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ABSTRACT

Current HPC systems have made more complex simulations feasible, yielding benefits

to several research areas. To meet the increasing processing demands of these simula-

tions, new equipment is being designed, aiming at the exaflops scale. A major challenge

for building these systems is the power that they will require, which current perspectives

reach the GigaWatts. To address this problem, this thesis presents an approach to in-

crease the energy efficiency using of HPC resources, aiming to reduce the effects of load

imbalance to save energy.

We developed an energy-aware strategy, called ENERGYLB, which considers platform

characteristics, and the load irregularity and dynamicity of the applications to improve

the energy efficiency. Our strategy takes into account the current computational load and

clock frequency, to decide whether to call a load balancing strategy that reduces load

imbalance by migrating tasks, or use Dynamic Voltage and Frequency Scaling (DVFS)

technique to adjust the clock frequencies of the cores according to their weighted loads.

As different processor architectures can feature two levels of DVFS granularity, per-chip

DVFS or per-core DVFS, we created two different algorithms for our strategy. The first

one, FG-ENERGYLB, allows a fine control of the clock frequency of cores in systems

that have few tens of cores and feature per-core DVFS control. On the other hand, CG-

ENERGYLB is suitable for HPC platforms composed of several multicore processors that

do not allow such a fine-grained control, i.e., that only perform per-chip DVFS. Both

approaches exploit residual imbalances on iterative applications and combine dynamic

load balancing with DVFS techniques. Thus, they reduce the clock frequency of under-

loaded computing cores, which experience some residual imbalance even after tasks are

remapped.

We evaluate the applicability of our approaches using the CHARM++ parallel program-

ming system over benchmarks and real world applications. Experimental results present

improvements in energy consumption and power demand over state-of-the-art algorithms.

The energy savings with ENERGYLB used alone were up to 25% with our FG-ENERGYLB

algorithm, and up to 27% with our CG-ENERGYLB algorithm. Nevertheless, residual im-

balances were still present after tasks were remapped. In this case, when our approaches

were employed together with these load balancers, an improvement in energy savings

of up to 56% is achieved with FG-ENERGYLB and up to 36% with CG-ENERGYLB.

These savings were obtained by exploiting residual imbalances on iterative applications.



By combining dynamic load balancing with the DVFS technique, our approach is able to

reduce the average power demand of parallel systems, reduce the task migration among

the available resources, and keep load balancing overheads low.

Keywords: Load Balancing. DVFS. Energy Efficiency.



Abordagens de Balanceamento de Carga ciente de energia para melhorar a

eficiência energética em sistemas HPC

RESUMO

Os atuais sistemas de HPC tem realizado simulações mais complexas possíveis, produ-

zindo benefícios para diversas áreas de pesquisa. Para atender à crescente demanda de

processamento dessas simulações, novos equipamentos estão sendo projetados, visando

à escala exaflops. Um grande desafio para a construção destes sistemas é a potência que

eles vão demandar, onde perspectivas atuais alcançam GigaWatts. Para resolver este pro-

blema, esta tese apresenta uma abordagem para aumentar a eficiência energética usando

recursos de HPC, objetivando reduzir os efeitos do desequilíbrio de carga e economizar

energia. Nós desenvolvemos uma estratégia baseada no consumo de energia, chamada

ENERGYLB, que considera características da plataforma, irregularidade e dinamicidade

de carga das aplicações para melhorar a eficiência energética. Nossa estratégia leva em

conta carga computacional atual e a frequência de clock dos cores, para decidir entre

chamar uma estratégia de balanceamento de carga que reduz o desequilíbrio de carga mi-

grando tarefas, ou usar técnicas de DVFS par ajustar as frequências de clock dos cores de

acordo com suas cargas computacionais ponderadas. Como as diferentes arquiteturas de

processador podem apresentam dois níveis de granularidade de DVFS, DVFS-por-chip

ou DVFS-por-core, nós criamos dois diferentes algoritmos para a nossa estratégia. O

primeiro, FG-ENERGYLB, permite um controle fino da frequência dos cores em siste-

mas que possuem algumas dezenas de cores e implementam DVFS-por-core. Por outro

lado, CG-ENERGYLB é adequado para plataformas de HPC composto de vários pro-

cessadores multicore que não permitem tal refinado controle, ou seja, que só executam

DVFS-por-chip. Ambas as abordagens exploram desbalanceamentos residuais em apli-

cações interativas e combinam balanceamento de carga dinâmico com técnicas de DVFS.

Assim, eles reduzem a frequência de clock dos cores com menor carga computacional

os quais apresentam algum desequilíbrio residual mesmo após as tarefas serem remape-

adas. Nós avaliamos a aplicabilidade das nossas abordagens utilizando o ambiente de

programação paralela CHARM++ sobre benchmarks e aplicações reais. Resultados ex-

perimentais presentaram melhorias no consumo de energia e na demanda potência sobre

algoritmos do estado-da-arte. A economia de energia com ENERGYLB usado sozinho

foi de até 25% com nosso algoritmo FG-ENERGYLB, e de até 27% com nosso algoritmo



CG-ENERGYLB. No entanto, os desequilíbrios residuais ainda estavam presentes após as

serem tarefas remapeadas. Neste caso, quando as nossas abordagens foram empregadas

em conjunto com outros balanceadores de carga, uma melhoria na economia de energia

de até 56% é obtida com FG-ENERGYLB e de até 36% com CG-ENERGYLB. Estas eco-

nomias foram obtidas através da exploração do desbalanceamento residual em aplicações

interativas. Combinando balanceamento de carga dinâmico com DVFS nossa estratégia

é capaz de reduzir a demanda de potência média dos sistemas paralelos, reduzir a migra-

ção de tarefas entre os recursos disponíveis, e manter o custo de balanceamento de carga

baixo.

Palavras-chave: Balanceamento de Carga, DVFS, Eficiência Energética.
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1 INTRODUCTION

Parallel scientific applications have been influencing the way science is done for

decades. These applications have ever-increasing demands in terms of performance and

resources, due to their great complexity and large data-sets. In order to meet these de-

mands, the performance of High Performance Computing (HPC) platforms has been

growing exponentially for years (LAROS et al., 2009; DONG; CHEN; TANG, 2010).

Current PFlops (1015 floating point operation per second) systems allow reaching

increasingly accurate results for several scientific applications, such as climate modeling,

oil exploration and atomic simulation. However, this exponential increase in computa-

tional performance also leads to an exponential growth in power demand, i.e., the rate of

power (watt) consumed directly of a power supply (HSU; FENG, 2005; LAROS et al.,

2009; DONG; CHEN; TANG, 2010; ALVES et al., 2010; PADOIN et al., 2013a).

The main focus of HPC systems has been performance, and today the HPC com-

munity works toward building Exascale systems (i.e., EFlops), which will provide un-

precedented computational power, allowing to solve even larger scientific problems. Con-

ceiving Exascale supercomputers by scaling the current technology, these systems could

demand over a GigaWatt of power (HSU; FENG; ARCHULETA, 2005; FENG; CAMERON,

2007), which is equivalent to the entire production of a medium size nuclear power

plant (WEHNER; OLIKER; SHALF, 2009). In this way, a global research effort has

risen to try to break this barrier while avoiding such high power demands, since the elec-

tric company must provide to customers this power when they turn the equipment on.

In recent decades, supercomputers were compared almost exclusively by their

computing performance, also defined by runtime or total execution time, as in the con-

text of this thesis. For instance, the Top500 list was established to rank supercomputers

regarding processing speed (DONGARRA; MEUER; STROHMAIER, 2014). Nonethe-

less, given the exponential growth in power demand of HPC systems (LAROS et al.,

2009; DONG; CHEN; TANG, 2010), and responding to the energy efficiency problem,

the HPC community started new initiatives that take into account both performance and

power demand (REN; SUDA, 2010). An example is the Green500 list. It considers the

ratio between performance and power (Flops/W) to define the energy efficiency of par-

allel machines (GE et al., 2007; FENG; LIN, 2010; SUBRAMANIAM; FENG, 2010;

CAMERON, 2010; SCOGLAND; SUBRAMANIAM; FENG, 2012).

In this context, the first challenge to the development of energy efficient HPC



17

systems and applications lies on increasing their performance while reducing their power

demand. Indeed, reducing power demand and saving energy have become one of the main

concerns of the HPC community. Thus, to build future systems we need to take into ac-

count power demand and energy consumption constraints and ways to improve energy ef-

ficiency (BARKER et al., 2009; YOUNGE et al., 2010; PADOIN et al., 2013b; PADOIN

et al., 2014). In this context, current processors have incorporated solutions to improve

energy efficiency. Some processor models have temperature sensors to avoid overheating

and reduce cooling costs. Others also feature mechanisms that allow controlling voltage

through Dynamic Voltage and Frequency Scaling (DVFS). By using DVFS, the proces-

sor’s clock frequency can be reduced and, consequently, reduces its instantaneous power

demand and the total energy consumption. However, this reduction in processor’s clock

frequency also causes a reduction on application performance.

To attend to the increasing demand for processing, a second challenge arises when

HPC systems grow in number of processors. This complicates the efficient use of all

resources at the hardware level. To run scientific applications on these complex paral-

lel systems, the application’s work (or computing load) is divided into tasks or processes.

However, as the computational load of a scientific applications may not be equally divided

due to dynamic or irregular characteristics, the application may be executed and end up

with an imbalanced load. These characteristics are present in several scientific applica-

tions and contributes to a reduced energy efficiency on parallel systems, since the most

heavily loaded processor determines the application’s performance. Several load balanc-

ing strategies have been used to improve the load distribution across processors and to

achieve an efficient use of all available resources of a parallel machine. However, these

strategies work with a NP-Hard problem, doing exhaustive searches and can take process-

ing time and may even degrade the performance if they are not well applied (LEUNG,

2004; BRUCKER; BRUCKER, 2007).

Therefore, the challenge of designing more energy efficient applications is to im-

prove the use of all hardware resources available in the parallel systems, providing near

optimal performance for applications and at the same time improve the energy efficiency

of the systems. This pursuit is also motivated by the current energy cost of HPC systems.

Some supercomputers demand more than 10 MW of power, which costs several million

dollars per year in energy, i.e., the power demand integrated over a specified time period.

Beyond that, it generates emissions of millions metric tons of carbon dioxide. Further-

more, the total cost of equipment maintenance, will overcome in a few years the cost
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of the hardware infrastructure acquisition (TORRELLAS, 2009; STEIGERWALD et al.,

2011; PERAZA et al., 2013; RAJOVIC et al., 2014).

In this context, state-of-the-art research focuses on either power demand or load

balancing strategies separately. Several proposal have used DVFS, however this technique

may cause performance degradation and an increase of the total execution time of parallel

applications. Other proposals have used load balancing strategies to reduce the overall

execution time, and, consequently, save energy. However, these strategies have used only

computational load ignoring power demand or total energy consumption.

In the context of this thesis, we improve the energy efficiency of parallel systems

when running load imbalanced applications. We provide new load balancing strategies

that collect system information from each node of the parallel machine and collect in-

formation from tasks of the application, in order to take decision more accurately and

to manage power demand while the imbalanced application is running. Our approach

combines dynamic load balancing with the DVFS technique in order to reduce the clock

frequency of underloaded cores, which have some residual imbalance.

1.1 Problem Statement and Motivation

Several scientific applications take advantage of the parallelism offered by large

HPC systems to simulate different natural phenomena. However, to satisfy their increas-

ing processing demand, we end up increasing the power demand of these systems. This is

an issue, since they have reached near of the limit specified by DARPA report (KOGGE

et al., 2008).

Taking into account power constraints, issues such as power demand and energy

consumption are increasingly discussed in the HPC community. Nowadays, the energy

efficiency of parallel systems is a major challenge in scientific research. In this context,

our research problem is to efficiently use all hardware resources available in parallel

machines to provide the best performance possible and, at the same time, reduce the

power demand to improve the energy efficiency of parallel HPC systems.

Generally, approaches to reduce the power demand are used separately of research

for increasing application’s performance. Several approaches have been applied to miti-

gate the imbalanced workloads and achieve an efficient use of all parallel resources. How-

ever, most of these approaches focus on reducing the execution time of the applications

by improving the load distribution, but neglecting power consumption. Other approaches



19

have used power controls of current microarchitectures to change the voltage level, reduc-

ing then their operating frequency and saving power, without taking into account the load

distribution.

Load balancing strategies exploit the load imbalances of tasks and achieve reduc-

tions in the total execution time. These reductions are relevant in the perspective of energy

consumption, since energy is saved when hardware resources are used for a shorter time.

However, some imbalance may still remain after making decisions and task migrations.

In this thesis, we call this remaining load imbalance left by the load balancers of resid-

ual imbalance. In this context, it is possible to achieve even greater energy savings if

the runtime system is able to exploit the residual imbalances to fine tune the voltage and

frequency of cores accordingly. In this case, the challenge lies in reducing the energy

consumption of the application while maintaining its performance.

In this context, iterative imbalanced applications are potential candidates for en-

ergy consumption improvements. These parallel applications are present on different

scientific fields. Molecular dynamics, structural dynamics, weather forecast (MICHA-

LAKES; VACHHARAJANI, 2008), cosmological modeling simulation (DIKAIAKOS;

STADEL, 1996; JETLEY et al., 2008), seismic wave propagation simulations (DUPROS

et al., 2008), physics (SHIERS, 2007), and oil exploration (PANETTA et al., 2009), are

examples of applications that can benefit from load balancing schemes to improve perfor-

mance. Our proposal is that these schemes still leave space for energy optimization.

In an experimental evaluation, tests were performed using 8 and 24 cores (one on

each processor) of the parallel machine presented in Section 5.1. We ran a small test with

Ondes3D (DUPROS et al., 2008), a seismic wave simulation that uses the CHARM++

parallel programming framework (KALÉ; KRISHNAN, 1993; CHARM++, 2014). Fig-

ures 1.1 presents the power demand measured on 8 processors during the execution of the

iterative application in different scenarios. In the first scenario (Figure 1.1(a)), the appli-

cation executes a balanced workload, without any load balancer. In the second scenario

(Figure 1.1(b)), the same workload is executed with GREEDYLB (KALÉ; KRISHNAN,

1993), a load balancer that uses a greedy approach further discussed in Section 5.1.3. As

it can be observed, GREEDYLB had almost no effect on both execution time and power

demand, since the workload is originally balanced.

In the third scenario the application executes an imbalanced workload (Figure 1.1(c)).

In this case, GREEDYLB was able to improve the performance of the application, re-

ducing its execution time by 22% when compared to the same workload without a load
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Figure 1.1: Instantaneous power demand in different scenarios.
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(a) Balanced application without
load balancer.
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(b) Balanced application with
GREEDYLB.
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(c) Imbalanced application with
GREEDYLB.

Source: The author

balancer. We also observe that even though the power demand remained the same. It’s

important to observe that the application consumed less energy in this case, due to its

shorter execution time.

Load balancers improve the performance of imbalanced applications by making

a better load distribution among the available processors. However, they can take sub

optimal decisions, which may result in some load remaining imbalanced after task migra-

tions. This may happen due to characteristics of the application that prevent a perfectly

balanced mapping to be achieved, or due to limitations of the load balancing heuristics,

as the problem that they are trying to solve is NP-Hard (LEUNG, 2004).

Figure 1.2: Accumulated processor occupation measured during execution of the appli-
cation using GREEDYLB load balancer with different processors counts.
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(a) 8 processors.
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(b) 24 processors.

Source: The author

The accumulated occupation (usage percent) of each processor used during the ex-

ecution of the application with GREEDYLB is shown in the Figure 1.2. When running the

application in 8 processors a residual imbalance of up to 34% is achieved (Figure 1.2(a)).

Using the same workload to each task and running the application in 24 processors, (Fig-

ure 1.2(b)), a different load distribution is achieved, where a residual imbalance of up to

14% is present. We notice that this residual imbalance is considerably high in several

scenarios, for example, in irregular or dynamic applications, in which the processors are
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underused. In scenarios like this, DVFS techniques can be used to reduce its frequency

and, consequently its power demand to save energy.

Based on the state-of-the-art research that focuses on either increasing the

application’s performance or reducing its power demand, we make the case that

both strategies, dynamic load balancing and DVFS, could be used together. Our hy-

pothesis to achieve a better energy efficiency in parallel systems when running load

imbalanced applications is that precise tasks and machine information can help load

balancing algorithms in their decisions, in order to manage power demand consid-

ering residual imbalance while the application is running.

1.2 Objectives and Contributions

The objective of this thesis is to enhance the global load balancing distribution

of applications, reduce the idleness and increase the energy efficiency of HPC sys-

tems using information about the load and power demand of processors. We intend

to unite two areas, dynamic load balancing and DVFS, following the hypothesis that sys-

tem information, for example, processor occupation or residual imbalance of the parallel

platform and load information of imbalanced applications can be used to improve the ef-

ficacy of load balancing strategies. Considering this objective, our main contributions are

as follows:

• We introduce a new energy-aware load balancing algorithm called ENERGYLB, to

save energy on iterative applications that present imbalanced loads. Our strategies

can reduce the power demand during execution, saving energy and improving the

application performance according to its load characteristic. We have implemented

two algorithms for our proposed ENERGYLB, using the existing CHARM++ frame-

work, which implements a model of migratable object. The first one, called Fine-

Grained EnergyLB (FG-ENERGYLB), is suitable for platforms composed of few

tens of cores and that allow per core DVFS. The second one, Coarse-Grained Ener-

gyLB (CG-ENERGYLB), is suitable for platforms composed of several processors

and that do not allow per core DVFS. Our approaches can be applied alone or at-

tached to other load balancers to save energy. When it is used attached, in a first

step, a load balancer runs its algorithm to achieve a better load distribution. After
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that, ENERGYLB computes the residual imbalance and adjusts the clock frequency

according to residual load imbalance, to save energy (PADOIN et al., 2014).

• We evaluate our proposed approaches and demonstrate the improvements in perfor-

mance and energy savings. For this purpose, we run a set of benchmarks and real

world applications. The results were compared to other state-of-the-art algorithms

and show a reduction in power demand and in the amount of the energy saving

incurring in very low overhead (PADOIN et al., 2014).

• We proposed and developed a tool named EMonDaemon to collect power and en-

ergy consumption on homogeneous and heterogeneous systems. This contribution

is motivated due to current platforms having different interfaces to collect power

and energy data from different equipment or tools. In some of these tools, the col-

lected data can be analyzed only after the execution of the application. This makes

it difficult to correlate performance with power and energy consumption. Another

difficulty is that some equipment have sensors that enable the measurement only of

the processor with a low granularity, while others allow only the measurement of

entire machine. For example, recent Intel Sandy-Bridge-EP processors have MSR

registers that enable the measurement of the accumulated energy of each processor,

core, RAM and/or GPU. On the other hand, MPSoCs like Odroid, feature proces-

sors and have sensors to measure the instantaneous power of each cluster. These

power sensors, not present in older systems, make it possible to analyze energy

consumption with a fine granularity. Our solution can be applied to measure per-

formance, instantaneous power and energy consumption on heterogeneous systems

with Intel and ARM big.LITTLE processors, correlating performance with power

and energy consumption during runtime (PADOIN et al., 2015).

1.3 Scientific Context

This research is being developed in the Institute of Informatics of the Univer-

sidade Federal do Rio Grande do Sul (UFRGS) in cooperation with the Laboratoire

d’Informatique de Grenoble (LIG) of the Université Grenoble Alpes. In the context of

this thesis, the work has been conducted within two research groups. In UFRGS, the re-

search has been developed in the Parallel and Distributed Processing Group (GPPD), and

in LIG, during internship period, the research was conducted in the Nanosimulations and
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Embedded Applications for Hybrid Multicore Architectures (NANOSIM) group.

As result of the cooperation and collaboration between the two research groups, an

associate laboratory called of Laboratoire International en Calcul Intensif et Informatique

Ambiante (LICIA) was created. Besides that, there was some cooperation of the two

groups as part of the High Performance Computing for Geophysics Applications (HPC-

GA) project. So, our research has benefited from the experience of researchers of the

two groups and their common research areas, more specifically, dynamic load balancing

algorithms, task migration, dynamic process control and scientific real world applications.

On dynamic load balancing algorithms, Pilla (PILLA et al., 2012; PILLA et al.,

2014) developed load balancing algorithms that work at runtime level and combine appli-

cation information about the machine topology gathered during execution. This approach

improves the distribution of tasks over a parallel platform in order to mitigate load imbal-

ance and costly communications.

Rodrigues (RODRIGUES et al., 2009; RODRIGUES et al., 2010) proposed a load

balancing approach to reduce the execution time of applications by reducing the load im-

balance and costly communications in a real world application, BRAMS. In same context,

Tesser (TESSER et al., 2014b) evaluated the use of dynamic load balancing in CHARM++

to improve the performance of Ondes3D, a seismic wave propagation simulator developed

by BRGM. Ondes3D was ported to AMPI and a performance evaluation was done using

four load balancers available on CHARM++ and two topology aware load balancers, the

NUCOLB (PILLA et al., 2012) and HWTOPOLB (PILLA et al., 2014), both strategies

developed by Laércio L. Pilla.

Our work also has a collaboration with the Parallel Programming Laboratory

(PPL) of the University of Illinois at Urbana-Champaign (UIUC) within the Joint Lab-

oratory for Exascale Computing (JLESC) (PADOIN et al., 2014b) and (PADOIN et al.,

2014a). This collaboration is very important to our research since we used CHARM++,

the runtime system developed by PPL, to implement and test our proposed energy-aware

load balancing algorithms. Besides that, the results were presented in 12th Workshop on

Charm++ and its Applications (PADOIN et al., 2014c).

1.4 Text Organization

The remaining chapters of this thesis are structured as follows:
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• Chapter 2 reviews the basic concepts about load balancing strategies, which are

relevant to this thesis. We discuss how the load balancing impacts the use the re-

sources available in parallel machines, since it can interfere in the performance of

parallel applications and on the energy consumption of entire system. We detail

the behavior of parallel applications, characterize load balancing, and describe the

most known strategies for load balancing. We also evaluate scientific applications

in the context of load balancing;

• Chapter 3 presents a review of basic concepts and metrics to measure energy con-

sumption, showing the quantities involved in the measurement that are relevant to

the development of this thesis. In this context, we provide a discussion about energy

evaluation. We also present a review of the state of the art, contextualizing the ad-

dressed issue, research and technological advances related to energy consumption;

• Chapter 4 proposes the Energy-Aware Load Balancer (ENERGYLB) to improve the

energy efficiency of parallel systems when running load imbalanced applications.

In this chapter, we described in detail our two proposed load balancing strategies,

divided into motivation and contribution. We also discuss algorithms and imple-

mentation details. Our approaches propose combining dynamic load balancing and

DVFS considering the characteristics of the application and of the system to make

decisions;

• Chapter 5 presents an experimental evaluation of our Energy-Aware Load Balanc-

ing approach. In this chapter, we discuss the methodology of the validation of our

proposed load balancers. We present the parallel system, the benchmarks, the real

world applications, and other available load balancers. These were used in a set of

tests to measure the runtime, power demand and energy consumption improvements

and compare them with our proposed strategies;

• Chapter 6 summarizes our conclusions and contributions as well as outlining per-

spectives for the future work;

• Appendix A presents an experimental evaluation of our Centralized Energy-Aware

Load Balancer using benchmarks and real world applications; and

• Appendix B presents an experimental evaluation of our Hierarchical Energy-Aware

Load Balancer using benchmarks and real world applications.
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2 LOAD BALANCING OVERVIEW

Applications has been distributed across all system processors aiming achieve high

performance and attend the computational demands of scientific simulations. Since sev-

eral applications suffer from load imbalance, which can reduce performance and scala-

bility, the workload is partitioned according to specific load balancing strategies aiming

efficiently use all parallel resources of HPC systems. Load imbalance also contributes

to the inefficiency of parallel applications, since the runtime of an application is defined

by the most loaded processor. Therefore, achieving a balanced load is one of the main

issues to reach high performance, especially when dynamic and irregular problems are

computed.

Load balancing (LB) strategies are techniques widely used to achieve a better dis-

tribution of tasks or computational load across processors of a parallel machine. They aim

to reduce the load imbalance, avoid overloaded processors and decrease the contention in

communication resources. Load balancing has been studied extensively, since it is present

in several applications from different scientific fields. Therefore, scientific applications

are potential candidates for performance improvements through load balancing. Several

approaches and combinatorial algorithms that have been proposed to reduce the execution

time focusing mainly in increasing resources usage at the hardware level.

In this chapter, we present the state of the art on load balancing strategies for

scientific applications. We review the previous fundamental results related to the topic

of this thesis. In the first section, we detail the main characteristics of computational

load and scientific applications. Load balancing heuristics and load balancing categories

are presented in Sections 2.2 and 2.3, respectively. Finally, we present the concluding

remarks of this chapter, highlighting some points regarding the context of this thesis.

2.1 Characterization of Computational Load

Parallel scientific applications have allowed addressing grand challenges in sci-

ence. Scientific applications such as molecular dynamics simulations, natural phenomena

forecast, seismic models and weather forecasting are run in HPC systems aiming at more

accurate results and shorter execution times.

Research on the HPC field aims to provide faster supercomputer systems to run

even bigger simulations creating a better understanding and predicting natural phenom-
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ena. However, these applications are constantly increasing the amount of data to be pro-

cessed aiming a higher precision, demanding a larger number of processing cores, and

consuming large amounts of energy to run. To attend to this demand, supercomputers are

scaling their performance exponentially over the years leading to an exponential growth

in power demand (DONG; CHEN; TANG, 2010; GERARDS et al., 2014).

Furthermore, several scientific applications are complex and have tasks with dif-

ferent or dynamic computational loads that often result in load imbalance and poor scal-

ing. Therefore, in order to determine if an application can benefit from load balancing

strategies, their behavior needs to be analyzed.

In the context of this thesis, the load balancing problem can be defined as follows:

given a parallel machine with a set of processors and the set of tasks of a parallel appli-

cation, each task with its own computational load and communication needs, we want

to find the mapping that best equalizes the tasks. An important issue for load balancing

strategies is how to obtain the information about computation and communication, which

will be used for making load balancing decisions. Another issue is that load balancing

can incur in an increase in the overall execution time due the time spent on the load evalu-

ation, decision making and task migration (WATTS; TAYLOR, 1998; CHARM++, 2014;

TALLENT; ADHIANTO; MELLOR-CRUMMEY, 2010; PEARCE et al., 2012).

Currently, most load balancing strategies make decisions leaving aside the energy

consumption of the computer system. Given the high power demand of current systems,

however, the energy costs need to be taken into account during load balancing. In this

scenario, there is a demand for load balancing strategies able to better manage and reduce

the energy consumption of newer systems. An interesting approach would be to inves-

tigate the use of power demand information together with computational loads to guide

scheduling decisions in order to increase the energy efficiency of parallel systems.

2.1.1 Scientific Applications

Scientific applications have been used in simulations enabling research in several

areas of knowledge. The computational load of large scientific applications are divided

into a number of tasks to be processed in parallel by an HPC system. Depending of

the programming language used, these tasks may be implemented as processes in MPI,

threads in OpenMP, and active objects in CHARM++. However, this may not generate the

expected performance gains, due to application characteristics, such as load imbalance
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and excessive communication between tasks. To deal with such characteristics, these

applications may require special strategies to make efficient use of all available resources.

In this context, load balancers can help to detect imbalance and to migrate tasks in

order to redistribute the workload and enhance the use of computing resources.

In several applications, the computational load, also called load in this thesis con-

text, cannot be equally divided. In this way, they can be ranked in two groups: Regular

and Irregular Applications, as discussed in the subsection following.

2.1.1.1 Regular and Irregular Applications

Regular applications are those whose tasks have similar execution times in a given

application period. During the task creation, their computational load can be equally

divided among all tasks. When running this type of application on an HPC system, it

is easier to achieve a high processor occupation or resource usage, therefore reaching a

higher computational efficiency at the hardware level. For applications with regular loads,

static load balancing can easily reach an effective work distribution.

On the other hand, Irregular Applications are those whose computational load

cannot be divided in a way that their tasks have similar loads. This is the case of many

scientific applications and in addition, for many of these scientific applications, task loads

cannot be predicted at start time. This way, it becomes harder to achieve a high proces-

sor occupation and an efficient use of the available resources. Furthermore, scaling these

applications on current HPC systems is more complex, due to the increased difficulties in

scheduling. Examples of irregular applications are state-space search, combinatorial opti-

mization, and recursive parallel codes (LIFFLANDER; KRISHNAMOORTHY; KALÉ,

2012).

Figure 2.1 illustrates an example of regularity present in the computational load

during the application’s task creation.

Figure 2.1: Application regularity.

(a) Regular Load. (b) Irregular Load.

Source: The author
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Other applications have a data-set, which can cause load variations during their

execution, making it difficult to predict their behavior. Based on these characteristics,

applications can be classified as Static and Dynamic Applications.

2.1.1.2 Static and Dynamic Applications

Some applications have a computational load defined at creation time and it usu-

ally remains constant or static throughout the execution. Load balancing algorithms

can be applied in these static applications to achieve a better performance using appli-

cation information gathered during execution time (ICHIKAWA; YAMASHITA, 2000;

LEGRAND et al., 2004; MARTÍNEZ et al., 2011; PILLA, 2014).

On the other hand, a significant number of applications have a behavior in which

the computational load of tasks varies during execution, making it difficult to predict the

load of their tasks. We call them dynamic applications. In this case, we say they have a

dynamic load distribution.

Information gathered before execution is not important to load balancing algo-

rithms when they are applied in dynamic applications. Their decisions take into account

the current workload of each task periodically, every time a certain number of itera-

tions has elapsed. This behavior is present in a large number of parallel scientific ap-

plications, making it even more difficult to run them on heterogeneous or non-dedicated

systems (CYBENKO, 1989; HUMMEL et al., 1996; BAHI; CONTASSOT-VIVIER;

COUTURIER, 2005; CARIÑO; BANICESCU, 2008; GALINDO; ALMEIDA; BADÍA-

CONTELLES, 2008).

Figure 2.2 presents an example of dynamicity present in the computational load

during the application’s execution.

According to their regularity and dynamicity, scientific applications can also be

classified as Iterative and Non-Iterative. We will discuss these two in the next subsection.

2.1.1.3 Iterative and Non-Iterative Applications

Iterative applications are those where consecutive iterations have a similar behav-

ior in computation load. That is, these iterations, also known as time steps, have a similar

pattern of communication and computation, which can be used to make decisions in load

balancing (MENON; KALÉ, 2013).

In iterative applications, the computational load of each task can be evaluated in
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Figure 2.2: Application dynamicity.

(a) Static Load. (b) Dynamic Load.

Source: The author

the first iterations and reevaluated every time a certain number of time steps is completed.

This allows the current load to be used for predicting the future load. In these strategies,

information about load and communication is usually saved in databases to later be used

in load balancing decisions.

This kind of application is predominant in real world simulations. For instance,

simulations of atoms moving in a structural molecular, NAnoscale Molecular Dynam-

ics (NAMD) (PHILLIPS et al., 2002), climate or weather simulation, cosmological and

seismic wave simulation are all examples of iterative applications.

Different from the first type, non-iterative applications do not have any correlation

between time steps. This behavior is harder to predict. The difficult increases even more

when some of these parallel applications create new tasks in runtime. Thus, creating new

computational load and unbalancing the load of the whole system (ZHENG, 2005).

2.1.2 Scientific Application Classes

We selected different classes of scientific applications and examples of applica-

tions to verify the regularity and dynamicity of their computational load and the commu-

nication. These classes are:

• Cosmological Simulations

The first class of scientific application we analyzed is cosmological simulations.

Applications of this class have a unique communication pattern. For example,

solvers used in gravitational simulations for the N-body problem generally use
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methods such as hybrid codes, particle-mesh methods and tree-methods (BHATELÉ

et al., 2011). Examples of cosmological simulations include Parallel K-D tree

GRAVity code (PkdGRAV) (DIKAIAKOS; STADEL, 1996) and Charm N-body

GrAvity solver (ChaNGa) (JETLEY et al., 2008).

PkdGRAV’s code contains a data tree structured where the root-cell of this tree

represents the entire simulation volume and ChaNGa’s code represents N-body with

boundary conditions of isolated stellar systems.

• Molecular Dynamics

The second class of scientific applications we selected is molecular dynamic (MD).

These applications focus on the simulation of bio molecular systems involving the

computation of forces on a system of N-atoms (BHATELÉ et al., 2011; MEI et al.,

2011). Several parallel implementations have been developed for scaling MD codes

on current HPC systems by dividing of atoms into cells. So, in each iteration, the

force is computed for all pairs of atoms that are within a specified distance, resulting

in a computational load proportional to the number of atoms in each cell. These

algorithms are considered dynamic due to their load imbalance. This behavior is

caused by the variable number of atoms in each cell and by movement of atoms

between cells over time.

LeanMD is a scalable parallel application for MD that simulates the behavior of

atoms based on the Lennard-Jones potential (PHILLIPS et al., 2002). The algo-

rithm, implemented using the CHARM++ runtime system, performs a computation

similar to the force calculation in NAnoscale Molecular Dynamics (NAMD) (NEL-

SON et al., 1996; BHATELÉ; KALÉ; KUMAR, 2009; MENON; KALÉ, 2013).

• Seismic Wave Simulations

The third class of scientific applications we studied is seismic wave propagation

models. Currently, these applications are one of the research topics on HPC due

its high demand of processing power. Seismic wave applications can be used to

simulate the propagation of waves in a region and predict the consequences of future

earthquakes.

Ondes3D is an example of the seismic wave simulation class. Its algorithm was

implemented using several different frameworks, including MPI and CHARM++

(TESSER et al., 2014b). Their main characteristics are the high memory consump-

tion and processing cost. In addition, the data access pattern during the stages of

the application that is regular (DUPROS et al., 2008).
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• Unstructured Grid

Unstructured grid implementations have been one of the most efficient ways to

solve large computational fluid dynamics (CFD) problems and are the fourth class

we analyzed. Grid partitioning is a widely used method to decompose compu-

tational problems into parallel tasks. It is used mainly in applications where the

computational load of the grid or the grid organization changes during the appli-

cation’s execution. The ability of dynamically organize the grid is attractive for

increasing the usage of the available resource and achieving higher performance. In

this case, dynamic load balancing techniques can be applied to partitioning of un-

structured grids, aiming at improving the computational load balanced (BHATELÉ

et al., 2011).

Finite Volume Methods (FVM) and Finite Element Methods (FEM) have been com-

monly employed to solve problems in this class. However, the cost of their data

structures results in more complex implementation (HIRSCH, 2007).

• Weather Forecasting

Weather forecasting is another scientific applications class we analyzed. These

applications are employed to predict the state of the atmosphere in a location at

a specific time (MICHALAKES; VACHHARAJANI, 2008). Models such as the

Regional Atmospheric Modeling System (RAMS) (WALKO et al., 2000), and its

Brazilian variant, (BRAMS, 2011; RODRIGUES et al., 2010), are implemented by

dividing the globe and the atmosphere into a three-dimensional mesh.

The computational load of these models is considered irregular with load imbal-

ance. This happens because tasks may present different workloads depending on

input data (MENON; KALÉ, 2013). Dynamicity in load is also present due to

phenomena moving through the simulated area. The communication of this ap-

plication class generally has a regular and static behavior, similar to seismic wave

simulations (PILLA, 2014).

Table 2.1 summarizes some examples of the scientific applications according to

the dynamicity of their computational load and communication, which some applications

are used in thesis.
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Table 2.1: Examples of scientific application and dynamicity.
Class Application Load Communication

Cosmological Simulations ChaNGa Dynamic Static
Molecular Dynamics NAMD Dynamic Static
Seismic Wave Simulations Ondes3D Dynamic Static
Unstructured Grid CFD Dynamic Dynamic
Weather Forecasting RAMS Static mainly Static

Source: The author

2.2 Load Balancing Heuristics

Load imbalance is one of the challenge problems in parallel applications. Load

imbalance is caused by a distribution of load that forces some processes to be idle be-

tween synchronizations (TALLENT; ADHIANTO; MELLOR-CRUMMEY, 2010). In

this context, load balancing techniques are used to achieve a better computational load

distribution, and to avoid load imbalance in parallel applications. Their main goal is to

increase the resource utilization. This is usually achieved by avoiding processor overload-

ing, and also mapping tasks in a way that decreases the communication cost.

Load balancing is considered a NP-Hard problem, due the application and plat-

form characteristics and also due the hard solutions to achieve a balanced mapping (LE-

UNG, 2004; EL-REWINI; ABD-EL-BARR, 2005; BRUCKER; BRUCKER, 2007).

For this reason, currently we have several different load balancing heuristics.

These heuristics can use several kinds of information, being currently processor load the

most used. Besides the load of the processor, heuristics can use the load of individual core,

the processor speed, the memory hierarchy, communication costs, network topology and

migration costs (CHARM++, 2014; EL-REWINI; ABD-EL-BARR, 2005).

Current load balancer strategies uses a relation to compute the load imbalance

(Lι) present in the system (PEARCE et al., 2012; TALLENT; ADHIANTO; MELLOR-

CRUMMEY, 2010). Most of them compute Lι as the ratio between the maximum load

and average load, as presented in Equation 2.1:

Lι =
Lmax
Lavg

− 1 (2.1)

where Lmax is the load of the most loaded processor, and Lavg is the average

load of all the processors. So, periodically, the load balancer strategy obtains the load

information and computes the load imbalance.
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This equation is used in some load balancing strategies, since a parallel program

only finishes its execution when the most loaded processor completes all its tasks. This

way, the total execution time of an application is generally defined by the most loaded

processor. This means that all other processors will remain waiting for it to complete its

work. So, Lmax represents the current execution time of the application. On the other

hand, Lavg represents the ideal execution time of the application when the load of all

processors is balanced (LEUNG, 2004).

In some parallel programming models, for example CHARM++, the load balanc-

ing is based on a heuristic known as the principle of persistence for iterative applications.

This principle states that in some types of applications, the computational loads and com-

munication patterns tend to persist over time, even in dynamically evolving computations.

This behavior allows to use recent history as an indication for predicting load or commu-

nication in near future iterations (KALÉ, 2002; KALÉ; KRISHNAN, 1993; CHARM++,

2014; ZHENG et al., 2011; MENON et al., 2013). The principle of persistence is valid for

a large class of iterative HPC applications (SAROOD; MENESES; KALÉ, 2013). It can

be used as an automatic method to obtain load information without manually predicting

the load (ZHENG et al., 2010; ZHENG et al., 2011).

2.2.1 Load Balancing Decisions

Making the right load balancing decisions is one of the most important problems

when trying to achieve an optimal load balance. However, making this decision generates

overhead, since in each load balancing step is necessary to get the load information from

all processors, make the decisions, and, if necessary, migrate the tasks between proces-

sors. Choosing the right interval between calls to the load balancer, is decisive to reduce

the load balance overhead.

Some load balancing strategies run the algorithm to make decisions in periods of

time specified previously by the user. However, if the strategy is performed very fre-

quently, it may incur in a reduction of performance, because the load balancing overhead

or also called load balancing times, may exceed its benefits. On the other hand, if the load

balancer is invoked in long time periods, the load imbalance may increase too much and

also result in loss of performance. So, even when the strategy detects that there is load

imbalance, Lι > 0, according to Equation 2.1, it may not yet be useful to invoke the load

balancer due to their own overhead.
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Considering this, some current strategies are designed aiming at dynamicity. They

analyze the application issues and the platform behavior to make decisions on runtime,

without specified parameters. As a solution to decrease the load balancing overhead,

several recent strategies have adopted a threshold to determine if load balancing must be

performed or not. That is, the load balancing heuristics will only execute if Lι > threshold.

Most current strategies use heuristics together with threshold to define the load imbalance.

Zheng (ZHENG et al., 2010; ZHENG et al., 2011) for example, uses a similar

model to the one shown the Equation 2.1 to compute the load imbalance (Lι). To define

the threshold they have used a benchmark to create tasks (t) on available processors (p)

where t > p.

In each load balancing invocation, the strategy gets load information of each task

on every processor and defines the current load of the most overloaded processor. The

current load before load balancing is called Lmax and after load balancing is called as

L′
max. This way, the threshold is defined as the gain from load balancing (Lmax − L′

max)

in relation to the cost of load balancing (Clb). So, the load balancer will only execute

when:

gain(Lmax − L′
max) > Clb (2.2)

This is, the load balancing strategy will only be executed when its estimated (the

gains threshold) are higher than its estimated own execution time.

2.3 Related Work on Load Balancing

Load balancing strategies can be classified into two categories. In the first cate-

gory, the approaches are applied when new tasks are created in the applications. In these

strategies, also called of task scheduling, the tasks are the basic unit of work for load

balancing. Thus, the load balancer makes decisions on task pool. These applications are

typically non-iterative, as described in Subsection 2.1.2.

The second category, called periodic load balancing are the strategies suitable for

iterative applications, such as NAMD, FEM, climate simulation and others. In these

applications, the computation typically consists of a number of iterations or time steps.

Wherein consecutive iterations have similar behaviors. Therefore, load balancing strate-

gies in this category make load balancing decisions every time a certain number of itera-
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tions is executed.

This means that, in iterative applications, the load balancing heuristics is per-

formed with a defined frequency. After performing a specific number of iterations, the

application is stopped and the load balancer strategy gets information, based on which it

decides if it is necessary to migrate some of the tasks, in order to improve the load bal-

ance. As discussed in Subsection 2.2.1, this decision making process, performed by the

load balancer can be expensive in terms of application execution time.

Periodic load balancing strategies have been used on iterative applications that

have persistent load patterns. These strategies make predictions of future computation

load based on past information. Their decisions assume that the load will not change

significantly in the following iterations, as discussed in Subsection 2.1.1.3.

Several strategies have been proposed to address the load balancing problem. They

can be classified based on where the decisions are made. Some strategies employ a cen-

tralized approach, where load information is collected on a single processor, in which

the decisions can be made sequentially. Other strategies aim at a better scalability, when

used in larger scale systems, with a large number of processors. These strategies adopt

distributed approaches where distributed processors make decisions using their local view

of the system. A third kind of strategies, seeks to reduce the excessive data collection by

using a hierarchical structure. In this case, the decisions are made at each level of the

hierarchy. These three classes of strategy are briefly discussed in the following sections.

2.3.1 Centralized Strategies

Centralized strategies make load balancing decisions on a single processor. Load

and communication data of the entire machine is accumulated in a specific processor,

which runs a sequential decision process based on this information. In these strate-

gies, the process of collecting information from all processors can impose a high over-

head in the system. So, centralized approaches are only recommended to system with

smaller amounts of processors. Otherwise, the load balancer may run into problems of

scalability and memory usage (ICHIKAWA; YAMASHITA, 2000; LEGRAND et al.,

2004; PHILLIPS et al., 2002; GALINDO; ALMEIDA; BADÍA-CONTELLES, 2008;

BHATELÉ et al., 2008; CARIÑO; BANICESCU, 2008; MARTÍNEZ et al., 2011; ZHENG

et al., 2011).
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2.3.1.1 Basic Centralized Load Balancing Strategies

In this subsection, we will present examples of basic centralized load balancers.

We call them basic, because they only consider the load on their decisions. They are:

• GREEDYLB is an aggressive scheduling algorithm. This strategy employs a greedy

heuristics to make its decisions using only computational loads information. This

algorithm does not take into account other information and also does not considers

the current place of tasks into processors to decide the migrating tasks (KALÉ;

KRISHNAN, 1993).

The algorithm sorts the tasks in decreasing load order, and iteratively maps the

task with the highest load to the least loaded core. Thus, this centralized strategy

can be used to quickly mitigate load imbalance not limiting the number of objects

migrated (ZHENG et al., 2011).

• REFINELB - makes decisions considering the current load distribution, differently

from GREEDYLB, which makes load balancing decisions from scratch. REFINELB

improves the load balance by incrementally adjusting the existing mapping. The re-

finement has a limit, or threshold, on the number of objects that can be migrated.

This is done to diminish the overhead in the application. So, this approach mi-

grates only a fraction of objects, therefore reducing data migration. This makes

REFINELB be more efficient than GREEDYLB in some applications (KALÉ; KR-

ISHNAN, 1993).

In its first step, REFINELB’s algorithm divides the cores in two groups according

to a previously defined load threshold. So, a core is considered overloaded when

its load is greater than the threshold. In the second step, the algorithm verifies the

possible migrations from the overloaded cores to non-overloaded cores. REFINELB

tries to reach a load distribution that leaves the core loads close to the average. This

algorithm is less aggressive than GREEDYLB, because it works over the current

task mapping. The load imbalance is incrementally reduced every time these steps

are repeated.

• RANDCENTLB - differently from GREEDYLB and REFINELB, this load balancer

algorithm does not take into account any information about the application or plat-

form to make its decisions. It randomly assigns all tasks to all processors avail-

able (KALÉ; KRISHNAN, 1993).
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2.3.1.2 Centralized Load Balancing Strategies using Communication Data

Besides the computational load, some centralized load balancers also consider

communication data on their decisions. In this subsection, we will present some load

balancers available in this category:

• GREEDYCOMMLB, which extends the GREEDYLB with the addition of commu-

nication loads to its decision processes. The algorithm computes the communica-

tion cost of each task, based on the number of messages sent to tasks mapped to

other cores. So, instead of simply mapping of the task with the biggest load to the

least loaded core, as done by GREEDYLB, it also considers all other cores that have

tasks that communicate with it, making this strategy more expensive (ZHENG et

al., 2011).

• REFINECOMMLB, similarly to GREEDYCOMMLB, extends the REFINELB algo-

rithm by including communications costs in the decision process. The algorithm

considers the communication cost between cores used by the application to com-

pute the load imbalance. The communication data is also considered to map tasks

into a different processor (KALÉ; KRISHNAN, 1993).

• SCOTCHLB is a static mapping algorithm based on the dual recursive bi-partitioning.

It allows map efficiently using both the source process graph and the target archi-

tecture graph to map process. It can also use any weighted source graph onto any

weighted target graph (PELLEGRINI; ROMAN, 1996; SCOTCH, 2015).

2.3.1.3 Centralized Topology-Aware Load Balancing Strategies

More recently, some load balancers began including network, and memory topol-

ogy information in their heuristics. Some of the load balancers of this category are listed

in following:

• TOPOAWARELDB is a load balancing strategy that uses information about the

topology to map applications on 3D torus/mesh architectures (BHATELÉ; KALÉ;

KUMAR, 2009). This strategy has been applied in several applications, among

them NAMD, as discussed in Subsection 2.1.1.3.

• NUCOLB is a strategy developed for parallel platforms with non uniform topolo-

gies. It takes into account the memory topology of NUMA systems. Besides trying

to mitigate the load imbalance, also tries to reduce communications costs by keep-
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ing communicating tasks in the same NUMA node (PILLA et al., 2012; PILLA et

al., 2014).

• HWTOPOLB extends the NucoLB, aiming at improving its performance by de-

creasing the costs of communication. This load balancing strategy takes into ac-

count the communication costs of the whole system’s topology and information

from the application, as workload and communication patterns captured during

its execution. The communication costs are measured through a selected bench-

mark (PILLA et al., 2012; PILLA et al., 2014).

2.3.1.4 Centralized Temperature-Aware Load Balancing Strategies

Newer centralized load balancers have considered system temperature to avoid

overheating and reduce cooling costs. We present, in this subsection, some load balancers

available in this category:

• TEMPLDB, different from most load balancers, does not use computation load to

take its decision. Instead, it limits the temperature of processors to a temperature

barrier. Its goal is to reduce the energy spent in cooling (SAROOD et al., 2012;

SAROOD; MENESES; KALÉ, 2013).

The TEMPLDB algorithm collects the temperature of each core in a distributed

mode. Its decision is made in a specific processor, using a barrier to control the

temperature. A DVFS technique is applied to reduce the processor’s temperature.

Temperature changes to a processor affect all of its cores (MENON et al., 2013).

• METATEMPCONTROLLER is an improvement of the TEMPLDB. This temperature-

aware strategy automatically control the processors temperature, avoiding hot spots

without any support from the user (MENON et al., 2013). The algorithm is imple-

mented using a threshold value. This way, automating the decision making and

avoiding the overhead caused by load balancing calls. METATEMPCONTROLLER

computes an ideal period between calls of the load balancing. It takes into account

information about the application and the cost to execute the load balancer on sys-

tem.

• Merkel et al. employ a similar strategy to TEMPLDB. It is a task scheduling al-

gorithm to avoid overheating in multiprocessors systems. Merkel uses data from

monitoring counters to implement a mechanism to assign tasks to CPUs. This mon-

itoring data is also used to tasks migrate to avoid hot spot in systems (MERKEL;
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BELLOSA, 2006).

• Goel et al. present a model that uses CPU performance counters and CPU temper-

ature data to estimate an accurate per-core power. This model provide information

that can be used to guide scheduling decisions in power-aware managers (GOEL et

al., 2010).

• Hartog et al. developed an approach that uses the relationship between CPU tem-

perature and energy consumption to provide a method for estimating the power

usage of the system (HARTOG; DEDE; GOVINDARAJU, 2013).

• Kodama et al. use a similar approach to Hartog. They state that homogeneous

nodes have different power consumption due their positions. They implement a

relationship between CPU load and fan speed once these behavior generate an im-

balance in the power consumption of fans. This way, they also introduces a new

metric that based on the power and heat of each node, aims to reduce the power

demand of fans (KODAMA et al., 2013).

• Seyedmehdi et al. implement a task scheduling approach to cloud computing. It

aims to benefit both cloud providers and their customers. The model regulates the

execution speeds of real-time tasks in a way that a host reaches the optimum level

of utilization instead of migrating its tasks to other hosts (HOSSEINIMOTLAGH;

KHUNJUSH; HOSSEINIMOTLAGH, 2014).

2.3.1.5 Centralized Energy-Aware Load Balancing Strategies

Several strategies and algorithms have been proposed focusing mainly in increas-

ing resources usage and reducing the execution time. However, few approaches have

made efforts to further improve the energy consumption on load balancing context. In

this subsection, we present a load balancer available in this category:

• Aupy et al. propose an energy-aware scheduling model to schedule tasks under

reliability and makespan constraints. This approach has been evaluated using simu-

lations with different heuristics based on the probability of failure, the task weights,

and the processor speeds. These heuristics aim at minimizing the energy consump-

tion while enforcing reliability and deadline constraints considering an expected

energy consumption for a second execution of tasks (AUPY; BENOIT; ROBERT,

2012).
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Centralized load balancing strategies are able to achieve good load balance. As

such, several scientific applications have used them to increase their performance. NAMD

(PHILLIPS et al., 2002) and ChaNGa (JETLEY et al., 2008) are examples of these appli-

cations (ZHENG et al., 2011). However, the centralized approach generally presents low

scalability in large scale systems, due to large amount of information used in the deci-

sion process. For example, Zheng et al. measured the increase in memory overhead when

using centralized strategies in a HPC system with 65,536 cores (ZHENG et al., 2010). Fu-

ture Exascale system will probably have a few thousands of processors. It would hardly

be possible to make a centralized approach to scale to this level. As an alternative solu-

tion, the research community has proposed distributed load balancing strategies, which

will be discussed in the next subsection.

2.3.2 Distributed Strategies

Distributed load balancing strategies aim to improve the performance of load bal-

ancers on large scale systems. In these strategies, processors exchange load balanc-

ing data only among their neighbors, as a way to decentralize the load balancing pro-

cess (CYBENKO, 1989; BAHI; CONTASSOT-VIVIER; COUTURIER, 2005; ZHENG

et al., 2011). This way, different from centralized approaches, distributed strategies do

not have a global load balancing point. The drawback is that achieving a load balanced

may take more time, since each processor has a limited set of information about the entire

system. Therefore, these strategies present a slow convergence. However, working with a

smaller set of data improves scalability, since there is less to process.

On the other hand, distributed strategies are more scalable than centralized strate-

gies, since processors make decisions using only local information of the system (CY-

BENKO, 1989). It’s important to point that in very large systems, even with these strate-

gies, which are developed to be scalable, may still suffer from scalability problems. The

cause for this issue is the information exchange among the nodes that compose the system.

To avoid this problem, current strategies have used some communication info, similarly

to GREEDYCOMMLB and REFINECOMMLB strategies.
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2.3.2.1 Basic Distributed Load Balancing Strategies

In this subsection, we will present examples of basic distributed load balancers.

We call them basic, because they only consider the load on their decisions. They are:

• GRAPEVINELB is a distributed strategy, which has the goal of presenting less load

balancing overhead than similar centralized strategies. Its algorithm makes load

balancing decisions in two stages. In the first, which is performed in parallel, the

average load of each processor is computed. This average value is used to define the

global state of the system. In the second stage, the overloaded processors receive the

information about the underloaded processors, and make decisions about whether

or not to transfer some of their tasks to underloaded processors (MENON; KALÉ,

2013).

• GRAPEPLUSLB is an improvement of GRAPEVINELB. The main modification is

to avoid that underloaded processors receive the information about the overloaded

processors after the transference of tasks (MENON; KALÉ, 2013).

Distributed strategies do not have a global synchronization point, which has a

positive impact in their scalability. However, with the expected scale of futures systems,

which will be much large than current large scales systems, it will become harder for

these strategies to collect load balancing data that are distributed throughout the system.

Therefore, we need new strategies to solve this load balancing data distribution problem.

One of these strategies is called, hierarchical load balancing, which will be discussed in

the next subsection.

2.3.3 Hierarchical or Multi-Level Strategies

Hierarchical load balancing strategies divide the processors in groups, which are

organized in hierarchical levels, according to system organization. To make decisions, the

hierarchical algorithms aggregate the load data in lowest level of the hierarchy. This al-

lows them to decentralize the decision making and minimizing the communication among

the processors. This way, these strategies have a reduced time to make decision and also

need less memory to save load data only of the sub-group (ZHENG et al., 2011).

Most implementations of hierarchical strategies use only two independent hierar-

chical levels, due to overhead concerns. In the highest level is the whole platform. This
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level, also called of root or group leader, is composed of several sub-levels organized in a

sub-tree. In the second level, also called leaves, a centralized load balancing strategy can

be performed to balance the load of the processors of their sub-tree. This way, hierarchi-

cal strategies allow to execute load balancing algorithms in parallel on different sub-tree.

So, they can exploit the parallelism available in these systems, which helps them to scale

in systems with a very large number of processors, without reducing the efficiency of the

load balance.

2.3.3.1 Basic Hierarchical Load Balancing Strategies

In this subsection are presented some examples of basic hierarchical load bal-

ancers. Similar to centralized and distributed load balancing strategies these also only

consider the load on their decisions.

• HYBRIDLB is a periodic hierarchical load balancing developed for the CHARM++

environment. It divides the processors into independent groups organizing them in

a hierarchical tree. The strategy creates a tree based on the machine topology, aim-

ing to reduce the communication overhead and improve locality. This hierarchical

implementation reduces the amount of data in the tree, since data are aggregate to

sub-tree, avoiding the communication among them. Similarly, load balancing deci-

sions are made in each sub-tree to minimize the cost of tasks migration (ZHENG et

al., 2011).

• HIERARCHICALLB aims to reduce the load balancing overhead by dividing the

load balancing decisions in hierarchical levels. It allows the use of different load

balancers in different levels. At platform level, it employs HwTopoLB, a centralized

load balancing, to distribute tasks over nodes, and at node level, it can run either

HWTOPOLB or NUCOLB to map tasks inside a node. Applying task mapping

in two levels, this organization takes into account the machine topology, different

mechanisms can be used for communication, as interconnection network between

system nodes and memory hierarchy inside a node (PILLA et al., 2012).

As seen in this subsection, hierarchical strategies aims to overcome issues present

in centralized and distributed strategies. These strategies provide good load balancing

performance and good scalability in large scale systems, while requiring a smaller amount

of communications. Table 2.2 summarizes these approaches considering load balancing

convergence, scalability and load balancing overhead.
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Table 2.2: Strategies characteristics.

Strategy Load balancing
convergence scalability overhead

Centralized fast poor high
Distributed slow good low
Hierarchical fast good relative to levels

Source: The author

2.4 Discussion

HPC systems have been continuously increasing their performance to meet the

computational demands of scientific applications. Unfortunately, this also increases their

energy consumption. This strategy has made the energy consumption to become a limiting

factor to the scalability of future systems. So, in this chapter we presented a characteriza-

tion of computational load of scientific applications and a load balancing discussion.

Besides the increased energy consumption, HPC systems also grew in number of

computational nodes, it gets harder to achieve a high level of efficiency in the use of the

available resources. A high resource usage is essential for achieving the best performance

possible on these systems. To mitigate this problem, parallel scientific applications need

to employ load balancing strategies, which try to equally divide their workload across all

processors.

Load balancing is a challenging problem, which has been widely studied and used

as a way to improve the performance of parallel applications (KALÉ; BHANDARKAR;

BRUNNER, 1998; EL-REWINI; ABD-EL-BARR, 2005; ZHENG et al., 2011). In this

context, different strategies have been proposed aim to overcome the load balancing prob-

lem. These strategies generally are classified based on where the decisions are made,

being called of centralized, distributed or hierarchical strategy.

Most of these load balancing strategies are mainly based on application character-

istics and architectural aspects of the machine. They analyze the application information

and the platform behavior to make decisions on runtime, being computational load, pro-

cessor speed, communication cost and hardware topology the most data used for making

load balancing decisions.

More recently, some load balancers began including network, and memory topol-

ogy information to make its decisions and nowadays some strategies start include deci-

sions based on system temperature on their heuristics. However, few approaches have
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made efforts to further improve the energy consumption on load balancing context. A

few recent strategies started including decisions based on system temperature on their

heuristics (ZHENG et al., 2011).

A subset of the current load balancing algorithms is compared in Table 2.3, ac-

cording to the criteria they use in their decisions.

Table 2.3: Load balancing algorithms comparison in terms of make decision criteria.
Algorithm Category* Load Communication Topology Temperature Energy

GREEDYLB C •
REFINELB C •
GRAPEVINELB D •
GRAPEPLUSLB D •
Seyedmehdi et al. C •
GREEDYCOMMLB C • •
REFINECOMMLB C • •
TOPOAWARELDB C •
NUCOLB C • • •
HWTOPOLB C • • •
HIERARCHICALLB H • • •
HYBRIDLB H • •
TEMPLDB C •
METATEMPCONTROLLER C •
Merkel et al. C •
Kodama et al. C •
Goel et al. C •
Hartog et al. C •
Aupy et al. C •

*Category: (C)entralized (D)istributed (H)ierarchical

Source: The author

During a long period of time, research in load balancing strategies focused in

increasing performance and scalability. Power demand or total energy consumption were

not take into account. Instead, most load balancers implemented on several different

programming models, focused mainly on reducing the execution time or communication

cost. Some of these approaches seek to improve the performance avoiding imbalance by

improving the distribution of the load among processors. The main result would be a

reduction in the total execution time. It’s worth noticing that these strategies may also

reduce the application’s energy consumption, since they will be using the machine for a

shorter period of time.

Today, power and energy consumption have become critical in the HPC field.

These are the main design constraints to build the future Exascale systems, which will

include thousands of processors. In this context, the main challenge is to improve perfor-

mance (or to keep the same) while reducing the power demand and the energy consump-

tion of these large scale HPC systems. Despite the existence of several load balancers
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focused on performance optimization, few works have made efforts to further improve

the energy consumption in the context of load balancing. Thinking in future Exascale

machines, that will have a large amount processors and will have high power demands, it

becomes necessary to develop of load balancing approaches that take into account energy

consumption and power demand characteristics in their decisions.

Our research also aims to fill this gap by proposing and implementing a new load

balancer strategy aimed at reducing the average power demand and the total energy con-

sumption of the system while running applications.

Differently from other load balancers, Aupy et al. proposed a centralized energy-

aware strategy that consider the number of failures on HPC system aiming to avoid the

loss in reliability. They propose a model of scheduling with fault-tolerance. This model

uses re-execution of task while reducing the energy consumption, considering an expected

energy consumption for a second execution of tasks (AUPY; BENOIT; ROBERT, 2012).

This approach is different from ENERGYLB once that our proposed load balancers aim

reduce the average power demand during the runtime when imbalanced applications are

executed.

In addition, besides the variables used by current and traditional algorithms, our

proposal takes into account the power demand of the system. In this way, load balancing

decisions are based on performance models considering the computational load coupled

with power demand constrains. Our proposed approaches focus on dynamic load balanc-

ing, allowing the application improve the usage of available resources of parallel HPC

machines as well as increasing the energy efficiency during their execution. These ap-

proaches will be presented in Chapter 4, however, ways to obtain information about the

energy and power of parallel machines will discussed in the next chapter.
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3 ENERGY CONSUMPTION OVERVIEW

Considering the global rate of increase in energy consumption and the rate of

increase of the number of HPC systems, it is estimated that by the year 2050 the total

power demand of the planet will reach 30 Terawatts (EIA, 2012). This would exceed the

planet capacity of generation (ENERGIA, 2011; INPE, 2010). Based on these projections,

we see why the energy cost has become an integral part of the Total Cost of Ownership

(TCO) of these systems. Thus, making companies and organizations begin to recognize

the importance of green policies as an alternative to reduce equipment maintenance costs.

According to Younge et al., supercomputers’s performance increased more than

3000 times in 20 years, while the performance per watt increased only 300 times and

the performance by m2 increased only 65 times (YOUNGE et al., 2010). In this con-

text, the efficient use of HPC systems can represent a significant reduction in power de-

mand. Therefore, approaches that aims to improve the energy efficiency are being widely

adopted. Furthermore, new approaches are being proposed with significant frequency.

Therefore, it is important to improve the energy consumption of these systems

both in the hardware as in the software level. For this purpose, it is necessary to under-

stand the system power demands and application’s behavior, at the entire system level as

well as at the processor level. In this context, it is important to study the energy efficiency

of these systems, to overcome the current challenges and build Exascale systems without

exponentially increasing power consumption. Thus, there are several studies being de-

veloped with the goal of keeping the power demand below the 20 MW limit specified by

DARPA (BECKMAN et al., 2011).

In 2008, specialists alerted on an official DARPA report (KOGGE et al., 2008;

BECKMAN et al., 2011) that the acceptable power budget to reach Exascale is 20 MW.

In this context, an Exascale system has a limit of 1 EFlops
20 MW

, i.e., 50 GFlops/W. Tianhe-2,

the current number 1 in the Top500 rank, produces 33.8 PFlops spending 17.8 MW, thus

Tianhe-2 energy efficiency is 1.91 GFlops/W. Using Tianhe-2 as reference, we would

have an increase the energy efficiency 26-fold to match the DARPA recommendation.

Thus, to get to Exascale we need to find alternatives to solve the power demand prob-

lem (BARKER et al., 2009; YOUNGE et al., 2010; PADOIN et al., 2013a).

In this thesis, we frequently use technical terms related to energy. Therefore, in

this chapter we review the fundamental aspects related to power demand and energy con-

sumption of HPC systems. In Section 3.1, we present the basic concepts and different
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issues related to the characterization of energy consumption and energy efficiency met-

rics. We also seek to better define the characteristics of this consumption in HPC systems,

as well as elucidating the units involved in the measurement of both the energy consump-

tion and performance of these systems. Solutions for power and energy evaluation are

presented in Section 3.2. In Section 3.3, we discuss the state of the art on frequency

scaling approaches, which are a solution to reduce power demand present in current pro-

cessors. Finally, we present the chapter’s discussion, highlighting some points related to

the context of this thesis.

3.1 Energy Consumption Metrics

In this section, we review some definitions and concepts related to units considered

in the measurement of power demand and energy consumption.

In the state of the art, units of measurement are defined arbitrarily as a reference

standard. The main units are defined in International System of Units. The understanding

of these units is necessary for the analysis and measurement of energy consumption in

HPC systems (FOWLER, 1992; JOHNSON; HILBURN; JOHNSON, 2000; HEWITT,

2002; STEIGERWALD et al., 2011). The units, in this context, are discussed in the two

next subsections:

3.1.1 Power Demand

Power or power demand (in watt) represents the rate at which work is done. In the

context of energy use, power demand describes the rate at which the energy is consumed

or transferred. So, power demand means that the electric utility company must have ready

or provide to customers when they turn the equipment on. Generally power is expressed

as a function of the time, so it is equivalent to an amount of energy conversion or energy

consumed (in joule) per unit time (in second) as shown in the Equation 3.1. Time, in

several works, is been also called runtime, performance and total execution time, as in the

context this thesis.

Power =
Energy

T ime
(3.1)

For integrated circuits made with CMOS technology, the power demand can be
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defined as proportional to the square of the voltage (HSU; FENG, 2005), as is given in

Equation 3.2:

P = f × CL × V 2
dd × α (3.2)

where f is the clock frequency, CL is the circuit load capacitance, Vdd is the supply

voltage, and α is the number of switches per clock cycle (CHANDRAKASAN; SHENG;

BRODERSEN, 1992; KRISHNA; LEE, 2000; KIM et al., 2012).

Current processors are manufactured with the lowest possible supply voltage tech-

nologies. This approach results in energy savings, however, it incurs in time constraints,

which will be discussed in the Section 3.3.

3.1.2 Energy Consumption

Energy is a physical quantity that represents the ability or capacity to perform

work. Energy consumption is usually measured in Joules, may also be used KWh unit

when it comes to energy bills. So, in the computational field, to run some task, an equip-

ment or a processor consumes a determined amount of power over a determined period

of time. In this context, energy consumption can be defined as the amount of joules spent

to execute a task and it is obtained by solving the integral of the function of power over a

time domain (KRISHNA; LEE, 2000).

Several approaches simplify the calculation of energy consumption, by computing

it as the average power over a period of time, also called Power-delay product (PDP), as

shown in the Equation 3.3:

E = Pavg × t (3.3)

where Pavg is the average power, and t is the time period.

Similar to PDP metric, the Energy-delay product (EDP) metric is also used, which

considers delay2 instead of delay.
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3.2 Energy Consumption Evaluation

Nowadays, there is an increasing interest in improving the energy efficiency of

high performance system and applications. Accurate power and energy consumption

measurement is of great importance to achieve this goal. One approach to evaluate the

energy consumption of an application is to use devices that measure the power supplied

to the system on which the application is being executed, which are discussed in next

subsections.

Another approach is to estimate the energy consumption based on theoretical mod-

els. These estimation models, however, are out of the scope of our research. Therefore,

they will not be addressed in this work.

3.2.1 Power and Energy Measurement

There are two well-known methods to measure the power and energy consumption

of HPC systems, depending on the system’s organization. The first is based on use of

devices that are connected to components located inside or outside of system. The second

uses sensors integrated directly in the system’s hardware. The latter are becoming more

common in currently systems.

Once the energy data is acquired, the energy consumption can be analyzed from

two points of view. One looks at each component’s individual consumption. The other,

at the consumption of the whole system. We separated our analysis of the measurement

approaches in two subsections. The first one deals with External Measurement and the

second deals with Integrated Measurement.

3.2.1.1 External Measurement

Several external equipment have been used for measuring the power demand and

energy consumption of HPC systems. Generally, these power meters are installed between

the power plug and the system. This approach provides data about the equipment as a

whole. It is widely employed, mainly because these devices are easy to deploy, since they

get their measurements directly from the alternate current (AC), which is important in

system’s designs.

Different studies have used this approach to measure the power demand on HPC
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systems. For this purpose, several different devices have been applied. Steigerwald

in (STEIGERWALD et al., 2011) asserts that there are still very few tools to measure

power demand in large and complex HPC systems. In this context, the equipment used

for this measurement include Amperemeter, Voltmeter, Wattmeter, Multimeter, Oscillo-

scope, Power and Energy Analyzers and Power Distribution Units (PDU).

A different approach has been adopted by the Green500 list. It uses a general

method for measuring the power and determine the performance per watt metric of each

system. Aiming to minimize the variations in the measurement of energy consumption,

its approach assumes that the Linpack benchmark’s execution is balanced among all the

nodes of system and that all nodes are identical. Consequently, all nodes have the same

power demand. Based on these assumptions, only one of the nodes has its power demand

measured. To obtain the total demand, the measured value is multiplied by the total

number of nodes in the system (GE et al., 2007).

External measurement devices allow measurements with a high level of granular-

ity, due to the fact they measure the consumption of the whole system. Depending on the

type of device, the measurement can be different in some points. For example, in some de-

vices display the metric for active power is the average power calculated from the energy

consumed over one second. Other devices measure the instantaneous power, obtained by

measuring the current and the voltage of machine. This difference in approaches incurs

in different accuracies and measurement frequencies.

Furthermore, the use of external equipment, which are connected between the

power source and the system, generally provides data in different format or frequency

making it difficult to integrate with data from other devices. This forces a synchronization

of the different data, thus increasing the potential inaccuracy of the results, as discussed

in Section 4.2.

3.2.1.2 Integrated Measurement

Another kind of measurement equipment are those installed internally to systems.

These usually work with direct current. This approach is normally implemented through

sensors that provide more complex information than external devices. With these devices,

it is possible for a system to allow the acquisition of power or energy data from each

individual component.

Current system architectures implement sensors that can be accessed through a

software interface, in order to obtain different kinds of information, among them power



51

demand and energy consumption. These sensors enable the separate measurement of

different system components with a low granularity. Besides that, in some cases, this

information can be managed.

Modern processors, like Intel, AMD and ARM, provide power and energy infor-

mation. This is done through sensors integrated into the processor’s chip itself. Intel

processors, for example, feature a Package Control Unit (PCU) and integrated microcon-

trollers that allow power management. The PCU collects information such as temperature

and power, and stores it in Model-Specific Registers (MSRs) included in the processor.

These MSR can be mapped to pseudo files by Linux kernel module. This file then can be

used to monitor the execution of a program.

The software interface used to access the MSRs in Intel processors is Running

Average Power Limit (RAPL) (INTEL, 2009). Its infrastructure provides an estimate of

the current energy usage based on a model driven by hardware counters, temperature,

and leakage models (WEAVER et al., 2012). The version of RAPL introduced in the

Intel Sandy Bridge architecture provides a set of registers with consumption statistics and

mechanisms to set power limits (SUBRAMANIAM; FENG, 2013). The data generated by

this model is available to the user, with an update frequency on the order of milliseconds.

RAPL is capable of providing power and energy information from the processor package,

core subsystem, and DRAM (ROTEM et al., 2012).

Similarly, with AMD processors, the Application Power Management (APM) in-

terface can be used. It provides very similar features to Intel RAPL. APM provides power

management and access to an estimation of the instantaneous power dissipated by the

processor.

Several of the current machines feature a specific microcontroller embedded on

their motherboard called Baseboard Management Controller (BMC). This microcontroller

captures data from sensors present on the motherboard. This data may include tempera-

ture, system status, voltage, power mode, power demand, fan speed, among others.

BMC is present in a large amount of HPC systems and can be connected through

different interfaces, which allow greater flexibility in monitoring and management. Intel-

ligent Platform Management Interface (IPMI) is an interface widely used to access data

from BMC (IPMI, 2013; INTEL, 2009). The current IPMI version defines a set of hard-

ware and firmware interfaces that can be used to monitor energy consumption in real time.

In some computer models, it also allows the management of power supplies, in order to

operate with better efficiency, thus saving power.
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While RAPL provides measurement of energy consumption only by the processor,

IPMI provides the total consumption of the system. However, IPMI’s interface measures

the power demand inside the machine, but after it passes through the power supply. So,

these measurements ignore the power dissipated by the power supply unit. Depending on

the power supply unit’s efficiency, this ignored consumption can represent a significant

portion of the total energy spent.

An important issue with these approaches is that they are available only in new

architectures. So, their portability is reduced. For instance, RAPL and APM are available

only in new models on Intel and AMD processors, while IPMI is found in several server

hardware.

Moreover, these approaches are considered intrusive solutions, once is need fre-

quent accesses to a register, to read the power demand data. Another problem is that the

execution of an application to read data also consumes energy and this measurement can

also change the measured values.

One point in which internal measurement represent an advantage over external

devices is that there is no need to install additional hardware in the system. Another point

is that manufactures offer software interfaces to access their data with a higher level.

Therefore, they represent better convenience compared to the external meters.

Weaver et al. (WEAVER et al., 2012) extended the Performance API (PAPI) anal-

ysis library to measure and report energy and power values. They describe in detail

the types of energy and power readings available through PAPI. Similarly, Hartog et

al. (HARTOG; DEDE; GOVINDARAJU, 2013) explore the possibility of power-efficient

scheduling without the need for expensive power monitors on every node. To do so,

they consider that homogeneous cluster are heterogeneous with respect to power demand

according to several aspects. Using another approach, Goel et al. (GOEL et al., 2010)

presented a methodology for deriving per-core power models using the values of perfor-

mance counters and temperature sensor readings.

3.3 Related Work on Frequency Scaling

Many research projects with the aim to reduce power demand and energy con-

sumption in processors architectures and parallel HPC systems have been developed.

Despite that, the processor remains as the component with the highest energy consump-

tion (FENG; GE; CAMERON, 2005). From this premise, recent micro architectures fea-
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ture several power controls and support dynamic power management. Processors that

incorporate this technology allow to change the processor voltage level, to reduce their

frequency of operation, thus saving power (CHANG; PEDRAM, 1996). This technique

is called dynamic voltage and frequency scaling (DVFS).

Several of the current processors incorporate these DVFS techniques. Processor

models, including multicore SoCs (MPSoC), that today are present in the HPC area, in-

corporate DVFS to reduce their power demand and energy consumption. This technique

is present in architectures like Intel’s Sandy Bridge, Ivy Bridge and Haswell, AMD’s

Opteron, NVIDIA’s Tegra, Qualcomm’s Snapdragon, Samsung’s Exynos and Texas In-

strument’s OMAP Cortex and big.LITTLE family, among others. Beyond reducing the

energy consumption by the processor, decreasing its clock frequency and voltage, they

generate less heat. Therefore, this technique can also reduce the amount energy consumed

for cooling the system.

The processor’s clock frequency has a direct impact on its power demand. Based

on this relationship, several models of currently processors manufactured enable the man-

agement of power through the technique of DVFS. DVFS approaches can provide sig-

nificant energy savings due this direct relation between power demand and clock fre-

quency (KAXIRAS; MARTONOSI, 2008). As discussed in Section 3.2, Equation 3.2,

power demand is directly proportional to the square of the core voltage and linear to its

clock frequency (CHANDRAKASAN; SHENG; BRODERSEN, 1992).

The current processors generally run tasks using the highest frequency allowed for

a given voltage. In this context, reductions in the clock frequency of processors allow a

reduction of supply voltage, which implies a linear decrease in power demand. However,

this approach used for energy savings leads to an increase in execution time of tasks.

Therefore, these increase in the execution time, may cause an increase in total en-

ergy consumption of the application. Besides that, due to this relation, processors cannot

achieve the best energy efficiency for an application by simply executing it at the highest

available frequency (ROTEM et al., 2012).

An important consideration is the overhead of clock frequency switching. It takes

a few microseconds to change the processor frequency from one level to another. Thus,

the DVFS overhead is on the order of microseconds. According to Park et al. (PARK et

al., 2013), cited by Gerards et al. (GERARDS et al., 2014) the time and energy overhead

of DVFS is comparable with those of context switching. Particularly on the Intel Core2

Duo E6850 the maximum transition overhead is of 62.68 microseconds (GERARDS et
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al., 2014).

Other point is the technology used to manufacture the current multicore proces-

sors. Some multicore processor models only allow their cores to run at the same clock

frequency. Among them, include some Intel processors (PARK et al., 2013). On the

other hand, some AMD processor models, allow each one of its cores to run at a dif-

ferent frequency (DORSEY et al., 2007; SPILIOPOULOS et al., 2013). Therefore, on

newer processors DVFS is implemented using one of these two approaches, also called of

per-chip or global DVFS or per-core or local DVFS (GERARDS et al., 2014).

DVFS techniques have been used to improve power demand and energy efficiency

of parallel systems, while running several different applications. In this context, in next

sections, we present the state of the art in power demand and energy consumption. Some

areas that have been employed DVFS techniques include:

3.3.1 Frequency Scaling on Idle Resources

DVFS strategies have been used when detected idle state and scale frequency down

to save energy. Hosseinimotlagh et al. use DVFS for this purpose. They point out that

an idle host can consume up to 70% of its peak power demand in cloud systems. In

this work, the authors propose a task scheduling approach that regulates the execution

speeds of task, instead of migrating them to other hosts. Their results show a reduction

up to 41% of the total energy consumption, however this approach incurs in an impact

on turnaround times of real time tasks up to 85% (HOSSEINIMOTLAGH; KHUNJUSH;

HOSSEINIMOTLAGH, 2014).

In the same context, Younge et al. present a study on the reduction of the clock

frequency on multicore architectures. Their best result were achieved with a reduction

of 18% in the frequency, using DVFS, with a reducing of only 5% in performance and

of up to 20% in power demand (YOUNGE et al., 2010). Still on idle, Lee et al. im-

plemented an Energy-saving DVFS Scheduling of Multiple Periodic Real-time Tasks on

Multicore Processors containing more processing cores than running tasks (LEE, 2009).

Their simulated method saves energy up to 64% executing each task on a separate core.
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3.3.2 Frequency Scaling on Power or Energy Budget

Some works employ DVFS aiming to meet an energy budget. Springer et al. pro-

pose a technique to find a near optimal scheduling that satisfies an energy consumption

limit when DVFS should be run for a particular application. Their scheduling technique

combines performance modeling, performance prediction, and program execution. The

scheduler tries to minimize the timing penalty for a given power limit. Using NAS bench-

marks and energy limits of 95% of the value spent for each program on 2, 4 and 8 nodes,

the authors achieved, in the worst case, 6.1% of the optimal scheduling (SPRINGER et

al., 2006).

Similarly, Isci et al. proposed to fine-tune the clock frequency of processors in

order to maintain the power demand below a specified budget (ISCI et al., 2006). Con-

sidering both static and dynamic configurations of multithreaded applications, the results

of their proposed approach are within 1% of the performance and meeting a given power

budget.

In the same context, Hernandez et al. propose a thread mapping strategy for NoC

based CMPs that considers performance and energy consumption constraints. Their ap-

proach taking into account the assigned threads to cores in the chip to adjust the frequency

and voltage of the cores in the selected region. More specifically, it uses the location of

memory controllers and the concurrent execution. Their results achieve reductions of the

execution time up to 23% while reducing the energy up to 24% (HERNANDEZ; SILLA;

DUATO, 2011).

Rountree et al. also quantify the variation of the performance and power efficiency

on Intel’s Sandy Bridge family. Using instances of the NAS Parallel Benchmarks on

single-processor, they show that, in the lack of a power bound, DVFS can be used as a

tool for balancing power and performance in HPC systems (ROUNTREE et al., 2012).

3.3.3 Frequency Scaling on Communication Periods

Other works also reduce the clock frequency during communication phases of

applications. Lim et al. propose to use DVFS strategy to change the frequency of the

cores during the communication phase of MPI applications. They developed an MPI

runtime that dynamically identifies communication phases with a high concentration of

MPI calls and reduces CPU performance, aiming to minimize the energy-delay product
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of MPI applications. They achieved a reduction of 12% in energy consumption while

running the NAS benchmarks, while the execution time increased only up to 2.1% (LIM;

FREEH; LOWENTHAL, 2006; LIM; FREEH; LOWENTHAL, 2011).

In this same context, Tan et al. proposed the Adaptively Aggressive Energy Effi-

cient DVFS Scheduling (A2E) for Data Intensive Applications that can also be applied in

memory and disk periods (TAN et al., 2013). When utilized A2E on a 64-core cluster the

energy savings were an average of 32.6% with performance loss of 6.2% on average.

3.3.4 Frequency Scaling on Kernel Governors

Power management has become also an important consideration in operating sys-

tems. Current operating systems have subsystem governors that allow to scale up or down

the clock frequency of processors. For this purpose, power saving and frequency scaling

approaches have been integrated in some governors of operating system kernels.

Current operating systems kernels support DVFS through the cpufreq device driver.

This driver allows governors to control the voltages and frequencies of the system’s pro-

cessors (PALLIPADI; LI; BELAY, 2007). When this device driver is used, an available

governor can change the voltage and frequency in which the processor operates.

Linux kernel implements static and dynamic governors (BRODOWSKI, 2014).

The static governors available are Powersave and Performance. The first sets the proces-

sor’s frequency at minimum value available within the range supported by the processor.

The second keeps the frequency always at the highest value supported by the processor.

The kernel also includes dynamic governors, such as Ondemand and Conservative, which

can switch clock frequency depending on the current processing demand. The Ondemand

governor sets the processor frequency based on its utilization, using mainly the minimum

and maximum level supported by the processor. The Conservative governor changes the

clock frequency one level at a time based on threshold values.

Besides of static and dynamic governors, some kernels have other governors, such

as the Userspace governor, which lets users to set a specific frequency in user space.

In this way, an application can control the frequency of the processor. There is also

the Interactive governor, which is similar to Ondemand, in which the frequency is also

changed based on processor utilization. However, this last governor is available only in

some ARM processors, like big.LITTLE models.

Other studies using DVFS in simulations aiming to control the system’s power de-
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mand as kernel governors. Spiliopoulos et al., developed an approach using software and

hardware issue. They extended the gem5 simulator to support full-system DVFS mod-

eling and developed a framework with specifications and complies of the hardware and

software conventions. Comparing their extended version to different DVFS governors, as

interactive, on-demand and performance, the authors concluded that the interactive gov-

ernor is faster than on-demand, achieving better performance at about the same energy

consumption (SPILIOPOULOS et al., 2013).

In a similar study, Semeraro et al. describe an approach in which the processes

are divided into several clock domains. Within each domain, independent voltage and

frequency scaling can be performed. They evaluate their design using the SimpleScalar

simulator with four clock domains. Using benchmark suites, they obtained an energy-

delay product improvement of 20%, compared to 3% savings from voltage scaling a single

clock and voltage system (SEMERARO et al., 2002).

Gerards et al. use DVFS strategies to decrease the energy consumption in the

context of multicore processors. This is a complex problem since these processors adopt

a global DVFS, where the voltage and clock frequency is shared among the cores in the

same chip. Using the amount of parallelism of applications, they proposed a theoretical

method to transform the problem of finding an optimal clock frequency on global DVFS

systems to a single core problem. Their proposal was validated in gem5 simulator using

performance, ondemand and interactive governors (GERARDS et al., 2014).

3.3.5 Frequency Scaling on Performance Prediction

DVFS strategies are also employed together with performance prediction. Kim et

al. proposed a realistic DVFS performance prediction method and a practical DVFS con-

trol policy (eDVFS). They compare the eDVFS Linux’s ondemand governor, while run-

ning the SpecCPU 2006 benchmark. Defining a static optimal frequency for each program

performing all combinations of each available frequencies, eDVFS can save up to 20%

energy with voltage variation of 32% (KIM et al., 2012).

Freeh et al. developed a static framework that allows to perform each phase of a

single application in different processor frequencies. In a first execution, it divides the

program into phases, and measures the energy consumption and execution time of each

phase using a specific heuristic. In a second execution, it uses a heuristic to choose the

best frequency for each phase of application allowing then to save energy. The results
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achieved over NAS benchmarks show save savings of up to 16% with an overhead of

1% (FREEH; LOWENTHAL, 2005).

Raghu et al. introduced the Power Aware Algorithm for Scheduling (PAAS).

PAAS predicts an optimal clock frequency or processor’s voltage for each task using in-

formation obtained from previous executions of HPC applications (RAGHU; SAURAV;

BAPU, 2013). The authors evaluated the proposed PAAS with the set of scientific appli-

cations achieving reductions on energy spent between 12.6% and 13.5%.

Still on DVFS performance prediction, Peraza et al. introduce the Green Queue

framework for generation and analysis of traces. By examining traces generated during

the previous executions, their framework is able to instrument the application with DVFS

controls. Tests realized on 1024 cores with this framework achieved energy savings of up

to 21% for the intratask and 32% for intertask DVFS strategies (PERAZA et al., 2013).

3.4 Discussion

Due the expensive and increasing cost of the energy and also the power demand

constraints, saving power has become one of the main concerns of the HPC community.

Thus, to build future systems, power demand and energy consumption limits need be

taken into account, since the total cost of equipment maintenance can overcome in a few

years its cost of acquisition. Therefore, in this chapter we presented a review of the

fundamental aspects related to power demand and energy consumption of HPC systems.

State-of-the-art research has proposed several techniques to reduce the power de-

mand and improve the energy efficiency of parallel platforms. DVFS is one of these

techniques, which is used both at hardware level, as well as in the context of operating

systems.

Currently, DVFS techniques have been employed on different areas. Among them,

the more relevant are idle resources, power or energy budget, communication periods, ker-

nel governors and performance prediction, as discussed in this chapter. However, most

of the cases, these techniques are employed to reduce the total cost of operation of the

machine itself, as well as the cost of energy used for cooling. As much as these ap-

proaches can save energy, however when employed they may incur in degradation of the

performance of the system and increase in the total execution time of applications.

In this context, to correctly apply DVFS techniques, it is good to have a clear no-

tion of the concepts we reviewed in this chapter. It is also important to know the variables
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involved in the measurement of energy consumption in modern processors architectures,

since they are directly related to the determination of the energy efficiency of systems.

On the other hand, research in this field focuses on power demand separately of load

balancing strategies.

To correlate the state of the art in DVFS strategies presented in this chapter this

with their area involved, we organized the Table 3.1. In this comparison, we depicted

where each strategy was employed according to their main focus.

Table 3.1: DVFS strategies comparison in terms of applicability.
Author Idle Energy Communication Simulator/Kernel Performance Trace/

resource budget periods governor prediction

Hosseinimotlagh et al. • •
Younge et al. • •
Lee et al. • •
Springer et al. • • •
Isci et al. • •
Hernandez et al. • •
Rountree et al. • •
Lim et al. •
Tan et al. •
Spiliopoulos et al. •
Semeraro et al. •
Gerards et al. •
Kim et al. • • •
Freeh et al. • • •
Raghu et al. • •
Peraza et al. • •

Source: The author

Some these presented approaches scaling down the frequency when the system is

detected to be idle, in order to save energy. Works like the one proposed by Peraza et

al. use an offline instrumentation of DVFS. First, it identifies the characteristics of each

section of the applications. Then, in a second stage, it instruments the application with

DVFS. Freeh et al. also proposes a static framework execute a single application at dif-

ferent processor frequencies and in a second execution choose the best frequency for each

phase aiming saving energy. Other works have developed new governors to be loaded

on kernel systems. These governors are developed based on a premise of ondemand or

powersave governors.

Other works employ DVFS aiming to meet an energy budget, while that our pro-

posed load balancers aim to reduce the average power demand during the execution of

imbalanced applications on parallel machines. Works of Springer, Similarly, Isci et al.

using DVFS to change the frequency of processors in order to maintain the power de-

mand below a specified budget, while ENERGYLB combine load balancing and DVFS

to compute the residual load imbalance among cores, after the execution of the load bal-
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ancer. It adjusts the clock rate of underloaded cores and increases that of overloaded cores

during the execution. Our proposed load balancers are also different from Hernandez et

al. research, since they use a thread mapping strategy that considers performance and

energy consumption constraints.

Based on these research, the first highlight with respect the power and energy

consumption of this thesis is that current kernels governors do not recognize the load

imbalance among cores used by a parallel application. Therefore, these issues could be

explored with the use of DVFS techniques to provide significant energy savings without

performance loss.

Another point is that DVFS strategies generally have been used separate of load

balancing strategies. Several works have used DVFS, however this technique may cause

performance degradation with an increase in the total execution time of parallel applica-

tions, which consequently increases the total energy consumption.

In this way, differently from other related works, we propose a dynamic energy-

aware approach that focuses on increasing application’s performance and reduce the av-

erage power demand. To implement this, we use both strategies, dynamic load balancing

and DVFS together, which will be discussed in the next chapter.
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4 PROPOSED ENERGY-AWARE LOAD BALANCERS

Parallel scientific applications allowed big advances in science. Scientific appli-

cations, however, demand an ever increasing performance of HPC systems. The vast

majority of these applications have an irregular computational load and tasks with differ-

ent processing demands. This makes the load distribution among the processors difficult.

In this context, different approaches have been used to mitigate these imbalanced work-

loads and achieve an efficient use of all available parallel resources. However, most of

these load balancing strategies focus only on reducing the execution time. Only a few

recent strategies began to use the power demand and energy consumption information in

their decision making process. Based on this premise and in the need to search for alter-

natives to reduce power demand without decreasing computing rate, our thesis focuses

on reducing the power demand and total energy consumption of imbalanced appli-

cations through a combination of Dynamic Load Balancing and Dynamic Voltage and

Frequency Scaling (DVFS) without resulting in performance degradation.

After an overview and an evaluation of the related works, and considering i) the

application behavior; ii) the applications load imbalance; iii) the residual imbalance after

load balancing calls; and iv) the power demand of processors in parallel machines; we

propose a new energy-aware load balancing strategy named ENERGYLB (PADOIN et

al., 2014). This load balancer strategy recognizes the irregular load of applications and

has the best energy-performance tradeoff than state-of-the-art algorithms. It maintains the

original execution time of the application while reducing the average power demand of

the system during its execution, reducing the total energy consumption.

The remaining sections of this chapter are organized as follows. The main con-

cepts of our energy-aware load balancer are presented in Section 4.1. The details of the

centralized load balancing algorithm are discussed in Section 4.1.1. In Section 4.1.2, we

detail the hierarchical algorithm and the approach used for its implementation. Follow-

ing this, in Section 4.2 we describe implementation details and the parallel programming

framework that supports the development of our proposed energy-aware strategies. Fi-

nally, we conclude this chapter, analyzing and presenting some considerations about the

proposed ENERGYLB load balancer.
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4.1 EnergyLB: Energy-Aware Load Balancing

In several HPC systems, the processor is the hardware component that has the

highest power demand. When imbalanced applications are executed on parallel platforms,

processors or cores in charge of lightweight tasks finish first, but remain consuming en-

ergy without performing any actual work for the application. In this context, load balancer

strategies have been applied to reduce load imbalance on several parallel applications.

However, even after load balancing, residual imbalances may still remain, leaving room

for energy consumption improvements. Modern processors implement DVFS mecha-

nisms, through which energy consumption may be reduced by reducing the processor’s

frequency and voltage. This mechanism is based in the fact that power demand is a

quadratic function of the voltage, while the speed is a linear function (KRISHNA; LEE,

2000). In this case, energy savings can be achieved by decreasing the clock frequency of

the underloaded processors or cores, through DVFS, in such a way that they can still end

their tasks before or at the same time of the most loaded ones.

As discussed in Section 3.3, DVFS can be implemented, mainly, at two levels of

granularity. Some processors feature per-chip DVFS, using the same power delivery net-

work to reach every core, and consequently, bind each core to the same DVFS schedule.

On the other hand, other processor models allow per-core DVFS, which uses a separate

voltage regulator for each core, therefore allowing every core to have an independent

DVFS schedule.

Taking these two levels of granularity in mind, we propose two versions of our

energy-aware load balancer. The first version, called Fine-Grained EnergyLB (FG-

ENERGYLB), is suitable for platforms composed of few tens of cores that allow per-

core DVFS. The second one, called Coarse-Grained EnergyLB (CG-ENERGYLB), is

suitable for current HPC platforms composed of several multicore processors that feature

per-chip DVFS (PADOIN et al., 2014). Both ENERGYLB versions allow the selection of

a specific load balancer to make load balancing decisions. At each load balancing round,

our strategy decides whether to execute the load balancer or apply DVFS to reduce the

power demand of underloaded cores.

In next two subsections, we present both load balancing approaches we are propos-

ing. In their descriptions, we have adopted the notation described in Table 4.1, which

shows the used variables and their descriptions.
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Table 4.1: Description of variables used in algorithms.
Variable Description

p individual processor
c individual core
lb load balancer
load current load of each core
freq current frequency of each core
Wload weighted load (load / frequency)
min_Wload lowest weighted load
max_Wload highest weighted load
min_freq lowest frequency
max_freq highest frequency
thrld threshold
tasks total number of application tasks

Source: The author

4.1.1 FG-ENERGYLB: Fine-Grained EnergyLB

FG-ENERGYLB is a centralized energy-aware load balancer that considers a flat

view of the underlying platform, balancing the load among all cores and performing

DVFS on each individual core (Figure 4.1). FG-ENERGYLB aims at mitigating load

imbalance and also tries to save energy by reducing power demand. When the load im-

balance is greater than range of clock frequency of the processors used, the use of the

FG-ENERGYLB alone is not able to avoid the total imbalance. Therefore, it relies on

currently available load balancers to improve the task distribution among cores. On the

other hand, when migrating tasks is not beneficial, it adjusts the clock frequency of un-

derloaded cores, individually, to save energy. Since it only performs DVFS in these cases,

it does not considerably impact the overall performance of the system.

Figure 4.1: Overview of the fine-grained algorithm.
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As discussed in Section 2.2.1, most current strategies have used heuristics together

with thresholds as a solution to decrease the load balancing overhead. In this way, these

strategies adopt a threshold value to determine when load balancing must be performed or
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not. In other words, the load balancer is only executed when load imbalance overcomes

the threshold value.

Considering this issue, our strategy also adopts a threshold. FG-ENERGYLB takes

into account both application load imbalance and processors power demand (clock fre-

quency) to compute load imbalance and decide, on runtime, whether to call the load bal-

ancer or to perform DVFS. So, in each call of the ENERGYLB, it verifies if the weighted

load of each processor exceeds or not the threshold, making decisions to adjust the fre-

quencies (determining so that the frequency will be decreased or increased) or invoke

other load balancer to migrate tasks.

This functionality is only allow to current processor that implement different clock

frequency levels. This range of levels allow to users to vary the clock frequency of the

processor from low level (power save) up to high level (power hungry), as discussed in

Section 3. In this way, FG-ENERGYLB is able to save energy through the reduction of

the power demand during the execution, as discussed in following.

4.1.1.1 FG-ENERGYLB Algorithm

The main steps performed by FG-ENERGYLB are described in Algorithm 1,

which takes three input parameters. The first one, lb, is the load balancer that should

be used when the imbalance is high. The second one, max_freq, is the maximum fre-

quency that can be set to a core. The third one, thrld, is used as a threshold to decide

whether FG-ENERGYLB will call the load balancer or perform DVFS.

At each load balancing step, FG-ENERGYLB starts by gathering the current load

(load) and clock frequency (freq) of each core c (lines 2–3). The load of a core c is

determined by the sum of the execution times of the tasks currently assigned to it since

the last load balancing step.

Having completed this phase, it calculates the weighted load (Wload[c]) of each

core c (line 4). This is necessary since the time needed to compute the tasks assigned to

a core will depend on its current clock frequency. Then, FG-ENERGYLB determines the

minimum (min_Wload) and maximum (max_Wload) weighted loads of all cores (lines

6–7).

Finally, it decides whether it is necessary to call a load balancer lb to migrate

tasks among the cores or not. This decision is taken based on the threshold thrld. FG-

ENERGYLB considers that the load imbalance is high if the ratio between max_Wload

and min_Wload is equal or greater than thrld, thus calling the load balancer (line 9). This
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Algorithm 1: FG-ENERGYLB’s algorithm.
input : A load balancer lb, the maximum frequency max_freq and a

threshold thrld.
output: A new task distribution or the frequency of each core c adjusted.

1 foreach core c do
2 load← getLoad(c)
3 freq← getFrequency(c)
4 Wload[c]← load / freq
5 end
6 min_Wload← min(Wload)
7 max_Wload← max(Wload)
8 if (max_Wload / min_Wload ≥ thrld) then
9 call(lb)

10 else
11 foreach core c do
12 freq← round (Wload[c] / max_Wload ∗ max_freq)
13 setFrequency(c, freq)
14 end
15 end

way, ENERGYLB benefits from other available load balancers. In this case, reducing only

the frequency would not be enough to balance the load, so calling other load balancing

strategies helps by migrating tasks. Otherwise, it adjusts the clock frequencies of the

cores according to their relative loads, i.e. their loads in relation to more overload core

(lines 11–14) to save energy if residual imbalance is present.

By updating the frequency of the cores according to their relative loads, ENER-

GYLB reduces the average power demand of the system and, consequently, saves energy.

This way, using this approach does not impact on the overall execution time of the appli-

cation.

4.1.1.2 FG-ENERGYLB Algorithm Properties

FG-ENERGYLB aims to adjust the clock frequency of underloaded processors

through DVFS when weighted loads are less than a threshold, otherwise, the strategy

calls a load balancer. The execution of this load balancing can incur in an overhead to

application. This occurs when the load balancer is called too frequently, or the time it

takes to make load balancing decisions exceeds its benefit. This way, is important to

determine when and how frequently to call the load balancer.

Strategies such as GREEDYLB, GREEDYCOMMLB, REFINELB, REFINECOMMLB,
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and TEMPLDB use a common practice of calling the load balancer periodically. The

period between calls is specified by the user. Other strategies, such as METATEMPCON-

TROLLER, decide automatically when to perform load balancing, based on information

from the runtime system.

Our energy-aware adopts a similar strategy to the first group, where the load bal-

ancing calls are periodic. However, at each call, it decides whether to run the actual load

balancer or to perform DVFS adjustments. This decision is based upon the minimum and

maximum weighted loads computed for each core. The ratio between them is compared

to the threshold to decide whether to call the load balancer or to perform DVFS on each

processor according to its load. Therefore, the amount of the energy saving depends on

the irregularity of the application’s load and on the threshold parameter. This threshold

can be aggressive, calling the load balancer more often or moderate, performing less task

migrations and more DVFS, as will be discussed in Subsection 5.2.2.2.

For a system with c cores, FG-ENERGYLB presents a complexity of O(c) in the

worst case, where threshold is never achieved. Otherwise, when weighted loads are more

than the threshold, FG-ENERGYLB presents a complexity ofO(max(c, lb)), whereO(lb)

is the complexity of the selected load balancer.

4.1.2 CG-ENERGYLB: Coarse-Grained EnergyLB

CG-ENERGYLB is a hierarchical algorithm of our energy-aware load balancer,

being so suitable for HPC platforms composed of several multicore processors that fea-

ture per-chip DVFS. The main difference of this algorithm is that it considers a hierarchi-

cal view of the underlying platform, which is represented as a two-level tree, as shown in

Figure 4.2. In this scheme, the platform (root) is composed of several multicore proces-

sors (leaves). CG-ENERGYLB performs load balancing to distribute the load among the

processor’s cores inside the leaves and between the leaves. In the root level, on the other

hand, it adjusts the frequency of each multicore processor according to its relative load to

save energy by exploiting residual imbalances.

4.1.2.1 CG-ENERGYLB Algorithm

Algorithm 2 describes the overall steps performed by CG-ENERGYLB. Basi-

cally, it takes the same input parameters of FG-ENERGYLB. However, weighted loads
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Figure 4.2: Overview of the coarse-grained algorithm.
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of cores are now aggregated by processor (lines 1–7). The weighted load of a processor p

(Wload[p]) is determined by the sum of the weighted loads of its cores c. We divide the

load of the core by the current frequency of the processor to compute the weighted load

of each core of the same processor, since all cores of the same processor share the same

clock frequency.

Algorithm 2: CG-ENERGYLB’s algorithm.
input : A load balancer lb, the maximum frequency max_freq and a

threshold thrld.
output: A new task distribution or the frequency of each processor p adjusted.

1 foreach processor p do
2 freq← getFrequency(p)
3 foreach core c in processor p do
4 load← getLoad(c)
5 Wload[p]← Wload[p] + load / freq
6 end
7 end
8 min_Wload← min(Wload)
9 max_Wload← max(Wload)

10 if (max_Wload / min_Wload ≥ thrld) then
11 call(lb)
12 else
13 foreach processor p do
14 freq← round (Wload[p] / max_Wload ∗ max_freq)
15 setFrequency(p, freq)
16 end
17 end

The rest of the algorithm is very similar to Algorithm 1. The minimum and maxi-

mum weighted loads are computed and the ratio between them is compared to the thresh-

old thrld to decide whether to call load balancer or to perform DVFS on each processor

according to its load.
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4.1.2.2 CG-ENERGYLB Algorithm Properties

CG-ENERGYLB weights the loads of processors p, adding the load of all its cores

c. Thus, CG-ENERGYLB presents a complexity of O(p ∗ c) in the worst case where

threshold is not achieved. Otherwise, when weighted loads are more than a threshold,

FG-ENERGYLB presents a complexity of O(max((p ∗ c), lb)), where O(lb) is the com-

plexity of the selected load balancer.

4.2 Implementation Details

Currently, several parallel programming environments provide support for the de-

velopment of strategies for load balancing. Some of these environments also provide load

balancing information that can be obtained and used at application runtime. However,

few tools are able to evaluate power demand and consequently the energy consumption

of each processor at runtime of a parallel program.

In this context, for the implementation of new load balancing strategies it is nec-

essary to choose an environment/framework for parallel programming. Currently, there

are tools developed with specific characteristics for each type of environment that aims

to facilitate the development and productivity. However, to achieve the best performance

possible, it is necessary that the scheduler knows all the details of the architecture avail-

able, as well as the specificities of the application, to then make its decisions.

Most load balancing approaches focus on mapping the tasks and their data, seeking

a best load distribution between the processors in order to avoid imbalance and reduce the

latency. The implementation of these approaches are usually linked to the characteristics

of the parallel programming environment. Among the options available, we can highlight

the following parallel programming environment: Anahy-3 (CAVALHEIRO et al., 2007),

CHARM++ (KALÉ; KRISHNAN, 1993; KALÉ et al., 2008; CHARM++, 2014; MEI

et al., 2010), sofa (FAURE et al., 2007), XKAAPI (TCHIBOUKDJIAN et al., 2011;

GAUTIER; BESSERON; PIGEON, 2007) and UPC (HOFMEYR et al., 2011).

In the context of this thesis, we demonstrate our proposed load balancing approach

within an environment. We provide an implementation of our proposed strategies of EN-

ERGYLB in CHARM++ runtime system, which is discussed in the next subsection.
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4.2.1 CHARM++ Parallel Programming

CHARM++ is a parallel programming model based on the C++ language. It was

developed with the goal of improving the productivity of parallel programming through a

high level abstraction of parallel computing while providing good performance over plat-

forms based on shared and distributed memory (KALÉ; KRISHNAN, 1993; CHARM++,

2014). CHARM++ programs are not implemented to physical cores. Programs are de-

composed into interconnected parallel objects called chares, tasks or work units that are

initially mapped onto processors using a default mapping and can be migrated from one

processor to another during program execution by CHARM++ runtime system (RTS).

Parallel CHARM++ applications use an interface description language to describe

their objects. Using such objects, the programmer describes computation and commu-

nication interaction among them. All messages generated from these interactions are

managed by CHARM++, using a remote method invocation in a message-driven model.

The CHARM++ platform has an interface that captures the statistics of the tasks,

including their computation and communication during the execution of the application.

These measurements are stored in a database and can be used to make decisions and to im-

prove the load balancing (BHATELÉ; KALÉ; KUMAR, 2009; CHARM++, 2014). This

platform also provides a simple API that can be used to implement new load balancers

without changing the source code of the applications. In this context, load balancing in

CHARM++ is measurement-based and depends on instrumented data from previous time

steps to balance the application workload for future time steps. The instrumented data

can be dynamically obtained during the application execution through the use of the load

balancing API.

The main reason that led us to choose CHARM++ was that it features a mature load

balancing framework and has presented good efficiency for a large class applications, such

as NAMD, ChaNGa, Lulesh, Lassen and others. A second reason is because CHARM++

provides a set of load balancing strategies that make decisions and can produce a new

tasks mapping through of task migration between processors at runtime (KALÉ; KR-

ISHNAN, 1993). So, programs developed in CHARM++ can use their own load balancing

strategy or chose one of the available in CHARM++ that is best for their execution. How-

ever, our proposed energy-aware load balancing can be implemented in any other parallel

programming framework that provides task migration.

We have implemented two algorithms of ENERGYLB as CHARM++ load bal-
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Figure 4.3: ENERGYLB implementation.
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ancers which are discussed in the (Subsections 4.1.1 and 4.1.2).

4.2.2 Energy Modules

In addition, we also have implemented two other modules (Figure 4.3). The first

is an Energy Daemon (EMonDaemon) that is responsible for gathering power and energy

measurements from the underlying platform with a periodicity defined by the user.

This module was developed since correlating performance with power and energy

consumption during runtime can be difficult, since current platforms have different inter-

faces to collect information from all their components. Moreover, some of the existing

tools provide data to be analyzed only after execution. Researchers have been using the

energy consumption of the whole system for their evaluations due to the difficulty of iso-

lating the power demand of the processors. Although new processors feature sensors that

enable precise measurements, they provide different interfaces to collect data, making it

difficult to correlate runtime with power demand and energy consumption.

To overcome this issue, in the context of this thesis, we developed a platform-

independent tool that collects power and energy data from homogeneous and heteroge-

neous systems (PADOIN et al., 2015). Using the data provided by our proposed tool, we

are able to plot the instantaneous power demand in each processor during the execution

of each test, through the use of model-specific registers (MSR) available on Intel Sandy

Bridge processors, or specific registers of AMD and ARM processors. Beyond of collect

the instantaneous power demand of each processor, it also compute the energy spend and
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the execution time of each application computed.

The second is LibEnergy, a library that offers an interface to get system informa-

tion such as the maximum frequency that can be set to a core or processor, to set the

clock frequency of individual processors/cores or to set a specific Linux governor. It

relies on the Linux kernel infrastructure called cpufreq to detect and set the frequency

level of individual processors at runtime. The cpufreq module provides a common inter-

face to the various low-level, CPU-specific frequency-control technologies and high-level

CPU frequency-controlling policies. This makes our energy-aware load balancer portable

across different processors and Linux distributions.

4.2.3 ENERGYLB Phases

The energy-aware strategy adopted by ENERGYLB consists of two main phases:

I - Initialization phase - This first phase is performed only once when ENER-

GYLB is initialized and involves capturing information from the system configuration.

This includes information about the processors’ model and manufacturer, which is gath-

ered because the energy consumption measured by the EMonDaemon comes from per-

formance counters. According to processor model, it uses different approaches to collect

power and energy.

ENERGYLB gets from kernel the following information:

• processor model - check the manufacturer processor (Intel/AMD/ARM) of the sys-

tems nodes. Only recent processor models have registers with energy information.

e.g. Intel Sandy, Ivy and Haswell microarchitecture (ROTEM et al., 2012), AMD

Bulldozer of family 15h microarchitecture and (AMD, 2013) ARM Cortex A15, so,

this feature allows the use of ENERGYLB in systems with heterogeneous proces-

sors;

• clock frequencies - get the available clock frequencies of each processor to define

the frequency adjustment limits available in the platform;

The information of tasks on each processor are acquired through the LBDatabase

that CHARM++ provides. The ENERGYLB gets from CHARM++ the following informa-

tion:

• total number of application tasks;
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• initial current task mapping;

II - Work phase - The second phase is periodic and it happens at each load bal-

ancing call done by the application. In this phase, ENERGYLB collects load information

for each task on every core/processor from CHARM++ LBDatabase. This information

includes:

• current load;

• current clock frequency;

After that, ENERGYLB weighs the core loads according to their current load and

clock frequencies. When load imbalance is detected, the difference between the most and

least loaded cores is compared to the available clock frequency limits. If the load dif-

ference is greater, then we benefit from the execution time-focused load balancers avail-

able with CHARM++ (ZHENG et al., 2011). Otherwise, ENERGYLB corrects the clock

frequencies of the different cores through DVFS according to their current loads by in-

creasing the frequency of overloaded cores, and reducing the frequency of underloaded

ones.

In this way, using our approach, the average power demanded by the system of an

electric company is reduced, saving energy, without impact on the total execution time of

applications.

4.3 Discussion

Parallel applications have been optimized for several years to achieve better per-

formance. However, achieving energy savings on these parallel applications without de-

grading their performance is today an increased challenge. In this context, several load

balancing strategies provide a set of information about application and allow to migrate

task between processors to avoid load imbalance.

However, despite the existence of several load balancers available, most of them

are designed for performance optimization and aim to reduce the execution time only, not

taking into account the energy consumption characteristics or power demand of system.

At the same time, when a system runs load imbalanced applications, cores with shorter

tasks some cores can finish their tasks before others and remain consuming or wasting

energy without doing any actual work for the application.

In this chapter, we presented our research that aims to fill this gap, the residual
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imbalance after load balancing. We propose and implement a new load balancing system

aiming to reduce the total energy consumption and avoiding migration of tasks through

the use of DVFS techniques.

As opposed to other related works, our approach performs load balancing along

with DVFS to improve the performance and to reduce the energy consumption by exploit-

ing residual imbalances of parallel applications. Different from other works, our ENER-

GYLB approach uses DVFS to change the clock frequency of the processors according

with their relative load to avoid imbalance instead to migrate tasks among the processors.

In this way, this approach of ENERGYLB tries to reduce also the energy consumption

with data and task migration.

ENERGYLB approach also differs from other strategies that make decision only

at the end of one run. These approaches require a previous execution to analyze the

imbalance to then make decisions. From this premise, to save energy without losing

performance our periodic load balancer can be used with load imbalanced applications,

addressing the computational load and making decisions during the runtime and not when

execution ends like some load balancers.

Some related approaches have been used to avoid core overheating on HPC sys-

tems. Our approach differs from these works, as presented by Sarrod and Menon. The

ENERGYLB algorithms employ DVFS as a way to decrease energy consumption after

balancing the load while cited works use DVFS to regulate temperature of processors aim

to reduce the energy spent in cooling.

Another difference from ENERGYLB to METATEMPCONTROLLER and TEM-

PLDB is that both approaches check the temperature and then if it exceeds the speci-

fied temperature, the load balancer uses DVFS to decrease the frequency by one level

only. Our ENERGYLB approach weights the core loads according to their current clock

frequencies, and when load imbalance is detected, the difference between the most and

least loaded cores is compared to the available clock frequency limits, changing then the

current clock frequency in several levels according to levels available on processor used.

ENERGYLB is also different from approach proposed by Aupy et al.. They de-

veloped a strategy that consider the failures on HPC system aiming fault-tolerance. This

way, the approach work with re-execution of tasks while reducing the energy consump-

tion, considering an expected energy consumption for a second execution. Our proposed

energy-aware load balancers, FG-ENERGYLB and CG-ENERGYLB, consider both load

(irregularity and dynamicity) of the application and current power demand (clock fre-
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Table 4.2: Comparison of the proposed algorithms with the state of the art in terms of
decision criteria.

Algorithm Category* Metrics
Load Communication Topology Temperature Energy

FG-ENERGYLB C • •
CG-ENERGYLB H • •

GREEDYLB C •
REFINELB C •
GRAPEVINELB D •
GRAPEPLUSLB D •
Seyedmehdi et al. C •
GREEDYCOMMLB C • •
REFINECOMMLB C • •
TOPOAWARELDB C •
NUCOLB C • • •
HWTOPOLB C • • •
HIERARCHICALLB H • • •
HYBRIDLB H • •
TEMPLDB C •
METATEMPCONTROLLER C •
Merkel et al. C •
Kodama et al. C •
Goel et al. C •
Hartog et al. C •
Aupy et al. C •

*Category: (C)entralized (D)istributed (H)ierarchical

Source: The author

quency) of the platform to make its decisions, as shown in the Table 4.2. The centralized

FG-ENERGYLB and the hierarchical CG-ENERGYLB can rely on currently available

load balancers to better distribute the tasks among the cores when the load imbalance is

high or adjust the clock frequency of underloaded cores individually when the load imbal-

ance is low, defined by the threshold parameter. Both approaches used by load balancers

save energy. In the first, reducing the execution time, and in the second, reducing the

power demand of platform, which directly impacting on total energy consumption.

The main difference from ENERGYLB proposal with Freeh et al. work is due the

dynamicity. While Freeh et al. propose a static framework to execute an application and

in a second execution choose the best frequency for each phase aiming saving energy, out

approaches combines dynamic load balancing with DVFS techniques on iterative appli-

cations to improve the energy efficiency.

Our proposed algorithms try to reduce the total energy consumption by exploiting

residual imbalances of applications without considerably impacting the overall system

performance. To implement this, we combine two approaches, Dynamic Load Balancing

and DVFS. We evaluate our proposed energy-aware load balancers with a set of bench-

marks and real world applications in the next chapter.
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5 LOAD BALANCERS EVALUATION

In this chapter, we validate our proposed energy-aware load balancer presented in

the previous chapter. We present a runtime evaluation, power demand reduction and the

energy savings when the ENERGYLB load balancer is used on an experimental platform.

First, in Section 5.1 we present the methodology used to evaluate our strategy.

The experimental results are organized into the two sections after that. In Section 5.2,

we show the results measured using the FG-ENERGYLB, our centralized approach over

benchmarks and real world applications, and lastly, in Section 5.3 we evaluate our hierar-

chical CG-ENERGYLB with real world applications.

5.1 Evaluation Methodology

Our methodology is organized as follows. First, we describe the execution envi-

ronment used in tests. In following, we detail the CHARM++ benchmarks, real world ap-

plications and CHARM++ load balancers selected to evaluate our proposed energy-aware

load balancer. At the end, we present a discussion about experimental results.

5.1.1 Experimental Environment

Our experiments are conducted on an Altix UV 2000 platform designed by SGI.

The platform is composed of 24 NUMA nodes. Each node has an Intel Xeon E5-4640

Sandy Bridge-EP x86-64 processor with 8 physical cores. There are 14 clock frequency

levels available in these processors. This range of levels allow us to vary the clock fre-

quency of the processor from 1.2 GHz, the lowest frequency and more power save, up to

2.4 GHz, the highest frequency and more power hungry. Considering the power demand

measured to each processor of our parallel platform, when only one core is being used,

reducing the clock frequency from the maximum to the minimum level we can reduce

power demand from 36.3 W to 20.4 W on average, which represents a reduction of 43%.

Each core of the Intel Xeon E5-4640 has 32 KB instruction and 32 KB data L1

caches and 256 KB of L2 cache. All the 8 cores share a 20 MB L3 cache. Each node

has 32 GB of DDR3 memory, which is shared with other nodes in a cc-NUMA fashion

through SGI’s proprietary NUMAlink6. Overall, this platform has 192 physical cores and
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768 GB DDR3 memory.

The platform runs an unmodified SUSE Linux Enterprise Server operating system

with kernel 3.0.101-0.29. All applications, as well as the CHARM++ programming model

were compiled with GCC 4.8.2. The CHARM++ version used in our experiments was

multicore-linux 64 − 6.5.1. The results presented in this chapter are the average of at

least 20 runs. The relative error was less than 5% using a 95% statistical confidence by

Student’s t-distribution.

5.1.2 Benchmarks and Irregular Applications

For the runtime evaluation, power demand and energy consumption of our pro-

posed ENERGYLB, we have used the CHARM++ environment. As described in Sub-

section 4.2.1, CHARM++ provides a set of benchmarks, which we used to compare our

energy-aware load balancer. We selected four benchmarks and three real world appli-

cations. These benchmarks and real world applications were chosen due to their varied

range of communication patterns and workload characteristics, which are describe as fol-

lows.

We have used from CHARM++ the lb_test, kNeighbor, stencil 4D and Compre-

hensiveBench benchmarks. The description of the benchmarks is given in following:

• lb_test is a synthetic benchmark that provides a scenario where it is possible to cre-

ate an amount of distributed process, to control load imbalance, and also to use dif-

ferent communication patterns among the processors. To perform the tests, we have

used a random communication graph (KALÉ; KRISHNAN, 1993; CHARM++,

2014);

• kNeighbor is an iterative micro-benchmark with an intensive and a near-neighbor

communication pattern. During the execution, each task communicates with k other

neighbor tasks at each iteration, exchanging 16 KB sized messages. In our tests, we

used the communication pattern ring (KALÉ; KRISHNAN, 1993);

• stencil 4D is a balanced four-dimensional stencil computation. It uses a four-

dimensional mesh to represent its communication pattern (KALÉ; KRISHNAN,

1993; CHARM++, 2014); and

• ComprehensiveBench is a highly configurable synthetic benchmark that can be

used to create iterative applications according to different parameters such as the
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number of tasks, iterations, communication graph, task loads and message sizes

(PILLA et al., 2015).

We also evaluate the benefits of our energy-aware load balancers with real world

applications. The description of the applications is given in following:

• Ondes3D is a seismic wave propagation simulator employed to estimate the dam-

age in future earthquake scenarios (DUPROS et al., 2008), as presented in Sub-

section 2.1.2. In Ondes3D, seismic waves are modeled as a set of elastodynamics

equations. These equations are then solved by applying a finite difference method.

In our experiments, we used a version recently adapted to Adaptive MPI (HUANG;

LAWLOR; KALÉ, 2004; KALÉ et al., 2008) that profits from CHARM++’s load

balancing framework (TESSER et al., 2014a). In this version, the application is

over decomposed into multiple virtual MPI processes per core. Ondes3D presents

load irregularity due to the boundary conditions producing additional work, and

load dynamicity from the simulation of waves spreading through space;

• Lulesh simulates a variety of science and engineering problems require modeling

hydrodynamics, which describes the motion of materials relative to each other when

subject to forces. The Livermore Unstructured Lagrange Explicit Shock Hydrody-

namics (LULESH) application was originally developed as one of the five chal-

lenge problems in the DARPA Ubiquitous High Performance Computing (UHPC)

program. Lulesh solves one octant of the spherical Sedov problem using Lagrange

hydrodynamics (KARLIN et al., 2013; KARLIN et al., 2012; DOSANJH et al.,

2014); and

• Lassen is a mini-application that explores applications with varying load balance.

It models and simulates the propagation of a wave through as it travels around an

unstructured mesh and it works on a 2D and 3D version. The computational load of

the mesh is sub-divided into domains, which are assigned to processors. Therefore,

this becomes a challenging problem to effectively parallelize since the workload is

constantly changing (MCCANDLESS, 2015).

While some benchmarks and applications start its execution in an imbalanced

state, others have a balanced state at the start with a dynamic behavior during its exe-

cution, as discussed in Section 2.1.1. Table 5.1 summarizes the imbalance type and initial

state of the benchmarks and real world applications selected for the load balancers evalu-

ation.
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Table 5.1: Benchmarks and real world applications characteristics.
Application Imbalance Type Initial State

lb_test load imbalanced
kNeighbor communication balanced
stencil 4D load imbalanced
ComprehensiveBench load/communication imbalanced
Ondes3D load imbalanced
Lulesh load/communication imbalanced
Lassen load imbalanced

Source: The author

5.1.3 Load Balancers

As presented in Subsection 2.2.1, today there are several load balancers available

to avoid load imbalance in parallel applications. In this context, the CHARM++ platform

provides a set of load balancing techniques that can be used to migrate tasks among pro-

cessors and to reduce the load imbalance. Thus, we validated our energy-aware load bal-

ancers comparing the achieved results with different standard load balancers available in

CHARM++. To compare the execution time, power demand and energy consumption re-

sults, we have selected the load balancers GREEDYLB and GREEDYCOMMLB that have

a greedy algorithm, REFINELB and REFINECOMMLB that use a limit of task migrations,

RANDCENTLB that randomly assigns objects to processors and SCOTCHLB that map

based on the recursive bi partitioning using both the source process graph and the target

architecture graph.

5.1.4 Power and Energy Monitoring

To perform our tests, we use our EMonDaemon on the experimental platform. This

module allows us collect runtime information and also store in a file with a periodicity de-

fined by the user (PADOIN et al., 2015). In this case, to the execution of experiments, we

have configured a measure window of 1 second. This value is used since lower frequency

values would incur in a high overhead to the application.
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5.1.5 Test Execution Details

Different load balancing frequencies have been chosen and tested for different

applications in order to achieve a balance between the benefits of remapping tasks and

the overhead of moving tasks and computing a new task mapping. As discussed in Sec-

tion 2.2, the interval to call the load balancer is decisive to reduce the load imbalance,

however if the strategy is performed very frequently, it may incur a high overhead. We

have validated our ENERGYLB approach using different configurations, however to de-

cide the optimal moment to call a load balancer is a challenging problem (MENON et al.,

2012) and is out of the scope of our research. Table 5.2 summarizes the configurations

of the applications and parameters used in our experiments in this thesis. These input

parameters are similar to the used in ones tests of the Parallel Programming Laboratory.

Table 5.2: Summary of the input parameters of benchmarks and real applications.
Application Tasks Iterations LB Frequency (Iterations)

lb_test 200 150 10
kNeighbor 1600 50 10
stencil 4D 4096 50 10
ComprehensiveBench 55 50 5
Ondes3D 128 500 20
Lulesh 729 1000 50
Lassen 256 550 50

Source: The author

Our energy-aware load balancers use three input parameters, as described in Al-

gorithms 1 and 2 of Chapter 4. We have conducted the validation tests setting the first

one, lb, with GREEDYLB, GREEDYCOMMLB, REFINELB, REFINECOMMLB, RAND-

CENTLB and SCOTCHLB load balancers. The second one, max_ freq, with the maximum

frequency available on selected processor. We have tested different values for the third

one, thrld. Based on the clock frequency range available on our experimental platform,

we have used a threshold value of 2. This value was used once that processors allow us to

vary the clock frequency of the processor from 1.2 GHz up to 2.4 GHz. Tests using dif-

ferent value for threshold also were evaluated, which are discussed in Subsections 5.2.2.2

and 5.3.1.2

The results are organized to compare the total energy consumption, followed by

total execution time and the power demand of each benchmark, when executed in four

scenarios: (i) without load balancer, which is defined as baseline, since no task is mi-
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grated; (ii) using only the FG-ENERGYLB to adjust the frequency of the cores according

to their loads; (iii) using only the standard load balancers available in CHARM++; and

(iv) using FG-ENERGYLB along with the standard load balancers.

Table 5.3 presents the list of load balancers and their abbreviations used in the

presentation of results.

Table 5.3: List of load balancers abbreviations used in the presentation of results.
Load Balancer Abbreviations

without load balancer NOLB
CG-ENERGYLB CG
FG-ENERGYLB FG
GREEDYLB G
GREEDYCOMMLB GC
REFINELB R
REFINECOMMLB RC
RANDCENTLB Ra
SCOTCHLB S

Source: The author

5.2 FG-ENERGYLB Evaluation

The first part of our evaluation presents the benefits of FG-ENERGYLB, our cen-

tralized approach over benchmarks and real world applications presented in the Sec-

tion 5.1. In the specific case of our experimental platform, although it is possible to set the

frequency of each core individually, no power gains are achieved due to a shared voltage

rail and clock source present in their processors. Because of that, we used a single core

of each processor to simulate a scenario in which per-core DVFS is allowed. This was

done by configuring the CHARM++ environment to use 24 processors and we performed

a mapping of the processes such that only the first core of each processor is used.

We organize the FG-ENERGYLB evaluation in two parts. Firstly, we present the

saving energy over benchmarks. This is followed by the energy improvements over real

world applications. For test with real applications, we present also the percentage of

energy spent on load balancing and the results achieved using different threshold values.
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5.2.1 Evaluation on Benchmarks

This section presents the results achieved using the FG-ENERGYLB over bench-

marks. We provide a comparison between FG-ENERGYLB that mitigates the residual

imbalance and other selected load balancers. We start discussing the evaluation mea-

sured during the test executions of lb_test and ComprehensiveBench benchmarks. Due

to reasons of space, the results of kNeighbor and stencil 4D benchmarks are presented in

Appendix A.1.

First, we discuss the gains when FG-ENERGYLB was used alone, and after, when

FG-ENERGYLB was employed over the residual imbalance of other load balancing algo-

rithms, as discussed in following:

• Benchmark: lb_test

Figure 5.1: Evaluation of FG-ENERGYLB with lb_test benchmark.
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(b) Total Execution Time.
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(c) Average Power Demand.
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Source: The author

i) FG-ENERGYLB Evaluation

As discussed in Section 5.1, the lb_test starts its execution with a large imbal-
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ance. For this reason, FG-ENERGYLB is able to reduce by 13% (Figure 5.1(a)) the total

energy consumption from 39.64 kJ to 34.60 kJ when employed alone on lb_test. As FG-

ENERGYLB did not influence the execution time of the benchmark (Figure 5.1(b)), the

energy saving is a result of the power reduction in the cores (from 35.28 W to 30.76 W on

average - Figure 5.1(c)). This power reduction of 12.82% happens because the frequency

of the cores was reduced during the runtime according to the load of each core in relation

to the most overloaded core. In this way, the average frequency during the runtime was

reduced from 2.4 GHz to 1.429 GHz.

When FG-ENERGYLB was used alone, the execution finished with 17 cores using

a frequency reduced to 1.3 GHz or lower (Figure 5.1(d)), and only one core, the most

loaded, remains with its maximum clock frequency.

In this test, applying FG-ENERGYLB alone, we are evaluating only its DVFS

functionality. To better analyze this functionality, we conducted a new test. lb_test was

executed with 500 tasks, each task with 250 iterations on only 8 cores. The load balancing

frequency was set to 10 iterations.

Figure 5.2 illustrates the instantaneous power demand measured during the test

executions, without load balancer (NOLB) that represents a baseline execution, using

different CHARM++ load balancers, GREEDYLB, REFINELB and our FG-ENERGYLB

load balancer.

Figure 5.2(a) shows the power measured during the execution of benchmark with-

out any load balancer strategy. As discussed in Section 3.3, when parallel load imbalanced

applications are executed, the kernel does not realize the imbalance between processor

used by applications. So, it runs the application using the maximum frequency avail-

able that maintains the power constant. In all processors, the power measured during the

execution was at all times close to 36 W.

When the benchmark is executed with the GREEDYLB and REFINELB load bal-

ancers, these realize the imbalance load in the application, make their decisions and mi-

grate task, reducing the execution time. However, with GREEDYLB and REFINELB, the

application is also executed using the highest frequency available in each processor. In

this form, the power demand measured in the GREEDYLB execution (Figures 5.2(b)) and

REFINELB execution (Figures 5.2(c)) is constant and always above to 36 W, similarly to

power demand of NOLB (Figure 5.2(a)). In this way, as all cores present a similar power

demand during the execution and finish their tasks in a similar time, all cores have a simi-

lar energy consumption. On the other hand, some cores run tasks with less computational
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Figure 5.2: Instantaneous power measured during execution of the imbalanced lb_test
benchmark using different load balancers.
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(a) NOLB.
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(b) GREEDYLB.
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(c) REFINELB.
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(d) FG-ENERGYLB alone.

Source: The author

load, so the system is wasting energy.

We realize a different behavior on power demand of system when the lb_test

benchmark is run with the FG-ENERGYLB load balancers (Figures 5.2(d)). Initially,

all cores used have a power demand similar to NOLB, GREEDYLB and REFINELB since

they are running their task using the maximum frequency available. However, when FG-

ENERGYLB is called, only one core, which has the highest computational load, remains at

2.4 GHz and keeps the same power demand. All other cores have their clock frequencies

reduced to intermediate or to the minimum frequency. Consequently, the instantaneous

power demand of each processor is reduced according their computational load, reducing

the total energy spent.

We can observe that, when the FG-ENERGYLB was executed the first time (at

20th second), it changed the clock frequency of all cores according to their relative load.

However, as this benchmark does not present variations in its load, in the other times that

FG-ENERGYLB was called, no change in the clock frequency of cores was necessary.

Table 5.4 presents the execution time, energy consumption and average power de-
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mand measured without load balancer ( NOLB), with GREEDYLB, REFINELB and FG-

ENERGYLB applied alone. GREEDYLB, REFINELB load balancers reduce the energy

consumption of the lb_test benchmark by reducing its execution time. On the other hand,

FG-ENERGYLB, with a small overhead (0.2%), is able to reduce the total energy con-

sumption reducing the clock frequency of processors through of the reduction the average

power demand of processors. The average power measured during NOLB, GREEDYLB,

REFINELB executions was above to 36 W on average, while FG-ENERGYLB kept it at

30.53 W on average. Additionally, FG-ENERGYLB is able to reduce energy consump-

tion by up to 16% (from 2883 J to 2430 J) when compared to NOLB. However, the use

of FG-ENERGYLB alone spends more energy than GREEDYLB and REFINELB, since

they load balancers were able to reduce their total execution time. In these tests, the dif-

ference between the total executions times achieved is less than 3% for all cases, which is

considered to be inside the error margin.

Table 5.4: Total execution time, energy consumption and average power demand mea-
sured to lb_test benchmark.

NOLB GREEDYLB REFINELB FG-ENERGYLB FG-ENERGYLB
NOLB

alone

Time (s) 79.4 55.8 51.3 79.6 1.002

Energy (J) 2883.0 2028.3 1865.3 2430.5 0.84

Power avg (W) 36.31 36.35 36.36 30.53 0.84

Source: The author

The greatest reduction in execution time was achieved when REFINELB was ap-

plied. GREEDYLB and REFINELB load balancers obtain speedup of 1.42 and 1.54 re-

spectively when compared to the baseline (NOLB). This reduction in the execution time

results in an equivalent reduction in the amount of energy spent. However, if we compare

FG-ENERGYLB results with baseline, we observe that the execution time is very simi-

larly, while total energy consumption is reduced up to 15.7%. This behavior is justified

due to load imbalance present between cores, this that achieve up to 9.2 times at the end

of the execution. During the runtime, FG-ENERGYLB load balancer can adjust the clock

frequency in only 2 times, once that the range of clock frequency of these processors is

from 2.4 to 1.2 GHz.

In this way, when the application load imbalance is greater than range of clock

frequencies of the processors used, the use of the FG-ENERGYLB alone is not able to

avoid the total imbalance and improve the execution time. Thus, in these cases, FG-

ENERGYLB is able only to reduce the power demand. Therefore, to avoid this problem
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FG-ENERGYLB can be performing together with other load balancers. So, when detected

this behavior it automatically calls another load balancer to migrate tasks between the

processor cores and after perform DVFS. The results of the FG-ENERGYLB employed

together with other load balancers are discussed in following.

ii) LB + FG-ENERGYLB Evaluation

When FG-ENERGYLB was employed over the residual imbalance of other load

balancing algorithms, the energy consumption of lb_test was reduced by up to 1% for

REFINELB and REFINECOMMLB, 6.6% for GREEDYLB and GREEDYCOMMLB, 8.2%

for SCOTCHLB, and 26.1% for RANDCENTLB. This improvement comes from a combi-

nation of two factors: the power demand of the cores was reduced to less than 35 W on

average; and the reduction of the execution time.

RANDCENTLB used alone increase significantly the total execution time. This

occurs, because this load balancer randomly assigns tasks between the cores resulting in

a large imbalance load, once that this load balancer algorithm does not take into account

any information about the application or platform to make its decisions.

Having a large imbalance load in the application, when FG-ENERGYLB is ap-

plied with RANDCENTLB, FG-ENERGYLB has a big range to vary the clock frequency

of underloaded cores, which have some residual imbalance. In this context, the power

demand is reduced significantly, from 34.79 to 25.19 W. So, in this test, during the run-

time only one core, the most overloaded remains with the maximum available frequency,

while all other cores have their clock frequencies reduced to minimum value. For this

execution, the average clock frequency is reduced to 1.624 GHz.

Differently from RANDCENTLB, when FG-ENERGYLB is used together with

REFINELB and REFINECOMMLB, the residual imbalance is small. In this case, the av-

erage clock frequency of runtime is only reduced to 2.357 GHz.

Since FG-ENERGYLB performs DVFS instead of migrate tasks, the total number

of task migrations is reduced. In this context, we evaluate the impact of load balancing

step on the total execution time of the application, comparing the load balancing times

(overhead) of FG-ENERGYLB with other load balancers. For this, we consider the aver-

age load balancing step during all execution.

Figure 5.3(a) presents a comparison of time overhead incurred on different strate-

gies for load balancing step with our proposed FG-ENERGYLB. To compare this, we run

the application using each one of the selected load balancers and measure the runtime that

each one spends to collect load balancing data, make its decisions, find a new mapping to
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each task and migrate the tasks or yet, change frequency if necessary.

Figure 5.3: Load balancing overhead and total task migration to lb_test with different
load balancers.
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Since the number of task migrations can increase the application execution time,

we also selected the number task migrations for each load balancer to analyze together

with load balancing time overhead, as is shown in the Figure 5.3(b).

For lb_test, the load balancing times varies from 4.3 up to 12.1 ms per load bal-

ancing call. This difference between the time is mainly justified by difference in the

number total of tasks migrated. GREEDYLB, GREEDYCOMMLB, RANDCENTLB and

SCOTCHLB migrate an average of 189.9 tasks in every call, which result in 2, 659 migra-

tions during the benchmark execution, as shown in the Figure 5.3(b). On the other hand,

REFINELB and REFINECOMMLB migrate only 20 tasks on first their call, being that in

other calls any task is migrated.

RANDCENTLB migrates almost all the tasks whenever it was called. In this way,

RANDCENTLB has an overhead higher than other load balancer algorithms. While that

overhead of the other load balancers is 6 ms on average, for RANDCENTLB, the load

balancing times is 12.12 ms. Furthermore, the tasks are randomly mapped to cores, which

result in an increase on total execution time.

When FG-ENERGYLB was employed together with GREEDYLB, GREEDYCOMMLB,

SCOTCHLB and RANDCENTLB, the total amount of task migrations is reduced from

2, 659 to 192 on average, which represent reduction of up to 72% (Figure 5.3(b)). As

a result of a more balanced application after these migrations, a small residual imbal-

ance was left to FG-ENERGYLB, leaving between 11 and 21 cores at their maximum

clock frequencies. This number of migrations results in 1.89 MB of data transferred ev-

ery call these load balancers. On the other hand, when it is used with REFINELB and

REFINECOMMLB the amount of data migrated is 0.21 MB.
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This reduction in the number total of task migrations result also in a reduction

of the total execution time. For the tests with GREEDYLB, GREEDYCOMMLB and

SCOTCHLB, the total energy consumption is reduced mainly due the reduction of to-

tal execution time, which represent energy saving of 6.2%, 5.8% and 8% respectively.

Differently from the REFINELB, REFINECOMMLB and RANDCENTLB load balancers,

the total execution time remain constant, similar to observed when FG-ENERGYLB was

employed alone.

Using load balancing over lb_test, we can reduce the total energy consumption

by up to 39% for SCOTCHLB, 40% for GREEDYLB and GREEDYCOMMLB, and 43%

for REFINELB and REFINECOMMLB if compared to baseline. When applying FG-

ENERGYLB together with these load balancers, we achieve even greater energy savings

since the average power demand is reduced in up to 0.5% to GREEDYLB, GREEDY-

COMMLB and SCOTCHLB; and up to 1.3% for REFINELB and REFINECOMMLB. Thus,

the greatest reduction in total energy consumption is achieved using SCOTCHLB with

FG-ENERGYLB, which represent 44.2% of energy savings, as shown in the Figure 5.1(a).

• Benchmark: ComprehensiveBench

i) FG-ENERGYLB Evaluation

Similar to lb_test, this benchmark has a large imbalance when starting its execu-

tion. So, when FG-ENERGYLB was employed alone on ComprehensiveBench, it is able

to reduce up to 25.2%, from 464.21 kJ to 347.09 kJ the total energy consumption. This

energy saving occurs due a 25.1% reduction on average in power demand, from 35.5 W

to 26.56 W as shown in Figure 5.4(c).

Using FG-ENERGYLB alone over ComprehensiveBench, the execution finishes

having only 2 cores with maximum clock frequency and 9 core with their clock frequency

reduced to minimum value available (Figure 5.4(d)). In this execution, the average fre-

quency of the runtime was reduced to 1.604 GHz and at end of execution 18 cores were

clock frequency registered below of 2.0 GHz.

We selected the relative imbalance load (ratio between max_Wload and min_Wload )

present at the first load balancing call (initial imbalance) and at the last load balancing call

(final imbalance) of this execution. Figure 5.5 illustrates the initial and final imbalance of

ComprehensiveBench order by imbalance load.

ComprehensiveBench has a large variation in its task load, starting its execution

with a large imbalance. In its initial state (gray bar on Figure 5.5), the system ran the
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Figure 5.4: Evaluation of FG-ENERGYLB with ComprehensiveBench benchmark.
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(b) Total Execution Time.
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benchmark with all cores using the maximum clock frequency available (2.4 GHz). In

this execution point, the load imbalance increases up to 15.5 times, i.e., the overloaded

processor has 15.5 times more computational load than the underloaded processor. During

the benchmark execution always that the FG-ENERGYLB load balancer is called, it does

DVFS to adjust the clock frequency of cores according to their relative computational

load. Only using DVFS, FG-ENERGYLB is able to reduce the imbalance load from

15.5 times to 9 times (blue bar on Figure 5.5), so resulting in a 25.2% of energy saving.

However, it can not avoid all the load imbalance present in the execution.

For applications with a large imbalance, only adjusting the clock is not sufficient to

avoid the total load imbalance. In these cases, FG-ENERGYLB can be employed together

with other load balancers are discussed in following.

ii) LB + FG-ENERGYLB Evaluation

The improvements achieved employing over the residual imbalance of the selected

load balancer are very similar. FG-ENERGYLB is able to reduce the energy consump-
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Figure 5.5: Load imbalance relation between processors at initial and final execution.
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tion in 19.08% on average in this benchmark. It reduces by 20%, 19%, 20%, 17%, 19%

and 18% for GREEDYLB, GREEDYCOMMLB, REFINELB, REFINECOMMLB, RAND-

CENTLB and SCOTCHLB respectively.

Since the energy saving is very similar between these load balancers, to bet-

ter analyze the improvements achieved with this benchmark, we select the measured

consumption of 3 executions (NOLB, GREEDYLB and GREEDYLB together with FG-

ENERGYLB), as shown in the Figure 5.6.

Figure 5.6(a) shows the energy spent by each processor during the execution

of benchmark without any load balancer strategy. Since all processors present a simi-

lar power demand during the execution, their energy consumption is also very similar,

19.33 kJ on average. In this execution, the total energy spent is 464.21 kJ.

GREEDYLB, illustrated in Figure 5.6(b), reduces the overall energy consumption

to 256.09 kJ by improving load distribution of ComprehensiveBench and, consequently,

reducing its total execution time. This resulted in a 44% energy consumption reduction

when compared to the baseline (NOLB). Nevertheless, some residual imbalance was still

present after tasks were remapped. In this case, when FG-ENERGYLB was employed

together with GREEDYLB (Figure 5.6(c)). During the runtime, the less loaded proces-

sors had their clock frequencies reduced, which resulted in an improvement in energy

consumption of 20% over GREEDYLB and 56% over the baseline (NOLB). Similar im-

provements were obtained over all other load balancers by keeping the average power of

the cores at 29 W.
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Figure 5.6: Total energy consumption of ComprehensiveBench in each processor.
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(a) 464 kJ for NOLB.
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(b) 256 kJ for GREEDYLB.
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Different from the lb_test benchmark, on ComprehensiveBench the total execution

time wasn’t reduced in function of the reduction of amount of task migrations. In this

benchmark, the load balancing overhead is similar and has values lower compared to

other benchmarks. The overhead varies from 3.5 ms up to 7.5 ms per load balancing call.

Since the overhead is almost zero, the reduction in the energy result of the power demand

reductions during the benchmark execution.

Thus, for ComprehensiveBench, the adjust of the clock frequencies according to

the residual imbalanced is responsible for the reduction of power demand and conse-

quently reduction of total energy spent. The reductions of the power demand were similar

the reductions in the total energy consumption, which represent 19.28% on average.

The greater energy saving for this benchmark is achieved using the GREEDYLB

and REFINELB. Using REFINELB alone it is able to reduce in up to 44.7% the total

energy consumption in relation to baseline. Applying FG-ENERGYLB together with

REFINELB the average the average clock frequency is reduced to 1.857 GHz, reducing

so the power demand from 35.5 W to 28.3 W. In this execution, using FG-ENERGYLB

together with REFINELB, an amount of energy saving achieve 55.8%, as shown in the



91

Figure 5.4(a).

5.2.2 Evaluation on Real Applications

This section provides an evaluation of FG-ENERGYLB load balancer with the

real applications Ondes3D and Lulesh, since each of them have different initial load im-

balances and different dynamicities. The results of Lassen are presented in Appendix A.2.

The results are organized by application, highlighting the total energy consumption, to-

tal execution time, average power demand and end final clock frequency when FG-

ENERGYLB was used alone. For better analysis and evaluation of these applications,

we also present the instantaneous load relative and instantaneous clock frequency of each

real application.

Similar to observed in the tests with the benchmarks, each real applications has a

different residual load imbalance. However, our load balancing algorithm has informa-

tion of the application and platform, which allows it to make better decision, which are

presented and discussed separately for each application in following.

• Application: Ondes3D

i) FG-ENERGYLB Evaluation

This application starts with an almost static computational load. However, the

propagation of the wave changes this behavior, introducing dynamism to the load. In

this way, Ondes3D has both irregularity and dynamicity in its load. Applying FG-

ENERGYLB alone over Ondes3D the total execution time increase from 645.8 to 654.2

seconds, which represent an overhead of 1.2% (Figure 5.7(b)). For instance, taking into

account the original mapping of tasks, the start imbalance is of 1.5 times between the

overloaded and underloaded processor, as shown in the Figure 5.8(a). This imbalance

increases to 1.7 times in the second call and arrive 2.1 times in the 8th call of the load bal-

ancer. From the 10th call, the imbalance starts to reduce stabilizing in the 14th call. From

this point, little dynamicity is observed until the end of the execution. These imbalances

during the execution leave room for energy consumption improvement.

Considering and aiming to correct this load imbalance, FG-ENERGYLB reduces

the clock frequency of cores used during the runtime, as shown in the Figure 5.7(c). In

this execution, the average frequency of cores was reduced to 1.804 GHz, which reduces
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Figure 5.7: Evaluation of FG-ENERGYLB with Ondes3D application.
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(b) Total Execution Time.
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Source: The author

the power demand in 15% on average, from 35.5 W to 30.2 W. By reducing the proces-

sors power according their computational load, FG-ENERGYLB achieve saving energy

of 13.9%, reducing the total energy consumption from 550.4 kJ to 473.8 kJ.

Using FG-ENERGYLB alone, the execution finishes having 8 cores with clock

reduced to 1.5 GHz, 6 cores 1.8 GHz and only two cores remain with the maximum fre-

quency (Figure 5.7(d)). That way, the system clock frequency at end of runtime was 1.812

GHz on average.

ii) LB + FG-ENERGYLB Evaluation

GREEDYLB, GREEDYCOMMLB, SCOTCHLB and mainly RANDCENTLB in-

crease the total execution time of Ondes3D. The main reason for this increase is the time

spent with load balancing. These algorithms spend 4.01, 4.16, 3.0 and 6.7 seconds on av-

erage per load balancing call, while FG-ENERGYLB, REFINELB and REFINECOMMLB

only spend 0.3, 1.42 and 1.43 seconds, as shown in the Figure 5.9(a).
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Figure 5.8: Comparison of Instantaneous Relative Load with Instantaneous Clock Fre-
quency for Ondes3D when used FG-ENERGYLB alone.
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This large number of migrated tasks result in a significant overhead. GREEDYLB,

GREEDYCOMMLB, SCOTCHLB and RANDCENTLB migrate almost all their tasks (on

average 96%) every call of the load balancer resulting in 1.23 MB of data transferred. On

the other hand, REFINELB and REFINECOMMLB migrated only 3.1% and 17% of its

tasks respectively, as shown in the Figure 5.9(b).

Figure 5.9: Load balancing overhead and Total task migration to Ondes3D with different
load balancers.
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When FG-ENERGYLB was applied over the residual imbalance of other load

balancing algorithms, the total energy consumption was reduced by up to 31.5% for

RANDCENTLB, 11.45% for SCOTCHLB and 8.67% for GREEDYLB. In these tests, FG-

ENERGYLB has a small overhead and it is able to minimize task migrations that increas-

ing overhead through of communication costs. For example, for GREEDYCOMMLB the

total execution time increases by 0.54%. On the other hand, the average power demand

is reduced up to 5.29%. With SCOTCHLB and RANDCENTLB, the FG-ENERGYLB

achieve reductions of up to 8.3% and 11.3% respectively, compared to execution with
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load balancer alone.

For this application the energy saving was mainly due the reduction of average

power during the runtime. Only for RANDCENTLB, the improvements come from a

combination of the power demand reduction and the reduction of the total execution time.

The greatest amount of energy saving for this real application is achieved with

the REFINELB load balancer. Using REFINELB alone the total energy is reduced in up

to 14.78% compared to baseline. However, using FG-ENERGYLB together REFINELB,

the average power is reduced in 7.1% and the total execution time in 2.6%. With these

reductions, the total of energy saving achieved 22.9%.

• Application: Lulesh

Figure 5.10: Evaluation of FG-ENERGYLB with Lulesh application.
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i) FG-ENERGYLB Evaluation

Similar to Ondes3D, this application also has both load irregularity and dynamic-

ity. Its irregularity comes from the motion of materials relative to other when subject to

forces. It starts with imbalance of 1.9 times in the original mapping of its 729 task on 24
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Figure 5.11: Comparison of Instantaneous Relative Load with Instantaneous Clock Fre-
quency for Lulesh when used FG-ENERGYLB alone.
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cores. However, this irregularity reduces by 1.3 times in fourth call of load balancer, no

more increasing until the end of the execution (Figure 5.11(a)).

Considering this low imbalance load throughout the execution, between 1.1 and

1.3 times, the FG-ENERGYLB applied alone has a small margin to make DVFS in cores

used and reduce its power. After the fourth call of the load balancer, the frequency is not

reduced to less than 1.9 GHz (Figure 5.11(b)). This way, considering this load imbalance,

average clock frequency of the entire run is only reduced for 2.225 GHz, which reduces

the average power of 35.06 W to 33.64 W, a reduction of only 4.05%.

At the end of the execution with FG-ENERGYLB applied alone, 3 cores have

their clock reduced to 1.9 GHz, 7 cores to 2.3 GHz and 7 run with maximum frequency

(Figure 5.10(d)).

FG-ENERGYLB has 1.2% overhead in the tests with this application. This main-

tains the total execution time in approximately 101 seconds. However, the power reduc-

tion achieved is greater than the its load balancing overhead, which results in a reduction

of the total energy consumption from 84.7 to 82.2 kJ (2.86%), as shown in Figure 5.11(b).

ii) LB + FG-ENERGYLB Evaluation

An increase in the runtime of this application can be seen for load balancers

GREEDYLB, GREEDYCOMMLB and RANDCENTLB. These load balancers do not take

into account the current task mapping, which result in large amount of task migrations at

each load balancing call. The load balancing time are 351, 404 and 300 ms on average,

per load balancing call. These load balancers migrate 698 tasks on average, which result

in 27.92 MB of data transferred in each call (Figure 5.12(b)). On the other hand, RE-

FINELB and REFINECOMMLB have times of 200 ms on average, once that the amount
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of migrated tasks is very small, which is only 6 tasks on average. Figure 5.12 summarizes

the load balancing costs and total task migration of Lulesh.

Figure 5.12: Load balancing overhead and Total task migration to Lulesh with different
load balancers.
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Residual imbalances remain after the task migrations of the load balancers. Aim-

ing mitigate this residual imbalance, FG-ENERGYLB is able to reduce up to 6.6% when

used together with GREEDYLB, 10.3% with SCOTCHLB and 30.9% with RANDCENTLB

in the total energy consumption. These reductions comes mainly from of the power de-

mand reduction, which is reduced 8.12% on average, once that the execution time is

almost not increased.

In this application, the lowest energy consumption was achieved with SCOTCHLB

and FG-ENERGYLB together. SCOTCHLB used alone reduces consumption by up to

4.44%. When FG-ENERGYLB is executed over the SCOTCHLB residual imbalance, the

average power is reduced 10.9%, the runtime is also reduced in 3.76%, which represent

an energy saving of up to 14.28% compared the baseline.

5.2.2.1 Percentage of Energy Spent on Load Balancing

Running scientific applications that represent a real world scenarios demand high

processing power and more memory space. Real applications as Ondes3D, Lulesh and

Lassen have different initial imbalance and different dynamicity in their computational

load, which leaving space for the use of load balancing algorithms aiming to mitigate

load imbalance. In this context, some common energy improvements were achieved.

In the evaluation, we realize that FG-ENERGYLB has load balancing times lower

than all load balancers when tested with Ondes3D, and lower than some load balancers in

execution with Lulesh.

Table 5.5 depicts the comparison of load balancing times incurring on FG-ENERGYLB
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and other load balancer strategies.

Table 5.5: Average load balancing duration in seconds for each real application.
Load Balancer - - Ondes3D - - - - Lulesh - -

LB LB+FG LB LB+FG

FG-ENERGYLB 0.30 - 0.25 -
GREEDYLB 4.01 0.57 0.35 0.29
GREEDYCOMMLB 4.16 0.65 0.40 0.26
REFINELB 1.43 0.88 0.16 0.23
REFINECOMMLB 1.43 0.64 0.24 0.24
RANDCENTLB 6.70 0.62 0.30 0.20
SCOTCHLB 3.01 0.58 0.38 0.23

Source: The author

Most load balancing algorithms try to mitigate load imbalance by moving tasks

between processors. However, this load balancing incurs in overheads to data collection,

decision making and mainly tasks migration, which may affect the application’s runtime

and consequently the total of energy spent.

Generally, the use of load balancing approaches results in reducing the total execu-

tion time and represent also saving energy, as evaluated for benchmarks on Section 5.2.1.

In this context, we analyzed the total energy spent with load balancing (LB Energy) of

every test performed and we relate it with the total energy consumption (App Energy), as

depicted in the Figure 5.13.

Figure 5.13: Energy spend with load balancing over total energy consumption for each
real application.
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The employ of load balancer algorithm is important to improve the scalability of

large parallel systems once they manage tasks distribution, aims to mitigate the effects of

load imbalance and some costs of communication. On the other hand, they introducing
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overhead in the total execution time of the application, which increases the total energy

consumption.

In this way, the energy spent with load balancing comes from of the time overhead

of every load balancer call. In the test with Ondes3D, the load balancers are responsible

in average for spending of 7.87% of the total energy consumed during execution of the ap-

plication (Figure 5.13(a)). When FG-ENERGYLB was used together with load balancers

is able to saving energy of own load balancing. The energy spent with load balancing

was reduced from 7.87% to 2.07%, on average. This occurs due the reduction of the total

execution time and mainly by reductions on average power demand.

Over Lulesh, the load balancing is responsible for 4.91% of the total energy con-

sumed during execution of the application. For this application, using FG-ENERGYLB

together with other load balancers, the total energy spent with load balancing is reduced

from 4.91% to 3.52%, on average, as shown in the Figure 5.13(b).

5.2.2.2 Threshold Evaluation

As discussed in Section 2.2.1, defining the interval between calls to the load bal-

ancer is decisive to reduce the load balance overhead. If the load balancer is invoked in

long time periods, the load imbalance may increase too much and result in loss of perfor-

mance, which consequently increases the total energy consumption. On the other hand, if

the strategy is performed very frequently, it also may incur in a reduction of performance,

since the load balancing overhead may exceed its benefits. In this context, aiming to de-

crease the load balancing overhead, recent strategies have adopted a threshold value to

determine if load balancing must be performed or not.

Several load balancers are able to reduce the total energy consumption reducing

the application execution time. Our proposed algorithms try to reduce the total energy

consumption by exploiting residual imbalance left by load balancing algorithm. They

identify the possibility of reducing the processors clock to achieve better gains over these

algorithms. In this form, energy improvements are achieved due the reduction of average

power during the runtime and also through of reducing the application execution time by

reducing the amount of tasks migrated.

Aiming to reduce the effects of load imbalance and load balancing overhead to

save energy, this section provides a FG-ENERGYLB evaluation over real applications

using different threshold values. As mentioned in Section 2.2, the application runtime

depends on several issues, among them, the number of parallel tasks and their load, the
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duration of each timestep, and the selected load balancing strategy. The impact of load

balancing is directly related to the load balancing frequency once load balancing overhead

can overcome the gains achieved with load balancing.

In this way, to FG-ENERGYLB, in each call of the load balancer, is verified if the

weighted load of each processor exceeds or not the threshold, make decisions to adjust the

frequencies (determining so that the frequency will be decreased or increased) or invoke

other load balancer to migrate tasks. However, the load balancer generates an overhead

and when this cost exceeds its benefits, the total execution time is increased, i.e., calling

load balancing strategies incurs timing penalty to applications.

Our proposed load balancers take three input parameters in their execution. The

first one, is the load balancer that is used to migrate tasks when the imbalance is high.

The second one, is the maximum frequency available by processors that can be set to a

core, and the last one, is a threshold value, used to decide whether call the load balancer

or perform DVFS strategy.

In the previous sections the FG-ENERGYLB was analyzed with threshold value

equal to 2.0, since the clock frequency range available on our experimental platform al-

lows us to vary the clock frequency of the processor from 1.2 GHz up to 2.4 GHz.

In order to make a trade-off between runtime, power demand and total energy

consumption, we vary the threshold parameter of the algorithm from 0 up to 5 and execute

the applications again. Due to reasons of space, the results of Lassen are presented in

Appendix A.2.

Running the applications with FG-ENERGYLB configured with different thresh-

old values, we obtain different amounts of DVFS performed or load balancing called

what determines different frequency settings of cores or migration tasks. In this way, we

can analyze which is the best threshold value for each application under the total energy

consumption, total execution time or the average power demand focus.

• Ondes3D Application

Experiments with Ondes3D were performed using 128 tasks, which run 500 itera-

tions each. Total energy spent to run this application without load balancer is 550.4 kJoules

and its total execution time is 645.8 seconds. During this execution, the average power

demand is 35.5 W. These values are taken as reference in the analysis and represent the

NOLB value in the Figure 5.14.

In the tests with FG-ENERGYLB load balancer, it is called at each 20 iterations,

resulting in a total of 24 calls. Using threshold value equal to 0.5 and 1.0, FG-ENERGYLB
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Figure 5.14: FG-ENERGYLB comparison with different threshold value on Ondes3D.
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no performs any time DVFS, in all calls tasks are migrated calling GREEDYLB load

balancer. In this form, the average power remains constant around of 35.5 W. However,

performing migrations in this application is very costly, which incurs in an increase of

15.5% in runtime and total energy consumption. This increase is the result of overhead

migrations undertaken by load balancer.

Using a threshold equal to 1.5, FG-ENERGYLB load balancer adjust 18 times the

clock frequency through DVFS and only 6 times call other load balancer to migrate tasks.

In this way, it is able to reduce the average power in 5.7%. Reducing the amount of

migration, the runtime suffers a small reduction to 724.38 seconds, but still 12.2% larger

and spending 5.82% more energy than the execution without load balancer.

To threshold value equal to 2.0 are achieved gains in both execution time, power

demand and consequently energy consumption. Were performed 18 times DVFS during

the execution, which reduce the average power in 10.6%, but the runtime still is 8.32%

larger than the baseline. Nevertheless, using this threshold the total energy consumption

is reduced in only 3.15%.

For threshold from 1.0 up to 2.5, the increase of threshold value also increases the

number of calls of DVFS. For these values, the runtime has a reduction near to linear.

The total execution times is reduced from 15% to 2% larger than the baseline. Similarly,

for this threshold range, the average power demand of the parallel platform is reduced in

up to 19% less than baseline. In this way, both runtime and power demand reductions

contribute to reduce the total energy spent.

The greater energy saving for this real application is achieved using the threshold
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value equal or greater than 2.5. Using these values FG-ENERGYLB is able to reduce

in up to 17.1% the total energy consumption in relation to baseline NOLB. These gains

are achieved through reduction in the overhead, which is only 2% and reduction of the

average power is reduced in 18%, once that in all calls were performed DVFS, which

result in greater amount of energy saving, as shown in the Figure 5.14.

• Lulesh Application

Lulesh was executed with 1000 iterations in each one of its 729 processes mapped

in 24 cores. This application spent 100.6 kJoules of energy and takes 84.7 seconds when

executed without load balancer. In this execution the average power demand is 35.1 W.

These values are taken as reference (baseline) and shown in column NOLB of the Fig-

ure 5.15) to examine the threshold variation of the Lulesh application.

Figure 5.15: FG-ENERGYLB comparison with different threshold value on Lulesh.
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Load balancing call is configured with a frequency call of 50 iterations, so exe-

cuted 19 times during the execution. When used threshold equal to 0.5 and 1.0 the FG-

ENERGYLB not perform any time adjust in clock frequency, it only migrates tasks call-

ing the other load balancer. So, using these thresholds the average power is not changed.

In addition, in these tests the load balancing overhead increases the runtime and conse-

quently, the total energy consumption in up to 2%.

A greater amount of DVFS is performed when the value of threshold is increased.

To threshold equal to 1.5, FG-ENERGYLB calls 17 times DVFS and only 2 times task

migrations. Thus, reduces the runtime in up to 1.33%, which also contributes to reduce

the total energy spent. FG-ENERGYLB achieves a reduction of up to 5.6% in average
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power demand. In this way, reducing both, the power demand and runtime, the total of

energy spent is reduced in up to 6.91%.

The energy saving further increases when using thresholds equal to 2.0 or greater.

For these values, the runtime reduction is greater than the reduction of the average power

demand. In every call of the load balancer were performed DVFS, which result in re-

ductions of 7.3% in average power demand and an average performance improvement of

7.74% compared to NOLB. In this way, FG-ENERGYLB is able to save energy in up to

15.6% to Lulesh.

For this application, the threshold variation from 1.0 up to 2.0 present the reduction

more significant in the execution time. When used these values, the runtime is reduced

in up to 11%, while that the average power demand is reduced in up to 6%. Similarly to

Ondes3D, both runtime and power demand reductions contribute to reduction of the total

energy consumption.

FG-ENERGYLB load balancer achieved significant energy savings on all bench-

marks evaluated in the previous section. For those experiments, were used a single core

of each one of the 24 processors available, since our experimental platform does not fea-

ture processors capable of performing per-core DVFS. However, is undesirable limiting

the number of cores when running scientific applications, since it demands high process-

ing power in real world scenarios. In this case, our CG-ENERGYLB can be applied to

overcome such limitation, allowing us to use all the 192 cores available on platform. In

the next section, we show present the energy saving of our proposed hierarchical load

balancer using all hardware resources available in the parallel system.

5.3 CG-ENERGYLB Evaluation

The second part of our evaluation presents the benefits of CG-ENERGYLB, our

hierarchical approach over real world applications presented in the Section 5.1. As dis-

cussed in Section 4.1.2, CG-ENERGYLB considers a hierarchical view of the platform,

which is represented as a two-level tree. In this way, ENERGYLB is employed at the root

level, while other load balancers are used at the leaf level.

We organize the CG-ENERGYLB evaluation in two parts. First, we present the

runtime, power and energy improvements and after, we analyze the percentage of en-

ergy spent on load balancing. Finally, we compare the results achieved using different

threshold values in our hierarchical energy-aware approach.
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These scientific applications present a dynamic behavior, as the load of its tasks

change through the iterations, which provides a more challenging scenario for energy

aware load balancing. Since all the 192 cores will be used, different parameters are used

in the evaluation of the CG-ENERGYLB, as shown in the Table 5.6.

Table 5.6: Summary of the input parameters of real applications.
Application Tasks Iterations LB Frequency (Iterations)

Ondes3D 1024 500 20
Lulesh 5832 1000 50
Lassen 512 550 50

Source: The author

Similar to FG-ENERGYLB evaluation, the results are also present combining the

executions of: without load balancer (NOLB), with our CG-ENERGYLB (CG) and other

CHARM++ load balancers alone (GREEDYLB (G), GREEDYCOMMLB (GC), REFINELB

(R), REFINECOMMLB (RC), RANDCENTLB (Ra) and SCOTCHLB (S)).

The results are organized by gains achieved when CG-ENERGYLB is used alone,

following of gains when CG-ENERGYLB was employed over the residual imbalance of

other load balancing algorithms, as following:

5.3.1 Evaluation on Real Applications

This section present the results achieved using the CG-ENERGYLB over real ap-

plications. Similar to previous evaluations, the results of Lassen are presented in Ap-

pendix B.1. The results are organized by application, highlighting the total energy con-

sumption, total execution time, average power demand and end final clock frequency

when CG-ENERGYLB was used alone.

• Application: Ondes3D

As discussed in Section 5.2.2, Ondes3D has irregularity in the creation of its tasks

and load dynamicity during execution. This load irregularity comes from boundary con-

ditions that produce additional work, and load dynamicity from the simulation of waves

spreading through space.

Using all 192 cores available in the system, the application has at the start of

running an unbalance up to 1.16 times. This imbalance exceeds 4 times in the fourth, fifth



104

and eighth calls of load balancer. In other calls, the imbalance remains below 4 times.

Taking advantage of this load imbalance, each load balancer has different results

regarding the total execution time, power demand and average power demand during run-

time. Figure 5.16 presents a comparison of total energy consumption, total execution

time and average power demand for different load balancing strategies with our proposed

CG-ENERGYLB. It also presents the clock frequency of each processor when application

execution finished using CG-ENERGYLB.

Figure 5.16: Evaluation of CG-ENERGYLB with Ondes3D application.
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(a) Total Energy Consumption.
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(b) Total Execution Time.
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(c) Average Power Demand.
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(d) Final Clock Frequency to CG-ENERGYLB
alone.

Source: The author

i) CG-ENERGYLB Evaluation

When CG-ENERGYLB is employed alone, it is able to reduce the total energy

consumption by 27% (from 263.1 kJ to 192.5 kJ). This reduction represents 26.86% of

total energy spent during application runtime (Figure 5.16(a)). As CG-ENERGYLB has a

small overhead (0.7%), which almost does not influence the execution time of the appli-

cation (Figure 5.16(b)), thus, the energy saving is mainly result of the power reduction in
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the processors as shown in the Figure 5.16(c).

In order to observe how CG-ENERGYLB reacts to load imbalances during the ex-

ecution of Ondes3D, we profiled its execution with EMonDaemon. Figure 5.17 shows the

instantaneous power demand and clock frequency of the 24 processors measured during

its execution. As it can be observed, CG-ENERGYLB sets the frequency of the over-

loaded processor to the maximum value available (2.4 GHz), resulting in a higher power

demand of this processor. On the other hand, the frequency of underloaded processors is

set to the minimum (1.2 GHz) or to intermediate level according to its relative load.

Through these frequency adjustments, the average clock while running was re-

duced to 1.631 GHz. The execution with CG-ENERGYLB alone finishes having 8 cores

with clock frequency of 2.4 GHz (Figure 5.16(d)), resulting in an average clock frequency

of the system at the end of execution of 2.029 GHz.

Figure 5.17: Instantaneous power demand and clock frequency measured during the exe-
cution of Ondes3D with CG-ENERGYLB.
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We can observe some drops in the power demand on all processors throughout the

execution in Figure 5.17(a). This happens at each load balancer step. When CHARM++

performs load balancing, it temporarily stops the execution of the application to execute

the load balancer. In our case, during this period CG-ENERGYLB is either performing

DVFS or executing the load balancer to migrate tasks.

By updating the frequency of the processors according to their weighted loads,

CG-ENERGYLB reduces the average power demand of the system while running the

application. This reduction, shown in Figure 5.16(c), consequently reduce the total energy

consumption, presented in Figure 5.16(a). In this execution, a reduction in power demand

of up to 27.4% is achieved, reducing it from 54.71 W to 39.72 W.

ii) LB + CG-ENERGYLB Evaluation
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Once applied load balancers, residual imbalances can still be present. In this

way, when CG-ENERGYLB is employed to mitigate this residual imbalance left by the

load balancing algorithm, it identifies the possibility of reducing the processors clock to

achieve better gains over these algorithms. For Ondes3D application, the energy con-

sumption is reduced between 15% (REFINELB) and 34% (GREEDYCOMMLB).

Table 5.7 summarizes the total energy consumption and improvement for On-

des3D on parallel platform with different load balancers. Energy consumption for NOLB

represents a baseline execution when any load balancer was used. The energy reduc-

tion over NOLB represents an improvement of up to 1.37 times, which is higher than

the improvement obtained for REFINELB and REFINECOMMLB, of 1.26 and 1.28 times,

respectively. On the other hand, we can notice that GREEDYLB, GREEDYCOMMLB,

RANDCENTLB and SCOTCHLB when used alone slowed down the application by ap-

proximately 1.27, 1.30, 3.08 and 1.64 times, respectively, increasing the total energy con-

sumption.

However, GREEDYLB, GREEDYCOMMLB, REFINELB and REFINECOMMLB

used with CG-ENERGYLB have reductions, which represent improvements between 1.18

and 1.56 over NOLB, as shown in Table 5.7. In best case, to REFINECOMMLB, the

energy consumption of Ondes3D was reduced to 169.1 kJ, which represent a reduction

of 35.7% in total energy consumption. This energy saving comes from a combination of

two factors: i) reduction of the processors power demand of 21% (Figure 5.16(c)); and ii)

reduction of the application execution time of 18.5% (Figure 5.16(b)). CG-ENERGYLB

employed together other load balancers, represent improvements from 1.19 up to 1.53

times over own load balancer execution time.

Table 5.7: Total energy consumption and improvements for CG-ENERGYLB and other
load balancers.

- - - - - LB alone - - - - - - - - - - LB + CG-ENERGYLB - - - - -
Energy Improvement Energy Improvement Improvement

Consumption over Consumption over over own
(kJ) NOLB (kJ) NOLB LB

NOLB 263.1 - - -
CG-ENERGYLB (CG) 192.5 1.37 - -
GREEDYLB (G) 332.3 0.79 216.6 1.21 1.53
GREEDYCOMMLB (GC) 338.7 0.78 223.9 1.18 1.51
REFINELB (R) 208.8 1.26 175.7 1.50 1.19
REFINECOMMLB (RC) 205.1 1.28 169.1 1.56 1.21
RANDCENTLB (Ra) 800.7 0.33 645.0 0.41 1.24
SCOTCHLB (S) 429.9 0.61 356.8 0.74 1.20

Source: The author

The execution times measured for the Ondes3D are presented in Figure 5.16(b).

Similar to FG-ENERGYLB evaluation, was noticed that load balancers slowed down the
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application. This is a result of the overhead coming from task migrations. When the load

balancers are applied in the Ondes3D, they present a wide variation in load balancing

times. GREEDYLB, GREEDYCOMMLB RANDCENTLB and SCOTCHLB have overhead

of 4.08, 4.20, 11.71 and 6.94 seconds on average, respectively. On the other hand, the

load balancers CG-ENERGYLB, REFINELB and REFINECOMMLB spend only 0.3, 2.13

and 1.56 seconds in each step (Figure 5.18).

Figure 5.18: Average load balancing overhead to Ondes3D application.
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This different overhead comes from of the different times to make their decisions

and the amount of migrated tasks by these load balancers. While GREEDYLB, GREEDY-

COMMLB RANDCENTLB and SCOTCHLB migrate an average of 1021, 1024, 1020 and

921 tasks every call. This high number of task migration, resulting in 59.79 MB of data

transferred between the cores, which incurs in an increase in the total execution time.

On the other hand, REFINELB and REFINECOMMLB migrate only 460 and 164

tasks respectively, which have only 0.01 MB of data, resulting in 4.6 and 1.64 MB of data

transferred between the cores

When CG-ENERGYLB was used along with GREEDYLB and GREEDYCOMMLB,

it is able to reduce the total execution time compared to these load balancers alone. How-

ever, the execution time of Ondes3D was slightly increased by approximately 4% on

average, in comparison to the execution without load balancer. This occurs since to CG-

ENERGYLB does not migrate task between processors, only performs task migrations

between cores of the same processor.

This different percent of increase in the runtime is due to the fact that CG-ENERGYLB

only relies on other load balancers when the load imbalance is considerably high, i.e.,

greater than threshold value. When imbalance is lower than threshold, only doing DVFS

performing so much less task migrations.
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In contrast with that, REFINELB and REFINECOMMLB were able to improve the

execution time of Ondes3D by up to 20% on average. These results are also reflected on

the energy savings obtained through load balancing in comparison to GREEDYLB and

GREEDYCOMMLB, as the average power measured for all these load balancers was ap-

proximately the same (54 W). When CG-ENERGYLB was applied with REFINELB and

REFINECOMMLB, we observed a slightly increase of 1.7% in the execution time of On-

des3D in comparison to the execution with only GREEDYLB and GREEDYCOMMLB.

However, CG-ENERGYLB is able to reduce even more the energy consumption of RE-

FINELB and REFINECOMMLB by 16.7% on average in these cases by exploiting residual

imbalances.

Overall, the results obtained with CG-ENERGYLB showed energy savings of up

to 36% with an average of 23%. These energy improvements come from the exploita-

tion of residual imbalances and from the reduction of the average power demand on all

processors. With CG-ENERGYLB, the average power demand was reduced from 54.7 W

to 44.3 W in comparison to the standard load balancers alone.

• Application: Lulesh

i) CG-ENERGYLB Evaluation

Lulesh has irregularity in the creation of its 5832 tasks over 192 cores and load dy-

namicity in its execution. Due the task distribution and irregular computational load, this

application start with an imbalance load up to 1.45 times. However, during the execution

due its dynamicity, imbalance increases up to 5.21 times.

The average power demand obtained on the tests with Lulesh are shown in Fig-

ure 5.10(c). Due its initial imbalance generated by original task mapping, when CG-

ENERGYLB is applied alone, it has a good range for conducting DVFS and save energy.

It is able to reduce the average power from 50.91 W to 37.93 W, a reduction of 25.5%,

result of the reduction of the clock frequency during the entire run for 1.97 GHz.

At the end of the run this application with CG-ENERGYLB alone, the average

frequency is 1.68 GHz. 14 cores have their clock reduced to 1.4 GHz or less, and only 4

cores performed with the maximum frequency.

The CG-ENERGYLB has an overhead of 2.23% in the tests with this application.

It increases the total time of execution from 688.0 to 703.3 seconds. However, the gains
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Figure 5.19: Evaluation of CG-ENERGYLB with Lulesh application.
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(a) Total Energy Consumption.
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(b) Total Execution Time.
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(c) Average Power Demand.
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Source: The author

achieved with the power reduction is higher than its overhead. Thus, it achieves a reduc-

tion in the total consumption from 840.6 to 640.3 kJ (23.8%), as shown in Figure 5.19(a).

ii) LB + CG-ENERGYLB Evaluation

Load balancers are used to mitigate imbalances between processors. However,

according to application and system characteristics, some residual imbalances can be

present after making decision and the tasks migration. In way, employing CG-ENERGYLB

over the residual imbalance of the Lulesh, the energy consumption was reduced between

18.2% (REFINECOMMLB) and 41.1% (SCOTCHLB).

Except REFINELB, all other load balancers increased the runtime of this real

application. One cause that explain these increases is the amount of task migrations.

GREEDYLB, GREEDYCOMMLB, RANDCENTLB and SCOTCHLB migrate 5802 tasks

on average. These migrations move 2.088 MB of data between cores every call. This

way, the load balancing times these balancers are 6.8, 5.9, 7.1 and 6.964 seconds on av-

erage. On the other hand, REFINELB and REFINECOMMLB have smaller number of
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migration, only 357 tasks, that represents 7.14 MB of data migrated. So, their overhead

is also lower, 2.7 and 6.6 seconds on average, as shown in the Figure 5.20.

Figure 5.20: Average load balancing overhead to Lulesh application.
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When CG-ENERGYLB is applied together other load balancers over Lulesh, the

total energy consumption is reduced in 33.9% on average. Performing DVFS to adjust

clock during the execution of this application, CG-ENERGYLB is able to reduce the

average power demand in 20.6% on average.

For this application, the lowest energy consumption was achieved with REFINELB.

It reduces in up to 6.4% compared to baseline. However, using CG-ENERGYLB to-

gether with load balancers, the greatest reduction in energy consumption was achieved

with SCOTCHLB and CG-ENERGYLB. The total energy consumption was reduced to

614.1 kJ, which represents 26.9% compared to baseline.

5.3.1.1 Percentage of Energy Spent on Load Balancing

Run scientific applications that represent simulation of real world scenarios de-

mands even bigger processing power and more memory space. Ondes3D, Lulesh and

Lassen application are example these scenarios in regards to load imbalance, dynamicity

load, processing demand and memory used.

In this context, aiming to mitigate load imbalance, load balancing algorithms are

applied, which achieving different energy improvements with different times overhead.

In summary, we realize that our CG-ENERGYLB has load balancing times lower than

other selected CHARM++ load balancers when tested with real applications.

Table 5.8 presents a comparison of load balancing times incurring on different

strategies for the load balancing step with our proposed CG-ENERGYLB algorithm.

Since CG-ENERGYLB has load balancing times lower than other CHARM++ load
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Table 5.8: Average load balancing duration in seconds for each real application.
Load Balancer - - Ondes3D - - - - Lulesh - -

LB LB+CG LB LB+CG

CG-ENERGYLB 0.31 - 0.38 -
GREEDYLB 4.08 3.85 6.84 4.72
GREEDYCOMMLB 4.20 3.95 5.98 4.78
REFINELB 2.14 2.83 2.78 2.17
REFINECOMMLB 1.56 1.90 6.65 5.98
RANDCENTLB 11.72 9.46 7.09 4.26
SCOTCHLB 6.94 7.05 6.96 4.05

Source: The author

balancers, when the application call CG-ENERGYLB, it spend less time to adjust the

clock frequency, which results in a reduction in total execution time and an equivalent

saving energy. In this context, we analyzed the total energy spent with load balancing to

each test performed and relate it with the total energy consumption on execution.

Figure 5.21 depicts the energy spend with load balancing (LB Energy) over total

energy consumption for each selected real application (App Energy).

Figure 5.21: Energy spend with load balancing over total energy consumption for each
real application.
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In the tests with the Ondes3D and Lulesh applications, the load balancers are re-

sponsible in average by spent of 28.87% and 9.87% of total energy consumed during exe-

cution of the applications. When CG-ENERGYLB was used together with load balancers,

it also reduces the load balancing energy. Thus, for Ondes3D and Lulesh, the energy spent

with load balancing was reduced on average to 24.55% and 8.46% respectively.
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5.3.1.2 Threshold Evaluation

This section provides a CG-ENERGYLB evaluation over real world applications

using different threshold values. In the previous section, the CG-ENERGYLB load bal-

ancer was analyzed with threshold value equal to 2.0. As mentioned in 5.2.2.2, this

threshold value was adopted due that clock frequency range available on our experimental

platform, allow us to vary the clock frequency of the processor from 1.2 GHz up to 2.4

GHz.

The use of different threshold values, incurs in different amounts of DVFS per-

formed or load balancing called, which determines different frequency settings of cores

or migration tasks. In this way, to analyze which is the best threshold value for each ap-

plication under the total energy consumption, total execution time or the average power

demand, we vary the threshold parameter of the algorithm from 0 up to 5.

• Ondes3D Application

Experiments with Ondes3D were performed using 1024 tasks mapped on 192

cores, which run 500 iterations each. Total energy spent to run this application with-

out load balancer is 263.1 kJoules and its total execution time is 200.41 seconds. During

this execution, the average power demand is 54.71 W. These values are taken as reference

(NOLB in Figure 5.22) in our analysis.

Figure 5.22: CG-ENERGYLB comparison with different threshold value on Ondes3D.
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Figure 5.23(a) depicts the instantaneous power of the execution when CG-ENERGYLB

uses threshold value equal to 1.0. In this execution any times DVFS is performed, in all

the 24 load balancer calls tasks were migrated by REFINELB. In this way, during execu-
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Figure 5.23: Power evaluation to different threshold value on Ondes3D
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tion the power of all processors is always high, resulting in an average power of 54.7 W.

Using threshold equal to 2.5 the processors power is differently reduced as shown

in the Figure 5.23(b). For this threshold, 17 times DVFS is performed and only 7 calls

migrate tasks by REFINELB. This form, the power is reduced in great majority of the

processors, which result in a total reduction of 16.08%, leaving the average power in

43.4 W.

A different amount of energy is saved when using threshold equal to 5.0 (Fig-

ure 5.23(c)). In this execution in all call (24) adjusts in clock were performed, leaving

only one processor using its maximum power. For this threshold value, the power de-

mand follows the increase of application needs, once the increases from the second 160

and reduces again from the second 212. This form, in this test the average power is re-

duced in 32.39%, resulting in an average of 35.0 W.

For Ondes3D, the least amount of energy spent is achieved using threshold value

equal to 3.0. Using this value CG-ENERGYLB is able to reduce in up to 31% the total

energy consumption in relation to baseline NOLB. This reduction is achieved through of



114

the reduction of the average power demand in 34%, which overcome the time overhead

of 5%, as shown in the Figure 5.22.

• Lulesh Application

Lulesh was executed with 1000 iterations in each one of its 5832 processes mapped

in 192 cores. This application spent 840.6 kJoules of energy and takes 688 seconds when

executed without load balancer. Thus, in this execution the average power demand is

50.9 W. These values are taken as reference (baseline) and shown in column NOLB of the

Figure 5.24) to examine the threshold variation of the Lulesh application.

Figure 5.24: CG-ENERGYLB comparison with different threshold value on Lulesh.
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Instantaneous power measured when the application is executed with threshold

equal to 0.5 is depicted in the Figure 5.25(a). Using this value, in all load balancing calls

(19 times) were migrated tasks through do REFINELB. Similar to Ondes3D execution,

for this threshold all processors running using a high power during all execution, which

result in an average of power of 50.9 W.

On the other hand, using a threshold equal to 2.5, CG-ENERGYLB is able to

reduce the power demand to intermediate levels as shown in the Figure 5.25(b). With this

threshold, in this execution are performed 4 times DVFS, which reduced the power of the

processors in 12.7%, to 43.4 W.

For threshold equal to 5.0 (Figure 5.25(c)) were adjusted 19 times the clock fre-

quency of cores. This way, the power of most of the processors is reduced to minimum

levels saving more energy. The total reduction was of 24%, which reduced the average

power demand to 38.7 W.
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Figure 5.25: Power evaluation to different threshold value on Lulesh
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(a) Threshold = 0.5.
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The threshold variation from 0.5 up to 2.0 present the reduction more significant

in energy consumption for this application. Differently from Ondes3D, when used these

threshold values in CG-ENERGYLB load balancer, the runtime increases in up to 14%,

while that the average power demand reduces in up to 25%. In this way, the least amount

of energy spent for Lulesh, is achieved using threshold value equal to 2.0. For this value,

CG-ENERGYLB reduces the total energy consumption in up to 15% if compared to base-

line NOLB. This reduction is achieved through of the reduction of the average power in

25%, which overcome an overhead of 14%, as shown in the Figure 5.24.

The results achieved show that our algorithms are able to mitigate residual im-

balance left by load balancing algorithm. Our load balancing algorithm have improve-

ments in both goals, runtime, power demand and energy consumption on experiments

with benchmarks and real world applications. In the next section, we discuss more about

the gains of our load balancers.
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5.4 Overall Results

In this chapter, we presented an experimental evaluation of our energy-aware load

balancing approaches. Firstly, in the methodology, we discuss the experimental environ-

ment, the benchmarks and real world applications that simulate natural phenomena, and

state-of-the-art load balancers used in the evaluation. Finally, our two algorithms for our

proposed ENERGYLB were tested using different characteristics of load imbalance and

were able to mitigate load imbalance coming from load irregularity and dynamicity.

They usually have a reduction in power demand and in the amount of the energy

spent while incurring in a low overhead. Our approaches can be applied alone or attached

to other load balancing to save energy. Overall, the energy savings with ENERGYLB were

up to 55.8% with our fine-grained algorithm that performs per-core DVFS when it is used

over benchmarks and up to 23% when it is used over real applications.

Overall, the results obtained with FG-ENERGYLB alone over the benchmarks

showed energy savings of up to 25% with an average of 10.7%. The obtained results

pointed that FG-ENERGYLB load balancer used alone improve the energy consumption

by 13%, 2.4%, 2.1% and 25.2% on average for lb_test, kNeighbor, stencil 4D and Com-

prehensiveBench respectively. Furthermore, these reductions are results of the use of

DVFS strategy during the execution, which reduces the power demand in 12.8%, 3.4%,

3.8% and 25.1% respectively.

When used FG-ENERGYLB together with other load balancers over the residual

imbalance the energy saving achieved were different for each test. The greater reduction

on energy is achieved using different load balancers to each benchmark. For lb_test and

kNeighbor when SCOTCHLB is applied alone, it achieves a reduction of 39% and 7.28%,

respectively in the total energy consumption compared to the baseline. However, an even

greater reduction is achieved when FG-ENERGYLB is used together with SCOTCHLB. In

this test, the average power demand is also reduced, resulting so in a total energy saving

of 44.2% and 25.48% respectively.

Different from other benchmarks, on stencil 4D the greatest amount of energy

saving is achieved using FG-ENERGYLB alone. This load balancer has an overhead

of only 1.73% and reduces the average power in 3.82% on average if compared to the

baseline. This way, the total energy consumption is reduced in up to 2.16% for this

benchmark. Due to large memory footprint present in this benchmark, its migrations are

costly. This mode, all the load balancers tested increase the total execution time of this
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benchmark.

A similar amount of energy is saving for the ComprehensiveBench benchmark

when using GREEDYLB and REFINELB alone. These load balancers are able to re-

duce in up to 44.7% the total energy consumption in relation to baseline. Applying FG-

ENERGYLB together with REFINELB the amount of energy saving achieved 55.8%.

In summary, the results obtained with FG-ENERGYLB together other load bal-

ancers over benchmark showed energy savings of up to 55.8% with an average of 41.83%.

On a final point on FG-ENERGYLB evaluation, we compare the results achieved

with FG-ENERGYLB algorithm over real applications. The results obtained when FG-

ENERGYLB load balancer is used alone over real application point improve of the energy

consumption by 13.9%, 2.86% and 10.9% on average for Ondes3D, Lulesh, and Lassen

respectively. These reductions are results of the use of DVFS during the execution, which

reduces the power demand in 15%, 4.05%, and 11.48% respectively.

For Ondes3D, the greatest amount of energy saving is achieved with the RE-

FINELB load balancer. Using REFINELB alone, the total energy is reduced in up to

14.78% compared to baseline. However, using FG-ENERGYLB together with REFINELB,

the average power is reduced in 7.1% and the total execution time in 2.6% compared to

REFINELB used alone. This way, the total of energy saving was up to 22.9%.

For Lulesh, the lowest energy consumption is achieved with SCOTCHLB and FG-

ENERGYLB together. SCOTCHLB used alone reduces consumption by up to 4.44%.

When FG-ENERGYLB is performed over the SCOTCHLB residual imbalance, the aver-

age power is reduced more 10.9%. Thus, the total energy consumption was reduced by

up to 14.28% compared the baseline.

For Lassen, in all test the execution time, the power demand and the total energy

consumption is reduced. The lower energy consumption is achieved with GREEDYLB,

GREEDYCOMMLB, REFINELB, REFINECOMMLB. Using these load balancers alone

19.8% of energy was saving. In addition to the clock adjustment using the FG-ENERGYLB

has a total energy reduction of 23% for GREEDYCOMMLB.

Finally, we summarize the runtime, power demand and energy consumption gains

for each application considered using our hierarchical strategy. Using our coarse-grained

algorithm that performs per-chip DVFS were achieved the energy savings up to 35.7%.

When CG-ENERGYLB load balancer is used alone over the real application the

energy consumption is improved by 27%, 23.8% and 8.85% on average for Ondes3D,

Lulesh, and Lassen respectively. These reductions come from of the use of DVFS during
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the execution, which reduces the power demand in 27.4%, 25.5% and 9.17% respectively.

For Ondes3D, using REFINELB alone is achieved the greatest amount of energy

saving, which represent 21.6% compared to baseline. However, using CG-ENERGYLB

together with REFINELB and REFINECOMMLB, the average power is reduced up to

18.3%, which result in a reduction in total energy spent of 33.2% and 35.7% respectively.

For Lulesh, the lowest energy consumption was achieved with REFINELB. It re-

duces by up to 6.4% compared to baseline. However, using CG-ENERGYLB together

with load balancers, the greatest reduction in energy consumption was achieved with

SCOTCHLB and CG-ENERGYLB. The total energy consumption was reduced in 26.9%

compared to baseline.

For Lassen, using REFINELB alone the energy saving is 11.5%. However, the

lower energy consumption is achieved using GREEDYLB and CG-ENERGYLB together.

In this test, the total energy consumption reduces 17.7% compared to baseline.

The processors of our experimental environment have 14 clock frequency levels

available. This range of levels allow us to vary the clock frequency of the processor

from 1.2 GHz up to 2.4 GHz, defining more power save or more power hungry according

of the computational load. We realize that this processor feature is very important to

our energy-aware approach, since that in test realized all available levels were used by

our ENERGYLB, allow us a higher precision. For example, in the Ondes3D execution,

Figure 5.8(b) of Section 5.2.2, the intermediate level of 2.2 GHz was used only in 3

timesteps, while that the level 1.5 GHz was used in 109 timesteps. So, having a higher

precision information of computational load and using processors with a range of clock

frequency levels, we can make more accurate decisions and save more energy.
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6 CONCLUSIONS AND FUTURE WORK

HPC systems have increased in performance, number of processors and complex-

ity. This growth also increased the power demand of these parallel platforms, with power

becoming a critical aspect in the design of future Exascale systems. On the other hand,

large and complex scientific applications increasingly demand for more performance. Sci-

entific applications generally present dynamic or irregular characteristics that difficult the

efficient use of HPC systems and contribute to reduce energy efficiency. In this context,

to use all resources available in parallel machines and achieve a better performance with

a high energy efficiency is important to analyze characteristics of both platform and ap-

plication, and use this information to make load balancing decision.

Several load balancing strategies have been developed, aiming to improve the load

distribution across parallel processors and increase application performance. Moreover,

many load balancers take into account only computation load to make their decisions due

the hard solutions to achieve a good balance, beyond introducing overhead to the total

execution time of the application. These algorithms have left aside the power demand and

total energy consumption of each task of the application. In this context, since proces-

sors are responsible for a large percentage of the total energy consumption of a parallel

machine, managing processors power is crucial to save energy.

In this context, the main objective of this thesis focus on load balancers to achieve

an efficient use of all available resources of parallel machines and to reduce the average

power demand of systems, thus saving energy in the execution of imbalanced applications.

6.1 Contributions

The contributions of this thesis were based on the hypothesis that most load bal-

ancing strategies are mainly based on application characteristics and architectural aspects

of the machine. Current load balancing approaches generally take into account several

pieces of information, such as computational load, processor speed, communication cost

and hardware topology. A few recent strategies started including decisions based on

power and energy constrains.

In this context, we proposed ENERGYLB, a new energy-aware load balancer that

exploits the existence of residual imbalances on iterative applications to adjust the clock

frequency of underloaded cores/processors combining dynamic load balancing and DVFS
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technique during the application execution. ENERGYLB considers characteristics of the

platform, load irregularity and dynamicity of applications. Its strategy takes into account

current computational load to make decision of calling other load balancing strategies that

reduce load imbalance by migrating tasks, or it adjusts the clock frequencies of the cores

according to their weighted loads.

In response to different processors architecture, that can feature two levels of gran-

ularity, per-chip DVFS or per-core DVFS, we introduced two different algorithms of our

energy-aware load balancer. FG-ENERGYLB allows a fine control of the clock frequency

of cores in systems that have few tens of cores and feature per-core DVFS control. On the

other hand, CG-ENERGYLB is suitable for HPC platforms composed of several multi-

core processors that do not allow such a fine-grain control, i.e., that only feature per-chip

DVFS. Both algorithms were implemented in CHARM++, allowing it to be used together

with existing load balancer available in CHARM++ without any application changes. We

showed that applications implemented in CHARM++ can benefit from ENERGYLB to im-

prove energy efficiency, reducing to power demand during the execution of imbalanced

applications, without considerably degrading their overall performance.

We evaluated our energy-aware load balancers and demonstrate the improvements

in energy savings. For this purpose, we ran benchmarks and real world applications and

compared their energy spent, runtime and power demand with state-of-the-art load bal-

ancers.

Results obtained with the use of the Fine-Grained EnergyLB (FG-ENERGYLB)

algorithm alone over benchmark present energy savings of up to 25.2% with an aver-

age of 10.7%. Nevertheless, some residual imbalance was still present after tasks were

remapped. In this case, when FG-ENERGYLB was employed together with these load

balancers, energy savings were achieved up to 55.8% with an average of 12.0%.

Our results also demonstrated that FG-ENERGYLB used alone is able to achieve

energy savings of up to 13.9% with an average of 9.2% over real applications. However,

greater improvements in energy are achieved using FG-ENERGYLB to mitigate residual

imbalance over applications. In this way, the total energy save achieve is up to 23% with

an average of 20.06%.

Considered the use of the Coarse-Grained EnergyLB (CG-ENERGYLB) algo-

rithm alone over the real application, it improves the energy consumption up to 27%

with an average of 19.88%. When CG-ENERGYLB is applied together other load bal-

ancers to mitigate the residual imbalance, it can achieve energy savings up to 35.7% with
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an average of 26.76%.

The achieved results have shown that the adjustment of the clock frequency ac-

cording to workload of each processing unit during the runtime has an impact on the

average power demand and consequently on the total energy consumption. The results

presented in this thesis show that by combining dynamic load balancing and DVFS con-

sidering the characteristics of the application and of the system to make decisions, we are

able to reduce the total energy consumption on iterative applications.

6.2 Perspectives of Future Work

Our research has shown that the application of the two ENERGYLB algorithms

proposed in this thesis are able to reduce the average power demand of system during

the execution and also to reduce the total energy consumption. We have identified some

opportunities to extend the contributions of this thesis. The main opportunities are high-

lighted in following:

1. Inclusion of new heuristics in the decisions. Most current strategies have used

heuristic together with threshold to define the load imbalance. We evaluated the cur-

rent versions of our energy-aware load balancers using clock frequency-workload

product to define the residual imbalance after load balancer call, and threshold to

determine if load balancer or DVFS must be used. However, as power demand con-

straints are an increased challenge for building of HPC systems, evaluation of the

energy savings could to exploit with different metrics;

2. Evaluate the use of predictability. The current versions of the ENERGYLB load

balancer consider both current characteristics of the platform and the current load

of applications to make their decisions. However, to applications with irregularity

and dynamicity making decisions based on past information can avoid redundant

changes in clock frequency. In this way, evaluating the use of task load predictabil-

ity during the execution could identify possible performance gains while reduce the

DVFS use and also the overhead;

In the same context, we realize that the impact of load balancing is directly related

to the load balancing frequency and that load balancing overhead can overcome

the gains achieved with load balancing. The use of ENERGYLB strategies result

in a less load imbalance, once first load balancing strategies migrate task and after
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ENERGYLB approach adjusts the clock considering the residual imbalance. How-

ever, when applications have a high dynamicity and the load balancing frequency

is also high, the reduction in clock can incurs in performance degradation. In this

way, combining predictability, less aggressive threshold and return the processor

frequency to the original position could be evaluated to avoid this behavior; and

3. Make decision improvements. The current versions of the ENERGYLB load bal-

ancer perform task migrations between cores of the same processor and can migrate

tasks between processors when needed, taking as base the computational load. In

this scheme, decisions can also take into account the cost of task migrations (time

and energy) between cores/processors that operate on different clock frequencies,

thus reducing overhead of performing DVFS or call other load balancing on all

processors at each load balancing step.
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APPENDIX A — FG-ENERGYLB EVALUATION

A.1 Evaluation on Benchmarks

• Benchmark: kNeighbor

Figure A.1: Evaluation of FG-ENERGYLB with kNeighbor benchmark.
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Source: The author

i) FG-ENERGYLB Evaluation

Differently from lb_test, kNeighbor is a communication benchmark and has a bal-

anced state at start. The energy consumption of kNeighbor was reduced by only 2.4%

(from 35.56 kJ to 34.69 kJ) when FG-ENERGYLB was applied alone. This energy sav-

ing occurs due the reduction of the average power demand of the cores from 35.1 W

to 33.9 W (3.4%). This way, adjusting the clock frequency during the execution, it was

able to reduce the clock to 1.898 GHz on average.

Thus, when the execution finishes using FG-ENERGYLB alone, only four cores

were kept on the maximum clock frequency, and the lowest clock frequency registered
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was 1.6 GHz, as show the Figure A.1(d).

ii) LB + FG-ENERGYLB Evaluation

When used in conjunction with the other load balancers, FG-ENERGYLB reduced

the total energy consumption of kNeighbor by up to 9% and 21% with GREEDYLB and

GREEDYCOMMLB, and 22.5% and 18.7% with RANDCENTLB and SCOTCHLB, which

represents a 10.5% reduction on average in these tests. These centralized load balancers

increased the total energy consumption of kNeighbor by increasing its total execution

time. This happened because the task migrations resulted in worse communication times

for the tasks while their load is balanced.

The use the some load balancers increase of the total execution time. For GREEDYLB

and GREEDYCOMMLB this increase happens because of the large amount of migrated

tasks, since kNeighbor was executed with 8 times more tasks than lb_test. In test with

these load balancers were migrated 1, 536 tasks on average, which represent 138.3 MB

of data transferred each load balancing call. To perform these amounts of migrations, the

load balancers have the higher overhead, which spent 2.2 seconds on average per load

balancing call, as show the Figure A.2(a).

Figure A.2: Load balancing overhead and Total task migration to kNeighbor load balancer
with different load balancers.
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When FG-ENERGYLB was employed together with GREEDYLB, GREEDYCOMMLB

the amount total of task migrations was reduced from 6, 141 to 1, 520 tasks on average,

which represents reduction of up to 72%. This reduction in the total task migrated (Fig-

ure A.2(b)), results in a reduction of total execution time of 3.9% and 12.9% respectively.

Besides of this reduction on runtime, the biggest energy savings is achieve by reduction

of the average power demand, as show the Figure A.1(c).
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Working over residual imbalance of the GREEDYLB, GREEDYCOMMLB, RAND-

CENTLB and SCOTCHLB, FG-ENERGYLB is able to reduce the average power demand

in 4.9%, 9.7%, 22.9% and 16.7% respectively. These reductions were achieved, once that

FG-ENERGYLB detect the residual imbalance and adjust the clock frequency of each core

relative to more overload core. Applying FG-ENERGYLB in these load balancers the av-

erage clock frequency during runtime is reduced to 1.987 GHz, 1.813 GHz, 1.680 GHz

and 1.780 GHz respectively.

The total execution time also increase to REFINECOMMLB and RANDCENTLB.

Using RANDCENTLB load balancer, almost all tasks are migrating every load balancing

calls, while that using REFINELB, in the first call 608 tasks were migrated, reducing

this value on other load balancing calls. These migrations represent 139 and 32.24 MB

of data on average transferred, which influence the load balancing times. In these tests

experiments, REFINELB and RANDCENTLB have overhead of 0.47 and 0.12 seconds per

load balancing call, respectively.

For kNeighbor, the biggest amount of energy saving is achieved when SCOTCHLB

is applied alone. This load balancer reduced the total execution time in 7.28% compared

to baseline. Such reduction in runtime results in an equivalent amount of energy saving.

However, when FG-ENERGYLB is used together with SCOTCHLB the average power

demand is also reduced up to 18%, from 34.66 W to 28.4 W. In this mode, the total of

energy saving achieve 25.48%.

In this test, SCOTCHLB + FG-ENERGYLB, the average clock frequency during

the runtime is reduced to 1.780 GHz and the execution finishes having 14 cores in mini-

mum value available, 4 cores with intermediate frequency between 1.4 and 1.6 GHz and

only one core with maximum frequency.

• Benchmark: stencil 4D

i) FG-ENERGYLB Evaluation

Different to other benchmarks, a small amount energy saving was observed on

stencil 4D. Although this benchmark presents an initial imbalance, using these input pa-

rameters, the original task distribution generates a balanced load in our experimental plat-

form. In this form, when FG-ENERGYLB is used alone, it is able to reduce the clock

frequency during the runtime only to 2.248 GHz, which reduce its energy consumption

by only 2.1% (from 232.01 kJ to 227.00 kJ).
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Figure A.3: Evaluation of FG-ENERGYLB with stencil 4D benchmark.
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The stencil 4D execution finishes with FG-ENERGYLB having 6 cores with the

maximum clock frequency, and the lowest clock frequency registered was 2.1 GHz, as

shows the Figure A.3(d).

ii) LB + FG-ENERGYLB Evaluation

The tasks have a large memory footprint in stencil 4D, their migrations can be

costly. So, all the load balancers tested increase the total execution time of this bench-

mark. GREEDYLB, GREEDYCOMMLB, RANDCENTLB and SCOTCHLB present the

increase more significant in the execution time. This increase occurs due to two factors.

The first is the high load balancing times of these load balancers. They spend 16.9, 16.9,

8.7 and 13.1 seconds on average per load balancing call, while that FG-ENERGYLB, RE-

FINELB and REFINECOMMLB spend only 0.3, 0.2 and 0.4 seconds, respectively (Fig-

ure A.4(b)). The second is the large amount of migrated tasks. These algorithms migrate

3, 916 tasks on average every call from a total of 4096 tasks. These migrations resulting

in 939.84 MB of data transferred.
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On the other hand, FG-ENERGYLB applied alone no migrates any task, while

that REFINELB and REFINECOMMLB migrate only 42 and 33 respectively. This large

difference in total task migration and the load balancing time is shown in the Figure A.4.

Figure A.4: Load balancing overhead and Total task migration to stencil 4D load balancer
with different load balancers.
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Using FG-ENERGYLB together the selected load balancers the total energy con-

sumption is reduced. This happens mainly due the reduction of total execution time, once

FG-ENERGYLB perform DVFS instead of migrate task.

In this test, the energy consumption is reduced using FG-ENERGYLB over the

residual imbalance GREEDYLB, GREEDYCOMMLB and REFINELB by 20%, 32% and

7%, respectively. These reductions are also due to a change in the power demand of the

cores of 3.1% on average, and to a reduction in the total execution time of 13% in relation

to executions with this load balancer alone.

Different to other load balancers, FG-ENERGYLB also reduces the amount of task

migrations of REFINELB and REFINECOMMLB on stencil 4D.

The greatest amount of energy saving is achieved using FG-ENERGYLB alone.

It has an overhead of only 1.73% and reduces the average power in 3.82% on average if

compared to baseline. So, the total energy consumption is reduced in up to 2.16%.

A.1.1 Percentage of Energy Spent on Load Balancing

Although each load balancer algorithm uses different approach to make its de-

cisions and each benchmark has different load imbalance, different runtime, power and

energy improvements were achieved when these strategies were applied. However, load

balancing incur in overhead over application runtime, which is also responsible for a per-
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centage of the total energy spent.

To better analyze the total energy consumption with load balancing, for each

benchmark, we select the measured time overhead of each load balancers, which are

depicted in Table A.1. These times are composed of the time spent in data collection,

strategy make decisions and the task migration. These load balancing costs generally are

relative to techniques employed by each algorithm. Are also related to system config-

uration and application factors, once it need information of both to make decisions and

migrate tasks every load balancing call.

Table A.1: Average load balancing duration in milliseconds for each benchmark.
Load Balancer - - lb_test - - - - kNeighbor - - - - stencil 4D - - - ComprehensiveBench -

LB LB+FG LB LB+FG LB LB+FG LB LB+FG

FG-ENERGYLB 5.52 - 60.63 - 325.45 - 5.19 -
GREEDYLB 5.74 5.41 2192.86 566.29 16934.57 7761.05 4.70 10.64
GREEDYCOMMLB 5.56 5.71 2191.99 569.89 16998.38 7824.63 4.61 11.54
REFINELB 4.32 5.43 34.08 36.62 217.46 317.99 3.50 8.89
REFINECOMMLB 4.88 4.91 478.72 376.44 474.61 372.17 3.56 8.60
RANDCENTLB 12.12 7.40 125.80 117.89 8767.19 2427.36 7.53 6.88
SCOTCHLB 9.23 6.90 95.41 87.43 13187.10 6234.52 6.21 5.18

Source: The author

For FG-ENERGYLB the energy improvements were even greater. This happen

once it employs a strategy that benefits from other the load balancing framework when

imbalance is large or uses DVFS to adjust the clock frequency of the processors according

with their relative load.

FG-ENERGYLB has overhead similar to CHARM++ load balancers when ap-

plied on lb_test and ComprehensiveBench. However, it is 36 and 52 times lower than

GREEDYLB and GREEDYCOMMLB on kNeighbor and stencil 4D, as shown in the Ta-

ble A.1. Using FG-ENERGYLB over kNeighbor and stencil 4D the average load balanc-

ing time is reduced from 739.9 and 8129.2 ms to 292.43 and 4156.29 ms, respectively.

This way, for these benchmarks FG-ENERGYLB is able to saving energy by reduce the

total execution time obtained with the reducing the number of migrations, however the

greater gains come from reductions on average power demand.

Load balancers can increase the application runtime when the time spent to make

decisions and task migration is greater than the gains achieved with the new load distri-

bution. Load balancers as GREEDYLB, GREEDYCOMMLB, and RANDCENTLB do not

take into account the current task mapping, which result in several task migrations at each

load balancing call. Their load balancing times were responsible by the increase of total

execution time, which also increase of the total energy consumption, as observed in tests



143

Table A.2: Percentage of energy spend with load balancing over the total energy con-
sumption for each benchmark.

Load Balancer - - lb_test - - - - kNeighbor - - - - stencil 4D - - - ComprehensiveBench -
LB LB+FG LB LB+FG LB LB+FG LB LB+FG
% % % % % % % %

FG-ENERGYLB 0.16 - 0.57 - 0.48 - 0.01 -
GREEDYLB 0.29 0.29 7.36 1.98 17.17 9.55 0.01 0.03
GREEDYCOMMLB 0.28 0.30 8.50 2.54 16.13 10.20 0.01 0.03
REFINELB 0.23 0.28 0.31 0.33 0.27 0.42 0.01 0.03
REFINECOMMLB 0.26 0.26 2.48 1.96 0.64 0.51 0.01 0.03
RANDCENTLB 0.34 0.20 0.77 0.72 8.17 2.31 0.01 0.01
SCOTCHLB 0.45 0.36 0.97 0.90 12.07 5.85 0.02 0.01

Source: The author

with kNeighbor and stencil 4D.

On the other hand, REFINELB and REFINECOMMLB were able to reduce or keep

the execution time of the four selected benchmarks, once that these load balancers use the

current task mapping, this way having few task migrations.

Other factor that also has influence on these load balancing costs is the amount

of memory used during the runtime each application. lb_test, kNeighbor, stencil 4D and

ComprehensiveBench using 2.62 MB, 36.30 MB, 1.61 GB and 2.70 MB of memory on

average respectively.

However, the load balancer generates an overhead and when this cost exceeds its

benefits, the total execution time and energy consumption are increased. In this context,

we relate the total energy spent with load balancing to each test performed with the total

energy consumption on execution, as depicted in the Table A.2.

The energy spent with load balancing is 0.29% and 0.01%, on average, of total

energy consumption for lb_test and ComprehensiveBench. Applying FG-ENERGYLB

over these benchmarks, the improvement percentage is very similar. However, in tests

with kNeighbor and stencil 4D, FG-ENERGYLB is able to reduce the percentage load

balancing energy from 2.99 and 7.85% to 1.4% and 4.81%, respectively. These reduc-

tions come from reduce load balancing overhead and mainly the reductions on average

power demand. We evaluate how FG-ENERGYLB behaves in real applications in the

next section.
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A.2 Evaluation on Real Applications

• Application: Lassen

Figure A.5: Evaluation of FG-ENERGYLB with Lassen application.
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i) FG-ENERGYLB Evaluation

Among the real applications analyzed, Lassen is the one with the highest irreg-

ularity besides its significant load dynamicity as shows the Figure A.6(a). Taking into

account the original mapping of its 256 tasks, the imbalance is up to 30 times at a given

instant of the execution (Figure A.6), but in general the imbalance is up 5 times.

The total execution times obtained on the tests with Lassen are depicted in Fig-

ure A.5(b). The use of FG-ENERGYLB alone increases the total execution time from

100.9 to 101.6 seconds, which represents an overhead of 0.64%.

Considering the load imbalance of this application and its dynamicity, FG-ENERGYLB

make several DVFS to adjust the clock frequency of the cores according their relative load,

as shown in Figure A.6(b). In this test, the average clock frequency is 1.490 GHz, which
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incurs in a reduction of power demand from 34.8 W to 30.8 W (11.48%).

In this test, when FG-ENERGYLB was applied alone, the execution finishes with

9 cores having clock lower than 2.0 GHz and only 3 cores remains with its maximum

frequency. So, given these clock reductions during runtime, FG-ENERGYLB achieves an

energy saving of up to 10.9%, reducing the total energy consumption from 84.4 to 75.2 kJ.

Figure A.6: Comparison of Instantaneous Relative Load with Instantaneous Clock Fre-
quency for Lassen when used FG-ENERGYLB alone.
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ii) LB + FG-ENERGYLB Evaluation

Different from other applications, over Lassen all load balancers improve the run-

time over the baseline. Except RANDCENTLB, the other load balancers have speedup

of 1.18 on average. This improvements were achieved even GREEDYLB, GREEDY-

COMMLB, RANDCENTLB and SCOTCHLB having a highest load balancing times, which

represent 569 ms on average, per load balancing call. However, this time overhead is off-

set by the reduction in the total execution time achieved with the use of the load balancing.

These load balancers migrated 245 tasks on average per call, which represent 4.9 MB of

data transferred. On the other hand, REFINELB and REFINECOMMLB migrate only 26

tasks. Figure A.7 summarizes the load balancing costs and total task migration of Lassen.

Applying FG-ENERGYLB in conjunction with other load balancers attains dif-

ferent energy saving levels. Performing DVFS according to load imbalance in this ap-

plication FG-ENERGYLB reduces the average power in up to 5.23%, which result in a

reduction in energy consumption of 6.55%.

The lower energy consumption has been achieved with GREEDYLB, GREEDY-

COMMLB, REFINELB, REFINECOMMLB. Using these load balancers alone 19.8% of

total energy was saving. In addition to the clock adjustment, using the FG-ENERGYLB

has a total energy consumption reduction of up to 22.91%.
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Figure A.7: Load balancing overhead and Total task migration to Lassen with different
load balancers.
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iii) Percentage of Energy Spent on Load Balancing

Table A.3 depicts the comparison of load balancing times incurring on FG-ENERGYLB

and other load balancer strategies.

Table A.3: Average load balancing duration in seconds for each real application.
Load Balancer - - Ondes3D - - - - Lulesh - - - - Lassen - -

LB LB+FG LB LB+FG LB LB+FG

FG-ENERGYLB 0.30 - 0.25 - 0.32 -
GREEDYLB 4.01 0.57 0.35 0.29 0.66 0.61
GREEDYCOMMLB 4.16 0.65 0.40 0.26 0.66 0.60
REFINELB 1.43 0.88 0.16 0.23 0.11 0.55
REFINECOMMLB 1.43 0.64 0.24 0.24 0.12 0.48
RANDCENTLB 6.70 0.62 0.30 0.20 0.40 0.49
SCOTCHLB 3.01 0.58 0.38 0.23 0.56 0.55

Source: The author

The total energy consumption on execution, as depicted in the Table A.4.

The greater reduction is achieved for Ondes3D. The energy spent with load bal-

ancing was reduced from 7.87% to 2.07%, on average. On the other hand, for Lassen

application, FG-ENERGYLB alone spent 2.9% of energy with load balancing and it ap-

plied together with REFINELB and REFINECOMMLB increases the overhead. Thus, the

average load balancing energy was increased from 4.19% to 5.93%.

Figure A.8 depicts the energy spend with load balancing (LB Energy) over total

energy consumption for Lassen application (App Energy).

iv) Threshold Evaluation

For Lassen, the experiments were performed using 256 tasks mapped in 24 cores,

being each task with 550 iteration. The execution without load balancer (NOLB) spends
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Table A.4: Percentage of energy spend with load balancing over the total energy con-
sumption for each real application.

Load Balancer - - Ondes3D - - - - Lulesh - - - - Lassen - -
LB LB+FG LB LB+FG LB LB+FG
% % % % % %

FG-ENERGYLB 0.98 - 4.12 - 2.90 -
GREEDYLB 11.45 1.61 5.83 4.88 7.16 6.49
GREEDYCOMMLB 11.75 1.73 6.64 4.38 7.35 6.91
REFINELB 5.38 3.59 3.10 4.39 1.18 6.03
REFINECOMMLB 5.28 2.33 4.46 4.41 1.36 5.32
RANDCENTLB 11.52 1.39 3.52 2.43 3.62 5.13
SCOTCHLB 8.75 1.74 6.74 4.13 5.80 5.72

Source: The author

Figure A.8: Energy spend with load balancing over total energy consumption for each
real application.
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84.4 kJoules and takes 100.9 seconds, which represent an average power demand of

34.9 W. Similar to other applications, these values are taken as reference (NOLB) in the

Figure A.9.

Application is executed with load balancer call every 50 iteration, so, it is per-

formed 10 times. Using threshold of 0.5 and 1.0, FG-ENERGYLB not adjust the clock

frequency any time. It always call GREEDYLB to migrate tasks. In these tests, the aver-

age power remain close to 35 W. A reduction in the total energy consumption is achieved

once runtime is reduced due a better distribution of tasks.

Increasing the threshold to 1.5, FG-ENERGYLB adjust the clock only 1 time, and

in other 9 times, it performs task migrations. In this case, the average power is reduced in

1.52% (34.3 W), maintaining constant the runtime.

To threshold equal to 2.0, FG-ENERGYLB performs 2 times DVFS, which is able

to reduce the power demand to 32.1 W, a reduction of 7.93% compared to NOLB. How-
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Figure A.9: FG-ENERGYLB comparison with different threshold value on Lassen.
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ever, the runtime increases 7.47% compared to threshold equal to 1.5. In this way, the

total energy consumption increase in 0.4%.

In the tests with threshold value greater than 2.0, a greater amount of DVFS is

performed, resulting in lower average power demand. However, such reductions cause an

equivalent increase in the total execution time, thus maintaining the energy consumption

constant.

In the execution com threshold equal to 5.0, FG-ENERGYLB adjusts the fre-

quency 8 times, which result in a reduction of the power in 23.36% and reduction of

energy in 21.50%. However, the runtime exceeds the baseline in 2.42%.
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APPENDIX B — CG-ENERGYLB EVALUATION

B.1 Evaluation on Real Applications

• Application: Lassen

Figure B.1: Evaluation of CG-ENERGYLB with Lassen application.
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(b) Total Execution Time.
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i) CG-ENERGYLB Evaluation

As discussed in the evaluation of FG-ENERGYLB in the Subsection 5.2.2, Lassen

has a great irregularity and a significant load dynamics, comparing to other real applica-

tions. Using CG-ENERGYLB alone over Lassen application, it increases the total execu-

tion time from 237.2 to 238.0 seconds, an overhead of 0.36%. The CG-ENERGYLB load

balancing time for this application is 374 ms on average, per load balancing call.

The imbalance and the dynamicity of its 512 tasks over 192 cores of this applica-

tion leave some cores underloaded. This way, several DVFS calls are realized to adjust the

clock frequency of cores according the relative load during its execution. Performing this,
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CG-ENERGYLB is able to reduce of power demand from 50.34 W to 45.72 W during the

runtime, which represent a reduction of 9.17% on average. This is result of reduction of

the clock frequency to 2.2 GHz.

Due to these clock reductions during the runtime, CG-ENERGYLB achieves an

energy saving of 8.85%, reduction the total energy spend from 286.5 to 261.2 kJ. However,

the load imbalance reduces at end in this execution when CG-ENERGYLB was applied

alone and all cores finish their task using the maximum clock frequency available on

processors, as shown in Figure B.1(d).

ii) LB + CG-ENERGYLB Evaluation

When CG-ENERGYLB was employed over the residual imbalance of other load

balancing algorithms, the energy consumption of Lassen was reduced between 5.8% (REFINELB)

and 35.2% (RANDCENTLB).

GREEDYLB, GREEDYCOMMLB, REFINELB and REFINECOMMLB improve the

runtime over 192 cores in up to 5.23%, on average. These improvements represent a

speedup of 1.06 over baseline. The aforementioned load balancers have overheads of

1.195, 1.673, 1.391 and 2.306 seconds on average per load balancing call. On the other

hand, the load balancers RANDCENTLB and SCOTCHLB increase the total execution

time. A cause of this increase is their overhead of load balancing of 4.502 and 2.345

seconds, as shown in Figure B.2.

Figure B.2: Average load balancing overhead to Lassen application.
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Other factor that has influence on overhead is the amount of tasks migrated by

these load balancers. GREEDYLB, GREEDYCOMMLB, RANDCENTLB and SCOTCHLB

migrate 508 tasks on average every call. These migrations move 15.24 MB of date be-

tween the cores. Different from those, REFINELB and REFINECOMMLB migrate less

tasks. For these load balancers were migrated only 49 tasks, which represent 0.49 MB of
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data.

Similar to Lulesh, when CG-ENERGYLB is used together other load balancers, it

is able to reduce the total energy consumption in 12.95% on average. These energy saving

are achieved due the use of DVFS, which reduces the power demand in 8.83% on average

for this application.

In this real application, the lower energy consumption is achieved with REFINELB.

The energy saving using these load balancers alone is 11.5%. However, the lower energy

consumption is achieved using GREEDYLB and CG-ENERGYLB. In this test, the total

energy consumption reduces 17.7% compared to baseline, being the energy reduced from

286.5 to 235.8 kJ.

iii) Percentage of Energy Spent on Load Balancing

Table B.1 presents a comparison of load balancing times incurring on different

strategies for load balancing step with our proposed CG-ENERGYLB.

Table B.1: Average load balancing duration in seconds for each real application.
Load Balancer - - Ondes3D - - - - Lulesh - - - - Lassen - -

LB LB+CG LB LB+CG LB LB+CG

CG-ENERGYLB 0.31 - 0.38 - 0.37 -
GREEDYLB 4.08 3.85 6.84 4.72 1.20 1.09
GREEDYCOMMLB 4.20 3.95 5.98 4.78 1.67 1.20
REFINELB 2.14 2.83 2.78 2.17 1.39 1.47
REFINECOMMLB 1.56 1.90 6.65 5.98 2.31 2.04
RANDCENTLB 11.72 9.46 7.09 4.26 4.50 1.51
SCOTCHLB 6.94 7.05 9.40 4.05 2.35 1.96

Source: The author

The total energy consumption on execution, as presented in the Table B.2.

Figure B.3 depicts the energy spend with load balancing over total energy con-

sumption for each selected real application.

iv) Threshold Evaluation

For Lassen, the experiments were performed using 512 tasks mapped in 192 cores,

being each task with 550 iteration. Execution without load balancer (NOLB) spends 286.5

kJoules and takes 237.2 seconds, which represent an average power demand of 50.34 W.

Similar to other applications, these values are taken as reference (NOLB) in the Fig-

ure B.4.

Figure B.5(a) shows instantaneous power measured when the application is exe-
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Table B.2: Percentage of energy spend with load balancing over the total energy con-
sumption for each real application.

Load Balancer - - Ondes3D - - - - Lulesh - - - - Lassen - -
LB LB+CG LB LB+CG LB LB+CG
% % % % % %

CG-ENERGYLB 3.04 - 0.92 - 1.40 -
GREEDYLB 31.47 26.31 13.72 8.50 4.80 4.28
GREEDYCOMMLB 31.51 26.80 12.02 8.49 6.42 4.35
REFINELB 26.27 24.57 7.32 5.11 5.86 5.78
REFINECOMMLB 19.22 16.58 11.75 8.06 8.78 7.69
RANDCENTLB 37.25 22.08 9.99 10.00 11.82 5.44
SCOTCHLB 41.34 30.96 11.66 10.59 8.49 6.69

Source: The author

Figure B.3: Energy spend with load balancing over total energy consumption for each
real application.
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cuted with threshold equal to 0.5. For this threshold value, any time is performed DVFS

an in every calls (11) tasks are migrated by REFINELB, which result in a high average

power demand 50.3 W.

Using threshold equal to 1.5 (Figure B.5(b)), DVFS is performed 3 times. This

way, the power demand is reduced in 14.78%, resulting in an average of 42.9 W. However,

the greater energy saving is achieve with threshold equal to 5.0 (Figure B.5(c)). In this test

4 times DVFS and 7 times REFINELB is performed, which reduce the power to 38.6 W, a

reduction of 23.28%.
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Figure B.4: CG-ENERGYLB comparison with different threshold value on Lassen.
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Figure B.5: Power evaluation to different threshold value on Lassen
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