19 a 23 de outubro - Campus de Vale - UFRGS

Salão de Iniciação Científica

Época de dessecação do nabo forrageiro e seus efeitos no milho irrigado em sucessão

Cristhian Richetti⁽¹⁾; Paulo Regis Ferreira da Silva⁽²⁾.

(1)Estudante; Faculdade de Agronomia/UFRGS; Porto Alegre, Rio Grande do Sul; Endereço eletrônico (cristhianrichetti@gmail.com); (2) Professor e pesquisador; Universidade Federal do Rio Grande do Sul.

INTRODUÇÃO

Dentro dos sistemas de sucessão de culturas com milho em semeadura direta no sul do Brasil, a escolha da espécie de cobertura de inverno é fator chave para se alcançar altas produtividades. O nabo forrageiro (*Raphanus sativus* L.), espécie da família das brassicáceas, é uma alternativa interessante, pois tem como características a alta capacidade de ciclagem de nutrientes de camadas mais profundas do solo e baixa relação C/N nos resíduos vegetais. No entanto, alguns cuidados devem ser tomados no manejo da dessecação dessa espécie para que ela cumpra seu papel no sistema e não se torne uma planta indesejada.

OBJETIVO

Avaliar o efeito de diferentes épocas de dessecação do nabo forrageiro, utilizado como cobertura de solo no outono-inverno, sobre o rendimento de grãos e outras características agronômicas do milho irrigado.

MATERIAL E MÉTODOS

- Estação Experimental Agronômica da UFRGS Eldorado do Sul. Safra 2014/2015.
- Argissolo Vermelho Distrófico típico
- Análise do solo: argila: 400 g kg⁻¹; pH (água): 4.7; Índice SMP: 5.5; P: 22 mg dm⁻³ (Mehlich-1); K: 132 mg dm⁻³ (Mehlich-1); MO: 18 g kg⁻¹ e CTC: 11,6 cmolc dm⁻³.
- Cobertura de solo: Nabo forrageiro (Raphanus sativus L.).
- Tratamentos:
 - **T1** Dessecação do nabo forrageiro **30 dias antes da semeadura** do milho;
 - **T2** Dessecação do nabo forrageiro **15 dias antes da semeadura** do milho;
 - T3 Dessecação do nabo forrageiro no dia da semeadura do milho;
 - **T4** Nabo forrageiro, dessecado no dia da semeadura, <u>sem N em cobertura no milho;</u>
 - T5 Pousio, sem N em cobertura no milho.

Aplicação da <u>dose única</u> de **150 kg ha**-1 de N em cobertura no estádio V₉ (ureia com inibidor da urease, com tecnologia Agrotain)

- Semeadura: 29 de agosto de 2014.
- Adubação de base: 30, 120 e 120 kg ha⁻¹ de N, P₂O₅ e K₂O.
- Densidade: 9 plantas m⁻².
- Espaçamento: 0,5 m
- Híbrido de milho: MG 300 PW.
- Determinações realizadas: rendimento de MS do nabo forrageiro, nas três épocas de dessecação; rendimento de MS da parte aérea do milho em R1; estatura de planta do milho em V₈ e em R1; componentes do rendimento e rendimento de grãos de milho.
- Análise de variância pelo teste F (p<0,05) e Tukey (p<0,05).

RESULTADOS E DISCUSSÃO

Dentro dos sistemas de sucessão de culturas com milho em semeadura Foto 1: Rendimento de massa seca da parte aérea do nabo forrageiro, direta no sul do Brasil, a escolha da espécie de cobertura de inverno é nas três épocas de dessecação. Eldorado do Sul-RS, 2014/2015.

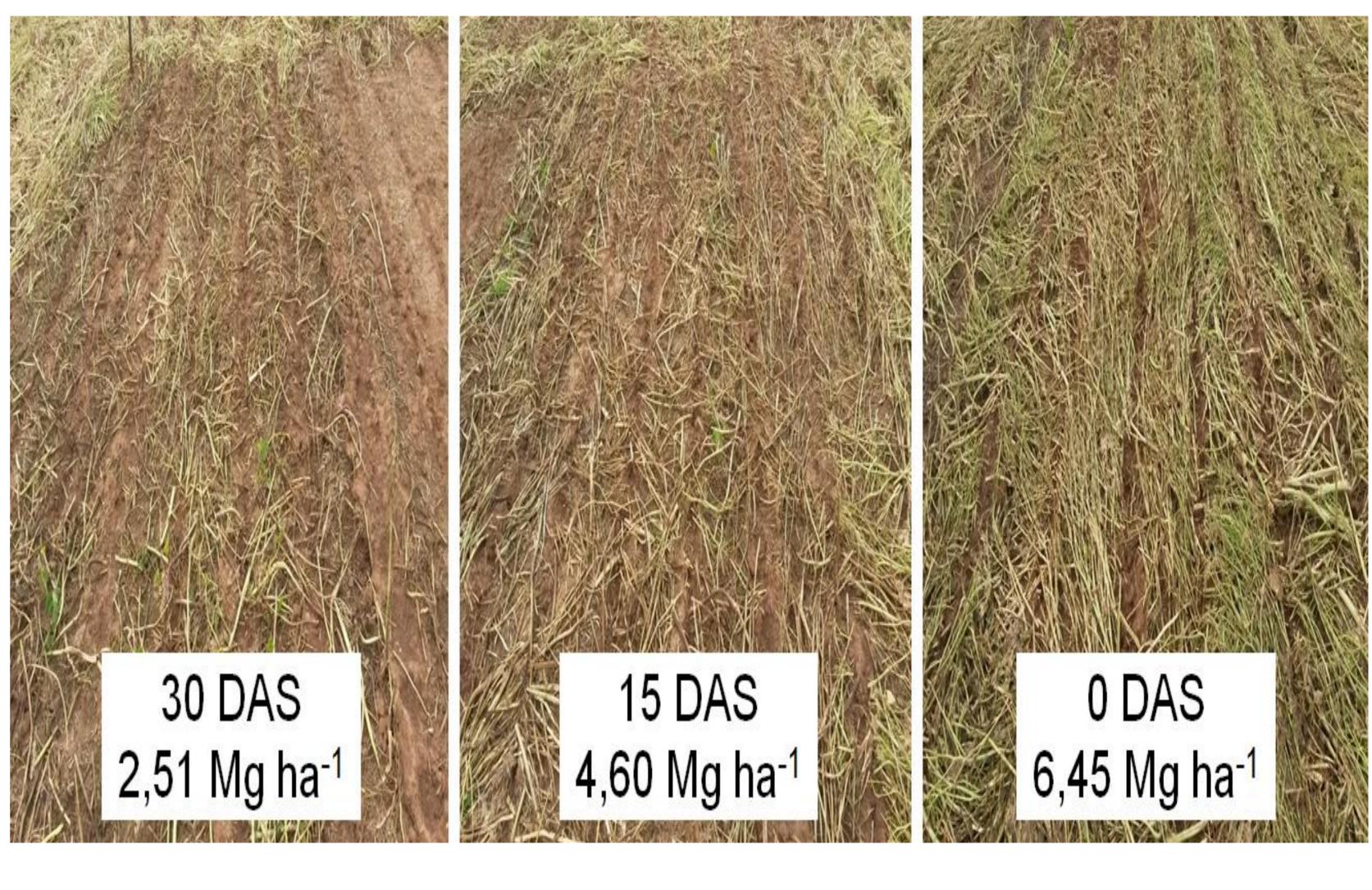


Tabela 1. Características agronômicas de milho irrigado em função de época de dessecação do nabo forrageiro como cobertura de solo no outono-inverno. Eldorado do Sul-RS, 2014/2015.

Característica	Pousio, s/N no	Época de dessecação do nabo				
		•	Aplicação de 150 kg ha ⁻¹ de N			CV ³
	milho	s/N no milho ¹	30 DAS	15 DAS	0 DAS	_
Estatura de planta V8 4 (m)	0,92 b	1,08 a	1,00 ab	1,03 a	1,02 ab	4,4
Estatura de planta R1 (m)	2,02 b	2,24 a	2,24 a	2,32 a	2,32 a	4,3
Matéria seca R1 (Mg ha ⁻¹)	6,33 ns ⁵	7,14	7,19	7,06	8,53	23,4
Espigas m ⁻² (No.)	9,2 ns	9,2	9,0	8,8	9,3	3,7
Grãos espiga ⁻¹ (No.)	225 b	256 b	409 a	410 a	395 a	12,7
Peso do grão (mg)	326 b	349 ab	362 ab	375 a	378 a	5,9

¹ Dessecado no dia da semeadura; ² Dias antes da semeadura do milho; ³ Coeficiente de variação; ⁴ Estádio de desenvolvimento, conforme escala de Ritchie *et al.* (1993); * Médias seguidas pela mesma letra na linha não diferem entre si pelo teste de Tukey, ao nível de probabilidade de 5%; ⁵ Não significativo, ao nível de 5%.

CONCLUSÕES

O atraso da época de dessecação do nabo forrageiro, como cobertura de solo no outono-inverno, em apenas 30 dias aumenta em 4,0 Mg ha⁻¹ seu rendimento de massa seca;

Com aplicação de 150 kg ha⁻¹ de N no milho, a época de dessecação do nabo forrageiro não influencia significativamente o rendimento de grãos de milho cultivado em sucessão.