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ABSTRACT
In this paper, the third in a series illustrating the power of generalized linear models (GLMs)
for the astronomical community, we elucidate the potential of the class of GLMs which han-
dles count data. The size of a galaxy’s globular cluster (GC) population (NGC) is a prolonged
puzzle in the astronomical literature. It falls in the category of count data analysis, yet it is
usually modelled as if it were a continuous response variable. We have developed a Bayesian
negative binomial regression model to study the connection between NGC and the following
galaxy properties: central black hole mass, dynamical bulge mass, bulge velocity dispersion
and absolute visual magnitude. The methodology introduced herein naturally accounts for
heteroscedasticity, intrinsic scatter, errors in measurements in both axes (either discrete or
continuous) and allows modelling the population of GCs on their natural scale as a non-
negative integer variable. Prediction intervals of 99 per cent around the trend for expected
NGC comfortably envelope the data, notably including the Milky Way, which has hitherto
been considered a problematic outlier. Finally, we demonstrate how random intercept models
can incorporate information of each particular galaxy morphological type. Bayesian variable
selection methodology allows for automatically identifying galaxy types with different pro-
ductions of GCs, suggesting that on average S0 galaxies have a GC population 35 per cent
smaller than other types with similar brightness.

Key words: methods: data analysis – methods: statistical – globular clusters: general.

1 IN T RO D U C T I O N

The current era of astronomy marks the transition from a data-
deprived field to a data-driven science, for which statistical meth-
ods play a central role. An efficacious data exploration requires
astronomers to go beyond the traditional Gaussian-based mod-
els which are ubiquitous in the field. Gaussian distributional as-
sumptions fail to hold when the data to be modelled come from
exponential family distributions other than the Normal/Gaussian1

�E-mail: rafael.2706@gmail.com (RSS); j.m.hilbe@gmail.com (JMH)
1 The exponential family comprises a set of distributions ranging from both
continuous and discrete random variables (e.g. Gaussian, Poisson, Bernoulli,
Gamma, etc.).

(Hardin & Hilbe 2012; Hilbe 2014). For non-Gaussian regression
problems there exist powerful solutions already widely used in
medical research (e.g. Lindsey 1999), finance (e.g. Jong & Heller
2008), healthcare (e.g. Griswold et al. 2004) and biostatistics (e.g.
Marschner & Gillett 2012), but vastly underutilized to date in as-
tronomy. These solutions are known as generalized linear mod-
els (GLMs). Despite the ubiquitous implementation of GLMs in
general statistical applications, there have been only a handful of
astronomical studies applying GLM techniques such as logistic re-
gression (e.g. Raichoor & Andreon 2012, 2014; Lansbury, Lucey
& Smith 2014; De Souza et al. 2015), Poisson regression (e.g.
Andreon & Hurn 2010), gamma regression (Elliott et al. 2015)
and negative binomial (NB) regression (Ata, Kitaura & Müller
2015). The methodology discussed herein focuses on Bayesian
count response models (Poisson and NB), suited to handle discrete,
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Bayesian negative binomial regression 1929

count-based data sets applied to a catalogue of globular clusters
(GCs).

GCs are among the oldest stellar systems in the Universe (formed
at z > 2; Kruijssen 2014), are pervasive in nearby massive galaxies
(Brodie & Strader 2006) and can be found in massive galaxy clusters
not necessarily associated with one of its galaxies (e.g. Durrell
et al. 2014). Hence, understanding their properties is of utmost
importance for drawing a complete picture of galaxy evolution. The
past few decades have seen considerable interest in the apparent
correlation between the mass of the black hole at the centre of a
galaxy, MBH, and the velocity dispersion of the central stellar bulge,
σ (e.g. Gebhardt et al. 2000). As part of the process of understanding
the nature and origin of the so-called MBH–σ relation, astronomers
have investigated links between other properties of the host galaxy.
In particular, the correlation between the size of GC populations,
NGC, and MBH is tight, possibly more so than the MBH–σ relation,
and may reflect an underlying connection to the bulge mass, binding
energy, host galaxy stellar mass and total luminosity (Burkert &
Tremaine 2010; Harris & Harris 2011; Snyder, Hopkins & Hernquist
2011; Rhode 2012; Harris, Harris & Alessi 2013; Harris, Poole &
Harris 2014). This may go some way to explaining the huge range
in scales of the regions involved. One notorious outlier is our own
Milky Way galaxy, for which there are far too many GCs given the
mass of its central supermassive black hole, despite the fact that
both are accurately measured. Nevertheless, the otherwise small
scatter found in such relations deserves a closer look since it cannot
be easily explained by simple scaling relation arguments.

The connection between NGC and the global properties of their
host galaxies is an extant astronomical puzzle involving count mod-
els, but is treated as a continuous one. Such correlation studies are
commonly based on taking pairs of parameters (x, y) in log–log
space and searching for solutions in the normal form y = α + βx,
despite the fact that this regression technique assumes continuous
variables and a Gaussian error distribution, e.g. χ2-minimization
(Tremaine et al. 2002).

Our method surpasses the previous χ2-minimization approach in
several ways. The most obvious being the ability to handle count
data without the need of logarithmic transformations of a discrete
variable. Hence, we can take into account the cases with zero counts,
instead of removing them to accommodate the logarithm transfor-
mation, or adding an arbitrary data shift in the form log(x + ε),
with ε commonly taken as unity. Our method naturally handles
errors in variables in both the x and y axes accommodating the
heteroscedasticity of the errors in NGC.2 As a further analysis, we
introduce one of the most important extensions of GLMs known as
generalized linear mixed models (GLMMs). This is done to include
in the model information about each galaxy morphological type, al-
lowing discrimination among classes of objects requiring additional
adjustments in their regression coefficients.

The outline of this paper is as follows. In Section 2 we provide
a brief introduction of GLMs in the context of exponential family
distributions. An overview of count data along with Poisson and NB
GLMs is presented in Section 3. The data set used in our analysis
is summarized in Section 4. In Section 5 we discuss the necessary
steps to build our Bayesian model. In Section 6 we discuss GLMMs
in the context of random intercepts models. Finally in Section 7, we
present our conclusions.

2 Heteroscedastic error structures may remain even after transformation,
thus violating the Gaussian assumption of homogeneity of error variance.

2 G E N E R A L I Z E D L I N E A R M O D E L S

Classical response-with-covariates models, i.e. general (not gener-
alized) linear models, assume that the response variable and the
residual errors, following a normal distribution, are linear in the
model parameters and have constant variance. This allows model
parameter estimation with ordinary least squares (OLS) methods.
As described above, many data sets have response variables that
violate one or more of these assumptions. While remedial measures
such as transformations on the response variable or the covariates
may be applied, these measures may fall short of satisfying the OLS
requirements. For data sets for which classical models are ill-suited,
the extended class of models, GLMs, is used with model parame-
ters often estimated using maximum likelihood methods (for a brief
overview of GLMs in an astronomical context, see e.g. De Souza
et al. 2015; Elliott et al. 2015).

Nelder & Wedderburn (1972) introduced a unification of models
characterized by being linear on the systematic component (model
predictors). For example logistic and probit analysis for binomial
variates, contingency tables for multinomial variates and regression
for Poisson- and gamma-distributed variates, each a form of the
GLM. The random response variable, Yi, i = 1, 2, . . . , n, may be
represented as

Yi ∼ f (μi, a(φ)V (μi)),

g(μi) = ηi,

ηi ≡ xT
i β = β0 + β1x1 + · · · + βpxp. (1)

In equation (1), f denotes a response variable distribution from
the exponential family (EF), μi is the response variable mean, φ is
the EF dispersion parameter in the dispersion function a( · ), V(μi)
is the response variable variance function, ηi is the linear predictor,
the xT

i = {xi1, xi2, . . . , xip}T is the vector of explanatory variables
(covariates or predictors), β = {β1, β2, . . . , βp} is the vector of
covariates coefficients and g( · ) is the link function, which connects
the mean to the predictor. If V(μi) is a constant for all μi, then the
mean and variance of the response are independent, which allows
using a Gaussian response variable. If the response is Gaussian,
then g(μ) = μ. The general form of the GLM thus allows Gaussian
family, N , linear regression as a subset, taking the form

Yi ∼ N (μi, σ
2),

μi = β0 + β1x1 + · · · + βpxp. (2)

The subset of GLMs for count data is the Poisson regression models
and the several incarnations of the NB regressions. Poisson regres-
sion models assume the count response variable follows a Poisson
probability distribution function. Similarly, the NB regression mod-
els assume the count response variable follows a NB probability
distribution function. Descriptions of the Poisson and NB models
follow.

3 MO D E L L I N G C O U N T DATA

Astronomical quantities can be measured on different scales: nom-
inal (e.g. classes of objects: Type Ia/II supernovae, elliptical/spiral
galaxies); ordinal (e.g. ordering planets according to their size or
distance to the star) and metric (e.g. galaxy mass, stellar tempera-
ture). Observations that have only right-skewed, non-negative inte-
ger values belong to a subclass of the metric scale known as count
data. Distances between counts are meaningful, hence the counts
are metric, but they are not continuous and must be treated as
such. Astronomical count data are often log-transformed to satisfy
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Gaussian parametric test assumptions rather than modelled on the
basis of a count distribution. Despite the fact that GLMs are better
suited to describe count data, a log-transformation of counts has
the additional problem of dealing with zeros as observations. With
just one observation with value zero, the entire data set needs to be
shifted by adding an arbitrary value before transformation. It is well
known that such transformations perform poorly, leading to bias in
the estimated parameters (O’Hara & Kotze 2010).

We begin our discussion of regression models for count data
with the subset of GLMs known as Poisson regression. A common
condition accompanying count data is overdisperson, it occurs when
the variance exceeds the mean. This condition in Poisson regression
suggests that remedial measures, such as the use of NB regression,
may be appropriate.

3.1 Poisson regression

Poisson regression was the first model specifically used to deal with
count data and still stands as basis for many types of analyses. It
assumes a discrete response described by a single parameter dis-
tribution which represents the mean or rate, μ, i.e. the expected
number of times an event occurs within a fixed time interval. An-
other important feature is the assumption of equidispersion which
implies the equality of mean and variance, and can be quantified by
the Pearson χ2 dispersion statistic (see Section 3.2.). The Poisson
distribution function is typically displayed as

f (y; μ) = μye−μ

y!
, (3)

where the mean and variance are given by

Mean = μ, Variance = μ, (4)

representing a particular case of equation (1) with V(μ) = μ and
a(φ) = 1. Thus, a regression equation derived from equation (1) may
be used as a GLM for a count response, y. The usual link function,
g(μ), is the natural log function such that μ = eη (see e.g. Hardin
& Hilbe 2012). It is worth noting that GLMs are not simple log
transforms of the response variable, but rather, the expected counts
from a Poisson regression is an exponentiated linear function of η,
thereby keeping the response variable on its original scale. Often,
count data do not enjoy the Poisson assumption of equidispersion
resulting in a Poisson dispersion statistic (see Section 3.2) with a
value greater than one.

3.2 Overdispersion

Overdispersion in Poisson models occurs when the response vari-
ance is greater than the mean. It may arise when there are violations
in the distributional assumptions of the data such as when the data
are clustered, thereby violating the likelihood requirement of the
independence of observations. Overdispersion may cause standard
errors of the estimates to be deflated or underestimated, i.e. a vari-
able may appear to be a significant predictor when it is in fact not.
A key approach for checking overdispersion is by means of the
dispersion statistic, D,

D = χ2

N − Np
, (5)

where N is the number of observations and Np is the number of pa-
rameters in the model. Then N − Np represents the residual degrees
of freedom. For a Poisson GLM, the Pearson χ2 value is

χ2 =
N∑

i=1

(Yi − μi)2

μi

, (6)

where Yi represents the observed values, and μi is the mean and
variance of Yi. Poisson overdispersion occurs when the variation
in the data exceeds the expected variability based on the Poisson
distribution, resulting in D being greater than 1. Small amounts of
overdispersion are of little concern; a rule of thumb is: if D > 1.25,
then a correction may be warranted (Hilbe 2014).

If overdispersion is observed, then there are several corrective
measures in common practice. Options are adjusting the standard
errors by scaling, applying sandwich or robust standard errors, or
bootstrapping standard errors for the model. However, only the stan-
dard errors will be adjusted and not the regression coefficients, β,
which often can be affected by overdispersion as well (e.g. Hilbe
2011). This paper examines the efficacy of using Bayesian estima-
tion methods on a more general discrete distribution known as the
NB. The NB distribution contains a second parameter called the dis-
persion or heterogeneity parameter which is used to accommodate
Poisson overdispersion as described below.

3.3 Negative binomial regression

The NB distribution has long been recognized as a full member
of the exponential family, originally representing the probability of
observing y failures before the rth success in a series of Bernoulli
trials. It can also be formulated as a Poisson model with gamma
heterogeneity (Hilbe 2011). The NB model, as a Poisson–gamma
mixture model, is appropriate to use when the overdispersion in an
otherwise Poisson model is thought to take the form of a gamma
shape or distribution, i.e. a(φ) = 1/k, with k > 0. The NB probability
distribution function is then given by

f (y; k, μ) = 
(y + k)


(k)
(y + 1)

(
k

μ + k

)k (
1 − k

μ + k

)y

. (7)

The distribution function has two parameters, μ and k, allowing
more flexible models than the Poisson distribution. The symbol 


represents the gamma function.3 The mean and variance are given
by

Mean = μ; Variance = μ + μ2

k
= μ + αμ2. (8)

The NB distribution has distributional assumptions similar to the
Poisson distribution with the exception that it has a dispersion pa-
rameter α = 1/k to accommodate wider count distribution shapes
than allowed by the Poisson model. As the dispersion parameter,
α, approaches 0, lim

α→0
αμ2 = 0 or lim

k→∞
μ2/k = 0, then the variance

equals the mean which recovers the Poisson distribution.
It should be noted that if different clusters of counts have different

gamma shapes, indicating differing degrees of correlation within
data, and if the NB Pearson χ2 dispersion statistic is greater than
one, then the NB model may itself be overdispersed, i.e. the data may
be both Poisson and NB overdispersed. Random effects and mixed
effects Poisson and NB models are then reasonable alternatives
(Hilbe 2014).

3 If n is a positive integer, 
(n) = (n − 1)!
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Bayesian negative binomial regression 1931

Table 1. Main assumptions of each regression model family.

Normal Log-normal Poisson Negative binomial

Response variable Real Positive Non-negative integer Non-negative integer
Null values ✓ ✗ ✓ ✓

Sample variance Homoscedastic Homoscedastic Heteroscedastic Heteroscedastic
Overdispersion ✗ ✗ ✗ ✓

Table 2. Summary of the parameters used in this work from the
catalogue of GCs compiled by Harris et al. (2013).

Parameter Definition

NGC Number of globular clusters
MV Absolute visual magnitude
σ Bulge velocity dispersion
MBH Central black hole mass
Mdyn Dynamical mass
εNGC Uncertainty in NGC

εMV Uncertainty in MV

εσ Uncertainty in σ

εMBH Uncertainty in MBH

An additional situation should also be mentioned. If the Poisson
dispersion statistic is less than one, this is evidence of Poisson
underdispersed data. The NB model is not appropriate for handling
Poisson underdispersion; however, the generalized Poisson model
is. We do not discuss underdispersed data in this paper, but the
subject warrants future study as to how it applies to astrophysical
data. To guide the reader, Table 1 displays the main assumptions of
the OLS, OLS with a log-transformed response variable, Poisson
and NB regression models discussed in the previous sections.

4 DATA SET

As a study case, we use the catalogue of GCs presented in Harris
et al. (2013) (see also Harris et al. 2014).4 The data are composed of
422 galaxies with published measurements of their GC populations.
There is a range of galaxy morphologies from which we indexed
247 as elliptical (E), 94 as lenticular (S0), 55 as spirals (S) and 26
as irregulars (Irr) galaxies for illustrative purposes. Note that the
original catalogue presents 69 different subcategories of morpho-
logical classifications which will be discussed in Section 6. This is
a compilation of literature data from a variety of sources obtained
with the Hubble Space Telescope as well as a wide range of other
ground-based facilities. Beyond NGC, we select the following prop-
erties for our analysis: central black hole mass, dynamical bulge
mass, bulge velocity dispersion and absolute visual magnitude as
described in Table 2.

5 M O D E L L I N G T H E PO P U L AT I O N SI Z E O F
G L O BU L A R C L U S T E R S

Within this section we demonstrate the application of Bayesian
GLM regression for modelling the relationship between NGC and
the following galaxy properties: MBH, σ , MV and Mdyn. Hereafter,
unless otherwise stated, the analysis is made using a subsample of
45 objects from which we have observations for all the property

4 The complete catalogue can be obtained at http://www.physics.
mcmaster.ca/harris/GCS_table.txt.

predictors. In Section 5.4 an additional analysis uses the entirety of
the available data.

A few common terms in statistical modelling need to be re-
viewed to facilitate our model applications. The analysis focus is
the prediction of NGC as a function of the global galaxy properties.
Therefore, NGC represents the count (i.e. a non-negative integer)
response variable, while MV, MBH and Mdyn are interchangeably
called covariates, explanatory variables or predictors. If included
in the model, the galaxy morphological type is also considered a
nominal categorical predictor (see Section 3). The whole analysis
is performed using Just Another Gibbs Sampler (JAGS),5 a program
for analysis of Bayesian hierarchical models using a Markov chain
Monte Carlo (MCMC) framework.6 For each regression case, we
initiate three Markov chains by starting the Gibbs samples at dif-
ferent initial values sampled from a normal distribution with zero
mean and standard deviation of 10. The initial adapting and burning
phases were set to 22 000 steps followed subsequently by 50 000
steps, which was sufficient to guarantee convergence of each chain
for all studied cases.

We now use the relationship between MBH and NGC as an example
to illustrate how the statistical model is built. To motivate the use of
the more general NB distribution, we start the analysis assuming a
GLM Poisson regression model neglecting the uncertainties in mea-
surements at this stage for simplicity.7 This leads to the following
model:

NGC;i ∼ Poisson(μi),

μi = eηi ,

ηi = β0 + β1 MBH;i ,

β0 ∼ N (0, 106),

β1 ∼ N (0, 106),

i = 1, . . . , N. (9)

This set of equations reads as follows: each galaxy in the data
set, composed of N objects, has its GC population sampled from a
Poisson distribution whose expected value, μ, relates to the central
black hole mass through a linear relation expressed by η. Since we
do not have previous information about the values of the coefficients
β0 and β1, we assigned non-informative Gaussian priors with zero
mean and standard deviation equal to 106. We refer the reader to
Appendix A for an example of how to implement a Poisson GLM in
JAGS. The fitted curve for this model is displayed in Fig. 1. The grey
shaded areas represent 50, 95 and 99 per cent prediction intervals,
which are the regions where a future observation will fall with these

5 http://CRAN.R-project.org/package=rjags
6 Note that count models can be approached by other methods, such as a full
maximum likelihood algorithm (see Hilbe 2011, for a review).
7 Neglecting the errors at this point does not affect the conclusions regarding
the level of Poisson overdispersion.
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Figure 1. Total number of GCs, NGC, plotted versus the central black hole
mass, MBH. The dashed line represents the expected value of NGC for each
value of MBH using Poisson GLM regression, while the shaded areas depicts
50, 95 and 99 per cent prediction intervals. Galaxy types are coded by shape
and colour as follows: ellipticals (E; blue solid circles), spirals (S; red open
triangles) and lenticulars (S0; orange asterisks). An ArcSinh transformation
is applied in the y-axis for better visualization of the whole range of NGC

values, including the null ones.

given probabilities.8 Note that the areas in the plot are too narrow to
be visually discriminated. A visual inspection clearly indicates that
the Poisson model is not adequate to explain the data variability
since most of the data fall outside the three prediction intervals.
Also, the dispersion statistic for this model is D = 1039, which is
a strong indication of an inadequate model. All other covariates, σ ,
MV and Mdyn, lead to models with similarly high levels of Poisson
overdispersion. Hence, hereafter we discuss construction of the
full model based on the NB family to mitigate overdispersion and
to include the uncertainties in the observational quantities. Unlike
the Poisson model, by employing a NB distribution we allow the
incidence rate of GCs to be itself a random variable.

Continuing with our working example, we keep the discussion us-
ing the relationship between NGC and MBH, but see Appendix B for
descriptions of the other models. The first step is to understand how
to include information about the uncertainties in the measurements
(see e.g. Andreon & Hurn 2013, for a review of measurement errors
in astronomy). Measurement errors in the response count variable
are the trickiest part to be modelled. The classical model with an ad-
ditive error term y = y∗ ± ε is inappropriate since it does not ensure
that the observed value y is non-negative. The appropriate model is
described below and its graphical representations are displayed in
Fig. 2:

NGC;i ∼ NB(pi, k),

pi = k

k + μi

,

8 Not to be confused with the commonly used confidence interval in fre-
quentist statistics. A 95 per cent confidence interval will contain the sample
mean with 95 per cent probability. In other words, a larger number of re-
peated samples from the data would contain the sample mean 95 per cent of
the time.

Figure 2. A graphical model of equation (10) representing the hierarchy
of dependencies for a data set of galaxies indexed by the subscript i. The
sinusoidal curves represent stochastic dependencies, while straight arrows a
deterministic ones. To save space, we replace MBH by M• in the diagram.

μi = eηi + εNGC;i ,

ηi = β0 + β1 M∗
BH;i ,

k ∼ U(0, 5),

MBH;i ∼ N (M∗
BH;i , e

2
BH;i),

εNGC;i ∼ B(0.5, 2eNGC;i) − eNGC;i ,

β0 ∼ N (0, 106),

β1 ∼ N (0, 106),

M∗
BH;i ∼ 
(α0, θ0),

α0 ∼ 
(0.01, 0.01),

θ0 ∼ 
(0.01, 0.01),

i = 1, . . . , N. (10)

The above is slightly more complex than the model displayed in
equation (9) and reads as follows. Each galaxy in the data set with
N objects, has its GCs population sampled from a NB distribu-
tion whose expected value, μ, relates to the central black hole
mass through the linear predictor η. The additional transforma-
tion pi = k/(k + μi) is required due to how the NB distribution
is parametrized in JAGS. The uncertainties related to the counts,
εNGC;i , are taken to be associated with the mean, μ, of the NB dis-
tribution and are modelled using a shifted binomial distribution,

MNRAS 453, 1928–1940 (2015)

 at U
niversidade Federal do R

io G
rande do Sul on February 18, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Bayesian negative binomial regression 1933

Figure 3. GC population, NGC, plotted against visual absolute magnitude (MV; top left-hand panel), black hole mass (MBH; top right-hand panel), dynamical
mass (Mdyn; bottom left-hand panel) and bulge velocity dispersion (σ ; bottom right-hand panel). In each panel the dashed line represents the expected value
of NGC for each value of the covariate using NB GLM regression, while the shaded areas depicts 50, 95 and 99 per cent prediction intervals. Galaxy types
are coded by shape and colour as follows: ellipticals (E; blue solid circles), spirals (S; red open triangles) and lenticulars (S0; orange asterisks). An ArcSinh
transformation is applied in the y-axis for better visualization of the whole range of NGC values, including the null ones.

B, with zero mean and taking on integer values in the range
[−eNGC;i , +eNGC;i] (see e.g. chapter 13 from Cameron & Trivedi
2013, from which this approach is loosely based). Uncertainties
associated with the observed predictor MBH;i are modelled using
a Gaussian distribution with unobserved mean given by the ‘true
black hole mass’, M∗

BH;i , and standard deviations given by the re-
ported uncertainties in the observed black hole mass, eMBH;i . Since
M∗

BH;i is itself an unobserved variable, we add a non-informative

 prior on top of which we added non-informative hyperpriors for
the shape, α0, and rate, θ0, parameters of the 
 distribution. The
choice of a 
 prior is motivated by the fact that the black hole mass
is a continuous, but non-negative quantity which makes 
 a more
suitable distribution. For the shape parameter k, we assigned a non-
informative uniform prior, U , as suggested in Zuur, Hilbe & Ieno
(2013). For the coefficients β0 and β1 we assigned non-informative
Gaussian priors with zero mean and standard deviation equal
to 106.

Adapting the model above for each combination of NGC and a
given galaxy property generates the fitted curves displayed in Fig. 3.

The grey shaded area represents 50, 95 and 99 per cent prediction
intervals, while the dashed line represents the expected value of
NGC for each value of the covariate. Note the remarkable agreement
between the model and the observed values with prediction intervals
enclosing the entirety of the data, including objects that have been
previously declared outliers and even removed from analysis, such
as our own Milky Way (e.g. Burkert & Tremaine 2010; Harris &
Harris 2011; Harris et al. 2014).

5.1 Fit diagnostics

If the Markov chains are all representative of the posterior dis-
tribution of the fitted parameters, they should overlap each other.
Traceplots, Fig. 4, and density plots, Fig. 5, are two useful vi-
sual diagnostics that are commonly used to test for chain conver-
gence. We can see that the chains do mix well after the burn-in
period, suggesting that the chains are producing representative val-
ues from the posterior distribution for β0, β1 and k. Additionally, we
used a more quantitative check, viz., the so-called Gelman–Rubin
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1934 R. S. de Souza et al.

Figure 4. Illustration of MCMC diagnostics. Three chains were generated
by starting the Gibbs algorithm at different initial values sampled from a
normal distribution with zero mean and standard deviation 10. Steps 42 000–
72 000 are shown here. The figure displays the results for the model NGC

versus MBH, with the traceplots for β0, β1 and k displayed from top to
bottom.

statistic (Gelman & Rubin 1992). The underlying idea is that if the
chains have reached convergence, the average difference between
the chains should be similar to the average difference across steps
within the chains. The statistic equals unity if the chains are fully
converged. As a rule, values above 1.1 indicate that the chains have
failed to properly converge. The Gelman–Rubin statistic fell below
1.05 for all estimated parameters in our analysis. Hence, once we
convince ourselves that the model is working properly, the next step
in the analysis is to add interpretations to the fitted coefficients as
we discuss now.

5.2 Interpretation of the coefficients

The exponentiated coefficients eβi of Poisson and NB regressions
are also known as rate ratios, or incidence rate ratios, which quantify
how an increase of unity in the predictor variable affects the number
of occurrences of the response variable. From Table 3, displaying
the means and respective 95 per cent credible intervals of the pos-
terior distribution for each parameter, the exponentiated coefficient
β1 = 1.59 of the MBH predictor gives a rate ratio of e1.59 = 4.9.
Therefore, according to the model, a galaxy whose central black
hole has a mass of e.g. ≈108 M	 has on average approximately
five times more GCs than a galaxy whose MBH ≈ 107 M	.9 In
other words, 1 dex10 variation increase in the MBH leads to an

9 Note that the analysis was made using log MBH.
10 A dex difference of a given quantity x is a change by a factor of 10x.

Figure 5. Overlapped density plots with different colours by chain. The
plot is a comparison of the target distribution by each chain, representing
a visual test for convergence. The figure displays the results for the model
NGC versus MBH, with the posteriors for β0, β1 and k displayed from top to
bottom.

Table 3. β i coefficients and scale parameter, k, from Bayesian NB regres-
sion analysis with NGC as the response variable and MBH, Mdyn, σ and MV

as predictors. The upper and lower limits enclose 95 per cent of the credible
intervals around the posterior means.

Predictor β0 β1 k

MBH − 6.49 ± 2.6 1.59 ± 0.30 1.53 ± 0.60
Mdyn − 17.72 ± 2.75 2.19 ± 0.24 2.46 ± 0.97
σ 2.99 ± 0.78 0.02 ± 0.003 1.52 ± 0.59
MV − 20.50 ± 3.9 − 1.28 ± 0.17 2.23 ± 1.1

approximately five times increase in the incidence of GCs in a
given galaxy. Likewise, an increase of 1 dex in Mdyn leads to an
increase of e2.19 = 8.9 times in the population size of GCs. Another
way to state this, given two galaxies with a difference in dynamical
mass of 1 dex, the more massive one has a production rate of GCs
8.9 times more efficient on average. Similar interpretation can be
made on the other parameters. Another question of interest is how
to determine the best predictor of NGC. In the following, we discuss
how to address this problem from a Bayesian perspective.

5.3 Model comparison

To find the best predictors for the GC population, we compare the
models using the dispersion statistics D defined in Section 3.2, and
the deviance information criterion (DIC; Spiegelhalter et al. 2002).
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Figure 6. Dispersion statistics,D, for each model. Values above 1 represent
overdispersion, while values below 1 indicate underdispersion.

Figure 7. Deviance information criterion, DIC, for each model. Smaller
DIC values correspond to preferred models.

The latter represents a compromise between the goodness of fit and
model complexity. It is defined as

DIC = Dev + pD, (11)

where the Dev is the average of the deviance Dev(θ) defined
as Dev(θ) = −2 logL(data|θ ), with L representing the likelihood
function. The effective number of parameters, pD, is calculated as

pD = Dev − Dev(θ ), (12)

where θ is the vector of model parameters (β0, β1, k for the case
in study here). The preferred model has the smallest value for the
DIC statistic. Figs 6 and 7 depict the results for the model com-
parison using the same data set. The black hole mass displays the
lowest values for D and DIC, with dispersion statistics as low as
D = 1.05. Although derived from an independent analysis, these

findings corroborate previous claims about the tight connection be-
tween the central black hole mass and GC population (Burkert &
Tremaine 2010). Nevertheless, it is worth noting that this is not
in agreement with a previous analysis performed by Harris et al.
(2013) using the same catalogue, where they found Mdyn as a better
predictor for NGC than MBH.11

5.4 Further analysis with the entire data set

Hereafter, we provide a more extensive analysis using the entire
catalogue of 422 galaxies. The only quantities available for all
objects are the NGC, galaxy morphological type and MV (Harris et al.
2013). The advantage of using count models for this type of analysis
is apparent from the six galaxies for which no GCs were detected.
Such a scenario is naturally accommodated by discrete likelihoods
while avoiding the failings of logarithmic transformations to the
response. The statistical model we use is the same as that discussed
in the beginning of this section and can be described as

NGC;i ∼ NB(pi, k),

pi = k

k + μi

,

μi = eηi + εNGC;i ,

ηi = β0 + β1 M∗
V;i ,

k ∼ U(0, 5),

MV;i ∼ N (M∗
V;i , e

2
MV;i),

εNGC;i ∼ B(0.5, 2eNGC;i) − eNGC;i ,

β0 ∼ N (0, 106),

β1 ∼ N (0, 106),

M∗
V;i ∼ U(−26, −10),

i = 1, . . . , N. (13)

Overall, the model is similar to the one described in equation (10).
The difference is in the prior for the unobserved true absolute visual
magnitude, M∗

V;i , to which we assigned a uniform prior over the
range of magnitudes covered by the catalogue. The fitted model
shows remarkable agreement with the data as displayed in Fig. 8.
Very few objects fall outside the prediction intervals over a wide
range of galaxy brightnesses. The dispersion statistics for this model
is D = 1.15, and the credible intervals for the fitted β coefficients
and scaling parameter, k, are shown in Fig. 9. Likewise, as in the
previous section, we can interpret the β coefficient as follows. The
mean value of β1 exponentiated is ≈0.4, which implies that a galaxy
whose absolute visual magnitude is one unit greater than another
reference galaxy has on average 0.4 times less GCs, i.e. a galaxy
brighter by 1 mag over another has on average 2.5 times more GCs.
Likewise, a galaxy with MV = −20 has on average 2.55 ≈ 100 times
more GCs than a galaxy with MV = −15, which is consistent with
a visual inspection of Fig. 8. Another advantage of our approach is
the possibility to extrapolate the regression solution without making
non-physical predictions. The fitted model predicts a nearly zero oc-
currence of GCs for galaxies with MV ≥ −11. Considering the total

galaxy luminosity, L = 10
0.4(MV	−MV)

L	, with MV	 = 4.83, the

11 It is important to note that we are not modelling the same relationship as
Harris et al. (2013) who modelled log NGC, the logarithm transformation of
NGC, while we model NGC in the original scale.
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Figure 8. GC population, NGC plotted against visual absolute magnitude
MV. The dashed line represents the expected value of NGC for each value
of MV, while the shaded areas depicts 50, 95 and 99 per cent prediction
intervals. Galaxy types are coded by shape and colour as follows: ellipticals
(E; blue solid circles), spirals (S; red open triangles), lenticulars (S0; orange
asterisks) and irregulars (Irr; green open circles). An ArcSinh transformation
is applied in the y-axis for better visualization of the whole range of NGC

values, including the null ones.

Figure 9. Overlapped density plots with different colours by chain. The
plot is a comparison of the target distribution by each chain, representing
a visual test for convergence. The figure displays the results for the model
NGC versus MV, with the posteriors for β0, β1 and k displayed from top to
bottom.

model suggests that galaxies with L ≤ 2 × 106 L	 are unlikely
to host populations of GCs, thus agreeing with the literature (e.g.
Harris et al. 2013). The use of Bayesian prediction intervals allow
us to make some interesting predictions: for instance from Fig. 8,
we can state that galaxies with luminosities L � 8.5 × 107 L	 (or
MV	 � −15) should not contain more than 10 GCs with 99 per cent
probability.

The analysis performed so far did not account for information
regarding different galaxy morphological types. Therefore, we are
implicitly assuming a pooled estimate (e.g. Gelman & Hill 2007):
all different galaxy types are sampled from the same common dis-
tribution ignoring any possible variation among them. On the other
extreme, performing an independent analysis for each class would
mean making the assumption that each morphological type is sam-
pled from independent distributions and that variations between
them cannot be combined. In the next section we discuss a more
flexible approach together with a brief overview of GLMMs.

6 G E N E R A L I Z E D L I N E A R M I X E D M O D E L S

As our final analysis, we introduce one of the most important exten-
sions of the GLM methodology known as GLMMs. In particular,
we focus on one of the simplest GLMM incarnations known as the
random intercepts model. The random intercepts model, in our con-
text, includes an additional term ζ j to account for a class (galaxy
type) specific deviation from the common intercept β0:

ηij = β0 + β1 MV;i + ζj , (14)

where the index j runs from 1 to 69 representing each of the differ-
ent galaxy subtypes reported in Harris et al. (2013). A standard ap-
proach to modelling ζ j in a standard linear mixed regression model
is to assume the conditional normality of the random intercepts with
ζj ∼ N (0, 1/τ ), and τ ∼ 
(0.01, 0.01). Our intention in incorpo-
rating this extra term into the model is not to simply adjust the data,
but rather the aim is to identify any particular galaxy subtype which
deviates from the overall population mean. For this purpose, we
employed a popular method for variable selection from a Bayesian
perspective known as least absolute shrinkage and selection opera-
tor (LASSO) which is discussed in the following section.

6.1 Bayesian LASSO

The original LASSO regression was proposed by Tibshirani (1996)
to automatically select a relevant subset of predictors in a regression
problem by shrinking some coefficients towards zero (see also Ue-
mura et al. 2015, for a recent application of LASSO for modelling
Type Ia supernovae light curves). For a typical linear regression
problem:

yi = β0 + β1x1 + · · · + βpxp + ε, (15)

with ε denoting Gaussian noise, LASSO estimates linear regression
coefficients β = β0 + β1x1 + · · · + βpxp by imposing a L1-norm
penalty in the form

argmin
β

⎧⎨
⎩

N∑
i=1

⎛
⎝yi −

p∑
j=1

βjxij

⎞
⎠

2

+ κ

p∑
j=1

|βj |
⎫⎬
⎭ , (16)

where κ ≥ 0 is a tunable constant that controls the level of sparseness
of the solution. The number of zero coefficients thereby increases
as κ increase. Tibshirani (1996) also noted that the LASSO estimate
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Figure 10. Illustrative comparison between Laplace and Gaussian priors.
The Gaussian distribution is represented by dashed lines, while the Laplace
distribution by solid lines. For all curves we assign a zero mean, and the
scale (or standard deviation, σ , for the Gaussian case) parameters 0.25 (dark
blue lines) and 0.5 (cyan lines).

has a Bayesian counterpart when the β coefficients have a double-
exponential prior (i.e. a Laplace prior) distribution:

f (ζ ; τ ) = 1

2τ
exp

(
−|ζj |

τ

)
, (17)

where τ = 1/κ . The idea was further developed and is known as
Bayesian LASSO (see e.g. Park et al. 2008). Hereafter, we use the
LASSO formulation for a slightly different purpose, viz., variable
selection for random intercept models (see e.g. Bernardo et al. 2011,
p. 165). The underlying idea is to discriminate between galaxy types
that follow the overall population mean, i.e. ζ 1 = 0, and galaxies
that require an additional adjustment in the intercept, i.e. ζ i �= 0.
In order to include this information, we replace the linear predictor
η by equation (14) and add the following equations in the model
described by equation (13):

ζj ∼ Laplace (0, τ ) ,

τ = 1/κ,

κ ∼ 
(0.01, 0.01),

j = 1, . . . , 69. (18)

The role of the Laplace prior is to assign more weight to regions
either near to zero or in the distribution tails as compared to a
normal prior. A visual inspection of Fig. 10 confirms this notion.
For the parameter κ , we assigned a diffuse (non-informative) gamma
hyperprior in the form κ ∼ 
(0.01, 0.01), which avoids the need
of an ad hoc choice of κ . Note that other possibilities exist such as
e.g. iteratively finding κ via cross-validation to maximize predictive
power.

Analysis results are displayed in Fig. 11. Overall, it suggests that
we do not need to add an additional intercept for predicting NGC

from MV. This is consistent with the fact that prediction intervals
in Fig. 8 enclose ∼98.8 per cent of the data set without any need
of a random intercept. Nevertheless, the following galaxy types
require systematic adjustments: spirals galaxies with moderate size

Figure 11. Caterpillar plot for the random intercepts ζ i versus the subcate-
gories of galaxy morphological classifications. The thick and thin horizontal
lines represent 90 and 95 per cent credible intervals, respectively.

of nuclear bulge (Sb), barred lenticulars (SB0), lenticulars (S0) and
dwarf elliptical galaxies (dE0N and dE1N). MG represents one
single object. Also, UGC 3274 is the brightest galaxy of the galaxy
cluster ACO 539 (Lin & Mohr 2004). Fig. 12 shows that the dE0N
and dE1N objects have a large number of GCs on average when
compared to other galaxy types with similar luminosities, while
the lenticulars have systematically fewer GCs than expected for the
overall galaxy population. This can be quantified by looking at the
mean value of ζ in Fig. 11. For S0 galaxies the mean value of ζ

is −0.42 indicating that, on average, S0 galaxies have 34 per cent
(1 − e−0.42) fewer GCs than other galaxy types in the same range
of luminosities. Generally speaking, galaxy types with 95 per cent
credible intervals falling on the right-hand side of the dashed grey
vertical line in Fig. 11 have more GCs than the overall population
mean, while galaxy types on the left-hand side have fewer GCs than
the population mean. While a detailed investigation of the causes
of this behaviour is beyond the scope of this work, it is important
to stress the ability of hierarchical Bayesian models to explore the
multilevel statistical properties of the objects under study in a unified
way.
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Figure 12. GC population, NGC plotted against visual absolute magnitude
MV. The dashed line represents the expected value of NGC for each value
of MV, while the shaded areas depicts 50, 95 and 99 per cent prediction
intervals. Galaxy types are coded by colours as follows: ellipticals (E; blue),
spirals (S; red), lenticulars (S0; orange) and irregulars (Irr; green). Asterisks
represent galaxies belonging to subtypes whose random intercept ζ is con-
sistent with zero, while circles represent the ones with ζ �= 0. An ArcSinh
transformation is applied in the y-axis for better visualization of the whole
range of NGC values, including the null ones.

7 C O N C L U S I O N S

We employed a Bayesian NB regression model to analyse the pop-
ulation size of GCs in the presence of galactic attributes such as
central black hole mass, brightness and morphological type. Hence,
demonstrating how GLMs designed to represent count data provide
reliable outcomes and interpretations. The main scientific results
and features of our analysis can be summarized as follows.

(i) The population size of GC is on average 35 per cent lower on
S0 galaxies if compared to other galaxies with similar luminosities.

(ii) The relationship between the number of GCs and other galaxy
properties has more variation than expected by a Poisson process,
but can be well modelled by a NB GLM.

(iii) The Bayesian modelling herein employed naturally accounts
for heteroscedasticity, intrinsic scatter and errors in measurements
in both axes (either discrete or continuous).

(iv) Predicted intervals around the trend for expected NGC en-
velope the data, including the Milky Way, which was previously
considered an outlier.

(v) The random intercepts model (with a Bayesian LASSO) ap-
plied to the correlation between GC population and brightness al-
lows us to account for the presence of 69 different galaxy subcate-
gories of morphological classifications, and automatically identifies
particular types not following the overall population mean. Galaxy
types dE1N, dE0N, E/cD, S0, Sb0 and Sb show significant devi-
ations from the general trend. Based on the sample studied here,
we advise these types to be further scrutinized in order to clarify if
there is any physical mechanism behind such deviations or merely
an observational bias.12

12 Type MG also shows significant deviation, but this is probably a conse-
quence of small sample size (MG corresponds to only one object).

(vi) By employing a hierarchical Bayesian model for the random
intercepts and unobserved covariates (e.g. true black hole mass),
we allow the model to borrow strength across units. This happens
via their joint influence on the posterior estimates of the unknown
hyperparameters.

(vii) If extrapolated, the fitted model predicts a suppression in the
presence of GCs for galaxies with luminosities L � 2 × 106 L	.

(viii) The central black holes mass is in fact a good predictor of
the number of GCs. 1 dex increase in MBH leads to an approximate
five times increase in the incidence of GCs. The origin of such
correlation is still a matter of debate. One possible explanation is
that both properties are associated with a common event such as
major mergers, thus galaxies experimenting a recent major merger
should have a large MBH mass and GC populations (e.g. Jahnke &
Macciò 2011). The total mass of GCs and the central black hole
mass can also correlate with the bulge binding energy in elliptical
galaxies (e.g. Snyder et al. 2011; Saxton, Soria & Wu 2014). Rapid
growth of the nuclear black hole of a galaxy might be fuelled by
a massive inflow of cold gas towards the centre of the galaxy. The
gas inflow would trigger star formation and the formation of GCs.
Hence, leading to an indirect correlation between the total number
of GCs and the MBH. Scrutinizing which one among these and other
possibilities, if any, are responsible for this correlation (causal or
not) is beyond the purposes of this work. However, it does provide
a clear example on how the adoption of modern statistical methods
can point to intriguing astrophysical questions.

A statistical model is based on an appropriate probability distri-
bution function assumed to generate or describe a data set. Hence,
the parameter estimating likelihood function must specify a prob-
ability distribution on the appropriate scale under study. Discrete
data, and count data in particular, are not continuous as are data
described by the Gaussian distribution. The most appropriate way
to model count data is by using a discrete probability distribution,
e.g. a Poisson or NB likelihood, otherwise the model will likely be
biased and misspecified – the price to be paid for employing the
wrong likelihood estimator for the data of interest.

GLMs are a cornerstone of modern statistics, and an invaluable
instrument for astronomical investigations given their potential ap-
plication to a variety of astronomical problems beyond Gaussian
assumptions. A prompt integration of these methods into astro-
nomical analyses will allow contemporary statistical techniques to
become common practice in the research of 21st century astronomy.
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APPENDI X A : JAG S M O D E L

A1 Poisson GLM

The basic JAGS syntax for a Poisson GLM model:

GLM.pois < −model{
#Priors for regression coefficients

beta.0 dnorm(0, 0.000001)

beta.1 dnorm(0, 0.000001)

#Poisson GLM Likelihood

for (i in 1 : N){
eta[i] < −beta.0 + beta.1 ∗ x[i]

log(mu[i]) < −eta[i]

y[i] dpois(mu[i])

}
}

A2 Negative binomial GLM

The basic JAGS syntax for a NB GLM model:

GLM.NB < −model{
#Priors for regression coefficients

beta.0 dnorm(0, 0.000001)

beta.1 dnorm(0, 0.000001)

k dunif(0.001, 10)

#NB GLM Likelihood

for (i in 1 : N){
eta[i] < −beta.0 + beta.1 ∗ x[i]

log(mu[i]) < −eta[i]

p[i] < −k/(k + mu[i])

y[i] dnegbin(p[i], k)

}
}

Another approach to fit a NB model in JAGS is via a combination of
a Gamma distribution with a Poisson distribution in the form (see
e.g. Marley & Wand 2010; Hilbe 2011)

GLM.NB < −model{
#Priors for regression coefficients

beta.0 dnorm(0, 0.000001)

beta.1 dnorm(0, 0.000001)

k dunif(0.001, 10)
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#NB GLM Likelihood

for (i in 1 : N){
eta[i] < −beta.0 + beta.1 ∗ x[i]

log(mu[i]) < −eta[i]

rateParm[i] < −k/mu[i]

g[i] dgamma(k, rateParm[i])

y[i] dpois(g[i], k)

}
}

APPENDIX B: BAY ESIAN MODEL FOR
E AC H C OVA R I AT E

B1 Dynamical mass versus globular cluster population

Bayesian NB GLM model for the relationship between NGC and
galaxy dynamical mass Mdyn. Since, there is no information about
the uncertainties in the measurements of Mdyn, we neglect this in
this particular model:

NGC;i ∼ NB(pi, k),

pi = k

k + μi

,

μi = eηi + εNGC;i ,

ηi = β0 + β1 Mdyn;i ,

k ∼ U(0, 5),

εNGC;i ∼ B(0.5, 2eNGC;i) − eNGC;i ,

β0 ∼ N (0, 106),

β1 ∼ N (0, 106),

α0 ∼ 
(0.01, 0.01),

θ0 ∼ 
(0.01, 0.01),

i = 1, . . . , N. (B1)

B2 Bulge velocity versus globular cluster population

Bayesian NB GLM model for the relationship between NGC and
bulge dispersion velocity σ :

NGC;i ∼ NB(pi, k),

pi = k

k + μi

,

μi = eηi + εNGC;i ,

ηi = β0 + β1 σ ∗
i ,

k ∼ U(0, 5),

σi ∼ N (σ ∗
i , e2

σi
),

εNGC;i ∼ B(0.5, 2eNGC;i) − eNGC;i ,

β0 ∼ N (0, 106),

β1 ∼ N (0, 106),

σ ∗
i ∼ 
(α0, θ0),

α0 ∼ 
(0.01, 0.01),

θ0 ∼ 
(0.01, 0.01),

i = 1, . . . , N. (B2)
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