_100_90 2,021,228.76 0.35 0.72 1.24 976.0 1,516.7 0.44 0.55 0.65 847.5 1,207.5
25_100_150_70 1,967,364.52 0.30 0.57 0.82 276.5 1,141.6 0.00 0.42 0.70 160.5 1,377.1
25_100_150_90 2,160,014.54 0.56 0.80 1.08 776.3 1,509.1 0.44 0.62 0.77 528.9 1,156.7
25_150_075_70 4,603,163.50 0.20 0.37 0.49 531.1 1,877.3 0.24 0.33 0.41 992.6 1,567.2
25_150_075_90 4,618,491.80 0.21 0.33 0.49 1,223.7 1,807.9 0.21 0.31 0.40 1,986.0 2,548.8
25_150_150_70 3,882,650.94 0.19 0.36 0.54 788.5 2,183.6 0.19 0.34 0.49 1,560.7 2,156.1
25_150_150_90 4,706,129.66 0.41 0.53 0.68 597.5 1,984.0 0.32 0.46 0.58 889.2 2,067.9
25_150_225_70 4,340,090.18 0.13 0.34 0.53 1,657.6 2,347.1 0.47 0.59 0.80 1,648.5 2,321.8
25_150_225_90 4,523,393.44 0.44 0.54 0.69 271.5 1,684.5 0.17 0.37 0.53 543.2 1,607.5
25_200_100_70 6,937,008.98 0.22 0.28 0.35 3,123.8 3,938.7 0.07 0.26 0.44 1,855.8 2,841.7
25_200_100_90 9,034,147.98 0.15 0.29 0.48 2,017.7 3,352.2 0.15 0.29 0.44 1,371.5 2,688.1
25_200_200_70 7,146,330.32 0.13 0.24 0.44 1,271.1 2,948.6 0.10 0.35 0.52 1,718.1 3,201.1
25_200_200_90 8,578,620.94 0.00 0.15 0.26 1,170.0 2,669.4 0.18 0.22 0.30 326.3 1,681.0
25_200_300_70 7,638,447.16 0.00 0.25 0.35 1,763.6 3,216.9 0.19 0.28 0.39 819.1 2,745.9
25_200_300_90 8,195,152.30 0.05 0.18 0.27 1,523.7 2,689.1 0.13 0.27 0.37 913.1 2,796.6

Average 0.22 0.42 0.62 1,073.2 2,132.3 0.20 0.37 0.53 1,006.1 1,993.3

Source: from the author (2015).

From this table, we observe that the percentage gap is relatively small for both

algorithms, showing that the approaches are efficient to find good quality solutions. For

97

instances with 10 data centers, in most cases both algorithms found the BKS. Also,

considering that each run was stopped by time limit (|N | ∗ |K| ∗ 0.8), from columns Time

we observe that a significant parcel of the execution was spent without improvements.

This indicates that the algorithm has a fast convergence, and will probably provide a

good solution if stopped before the used time limit. Also, we observe that BRKGA-PR is

slightly faster than GRASP-PR for the instance set with 10 data centers. However, the

opposite happens for the instances with 25 data centers.

Finally, the last experiment uses the Time-To-Target (TTT) plots to display the

running time distribution for the algorithm to find a solution at least as good as a given

target value. TTT plots were proposed by Aiex et al. (2007) and have been advocated

by Hoos and Stützle (1998b), Hoos and Stützle (1998a) as a way to characterize the

running times of stochastic algorithms for combinatorial optimization problems. The

experiment consists in performing 200 runs of BRKGA-PR and GRASP-PR algorithms

for two instances until a target is reached. The target was set to the worst solution found

for both strategies on the previous experiment, i.e, 1,468,973 for 010_100_100_70 and

9,077,672 for 025_200_100_90. The instances chosen was one at each group of data centers.

We select the instance with the lowest difference of average percentage gap between both

approaches (excluding equal values).

Figure 4.6 – Cumulative probability distribution

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time (s)

BRKGA-PR
GRASP-PR

(a) TTT plot for 10_100_100_70

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time (s)

BRKGA-PR
GRASP-PR

(b) TTT plot for 25_200_100_90

Source: from the author (2015).

Figures 4.7a and 4.7b illustrate the cumulative probability plot obtained by using

BRKGA-PR and GRASP-PR for two instances. For the instance 10_100_100_70, we

98

observe that BRKGA-PR has a higher probability to find a solution at least as good as

the target in less time than GRASP-PR. For instance 25_150_225_70 the probability is

the opposite.

In summary, both approaches have good performance according to specific scenarios.

The main performance of BRKGA-PR is in small and median instances while GRASP-PR

has a better performance in large instances. The path-relinking component provides

a higher improvement for both strategies. We attribute this performance to a rugged

landscape for this problem and the fact that is hard to find feasible solutions. Since in

general the path-relinking is performed between two feasible solutions, this component

explores a search space where solutions are feasible or has a lower number of infeasibilities.

Thus, when the local search is applied to a solution in the path, the search tends to be

faster and lead to a new minimum local, that can be better than the initial and the guided

solution.

Finally, we evaluate our algorithm considering a set of instances which sizes were

not address before in the literature for this problem. We test in instances consider up

to 25 data centers and 200 virtual machines. Even that in real world application this

size can be considered small, previous works on a related problem in the literature has to

address instances up to 50 facilities (virtual machines). Thus, we consider a significant

step since we develop solutions for instances five times larger the previously considered

size. Furthermore, we provide a new database for a future comparison of new algorithms.

In the next subsection we evaluate our proposed method in an adapted set of

instances from a similar problem and compare our approach with a method described in

the literature.

4.4.6 Results for the Generalized Quadratic Assignment Problem

The VMPlacement is a generalization of GQAP, our proposed method can be easily

adapted for GQAP. Since we evaluate the infeasibilities in the objective function, we only

need to change the cost evaluation function. However, for convenience, we adapted the

instances of GQAP for VMPlacement problem, just given a sufficiently large value for the

bandwidth capacity between each pair of data centers and required latency between each

pair of virtual machines. Finally, we also define an empty set of users.

The main objective of this experiment is to provide a brief comparison with a method

described in the literature to show that our approach has a competitive performance.

99

We first perform an experiment with CPLEX to provide a baseline comparison for exact

methods. After, we compare our approaches to a GRASP with path-relinking proposed by

Mateus et al. (2010).

We use a set of instances proposed by Cordeau et al. (2006). These instances

has 20 to 50 facilities (virtual machines) and 6 to 20 locations (data centers). Instances

are listed in Table 4.8 and are labelled respectively by the number of facilities (virtual

machines), locations (data centers), and a parameter that controls the tightness of the

capacity constraints. The higher the value of the parameter, the higher is the tightness

of the capacity constraints. Since this set comprises the largest instance set available for

GQAP, and we observe a good performance of our approach we evaluate our strategies

only in this set of instances. These experiments are carried out on a computer with an

Intel(R) Core(TM) i7 CPU 930 2.80 GHz with 12GB of main memory.

Cordeau et al. (2006) evaluate the CPLEX (version 8.1) exploring the emphasizes

parameter on the branch-and-bound tree exploration for a time limit of two hours. CPLEX

was able to prove optimality only for the instance 30-08-55. Pessoa et al. (2010) proposed

exact algorithms that combine branch-and-bound with a new Lagrangean decomposition

and the Reformulation-Linearization Technique and prove the optimality for another 13

instances of the previously described instance set.

In the first experiment we evaluate the performance of CPLEX with LMVMP and

LMVMPII described in Section 4.2. We run CPLEX for each instance with a time limit of

one day (86,400 seconds). We also set the tree memory parameter (TreLim) to 5000 to

stop the execution when this memory limit is exceeded. The remaining parameters are

kept to their default values.

Table 4.8 shows the results for each instance listed in the first column. The second

column shows the best-known solutions for each instance (optimal values are given in

boldface). The next two sets of columns show the results for each linear mathematical

model. Column Nodes shows the number of nodes solved by CPLEX. Column Integer Sol

shows the objective function of best solution found during the execution. Column gap

shows the percentage gap between the lower bound and the best integer solution found by

CPLEX. Column Time shows the running time in seconds to CPLEX prove the optimality

or achieve a stopping criterion. Instances that CPLEX found the optimal solution or prove

the optimality are highlighted in boldface.

100

Table 4.8 – CPLEX results for GQAP instances

LMVMP LMVMPII

Instance BKS Nodes Integer Sol gap (%) Time (s) Nodes Integer Sol gap (%) Time (s)

20-15-35 1,471,896 2,990 1,471,896 0.00 3,788.3 30,709,073 1,471,896 7.95 41,981.1
20-15-55 1,723,638 10,839 1,723,638 0.00 9,149.2 30,269,870 1,723,638 6.58 39,265.6
20-15-75 1,953,188 5,725 1,953,188 0.00 4,546.3 1,867,883 1,953,188 0.00 3,979.6
30-06-95 5,160,920 24,889 5,160,920 0.00 9,471.3 16,820,694 5,160,920 0.00 35,086.4
30-07-75 4,383,923 47,884 4,383,923 0.00 22,429.5 26,644,434 4,383,923 4.50 63,524.3
30-08-55 3,501,695 793 3,501,695 0.00 370.1 14,090,023 3,501,695 0.00 36,009.5
30-10-65 3,620,959 41,020 3,620,959 0.00 65,805.4 19,972,814 3,620,959 13.32 58,100.3
30-20-35 3,379,359 1,872 3,605,129 23.96 86,400.0 14,857,869 3,379,359 35.36 50,023.8
30-20-55 3,593,105 1,680 3,865,716 31.23 86,400.0 14,117,019 3,593,105 30.27 54,253.0
30-20-75 4,050,938 1,946 4,245,753 26.43 86,400.0 13,553,603 4,050,938 21.13 59,363.0
30-20-95 5,710,645 3,575 5,840,934 12.96 86,400.0 6,869,516 5,710,645 2.71 86,400.2
35-15-35 4,456,670 3,290 4,456,670 13.23 86,400.0 15,797,188 4,457,348 34.76 40,190.5
35-15-55 4,639,128 3,078 4,723,959 19.34 86,400.0 13,903,550 4,639,128 27.52 40,295.3
35-15-75 6,301,723 1,139 6,395,402 27.83 86,400.0 13,348,410 6,327,723 28.02 59,428.9
35-15-95 6,670,264 1,546 7,370,866 32.09 86,400.0 9,664,857 6,689,421 20.38 86,400.0
40-07-75 7,405,793 34,769 7,405,793 3.60 86,400.0 20,466,362 7,405,793 12.94 35,228.8
40-09-95 7,667,719 8,471 7,941,330 18.26 86,400.0 16,718,721 7,694,904 18.61 38,337.7
40-10-65 7,265,559 6,790 7,305,381 10.80 86,400.0 16,475,064 7,265,559 22.79 49,526.1
50-10-65 10,513,029 5,467 10,513,029 4.15 86,400.0 14,617,831 10,513,029 19.39 52,238.3
50-10-75 11,217,503 2,209 11,415,840 19.89 86,400.0 14,018,304 11,251,072 24.42 54,332.5
50-10-95 12,845,598 1,960 13,242,115 18.57 86,400.0 13,205,512 12,845,598 19.25 57,175.5

Source: from the author (2015).

Observing the results in Pessoa et al. (2010) and comparing with the results in

Table 4.8, we note that the branch-and-bound approach in Pessoa et al. (2010) tends

to be more efficient that CPLEX. In general, the running time tends to be small than

the required by CPLEX. However, both methods are not strictly comparable since the

experiments use different stop criterion, and are reported over different computers. In

the end, the main observation from these results is that even with a high increase in the

computational power and the development of many algorithms and improvements over

each CPLEX version, this set of instances is still hard to be solved by exact methods.

In a second experiment, we compare our strategies similarity as described for

GRASP-PR proposed by Mateus et al. (2010), state-of-art algorithm for GQAP. For each

instance we performed 200 independent runs. Each run stopped when a solution value as

good as the best-known solution was found (column BKS in Table 4.8).

Two main differences are observed between our approaches and GRASP-PR pro-

posed by Mateus et al. (2010). First, we performed a wide exploration with the local search

strategy. Mateus et al. (2010) uses an approximate local search using shift and swap moves.

In our approach, we explore all neighbors using three neighborhood structures. Second,

we use a penalization strategy to deal with infeasible solutions. This allows passing by

through infeasible solutions to reach new feasible solutions, which can be difficult to be

reached only exploring a feasible search space.

101

Table 4.9 shows a comparison of GRASP-PR from Mateus et al. (2010) and our

best two approaches described in the previous subsection. The first column shows the

name of the instance. The next columns show some information for each experiment.

Columns Min, Avg, Max, Sd give the minimum, average, and maximum times, as well as

the standard deviation of these runs to find a solution with values equal to BKS. Finally,

column 0.95 shows the time in which 95% of the runs find the BKS.

The results described in Mateus et al. (2010) are reported over a computer Dell

PE1950 with dual quad core 2.66 GHz Intel Xeon processors. Unfortunately, there is

no specific information about the processor model, and then we suppose the model Intel

Xeon X5355 2.66 GHz, based on server model, the number of cores e clock frequency. We

run our algorithms for this set of experiments on a computer with an Intel(R) Core(TM)

i7 CPU 930 2.80 GHz. The machine that we use is approximately 1.2 times faster

than the one used in Mateus et al. (2010) (based on Single Thread Rating data from

<wwww.cpubenchmark.net>). The execution times for the two implementations are not

strictly comparable since the languages and compilers used are different. However, at a

higher level, this comparison provides an idea of the behavior of the algorithms.

Table 4.9 – Comparison algorithms for GQAP

Mateus et al. (2010) BRKGA-PR GRASP-PR

Instance Min Avg Max Sd 0.95 Min Avg Max Sd 0.95 Min Avg Max Sd 0.95

20-15-35 0.16 7.05 38.87 6.47 21.04 0.06 0.13 0.28 0.04 0.17 0.01 0.08 0.57 0.09 0.22
20-15-55 0.24 2.87 14.42 2.18 7.69 0.06 0.12 0.17 0.03 0.16 0.01 0.13 0.75 0.14 0.36
20-15-75 0.26 2.01 12.82 1.72 5.25 0.08 0.39 3.44 0.50 1.32 0.01 0.41 3.30 0.51 1.41
30-06-95 0.55 2.59 23.81 2.22 6.44 0.16 0.41 2.23 0.25 0.88 0.01 0.48 1.78 0.36 1.16
30-07-75 0.50 7.80 38.47 5.47 18.18 0.15 0.66 5.22 0.63 1.86 0.01 0.48 4.10 0.49 1.28
30-08-55 0.18 1.61 4.89 0.95 3.60 0.13 0.27 0.40 0.06 0.35 0.01 0.03 0.24 0.03 0.10
30-10-65 2.75 121.94 1,032.80 146.06 514.82 0.18 1.58 12.27 1.83 5.35 0.01 1.59 8.83 1.53 4.41
30-20-35 1.08 79.03 4,441.40 312.62 166.21 0.24 0.73 1.73 0.29 1.27 0.01 1.81 8.60 1.60 5.14
30-20-55 1.28 25.16 150.11 21.19 66.82 0.25 1.35 9.84 1.37 4.05 0.01 1.73 7.43 1.37 4.58
30-20-75 2.11 41.43 759.81 68.39 148.43 0.29 0.71 1.47 0.23 1.15 0.01 1.01 4.84 0.90 2.67
30-20-95 833.99 543,019.01 2,533,608.00 747,962.39 2,186,440.80 8.82 514.61 2,780.71 491.24 1,556.91 1.40 1,880.75 7,363.47 1,643.47 5,563.42
35-15-35 8.41 306.11 1,717.94 242.49 775.25 0.24 5.62 27.82 5.64 17.71 0.09 12.26 53.11 11.26 35.16
35-15-55 4.33 21.13 75.69 11.95 42.47 0.32 0.97 4.10 0.54 1.71 0.01 0.38 1.56 0.31 0.97
35-15-75 5.18 68.23 621.83 74.17 183.19 0.35 1.09 3.30 0.48 1.99 0.07 1.66 6.85 1.39 4.63
35-15-95 6.61 1,454.00 19,171.48 3,057.43 6,949.08 3.75 152.66 693.83 130.20 406.25 0.44 126.32 822.98 132.03 386.36
40-07-75 4.53 59.37 377.06 51.21 159.00 0.26 0.64 2.46 0.27 1.02 0.01 0.57 3.29 0.58 1.64
40-09-95 6.18 417.00 5,017.56 610.28 1,490.31 1.65 58.30 398.04 58.47 148.19 0.27 16.87 99.82 16.26 48.26
40-10-65 0.84 17.87 115.06 15.88 52.73 0.37 0.79 1.12 0.21 1.03 0.01 0.14 0.71 0.13 0.38
50-10-65 2.52 24.56 84.64 16.34 64.04 0.67 1.42 2.06 0.34 1.88 0.01 0.12 0.58 0.09 0.28
50-10-75 22.79 1,352.41 24,507.34 3,085.42 4,404.50 1.70 299.78 1,595.95 311.53 965.27 0.19 38.58 195.59 40.51 120.84
50-10-95 9.97 89.36 1,059.59 91.95 200.20 1.98 22.36 145.65 25.65 73.16 0.14 9.38 39.38 7.72 25.55

Average 43.55 26,053.36 123,470.17 35,989.85 104,843.81 1.03 50.69 271.05 49.04 151.98 0.13 99.75 410.85 88.61 295.66
Median 2.52 41.43 377.06 51.21 148.43 0.26 0.97 3.44 0.50 1.86 0.01 1.01 4.84 0.90 2.67

Source: from the author (2015).

Even considering that the running time is over different hardware, the data from

Table 4.9 shows that our version of GRASP-PR, as well as the BRKGA-PR approach has

a significant lower running time in comparison with the results reported in Mateus et al.

(2010). The average time reduction for each instance for the minimum time to solve is near

wwww.cpubenchmark.net

102

to two orders of magnitude. This evidence that our proposed strategies has competitive

performance since they are able to find the BKS in all runs in running times significantly

shorter than the reported in Mateus et al. (2010). We also observe that our strategies are

robust in the sense the algorithms were developed for a specific problem and they also

perform well in a general application without any modification in the algorithm.

Figure 4.7 shows the Time-To-Target plots that show the running time distribution

for BRKGA-PR and GRASP-PR to find a target solution defined as BKS. We choose the

same instances used to show the time-to-target for GRASP-PR in Mateus et al. (2010).

We observe that the behaviour, in general, is similar for BRKGA-PR and GRASP-PR, but

the performance of one algorithm can be better than the other depending of the instance.

Figure 4.7 – Cumulative probability distribution for BRKGA-PR and GRASP-PR running
times for instances 20-15-75, 30-20-35, 35-15-95, and 40-09-95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time (s)

BRKGA-PR
GRASP-PR

(a) TTT plot for 20-15-75.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time (s)

BRKGA-PR
GRASP-PR

(b) TTT plot for 30-20-35.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time (s)

BRKGA-PR
GRASP-PR

(c) TTT plot for 35-15-95.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time (s)

BRKGA-PR
GRASP-PR

(d) TTT plot for 40-09-95.

Source: from the author (2015).

4.5 Concluding remarks

In this chapter, we presented the problem of minimizing the cost of placement

virtual machines across geo-separated data centers. A quadratic and two linear mathe-

matical formulation was presented. Moreover, we present several heuristic for solving this

problem. In the experiments, we evaluate the performance of CPLEX using the proposed

mathematical formulations, and the proposed heuristic methods.

The results of CPLEX show that by adding the set of cuts the solver improves

significantly the quality of the lower bounds for the LMVMPII model. We also observed

that for this model, CPLEX can handle larger instances than considering LMVMP model,

obtaining better lower bounds and feasible solutions in less computational time. However,

as an exact method, CPLEX is limited to solve small instances, showing that heuristic

methods are required on larger size instances.

Two metaheuristics approaches are used to solve the problem, the GRASP, and

BRKGA. In both methods, we use a path-relinking procedure as an intensification approach.

Also, we use a local search method that include many neighborhood strategies. Both

strategies had similar performance, with the best performance achieved using local search

3V and path-relinking PRM. A slight advantage for BRKGA was observed in small instances

while GRASP has a slight advantage in larger instances. The same performance was

observed when our strategies were applied to GQAP instances. In this case, our methods

outperform the previous state-of-the-art results.

Finally, considering the high cost involved in this kind of problem and the difficulty

to obtain feasible solutions when considering several constraints and limited resources, the

proposed algorithms are good alternative to reduces costs, while maintaining the reliability

and the demand requirements of data centers.

104

5 CONCLUDING REMARKS

Network structures are often used to describe different combinatorial optimization

problems. In this thesis, we proposed algorithms to solve three optimization problems

to control and optimize the flow in transportation and telecommunication networks. For

transportation networks, the first problem considers to install tollbooths to minimize the

average user travel time. The second problem considers maximizing the revenue collected

in a subset of tolled arcs. The third problem, an application of telecommunication networks

and cloud computing, considers minimizing the communication cost over the network.

Chapter 2 presented the Tollbooth problem. We formalized the problem mathe-

matically and proposed two piecewise linear functions to approximate the convex cost

function used to evaluate the congestion cost. Furthermore, we performed a large study

with a previously biased random-key genetic algorithm, besides a extensive computational

experiments were performed, including exact and heuristic methods to provide a vast

analysis of the obtained solutions. For the exact methods, the approach based on the

commercial solver CPLEX has lower performance, even for small instances. On the other

hand, the biased random-key genetic algorithm shows a good performance with a good

tradeoff between computational time and solution quality.

In Chapter 3 we investigated the Stackelberg network pricing problem. For this

bilevel problem, we used CPLEX to solve a relaxed model to provide a good quality

initial solution. However, the integer model is limited to solve small size instances. The

biased random-key genetic algorithm shows good performance, even without a local search

method.

Chapter 4 considered the problem of placement of virtual machines across geo-

separated data centers (VMPlacement problem). To the best of our knowledge, we are

the first to introduce this problem that is a generalization of the classic generalized

quadratic assignment problem (GQAP). We formalized the problem mathematically using

a quadratic model and two mixed integer linear models extended from the GQAP. Also,

we proposed a local search method with an intensive exploration of the neighborhood,

and a path-relinking as an intensification method was incorporated in two metaheuristic

approaches. The first is a greedy randomized adaptive search procedure, and the second is

a biased random-key genetic algorithm. An extensive set of experiments was performed to

evaluate different configurations of the algorithm. We tested our algorithms on a set of

synthetic instances where we show that the exact approach has poor performance, except

105

for instances with up to 25 virtual machines. We also evaluate the proposed algorithms in

a set of instances from the literature for GQAP, and our heuristic approach overcomes the

state-of-the-art in the tested instances.

BRKGA was widely used during this research, and some considerations can be

made about this technique. First, the algorithm is a very flexible approach, which can

be easily adapted for many combinatorial optimization problem, requiring only specify

how to encode and decode a solution. Also, the algorithm requires the configuration of a

few parameters, which, in general, are easy to be configured and have a set of pre-defined

values. Finally, as experienced in our tested problems and from many related works

from literature, BRKGA has the capability to produce high-quality solutions for many

combinatorial optimization problems.

Summarizing, our major contributions are:

• The proposition of a new problem of placement of virtual machines across geo-

separated data centers (VMPlacement), with a formalization through mathematical

models and the proposition of methods to solve it. Since this problem is a gener-

alization of the classical generalized quadratic assignment problem, the algorithms

developed for this problem can be extended to this family of related problems;

• A study of mathematical formulations for all described problems and an evaluation

of the performance of a general purpose commercial solver as an exact method. In all

problems, the solver has a low performance even for small instances of the problem,

indicating that heuristic approaches are more suitable to solve these problems;

• The evaluation of biased random-key genetic algorithm (BRKGA) as an efficient

tool for solving different kinds of combinatorial optimization problems, especially

over network structures.

We also would like to report some ongoing studies and strategies that did not

obtain significant results or are directions for future works, since they are not explored in

depth in this work. One of the objective during this research was to develop hybridization

methods between heuristic methods and mathematical programming methods, also named

matheuritics. Approaches as fix-and-optimize (GINTNER et al., 2005), RINS (DANNA et

al., 2005), and local-branching (FISCHETTI; LODI, 2003) are examples of some methods

that have been successfully applied in many combinatorial optimization problems. In

our research, we investigated methods to improve heuristic results using mathematical

programming. Following we summarize some strategies that we develop for each problem

106

and some empirical observations:

• For the problems discussed in this thesis, a common aspect is that CPLEX was able

to solve the mathematical formulation only for small size instances. The models

analysed in this thesis require a large number of variables, or have constraints

that lead to a low relaxation quality. This is the main reason that leads to a low

performance of CPLEX. With a higher number of variables, the solver tends to

increase the number of nodes to explore. With a low relaxation quality, the solver

tends to explore more nodes in the branch-and-bound tree since with a low relaxation

quality, the bounds are worst, and fewer cuts based on bounds are applied. We

tried to improve all these formulations, using alternative formulations with a lower

number of variables, or reformulating them to improve the relaxation, or adding

constraints to generate additional cuts. However when successful modifications were

included, it was not enough to obtain a significant improvement in the performance

of the solver. With a low performance of the solver, a low performance of hybrid

mathematical programming methods also is expected, justifying the low performance

of our developed approaches.

• For the tollbooth problem, we observed a higher number of variables and a low

relaxation quality, mostly due to the utilization of the Big-M in the formulation. An

additional difficult was the nonlinear objective function of the problem, which was

approximated by piecewise linear functions used by the solver. For the computational

results, we observed a very weak performance of the solver even for approximated

results and, for this reason, no additional experiments with hybrid approach was

performed.

• For the Stackelberg network pricing problem, we proposes a modification in the

mathematical model to reduce the number of variables for the case where there are

demands to the same destination. Given the values of tariffs for each tariffed arc, we

calculate the first k shortest path for each commodity. Thus, we allow the demand

to be sent only through these arcs or arcs that belongs to the untolled least cost

paths. The flow variables for the remaining arcs are eliminated or fixed to zero. This

processes is iterated while modifications in the values of tariffs are found. This was a

promising technique since the number of variables was significantly reduced for small

values of k and the model is solved, in general, in a few seconds. Naturally, small

values of k tend to limit the search space, while higher values of k tend to increase

the number of variables, and consequently the time spent by the solver. We expect

that this technique can be successful used as a local search strategy. However, to

calculate the k shortest paths for each commodity and to build the mathematical

model for medium and large size instances can take a significant amount of time.

Thus, maybe applying this heavy local search strategy can be better suitable to a

non-population-based algorithm.

• For the VMPlacement problem, both proposed linear mathematical models have a

low relaxation quality for medium and large size instances. In the experiments, we

do not find simple rules to eliminate variables with a good efficiency, i.e., remove or

fix a subset of variables and keep a higher probability of finding the best solution.

However, we try some alternatives. Knowing that the solver has a good performance

for instances with up to 25 or 30 virtual machines, we randomly select n data centers

such that the sum of placed virtual machines in theses data centers is near to this

limit. The variables for this subset of virtual machines are kept in the model. The

remaining variables are removed (or fixed to the current value of the current solution).

An additional cut based on the local branching inequality (FISCHETTI; LODI, 2003)

was used to limit the search space for a maximum number of changes on the current

solution, reducing the time spent by the solver considerably. Improvements from the

resolution of this restricted model correspond to change virtual machines between

the data centers by exploring a large neighborhood search space. However, to solve

this model may require a long time and, for this reason, the performance was worst

that the best strategy reported. Also, for instances with a high number of available

virtual machines, the number of variables in the model can still be significantly large.

Research on network problems has a high importance, since network structure are

constantly changing by considering new network sizes or requirements. In our research,

new strategies and algorithms were proposed to provide solutions and deal with problems

and new scenarios of some network optimization problems.

REFERENCES

AIEX, R. M.; RESENDE, M. G. C.; RIBEIRO, C. C. TTT plots: A perl program to
create time-to-target plots. Optimization Letters, Springer-Verlag, vol. 1, no. 4, p.
355-366, 2007.

ANBIL, R. et al. Recent Advances in Crew-Pairing Optimization at American Airlines.
Interfaces, Institute for Operations Research and the Management Sciences (INFORMS),
vol. 21, no. 1, 1991.

ANDRADE, C. E. Evolutionary Algorithms for some Problems in Telecom-
munications. 226 f. Thesis (Ph.D Thesis) — Universidade Estadual de Campinas,
2015.

ANDRADE, C. E. et al. Evolutionary algorithms for overlapping correlation clustering.
In: CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION, 14, New
York, 2014. Proceedings... New York: ACM Press, 2014. p. 405-412.

ANDRADE, C. E. et al. A biased random-key genetic algorithm for wireless backhaul
network design. Applied Soft Computing, vol. 33, 2015.

ANDRADE, C. E. et al. Biased Random-Key Genetic Algorithms for the Winner
Determination Problem in Combinatorial Auctions. Evolutionary Computation,
vol. 23, no. 2, 2015.

ARMENTANO, V. A.; SHIGUEMOTO, A.; LØKKETANGEN, A. Tabu search with path
relinking for an integrated production–distribution problem. Computers & Operations
Research, vol. 38, no. 8, 2011.

BAI, L.; HEARN, D. W.; LAWPHONGPANICH, S. Decomposition techniques for the
minimum toll revenue problem. Networks, Wiley Online Library, vol. 44, no. 2, 2004.

BAI, L.; HEARN, D. W.; LAWPHONGPANICH, S. A heuristic method for the minimum
toll booth problem. Journal of Global Optimization, Springer US, vol. 48, no. 4,
2010.

BALLANI, H. et al. Towards predictable datacenter networks. ACM SIGCOMM
Computer Communication Review, ACM Press, New York, vol. 41, no. 4, 2011.

BARNHART, C. et al. Branch-and-Price: Column Generation for Solving Huge Integer
Programs. Operations Research, vol. 46, no. 3, p. 316-329, 1998.

BASAR, T.; SRIKANT, R. A Stackelberg Network Game with a Large Number
of Followers. Journal of Optimization Theory and Applications, Springer
Netherlands, vol. 115, no. 3, p. 479-490, 2002.

BASSEUR, M.; SEYNHAEVE, F.; TALBI, E.-G. Path Relinking in Pareto Multi-objective
Genetic Algorithms. In: Coello Coello, C.; Hernández Aguirre, A.; ZITZLER, E. (Ed.).
Evolutionary Multi-Criterion Optimization SE - 9. Springer Berlin Heidelberg,
vol. 3410, p. 120-134. 2005.

BEAN, J. C. Genetic Algorithms and Random Keys for Sequencing and Optimization.
INFORMS Journal on Computing, vol. 6, no. 2, p. 154-160, 1994.

BECKMANN, M. J.; MCGUIRE, C. B.; WINSTEN, C. B. Studies in the economics
of transportation. Published for the Cowles Commission for Research in Economics by
Yale University Press. 1956.

BLUM, C.; ROLI, A. Metaheuristics in combinatorial optimization. ACM Computing
Surveys, ACM, New York, NY, USA, vol. 35, no. 3, 2003.

BOUHTOU, M. et al. Tariff Optimization in Networks. INFORMS Journal on
Computing, vol. 19, no. 3, 2007.

BRACKEN, J.; MCGILL, J. T. Mathematical Programs with Optimization Problems in
the Constraints. Operations Research, vol. 21, no. 1, 1973.

BROSTRÖM, P.; HOLMBERG, K. Multiobjective design of survivable IP networks.
Annals of Operations Research, Springer Netherlands, vol. 147, no. 1, 2006.

BROTCORNE, L. et al. A Tabu search algorithm for the network pricing problem.
Computers & Operations Research, vol. 39, no. 11, 2012.

BROTCORNE, L. et al. A Bilevel Model and Solution Algorithm for a Freight
Tariff-Setting Problem. Transportation Science, vol. 34, no. 3, 2000.

Bureau of Public Roads. Traffic Assignment Manual. Washington, DC: US
Department of Commerce, Urban Planning Division, 1964.

BURIOL, L. S. et al. A biased random-key genetic algorithm for road congestion
minimization. Optimization Letters, Springer Berlin / Heidelberg, vol. 4, no. 4, 2010.

BURIOL, L. S.; RESENDE, M. G. C.; THORUP, M. Speeding Up Dynamic Shortest-Path
Algorithms. INFORMS Journal on Computing, vol. 20, no. 2, 2008.

CANDLER, W.; NORTON, R. Multilevel programming. Washington D.C. 1977.

CASTELLI, L.; LABBÉ, M.; VIOLIN, A. A Network Pricing Formulation for the revenue
maximization of European Air Navigation Service Providers. Transportation Research
Part C: Emerging Technologies, Elsevier Ltd, vol. 33, 2013.

ČERNÝ, V. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, Kluwer
Academic Publishers-Plenum Publishers, vol. 45, no. 1, p. 41-51, 1985.

COLSON, B.; MARCOTTE, P.; SAVARD, G. Bilevel programming: A survey. 4OR,
vol. 3, no. 2, 2005.

COLSON, B.; MARCOTTE, P.; SAVARD, G. An overview of bilevel optimization.
Annals of Operations Research, vol. 153, no. 1, 2007.

CORDEAU, J. F. et al. A memetic heuristic for the generalized quadratic assignment
problem. INFORMS Journal on Computing, vol. 18, no. 4, p. 433-443, 2006.

DANNA, E.; ROTHBERG, E.; PAPE, C. L. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, Springer-Verlag, vol. 102,
no. 1, 2005.

DAVIDSON, K. B. A flow travel time relationship for use in transportation planning.
In: AUSTRALIAN ROAD RESEARCH BOARD CONFERENCE, Sydney, 1966.
Proceedings... Sydney: Australian Road Research Board (ARRB), vol. 3, no. 1, 1966. p.
183-194.

DEMPE, S. Foundations of bilevel programming. Springer US, 309 p. 2002.

DEWEZ, S. On the toll setting problem. 176 f. Thesis (PhD) — Université Libre de
Bruxelles, 2004.

DIAL, R. B. Minimal-revenue congestion pricing part I: A fast algorithm for the
single-origin case. Transportation Research Part B: Methodological, vol. 33, no. 3,
1999.

DIAL, R. B. Minimal-revenue congestion pricing Part II: An efficient algorithm for the
general case. Transportation Research Part B: Methodological, vol. 34, no. 8,
2000.

DORIGO, M.; MANIEZZO, V.; COLORNI, A. Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 26, no. 1, p. 29-41, 1996.

EKSTRÖM, J.; SUMALEE, A.; LO, H. K. Optimizing toll locations and levels using
a mixed integer linear approximation approach. Transportation Research Part B:
Methodological, vol. 46, no. 7, 2012.

FEO, T. A.; RESENDE, M. G. C. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, vol. 8, no. 2, p. 67-71, 1989.

FEO, T. A.; RESENDE, M. G. C. Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, Kluwer Academic Publishers, vol. 6, no. 2, p.
109-133, 1995.

FESTA, P.; RESENDE, M. G. C. An annotated bibliography of GRASP - Part I:
Algorithms. International Transactions in Operational Research, vol. 16, no. 1,
2009.

FESTA, P.; RESENDE, M. G. C. An annotated bibliography of GRASP-Part II:
Applications. International Transactions in Operational Research, vol. 16, no. 2,
2009.

FESTA, P.; RESENDE, M. G. C. Hybridizations of GRASP with Path-Relinking. In:
TALBI, E.-G. (Ed.). Hybrid Metaheuristics. Springer Berlin Heidelberg, p. 135-155.
2013, (Studies in Computational Intelligence, vol. 434).

FISCHER, A. et al. Virtual Network Embedding: A Survey. IEEE Communications
Surveys & Tutorials, vol. 15, no. 4, 2013.

FISCHETTI, M.; LODI, A. Local branching. Mathematical Programming, Springer,
vol. 98, no. 1-3, 2003.

FISCHETTI, M.; MONACI, M. Exploiting Erraticism in Search. Operations Research,
vol. 62, no. 1, p. 114-122, 2014.

FORTZ, B.; THORUP, M. Increasing Internet Capacity Using Local Search.
Computational Optimization and Applications, vol. 29, no. 1, 2004.

FRIEZE, A.; YADEGAR, J. On the quadratic assignment problem. Discrete Applied
Mathematics, vol. 5, no. 1, 1983.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co. 1979.

GENDREAU, M.; POTVIN, J.-Y. Handbook of Metaheuristics. Springer US, 648 p.
2010.

GINTNER, V.; KLIEWER, N.; SUHL, L. Solving large multiple-depot multiple-
vehicle-type bus scheduling problems in practice. OR Spectrum, vol. 27, no. 4,
2005.

GLOVER, F. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, vol. 13, no. 5, p. 533-549, 1986.

GLOVER, F. Tabu Search—Part I. ORSA Journal on Computing, vol. 1, no. 3, p.
190-206, 1989.

GLOVER, F. Tabu Search and Adaptive Memory Programming - Advances, Applications
and Challenges. In: BARR, R.; HELGASON, R.; KENNINGTON, J. (Ed.). Interfaces
in Computer Science and Operations Research. Springer US, p. 1-75. 1997,
(Operations Research/Computer Science Interfaces Series, vol. 7).

GLOVER, F. Exterior Path Relinking for Zero-One Optimization. International
Journal of Applied Metaheuristic Computing, IGI Global, vol. 5, no. 3, 2014.

GLOVER, F.; LAGUNA, M. Tabu Search. In: REEVES, C. R. (Ed.). Modern
Heuristic Techniques for Combinatorial Problems. Oxford, England: Blackwell
Scientific Publishing, p. 70-150. 1993.

GLOVER, F.; LAGUNA, M.; MARTÍ, R. Fundamentals of scatter search and path
relinking. Control and Cybernetics, Vol. 29, n, no. 3, p. 653-684, 2000.

GLOVER, F.; LAGUNA, M.; MARTÍ, R. Scatter Search and Path Relinking: Advances
and Applications. In: GLOVER, F.; KOCHENBERGER, G. (Ed.). Handbook of
Metaheuristics. Springer US, p. 1-35. 2003, (International Series in Operations Research
& Management Science, vol. 57).

GOLDBERG, D. E. Genetic algorithms in search, optimization, and machine
learning. 1. ed. [S.l.]: Addison-Wesley Publishing Company, 412 p. 1989.

GOMORY, R. E. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, vol. 64, no. 5, 1958.

GONÇALVES, J. F.; RESENDE, M. G. C. Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, vol. 17, no. 5, 2011.

GONÇALVES, J. F.; RESENDE, M. G. C. A biased random key genetic algorithm for
2D and 3D bin packing problems. International Journal of Production Economics,
vol. 145, p. 500-510, 2013.

GONÇALVES, J. F.; RESENDE, M. G. C.; TOSO, R. F. Biased and unbiased
random-key genetic algorithms: An experimental analysis. Florham Park, New
Jersey, 12 p. 2012.

GREENBERG, A. et al. VL2: A Scalable and Flexible Data Center Network. ACM
SIGCOMM Computer Communication Review, ACM, New York, NY, USA,
vol. 39, no. 4, p. 51, 2009.

GUO, C. et al. SecondNet: A Data Center Network Virtualization Architecture with
Bandwidth Guarantees. In: INTERNATIONAL CONFERENCE ON - CO-NEXT, 10,
New York, 2010. Proceedings... New York: ACM, 2010. p. 12.

HANSEN, P.; MLADENOVIĆ, N.; Moreno Pérez, J. A. Variable neighbourhood search:
Methods and applications. Annals of Operations Research, vol. 175, no. 1, p. 367-407,
2010.

HEARN, D. W.; RAMANA, M. V. Solving congestion toll pricing models. Equilibrium
and Advanced Transportation Modelling, Kluwer Academic, p. 109-124, 1998.

HEARN, D. W.; YILDRIM, M. B. A toll pricing framework for pricing assignment
problems and elastic demands. In: GENDREAU, M.; MARCOTTE, P. (Ed.).
Transportation and network analysis: current trends. Springer. 2002, (Applied
Optimization, vol. 63).

HEILPORN, G. et al. A polyhedral study of the network pricing problem with connected
toll arcs. Networks, Wiley Subscription Services, Inc., A Wiley Company, vol. 55, no. 3,
p. 234-246, 2010.

HOESEL, S. van. An overview of Stackelberg pricing in networks. European Journal of
Operational Research, vol. 189, no. 3, 2008.

HOOS, H. H.; STÜTZLE, T. Evaluating Las Vegas Algorithms: Pitfalls and Remedies.
In: CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 14,
San Francisco, 1998. Proceedings... San Francisco: Morgan Kaufmann Pub., 1998. p.
238-245.

HOOS, H. H.; STÜTZLE, T. On the empirical evaluation of Las Vegas algorithms.
[S.l.], 7 p. 1998.

KAUFMAN, L.; BROECKX, F. An algorithm for the quadratic assignment problem
using Bender’s decomposition. European Journal of Operational Research, vol. 2,
no. 3, 1978.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by Simulated
Annealing. Science, vol. 220, no. 4598, p. pp. 671-680, 1983.

KOOPMANS, T. C.; BECKMANN, M. J. Assignment problems and the location of
economic activities. Econometrica, vol. 25, no. 1, p. 53-76, 1957.

LABBÉ, M.; MARCOTTE, P.; SAVARD, G. A Bilevel Model of Taxation and Its
Application to Optimal Highway Pricing. Management Science, vol. 44, no. 12-Part-1,
1998.

LAGUNA, M.; MARTÍ, R. GRASP and Path Relinking for 2-Layer Straight Line Crossing
Minimization. INFORMS Journal on Computing, vol. 11, no. 1, p. 44-52, 1999.

LAWLER, E. L.; WOOD, D. E. Branch-and-Bound Methods: A Survey. Operations
Research, vol. 14, no. 4, 1966.

LEE, C. G.; MA, Z. The generalized quadratic assignment problem. Toronto,
Ontario, M5S 3G8, Canada, 20 p. 2004.

MARTÍ, R.; LAGUNA, M.; GLOVER, F. Principles of scatter search. European
Journal of Operational Research, vol. 169, no. 2, 2006.

MARTÍ, R.; RESENDE, M. G. C.; RIBEIRO, C. C. Multi-start methods for combinatorial
optimization. European Journal of Operational Research, vol. 226, no. 1, p. 1-8,
2013.

MARTINEZ, C. et al. BRKGA Algorithm for the Capacitated Arc Routing Problem.
Electronic Notes in Theoretical Computer Science, vol. 281, 2011.

MATEUS, G. R.; RESENDE, M. G. C.; SILVA, R. M. A. GRASP with path-relinking for
the generalized quadratic assignment problem. Journal of Heuristics, vol. 17, no. 5,
2010.

MITTELMANN, H.; SALVAGNIN, D. On solving a hard quadratic 3-dimensional
assignment problem. Mathematical Programming Computation, Springer Berlin
Heidelberg, p. 1-16, 2015.

MLADENOVIĆ, N.; HANSEN, P. Variable neighborhood search. Computers &
Operations Research, vol. 24, no. 11, p. 1097-1100, 1997.

OLIVEIRA, C. A. S.; PARDALOS, P. M.; RESENDE, M. G. C. GRASP with
Path-Relinking for the Quadratic Assignment Problem. In: RIBEIRO, C. C.; MARTINS,
S. L. (Ed.). Experimental and Efficient Algorithms. Springer Berlin Heidelberg, p.
356-368. 2004, (Lecture Notes in Computer Science, vol. 3059).

PÉREZ, M. P.; RODRÍGUEZ, F. A.; MORENO-VEGA, J. M. A hybrid VNS–path
relinking for the p-hub median problem. IMA Journal of Management Mathematics,
vol. 18, no. 2, 2007.

PESSOA, A. A. et al. Algorithms for the generalized quadratic assignment problem
combining Lagrangean decomposition and the Reformulation-Linearization Technique.
European Journal of Operational Research, Elsevier B.V., vol. 206, no. 1, 2010.

POP, P. C. Generalized network design problems: modeling and optimization.
Berlin: De Gruyter, 203 p. 2012.

RESENDE, M. G. C. Biased random-key genetic algorithms with applications in
telecommunications. TOP, vol. 20, no. 1, 2012.

RESENDE, M. G. C. Introdução aos algoritmos genéticos de chaves aleatórias viciadas.
In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 13, Natal - RN, 2013.
Anais... Natal - RN: Sociedade Brasileira de Pesquisa Operacional, 2013. p. 12.

RESENDE, M. G. C.; RIBEIRO, C. C. GRASP with Path-Relinking: Recent Advances
and Applications. In: Metaheuristics: Progress as Real Problem Solvers. New
York: Springer-Verlag, vol. 1, p. 29-63. 2005.

RESENDE, M. G. C.; RIBEIRO, C. C. Greedy Randomized Adaptive Search Procedures:
Advances, Hybridizations, and Applications. In: GENDREAU, M.; POTVIN, J.-Y. (Ed.).
Handbook of Metaheuristics. Springer US, p. 283-319. 2010, (International Series in
Operations Research & Management Science, vol. 146).

RESENDE, M. G. C.; RIBEIRO, C. C. GRASP: Greedy Randomized Adaptive Search
Procedures. In: BURKE, E. K.; KENDALL, G. (Ed.). Search Methodologies. Springer
US, p. 287-312. 2014.

RESENDE, M. G. C. et al. Scatter search and path-relinking: Fundamentals, advances,
and applications. In: Handbook of Metaheuristics. [s.n.], p. 87-107. 2010.

ROCH, S.; SAVARD, G.; MARCOTTE, P. An approximation algorithm for Stackelberg
network pricing. Networks, vol. 46, no. 1, 2005.

RUIZ, E. et al. A biased random-key genetic algorithm for the capacitated minimum
spanning tree problem. Computers & Operations Research, vol. 57, 2015.

SCHRANK, D.; LOMAX, T.; EISELE, B. 2011 Urban Mobility Report. [S.l.]. 2011.

STACKELBERG, H. V. Marktform und Gleichgewicht. Berlin, Germany: Julius
Springer, Vienna, Austria. 1934.

STACKELBERG, H. von. The theory of the market economy. Oxford, England:
Oxford University Press. 1952.

STEFANELLO, F. et al. A Biased Random-key Genetic Algorithm for Placement of
Virtual Machines across Geo-Separated Data Centers. In: CONFERENCE ON GENETIC
AND EVOLUTIONARY COMPUTATION, 15, Madrid, 2015. Proceedings... Madrid:
ACM, 2015. p. 1-8.

STEFANELLO, F. et al. A New Linear Model for Placement of Virtual Machines
across Geo-Separated Data Centers. In: SIMPÓSIO BRASILEIRO DE PESQUISA
OPERACIONAL, 47, Porto de Galinhas, PE, 2015. Anais... Porto de Galinhas,
PE: Sociedade Brasileira de Pesquisa Operacional, 2015. p. 1-11.

STEFANELLO, F. et al. On the minimization of traffic congestion in road networks with
tolls. Annals of Operations Research, 2015.

STEFANELLO, F.; BURIOL, L. S.; RESENDE, M. G. C. A biased random-key genetic
algorithm for a network pricing problem. In: SIMPÓSIO BRASILEIRO DE PESQUISA
OPERACIONAL, 45, Natal - RN, 2013. Anais... Natal - RN: Sociedade Brasileira
de Pesquisa Operacional, 2013. p. 12.

STEFANELLO, F. et al. Routing in Road Networks: the toll booth problem. In:
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 44, Rio de Janeiro - RJ,
2012. Anais... Rio de Janeiro - RJ: Sociedade Brasileira de Pesquisa Operacional,
2012. p. 12.

TALBI, E.-G. Metaheuristics: From Design to Implementation. [S.l.]: Wiley
Publishing. 2009.

TALBI, E.-G. (Ed.). Metaheuristics for Bi-level Optimization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 288 p. (Studies in Computational Intelligence, vol. 482). 2013.

TOSO, R. F.; RESENDE, M. G. C. A C++ application programming interface for biased
random-key genetic algorithms. Optimization Methods and Software, vol. 30, no. 1,
p. 1-15, 2014.

TSEKERIS, T.; VOSS, S. Design and evaluation of road pricing: state-of-the-art and
methodological advances. NETNOMICS: Economic Research and Electronic
Networking, Springer Netherlands, vol. 10, no. 1, 2008.

VALLADA, E.; RUIZ, R. Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega, vol. 38, no. 1-2, 2010.

VAZIRANI, V. V. Approximation Algorithms. Berlin, Heidelberg: Springer Berlin
Heidelberg, 378 p. 2003.

WARDROP, J. G. Some theoretical aspects of road traffic research. Proceedings of
the Institution of Civil Engineers, Part II, Thomas Telford Ltd., vol. 1, no. 36, p.
325-378, 1952.

WEN, W. A dynamic and automatic traffic light control expert system for solving the
road congestion problem. Expert Systems with Applications, vol. 34, no. 4, 2008.

WILLIAMSON, D. P.; SHMOYS, D. B. The Design of Approximation Algorithms.
1st. ed. Cambridge University Press, 504 p. 2011.

XIE, D.; HU, Y. C. The Only Constant is Change: Incorporating Time-Varying Network
Reservations in Data Centers. In: SIGCOMM, 12, New York, 2012. Proceedings... New
York: ACM, (SIGCOMM ’12), 2012. p. 199-210.

YANG, H.; ZHANG, X. Optimal Toll Design in Second-Best Link-Based Congestion
Pricing. Transportation Research Record, vol. 1857, no. 1, 2003.

ZHANG, G.; LAI, K. Combining path relinking and genetic algorithms for the
multiple-level warehouse layout problem. European Journal of Operational
Research, vol. 169, no. 2, 2006.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Definitions and main techniques
	1.2 Biased random-key genetic algorithm
	1.3 Results and thesis organization

	2 The Tollbooth Problem
	2.1 Introduction
	2.2 Problem formulation
	2.2.1 Model for minimization of average user travel time (MM1)
	2.2.2 Model for the tollbooth problem (MM2)
	2.2.3 Piecewise-linear functions for the models

	2.3 A biased random-key genetic algorithm
	2.4 Computational results
	2.4.1 Results for models MM1 and LMM1
	2.4.2 Results for the tollbooth problem with piecewise-linear cost (LMM2)
	2.4.3 Results for the biased random-key genetic algorithm

	2.5 Concluding remarks

	3 Stackelberg Network Pricing Problem
	3.1 Introduction
	3.2 The Stackelberg Network Pricing Problem
	3.3 A biased random-key genetic algorithm
	3.4 Computational results
	3.4.1 Results for the mathematical model
	3.4.2 Results from the biased random-key genetic algorithm

	3.5 Concluding remarks

	4 VMPlacement Problem
	4.1 Introduction
	4.2 Virtual Machine Placement Problem
	4.2.1 Quadratic mathematical model
	4.2.2 Linear mathematical model I - LMVMP
	4.2.3 Linear mathematical model II - LMVMP-II

	4.3 Heuristic Approaches
	4.3.1 Local search procedures
	4.3.2 Path-relinking
	4.3.3 Greedy Randomized Adaptive Search Procedure - GRASP
	4.3.4 Biased random-key genetic algorithm - BRKGA
	4.3.4.1 Decoders
	4.3.4.2 Hybrid BRKGA and path-relinking

	4.4 Computational results
	4.4.1 Data set
	4.4.2 CPLEX results
	4.4.2.1 Results for small size instances
	4.4.2.2 Results for median and large size instances

	4.4.3 GRASP results
	4.4.4 BRKGA results
	4.4.5 Additional comparison
	4.4.6 Results for the Generalized Quadratic Assignment Problem

	4.5 Concluding remarks

	5 Concluding remarks
	References

