

Evento	Salão UFRGS 2015: SIC - XXVII SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2015
Local	Porto Alegre - RS
Título	Fotodegradação de Corantes em Sistemas Aquosos Catalisada por Nanopartículas de Óxido de Tântalo
Autor	NATÁLIA THAIS BOLL
Orientador	JACKSON DAMIANI SCHOLTEN

Fotodegradação de Corantes em Sistemas Aquosos Catalisada por Nanopartículas de Óxido de Tântalo

Natália T. Boll e Jackson D. Scholten

Instituto de Química, Universidade Federal do Rio Grande do Sul

Os processos oxidativos avançados possuem uma gama de aplicações industriais, dentre as quais destaca-se sua utilização no tratamento de efluentes e na degradação de corantes em sistemas aquosos. Neste contexto, a degradação de poluentes através da fotocatálise torna-se uma metodologia promissora para a descontaminação de sistemas aquosos. A fotocatálise baseia-se na incidência de luz sobre um material semicondutor fornecendo energia necessária para que elétrons da banda de valência se desloquem para a banda de condução, formando um par elétron-vacância. A combinação do par elétronvacância é responsável pelas reações de redução/oxidação ocorridas na superfície do semicondutor. Neste projeto de pesquisa, sintetizou-se nanopartículas (NPs) de óxido de tântalo (Ta₂O₅) a partir da hidrólise de líquidos iônicos hexaclorotantalatos de 1-alquil-3metilimidazólio (alquil = butil, decil). As NPs de Ta₂O₅ foram caracterizadas pelas técnicas de microscopia eletrônica de transmissão (MET), microscopia eletrônica de varredura (MEV) e difração de raios-X (DRX). Por MET, verificou-se um diâmetro médio de aproximadamente 5 e 10 nm para as partículas preparadas a partir dos LIs BMI.TaCl₆ e DMI.TaCl₆, respectivamente. As análises de DRX mostraram sinais largos, indicando a possibilidade da presença de LI remanescente na superfície das NPs. Nas reações de fotodegradação, uma solução do corante azul de metileno contendo as NPs de Ta₂O₅ (1 mg/mL) foi irradiada com uma lâmpada de Xe/Hg, removendo-se alíquotas para o acompanhamento da reação via UV-Vis. Verificou-se que o tempo médio obtido de degradação do corante azul de metileno na presença do catalisador foi de apenas 15 minutos, o qual é muito menor quando comparado com o tempo médio de 60 minutos referente à degradação do corante na ausência do catalisador. Estes resultados preliminares sugerem a importância da utilização de um eficiente agente promotor nanoestruturado para o processo de fotodegradação de corantes, os quais podem mimetizar a degradação de poluentes em sistemas aquosos.