
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JÚLIO CARLOS BALZANO DE MATTOS

Design Space Exploration of SW and

HW IP based on Object Oriented

Methodology for Embedded System

Applications

Thesis presented in partial ful�llment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Luigi Carro
Advisor

Porto Alegre, December 2007

CIP � CATALOGING-IN-PUBLICATION

Mattos, Júlio Carlos Balzano de

Design Space Exploration of SW and HW IP based on
Object Oriented Methodology for Embedded System Appli-
cations / Júlio Carlos Balzano de Mattos. � Porto Alegre:
PPGC da UFRGS, 2007.

91 f.: il.

Thesis (Ph.D.) � Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR�RS, 2007. Advisor: Luigi Carro.

1. Embedded systems. 2. Embedded software. 3. Ob-
ject orientation. 4. Design space exploration. I. Carro, Luigi.
II. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cesar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

�Which direction the wind is blowing ?�

ACKNOWLEDGEMENTS

During my PhD studies (a "long journey") I have worked with several people
and I would like to thank all of them. I had to write this text by myself, however
this work was not done just by myself.

First of all, I would like to thank Dr. Luigi Carro. He is not just my advisor but
an example of professor and researcher. Through him I learned to know the "the
direction from which the wind is blowing" and I learned to be more questioning.
Thanks indeed for the discussions, support and his friendship.

From home, I want to express my gratitude to my �ancée, Martinha, for her love
and understanding during all moments. There are no words to describe you and
I am so happy living with you. I am also grateful to all my family, especially my
parents, Carlos and Regina, for con�dence in me along my whole life.

There are lots of people from UFRGS, both LSE and GME, that I worked to-
gether and others that we just had a "churrasco" together. I am grateful for their
support and friendship: Márcio Oyamada, Lisane Brisolara, Renato Hentschke,
Edgard Correa, Alexandre Amory, Andre Borin, Erika Cota, Mateus Beck, Victor
Gomes, Renato Barcelos, Carlos Lisboa, Márcio Oliveira, Marco Wehrmeister, Gus-
tavo Neuberger, Felipe Marques, Leomar Rosa, Fernando Paixão, Rodrigo Motta,
Ricardo Redin, Bruno Neves, Sandro Sawicki, José Carlos Santanna, Alexandre
Gervini, Emerson Hernandez, Eduardo Rhod, Eduardo Brião, Crístofer Kremer and
several others that I may have forgotten.

There are two special colleagues that I am deeply grateful: Antônio (Caco) and
Emilena. Emilena worked with me since her undergraduate studies and she help me
a lot. There are no words to describe Caco and how thankful I am. He is not a good
colleague but also a good friend.

From the period that I was an exchange student at TUDelft, I would like to
express my gratitude to Dr. Stephan Wong and Dr. Stamatis Vassiliadis (in memo-
riam) for the opportunity to work with them. To all the people from the Computer
Engineering Lab, especially Felipa and Mahomod that used to share the o�ce with
me. To all new international friends for the dinners, parties and the experience. I
also want to thank to new Brazilian friends Arthur and Evandro for their support
and friendship, especially Arthur, a really good friend. I miss our talks and dinners.
That time was so nice !

Thanks to the professors of the PPGC, especially to Dr. Flávio Wagner, for
discussions, suggestions and knowledge. I also want to thank to all Informatics In-
stitute sta� for their support and help during this period of studies. I should give
special thanks to Luis Otávio, Beatriz, Ida, Elisiane and Eliane.

From ULBRA, I want to express my gratitude to all colleagues and the students,
especially to Patrícia. They contribute indirectly for the successful of this work.

I want to express my gratitude to all of my friends, especially Dr. Rafael for his
friendship and support with English classes. Also to the "Cambada" friends (we are
still really good and close friends since the undergraduate years) I swear: we will
meet more frequently.

This research is partially supported by Conselho Nacional Cienti�co e Tec-
nológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) for scholarship during this PhD and the "sandwich" internship.

I want to thank to Carlos Eduardo Pereira, Felipe França and Ricardo Ferreira
for having accepted to be a member of my dissertation board.

I would like to thank all people that usually ask: "When will you �nish the
dissertation?" and certainly, I have forgotten several people. Thanks to all those
who have contributed to this work.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

LIST OF TABLES . 13

ABSTRACT . 15

RESUMO . 17

1 INTRODUCTION . 19
1.1 Main Goal . 20
1.2 Text Organization . 21

2 BACKGROUND AND RELATED WORK 23
2.1 Embedded Systems . 23
2.2 Embedded Software . 24
2.3 Object Orientation . 26
2.3.1 Object Orientation and Embedded Systems 27
2.4 Java Language . 28
2.4.1 Java and Embedded Systems . 29
2.5 Related Work . 30
2.5.1 Discussion . 34

3 DESIGN SPACE EXPLORATION OF OBJECT ORIENTED EM-
BEDDED SOFTWARE . 37

3.1 Introduction . 37
3.2 Method exploration level . 39
3.2.1 The problem . 39
3.2.2 The proposed approach . 40
3.3 Object exploration level . 44
3.3.1 The problem . 44
3.3.2 The problem characterization . 45
3.3.3 The proposed approach . 48
3.3.4 Target Platform . 53

4 RESULTS . 55
4.1 Library Characterization . 55
4.2 MP3 Case Study Results . 57
4.2.1 Method exploration on MP3 . 58
4.2.2 Object exploration level results . 59

5 CONCLUSIONS AND FUTURE WORK 65

REFERENCES . 67

LIST OF PUBLICATIONS . 75

APPENDIX A
EXPLORAÇÃO DO ESPAÇO DE PROJETO DE COMPONENTES
DE SW E HW IP BASEADA EM UMA METODOLOGIA ORIEN-
TADA A OBJETOS PARA SISTEMAS EMBARCADOS 77

APPENDIX B CLASS DIAGRAM - STATIC 83

APPENDIX C CLASS DIAGRAM - ORIENTED OBJECT 85

APPENDIX D SEQUENCE DIAGRAM - STATIC 87

APPENDIX E SEQUENCE DIAGRAM - ORIENTED OBJECT . . . 89

APPENDIX F CDROM DESCRIPTION 91

LIST OF ABBREVIATIONS AND ACRONYMS

A/D Analog/Digital

API Application Program Interface

ASIC Application Speci�c Integrated Circuits

ASIP Application Speci�c Instruction set Processors

BIT Bytecode Instrumentation Tool

CAD Computer Aided Design

CBSE Component-Based Software Engineering

CORDIC Coordinate Rotation Digital Computer

CPU Central Processing Unit

D/A Digital/Analog

DSP Digital Signal Processing

GC Garbage Collection

HW Hardware

I/O Input/Output

ILP Instruction Level Parallelism

IMDCT Inverse Modi�ed Discrete Cosine Transform

IP Intellectual Propriety

ISA Instruction Set Architecture

JIT Just-in-time

JVM Java Virtual Machine

KVM Kilobyte Virtual Machine

MP3 MPEG 1 Layer 3

MPEG Moving Picture Experts Group

OO Object Orientation

OS Operating System

PDA Personal Digital Assistant

RISC Reduced Instruction Set Computer

RTSJ Real-Time Speci�cation for Java

SPE Software Performance Engineering

SW Software

VLIW Very Long Instruction Word

LIST OF FIGURES

Figure 2.1: Embedded Sofware . 25
Figure 2.2: Di�erent Java execution ways (KAZI et al., 2000) 29

Figure 3.1: Thesis Design Flow. 38
Figure 3.2: Method Exploration Level Design Flow. 42
Figure 3.3: Object-Oriented Overhead. 45
Figure 3.4: Object Exploration Level Design Flow. 49
Figure 3.5: Original Code. 51
Figure 3.6: The code after the transformation. 51

Figure 4.1: MP3 Decoding steps. 58
Figure 4.2: MP3 Performance vs. Memory Design Space. 63
Figure 4.3: MP3 Power vs. Memory Design Space. 63
Figure 4.4: MP3 Energy vs. Memory Design Space. 64

LIST OF TABLES

Table 3.1: Object data (original applications). 46
Table 3.2: Memory data (original applications). 47
Table 3.3: Performance data (original applications). 47

Table 4.1: Sine Characterization. 56
Table 4.2: Sine Characterization (hardware dependable). 56
Table 4.3: IMDCT Characterization. 56
Table 4.4: IMDCT Characterization (hardware dependable). 57
Table 4.5: IMDCT Characterization (hardware dependable)(cont.). 57
Table 4.6: MP3 pro�ling results using IMDCT1 and Cosine Cordic. 59
Table 4.7: MP3 pro�ling results using IMDCT4 and Cosine Table. 59
Table 4.8: MP3 pro�ling results using IMDCT1 and Cosine Table. 60
Table 4.9: MP3 Allocation instruction. 61
Table 4.10: MP3 results after static transformation. 61
Table 4.11: MP3 combinations of allocation instructions. 62

ABSTRACT

Software is increasingly becoming the major cost factor for embedded devices.
Nowadays, with the growing complexity of embedded systems, it is necessary to
use techniques and methodologies that can, at the same time, increase software
productivity and manipulate embedded systems constraints - like memory footprint,
real-time behavior, performance and energy. Object-oriented modeling and design
is a widely known methodology in software engineering. This paradigm may satisfy
software portability and maintainability requirements, but it presents overhead in
terms of memory, performance and code size. This thesis introduces a methodology
and a set of tools that can deal, at the same time, with object orientation and
di�erent embedded systems requirements. To achieve this goal, the thesis presents a
methodology to explore object-oriented embedded software improving di�erent levels
in the software design based on di�erent implementations with the same processor.
The results of the methodology are presented based on an MP3 player application.

Keywords: Embedded systems, embedded software, object orientation, design
space exploration.

RESUMO

Exploração do Espaço de Projeto de IPs de SW e HW em uma
Metodologia Orientada a Objetos para Aplicações Embarcadas

O software vem se tornando cada vez mais o principal fator de custo no desen-
volvimento de dispositivos embarcados. Atualmente, com o aumento aumentando
da complexidade dos sistemas embarcados, se faz necessário o uso de técnicas e
metodologias que, ao mesmo tempo, permitam o aumento da produtividade do
desenvolvimento de software e permitam manipular as restrições dos sistemas em-
barcados como tamanho de memória, comportamento de tempo real, desempenho e
energia. A análise e projeto orientado a objetos são altamente conhecidos e utilizados
na comunidade de engenharia de software. Este paradigma auxilia no desenvolvi-
mento e manutenção do software, porém apresenta uma signi�cativa sobrecarga em
termos de memória, desempenho e tamanho do código. Esta tese introduz uma
metodologia e um conjunto de ferramentas que permitem o uso concomitante de
orientação a objetos e os diferentes requisitos dos sistemas embarcados. Para atin-
gir este objetivo, esta tese apresenta uma metodologia para exploração de software
embarcado orientado a objetos que permite melhoria em diferentes níveis do processo
de desenvolvimento do software baseado em diferentes implementações do mesmo
processador. Os resultados da metodologia são apresentados baseados na aplicação
de um tocador de MP3.

Palavras-chave: Sistemas Embarcados, Software Embarcado, Orientação a Obje-
tos, Exploração do Espaço de Projeto.

1 INTRODUCTION

Nowadays, the embedded system market does not stop growing, and new products
with di�erent applications are available. These systems are everywhere, for exam-
ple, mobile telephones, cars, videogames and so on. In embedded applications, re-
quirements like performance, reduced energy consumption and program size, among
others, must be considered. Moreover, the complexity of embedded systems is in-
creasing in a considerable way.

Embedded systems are heterogeneous systems that cover a broad range of al-
gorithms implemented on hardware and software. In the past, hardware con�gura-
tions dominated the �eld while today most of the applications are implemented in
a mixed con�guration where software constitutes the main part (BALARIN et al.,
1999) (SHANDLE; MARTIN, 2001). Probably in the future even more products will
have most of their characteristics developed in software. Hence, software is more and
more becoming the major cost factor for embedded devices (GRAAF; LORMANS;
TOETENEL, 2003; EGGERMONT, 2002).

More recently, platform-based design was introduced (SANGIOVANNI VIN-
CENTELLI; MARTIN, 2001). These platforms are composed by a set of resources
and services that can implement an entire systems. In platform-based design, design
derivatives are mainly con�gured by software using a �xed hardware platform, and
software development is where most of the design time is spent. But the quality of
the software development also impacts embedded systems requirements in a direct
way.

Presently, there is wide variety of Intellectual Property (IP) blocks such of pro-
cessor cores with several architecture styles, like RISC, DSP, VLIW. Also, there is
an increasing number of software IPs that can be used in a complex embedded sys-
tem design. Thus, with an wide range of SW and HW IP solutions, the designer has
several possibilities, and need methodologies and tools to make an e�cient design
exploration to achieve a short design cycle due to stringent time-to-market require-
ments.

Over the years, embedded software coding has been traditionally developed in
assembly language, since there are stringent memory and performance limitations
(LEE, 2000). On the other hand, the best software technologies use large amounts
of memory, layers of abstraction, elaborate algorithms, and these approaches are not
directly applicable to embedded systems. However, hardware capabilities have been

20

improved, and the market demands more elaborate products, increasing software
complexity. Thus, the use of better software methodologies is clearly required, for
example object orientation. Nevertheless these abstract software techniques require
a high price in the embedded domain, and the problem of embedded software de-
velopment for this market still exists.

One of the main stream software methodologies is the object-oriented paradigm
(SOMMERVILLE, 2000). In the last decades the object-oriented mechanism has
become the dominant programming paradigm. Object-oriented programming scales
very well, from the most trivial problems to complex ones. In spite of object orienta-
tion advantages, its acceptance in the embedded world has been slow, since embed-
ded software designers are reluctant to employ these techniques due the memory and
performance overhead (DETLEFS; DOSSER; ZORN, 1994; CHATZIGEORGIOU;
STEPHANIDES, 2002; BHAKTHAVATSALAM; EDWARDS, 2002).

Moreover, over the past few years embedded developers have embraced Java,
because this technology can provide high portability and code reuse for their appli-
cations (MULCHANDANI, 1998; LAWTON, 2002). In addition, Java has features
such as e�cient code size and small memory footprint, that stand out against other
programming languages, which makes Java an attractive choice as the speci�cation
and implementation language of embedded systems. However, developers should be
free to use any object oriented coding style and the whole package of advantages
that this language usually provides. In any case, one must also deal with the limited
resources of an embedded system.

As mentioned, the existing software methodologies are not adequate for embed-
ded software development because they should address di�erent constraints from
desktop software. Moreover, embedded software design needs to deal with the in-
creasing complexity of applications. In this way, this thesis introduces a method-
ology to design space exploration of SW and HW IPs based on a platform. The
methodology uses object-oriented embedded software to improve di�erent tasks in
the system design.

1.1 Main Goal

The main goal of this thesis is to provide a methodology and a set of tools that
can deal, at the same time, with well-known software development methodologies
(platform-base design, object orientation, component-based engineering and Java
language) and di�erent embedded systems requirements (energy, memory area and
performance). A methodology to explore object-oriented embedded software im-
proving di�erent tasks in the system design is introduced. Our approach is divided
into two main parts where the embedded software exploration methodology can be
improved.

The �rst part, called method exploration level, aims to improve the implementa-
tion of methods (the algorithms that implement these methods). This exploration
phase introduces a mechanism for the automatic selection of software and hardware

21

IP components for embedded applications, which is based on a software IP library
and a design space exploration tool.

The second part, called object exploration level, aims to explore object orga-
nization to improve the dynamic memory management. This level uses a design
space exploration tool to allow an automatic selection of the best object organiza-
tion. This approach is also compliant with classical OO techniques and physical
embedded systems requirements. The overall goal is to provide high level object
orientation support, while at the same time support optimized memory, power and
performance for embedded systems.

1.2 Text Organization

This thesis is organized as follows. Chapter 2 provides background on embedded
systems and discusses related work in the �eld of embedded software optimization.
Chapter 3 presents our approach to design space exploration of object oriented
embedded software. Chapter 4 shows case study results of our methodology, and,
�nally, Chapter 5 draws conclusions and future work.

22

2 BACKGROUND AND RELATED WORK

This chapter provides background on embedded systems describing their main char-
acteristics related to this thesis: embedded software, object orientation and the Java
language. Moreover, this chapter discusses related work in the �eld of thesis. The
works are related to embedded software optimization. It also presents a review in the
�eld of object orientation use in embedded systems, garbage collection and memory
management system optimizations.

2.1 Embedded Systems

The fast technological development in the last decades exposed a new reality: the
widespread use of embedded systems. These systems are dedicated systems that
perform a speci�c function and include a programmable computer but this is not
itself intended to be a general purpose computer (WOLF, 2001). Nowadays, one
can �nd these systems everywhere, in consumer electronics, entertainment, commu-
nication systems and so on.

There are a large number of di�erent applications where embedded systems are
involved. Moreover, there can be a wide range of functions in single system with
di�erent computation requirements of each function. For example, the latest cellu-
lar phones present several other functions like Internet access, digital camera, MP3
player, infrared communication and others (NOKIA, 2007). Thus, embedded sys-
tems requirements are very diverse and one can say that embedded systems are
naturally heterogeneous, because they are composed by di�erent models of compu-
tation, analog and digital, hardware and software.

Di�erent embedded applications require computational systems to control them.
Dedicated algorithms implemented in hardware or software de�ne these control
tasks. The embedded systems implementation can be done in an wide range of
hardware con�gurations, like application speci�c integrated circuits (ASICs), micro-
controllers, microprocessors, application speci�c instruction set processors (ASIPs),
etc. On the other hand, these tasks can be implemented like software routines that
execute in standard components like a microprocessor or a digital signal processor.
Moreover, there are other components that can be found in embedded applications,
like A/D and D/A converters, displays and other real world interfaces.

Embedded systems are di�erent from other systems because they must address
some requirements and restrictions. There are some items that are very important

24

in embedded system design:

• Performance: with the growing complexity of embedded systems, the speed of
the system is often a major requirement that must be achieved;

• Real-time: in general, embedded systems are involved in tasks where they are
submitted to strict time requirements, and must respond to external events
with a precise evaluation of execution time;

• Physical size and weight: these systems are located in bigger systems where
the portability requirement is very important, thus embedded processors must
be small and light;

• Reliability: some of these systems are involved in critical applications where er-
rors can have dramatic consequences, involving human lives and huge amounts
of money;

• Design time and cost: nowadays, time-to-market is very important. Thus, the
design time and cost must be reduced as much as possible;

• Low energy consumption: energy consumption presents a critical issue, par-
ticularly in portable and mobile platforms.

2.2 Embedded Software

Embedded systems are heterogeneous systems that cover a broad range of algorithms
implemented on hardware and software. In the past, hardware con�gurations dom-
inated the �eld while today most of the applications are implemented in a mixed
con�guration where software constitutes the main part (BALARIN et al., 1999;
SHANDLE; MARTIN, 2001). Probably in the future even more products will have
most of their characteristics developed in software. In many cases software is pre-
ferred to a hardware solution because it is more �exible, easier to update and can
be reused. Software is more and more becoming the major cost factor for embedded
devices (GRAAF; LORMANS; TOETENEL, 2003; EGGERMONT, 2002).

Embedded software can be found on di�erent embedded system levels covering
from application level to operating system level. Figure 2.1 shows these embedded
software levels. Embedded software programmers can use an API (application pro-
gram interface) and operating systems depending the application requirement and
their availability. An API and an operating system make software development eas-
ier and faster.

Over the years, embedded software coding has been traditionally developed in
assembly language, since there are stringent memory and performance limitations
(LEE, 2000). In early days, embedded software was written exclusively in the as-
sembly language of the target processor. This gave programmers complete control
of the processor and other hardware, but at a huge price. Assembly languages have
many disadvantages like higher software development costs and a lack of code porta-
bility.

25

Application

API

Hardware
OS

Software

Application

API

Hardware
OS

Software

Figure 2.1: Embedded Sofware

The best software technologies use large amounts of memory, layers of abstrac-
tion, elaborate algorithms, and these approaches are not directly applicable in em-
bedded systems (LEE, 2000). However, hardware capabilities have been improved,
and the market demands more elaborate products, increasing software complexity.
Thus, the use of better methodologies is clearly required, for example object ori-
entation and components-based development. In spite of these advanced resources,
the problems of embedded software development still exist.

The use of software paradigm allows the �exibility and the portability o�ered
by software implementations. When designers have greater focus on software func-
tionality in detriment of hardware, the design time and cost is reduced. However,
some aspects like power dissipation can be a�ected since, for example, there is more
memory usage.

The bottleneck for the implementation of embedded systems has been considered
the software development, its debugging, and its integration with the hardware com-
ponents (BALARIN et al., 1999). However, contrasting the maturity of hardware
design methodologies with the software development methodologies, these software
techniques are very immature.

Nowadays, embedded software designers are using languages like C and Assembly
to deal with strict restrictions like performance and cost. However, these languages
present limitations on abstraction, validation and maintenance. Thus, it is necessary
the use of design methodologies and techniques that allow suitable languages with
higher abstraction levels to make easier the speci�cation and design of embedded
systems.

However, existing software methodologies are not adequate for embedded soft-
ware development. This development is very di�erent from the one used in desktop
environment. Embedded software development should address constraints like mem-
ory footprint, real-time behavior, power dissipation and so on. Moreover, traditional
methodologies need more memory resources and more performance.

The traditional ad hoc approaches used on embedded systems design, more
speci�cally embedded software design, are not able to deal with new applications
complexity. Thus, it is necessary to adapt the available techniques and method-
ologies, or to create novel approaches that can manipulate the embedded systems
constraints, while still maintaining good software characteristics.

26

2.3 Object Orientation

The software engineering area o�ers several methodologies to use in traditional soft-
ware development. One of the main methodologies is object-oriented paradigm.
The use of object-oriented programming starts in the 1960s. However, it was not
commonly used in mainstream software development until the early 1990s. From
recent decades object-oriented paradigm has become the dominant programming
paradigm (BUDDY, 2001). Object-oriented programming scales very well, from the
most trivial problems to complex ones.

Object-oriented technique allows more abstraction. Abstraction is a key to design
and manage complex systems. In this respect, Budd (2001) says that abstraction
is the purposeful suppression, or hiding, of some details of a process or artifact, in
order to bring out more clearly other aspects, details, or structures.

A typical program written in the object-oriented style introduces several levels
of abstraction. Higher abstraction levels are part of the object-oriented concepts
and make an object-oriented program. Using higher modeling abstractions that are
closer to the problem space make the design process and implementation easier, and
besides, these abstractions provide a very short development time and a lot of code
reuse.

An object-oriented program is structured as a collection of objects that interact
among them. Each object is responsible for speci�c tasks. An object is an encapsula-
tion of state (data values) and behavior (operations). The computation is performed
by object actions and the communication with each other. This communication is
done by sending and receiving messages. An object will perform its behavior by
invoking a method in response to a message. Each object is an instance of a class
and a class represents a grouping of similar data.

The most common technique people use to deal with complex systems is to
combine abstraction with a division into software components. The object orien-
tation bene�ts other software engineering areas, like Component-Based Software
Engineering (CBSE). The CBSE (HEINEMAN; COUNCILL, 2001) is a widely used
methodology that is primarily concerned with three functions: developed software
from pre-produced parts, the ability to reuse those parts in other applications and
easily maintaining and customizing those parts to produce new functions and fea-
tures. It provides a methodology and a process for building and providing reliable
components that maintain software functioning.

Software components permit the programmer to deal with the problems on a
higher level of abstraction. The programmer can de�ne and manipulate objects
on a simple way by just knowing the object tasks and the messages, ignoring im-
plementation details. Reducing the dependence among software components, object
orientation permits the development of reusable software systems. Such components
can be created and tested as independent units, isolated from other portions of the
software application.

27

The abstraction is achieved because object orientation introduces several con-
cepts like:

• Responsibilities: object orientation provides a concept that is to describe be-
havior in terms of responsibilities. Responsibilities increase the level of ab-
straction and permit greater independence between objects, a critical factor
in solving complex problems;

• Inheritance: Using inheritance, classes can be organized into a hierarchical
tree. Data and behavior associated with higher classes (parent classes) in the
tree can be accessed by lower classes in the tree. Thus, inheritance allows
di�erent data types to share the same code, leading to a reduction in code size
and increase in functionality;

• Polymorphism: allows this shared code to be tailored to �t the speci�c cir-
cumstances of individual data types;

• Method binding and overriding: allows information in a subclass to override
the information inherited from a parent class. In general, this is implemented
by using a method in a subclass having the same name as the method in a
parent class;

• Interface and implementation: the terms 'interface' and 'implementation' de-
scribe the distinction between the view of the user and how the tasks are
implemented. The interface says nothing about how the assigned task is be-
ing performed. The division between interface and implementation makes the
design and the interchange of the components easier;

• Encapsulation: an important feature of interchangeability is encapsulation.
The components and objects can encapsulate certain functionalities and inter-
act with other components through a simple and well de�ned interface. An
object encapsulates both data and behavior (methods).

In the �eld of Component-Based Software Engineering (CBSE), there are ap-
proaches on applying this technique in embedded systems to improve embedded
software productivity (GENSSLER et al., 2002; YEN et al., 2002; CRNKOVIC,
2005).

2.3.1 Object Orientation and Embedded Systems

As mentioned, object-oriented methodology introduces several features and concepts
that increase software productivity. In spite of object orientation advantages, the
acceptance in the embedded world has been slow, since embedded software design-
ers are reluctant to employ these techniques due the overhead. Object-oriented
design paradigm presents an overhead in terms of memory, performance and code
size (DETLEFS; DOSSER; ZORN, 1994; CHATZIGEORGIOU; STEPHANIDES,
2002; BHAKTHAVATSALAM; EDWARDS, 2002).

There are several features on object orientation that produce overhead. We
highlight the main features:

28

• Dynamic Allocation problems: one of the main problems when using object
orientation is the overhead produced by memory management. This overhead
is imposed due to the extensive use of dynamic memory allocation and dy-
namic creation and destruction of objects. This causes overhead in memory
management in terms of performance and memory usage. Moreover, pointer
manipulation increases memory tra�c and, due to lack of data locality, causes
cache ine�ciency;

• Memory problems: memory leak takes place when memory is allocated but
never deallocated. Also, there is memory fragmentation produced by intensive
memory allocation and deallocation. Other problem is when memory is deal-
located: there may still be active pointers in use to the deallocated memory
because of cyclic structures;

• Dynamic binding problems: using dynamic binding allows information in a
subclass to override the information inherited from a parent class. The search
for a method to invoke in respose to a given message begins with the class of
the receiver. If no appropriate method is found, the search is conducted in a
parent class of this class until the method is found. Dynamic binding is usually
implemented using indirection (BHAKTHAVATSALAM; EDWARDS, 2002).
The actual entry point is looked up at run-time in a dispatch table. The cost
of performing the lookup search and using the extra level of indirection to
execute operations signi�cantly increases the overhead of calling methods;

• Method call overhead: when using object orientation, classes typically have a
greater number of smaller methods arranged in deeper call trees. This pat-
tern leads to additional overhead in relation to non object-oriented program-
ming (BHAKTHAVATSALAM; EDWARDS, 2002). Larger methods reduce
the number of method calls, but it produces a con�ict with the goal of soft-
ware reusability.

2.4 Java Language

The Java programming language is one of the most interesting languages developed
in recent years. Java presents several features like platform independence for porta-
bility, an object-oriented model, multithreading support, support for distributed
programming and an automatic garbage collector. Java obeys the "write-once, run
everywhere" philosophy. Over the past few years, developers have embraced Java,
because this technology can provide high portability, �exibility, robustness, code
reuse and security for their applications. However, Java has an overhead in terms
of performance due the hardware abstraction provided (KAZI et al., 2000).

Java source code is translated into Java bytecodes to allow portability. These
bytecodes can be executed on any platform that supports an implementation of
Java Virtual Machine (JVM) (LINDHOLM; YELLIN, 1999). Most JVMs execute
Java bytecodes through interpretation or Just-in-time (JIT) compilation. These
execution options are relatively slow, because they translate the bytecodes on the
�y. However, there are solutions that improve this execution like compiling Java
directly to native machine code (but the portability will be lost) and using a Java

29

Java Source
Code

Java Bytecodes
(.class file)Java source-to-bytecode

compiler

Interpreter

JIT Compiler

Dynamic
Compiler

Direct
Compiler

Native Machine
Code

Bytecode
Translator

Target
Processor

Intermediate
Language (IL)

IL Compiler

Java
Processor

Optimized
Java Bytecodes

O
pt

im
iz

at
io

ns

Parallel or Distributed
Java Source Code

Java source-to-bytecode
Java Bytecodes

Restructuring Compiler
(Implicit Parallelism

made Explicit)

compiler

Figure 2.2: Di�erent Java execution ways (KAZI et al., 2000)

Processor. Figure 2.2 summarizes the ways that Java can be translated to machine
code.

2.4.1 Java and Embedded Systems

Over the past few years embedded developers have embraced Java, because this tech-
nology can provide high portability and code reuse for their applications (MULCHAN-
DANI, 1998; LAWTON, 2002; STROM; SVARSTAD; AAS, 2003; LANFER; BAL-
LACO, 2003). In addition, Java has features such as e�cient code size and small
memory footprint, that stand out against other programming languages, which
makes Java an attractive choice as the speci�cation and implementation language of
embedded systems. However, developers should be free to use any object oriented
coding style and the whole package of advantages that this language usually pro-
vides. In any case, one must also deal with the limited resources of an embedded
system.

The Java language deallocates objects by using garbage collection (JONES;
LINS, 1996). Garbage collectors have advantages freeing programmers from the
need to deallocate the objects when these objects lose their reference, and helping
to avoid memory leaks. However, garbage collectors produce an overhead in pro-
gram execution and a non-deterministic execution. Automatic garbage collection is
usually not as e�cient as programmer managed allocation and deallocation.

There are several problems when using Java in embedded systems. They are
summarized as follow:

• Slow execution: Java presents a slow execution (performance overhead). This
overhead is produced because Java is interpreted on JVM, thus to improve the
execution it is necessary to use faster processors;

30

• Large amounts of memory: Java requires large amounts of memory, since this
is necessary for the application memory and for the JVM memory;

• Power dissipation: when the memory usage and performance overhead in-
crease, more power dissipated as a consequence;

• Hardware abstraction: Java does not provide hardware access, thus it is neces-
sary to provide mechanisms to access the hardware, since embedded software
often connects to the real world;

• Garbage Collector: Java has a reduced control with memory allocation and
deallocation. Garbage collector is responsible for this control and it increases
the memory management overhead. Also, the garbage collector interferes in
real-time tasks.

Nowadays, Java is used in a variety of embedded systems. There are several hard-
ware solutions to improve the Java execution. These solutions are based on hardware
accelerators like (ARM, 2007; NAZOMI COMMUNICATIONS, 2007) where critical
parts of the code are executed in hardware. There are other solutions based on Java
processors. These machines execute Java natively like (MCGHAN; O'CONNOR,
1998; ITO; CARRO; JACOBI, 2001).

During recent years, Java has been used in the mobile phone market (LAWTON,
2002; TAKAHASHI, 2001). Java platform portability enables Java phone users to
download software like games from third party providers.

According to this movement, Sun released two environments dedicated to em-
bedded Java: Java 2 Micro Edition (SUN MICROSYSTEMS, 2007a) speci�cation
and Java Card (SUN MICROSYSTEMS, 2007b) speci�cation. Java 2 Micro Edition
de�nes full support for the Java language and the Java Virtual Machine speci�cation
with a limited number of support libraries classes in order to execute in environ-
ments with limited amount of memory. JavaCard de�nes an environment to develop
application into smart cards. Nowadays, there is a signi�cant number of smart cards
that run Java.

Java has several problems concerning real-time. Thus, a research group devel-
oped the Real-Time Speci�cation for Java (RTSJ) (BOLLELLA, 2000; BOLLELLA;
GOSLING, 2000). This speci�cation makes JVM deterministic and provides full
real-time capabilities for Java technology.

2.5 Related Work

In (PEYMANDOUST; MICHELI; SIMUNIC, 2002), an energy pro�ler is used to
identify critical arithmetic functions and replace them by using polynomial approxi-
mations and �oating-point to �xed-point conversions. For the MP3 software, power
improvements by a factor of 400 are reported with regard to original code from the
standard body, but code transformations are restricted to arithmetic functions and
most of the improvement comes from the �oating-point to �xed-point conversion.

31

In (REYNERI et al., 2001), a library of alternative hardware and software pa-
rameterized implementations for Simulink blocks that present di�erent performance,
power, and area �gures are characterized. An analysis tool quickly evaluates algo-
rithmic and parameter choices performed by the designer.

Most approaches on embedded software optimization are based on compilation
optimization. In spite of compilation optimizations, both approaches presented
above present higher level of optimization handling with functions and libraries.

Compiler code optimizations for embedded systems have been traditionally ori-
ented towards improving performance or reducing memory space (DUTT et al.,
2001), for instance targeting code to specialized architectures, reducing cache misses,
or compressing code. Although some of these code optimizations may eventually
also reduce power consumption, for instance by reducing the number of memory
accesses, the energy issue has been often neglected, and it has been shown (DALAL;
RAVIKUMAR, 2001; KANDEMIR et al., 2001) that many compiler optimizations
may even increase power consumption.

Power-aware software optimization has gained attention in recent years, mainly
in embedded systems. It has been shown (TIWARI; MALIK; WOLFE, 1994) that
each instruction of a processor has a di�erent power cost. Instruction power costs
may vary in a very wide range and are also strongly a�ected by addressing modes.
By taking these costs in consideration, a 40% power improvement obtained by code
optimizations is reported.

Reordering of instructions in the source code has been also proposed (CHOI;
CHATTERJEE, 2001), considering that power consumption depends on the switch-
ing activity and thus also on the particular sequence of instructions, and improve-
ments of up to 30% are reported.

A survey of data and memory optimization techniques for embedded systems are
presented in (PANDA et al., 2001). This paper discusses platform-independent mem-
ory optimizations and techniques applicable to memory structures. The platform-
independent memory optimizations are done by compiler, for example loop transfor-
mations. Another survey (WOLF; KANDEMIR, 2003) concentrates just on software
techniques to improve the memory system. However, the software techniques pre-
sented in both papers are based on compilation techniques.

On the other hand, when using the object-oriented languages there are several
problems. In (CHATZIGEORGIOU; STEPHANIDES, 2002), the object oriented
programming style is evaluated in terms of both performance and power for embed-
ded applications. A set of benchmark kernels, written in C and C++, is compiled
and executed on an embedded processor simulator. The paper has shown that ori-
ented objected programming could signi�cantly increase both execution time and
power consumption.

Another work, (DETLEFS; DOSSER; ZORN, 1994), presents a detailed mea-
surements of the cost of dynamic storage allocation of C and C++ using �ve very dif-

32

ferent dynamic storage allocation implementations, including a conservative garbage
collection algorithm. This work shows that overhead in terms of instructions ranges,
depending on the allocator, from 6.17% to 36.40% on average. For certain applica-
tions the overhead achieves more than 60%.

The use of Java in embedded systems presents problems concerning performance,
power and real-time. There are some works that prove this huge overhead. El-
Kharashi (2000) shows that object manipulation instructions are the most time
consuming. This work presents a dynamic instruction analysis of Ca�eineMark
Benchmark. The object manipulation instructions are responsible for 23.10% of
the total instruction execution. However, these same instructions are responsible
for 88.86% of total execution time. Another work (LUN; FONG; HAU, 2003) also
shows similar results using other benchmarks. In this work the object manipulation
instructions are responsible for 15% of the total instruction execution.

Radhakrishnan (1999) reports that invoking methods in Java is expensive, be-
cause they need an execution environment and a new stack for each new method.
This work shows that the most common dynamically invoked methods have 1, 10 or
27 bytecodes long and that 45% of all dynamic methods have less than 9 bytecodes
or 16 bytes long. This behavior is produced by object-oriented characteristics like
the use of private and public methods and interfaces.

A memory system behavior of Java Programs was studied in (KIM; HSU, 2000).
This paper analyzes the SPECjvm98 applications running with a Just-In-Time (JIT)
compiler. The results show that the overall cache miss ratio is increased due to
garbage collection and that the Java programs generate a substantial amount of
short-lived objects. However, the size of frequently referenced long-lived objects is
similar to the application working set size.

There are several works that present some optimizations and techniques to pro-
duce better results in memory management. These works present optimizations to
reduce the memory and performance overhead, make real-time applications possible
and so on. There are optimized and reduced versions of virtual machines, like the
KVM (Kilobyte Java Virtual Machine) (SUN MICROSYSTEMS, 2007c).

There is a rich work on garbage collector architecture and algorithms. A com-
plete discussion can be found in (JONES; LINS, 1996). Much of this work is aimed
at avoiding the most severe pitfalls of garbage collection, mainly their performance
loss and unpredictability. There are solutions using garbage collection implemented
in software and hardware.

In (LIN; CHEN, 2000), a hardware mechanism to support the runtime memory
management providing real-time capability for embedded Java devices is presented.
This approach guarantees predictable memory allocation time.

Chen (2003) proposes a set of memory management strategies to reduce heap
footprint of embedded Java applications that execute under severe memory con-
straints. It presents a new garbage collector that allows an application to run with

33

a heap smaller than its footprint using a technique that is based on memory com-
pression. Another work (CHEN et al., 2002) of the same author focuses on tuning
the GC to reduce energy consumption in multibanked memory architecture.

Pfe�er (2004) presents a garbage collector implementation for multithreaded pro-
cessors. This GC runs in a thread slot in parallel to real-time applications. Other
software and hardware solution can be found in (BERLEA et al., 2000; RITZAU,
2001; SRISA-AN; LO; CHANG, 2003; DETERS et al., 2004; BACON; CHENG;
GROVE, 2004).

The Real-Time Speci�cation for Java (RTSJ) introduces some mechanisms to
solve the unpredictability. RTSJ provides two other kinds of memory (besides the
normal memory): immortal and scoped memories (BOLLELLA, 2000; LOCKE;
DIBBLE, July 2003). With the immortal memory, the objects should be created
once for the lifetime of the application (during initialization phase). Objects in
immortal memory ca be created and accessed without GC delay, but there is no
mechanism for freeing those objects during of the application execution. There is
another memory model, the scoped memory. This memory area has limited lifetime
(the memory area is valid as long as one or more threads refer to it). Di�erently
from immortal memory, the objects allocated in this memory can be removed when
all reference to this memory is removed.

The approach of pre-allocate objects instead of creating them dynamically is
concerned with high level modeling (SMITH; WILLIAMS, 2003). This strategy is
used on software performance engineering (SPE) approach to save this unnecessary
overhead. Each call object is used over and over again, rather than creating a new
one for each execution.

In (SHUF et al., 2002), techniques aimed at improving the memory behavior
of pointer-intensive applications with dynamic memory allocation in Java is pre-
sented. The technique relies on identi�cation of frequently instantiated types of
the given program, and tries to co-locate objects at allocation time. This way, the
related objects are placed close to each other in memory, improving the data locality.

Kistler (2003) presents an optimization technique that improves the object or-
ganization during the program execution. Object layout adaptation improves the
storage layout of dynamically allocated data structures, maximizing data cache lo-
cality. This strategy assigns the �elds to cache lines and then optimizes the order
of �elds within individual cache lines.

In (CHEREM; RUGINA, 2004), a region analysis and transformation framework
for Java programs is presented. Given an input Java program, the compiler auto-
matically translates it into an equivalent output program with region-based memory
management. The generated program contains statements for creating regions, al-
locating objects in regions and removing regions.

Shaham (2001) presents a heap-pro�ling tool for exploring the potential for mem-
ory space savings in Java programs. The output of the tool is used to direct rewriting

34

of application source code in a way that allows more timely garbage collection of
objects, thus saving space. The rewriting can also avoid allocating some objects that
are never used, making space savings and, in some cases also improving program
runtimes. This approach is based on three code rewriting techniques: assigning the
null value to a reference that is no longer in use, removing code that has no e�ect
on the result of the program and delaing the allocation of an object until its �rst use.

In (ARNOLD et al., 2005), a rich survey of optimization in virtual machines
is provided. It provides a complete review of adaptive optimization techniques:
techniques for determining when, and on what parts of the program, to apply a
runtime optimizing compiler; techniques for collecting �ne-grained pro�ling infor-
mation; and techniques for using pro�ling information to improve the quality of the
code generated by an optimizing compiler.

2.5.1 Discussion

Our method approach is similar to (REYNERI et al., 2001), but instead of aiming
at a partitioning between software and hardware functions, it concentrates on al-
gorithmic variations of software routines that are commonly found in a wide range
of embedded applications. This way, it provides design space exploration for given
platforms.

The optimizations (in method and object level) that we proposed are di�er-
ent from most of studies. Most approaches on embedded software optimization are
based on traditional compilation optimization. There are lots of works that deal with
compilation optimizations concerning performance, memory, energy (DUTT et al.,
2001; DALAL; RAVIKUMAR, 2001; KANDEMIR et al., 2001; CHOI; CHATTER-
JEE, 2001; TIWARI; MALIK; WOLFE, 1994; PANDA et al., 2001; WOLF; KAN-
DEMIR, 2003). Our approach di�ers from these, because our approach intends to
improve the code before the compiler optimization. We believe that design decisions
taken at higher abstraction levels can lead to substantially superior improvements.

There are several works that agree with our statement that object-orientation
and Java produce huge overheads (CHATZIGEORGIOU; STEPHANIDES, 2002;
DETLEFS; DOSSER; ZORN, 1994; EL-KHARASHI; ELGUIBALY; LI, 2000; LUN;
FONG; HAU, 2003; RADHAKRISHNAN; RUBIO; JOHN, 1999; KIM; HSU, 2000).
However, these papers only measure this overhead in terms of performance.

The main problem with Java is the overhead produced by memory management.
In this way, there are lots of works that proposed software and hardware solutions to
reduce the overhead as well to make the CG more predicable (JONES; LINS, 1996;
LIN; CHEN, 2000; CHEN et al., 2003, 2002; PFEFFER et al., 2004; BERLEA et al.,
2000; RITZAU, 2001; SRISA-AN; LO; CHANG, 2003; DETERS et al., 2004; BA-
CON; CHENG; GROVE, 2004). These strategies are very di�erent from ours. Our
object exploration level works before the execution - when the memory management
and garbage collector act.

The Real-Time Speci�cation for Java (RTSJ) (BOLLELLA, 2000) introduces the
concept of immortal memory to improve real-time aspects. The objects in immortal

35

memory can be created and accessed without GC delay, but there is no mechanism
for freeing those objects during the application execution. This approach is similar
to our strategy of transforming dynamic objects into static ones. However, it is nec-
essary to use the RTSJ (during application code) and modify the virtual machine
to adopt this technique.

There are other approaches to improve memory behavior of Java programs
(SHUF et al., 2002; KISTLER; FRANZ, 2003). However, these techniques improve
the data locality during the execution time. Another paper (CHEREM; RUGINA,
2004) proposes a region analysis and transformation for Java programs. But, in
this approach, the code must be modi�ed and it is necessary to extend the virtual
machine to support region annotations and to provide region run-time support.

On the other hand, Shaham (2001) presents a similar strategy. But, our pro-
posed approach starts from a more radical point of view. Instead of trying just to
improve the code written by the programmer, we try to automatically transform as
many dynamic objects into static ones, in the goal to reduce execution time, while
maintaining memory costs as low as possible. Thus, it provides a large design space
exploration for a given application.

36

3 DESIGN SPACE EXPLORATION OF OBJECT
ORIENTED EMBEDDED SOFTWARE

This chapter shows the thesis concerning embedded software design space explo-
ration. Our approach is divided into two main parts where the embedded software
exploration methodology can improve.

The �rst part, called method exploration level, aims to improve method imple-
mentation (the algorithms that implement these methods). The second part, called
object exploration level, aims to explore object organization in order to improve the
dynamic memory management.

3.1 Introduction

The �rst chapter showed that embedded systems must address some di�erent re-
quirements and restrictions. Thus, the embedded software development is di�erent
from the traditional development (desktop development) and available techniques
and methodologies should be adapted to manipulate embedded systems constraints.

New technologies (methodologies, programming languages, tools, etc.) present
several problems. The main problem is related to the learning cost of these new tech-
nologies by designers. Thus, lots of companies avoid the adoption of new method-
ologies or programming languages. In this way, the aim of our proposed approach
is to avoid making changes on the traditional software design �ow.

The proposed approach uses well-known technologies and the idea is to intro-
duce a set of tools to improve the original software by generating an optimized code.
These tools intend to be easy to learn and use. Also, the tools will do a design space
exploration, allowing the automatic con�guration of an optimized software solution
for a speci�c application according to the embedded software requirements.

Our approach of embedded software exploration is divided into two main explo-
ration parts. Figure 3.1 shows a simple design �ow of the thesis that contemplates
these phases.

The �st exploration phase introduces a mechanism for the automatic selection
of software IP components for embedded applications, which is based on a software
IP library and a design space exploration tool. The software IP library has di�erent

38

ApplicationApplication
Requirements

Exploration
Tool 1 Software Library

Exploration
Tool 2

FemtoJava
Multicycle

FemtoJava
Pipeline

FemtoJava
VLIW 2

FemtoJava
VLIW 4

FemtoJava
DSP

Target Platform

Generated Software

Method Exploration Level

Object Exploration Level

Output

Input

Figure 3.1: Thesis Design Flow.

39

algorithmic implementations of several routines commonly found in di�erent appli-
cation domains.

The second exploration phase consists in the use of a design space exploration
tool to allow an automatic selection of the best object organization. This tool tries
to transform, in an automatic way, as many dynamic objects into static ones, in the
goal to reduce execution time, while maintaining memory costs as low as possible.

Moreover, these two phases (one based on method and another based on object
exploration) are orthogonal, that is, their execution are independent. The designer
can �rst use the method exploration tool and after the object exploration tool or
vice-versa. Since the optimizations performed by each tool are orthogonal, this
makes the complexity of the exploration simple.

The target platform is composed of a set of Java processors. There are di�er-
ent versions of FemtoJava processor (ITO; CARRO; JACOBI, 2001). Section 3.4
describes in more detail the target platform.

3.2 Method exploration level

This section shows the method exploration approach. The main idea is to explore
di�erent algorithm solutions (method implementations) for a certain application
according to the embedded system requirements. First, we show the problem and,
afterwards, the proposed solution.

3.2.1 The problem

It is widely known that design decisions taken at higher abstraction levels can lead
to substantially superior improvements. Software engineers involved with software
con�guration of embedded platforms, however, do not have enough experience to
measure the impact of their algorithmic decisions on issues such as performance and
power.

Moreover, di�erent applications have di�erent resource requirements during their
execution. Some applications may have a large amount of instruction-level paral-
lelism (ILP), which can be exploited by a processor that can issue many instructions
per cycle. Other applications have a little amount of ILP, which can be executed by
a simple processor.

Presently, as it was shown in Chapter 2, the software designer writes the ap-
plication code and relies on a compiler to optimize it. However, these compiler
optimizations can improve the �nal code, but they are very limited. Some design
decisions taken at higher abstraction levels, like algorithm level, can produce better
or worse improvements. For example, when a software designer writes a code that
it is a sort algorithm and he/she uses a bubble sort algorithm, there is no compiler
that can improve this decision.

40

3.2.2 The proposed approach

This approach consists in the use of a software library, a set of di�erent processor
cores (but with the same instruction set), and a design space exploration tool to
allow an automatic software and hardware IP selection. The software IP library
contains alternative algorithmic implementations for routines commonly found in
embedded applications, whose implementations are previously characterized regard-
ing performance, power, and memory requirements for each processor core.

This one has di�erent levels of optimization, one on the software level, and other
on the hardware level, selecting the best core providing di�erent performance levels
and consuming di�erent levels of power. By exploring design alternatives at the
algorithmic level and the architectural level, that o�er a much wider range of power
and performance, the designer is able to automatically �nd, through the exploration
tool, corner cases that result in optimizations far better that those reported by later
code optimizations. This exploration tool can take to the choice of an algorithm
and an architecture that exactly �t the requirements of the application, without
unnecessarily wasting resources.

In our approach, the designer receives the application speci�cation and after
coding it in Java language using the software IP library, he/she submits the appli-
cation to the design space exploration tool. This methodology is compliant with
the component-based development, where a component is a self-contained part or
subsystem that can be used as a building block in a larger system. Using component-
based development style, the reuse become easier and increase the software produc-
tivity.

The software IP library contains di�erent algorithmic versions of the same func-
tion thus supporting design space exploration. Considering a certain core (HW IP)
and for each algorithmic implementation of the library functions, it measures the
performance, the memory usage, and energy and power dissipation. This way, the
characterization of the software library is performed according to physical related
aspects that can be changed at an algorithmic abstraction level. On hardware level,
this approach uses di�erent implementations of the same Instruction Set Architec-
ture providing range solutions on performance, power and memory area. Thus, this
methodology allows the automatic selection of software and hardware IPs to better
match the application requirements. Moreover, if the application constraints might
change, for example with tighter energy demands or smaller memory footprint, a
di�erent set of SW and/or HW IPs might be selected.

Using this methodology, the space design exploration has several options to pro-
vide a �nal solution using a di�erent combination of SW IPs and HW IPs. Using only
a single core and di�erent algorithmic versions of the same function, the designer
has a good set of alternatives. However, when multiple cores are used, the range
of solutions is hugely increased. Figure 3.2 shows the design �ow of this embedded
SW exploration. After coding the application using de IP library, the designer sub-
mits the application to design exploration tool. The design exploration tool maps
the routines of an embedded program to an implementation using instances of the
software IP library, so as to ful�ll given system requirements. The user program is

41

modeled as a graph, where the nodes represent the routines, while the arcs deter-
mine the program sequence. The weight of the arcs represent the number of times
a certain routine is instantiated. In our approach, di�erent threads are modeled as
parallel structures and can be mapped to di�erent processor cores.

To generate the application graph representing the dynamic behavior of the ap-
plication, an instrumentation tool was developed. It is based on BIT (Bytecodes
Instrumentation Tool) (LEE; ZORN, 1997), which is a collection of Java classes that
allow the construction of customized tools to instrument Java byte-codes. This in-
strumentation tool allows the dynamic analysis of Java Class �les, generating a list
of invoked methods with its corresponding number of calls, which can be mapped
to the application graph.

In the exploration tool, before the search begins, the user may determine the
application requirements (weights for power, delay and memory optimization). The
tool automatically explores the design space and �nds the optimal or near optimal
mapping for that con�guration. In the �nal step (code generation phase), the tool
links the algorithm calls to their implementation according to the results obtained
in exploration phase.

It is important to notice that di�erent threads can be mapped to di�erent im-
plementation cores available (di�erent versions of FemtoJava: multicyle, pipeline,
VLIW). However, in our approach, the routines that belong to the same thread are
mapped to the same processor core.

Problem Complexity

The design space to be explored can be large. The number of solutions is func-
tion of the number of the processor cores (HP IPs) and the number of the routines
(SW IPs) that are available.

The equation of the problem complexity can be obtained as follows. There is
a program with m di�erent methods that use the IP library. Each method can be
implemented by r di�erent algorithmic solutions. The IP library was characterized
into p processor cores. Thus, each method can be implemented by one of the r*p
options. Finally, if there are m di�erent methods in the program, the exploration
tool should evaluate several options given by equation:

m∏
i=1

ri ∗ p

where r is the number of di�erent implementations of the same routine, p is the
number of the available processor cores and m is the number of di�erent method
that uses the IP library in the program.

Example (using numbers):

• One program has 4 di�erent methods that use the IP library;

42

Graph Extractor

XML Package

Software Library

Graph

XML

Thread1
1

Thread2

2 5

15

1

10

5 4

15 76

5 100

sin

sin

imdct

Exploration
Tool

Java Application

ApplicationApplication Requirements

XML

Code Tool

Method Configuration

XML

Class Files

Final Application

G
ra

ph
 E

xt
ra

ct
or

 P
ha

se
E

xp
lo

ra
tio

n
P

ha
se

C
od

e
G

en
er

at
io

n
Ph

as
e

Figure 3.2: Method Exploration Level Design Flow.

43

• Each routine has 2 alternative implementations and these implementations are
characterized into 4 processor cores;

• Thus, there are 84 = 212 possible solutions.

Software IP library

As it has been already mentioned, the library contains di�erent algorithmic ver-
sions of the same function, thus supporting design space exploration. Each algorith-
mic implementation of the library functions is measured in terms of performance
(in cycles), the memory usage (for data and instruction memories), and energy and
power dissipation.

Since embedded systems are found in many di�erent application domains, this
investigation has been started using classical functions:

• Sine - Two ways to compute the sine of an angle are provided. One is a simple
table search, and the other one uses the CORDIC (Coordinate Rotation Digital
Computer) algorithm (OMONDI, 1994). The sine function is representative
of many other functions with an arithmetic-like behavior. The �rst alternative
has three di�erent variations, regarding the precision of the input angle. The
precisions used were 1, 0.5, and 0.1 degrees;

• Table Search - We wanted to have a clearer understanding of the impact of
di�erent approaches to the same problem, checking whether the best algorithm
for a large data set is also the best one for a smaller data set or not. Not only
the search, but also the insertion function of each algorithm, was taken into
account. Four approaches were tried: a) Unordered Table, with exhaustive
search but very fast insertion (at the end of the vector); b) Ordered Table,
with a faster search but slower insertion than the previous alternative; c)
Binary Search on an ordered table; and d) Hash Table;

• Square Root - As for the sine function, there are many ways a square root can
be computed, with di�erent trade-o�s. Two versions are implemented in the
library;

• Sort - Four algorithms for sorting a vector were implemented: Bubble Sort,
Insert Sort, Select Sort, and Quick Sort;

• IMDCT - The Inverse Modi�ed Discrete Cosine Transform is a critical step in
decompression algorithms like those found in MP3 players. Together with win-
dowing, it takes roughly 70% of the processing time (SALOMONSEN, 1997).
Four versions of the IMDCT have been implemented.

Design Space Exploration

In our approach, we are using the Dragon Lemon tool (HENTSCHKE, 2007).
This tool maps the routines of an embedded program to an implementation using

44

instances of the software IP library, so as to ful�l given system requirements.

In the exploration tool, before the search begins, the user may determine weights
for power, delay and memory optimization. It is also possible to set maximum values
for each of these variables. The tool automatically explores the design space and
�nds the optimal or near optimal mapping for that con�guration.

The cost function of the search is based on a trade-o� between power, timing, and
area. Each library option is characterized by these three factors. The exploration
tool normalizes these parameters by the maximum power, timing and area found in
the library. The user can then select weights for the three variables. This way, the
search can be directed according to the application requirements. If area cost, for
example, must be prioritized because of small memory space, the user may increase
the area weight. Although one characteristic might be prioritized, the others are
still considered in the search mechanisms.

There are two search mechanisms. The �rst one is an exhaustive search. For
small programs, this search runs in acceptable times. For larger problems, since we
are dealing with an optimization problem of multiple variables, we implemented a
genetic algorithm.

As output, Dragon Lemon also provides 2D and 3D Paretto curves. For both
curves, the user may select which variables (power, delay, or memory) will be used
in each axis (x, y and z). While running the exhaustive search, the tool �nds
the exact Paretto points as it explores all possibilities. In genetic search, only the
searched nodes are considered. However, as the genetic heuristic searches for the
most promising solutions while avoiding the bad ones, it is adequate to �nd the
Paretto points. By running several experiments it can be observed that, in fact,
the Paretto curves found by genetic search are very much similar to those found by
exhaustive search.

3.3 Object exploration level

This section shows the software exploration approach to improve the operating sys-
tem level. The main idea in this level is to explore the organization of the objects
of the application according the requirements. First, it shows the problem and its
characterization. Finally, it shows the proposed solution.

3.3.1 The problem

Object-oriented programming increases the software productivity. As mentioned
in chapter 1, it is well known that the object-oriented programming paradigm sig-
ni�cantly increases the dynamic memory used, producing considerably overhead in
terms of performance, memory and power.

This is a serious problem. On the one hand, the OO methodology can help em-
bedded designers making the design process easier and faster. On the other hand,
the OO methodology introduces several types of overhead that cause problem to em-
bedded systems. Previous works (EL-KHARASHI; ELGUIBALY; LI, 2000; LUN;

45

FONG; HAU, 2003) show that this overhead can reach about 88% of total execution
time.

Our results agree with these works, the plot in �gure 3.3 shows our statistics
about the overhead in terms of performance that might be expected by dynamic
allocation and deallocation. The �gure shows the overhead caused in di�erent ap-
plications considering a cost of 1 to 1000 instructions per allocation/deallocation.

As it can be seen, for some applications the memory allocation needed to sup-
port the OO paradigm means that more than 50% of the execution time is taken
just for the memory management, thus the CPU spends more time and energy just
managing memory, instead of actually executing the target application. This is a
huge overhead that cannot be paid by many embedded systems, mainly those in
mobile devices.

It is interesting to notice what happens when the cost of allocation/deallocation
is increased. In some applications more than 80% of the execution time is used by
memory management system.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

allocation/deallocation cost (instructions)

ov
er

he
ad

 (%
)

MP3 SymbolTest Notepad AddressBook Pacman

Figure 3.3: Object-Oriented Overhead.

3.3.2 The problem characterization

As it has been already mentioned, OO programming produces an overhead. The
goal of this section is to characterize the exact amount of overhead one has to pay
to e�ectively use the OO paradigm. This problem characterization was published
in a conference (MATTOS et al., 2005b).

In this work we analyzed some Java applications that can be found in embedded
systems. The applications we used as benchmarks are:

46

• MP3Player - it is an MP3 decoder implementation. This algorithm reads an
MP3 �le and translates it into an audio signal. This code is a version based
on a description available on (JAVALAYER, 2007);

• SymbolTest - it is a simple application that displays Unicode char ranges and
di�erent fonts types (SUN MICROSYSTEMS, 2007d);

• Notepad - it is a text editor with simple resources (SUN MICROSYSTEMS,
2007e);

• Address Book - it is an application used as an electronic address book that
stores some data (like name, address, telephone number, etc.) (BRENNE-
MAN, 2007);

• Pacman - it is the well-known game with a labyrinth and rewards (PILON,
2007).

It is important to mention that except for the MP3 application, none of the
above applications has been coded by the authors. A completely blind analysis has
been performed, in order to avoid in�uence of a particular code style.

Table 3.1 shows some object information about original applications like the total
allocated objects for some instance execution, and the number of allocation instruc-
tions. This number of allocation instructions shows the instructions that perform
the memory allocation task. Each one of these instructions can create several objects
(objects with the same type) because it can be located in a method that is called
several times, or can be located in a loop, for example. Table 3.1 shows that during
MP3 execution 46,068 objects were created by only 101 allocation instructions, and
hence some allocation instructions create more than one object. During the execu-
tion, the Garbage Collector collects, from the memory, the objects that have lost
their reference. The table also presents the results for the other applications.

Table 3.1: Object data (original applications).

Application Total allocated Number of allocation
objects instructions

MP3 46,068 101
SymbolTest 27 16
Notepad 184 66

AddressBook 28 14
Pacman 2,547 30

Table 3.2 shows some memory data. Two results are shown: total memory allo-
cated during the application execution and the maximum memory used during the
application. Using object-oriented programming, there is an intensive memory use
(allocations and deallocations). However, the memory necessary to run the appli-
cation should be enough to store just the objects used in the moment (it depends
on GC implementation, considering a GC implementation that all objects that lose

47

their reference are colleted immediately). It is clear from Table 3.2 that there is a
huge waste on memory resources, since only a fraction of the allocated memory is
e�ectively used in a certain point of the algorithm.

Table 3.2: Memory data (original applications).

Application Total memory Maximum Memory
allocated (bytes) utilization (bytes)

MP3 10,080,512 23,192
SymbolTest 1,509 625
Notepad 9,199 4,185

AddressBook 867 185
Pacman 216,080 456

Table 3.3 presents data in terms of performance and the overhead caused by
garbage collector making the allocation and deallocation of the objects assuming
that GC takes about 696 instructions. The performance results are shown as the
number of executed instruction. The overhead caused by GC was calculated based
on a GC implementation in software targeting the FemtoJava processor and Sashimi
Tool (NEVES, 2005).

This implementation is based on the Reference Counting algorithm that has a
low memory overhead. At each object manipulation the garbage collector needs to
make some changes in the respective object counter, and as soon as a counter reaches
zero, the corresponding memory block becomes available to a new object. The cost
of allocation and deallocation is about 696 instructions on average. In this case the
cost of each application can be easily seen to surpass 35% for most applications.

Table 3.3: Performance data (original applications).

Application Number of executed GC
instructions Overhead (%)

MP3 85,767,756 37.40
SymbolTest 73,364 27.91
Notepad 136,621 93.86

AddressBook 24,435 79.84
Pacman 2,091,684 84.85

Problem Complexity

This problem has a large design space to be explored. The number of combina-
tions that the tool should search is function of the number of allocation instructions
that can be changed to static allocation. Thus, the exploration tool should evaluate
several options given by equation:

48

2n

where n is the number of allocation instructions that can be changed.

This equation can be obtained as follows. For example, in OO program, there
are n allocation instructions. All of these instructions can be converted to static
ones. Each allocation instruction can be dynamic or static, thus there are 2n possi-
ble combinations. Each combination is composed by a set of allocation instructions
that allocates in dynamic or static way.

Example (using numbers):

• One program has 3 allocation instructions that allocate the objects in a dy-
namic way;

• Each allocation instruction can be transformed to allocate the objects in a
static way;

• There are 23 = 8 possible combinations: DDD, DDS, DSD, DSS, SDD, SDS,
SSD and SSS (D stands for dynamic and S stands for static).

3.3.3 The proposed approach

Our approach is composed by a design space exploration tool (DESEJOS Tool:
DEsign of Software for Embedded Java with Object Support) that allows an auto-
matic selection of the best object organization. When a programmer uses an object-
oriented design paradigm, the application objects can be statically or dynamically
allocated. When the programmer uses static allocation the memory footprint is
known at compilation time. Hence, in this approach, normally, the memory size is
big, but there is a lower execution overhead while dealing with the dynamic alloca-
tion (produced by the memory manager). On the other hand, when the programmer
uses a dynamic allocation, there is an overhead in terms of performance, but the
memory size decreases because the garbage collector removes the unreachable ob-
jects.

The experimental results in the previous section have shown that, for some OO
applications, the largest part of the execution time is taken just by memory man-
agement. However, if the designer allocates memory in a static fashion, the price to
be paid is a much larger memory than it is actually needed, with obvious problems
in cost, area and static and dynamic power dissipation.

The DESEJOS Tool was implemented in Java language and uses the BIT Library,
the Bytecodes Instrumentation Tool (LEE; ZORN, 1997), which is a collection of
Java classes that allow the construction of customized tools to instrument Java byte-
codes.

This tool is divided into three main parts: analysis phase, transformation phase
and design space exploration phase. Figure 3.4 shows the DESEJOS Tool design
�ow. The methodology starts with the original application analysis and stores the

49

results on a database. Afterwards, the tool transforms, in an automatic way, each
allocation instruction that allocated objects dynamically to a static way memory
reservation. Afterwards, the tool analyzes each modi�ed application and stores the
results on the database. This task is done to the whole allocation instructions. The
�nal step does the design space exploration. Based on application requirements pro-
vided by the designer, the tool tries to search the best object organization (objects
allocated dynamically or statically). These main DESEJOS phases are presented
next.

Analysis Tool

Application Requirements

XMLClass Files

Application

Instrumented Class Files

Application

Java VM

Results

DAT File

Results
Processing

Results Storage

XML

Transformation
Tool

Class Files

Modified Application

Exploration
Tool

Class Files

Final Application

Final Configuration

XML

A
na

ly
si

s
Ph

as
e

Tr
an

sf
or

m
at

io
n

Ph
as

e

Ex
pl

or
at

io
n

Ph
as

e

Code Tool

C
od

e
G

en
er

at
io

n
Ph

as
e

Figure 3.4: Object Exploration Level Design Flow.

50

Analysis Phase

In analysis phase, the DESEJOS Tool extracts the results from one application.
The results are based on:

• Object results: these results show the number of allocated objects for some
instance execution, and the number of allocation instructions. The tool presets
for each allocation instruction the number of allocated objects. Moreover, the
tool provides other results like: object description, object time life, number of
accesses per object and object size;

• Memory results: these results show the total dynamic memory allocated dur-
ing the application execution, the maximum memory utilization (the memory
necessary to run the application should be enough to store just the objects
used in the moment - considering a GC implementation that all objects that
lose their reference are colleted immediately), and a memory usage histogram;

• Performance results: these show the performance results in terms of executed
instructions and the overhead caused by GC. The overhead caused by GC was
calculated based on a GC implementation in software targeting the FemtoJava
processor and Sashimi Tool (ITO; CARRO; JACOBI, 2001).

The analysis phase provides the object, memory and performance results and
stores these results in a database that will be used by the exploration phase. This
task analysis is done to the whole allocation instructions, one by one, after the
transformation step.

Transformation Phase

This phase aims to transform the object that has been previously dynamically
allocated into statically allocated objects. The idea assumes that objects allocated
dynamically produce more overhead in terms of performance, because of the mem-
ory management, while objects allocated statically produce less overhead in terms of
performance, but cause memory overhead, since there must be extra memory space
while the application is executing.

The tool transforms the dynamically allocated objects into static ones by manip-
ulating the Java bytecodes. However, to better explain how this transformation was
done, we show this change in a Java code (high level code) and not in bytecodes.
Figure 3.5 shows the part of original sample code (before changes) and �gure 3.6
shows the code after the transformation.

51

// inside the method

for (int i=0; i<5;i++){

Obj1 refObj = new Obj1();

refObj.set(i);

refObj.doTask();

. . .

}

Figure 3.5: Original Code.

public class Test {

private static Obj1 refObj = new Obj1();

. . .

// inside the method

for (int i=0; i<5;i++){

refObj.set(i);

refObj.doTask();

. . .

}

Figure 3.6: The code after the transformation.

The second code (after changes) is more e�cient because the object is allocated
just one time. Nevertheless, codes written in this way are very common, because
programmers are concerned with the code legacy and intelligibility and not with
performance and memory usage. Furthermore, these programmers develop code for
desktop machines that have high performance and lots of available memory. The em-
bedded software developers have constraints in terms of performance, power, mem-
ory and others, but they want to use the code legacy provided by desktop developers.

Exploration Phase

In the exploration phase, the DESEJOS Tool does the design space exploration.
Based on the application requirement provided by the designer, the tool tries to
search for the best object organization (objects allocated dynamically or statically).

The main goal of this phase is to search, based on the original application, which
objects will be changed into static ones. One of the inputs of the tool is a set of
results (the database generated during the analysis phase) that shows: the allo-
cation instruction number (identi�cation number), the performance improvement
(instructions) and the memory overhead (bytes). The other input is the application
requirements.

The solution to the proposed problem needs a heuristic algorithm because of its
complexity. Based on application requirements and the database results, the explo-
ration tool searches for the best object organization that ful�lls the requirements.
The output is a list of allocation instructions that should be transformed into static
allocation. This list is used as input of the transformation step to make the �nal
application.

52

The designer can set the following conditions:

1. Set the maximum memory overhead: the tool returns the list of allocation
instructions that provides the best performance gain and ful�lls the memory
requirement;

2. Set the minimum performance gain: the tool returns the list of allocation
instructions that provides the smaller memory overhead and ful�lls the per-
formance requirement;

3. Set the maximum memory overhead and the minimum performance gain: the
tool returns the list of allocation instructions that provides the better results
in terms of performance and memory and ful�lls the both requirements.

Our problem is very similar to the 0-1 Knapsack Problem (MARTELLO; TOTH,
1990). The problem consists in searching the best combination of performance and
memory of a set of objects transformations.

The �rst designer option (number 1), where the designer sets the maximum
memory overhead, is modeled as: given a set of n items (object transformations)
with

pj = performance gain of item j,

mj = memory overhead of item j,

t = maximum memory overhead,

select a subset of the items so as to

maximize z =
n∑

j=1

pjxj

subject to
n∑

j=1

mjxj ≤ t

xj = 0 or 1, j ∈ N = {1, ..., n}

where xi = 1 if item j is selected and xi = 1 otherwise.

The second designer option (number 2), where the designer sets the minimum
performance gain, is modeled as: given a set of n items (object transformations)
with

pj = performance gain of item j,

mj = memory overhead of item j,

t = minimal target performance,

53

select a subset of the items so as to

minimize z =
n∑

j=1

mjyj

subject to
n∑

j=1

pjyj ≥ t

yj = 0 or 1, j ∈ N = {1, ..., n}

where yi = 1 if item j is selected and yi = 1 otherwise.

We implemented our algorithm using dynamic programming (HOROWITZ; SAHNI,
1978). The essence of dynamic programming is to build large tables with all known
previous results. The tables are constructed iteratively. Each entry is computed
from a combination of other entries above it or on the left of it in the matrix.

This algorithm has the pseudo-polynomial time and its complexity is O(t ∗ n).
The runtime depends on the size of matrix (t ∗ n), where t is the size of memory
and n is the number of allocation instructions. The main problem is to organize
the construction of the matrix in the most e�cient way. In our case, the size of the
memory can be a problem, because it increases the size of the matrix. But, we can
reduce the size of the memory using Kbytes instead of bytes.

3.3.4 Target Platform

We use a platform composed by di�erent core implementations of the same ISA.
The platform is based on di�erent implementations of a Java microcontroller, called
FemtoJava (ITO; CARRO; JACOBI, 2001; BECK FILHO; CARRO, 2003, 2004).
The FemtoJava Microcontroller implements an execution engine for Java in hardware
through a stack machine compatible with Java Virtual Machine (JVM) speci�cation.
A CAD environment (Sashimi Tool) that automatically synthesizes an Application
Speci�c Instruction-Set Processor (ASIP) version of the Java microcontroller for a
target application (ITO; CARRO; JACOBI, 2001) is available, using only a subset
of critical instructions to the speci�c application.

Our platform uses three di�erent versions of the FemtoJava processor: multi-
cycle, pipeline and a VLIW one. The multicycle version supports stack operations
through stack emulation on their register �les. This approach reduces the memory
access bottleneck of the stack machine, improving performance.

The second architecture is the pipelined version (BECK FILHO; CARRO, 2003),
which has �ve stages: instruction fetch, instruction decoding, operand fetch, execu-
tion, and write back. Thanks to the forwarding technique in the stack architecture,
the write back stage is not always executed, and hence there are meaningful energy
savings when compared to a regular 5 state pipeline of a RISC CPU.

The VLIW processor is an extension of the pipelined one (BECK FILHO; CARRO,
2004). Basically, it has its functional units and the instruction decoders replicated.

54

The VLIW packet has a variable size, avoiding unnecessary memory accesses. A
header in the �rst instruction of the word informs to the instruction fetch controller
how many instructions the current packet has. The search for ILP in the Java
program is done at the bytecode level. The algorithm works as follows: all the in-
structions that depend on the result of the previous one are grouped in an operand
block. The entire Java program is divided into these groups and they can be paral-
lelized respecting the functional unit constraints.

This platform is chosen because it is available in our research group. Further-
more, the native execution of Java bytecodes can improve performance and solve
several problems concerning embedded systems, mainly the overhead produced by
JVM.

4 RESULTS

This chapter shows the results the design methodology into one case study: an MP3
Player (an audio encoding format). First, we summarize the results concerning de
software IP library. After, we show the design space exploration of MP3 player
application results concerning method and object exploration level.

4.1 Library Characterization

This section shows the results of the software IP library. The software IP library
contains di�erent algorithmic versions of the same function, like sine, table search,
square root, IMDCT (described in section 3.2.2), thus supporting design space explo-
ration. Considering a certain core (HW IP) and for each algorithmic implementation
of the library functions, it measures performance, memory usage (for data and in-
struction memories), and energy and power dissipation.

To illustrate the results of library characterization using di�erent algorithmic
versions of the same function and di�erent cores (multicycle, pipeline and a VLIW
version with 2 words), there are three routines selected: sine, table search and In-
verse Modi�ed Discrete Cosine Transform. The results in terms of performance,
power and energy are obtained using the CACO-PS simulator (BECK et al., 2003).

Table 4.1 and 4.2 illustrates the characterization of the alternative implemen-
tations of the sine function. Table reftab:SineCharacterization shows the software
results that do not depend on hardware and Table 4.2 shows the results that depend
on hardware. Since Cordic is a more complex algorithm, program memory size is
larger than it is with Table Look-up (Table 4.1), as well as the number of cycles
required for computation for all the cores (Table 4.2). It is interesting to notice,
however, that when the resolution increases, the amount of data memory increases
exponentially for the Table Look-up algorithm, but only sublinearly for the Cordic
algorithm. The increase in memory re�ects not only in the required amount of mem-
ory, but also in the power dissipation of a larger memory.

Table 4.2 presents the results in terms of performance, power and energy, using
a frequency equal to 50 MHz and Vdd equal to 3.3v. The pipeline and VLIW ar-
chitectures provide better results in terms of cycles. The best results in terms of
performance came from the combination of sine calculation as simple table search
and VLIW architecture, but the worst results in terms of power. The best combina-
tion in terms of power, but worst in terms of energy, is the sine routine using Cordic

56

and the multicycle core.

Table 4.3, 4.4 and 4.5 shows the main results of the characterization of the four
di�erent implementations of the IMDCT function. The IMDCT4 implementation
has the best results in terms of performance in all architectures, but the size of
program memory signi�cantly increases. The opposite happens with the IMDCT1
implementation, which has far better results in terms of program memory, but con-
sumes more cycles. In terms of power (using a frequency equal to 50 MHz and Vdd
equal to 3.3v) the best combination is the IMDCT2 and IMDCT3 with multicycle
core, but this combination does not have good results in terms of energy. Table 4.4
and 4.5 show that the best results in terms of performance are the results that exe-
cute in VLIW core, since the IMDCT routine has lots of parallelism.

Table 4.1: Sine Characterization.
Characteristic Cordic Table

Program size (bytes) 206 88
1o 184 220

Data mem (bytes) 0.5o 184 400
0.1o 184 1840

Table 4.2: Sine Characterization (hardware dependable).

Characteristic Cordic Table
Multi Pipeline VLIW2 Multi Pipeline VLIW2

Performance (cycles) 2447 755 599 136 65 55
Power (mW) 11.8092 16.1626 22.9019 13.4431 17.8235 20.1606
Energy (µJ) 577.9421 244.0559 274.4414 36.5652 23.1705 22.1779

Table 4.3: IMDCT Characterization.
Characteristic IMDCT1 IMDCT2 IMDCT3 IMDCT4

Program size (bytes) 344 2,137 4,260 15,294
Data mem (bytes) 3546 3546 3546 3546

57

Table 4.4: IMDCT Characterization (hardware dependable).

Characteristic IMDCT1 IMDCT2
Multi Pipeline VLIW2 Multi Pipeline VLIW2

Performance (cycles) 140300 40306 33051 97354 31500 19325
Power (mW) 8.8533 20.0533 24.9227 8.6595 17.8944 25.3609
Energy (µJ) 24.8424 16.1654 16.4744 16.8607 11.2735 9.8021

Table 4.5: IMDCT Characterization (hardware dependable)(cont.).

Characteristic IMDCT3 IMDCT4
Multi Pipeline VLIW2 Multi Pipeline VLIW2

Performance (cycles) 92882 30369 17329 51345 18858 9306
Power (mW) 8.6483 17.7355 27.2193 9.1435 17.3849 34.5890
Energy (µJ) 16.0654 10.7722 9.4334 9.3894 6.5569 6.4380

4.2 MP3 Case Study Results

MPEG-Audio is an international standard for digital high quality sound compres-
sion. Generally speaking, the standard takes a digital audio �le and reduces its size,
while maintaining the quality of the recording. Figure 4.1 shows the decodi�cation
steps of the MP3 standard.

Our application code is based on a description freely available on the Internet
(JAVALAYER, 2007). All the MP3 code was written in Java but obeying certain
constraints of our tools and architecture:

• It is not possible to deal with API codes. Many of the standard library classes
use native code (when an application cannot be written entirely in the Java and
should be written in another programming language) to provide functionality
to the developer and the user, e.g., I/O �le reading and sound capabilities.
Thus, these tools can not handle this native code;

• Several instructions are not supported by the processors. An example con-
straint is the use of integer data instead of �oating-point ones, because there
is no such unit available in the processor;

• There is a set of instructions that are supported by software. Several in-
structions are not implemented in hardware, consequently they produce an
overhead. Most of the instructions (bytecodes) that manipulate memory man-
agement are implemented in software (e.g. new and newarray bytecodes).

The MP3 applications are coded on two di�erent styles: a static and dynamic
version. The �rst version (static) does not use resources like create objects, use
interfaces and son. The dynamic version creates objects, so it is necessary to use a
garbage collector. The appendix B and D present the class and sequence diagram,
respectively, of the static version while the appendix C and E present the class and

58

Figure 4.1: MP3 Decoding steps.

sequence diagram of the dynamic version.

4.2.1 Method exploration on MP3

This section shows the results of the methodology based on software IP library and
a set of cores with the same ISA that uses a tool for automatic design space explo-
ration and SW and HW IP selection. These preliminary results were published in
two conferences (MATTOS et al., 2004)(MATTOS et al., 2004).

To show that this approach can be applied to a real application Table 4.6 presents
the pro�ling results of the MP3 static application implement with a traditional of
IMDC routine running in the pipeline version of the processor. The table shows for
each method: the name, number of calls, number of cycles and percentage of the
cycles of each method in relation of total cycles (the table shows the results for only
four methods - the most executed ones).

Table 4.6 shows that just two methods are responsible for more than 90% of the
total application execution. The method IMDCT is called 864 times and cos_cordic
method is called 504,576 times. It is important to notice that cos_cordic method is
called by IMDCT method. This implementation uses IMDCT1 and Cosine calcula-
tion (Cordic algorithm).

The availability of di�erent alternatives of the same routine is just a �rst step
in the design space exploration of the application software. One must notice that
embedded applications are seldom implemented with a single routine. There is an-

59

Table 4.6: MP3 pro�ling results using IMDCT1 and Cosine Cordic.

Method name Number of Number of Percentage
calls cycles (%)

Imdct1.IMDCT 864 34,824,384 7.69
CosIMDCT.cos_cordic 504,576 380,954,880 84.15

SynFilter1.calculatePCMSamples 450 5,811,497 1.28
SynFilter1.calculatePCMSamples 450 5,811,497 1.28

Other methods 25,271,821 5.58
Total cycles: 452,674,079

other level of optimization, which concerns �nding the best mix of routines among
all possible combinations that may exist in an embedded application.

In order to better illustrate the concept, let us take as an example the IMDCT
function (characterized for pipeline core). In its kernel there is a cosine function
that has smaller impact in terms of overall performance. If one is aiming only
at global performance, one could pick the IMDCT4 core that takes 18,858 cycles.
Adding a cosine function based on the table look-up method the total cycles of the
application takes 49,090,752 reducing roughly 89% the number of total cycles. How-
ever, the memory size increases 15,383 program words. Table 4.7 shows these results.

Table 4.7: MP3 pro�ling results using IMDCT4 and Cosine Table.

Method name Number of Number of Percentage
calls cycles (%)

Imdct4.IMDCT 864 16,293,312 18.95
CosIMDCT.cos_table 504,576 32,797,440 38.11

SyntFilter1.calculatePCMSamples 450 5,811,497 6.76
SyntFilter1.calculatePCMSamples 450 5,811,497 6.76

Other methods 25,271,821 29.39
Total cycles: 85,985,567

Table 4.8 shows an intermediate solution. If one is aiming only at global perfor-
mance, it is not possible, however have to pay the memory overhead (one could pick
the IMDCT1 core and the cosine function based on the table look-up method). Ta-
ble shows the results of this solution where it increases the total performance of the
application 4.33 times. This is just a simple example considering only performance
and memory aspects. Other requirements (power and energy) can be analyzed de-
pending on application requirements.

4.2.2 Object exploration level results

This section shows the results of the methodology based on exploring the organiza-
tion of the objects of the application. These results were published in (MATTOS
et al., 2005a) and (MATTOS; CARRO, 2007).

60

Table 4.8: MP3 pro�ling results using IMDCT1 and Cosine Table.

Method name Number of Number of Percentage
calls cycles (%)

Imdct4.IMDCT 864 34,824,384 33.32
CosIMDCT.cos_table 504,576 32,797,440 31.31

SyntFilter1.calculatePCMSamples 450 5,811,497 5.56
SyntFilter1.calculatePCMSamples 450 5,811,497 5.56

Other methods 25,271,821 24.18
Total cycles: 104,516,639

In the object exploration level, the tool tries to transform, in an automatic way,
as many dynamic objects to static ones, in the goal to reduce execution time, while
maintaining memory costs as low as possible. This idea is based on fact that a small
part of the code creates most part of the objects.

In section 3.3.2, Table 3.1 shows that during MP3 execution 46,068 objects were
created by only 101 allocation instructions, and hence some allocation instructions
created more than one object. Thus, there are 101 possible objects transformation
in MP3 application.

Table 4.9 presents just ten di�erent allocation instructions and their results in
terms of the number of objects that each instruction allocates and the size of the
object. The comparison between the number of total allocated objects (46,068) by
the application with the number of allocated objects by the �rst instruction alloca-
tion (�rst row) shows that just one allocation instruction is responsible for 62.51%
of allocations. Transforming this allocation instruction in a static way, the results
in terms of GC overhead can be extremely improved. The Table 4.9 also presents
that other allocation instructions can improve the results too. But when a static
transformation occurs, this transformation obviously implies in memory increase.

Table 4.10 shows the results after the static transformations with the same allo-
cation instructions of the Table 4.9. These results show the performance in terms
of cycles (in the pipeline version), the percentage reduction in respect to the orig-
inal code (total OO code) and the memory increase necessary to make the static
transformation. It is interesting to notice that the static transformation in only one
allocation instruction can improve the performance results in 23.47% paying only
0.28% of memory increase.

The other allocation instructions present di�erent results in terms of performance
gain and memory increase. These values seem insigni�cant, but these transforma-
tions can be grouped taking more advantages. The Table 4.10 shows the results
of the combination of di�erent allocation instructions. For example, the third row
shows the results of the combination of the allocation instruction 1, 2 and 3. These
combinations show, as example, that grouping di�erent static transformations can
be obtained a great number of possibilities with di�erent characterization in terms

61

Table 4.9: MP3 Allocation instruction.
Allocation Number of allocated Object
instruction objects Size

#1 28,800 64
#2 1,728 144
#3 1,728 144
#4 1,728 36
#5 1,728 36
#6 1,600 144
#7 1,600 72
#8 1,536 144
#9 943 4,096
#10 900 128

Table 4.10: MP3 results after static transformation.
Allocation Number of Reduction Memory
instruction cycles (%) Increase (%)

#1 104,306,114 23.47 0.28
#2 134,378,057 1.41 0.62
#3 134,378,067 1.41 0.62
#4 134,378,057 1.41 0.16
#5 134,378,057 1.41 0.16
#6 134,520,241 1.30 0.62
#7 134,520,241 1.30 0.31
#8 134,591,333 1.25 0.62
#9 135,250,046 0.77 17.66
#10 135,297,811 0.73 0.55

of performance and memory overhead.

When di�erent static transformations are grouped, there are a great number of
possibilities with di�erent characterization in terms of performance and memory
overhead. The MP3 application has 101 allocation instructions that can be trans-
formed in static allocation, thus there are 2101 combinations that the exploration
tool can evaluate.

Figures 4.2, 4.3 and 4.4 show the design space exploration of the MP3 applica-
tion that can be explored by the tools. There is a large design space exploration.
The number of solutions is de�ned by the number of method that can explored by
the tool and the number of allocation instructions that can be transformed. The
plots in the �gures show only a small part of possible solutions. The �gures show
di�erent points: the black points represent solutions running in the pipeline version
of the processor. On the other hand, the gray points represent the solutions running
in the multicycle one.

62

Table 4.11: MP3 combinations of allocation instructions.
Allocation Number of Reduction Memory
instruction cycles (%) Increase (%)

#1 104,306,114 23.47 0.28
#1+#2 102,386,628 24.88 0.90

#1+#2+#3 100,467,152 26.29 1.06
#1+#2+#3+#4 98,547,666 27.70 1.22

In the �gure 4.2, the performance versus the increase of memory usage caused
by the transformation of the dynamic objects to static ones is presented. The �gure
shows the corner cases (the circle and the square). The black circle is the solution
with worst performance and minimum memory overhead and the black square is
the application with best performance and maximum memory overhead. The black
solution present better results in terms of performance because uses the pipeline
processor.

The �gure 4.3 shows the results in terms of power versus the increase of mem-
ory usage. As one can see, the di�erent processors dissipate di�erent amounts of
power (about 23-24mW in the pipeline processor and about 6-7mW in the multicycle
version). However, solutions based in the same processor implementation present
similar results in terms of dissipated power.

Finally, �gure 4.4 shows the results in terms of energy. Based on these solutions
the exploration tool tries to �nd the best method implementation and the best object
organization for certain application and certain application requirements. To show
the use of the tool, we selected one example with di�erent application requirements.
Set the maximum memory overhead at 51,700 bytes as application requirements.
The results are:

• The performance gain is 84,670,324 instructions that represent 37.87% of gain
in relation the original application;

• The memory overhead is 51,688 bytes (ful�ll the requirements).

This solution is represented by the square solution presented in the three �gures
(pointed by an arrow). The solution ful�ll the requirements, however it has an over-
head in terms of power because the pipeline version is selected.

63

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

22.500 32.500 42.500 52.500 62.500 72.500

Memory (bytes)

En
er

gy
 (J

)

Figure 4.2: MP3 Performance vs. Memory Design Space.

0

5

10

15

20

25

22.500 32.500 42.500 52.500 62.500 72.500

Memory (bytes)

P
ow

er
 (m

W
)

Figure 4.3: MP3 Power vs. Memory Design Space.

64

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

22.500 32.500 42.500 52.500 62.500 72.500

Memory (bytes)

En
er

gy
 (J

)

Figure 4.4: MP3 Energy vs. Memory Design Space.

5 CONCLUSIONS AND FUTURE WORK

This thesis has presented a methodology to explore object-oriented embedded soft-
ware improving di�erent tasks during the system design. This exploration is divided
into di�erent phases: the method exploration level and the object exploration level.

On the �rst exploration level, we propose a methodology for design space ex-
ploration using automatic selection of software and hardware IP components for
embedded applications. It is based on a software IP library and a set of cores with
the same ISA, the library is previously characterized for each core, and we use a
tool for automatic design space exploration and SW and HW IP selection.

Experimental results have con�rmed the hypothesis that there is a large space
to be explored based on algorithmic decisions taken at higher levels of abstraction,
much before compiler intervention. Selecting the right algorithm/right architecture
might give orders of magnitude of gain in terms of physical characteristics like mem-
ory usage, performance, and power dissipation.

On the second exploration level, we propose a methodology to improve the ex-
ecution of OO embedded application, transforming as many dynamic objects as
possible to static ones, reducing execution time, while maintaining memory costs
as low as possible. Not only is this approach very simple, but it can also lead to
substantial gains. The experimental results have con�rmed the expect gains, and
the methodology provides a large design space exploration for a given application.

There are some limitations of the proposed approach. First, on the method
exploration level, the exploration tool can map di�erent threads (with a set of rou-
tines) to di�erent processors cores. Nowadays, the hardware infrastructure does not
support this type of application, because a communication mechanism is necessary.
Moreover, the communication overhead must be considered during the mapping.

Second, there are also some limitations on the object exploration level. The
main restriction is the impossibility to deal with APIs, because these use native
code. Thus, it is not possible to use common applications. Furthermore, not all
objects can be transformed into static ones. There are some cases when this not
possible, for example when some data from the user input is used to set the size of
an array of objects.

Some technical contributions of this work can be mentioned:

66

1. The methodology based on software IP library and a set of cores with the
same ISA that uses a tool for automatic design space exploration and SW and
HW IP selection was published in two conferences. The �rst work presents
the results based only on SW IP exploration (MATTOS et al., 2004). The
second work presents the idea using design space exploration of SW and HW
IP (MATTOS et al., 2004);

2. The methodology based on exploring the organization of the objects of the
application was published in two conferences. First, the problem characteri-
zation was published in (MATTOS et al., 2005b). After, the methodology has
been evaluated with a complex example (an MP3 player) and these results
were published in (MATTOS et al., 2005a);

3. The whole methodology using the both approaches, method and object ex-
ploration levels was published in (MATTOS; CARRO, 2007). Moreover, the
whole methodology was present at DATE06 EDAA PhD Forum (MATTOS;
CARRO, 2006).

4. During this thesis some work related to recon�gurable architectures have been
investigated. As a result of the "Sandwich" PhD, one paper was published in
(MATTOS; WONG; CARRO, 2006). A methodology based on the recon�gu-
ration of the most created object was published in (MATTOS; BECK FILHO;
CARRO, 2006).

Considering this research subject, there are several general issues to be investi-
gated, like code optimization, design space exploration, use of object orientation in
embedded system. However, considering speci�cally the topics of this thesis, there
are some points that can be studied as a future work:

1. Nowadays, the main constraint is the impossibility to deal with APIs. To solve
this problem an API must be implemented. Thus, it will be possible to use
applications available on the community;

2. Evaluate the whole methodology with more applications considering the API.
The API code can produce a huge overhead hiding the bene�ts of the method-
ology on the application code;

3. During this work, a large set of tools have been used to obtain the results.
These tools must be integrated, making their interface more easy to developers;

4. The study to provide mechanism to support threads allowing the use of the
multiple cores in the same application;

5. Integration of the methodology presented in this thesis with other works in
our research group. Mainly the use of this technique with the strategy for
embedded software development based on high-level models (BRISOLARA,
2007);

6. Study the impact of object organization in micro-architecture, like caches. We
intend to analyze the memory tra�c, the behavior of the objects and how we
can modify the code to improve the performance and power.

REFERENCES

ARM. ARM Jazelle Technology. 2007. Available at:
<http://www.arm.com/products/solutions/Jazelle.html>. Visited on: September
2007.

ARNOLD, M.; FINK, S.; GROVE, D.; HIND, M.; SWEENEY, P. A survey of adap-
tive optimization in virtual machines. Proceedings of the IEEE, Los Alamitos,
CA, USA, v.93, n.2, p.449�466, 2005.

BACON, D. F.; CHENG, P.; GROVE, D. Garbage collection for embedded systems.
In: ACM INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE,
EMSOFT, 4., 2004, Pisa, Italy. Proceedings. . . New York: ACM, 2004. p.125�
136.

BALARIN, F.; CHIODO, M.; GIUSTO, P.; HSIEH, H.; JURECSKA, A.;
LAVAGNO, L.; SANGIOVANNI-VINCENTELLI, A.; SENTOVICH, E.; SUZUKI,
K. Synthesis of software programs for embedded control applications. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
Los Alamitos, CA, USA, v.18, n.6, p.834�849, June 1999.

BECK FILHO, A. C.; CARRO, L. Low Power Java Processor for Embedded Applica-
tions. In: IFIP WG 10.5 INTERNATIONAL CONFERENCE ON VERY LARGE
SCALE INTEGRATION OF SYSTEM-ON-CHIP, VLSI-SOC, 2003, Darmstadt,
Germany. Proceedings. . . Boston: Springer, 2003. p.239�244.

BECK FILHO, A. C.; CARRO, L. A VLIW low power Java processor for embedded
applications. In: INTEGRATED CIRCUITS AND SYSTEM DESIGN, SBCCI, 17.,
2004, Pernambuco, Brazil. Proceedings. . . New York: ACM, 2004. p.157�162.

BECK FILHO, A. C.; MATTOS, J. C. B.; WAGNER, F. R.; CARRO, L. CACO-PS:
a general purpose cycle-accurate con�gurable power simulator. In: SYMPOSIUM
ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 16., 2003, São
Paulo, Brazil. Proceedings. . . Los Alamitos: IEEE Computer Society Press, 2003.
p.349�354.

BERLEA, A.; COTOFANA, S. D.; ATHANASIU, I.; GLOSSNER, C. J.; VASSIL-
IADIS, S. Garbage collection for the Delft Java Processor. In: IASTED INTERNA-
TIONAL CONFERENCE ON APPLIED INFORMATICS, AI, 8., 2000, Innsbruck,
Austria. Proceedings. . . [S.l.: s.n.], 2000. p.232�238.

68

BHAKTHAVATSALAM, S.; EDWARDS, S. H. Applying object-oriented tech-
niques in embedded software design. In: CPES 2002 POWER ELECTRON-
ICS SEMINAR AND NSF/INDUSTRY ANNUAL REVIEW, 2002. Proceed-
ings. . . [S.l.: s.n.], 2002. Available at: <http://web-cat.cs.vt.edu/PEBB/CPES02-
Bhakthavatsalam.pdf>. Visited on: September 2007.

BOLLELLA, G. (Ed.). The Real-Time Speci�cation for Java. Boston: Addison
Wesley, 2000.

BOLLELLA, G.; GOSLING, J. The Real-Time Speci�cation for Java. IEEE Com-
puter, Los Alamitos, CA, USA, v.33, n.6, p.47�54, June 2000.

BRENNEMAN, T. R. Java Address Book (ver. 1.1.1). 2007. Available at:
<http://www.geocities.com/SiliconValley/2272>. Visited on: September 2007.

BRISOLARA, L. B. de. Strategies for embedded software development based
on high-level models. 2007. Tese (Doutorado em Ciência da Computação) �
Programa de Pós-Graduação em Computação, UFRGS, Porto Alegre.

BUDDY, T.An Introduction to Object-Oriented Programming. Boston: Ad-
dison Wesley, 2001.

CHATZIGEORGIOU, A.; STEPHANIDES, G. Evaluating Performance and Power
of Object-Oriented Vs. Procedural Programming in Embedded Processors. In:
ADA-EUROPE INTERNATIONAL CONFERENCE ON RELIABLE SOFTWARE
TECHNOLOGIES, 7., 2002, Vienna, Austria. Proceedings. . . Berlin: Springer,
2002. p.65�75. (Lecture Notes in Computer Science, v.2361).

CHEN, G.; KANDEMIR, M.; VIJAYKRISHNAN, N.; IRWIN, M. J.; MATHISKE,
B.; WOLCZKO, M. Heap compression for memory-constrained Java environments.
In: ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED PROGRAMING,
SYSTEMS, LANGUAGES, AND APPLICATIONS, OOPSLA, 18., 2003, Anaheim,
California. Proceedings. . . New York: ACM, 2003. p.282�301.

CHEN, G.; SHETTY, R.; KANDEMIR, M.; VIJAYKRISHNAN, N.; IRWIN, M. J.;
WOLCZKO, M. Tuning garbage collection for reducing memory system energy in
an embedded java environment.ACM Transactions on Embedded Computing
Systems (TECS), New York, NY, USA, v.1, n.1, p.27�55, 2002.

CHEREM, S.; RUGINA, R. Region analysis and transformation for Java programs.
In: INTERNATIONAL SYMPOSIUM ON MEMORY MANAGEMENT, ISMM, 4.,
2004, Vancouver, BC, Canada. Proceedings. . . New York: ACM, 2004. p.85�96.

CHOI, K. won; CHATTERJEE, A. E�cient instruction-level optimization method-
ology for low-power embedded systems. In: INTERNATIONAL SYMPOSIUM ON
SYSTEMS SYNTHESIS, ISSS, 14., 2001, Montreal, Canada. Proceedings. . . New
York: ACM, 2001. p.147�152.

CRNKOVIC, I. Component-based software engineering for embedded systems. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE, 27.,
2005, St. Louis, MO. Proceedings. . . New York: ACM Press, 2005. p.712�713.

69

DALAL, V.; RAVIKUMAR, C. Software power optimizations in an embedded sys-
tem. In: INTERNATIONAL CONFERENCE ON VLSI DESIGN, 14., 2001, Ban-
galore, India. Proceedings. . . Los Alamitos: IEEE Computer Society Press, 2001.
p.254�259.

DETERS, M.; LEIDENFROST, N.; HAMPTON, M.; BRODMAN, J.; CYTRON,
R. Automated reference-counted object recycling for real-time Java. In: IEEE
REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYM-
POSIUM,RTAS, 10., 2004, Toronto, Canada. Proceedings. . . Los Alamitos: IEEE
Computer Society Press, 2004. p.424�433.

DETLEFS, D.; DOSSER, A.; ZORN, B. Memory allocation costs in large C and
C++ programs. SoftwarePractice & Experience, New York, NY, USA, v.24,
n.6, p.527�542, June 1994.

DUTT, N.; NICOLAU, A.; TOMIYAMA, H.; HALAMBI, A. New directions in com-
piler technology for embedded systems. In: ASIA AND SOUTH PACIFIC DESIGN
AUTOMATION CONFERENCE, ASP-DAC, 2001, Yokohama, Japan. Proceed-
ings. . . Los Alamitos: IEEE Computer Society Press, 2001. p.409�414.

EGGERMONT, L. D. Embedded Systems Roadmap. 2002. Available at:
<http://www.stw.nl/progress/ESroadmap/index.html>. Visited on: September
2007.

EL-KHARASHI, M. W.; ELGUIBALY, F.; LI, K. F. A quantitative study for Java
microprocessor architectural requirements. Part II: high-level language support.Mi-
croprocessors and Microsystems, New York, v.24, n.5, p.237�250, Sept. 2000.

GENSSLER, T.; CHRISTOPH, A.; WINTER, M.; NIERSTRASZ, O.; DUCASSE,
S.; WUYTS, R.; AREVALO, G.; SCHONHAGE, B.; MULLER, P.; STICH, C.
Components for embedded software: the pecos approach. In: INTERNATIONAL
CONFERENCE ON COMPILERS, ARCHITECTURE, AND SYNTHESIS FOR
EMBEDDED SYSTEMS, CASES, 2002, Grenoble, France. Proceedings. . . New
York: ACM Press, 2002. p.19�26.

GRAAF, B.; LORMANS, M.; TOETENEL, H. Embedded software engineering: the
state of the practice. IEEE Software, Los Alamitos, CA, USA, v.20, n.6, p.61�69,
Nov./Dec. 2003.

HEINEMAN, G. T.; COUNCILL, W. T. Component-Based Software Engi-
neering: putting the pieces together. Boston: Addison Wesley, 2001.

HENTSCHKE, R. Dragon Lemon. 2007. Available at:
<http://www.inf.ufrgs.br/ renato/dragonlemon>. Visited on: September 2007.

HOROWITZ, E.; SAHNI, S. Fundamentals of Computer Algorithms. Mary-
land: Computer Science Press, 1978.

ITO, S. A.; CARRO, L.; JACOBI, R. P. Making Java Work for Microcontroller
Applications. IEEE Design and Test, Los Alamitos, CA, USA, v.18, n.5, p.100�
110, Sept./Oct. 2001.

70

JAVALAYER. Java MP3 Player. 2007. Available at:
<http://www.javazoom.net/javalayer/sources.html>. Visited on: September
2007.

JONES, R.; LINS, R. D. Garbage Collection: algorithms for automatic dynamic
memory management. Chichester: John Wiley, 1996.

KANDEMIR, M.; VIJAYKRISHNAN, N.; IRWIN, M.; YE, W. In�uence of compiler
optimizations on system power. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, Los Alamitos, CA, USA, v.9, n.6, p.801�804, Dec. 2001.

KAZI, I. H.; CHEN, H. H.; STANLEY, B.; LILJA, D. J. Techniques for obtaining
high performance in Java programs. ACM Computing Surveys, New York, NY,
USA, v.32, n.3, p.213�240, Sept. 2000.

KIM, J.-S.; HSU, Y. Memory system behavior of Java programs: methodology and
analysis. ACM SIGMETRICS Performance Evaluation Review, New York,
NY, USA, v.28, n.1, p.264�274, June 2000.

KISTLER, T.; FRANZ, M. Continuous program optimization: a case study. ACM
Trans. Program. Lang. Syst., New York, NY, USA, v.25, n.4, p.500�548, 2003.

LANFER, C.; BALLACO, S. The Embedded Software Strategic Market
Intelligence: java in embedded systems. 2003. Available at: <http://www.vdc-
corp.com/embedded/white/03/03esdtvol4.pdf>. Visited on: September 2007.

LAWTON, G. Moving Java into Mobile Phones. Computer, Los Alamitos, CA,
USA, v.35, n.6, p.17�20, 2002.

LEE, E. What's ahead for embedded software? Computer, Los Alamitos, CA,
USA, v.33, n.9, p.18�26, 2000.

LEE, H. B.; ZORN, B. G. BIT: a tool for instrumenting java bytecodes. In: USENIX
SYMPOSIUM ON INTERNET TECHNOLOGIES AND SYSTEMS, USITS, 1997,
Monterey, California. Proceedings. . . Berkeley: USENIX Association, 1997. p.7�
17.

LIN, C.-M.; CHEN, T.-F. Dynamic memory management for real-time embedded
Java chips. In: INTERNATIONAL CONFERENCE ON REAL-TIME COMPUT-
ING SYSTEMS AND APPLICATIONS, RTCSA, 17., 2000, Cheju Island, South
Korea. Proceedings. . . Los Alamitos: IEEE Computer Society Press, 2000. p.49�
56.

LINDHOLM, T.; YELLIN, F. The Java Virtual Machine Speci�cation. Read-
ing: Prentice Hall, 1999.

LOCKE, C.; DIBBLE, P. Java technology comes to real-time applications. Pro-
ceedings of the IEEE, [S.l.], v.91, n.7, p.1105�1113, July 2003.

LUN, M. P.; FONG, A.; HAU, G. K. W. Object-oriented processor requirements
with instruction analysis of Java programs. SIGARCH Computer Architecture
News, New York, v.31, n.5, p.10�15, 2003.

71

MARTELLO, S.; TOTH, P. Knapsack Problems: algorithms and computer im-
plementations. New York: John Wiley & Sons, 1990.

MATTOS, J. C. B.; BECK FILHO, A. C.; CARRO, L. Object-Oriented Recon-
�guration. In: IEEE/IFIP INTERNATIONAL WORKSHOP ON RAPID SYS-
TEM PROTOTYPING, RSP, 18., 2006, Porto Alegre, Brazil. Proceedings. . . Los
Alamitos: IEEE Computer Society Press, 2006. p.69�72.

MATTOS, J. C. B.; BECK FILHO, A. C.; CARRO, L.; WAGNER, F. R. Design
Space Exploration with Automatic Generation of IP-Based Embedded Software. In:
INTERNATIONAL WORKSHOP ON SYSTEMS, ARCHITECTURES, MODEL-
ING, AND SIMULATION, SAMOS, 2004, Samos, Greece. Proceedings. . . Berlin:
Springer-Verlag, 2004. p.303�312. (Lecture Notes in Computer Science, v.3133).

MATTOS, J. C. B.; BRISOLARA, L.; HENTSCHKE, R.; CARRO, L.; WAGNER,
F. R. Design Space Exploration with Automatic Generation of IP-Based Embedded
Software. In: IFIP WORKING CONFERENCE ON DISTRIBUTED AND PAR-
ALLEL EMBEDDED SYSTEMS, DIPES, 2004, Toulouse, France. Proceedings. . .
Boston: Kluwer Academic Publishers, 2004. p.237�246.

MATTOS, J. C. B.; CARRO, L. Design Space Exploration in the Use of
Object Oriented Software for Embedded System Applications. 2006. Poster
Presentation in EDAA PhD Forum at Design, Automation and Test in Europe,
DATE, Munich, Germany.

MATTOS, J. C. B.; CARRO, L. Object and Method Exploration for Embedded Sys-
tems Applications. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYS-
TEMS DESIGN, SBCCI, 20., 2007, Rio de Janeiro, Brazil. Proceedings. . . New
York: ACM Press, 2007. p.318�323.

MATTOS, J. C. B.; SPECHT, E.; NEVES, B.; CARRO, L. Object Orientation
Problems when Applied to the Embedded Systems Domain. In: INTERNATIONAL
EMBEDDED SYSTEMS SYMPOSIUM, IESS, 2005, Manaus, Brazil. Proceed-
ings. . . New York: Springer, 2005. p.147�156.

MATTOS, J. C. B.; SPECHT, E.; NEVES, B.; CARRO, L. Making Object Ori-
ented E�cient for Embedded System Applications. In: SYMPOSIUM ON INTE-
GRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 18., 2005, Florianópolis,
Brazil. Proceedings. . . New York: ACM Press, 2005. p.104�109.

MATTOS, J. C. B.; WONG, S.; CARRO, L. The Molen FemtoJava Engine. In:
IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYS-
TEMS, ARCHITECTURES AND PROCESSORS, ASAP, 17., 2006, Steamboat
Springs, Colorado. Proceedings. . . Los Alamitos: IEEE Computer Society Press,
2006. p.19�22.

MCGHAN, H.; O'CONNOR, M. PicoJava: a direct execution engine for java byte-
code. Computer, Los Alamitos, CA, USA, v.31, n.10, p.22�30, Oct. 1998.

MULCHANDANI, D. Java for Embedded Systems. IEEE Internet Computing,
Piscataway, NJ, USA, v.2, n.3, p.30�39, 1998.

72

NAZOMI COMMUNICATIONS. Nazomi Multimedia Application Processor.
2007. Available at: <http://www.nazomi.com/images/ja108_pb.pdf>. Visited on:
September 2007.

NEVES, B. S. Gerência dinâmica de memória em aplicações Java embar-
cadas. 2005. Dissertação (Mestrado em Ciência da Computação) � Programa de
Pós-Graduação em Computação, UFRGS, Porto Alegre.

NOKIA. Nokia Home Page. 2007. Available at: <http://www.nokia.com>. Vis-
ited on: September 2007.

OMONDI, A. R. Computer Arithmetic Systems: algorithms, architecture and
implementation. Upper Saddle River: Prentice Hall, 1994.

PANDA, P. R.; CATTHOOR, F.; DUTT, N. D.; DANCKAERT, K.; BROCK-
MEYER, E.; KULKARNI, C.; VANDERCAPPELLE, A.; KJELDSBERG, P. G.
Data and memory optimization techniques for embedded systems. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), New York,
NY, USA, v.6, n.2, p.149�206, Apr. 2001.

PEYMANDOUST, A.; MICHELI, G. D.; SIMUNIC, T. Complex library mapping
for embedded software using symbolic algebra. In: DESIGN AUTOMATION CON-
FERENCE, DAC, 39., 2002, New Orleans, Louisiana. Proceedings. . . New York:
ACM, 2002. p.325�330.

PFEFFER, M.; UNGERER, T.; FUHRMANN, S.; KREUZINGER, J.;
BRINKSCHULTE, U. Real-Time Garbage Collection for a Multithreaded Java Mi-
crocontroller. Real-Time Systems, Norwell, MA, v.26, n.1, p.89�106, 2004.

PILON, A. Pacman Silver Edition. 2007. Available at:
<http://www.netconplus.com/antstu�/pacman.php>. Visited on: September
2007.

RADHAKRISHNAN, R.; RUBIO, J.; JOHN, L. K. Characterization of Java Appli-
cations at Bytecode and Ultra-SPARC Machine Code Levels. In: IEEE INTERNA-
TIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 1999, Austin, Texas.
Proceedings. . . Los Alamitos: IEEE Computer Society Press, 1999. p.281�284.

REYNERI, L. M.; CUCINOTTA, F.; SERRA, A.; LAVAGNO, L. A hard-
ware/software co-design �ow and IP library based on simulink. In: DESIGN AU-
TOMATION CONFERENCE, DAC, 38., 2001, Las Vegas, Nevada. Proceed-
ings. . . New York: ACM, 2001. p.593�598.

RITZAU, T. Hard Real-Time Reference Counting without External Fragmentation.
In: JAVA OPTIMIZATION STRATEGIES FOR EMBEDDED SYSTEMS, JOSES,
2001, Genoa, Italy. Proceedings. . . [S.l.: s.n.], 2001.

SALOMONSEN, K. Design and Implementation of an MPEG/Audio Layer
III Bitstream Processor. 1997. Master Thesis � Aalborg University, Denmark.

SANGIOVANNI VINCENTELLI, A.; MARTIN, G. Platform-based design and soft-
ware design methodology for embedded systems. IEEE Design & Test of Com-
puters, Los Alamitos, CA, USA, v.18, n.6, p.23�33, Nov./Dez. 2001.

73

SHAHAM, R.; KOLODNER, E. K.; SAGIV, M. Heap pro�ling for space-e�cient
Java. In: ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE
DESIGN AND IMPLEMENTATION, PLDI, 2001, Snowbird, Utah, USA. Pro-
ceedings. . . New York: ACM, 2001. p.104�113.

SHANDLE, J.; MARTIN, G. Making Embedded Software reusable for
SoCs. 2001. Available at: <http://www.eetimes.com/news/design/features/
/showArticle.jhtml?articleID=16504598>. Visited on: September 2007.

SHUF, Y.; GUPTA, M.; FRANKE, H.; APPEL, A.; SINGH, J. P. Creating and
preserving locality of java applications at allocation and garbage collection times. In:
ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING,
SYSTEMS, LANGUAGES, AND APPLICATIONS, OOPSLA, 17., 2002, Seattle,
Washington, USA. Proceedings. . . New York: ACM, 2002. p.13�25.

SMITH, C. U.; WILLIAMS, L. G. Software performance engineering. In:
LAVAGNO, L.; MARTIN, G.; SELIC, B. V. (Ed.). UML for real: design of em-
bedded real-time systems. Norwell, MA, USA: Klumer Academic Publishers, 2003.
p.343�365.

SOMMERVILLE, I. Software Engineering. Reading: Addison Wesley, 2000.

SRISA-AN, W.; LO, C.-T.; CHANG, J.-M. Active memory processor: a hardware
garbage collector for real-time java embedded devices. Transactions on Mobile
Computing, Los Alamitos, CA, USA, v.2, n.2, p.89�101, 2003.

STROM, O.; SVARSTAD, K.; AAS, E. J. On the Utilization of Java Technology in
Embedded Systems. Design Automation for Embedded Systems, New York,
v.8, n.1, p.87�106, Mar. 2003.

SUN MICROSYSTEMS. Java ME Technology. 2007. Available at:
<http://java.sun.com/javame/technology/index.jsp>. Visited on: September
2007.

SUN MICROSYSTEMS. Java Card Technology. 2007. Available at:
<http://java.sun.com/products/javacard/>. Visited on: September 2007.

SUN MICROSYSTEMS. White Paper on KVM and the Con-
nected, Limited Device Con�guration (CLDC). 2007. Available at:
<http://java.sun.com/products/cldc/wp/KVMwp.pdf>. Visited on: September
2007.

SUN MICROSYSTEMS. SymbolTest. 2007. Available at:
<http://java.sun.com/j2se/1.3/docs/guide/awt/demos/symboltest/actual/index.html>.
Visited on: September 2007.

SUN MICROSYSTEMS. Notepad. 2007. Available at:
<http://java.sun.com/j2se/1.3/docs/relnotes/demos.html>. Visited on: September
2007.

TAKAHASHI, D. Java Chips Make a Comeback. 2001. Red Herring, 2001.

74

TIWARI, V.; MALIK, S.; WOLFE, A. Power analysis of embedded software: a �rst
step towards software power minimization. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Los Alamitos, CA, USA, v.2, n.4, p.437�445,
Dec. 1994.

WOLF, W. Computer as Components: principles of embedded computer sys-
tems design. San Francisco: Morgan Kaufmann Publishers, 2001.

WOLF, W.; KANDEMIR, M. Memory system optimization of embedded soft-
ware. Proceedings of the IEEE, Los Alamitos, CA, USA, v.91, n.1, p.165�182,
Jan. 2003.

YEN, I.-L.; GOLUGURI, J.; BASTANI, F.; KHAN, L.; LINN, J. A component-
based approach for embedded software development. In: IEEE INTERNATIONAL
SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DISTRIBUTED COM-
PUTING, ISORC, 5., 2002, Washington, DC. Proceedings. . . Los Alamitos: IEEE
Computer Society Press, 2002. p.402�410.

LIST OF PUBLICATIONS

MATTOS, J. C. B.; CARRO, L. Object and Method Exploration for Embedded Sys-
tems Applications. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYS-
TEMS DESIGN, SBCCI, 20., 2007, Rio de Janeiro, Brazil. Proceedings. . . New
York: ACM Press, 2007. p.318�323.

MATTOS, J. C. B.; BECK FILHO, A. C.; CARRO, L. Object-Oriented Recon-
�guration. In: IEEE/IFIP INTERNATIONAL WORKSHOP ON RAPID SYS-
TEM PROTOTYPING, RSP, 18., 2006, Porto Alegre, Brazil. Proceedings. . . Los
Alamitos: IEEE Computer Society Press, 2006. p.69�72.

MATTOS, J. C. B.; WONG, S.; CARRO, L. The Molen FemtoJava Engine. In:
IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYS-
TEMS, ARCHITECTURES AND PROCESSORS, ASAP, 17., 2006, Steamboat
Springs, Colorado. Proceedings. . . Los Alamitos: IEEE Computer Society Press,
2006. p.19�22.

MATTOS, J. C. B.; CARRO, L. Design Space Exploration in the Use of
Object Oriented Software for Embedded System Applications. 2006. Poster
Presentation in EDAA PhD Forum at Design, Automation and Test in Europe,
DATE, Munich, Germany.

MATTOS, J. C. B.; SPECHT, E.; NEVES, B.; CARRO, L. Making Object Ori-
ented E�cient for Embedded System Applications. In: SYMPOSIUM ON INTE-
GRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 18., 2005, Florianópolis,
Brazil. Proceedings. . . New York: ACM Press, 2005. p.104�109.

MATTOS, J. C. B.; SPECHT, E.; NEVES, B.; CARRO, L. Object Orientation
Problems when Applied to the Embedded Systems Domain. In: INTERNATIONAL
EMBEDDED SYSTEMS SYMPOSIUM, IESS, 2005, Manaus, Brazil. Proceed-
ings. . . New York: Springer, 2005. p.147�156.

BECK, A. C.; HENTSCHKE, R.; MATTOS, J. C. B.; REIS, R.; CARRO, L. Fast
and E�cient Test Generation for Embedded Stack Processors. In: IEEE LATIN
AMERICAN TEST WORKSHOP, LATW, 6., 2005, Salvador, Brazil. Proceed-
ings. . . [S.l.: s.n.], 2005. p.331�336.

BECK, A. C.; MATTOS, J. C. B.; CARRO, L. Applying JAVA on Single-Chip Mul-
tiprocessors. In: XI INTERNATIONAL WORKSHOP IBERCHIP, 2005, Salvador,
Brazil. Proceedings. . . Iberchip, 2005. p.19�22.

76

GOMES, V. F.; BECK, A. C.; MATTOS, J. C. B.; BARCELOS, R. H.; CARRO, L.
Automatic Generation of an MP3 Player. In: XI INTERNATIONAL WORKSHOP
IBERCHIP, 2005, Salvador, Brazil. Proceedings. . . Iberchip, 2005. p.31�34.

MATTOS, J. C. B.; BRISOLARA, L.; HENTSCHKE, R.; CARRO, L.; WAGNER,
F. R. Design Space Exploration with Automatic Generation of IP-Based Embedded
Software. In: IFIP WORKING CONFERENCE ON DISTRIBUTED AND PAR-
ALLEL EMBEDDED SYSTEMS, DIPES, 2004, Toulouse, France. Proceedings. . .
Boston: Kluwer Academic Publishers, 2004. p.237�246.

MATTOS, J. C. B.; BECK, A. C.; CARRO, L.; WAGNER, F. R. Design Space
Exploration with Automatic Generation of IP-Based Embedded Software. In: IN-
TERNATIONAL WORKSHOP ON SYSTEMS, ARCHITECTURES, MODEL-
ING, AND SIMULATION, SAMOS, 2004, Samos, Greece. Proceedings. . . Berlin:
Springer-Verlag, 2004. p.303�312. (Lecture Notes in Computer Science - LNCS
3133).

HENTSCHKE, R.; BECK, A. C.; MATTOS, J. C. B.; CARRO, L.;
LUBASZEWSKI, M.; REIS, R. Using Genetic Algorithms to Accelerate Auto-
matic Software Generation for Microprocessor Functional Testing. In: IEEE LATIN
AMERICAN TEST WORKSHOP, LATW, 5., 2004, Cartagena, Colômbia. Pro-
ceedings. . . [S.l.: s.n.], 2004. p.37�42.

BECK, A. C.; MATTOS, J. C. B.; WAGNER, F. R.; CARRO, L. CACO-PS: a gen-
eral purpose cycle-accurate con�gurable power simulator. In: SYMPOSIUM ON IN-
TEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 16., 2003, São Paulo,
Brazil. Proceedings. . . Los Alamitos: IEEE Computer Society Press, 2003. p.349�
354.

APPENDIX A
EXPLORAÇÃO DO ESPAÇO DE PROJETO DE
COMPONENTES DE SW E HW IP BASEADA EM
UMA METODOLOGIA ORIENTADA A OBJETOS
PARA SISTEMAS EMBARCADOS

Este anexo apresenta um resumo expandido da tese com introdução e motivação
ao tema, os objetivos, metodologia e principais contribuições geradas pelo trabalho.

Introdução

Atualmente, o mercado de sistemas embarcados cresce em um ritmo acelerado
disponibilizando novos produtos com diferentes aplicações. Estes sistemas encontram-
se por toda a parte, como por exemplo, em telefones celulares, carros, vídeo games,
entre outros. Nas aplicações embarcadas, os requisitos como desempenho, redução
do consumo de energia e tamanho de memória, entre outros, devem ser considera-
dos. Além do mais, a complexidade dos sistemas embarcados está aumentando de
maneira considerável.

Os sistemas embarcados são heterogêneos e eles contêm uma grande variedade
de algoritmos implementados por diversas tecnologias de software ou de hardware.
No passado, as con�gurações de hardware dominavam a maioria as implementações,
enquanto que, atualmente, a maioria das aplicações são implementadas em con-
�gurações mistas onde o software constitui a principal parte (BALARIN et al.,
1999)(SHANDLE; MARTIN, 2001). Provavelmente no futuro cada vez mais produ-
tos possuirão as suas principais características desenvolvidas em software. Assim,
o software está se tornando cada vez mais o principal fator de custo no desen-
volvimento de dispositivos embarcados (GRAAF; LORMANS; TOETENEL, 2003;
EGGERMONT, 2002).

Mais recentemente o projeto baseado em plataformas (Platform-Based Design)
foi introduzido (SANGIOVANNI VINCENTELLI; MARTIN, 2001). Essas platafor-
mas podem ser vistas como um conjunto de recursos e serviços oferecidos para
a implementação do sistema, permitindo ao projetista con�gurar o sistema alvo
para melhor suportar uma determinada aplicação. Na realidade, estas metodologias
baseiam-se em um hardware único (plataforma) que disponibiliza um conjunto de
recursos e serviços que são con�gurados através da geração de software para esta

78

plataforma. Porém, o desenvolvimento de software para esta plataforma consome a
maior parte do tempo, além do produto gerado por este desenvolvimento impactar
diretamente nos requisitos dos sistemas embarcados.

Atualmente, existe uma grande variedade de blocos IP (Intellectual Property)
como cores de processadores com diversos estilos de arquitetura, como RISC, DSP,
VLIW. Também, existe um crescente número de IP de software que podem ser
utilizados no projeto de sistemas embarcados complexos. Assim, com um grande
número de soluções de IPs de software e hardware, o projetista possui diversas pos-
sibilidades e necessita de metodologias e ferramentas que permitam uma e�ciente
exploração do espaço de projeto para atingir um curto tempo de projeto devido ao
prazo exíguo tempo imposto pelo mercado.

Através dos anos, a codi�cação de software embarcado foi tradicionalmente
desenvolvida em linguagem assembly, devido à existência de tamanho restrito de
memória e desempenho limitados (LEE, 2000). As melhores tecnologias de software
utilizam grandes quantidades de memória, níveis de abstração, algoritmos elabora-
dos, e outras abordagens que não são diretamente aplicáveis nos sistemas embarca-
dos. Contudo, as capacidades do hardware foram melhoradas, e o mercado demanda
produtos mais elaborados, aumentando a complexidade do software. Assim, o uso
de melhores metodologias de software é claramente necessário, como por exemplo,
a orientação a objetos. No entanto, estas técnicas abstratas de software necessitam
um alto custo no domínio embarcado, e o problema do desenvolvimento de software
embarcado para o mercado de embarcados persiste.

Uma das principais metodologias de software é o paradigma orientado a objetos
(SOMMERVILLE, 2000). Nas últimas décadas, a técnica de orientação a objetos
se tornou o paradigma de programação dominante. A orientação a objetos pode ser
utilizada desde problemas triviais até problemas complexos. Apesar das vantagens
da orientação a objetos, a sua aceitação no mundo de embarcados tem sido lenta. Os
projetistas de software embarcado são relutantes em adotar esta metodologia devido
a sobrecarga em termos de memória e desempenho (DETLEFS; DOSSER; ZORN,
1994; CHATZIGEORGIOU; STEPHANIDES, 2002; BHAKTHAVATSALAM; ED-
WARDS, 2002).

Utilizando o paradigma orientado a objetos os desenvolvedores necessitam de
uma linguagem orientada a objetos para realizar a implementação. Ao logo de al-
guns anos atrás, os desenvolvedores de embarcados adotaram a linguagem Java,
devido esta tecnologia fornecer uma alta portabilidade e reuso de código para suas
aplicações (MULCHANDANI, 1998; LAWTON, 2002). Além, Java possui diversas
características como tamanho de código e�ciente e menor necessidade de memória
em relação às outras linguagens de programação, tornando Java uma alternativa
interessante como linguagem para especi�car e implementar sistemas embarcados.
Assim, os desenvolvedores estão livres para o uso da orientação a objetos e todo
o conjunto de vantagens que esta linguagem fornece. Neste caso, deve-se também
tratar com os recursos limitados de um sistema embarcado.

Como mencionado, as metodologias de software existentes utilizadas no desen-

79

volvimento de sistemas embarcados, especi�camente software embarcado, não tem
sido su�ciente para tratar a crescimento da complexidade das novas aplicações. Além
disso, estas metodologias são voltadas a resolver apenas os problemas para o desen-
volvimento de software tradicional. Desta maneira, este trabalho apresenta uma
metodologia para exploração de componentes IP de software e hardware baseados
em uma plataforma. Esta metodologia utiliza um software embarcado orientado a
objetos para melhorar diferentes tarefas no projeto do sistema.

Objetivos

O principal objetivo da tese é fornecer uma metodologia e um conjunto de ferra-
mentas que permita, ao mesmo tempo, manipular as metodologias tradicionais de
desenvolvimento de software (projeto baseado em plataformas, engenharia baseada
em componentes, orientação a objetos e linguagem Java) com os diferentes requisitos
do projeto para sistemas embarcados (energia, desempenho e tamanho de memória).

A tese introduz uma metodologia para exploração do software orientado a obje-
tos que procura melhorar diferentes pontos no projeto do sistema. A abordagem é
dividida em duas principais partes onde a exploração do software embarcado pode
ser melhorada.

A primeira parte, chamada de nível de exploração de método, possui como ob-
jetivo melhorar a implementação dos métodos (dos algoritmos que implementam os
métodos). Esta fase de exploração apresenta um mecanismo de seleção automática
de componentes IP de software e de hardware para aplicações embarcadas, que é
baseada em uma biblioteca de IPs de software e uma ferramentas de exploração de
projeto.

A segunda parte, chamada de nível de exploração de objetos, procura explorar a
organização dos objetos e com isso melhorar o gerenciamento dinâmico de memória.
Este nível utiliza uma ferramenta de exploração de projeto que permite a seleção
automática da melhor organização dos objetos. Esta abordagem está de acordo com
as técnicas clássicas de orientação a objetos e com os requisitos físicos dos sistemas
embarcados. O objetivo geral desta fase é fornecer um suporte em alto nível que
permita ao mesmo tempo otimizar a memória, energia e desempenho dos sistemas
embarcados.

Metodologia

Os sistemas embarcados trabalham como diversos requisitos e restrições. Assim, o
desenvolvimento do software embarcado difere do desenvolvimento tradicional (de-
senvolvimento para desktop e aplicações coorporativas) e as técnicas e metodologias
disponíveis devem ser adaptadas para manipular as restrições dos sistemas embar-
cados.

Novas tecnologias (metodologias, linguagens, etc.) apresentam diversos proble-
mas. O principal problema é relacionado ao tempo de aprendizado de novas tecnolo-
gias pelos projetistas. Assim, muitas companhias evitam adotar novas metodologias

80

ou linguagens de programação. Desta maneira, um dos objetivos da abordagem
apresentada neste trabalho é evitar alterações no �uxo de projeto tradicional de
desenvolvimento de software.

A abordagem proposta utiliza tecnologias utilizadas no dia a dia e a idéia é in-
troduzir um conjunto de ferramentas que permitam a melhoria do software original
através da geração de um novo código otimizado. Estas ferramentas devem ser de
fácil aprendizado e uso. Também, as ferramentas fazem a exploração do espaço de
projeto, permitindo a con�guração automática de uma solução de software otimizada
para uma aplicação especí�ca de acordo com os requisitos do software embarcado.

A abordagem de software embarcado apresentada é dividida em duas principais
partes de exploração. A Figura A.1 mostra o �uxo simpli�cado de projeto da tese
contemplando estas fases.

A primeira fase introduz um mecanismo de seleção automática de componentes
de software para aplicações embarcadas, que é baseado em uma biblioteca de soft-
ware e uma ferramenta de exploração de projeto. A biblioteca de software possui
diferentes implementações algorítmicas de diversas rotinas comumente encontradas
no domínio de embarcados.

A segunda fase consiste no uso de uma ferramenta de exploração de projeto que
permite uma seleção automática da melhor organização dos objetos. Esta ferra-
menta tenta transformar, de maneira automática, os objetos dinâmicos em objetos
estáticos, com o objetivo de reduzir o tempo total de execução da aplicação man-
tendo o custo (tamanho) de memória o mais baixo possível.

Além disso, estas duas fases (baseada na exploração de métodos e a outra baseada
na exploração de objetos) são ortogonais, isto é, a suas execução são independentes.
O projetista pode utilizar primeiro a ferramenta de exploração de métodos e após
a ferramenta de exploração de objetos, ou vice-versa. Assim, as otimizações provo-
cadas por cada ferramenta são ortogonais, tornando a complexidade da exploração
simples.

A plataforma alvo é composta de um conjunto de processadores Java. Estes pro-
cessadores implementam diferentes versões do processador FemtoJava (ITO; CARRO;
JACOBI, 2001).

Contribuições do Trabalho

Durante o desenvolvimento do trabalho foram produzidas algumas contribuições
técnicas:

1. Uma metodologia baseada em uma biblioteca de IPs de sofware e um conjunto
de núcleos de processadores com o mesmo conjunto de instruções que utilizam
uma ferramenta de exploração do espaço de projeto de IPs de SW e HW foi
publicada em duas conferências. O primeiro trabalho apresentou os resultados
baseados somente na exploração de IPs de SW (MATTOS et al., 2004). O
segundo trabalho apresentou a exploração combinada de IPs de SW e HW

81

Aplicação
Requisitos da

Aplicação

Ferramenta de
Exploração 1

Biblioteca de
Software

Ferramenta de
Exploração 1

FemtoJava
Multiciclo

FemtoJava
Pipeline

FemtoJava
VLIW 2

FemtoJava
VLIW 4

FemtoJava
DSP

Plataforma Alvo

Software Gerado

Nível de Exploração de Método

Nível de Exploração de Objetos

Saída

Entrada

Figure A.1: Fluxo de Projeto da Metodologia.

82

(MATTOS et al., 2004);

2. A metodologia baseada na exploração da organização dos objetos da aplicação
foi publicado em duas conferências. Primeiro, a caracterização do problema
foi publicado em (MATTOS et al., 2005b). Após, a metodologia foi avaliada
com um exemplo complexo (um tocador de MP3) a estes resultados foram
publicados em (MATTOS et al., 2005a);

3. A metodologia completa utilizado as duas abordagens (exploração de méto-
dos e objetos) foi publicada em (MATTOS; CARRO, 2007). Além disso, a
metodologia completa foi apresentada no DATE06 EDAA PhD Forum (MAT-
TOS; CARRO, 2006);

4. Durante o desenvolvimento da tese alguns trabalhos relacionados a arquite-
turas recon�guráveis foi investigado. Como resultado do estágio no exte-
rior, um artigo foi publicado em (MATTOS; WONG; CARRO, 2006). Uma
metodologia baseada na recon�guração dos mais criados objetos foi publicado
em (MATTOS; BECK FILHO; CARRO, 2006).

APPENDIX B CLASS DIAGRAM - STATIC

Figure B.1: Class Diagram - Static.

84

APPENDIX C CLASS DIAGRAM - ORIENTED
OBJECT

Figure C.1: Class Diagram - Oriented Object.

86

APPENDIX D SEQUENCE DIAGRAM - STATIC

Figure D.1: Sequence Diagram - Static.

88

APPENDIX E SEQUENCE DIAGRAM - ORIENTED
OBJECT

Figure E.1: Sequence Diagram - Oriented Object.

90

APPENDIX F CDROM DESCRIPTION

The CDROM contains the following directory structure:

• DESEJOS Tool: this directory contains the set of a tools developed (the
source and binaries codes);

• Library Characterization: contains the source code and the results of the
library characterization;

• MP3 Case Study: this directory contains the source code of di�erent versions
of the MP3 player application and all of the results concerning method and
object exploration;

• Publications: contains the PDF �les of the author's publications;

• Thesis: contains the PDF �le of the thesis and the PowerPoint presentation.

