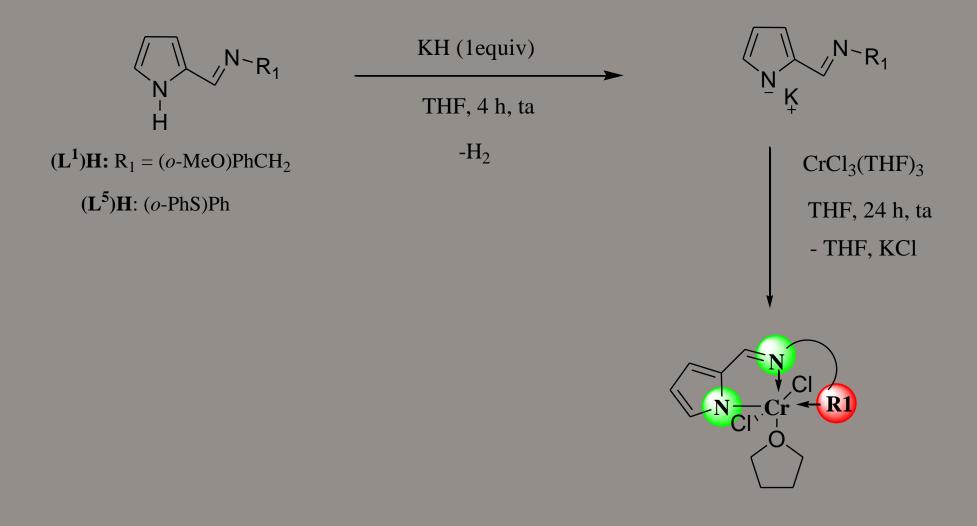


Síntese e caracterização de complexos de Cromo (III) contendo ligantes tridentados Pirrolil-Imina aplicados a oligo- e polimerização do etileno

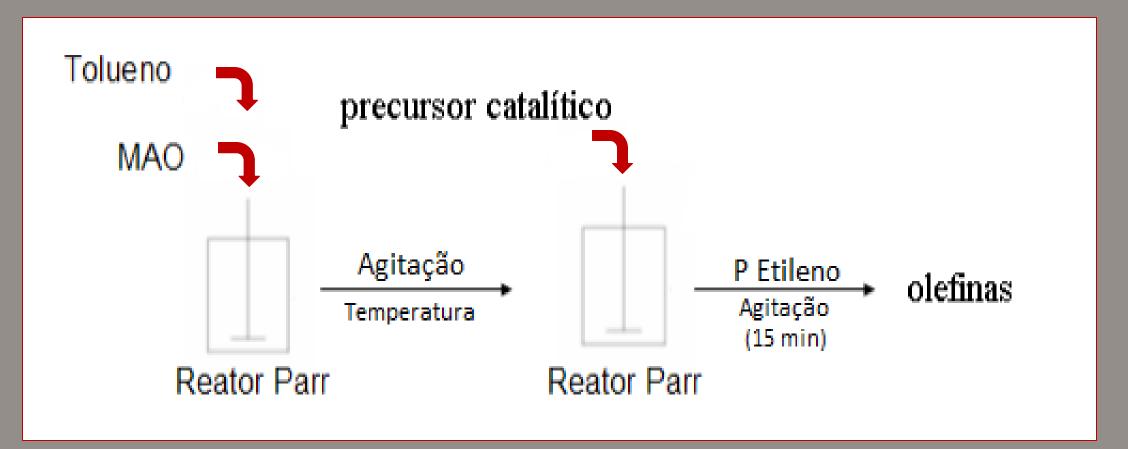
Sabrina M. da Silva, Adriana C. Pinheiro, Osvaldo L. Casagrande Jr.

Universidade Federal do Rio Grande do Sul, IQ, Av. Bento Gonçalves, 9500, Porto Alegre, Brasil, 91540-160 E-mail: bimoraes@gmail.com

Introdução


A obtenção de α-olefinas, a partir do etileno, tem sido amplamente empregada nos processos industriais, com o objetivo de transformar olefinas de baixo valor comercial em olefinas de melhor valor agregado e peso molecular. Ressalta-se a importância na obtenção de hexeno-1 e octeno-1, por serem significativos comonômeros na produção de polietileno linear de baixa densidade. Assim sendo, são relatados vários processos catalíticos para produção de α-olefinas onde, na maioria, são empregados catalisadores de Cr (III) contendo ligantes tridentados. Neste cenário, novos pré-ligantes tridentados, do tipo pirrolimina (E^N^N) (E = S, O), foram sintetizados pela reação de condensação envolvendo uma amina primária e o 2-pirrolcarboxaldeído.

No presente trabalho, relatamos previamente a síntese e caracterização de dois novos ligantes tridentados pirrol-imina (E^N^N) (E = S, O), o uso desses na síntese de complexos de Cr(III) e aplicação em processos de oligo- e polimerização do etileno.


Parte Experimental

1. Síntese dos Pré-Ligantes

2. Síntese dos Precursores Catalíticos

2. Procedimento Geral de Oligo/polimerização do Etileno

Resultados e Discussão

3. Resultados das Reações de Oligo/polim. do Etileno

3.1.Tabela 1: Reações de oligomerização do etileno.a

Ent	Cat	[AI]/ [Cr]	Fr. (10 ³ h ⁻¹) ^b	C4 (α-C4) %	C6 (α-C6) %	C8 (α-C8) %	C10 (α-C10) %	C12+ %	Massa total do produto	Olig. g (%)	PE g (%)
1	Cr1	300	1,8	8,5 (85)	16,2 (93)	18,9 (94)	16,5 (95,4)	40	1,625	0,125 (7)	1,5 (93)
2	Cr1	1000	4,8	7,9 (89,8)	11,2 (92,8)	18,4 (72,9)	14,6 (97,9)	47,84	3,732	0,332 (8,9)	3,4 (91,1)
3	Cr2	300	25,0	20,4 (94)	20,5 (94,1)	18,8 (88)	14,5 (87,1)	25,8	1,769	1,751 (98,98)	0,018 (1,02)
3	Cr2	500	29,3	18,5 (93,2)	20,6 (93,9)	19,6 (87,2)	15,5 (85,1)	25,8	2,14	2,05 (95,8)	0,09 (4,2)
4	Cr2	1000	51,4	19,1 (94,0)	20,4 (94,5)	17,9 (93,9)	15,3 (87,1)	27,16	3,62	3,6 (99,4)	0,02 (0,6)
5	Cr2	1500	197,0	16,15 (92,75)	18,73 (94,66)	16,97 (93,93)	14,21 (94,29)	33,95	13,97	13,82 (98,92)	0,15 (1,08)

a condições reacionais: catalisador (µmol)= 10, co-catalisador= MAO, tolueno= 50mL, tempo= 15min, temperatura= 80°C, P (etileno)= 20 bar, b Mol de etileno convertido por mol de Cr. H determinado por cromatografia gasosa.

Os precursores catalíticos Cr1 e Cr2 quando ativados com MAO como cocatalisador apresentaram-se ativos na oligo- e polimerização do etileno. O sistema Cr1/MAO proporciona a formação majoritária de polímero (até 93 %) frente a produção de oligômeros (até 8,9 %). Por outro lado o sistema Cr2/MAO mostrou produção majoritária de oligômeros com FRs que chegam a 197,0 × 10³ h⁻¹, com distribuição de comonômeros na faixa de C₄ a C₂₀₊ e pequena percentagem de polímero.

Conclusão

Foram sintetizados dois novos precursores catalíticos.

O pré-catalisador Cr2, mostrou-se ativo para a produção de oligômeros (95,8% em peso dos produtos totais). Atestando que um heteroátomo com o raio atômico menor, como o átomo de oxigênio em relação ao enxofre, facilita a coordenação de moléculas de etileno com o centro metálico favorecendo a oligomerização.

A caracterização dos complexos e investigações catalíticas nas reações de oligo- e polimerização do etileno permanecem em andamento.

Referências

¹ Pinheiro, A.C.; Roisnel, T.; Kirillov, E.; Carpentier, J-F.; Casagrande, O.L.Jr. Ethylene oligomerization promoted by chromium complexes bearing pyrrolide-imine-amine/ether tridentate ligands. *Dalton Trans.*, 2015,44, 16073-16080

² Tang, S.; Liu, Z.; Yan, X.; Li, N.; Cheng, R.; Hh, X.; Liu, B. Kinetic studies on the pyrrole-Cr-based Chevron-Phillips ethylene trimerization catalyst system. Applied Catalysis A: General. v. 481, p. 39-48, 2014.

Agradecimentos

