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ABSTRACT

This work presents the study and application of a branch-and-price algorithm for solving a com-

pressor scheduling problem. The problem is related to oil production and consists of defining

a set of compressors to be activated, supplying the gas-lift demand of a set of wells and min-

imizing the associated costs. The problem has a non-convex objective function, to which a

piecewise-linear formulation has been proposed. This dissertation proposes a column genera-

tion approach based on the Dantzig-Wolfe decomposition, which achieves tighter lower bounds

than the straightforward linear relaxation of the piecewise-linear formulation. The column gen-

eration was embedded in a branch-and-price algorithm and further compared with CPLEX,

obtaining optimal solutions in lesser time for a set of instances. Further, the branch-and-price

algorithm can find better feasible solutions for large instances under a limited processing time.

Keywords: Compressor scheduling problem. branch-and-price. column generation. piecewise-

linear formulation.



A Branch-and-Price Algorithm for a Compressor Scheduling Problem

RESUMO

O presente trabalho realiza o estudo e aplicação de um algoritmo de branch-and-price para a

resolução de um problema de escalonamento de compressores. O problema é ligado à pro-

dução petrolífera, o qual consiste em definir um conjunto de compressores a serem ativados

para fornecer gas de elevação a um conjunto de poços, atendendo toda demanda e minimizando

os custos envolvidos. O problema é caracterizado por uma função objetivo não-convexa que

é linearizada por partes de forma a ser formulada como um problema de programação inteira

mista. A abordagem de geração de colunas é baseada na decomposição de Dantzig-Wolfe e

apresenta melhores limitantes inferiores em relação à relaxação linear da formulação compacta.

O branch-and-price é comparado ao solver CPLEX, sendo capaz de encontrar a solução ótima

em menor tempo para um conjunto de instâncias, bem como melhores soluções factíveis para

instâncias maiores em um período de tempo limitado.

Palavras-chave: Problema de Escalonamento de Compressores, Algorítmos Exatos, Geração

de Colunas, Formulação Linear por Partes.
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1 INTRODUCTION

The advance of the technologies and the growing access of the population to it demands

energy. The energy is necessary for all stages of any process that involves product manufactur-

ing, from the extraction of raw materials to the delivery to costumers. One of the most important

sources of energy is oil. Its derivatives are used as fuel for most transportation facilities, be-

sides serving as feedstock for the frabrication of other products. Due to this, huge investments

in research are made in the petroleum area, reaching many knowledge areas such as geology,

chemistry, physics, engineering, mathematics, and others. Researchers seek to improve all steps

of the petroleum supply chain and may involve the use of operational research (OR) to max-

imize or minimize an objective, e.g. maximize the daily production or minimize the cost of

production per barrel.

During the production phase in an oil field, after some time of extraction of the hydro-

carbons (blend of oil, gas and water), the internal pressure of the wells may not be sufficient to

lift these hydrocarbons to the surface or obtain profitable production levels. In this case, some

artificial method as the continuous gas-lift is needed. Figure 1.1 illustrates the operation in a

well supplied by gas-lift. In this technique, compressors produce high-pressure natural gas that

is injected at the bottom of the production tubing at a certain rate and pressure entering in this

tube through valves. The gas blends with the hydrocarbons, making it less dense due to the

gasification, reducing the weight of the fluid column and then lifting the blend to the surface.

The wells must receive lift-gas at a certain rate and pressure to induce ideal production

levels. Compressors have different capacities, installation and operation costs. From these

issues, Camponogara, Castro e Plucenio (2007) defined and proposed a formulation for the

Compressor Scheduling Problem (CSP). The CSP is a combinatorial problem which aims to

minimize the costs involving the continuous gas-lift, define compressors to be installed (or

activated) and the wells that will be supplied by each of these compressors.

The formulation of CSP is an extension of the Capacitated Facility Location Problem

(CFLP), which is a well-studied combinatorial optimization problem. The CFLP is being clas-

sified as an economic decision problem applied in real situations, such as communications net-

works, locations of warehouses, logistics and others. The CFLP consists in defining locations

to install or build facilities to meet the demand of consumers or clients and minimizing the

installation costs and the service costs between facilities and clients.

The CSP and the CFLP can be formulated as a Mixed Integer Linear Problem (MILP)

and as an Integer Problem (IP), respectively. The first uses continuous and integer variables,
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Figure 1.1 – Illustration of well supplied by the continuous gas-lift technique

Source: Camponogara e Nakashima (2006) and adapted by the author (2016).

and the second uses only just integer variables. The exact solution for this type of problem

can be found by techniques that combine linear problems algorithms as the Simplex, and meth-

ods based on simple ideas such as Branch-and-Bound (B&B) (CONFORTI; CORNUÉJOLS;

ZAMBELLI, 2014).

Depending on the characteristics of a MILP or a IP, the linear relaxation provides weak

bounds and can compromise the performance of B&B algorithms. For this reason, the Dantzig-

Wolfe decomposition (DANTZIG; WOLFE, 1960) can be used to tighten these bounds. It

consists in reformulating the problem in a model with a huge number of variables, where each

variable defines a partial solution for the original problem. A Column Generation (CG) method

to solve the linear relaxation of the decomposition was proposed by Camponogara e Plucenio

(2008) for the CSP, presenting the decomposition and an illustrative example.

When an integer solution is provided by the CG, the solution is also optimal for the

original problem. Otherwise, it is a relaxed solution which can be used in the Branch-and-

Price (B&P) approach, i.e. the CG is embedded in a Branch-and-Bound framework, solving the

column generation in each node of the enumeration tree.

This work presents a Column Generation for the CSP based on a revised model (CAM-

PONOGARA; NAZARI; MENESES, 2012), comparing the CG lower bounds with the relax-

ation of the revised model. Moreover, the work presents a Branch-and-Price algorithm for the

CSP, comparing the computational results with the commercial solver CPLEX.

The remainder of this work is organized as follow: Chapter 2 presents a literature review.

Chapter 3 describes the Compressor Scheduling Problem and its characteristics. Chapter 4



12

explains the column generation approach for the CSP. Chapter 5 presents the B&P technique

used for solving the Compressor Scheduling Problem. Chapter 6 shows and compares the

results obtained with the CG and B&P algorithm for the CSP. Finally, Chapter 7 presents the

conclusion of this work and suggests future works that could be explored to solve the CSP.
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2 RELATED WORK

This chapter presents the main base concepts and the literature review related to the

dissertation. In Section 2.1 we show some works whose objective is to optimize the use of

the gas-lift technique, including the works related to the Compressor Scheduling Problem. The

Facility Location Problem is presented in Section 2.2, with the formulation of a variation called

Single-Source Capacitated Facility Location Problem, and approaches for solving it exactly

and heuristically. Furthermore, some approaches for piecewise-linear formulations of nonlinear

functions such as found in CSP are presented in Section 2.3. Finally, in Section 2.4, the Column

Generation and Branch-and-Price methods are explained.

2.1 Continuous gas-lift

The continuous gas-lift technique, or simply gas-lift, is a preferable technique used due

to its robustness, its relatively low installation and maintenance costs, and its wide range of

operating conditions (CAMPONOGARA, 2006; HAMEDI; KHAMEHCHI, 2012). For this

reason, we can find many works in the literature that aim to maximize the production and the

profits using this technique. The gas-lift technique presents some characteristics which should

be considered when used in the oil extraction. Each well has a gas-lift performance curve

(GLPC) that can be described by a nonlinear function production vs. gas injection. Figure 2.1

shows the GLPC for a set of five wells.

The GLPC gives the maximum production of oil barrels per day (B/D) as a function of

the injected gas (Mscf/d - thousand standard cubic feet gas per day) in the well. However, the

GLPC does not necessarily provide the maximum profit in the production because the gas prices

and compressing costs are not considered. It might be more profitable to produce less oil paying

less for the gas-lift. Another case arises in an oil field with limited quantities of compressed

gas, in which it can be more profitable to produce less oil in many wells than reach the maxi-

mum production of some wells. Based on these issues, Kanu, Mach e Brown (1981) present an

economic slope method to deal with excessive usage of gas when it is unlimited and propose a

method to allocate the gas to a group of six wells in a scenario with limited gas. Therein, the

objective is to maximize the profit of the production, defining the gas-lift injection for a set of

wells, based on the costs of compressed gas and the GLPC of the wells. The work of Nishikiori

et al. (1989) uses a quasi-Newton method to solve the nonlinear optimization problem with
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Figure 2.1 – Gas-lift performance curve examples

Source: (MISENER; GOUNARIS; FLOUDAS, 2009).

gradient projection for the gas-lift allocation optimization. Buitrago, Rodrigues e Espin (1996)

proposed a multi-start algorithm that combines stochasticity and a heuristic calculation of a de-

scent direction to determine the optimal gas-lift injection to maximize the production of a set of

wells. To improve the performance of the gas-lift allocation, the work of Misener, Gounaris e

Floudas (2009) compares four piecewise-linear formulations to solve the problem. The results

showed that the method proposed by Keha, Farias e Nemhauser (2004) achieves best results

regarding computational time. The work of Camponogara (2006) extends the gas allocation

problem, incorporating logical constraints on the gas pipelines. They propose a dynamic pro-

gramming algorithm to solve the problem approximately. In Khishvand e Khamehchi (2012),

pressure drops are considered as constraints for the model, and a risk function for the oil and

compressed gas prices is used, showing that it can influence operational parameters as the gas

injection.

Another characteristic of the oil fields that use gas-lift is the need of a recovery plan

for oil wells before the extraction. This plan establishes the gas rates and pressures along the

lifespan of the wells to reach maximum production (CAMPONOGARA; CASTRO; PLUCE-

NIO, 2006). However, these rates and pressures are overestimated due unpredicted events as

compressor failures or dynamic changes in the reservoir conditions. If a compressor compress

more gas than the total demand of wells that it supplies, it becomes necessary to or export or

burn the gas excess (flaring). Moreover, if a compressor needs to reduce its capacity, there is

a loss of energy, and consequently the production cost increases. These questions lead to the

problem of allocating a set of compressors to meet the demands from a set of wells. A first

formulation for the problem was proposed by Camponogara, Castro e Plucenio (2006), based

on the Facility Location Problem, where compressors can be considered facilities and the wells
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are customers. The authors propose an algorithm based on dynamic programming to solve the

problem. Camponogara, Castro e Plucenio (2007) proposed a formulation of the Compressor

Scheduling Problem, which consists of defining a compressor gas-lift set to be activated, meet-

ing the demand of gas rate and pressure of all oil wells and defining the gas rate produced

by the compressors. Assuming that there is sufficient gas-lift for all wells, the objective is to

minimize the compressor installation and operating costs and the pipeline costs between com-

pressors and wells. The authors propose a piecewise-linear formulation to solve the problem

using the CPLEX solver and valid inequalities to reduce the search space. Some experiments

tests concluded that large instances need cutting planes for best performance.

Camponogara e Plucenio (2008) proposed a Dantzig-Wolfe decomposition for the CSP

model presented in Camponogara, Castro e Plucenio (2007). A column generation procedure

was presented with an illustrative example, but without experimental results. Camponogara

et al. (2011) show that CSP is NP-Hard and proposes two families of valid inequalities for

the problem. A two-phase method was proposed, consisting in generating cuts to improve

the formulation and then solving the resulting problem with CPLEX. The results showed that

cover-based cuts reduced the computational time and memory.

Camponogara, Nazari e Meneses (2012) presents a revised formulation for the previous

CSP model. They replace the nonlinear constraint with a family of linear inequalities, reducing

the resolution time ten-fold. Two formulations for the piecewise-linear formulation were tested

using the generation of cutting planes to analyze the speed in the resolution. The results showed

that valid inequalities improved time resolution in large instances, but did not impact as much

as in the previous formulation.

Friske, Buriol e Camponogara (2015) presents a column generation for the CSP based

on the revised model of (CAMPONOGARA; NAZARI; MENESES, 2012). The results show

that the method can produce tighter lower bounds than the simple relaxation of the compact

model.

This work proposes some improvements for the column generation procedure and a

branch-and-price approach to solve the CSP exactly, comparing the results with the state-of-

the-art solver CPLEX.

2.2 The Facility Location Problem

The Facility Location Problem (FLP) is a well-studied combinatorial optimization prob-

lem which basically involves a set of facilities that can be installed and a set of clients that must
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be serviced. The objective is to define which facilities will be installed or constructed to supply

the demands of clients, such that the involved costs are minimized. Because of its generality,

several studies have appeared in the literature during the last decades and many variations were

proposed to apply the model in diverse fields, such as telecommunications, transports, and oth-

ers (for examples, see Contreras, Díaz e Fernández (2010), Klose e Drexl (2005) and Eiselt e

Marianov (2011)).

A variation of the FLP known as Single-Source Capacitated Facility Location Problem

(SSCFLP) consists of a problem with two particularities. The first, “Single Source” requires that

each costumer must be supplied by only one facility, and the second, “Capacitated” considers

that the costumers have demands to be supplied and facilities have capacities that should be

respected. We define a set N = {1, . . . , n} of facilities and a set M = {1, . . . ,m} of clients.

The SSCFLP can be formulated as follows:

min
∑
j∈N

cjyj +
∑
i∈M

∑
j∈N

cijxij (2.1a)

s.t. : xij ≤ yj, i ∈M, j ∈ N (2.1b)∑
j∈N

xij = 1, i ∈M (2.1c)∑
i∈M

dixij ≤ bj, j ∈ N (2.1d)

yj ∈ {0, 1}, j ∈ N (2.1e)

xij ∈ {0, 1}, i ∈M, j ∈ N. (2.1f)

The objective function (2.1a) minimizes the facilities installation cost cj and the supply

costs cij between facility j and costumer i. The constraint set (2.1b) with the variable scope

(2.1e) and (2.1f) imposes that only installed facilities can supply the costumers, and each cos-

tumer must be serviced by one facility. The constraint set (2.1c) imposes that all costumers must

be supplied. The total demand cannot exceed the capacity bj of a facility j in the constraint set

(2.1d). Finally, variable yj is set to 1 if facility j is installed and 0 otherwise, and variable xij

is set to 1 if costumer i is supplied by facility j. The SSCFLP is an NP-hard problem, but be-

comes harder to solve than other NP-hard Facility Location Problem because the single-source

constraints (KLOSE; DREXL, 2005).

Most of proposed methods to solve the SSCFLP use the Lagrangian relaxation as base

for the solution method. The approaches consist in relaxing the constraint set (2.1b) or (2.1c), or

both. For heuristic approaches, the work of Klincewicz (1986) relaxes the capacity constraint,
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which produces an uncapacitated facility location problem as the Lagrangian subproblem. This

subproblem is solved with the dual ascent method of Erlenkotter (1978) and then heuristics are

applied to obtain a primal feasible solution. The work of Hindi e PieŃkosz (1999) relaxes the

single-source constraint in a Lagrangian manner and uses a heuristic in a restricted neighbor-

hood to obtain the solutions for the problem. In Chen e Ting (2008), the solutions for SSCFLP

are obtained using Lagrangian heuristic and a multiple ant colony system, which consists of

two ant colony systems to be solved: the first selects the facilities that will be opened, and the

second define the assignment of these facilities for each customer.

Other heuristic approaches for the SSCFLP can be found in the literature. The work of

Delmaire, Díaz e Fenández (1999) presents a Tabu search, a reactive GRASP and two hybrid

heuristics that combines Tabu search and reactive GRASP. The results were compared with

the CPLEX and showed the efficiency of the proposed approaches, especially in the hybrid

heuristics. More recently, Guastaroba e Speranza (2014) extended the Kernel Search heuristic

framework to general binary integer linear programming problems and applied it to the SSCFLP.

The idea of Kernel search consists of defining a set of promising variables (kernel) based on the

relaxation of the problem that will be fixed for the next iteration. Also, is defined a set of no-

promising variables called bucket, and at each iteration a variable in the bucket set is passed to

kernel set, modifying the solution. The algorithm was tested in medium and large instances,

obtaining the optimal solution in several instances. In Ho (2015) a simple Iterated Tabu search

is proposed, which explores two neighborhoods and uses a penalization function for infeasible

solutions. The algorithm was able to find optimal solutions in several instances, and when

optimality was not found, it can obtain high-quality solutions.

Exact approaches can be found in Holmberg, Rönnqvist e Yuan (1999), which propose

a method based on a Lagrangian Dual Heuristic to compute lower bounds, plus a primal heuris-

tic to generate upper bounds and a Branch-and-Bound algorithm that combines the dual and

primal methods. Díaz e Fernández (2002) proposes a Column Generation algorithm that uses

Lagrangian relaxation and incorporates it into a two-level Branch-and-Price framework. The

first level selects facilities to be open and the second allocates the customers to the facilities. A

Cut-and-Solve algorithm is proposed in Yang, Chu e Chen (2012), where a sparse problem with

a small solution space is solved with a MIP solver, and cutting planes are applied to a relaxed

dense problem to find tight lower bounds.
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2.3 Piecewise-linear formulation

For solving optimization problems with nonlinear separable functions, a typical ap-

proach is the piecewise-linear reformulation of the functions, whereby a linear function and

a set of constraints can be used to approximate the original function. Many techniques can be

found in the literature, and some of them make the problem simpler by enabling it to be solved

as a mixed integer linear problem (MILP). We present in this section two approaches for the

piecewise-linear formulations that were applied in the CSP.

Consider Figure 2.2 and let f(x) be a nonlinear and separable function, i.e., it can be

written as a sum of functions that just depends on one variable. Also, let 3 the number of

discretization points κ named from α0, . . . , ακ, and y1, . . . , yκ be the number of segments in

this discretization.

Figure 2.2 – Nonlinear function with piecewise-linear formulation

Source: from the author (2016).

The first approach was proposed by Beale e Tomlin (1970) and consists of defining a

set of variables named as Special Ordered Set of type II (SOS2) for a convex combination.

The SOS2 defines a ordered set of positive variables (ordered by a index), where at most two

variables of the same set can be nonzero and they must be adjacent, i.e. just variables xi and

xi+1, i = 0, . . . , κ − 1. Considering a set of discretization points K = {k : k = 0, . . . , κ} and

associating a variable λk for point αk for each k ∈ K, we formulate the piecewise-linear model
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as follow:

x =
∑
k∈K

λkαk; (2.2a)

f(x) ≈
∑
k∈K

λkf(αk); (2.2b)

s.t.
∑
k∈K

λk = 1; (2.2c)

λk ≥ 0, k ∈ K; (2.2d)

{λk}k∈K is SOS2 (2.2e)

The constraint (2.2c) defines that only one segment yk : k = 1, . . . , κ can be selected

and by the SOS2 rules only the weights λk and λk+1 will be positive for some k = 0, . . . , κ− 1.

When only one λk is positive, x = αk and f(x) = f(αk). Some solvers actually can implement

this special structure for a set of variables.

The second approach for piecewise-linear formulations is known as Disaggregated Con-

vex Combination (DCC) whose the properties are analyzed in (SHERALI, 2001). It is a peda-

gogically and simple modification of the model presented by (PADBERG, 2000). In the DCC,

we define K = {k : k = 1, . . . , κ} and assign weights λLk and λRk for k ∈ K to each endpoint

of the segments yk ∈ K. The elements of the nonlinear function can be replaced by:

x =
∑
k∈K

(αk−1λ
L
k + αkλ

R
k ), (2.3a)

f(x) ≈
∑
k∈K

[f(αk−1)λ
L
k + f(αk)λ

R
k ], (2.3b)

s.t. λLk + λRk = yk, k ∈ K, (2.3c)∑
k∈K

yk = 1, (2.3d)

λLk , λ
R
k , yk ≥ 0, k ∈ K, (2.3e)

yk ∈ {0, 1}, k ∈ K. (2.3f)

The model defines that at most one endpoint λLk and λRk can be positive and they must

be of the same yk segment in the constraint set (2.3c). The constraint set (2.3d) defines that just

one yk segment will be selected to approximate the nonlinear function.
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2.4 Branch-and-Price

Branch-and-price is one of the most powerful techniques for solving huge integer and

mixed integer problems. It embeds column generation into a branch-and-bound algorithm. We

first give an overview of how column generation and branch-and-price works, and next we

present some works in the literature that provide the basis for the implementation of these

techniques.

CG algorithm was introduced in Gilmore e Gomory (1961) for solving the Cutting Stock

Problem. In CG, we use the Dantzig-Wolfe decomposition (DANTZIG; WOLFE, 1960) to re-

formulate the compact formulation of the problem in a master problem (MP) such that the

number of constraints is small, and the number of the variables (called columns) is large, pos-

sibly exponential in relation to size of the original problem. Since the size of problems that can

be solved by MP directly is limited, the CG starts with a small initial set of these columns, and

the MP is called Restricted Master Problem (RMP). In each iteration, the relaxation of RMP is

solved and one or more sub-problems receive it dual values. The sub-problems are solved to

find new columns that can improve the objective function of the RMP. CG ends when no more

columns that improve the RMP objective can be found.

When the CG procedure ends, and the solution is integer, it is optimal for the original

problem. Otherwise, it provides a lower bound (when considering a minimization problem) that

is at least tighter or equal to the lower bound of relaxation of the compact model. To find the

optimal integer solution we use the branch-and-price algorithm, which is a branch-and-bound

framework, wherein at each node of enumeration tree a column generation procedure is solved.

B&P algorithm was first introduced by Desrosiers, Soumis e Desrochers (1984) for solv-

ing the vehicle routing problem with time windows. As the nodes are solved, they provide new

bounds that can be used to prune the enumeration tree, which can helps for finding and prov-

ing the optimal solution. This method runs until all relaxed variables have an integer value.

In the branch-and-bound, the branching rules are made on one variable. However in the B&P

the branching rules must be on a set of variables, otherwise the algorithm may produce an

unbalanced tree. Savelsbergh (1997) and Barnhart et al. (1998) give insights into the rules,

also discussing the methodology and details for the CG and B&P implementation. Savelsbergh

(1997) applies the B&P for the Generalized Assignment Problem, presenting comparatives for

different pricing and proposed branching strategies. Barnhart et al. (1998) gives implementation

examples also for the Generalized Assignment Problem and Crew Scheduling Problem.

Desaulniers, Desrosiers e Solomon (2005) presents in the first chapter a good intro-
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duction to the column generation method, a theoretical background such as the Dantzig-Wolfe

decomposition, acceleration strategies and the use of Lagrangian relaxation with CG. The re-

maining chapters present an application of the branch-and-price for diverse problems such as

vehicle routing, ship scheduling, machine scheduling, and job shop scheduling.

Lübbecke e Desrosiers (2005) present a survey of Column Generation, which includes

the theoretical background for the decomposition principles of linear programming and con-

vexification and discretization approaches for integer programming. In the algorithmic part, the

authors explain the restricted master problem and the pricing subproblem, discussing imple-

mentation details for best performance.
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3 THE COMPRESSOR SCHEDULING PROBLEM

In this chapter, we present the definition, formulations and characteristics of the Com-

pressor Scheduling Problem, along with the inherited structure of the Single-Source Capaci-

tated Facility Location Problem, such as the sets and constraints. Moreover, we present two

piecewise-linear formulations for the problem and some characteristics that we need to detail

for the implementation of the proposed solution method.

3.1 Problem Definition

The CSP consists of defining among a set of gas-lift compressors, which will be in-

stalled/activated and determine which wells are serviced by each compressor such that the de-

mand of gas rate and gas pressure of all wells are supplied. The objective is to minimize the

installation(activation) and servicing(maintenance) costs, in addition to the compressors oper-

ating costs.

The compressors have a lower and upper gas rate production that must be respected, and

a pressure function that varies according to the gas rate. Also, an energy loss cost is associated

with each compressor. Moreover, there are different pressure drops in the pipeline which con-

nect compressors to wells. We need to assure that the pressure provided by compressor is great

than the pressure demand of well that it services, plus the pipeline pressure drops. Figure 3.1

illustrates a small instance and a feasible CSP solution.

Figure 3.1 – An instance of the CSP with a feasible solution

Source: from the author (2015).
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Table 3.1 – Notation used in the CSP formulations.

Symbol Definition

Sets
j ∈ N Set of compressors.
i ∈M Set of wells.
j ∈ Ni Subset of compressors that can supply well i.
i ∈Mj Subset of wells that can be supplied by compressor j.

Parameters
cj Installation/activation cost of compressor j.
dj Energy loss cost of compressor j.
qc,minj Minimum output gas rate of compressor j.
qc,maxj Maximum output gas rate of compressor j.
αl,j , l ∈ {0, . . . , 4}Parameters of discharge pressure of compressor j.
qwi Gas rate demand of well i.
pwi Gas pressure demand of well i.
cij Cost of supply or maintenance between compressor j and well i.
lij Pressure loss in the pipeline between compressor j and well i.
qc,max,ij Maximum output gas rate qcj of compressor j at which the discharge pressure is

sufficiently high to supply well i, i.e. max{qcj : q
c,min
j ≤ qcj ≤ qc,maxj , pcj(q

c
j) +

lij ≥ pwi }

Variables
yj ∈ {0,1} Indicates whether the compressor j is installed.
xij ∈ {0,1} Indicates whether the well i is supplied by compressor j.
qcj ∈ R+ Gas rate output of compressor j.

Functions
pcj(q

c
j) Discharge pressure output of compressor j, pcj(q

c
j) = α0,j + α1,jq

c
j + α2,j(q

c
j)

2 +

α3,j(q
c
j)

3 + α4,j ln(1 + qcj).
hcj(q

c
j) Operating cost function of compressor j, hcj(q

c
j) = djq

c
jp
c
j(q

c
j)

Source: from the author (2016).

In Figure 3.1 there is a set of five compressors numbered from 1 to 5, and a set of

six wells identified by the letters A to F. A feasible solution defines that compressors 1, 2

and 5 should be installed/activated. The well B is supplied by compressor 1, wells D and E

are supplied by compressor 2, and wells A, C, and F are supplied by compressor 5. Note

that, as explained earlier, each well must be supplied by only one compressor. With the cited

characteristics the CSP can be considered an SSCFLP with two capacity constraints.

3.2 Formulations

The formulations presented from now use the notation presented from Table 3.1.
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The CSP can be formulated as a Mixed-integer Nonlinear Problem (MINLP) as follow:

min P =
∑
j∈N

cjyj +
∑
i∈M

∑
j∈Ni

cijxij +
∑
j∈N

hcj(q
c
j) (3.1a)

s.t. : xij ≤ yj, i ∈M, j ∈ Ni (3.1b)∑
j∈Ni

xij = 1, i ∈M (3.1c)

qcj ≤ qc,max,ij xij + qc,maxj (yj − xij), j ∈ N, i ∈Mj (3.1d)

qcj ≥ qc,minj yj, j ∈ N (3.1e)∑
i∈Mj

qwi xij ≤ qcj , j ∈ N (3.1f)

qcj ≥ 0, j ∈ N (3.1g)

yj ∈ {0, 1}, j ∈ N (3.1h)

xij ∈ {0, 1}, i ∈M, j ∈ Ni. (3.1i)

The objective function minimizes the compressors installation/activation and operation

costs and the supply/maintenance costs between compressors and wells. In the operating cost

function, pcj(q
c
j) is a decreasing function on qcj , i.e., the compressor output pressure decreases

as the outlet flow increases. Constraints set (3.1b) determines that a well is supplied only by an

installed compressor. Constraints set (3.1c) imposes that all wells must be supplied. Constraints

set (3.1d) impose the upper limit of the gas rate qcj . Note that if xij = 1 just the first term in the

RHS of the inequality is activated, i.e. the output gas rate qcj must be less or equal to the qc,max,ij .

Otherwise, the second term is activated, which imposes that the compressor j does not exceed

its maximum output gas rate qc,maxj . The constraints set (3.1e) imposes the lower limits of the

compressor gas rate output. Constraints set (3.1f) imposes that the gas rate capacity of the

compressor must be respected. Note that if qcj >
∑

i∈Mj
qwi xij , we consider that the surplus gas

is exported without cost increasing.

Note that if we consider only the two first terms in the objective (3.1a) and the constraint

set (3.1b), (3.1c), (3.1f - replacing qcj by a parameter), (3.1h) and (3.1i), we have the same

formulation of the SSCFLP. Thus, the CSP is an NP-hard problem as the SSCFLP and the proof

can be found in Camponogara, Nazari e Meneses (2012).

The constraint set (3.1d) is a combination of linear inequalities proposed in Camponog-

ara, Nazari e Meneses (2012) that replaces the constraint pcj(q
c
j) ≥ pwi + lij, j ∈ N, i ∈ Mj

introduced in Camponogara, Castro e Plucenio (2007). This modification improves the model

to be more efficient because the only nonlinear term in the Model (3.1) is the compressor op-
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Figure 3.2 – Pressure performance curves of four compressors.

Source: from the author (2016).

erating costs in the objective function. Nevertheless, because of the non-convex objective, and

as explained in the Section (2.3), the model (3.1) becomes very difficult to solve. A piecewise-

linear formulation can be applied to handle this nonlinearity, as discussed in the next section.

3.2.1 Piecewise-linear formulation

The pressure performance function pcj(q
c
j) = α0,j + α1,jq

c
j + α2,j(q

c
j)

2 + α3,j(q
c
j)

3 +

α4,j ln(1 + qcj), or simply pcj of a compressor j is concave and nonlinear as illustrated in Fig-

ure (3.2). From this, the following assumptions should be considered (CAMPONOGARA;

PLUCENIO, 2008):

(i) pcj is concave, twice continuously differentiable function in the interval qcj ∈ [0, qcmax];

(ii) pcj decreases as qcj varies from qc,minj to qc,maxj ;

(iii) pcj ≥ 0 for all qcj ∈ [0, qc,maxj ];

(iv) qwi ≤ qc,maxj and pcj(max{qwi , q
c,min
j }) ≥ pwi + li,j, ∀i ∈Mj .

According to Camponogara e Plucenio (2008), the assumption (i) identify the typical

shape of the output pressure and gas rate, and ensures the convexity of the feasible solutions
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space if pcj is concave between the interval [qc,minj , qc,maxj ]. The assumption (ii) shows the re-

lation between pressure and rate: the rate increases as the pressure decreases. Assumption (iii)

expresses that the pressure is nonnegative and assumption (iv) makes the sets Mj and Ni con-

sistent.

We can reformulate the CSP through the piecewise-linear formulation, converting it to

a mixed integer linear problem (MILP), which allows the use of techniques and algorithms

off-the-shelf to solving MILPs. The piecewise-linear reformulation for the CSP was applied

by Camponogara, Castro e Plucenio (2007), Camponogara e Plucenio (2008), Camponogara et

al. (2011), Camponogara, Nazari e Meneses (2012) with the disaggregated convex combination.

Moreover, Camponogara, Nazari e Meneses (2012) proposes the piecewise-linear formulation

with SOS2 variables. In this work, are presented both cited models with the piecewise-linear

formulation.

We assume that Qj = {(qc,0j , hc,0j ), . . . , (q
c,κ(j)
j , h

c,κ(j)
j )} are the points of the compres-

sor j with the output gas rate qcj and operating cost hcj , where:

(i) κ(j) is the number of points in the piecewise-linear function;

(ii) qc,k−1j < qc,kj for all k ∈ K(j) = {1, . . . , κ(j)};

(iii) qc,0j = qc,minj and qc,κ(j)j = qc,maxj to maintain the output gas rate in a feasible range;

(iv) hc,kj = djq
c,k
j pcj(q

c,k
j ) to be consistent with the piecewise-linear formulation.

From these assumptions and considering K(j) = {k : k = 1, . . . , κ(j)}, the piecewise

linear formulation for the CSP with the DCC model can be formalized as follow:

min P̃ =
∑
j∈N

cjyj +
∑
i∈M

∑
j∈Ni

cijxij +
∑
j∈N

h̃uej (qcj) (3.2a)

s.t. Equations (3.1b) to (3.1d) , (3.1f) to (3.1i) (3.2b)

qcj =
∑

k∈K(j)

(qc,k−1j λk,Lj + qc,kj λk,Rj ), j ∈ N (3.2c)

∑
k∈K(j)

zkj = yj, j ∈ N (3.2d)

λk,Lj + λk,Rj = zkj , j ∈ N, k ∈ K(j) (3.2e)

λk,Lj , λk,Rj ≥ 0, j ∈ N, k ∈ K(j) (3.2f)

zkj ∈ {0, 1}, j ∈ N, k ∈ K(j), (3.2g)

In the objective function (3.2a), h̃uej (qcj) =
∑

k∈K(j)(h
c,k−1
j λk,Lj + hc,kj λk,Rj ) is an under-

estimator for each j ∈ N . The variables λk,Lj and λk,Rj are the weights of the left and right
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points of the segment from qc,k−1j to qc,kj which is represented by the variable zkj . Constraints

set (3.2d) imposes that just one activated compressor j can have a selected segment to define qcj
and h̃uej (qcj).

Considering K(j) = {k : k = 0, . . . , κ(j)} the piecewise-linear model with the SOS2

variables can be formulated as follow:

Min P̂ =
∑
j∈N

cjyj +
∑
i∈M

∑
j∈Ni

cijxij +
∑
j∈N

ĥuej (qcj) (3.3a)

S.t. Equations (3.1b) to (3.1d) , (3.1f) to (3.1i) (3.3b)

qcj =
∑

k∈K(j)

qc,kj λkj , j ∈ N (3.3c)

∑
k∈K(j)

λkj = yj, j ∈ N (3.3d)

λkj ≥ 0, j ∈ N, k ∈ K(j) (3.3e)

{λkj}k∈K(j) is SOS2, j ∈ N (3.3f)

In the objective function (3.3a), ĥuej (qcj) =
∑

k∈K(j) h
c,k
j λkj is also an under-estimator for

the original compressor operation cost. In the constraint set (3.3d) the variables λkj , k ∈ K(j)

can be nonzero only if the compressor j is activated.

Models (3.2) and (3.3) are equivalent and both provide a lower-bound for the model (3.1)

due the under-estimators h̃uej (qcj) and ĥuej (qcj). The approximation depends on the number κ(j)

of the points in the piecewise-linear function, i.e. as κ(j) increases, more accurate the approx-

imations P̃ and P̂ become with respect to P . On the other hand, κ(j) influence in the number

of variables and constraints in the formulations with piecewise-linear models. Model (3.2)

has Θ(3|N |κ(j)) more variables and Θ(2|N | + κ(j)|N |) more constraints than Model (3.1).

Model (3.3) has Θ(κ|N |) more variables and Θ(2|N |) more constraints than Model (3.1). Thus,

there is important to define a minimum number κ(j) for each j ∈ N that has a good approxi-

mation, and consequently consumes less processing time as possible.
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4 COLUMN GENERATION ALGORITHM

Solving models (3.2) and (3.3) directly with a MIP solver can take a long time and may

not provide an optimal solution, especially when considering large and more difficult instances

of the CSP, as we can see in the experiments reported in Chapter 6. In this chapter, we present

a column generation approach for the CSP, where the problems P̃ and P̂ are reformulated into

a master problem with subproblems based on the Dantzig-Wolfe decomposition.

4.1 Master problem

A column in CSP is an assignment Sj of compressor j to wells that is represented as a

pair (y, x), where y = (yj : j ∈ N) and x = (xij : i ∈ Mj, j ∈ Ni) are vectors associated with

the decision variables. A‡j ⊆ 2Mj is the set that represents all feasible assignments of a com-

pressor j ∈ N . An assignment Sj ∈ A‡j if
∑

i∈Sj
qwi ≤ qc,maxj and max{

∑
i∈Sj

qwi , q
c,min
j } ≤

min{qc,max,ij : i ∈ Sj}. The gas rate of column Sj is qcSj
= max{

∑
i∈Sj

qwi , q
c,min
j } and the

assignment cost is defined by cSj
= cj +

∑
i∈Sj

cij + hcj(q
c
Sj

). Thus, the master problem (MP)

can be formulated as follow:

PMP = min
∑
j∈N

∑
Sj∈A‡

j

cSj
λSj

(4.1a)

s.t. :
∑
j∈N

∑
Sj∈A‡

j

δiSj
λSj

= 1, i ∈M (4.1b)

∑
Sj∈A‡

j

λSj
≤ 1, j ∈ N (4.1c)

λSj
∈ {0, 1}, j ∈ N,Sj ∈ A‡j (4.1d)

The objective function (4.1a) minimizes the cost of the assignments such that all wells

must be supplied in the constraints set (4.1b), and at most only one assignment per compressor

can be selected in the constraint set (4.1c). The coefficient δiSj
is equal to 1 if well i is supplied

by compressor j in assignment Sj , and 0 otherwise. The binary variable λSj
takes the value 1 if

column Sj is selected, and 0 otherwise.

Remark 1. Problems P and PMP have the same optimal solution with hypothesis that qcj =∑
i∈Mj

qwi xij for all j ∈ N : yj = 1. Both problems are equivalent if the inequality in constraint

set (3.1f) can be replaced by an equality.
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Proof. Suppose a compressor j is activated in an optimal solution for P , and qcj =
∑

i∈Mj
qwi xij

in PMP and qcj >
∑

i∈Mj
qwi xij in P . As the constraint set (3.1f) requires that the compressor gas

rate must be at least equal to the demand supplied to wells, and problems P and MP consider

the value qcj in its objective function, the only reason for qcj to be greater than the demand

supplied to the wells is that the operating cost hcj(q
c
j) is lesser for P than MP . However, the

solution obtained by reducing qcj to
∑

i∈Mj
qwi xij is feasible in view of assumption (i) and with

higher cost, contradicts the hypothesis.

4.1.1 The Restricted Master Problem

The straightforward resolution of the Model (4.1) with all Sj ∈ A‡j, j ∈ N , is not

efficient due the possibly exponential number of columns on the number of wells in the set

A‡j, j ∈ N . Furthermore, the optimal solution will select at most |N | columns, and all others

will have the associated variable set to 0 due the definition of the constraint set (4.1c) and (4.1d).

To handle these issues, the column generation procedure starts with an initial set of columns in

the master problem and adds new columns iteratively. This leads to Restricted Master Problem

(RMP) defined as follow:

PRMP = min
∑
j∈N

∑
Sj∈A†

j

cSj
λSj

(4.2a)

s.t. :
∑
j∈N

∑
Sj∈A†

j

δiSj
λSj

= 1, i ∈M (4.2b)

∑
Sj∈A†

j

λSj
≤ 1, j ∈ N (4.2c)

λSj
∈ {0, 1}, j ∈ N,Sj ∈ A†j, (4.2d)

where A†j ⊆ A‡j is any subset of feasible columns for compressor j. The initial subset of

columns is defined by Algorithm 1.

Algorithm 1 creates for each compressor a minimum number of columns Sj such that

all clients in Mj are supplied at least once. For example, if the first column Sj of a compressor

j supplies the wells i = {1, 2} ∈Mj , necessarily the second column will supply the wells from

i = {3, . . . , |Mj|}, or until the gas qcSj
will not be sufficient to supply the well demand and so

on. At line (2) the algorithm creates the first column Sj for the compressor j with no wells

assigned to it. The algorithm then enters a loop for each well i ∈ Mj (line 3) and verifies if the
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Algorithm 1 Initial columns for the RMP.
1: for each j ∈ N do
2: Create a column Sj for compressor j with δiSj

= 0,∀i ∈Mj and qcSj
= 0 ;

3: for each i ∈Mj do
4: if (qcSj

+ qwi ≤ q
c,max,i
j and qcSj

+ qwi ≤ qc,max,lj ,∀l ∈ Sj{i}) then
5: qcSj

= qcSj
+ qwi ;

6: δiSj
= 1;

7: else
8: Create a new column Sj for compressor j with δiSj

= 0,∀i ∈Mj;
9: qcSj

= qwi ;
10: δiSj

= 1;
11: end if
12: end for
13: Create an artificial λ?Sj

, with cSj
= (
∑

j∈N cj)
2 and δiSj

= 1,∀i ∈M ;
14: end for

current column Sj has sufficient gas rate to supply well i (line 4). If it has, then well i will be

supplied in this column at lines 5 and 6, where the algorithm updates the variables qcSj
and δiSj

of current column Sj . Otherwise, a new column Sj is initialized for this compressor (lines 8 to

10).

The initial RMP must have a feasible relaxation solution to ensure that proper informa-

tion is passed to the subproblems (BARNHART et al., 1998). To ensure it, the algorithm inserts

an artificial variable λ?Sj
for each j ∈ N in the line (13). If at least one λ?Sj

> 0 at the end of

the CG procedure, it means that the real columns are not sufficient to compose a solution for

the CSP, then it is infeasible. Although the initial columns without the artificial variables can

produce a feasible relaxed solution, we use it to ensure the feasibility of relaxation of restricted

master problem in the Branch-and-Price nodes.

4.2 The pricing sub-problem

With the initial columns, we solve the linear relaxation of PRMP . The optimal relaxed

solution provides dual variables πi, i ∈ M , associated with the constraint set (4.2b), and dual

variables µj, j ∈ N , associated with the constraint set (4.2c). This information is used by the

pricing subproblem to find the columns with minimum reduced cost for each j ∈ N as follows:

SPj : cj = min
Sj∈A‡

j

cSj
−
∑
i∈Sj

πi − µj (4.3)

Notice that cj is the least reduced cost for compressor j. If min{cj : j ∈ N} ≥ 0, then
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the linear relaxation of PRMP is optimal for the relaxation of PMP . Otherwise, new columns

with negative reduced cost that can decrease the value of PRMP must be added.

However, SPj can be used for analyzing only the columns that are in the RMP. As we

do not have all columns in the RMP, then we need to look for new columns solving the pricing

subproblem indirectly, reformulating it as a MILP based on the piecewise-linear formulation

Models (3.2) or (3.3). Considering K(j) = {k : k = 1, . . . , κ(j)}, the pricing subproblem that

approximates SPj based on the piecewise-linear formulation model (3.2), can be formulated as

follow:

S̃P j : c̃j = min cj − µj +
∑
i∈Mj

(cij − πi)xi + h̃uej (qcj) (4.4a)

s.t. : qcj =
∑

k∈K(j)

(qc,k−1j λk,L + qc,kj λk,R) (4.4b)

qcj ≤ qc,max,ij xi + qc,maxj (1− xi), i ∈Mj (4.4c)∑
i∈Mj

qwi xi ≤ qcj (4.4d)

∑
k∈K(j)

zkj = 1 (4.4e)

λk,Lj + λk,Rj = zkj , k ∈ K(j) (4.4f)

λk,Lj , λk,Rj ≥ 0, k ∈ K(j) (4.4g)

zkj ∈ {0, 1}, k ∈ K(j) (4.4h)

xi ∈ {0, 1}, i ∈Mj, (4.4i)

where c̃j is the reduced cost of S̃P j . The new column is associated with the variables x. Note

that the under-estimator h̃uej (qcj) =
∑

k∈K(j)(h
c,k−1
j λk,Lj +hc,kj λk,Rj ) is the same used from Model

(3.2).

Similarly, considering K(j) = {k : k = 0, . . . , κ(j)}, the pricing sub-problem that

approximates SPj based on the piecewise-linear formulation model (3.3), can be formulated as
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follow:

ŜP j : ĉj = min cj − µj +
∑
i∈Mj

(cij − πi)xi + ĥuej (qcj) (4.5a)

s.t. : qcj =
∑

k∈K(j)

qc,kj λk (4.5b)

qcj ≤ qc,max,ij xi + qc,maxj (1− xi), i ∈Mj (4.5c)∑
i∈Mj

qwi xi ≤ qcj (4.5d)

∑
k∈K(j)

λkj = 1 (4.5e)

λkj ≥ 0, k ∈ K(j) (4.5f)

{λkj}k∈K(j) is SOS2 (4.5g)

In the objective function, the under-estimator ĥuej (qcj) =
∑

k∈K(j) h
c,k
j λkj is the same

from Model (3.3).

As the Models (4.4) and (4.5) are equivalent, the following observations apply for both,

but we consider just the notation of the first Model.

Remark 2. The subproblem S̃P j is consistent with the formulation of MP only if inequality

(4.4d) is replaced by an equality. The solution of S̃P j may lead to higher gas production than

the amount consumed by the wells supplied by compressor j.

Proof. Similarly to the Remark 1 and considering assumptions (i) to (iii), the solution of S̃P j

may lead to a qcj >
∑

i∈Mj
qwi xi which implies in a compressor operations cost hcj(q

c
j) lower

than the operating cost with qcj =
∑

i∈Mj
qwi xi.

Remark 3. The use of the under-estimator h̃uej (qcj) is relevant to calculate the reduced costs c̃j .

As h̃uej (qcj) ≤ hcj(q
c
j), if c̃j ≮ 0, there is no column with negative reduced cost that can improve

the solution for PRMP .

Remark 4. If c̃j < 0, we need to recalculate the effective reduced cost cj , which is obtained

by using function hcj(q
c
j) instead of the under-estimator huej (qcj). If cj < 0, the column can be

added to PRMP . If cj ≮ 0, there are two possibilities. The first considers that S̃P j is a good

approximation for SPj , then there is no column of compressor j that can be added to PRMP .

The second considers that S̃P j is not a good approximation for SPj . Then, the under-estimator

huej (qcj) should be refined, increasing the number of points κ(j).

Remark 5. Problems P̃ and P̂ are equivalent to problem PRMP if we consider the use of the

under-estimator h̃uej (qcj) in the column cost cSj
instead of the compressor operation cost hcj(q

c
j).
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Proof. The first and second term of the column cost cSj
= cj+

∑
i∈Sj

cij+h
c
j(q

c
Sj

) are equivalent

to the first and second terms of the objective function in models (3.2) and (3.3). The unique

difference is hcj(q
c
j) in the column cost and h̃uej (qcj) in the cited models. If we use h̃uej (qcj) for

both models, they become equivalent.

4.3 Column Generation procedure

An iteration of column generation consists in solving the linear relaxation of PRMP , then

solving S̃P j for each j ∈ N . Considering Remark 4 and assuming a good approximation of

S̃P j to SPj , Algorithm 2 describes the column generation procedure for the CSP.

Algorithm 2 Column Generation procedure.
1: procedure CG_ITER( )
2: repeat
3: Solve the linear relaxation of PRMP ;
4: LB = optimal relaxed objective value of PRMP ;
5: (π, µ) = optimal dual solution of the linear relaxation of PRMP ;
6: for each j ∈ N do
7: Solve S̃P j with (π, µ);
8: if (c̃j < 0) then
9: Calculate the corresponding SPj with qcj and x generated in the line 7;

10: if (cj < 0) then
11: RMP← RMP ∪ {column generated by S̃P j};
12: end if
13: end if
14: end for
15: until (cj : j ∈ N) > 0, for all j.
16: return LB;
17: end procedure

In Algorithm 2, we first solve the linear relaxation of Model (4.2) in line 3. Next,

n pricing subproblems are solved (line 7) considering the dual values obtained in line 5. If

the reduced cost of the S̃P j is smaller than 0 we calculate the effective cj (line 9). If cj is

negative, we insert the column generated by S̃P j in the RMP. If one or more pricing have

negative reduced cost, the linear relaxation of RMP is solved again, now with the newly inserted

column(s). This procedure runs until all effective reduced costs return a value greater or equal

to 0, which means that the relaxation of MP is optimal, and its objective value is returned in the

line 16.
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5 BRANCH-AND-PRICE

The optimal solution of the restricted master problem relaxation is optimal for the orig-

inal problem if all λSj
= {0, 1}, Sj ∈ A†j, j ∈ N . Otherwise, in the case of a relaxed solution,

we find the optimal integer solution with a Branch-and-Price procedure, which divides the orig-

inal search space into two subproblems (or nodes) with an additional constraint. As the RMP

may not contain all optimal columns, we solve a column generation procedure in each node. In

this chapter, we describe in detail the B&P proposed for the CSP.

5.1 Branching strategy

Differently from Branch-and-Bound, the simple branching on only one variable λSj
may

produce an unbalanced tree (BARNHART et al., 1998) for the B&P. It is desirable to define a

branching rule in a set of variables that can divide the problem in a symmetric way. For this

purpose, we define two branching rules that were applied depending on the characteristic of the

relaxed solution in the current node. These branch rules are based on the original variables of

problem P , given in Model (3.1).

The first rule is a branching on the compressors, or simply branch (A), that forbids

the activation of a compressor j in one branch and requires that this same compressor must be

activated in the other branch.

Considering the optimal solution of PRMP , we define tj =
∑

Sj∈A†
j
λSj

for each j ∈ N .

If at least one tj has a fractional value, we define the compressors with maximum and minimum

value of tj as follow:

jmax = arg max
j∈N
{tj : 0 < tj < 1} (5.1a)

jmin = arg min
j∈N
{tj : 0 < tj < 1} (5.1b)

With the compressors obtained in (5.1a) and (5.1b), we define ja as the compressor j

closer to integrality as follow:

ja = arg max
j∈{jmax,jmin}

{1− tjmin , tjmax} (5.2)
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Finally, we branching in the left (L) and right (R) nodes as follow:

L :
∑

Sja∈A
†
ja

λSj
= 1 R :

∑
Sja∈A

†
ja

λSj
= 0 (5.3a)

Equation (5.3a) defines that in left branch the compressor ja must be activated in the

solution, and in the right branch the compressor ja must be deactivated. If tja > 0.5 the left

branch is explored first, otherwise the right branch first is explored first.

Note that we just need to change the constraint set (4.2c) to apply the branch (A) for

PRMP . For the left branch, we replace the inequality to an equality in the ja-th constraint. For

the right branch, we made the same procedure as the left branch, and change the right-hand

side (RHS) from 1 to 0 in the ja-th constraint. Thus, the restricted master problem with the left

branch (A) applied for the compressor ja becomes as follow:

(A) left :PRMP = Eq.(4.2a) (5.4a)

s.t. : Eq. (4.2b) and (4.2d) (5.4b)∑
Sj∈A†

j

λSj
≤ 1, j ∈ N\{ja} (5.4c)

∑
Sja∈A

†
ja

λjaSja
= 1 (5.4d)

The restricted master problem with the right branch (A) applied for the compressor ja

becomes as follow:

(A) right :PRMP = Eq.(4.2a) (5.5a)

s.t. : Eq. (4.2b) and (4.2d) (5.5b)∑
Sj∈A†

j

λSj
≤ 1, j ∈ N\{ja} (5.5c)

∑
Sja∈A

†
ja

λjaSja
= 0 (5.5d)

As the right branch forbids the compressor ja to be activated, we do not need to execute

the S̃P ja in the column generation procedure.

Remark 6. If the relaxed solution of PRMP is fractional and all tj ∈ {0, 1}, j ∈ N , we cannot

apply the branch (A) because no jmin and jmax will be found, but there may be columns with

fractional λSj
values.
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Remark 6 is important to define a second branching rule, the branch on wells, or simply

branch (B). Considering again the optimal relaxed solution of PRMP , we define the columns

with greater and lesser λSj
value as follow:

Smaxj = arg max
Sj∈A†

j ,j∈N

{
λSj

: 0 < λSj
< 1
}

(5.6a)

Sminj = arg min
Sj∈A†

j ,j∈N

{
λSj

: 0 < λSj
< 1
}

(5.6b)

After, we define Sbj as the column with the closest value to integrality as follow:

Sbj = arg max
Sj∈{Smin

j ,Smax
j }
{1− λSmin

j
, λSmax

j
} (5.7)

Let jb the compressor j ∈ N which column Sbj is associated. Also, let ib be a well that

is supplied by column Sbj , i.e., δib
Sb
jb

= 1 which is not restricted to any compressor. The branch

(B) rules are defined for the PRMP as follow:

L :
∑

Sj∈A†
jb
:δi

b
S
jb

=1

λS
jb

= 1, R :
∑

Sj∈A†
jb
:δi

b
S
jb

=1

λS
jb

= 0 (5.8a)

In Equation (5.8a), we define that well ib is restricted to be supplied by compressor jb in

the left branch, and forbid compressor jb to supply well ib in the right branch. If λSb
j
> 0.5, the

left branch is explored first, otherwise the right branch first is explored first.

For branch (B), we need to create new constraint sets for Model (4.2). Thus, we define

another RMP that replaces PRMP as follow:

PRMP 1 = min
∑
j∈N

∑
Sj∈A†

j

cSj
λSj

(5.9a)

s.t. :
∑
j∈N

∑
Sj∈A†

j

δiSj
λSj

= 1, i ∈M (5.9b)

∑
Sj∈A†

j

λSj
≤ 1, j ∈ N (5.9c)

∑
Sj∈A†

j :δ
i
Sj

=1

λSj
≤ 1, j ∈ N, i ∈Mj (5.9d)

λSj
∈ {0, 1}, j ∈ N,Sj ∈ A†j, (5.9e)

The constraints set (5.9d) is used for branch (B). Note that in the first node, these con-
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straints are redundant with respect to constraint set (5.9c). As the branch-and-price evolves, the

constraints can be replaced by an equality, and the RHS can assume value 0 in the right branch.

Adding new constraints to the RMP implies in new dual values for the optimal relaxation

of PRMP 1 that must be considered in the pricing subproblems. We re-define the pricing for the

compressor j as follow:

S̃P
1

j : c̃1j = Min : cj − µj +
∑
i∈Mj

(cij − πi − ψij)xi + h̃uej (qcj) (5.10a)

S.t. : Equations (4.4b) to (4.4i) (5.10b)

where ψij is the dual variable associated with the ij-th constraint (5.9d) of PRMP 1 .

The branch (B) rule implies in changing the bounds of the variables x in the pricing

subproblems to produce feasible columns for the current node. If compressor j must supply

well i, variable xi is fixed to 1 in the S̃P j , and fixed to 0 for all S̃P l : l ∈ N\j. When

compressor j is forbidden to supply well i, we just set xi to zero in S̃P j .

Remark 7. It is possible that all wells i ∈ Mjb : δi
Sb
j

= 1 are already restricted to be supplied

by compressor jb due previous branch rules. Thus, defining a well ib and compressor jb from

column Sbj leads to the following cases for the branch (B):

1. The left branch will impose that a well ib must be supplied by compressor jb. However,

this rule was applied in a previous branch and is redundant. Then the feasible solution

space will be the same and does not change the solution of PRMP 1 .

2. The right branch will impose that compressor jb not supply well ib. However, a previ-

ously branch rule imposed the opposite for the same jb and ib. Then, the new branch

rule will replace the previously branch rule, which no make sense in a branch-and-price

enumeration tree.

Then, there is no possibility to apply branch (B) for compressor jb and any well i ∈ Mjb

supplied by the column Sbj .

To handle Remark 7, we just re-define Sbj as the column with seccond closest value λSj

to integrality (Sminj or Smaxj ). Assuming that Sbj = Sminj but cannot compose a branching rule,

and defining R = {i ∈ M : δi
Smin
j

= 1} as the set of wells supplied in the column Sminj , then

Smaxj will have at least one i ∈M : δiSmax
j

= 1 that is not restricted yet, in two cases as follows:

1. Smaxj and Sminj are columns of the same compressor j ∈ N : Assuming that there is no

repeated columns for the same compressor, the column Smaxj supplies at least one i /∈ R

that is not restricted for this compressor, otherwise Sminj = Smaxj or λSmin
j

= 1;
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2. Smaxj and Sminj are columns of different compressor j ∈ N : This is implicit because each

i ∈ R is not supplied in Smaxj because the branch rules, and is not possible that exists a

column that does not meet any well i ∈M .

5.2 Branch-and-Price procedure

The branch-and-price procedure is outlined in Algorithm 3.

Algorithm 3 Branch-and-Price procedure
1: procedure BRANCH-AND-PRICE( P, UB )
2: x = Solve the relaxation of problem P using Column Generation;
3: if (x is infeasible or φ(x) > UB) then
4: return ∅;
5: end if
6: if (x is integral) then
7: if ( φ(x) < UB) then
8: UB = φ(x); . Update the upper bound
9: end if

10: return ∅;
11: end if
12: y = Solve the integer restricted master problem with CPLEX;
13: if (φ(y) < UB) then
14: UB = φ(y); . Update the upper bound
15: end if
16: Define the branch_rule as branch (A) or branch (B);
17: if (guide_value > 0.5) then
18: B = {L,R};
19: else
20: B = {R,L};
21: end if
22: for all b ∈ B do
23: Add branch_rule(B[b]) to P;
24: BRANCH-AND-PRICE( P, UB) ;
25: Remove branch_rule(B[b]) from P;
26: end for
27: Return the solution associated with the UB;
28: end procedure

In Algorithm 3 the search tree is explored using a depth-first strategy to find feasible

solutions to the CSP as fast as possible, using its values as the upper bound. The algorithm

first execute the Column Generation procedure of Algorithm 2 in line 2. If the solution x is

infeasible or its objective value φ(x) is greater than the upper bound UB, the algorithm cuts the
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node per infeasibility (line 4). If solution x is integer, then UB is updated if its possible (line 8)

and cut the node per integrality in line 10. If the algorithm does not return ∅ after line 10, the

problem need branching. In line 12 the restricted master problem (5.9) is solved as an integer

problem to produce a feasible solution and verify if it can be used as a better UB (lines 13 to 15).

In line 16 the algorithm analyzes solution x and define which branch (A) or branch (B) will be

applied as branch_rule. guide_value = tja if branch (A) is choosed, and guide_value = λSb
j

if branch (B) is choosed. According to the guide_value the algorithm defines the order to

explore the branches (L = Left, R = Right) in lines 17 to 21. Then, in line 23 the corresponding

branch_rule to problem P is added and the Branch-and-Price is solved recursively in line 24.

After exploring the sub-tree, the branch_rule is removed in the line 25. The algorithm ends

after no more calls from the branch-and-price procedure can be made, which means that all

nodes are explored. At this point, the algorithm returns the optimal solution in line 27.

In Algorithm 3 any column added in any node of the enumeration tree remains in the

restricted master problem for the other sub-trees, i.e. a column is never removed from the RMP.

Also, the artificial columns λ∗Sj
, j ∈ N are not considered in the branching rules.

5.3 Speedups

In Lasdon (1970) a procedure to calculate a valid lower bound is defined for the restricted

master problem. Considering Zv as the current objective value of relaxation of Model (5.9) at

iteration v of Algorithm (2), and the reduced cost cjv of each j ∈ N pricing subproblem at the

same v iteration. We can define the RMP lower bound LBv for the CSP as follow:

LBv = min
j∈N

cj
v|N |+ Zv; (5.11)

As the effort to calculate LBv is minimal, we can calculate it in each iteration of the column

generation. As the number of iterations v is incremented, the value LBv tends to be tighter.

Then if the LBv > UB at some node of the branch-and-price tree, this node can be cut off

before the end of the column generation procedure, which can save execution time.
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6 COMPUTATIONAL RESULTS

This chapter presents the computational results obtained by solving the CSP. First we

compare the lower bounds of the Column Generation with the linear relaxation of Model (3.2).

Next we compare the exact solution obtained by our Branch-and-Price and the CPLEX Solver.

Both are tested with the two piecewise-linear formulations presented to compare their efficiency.

6.1 Data sets

The instance tests consist of three sets: Set 1 is composed of four instances of the CSP

provided in Nazari (2011) and three instances provided by Camponogara, Nazari e Meneses

(2012) identified by index from 1 to 7. Sets 2 and 3 are instances of the SSCFLP, available in

Holmberg, Rönnqvist e Yuan (1999) and Delmaire, Díaz e Fenández (1999), identified by index

8 to 19, and 20 to 27 respectively. These sets were extended to the CSP, using as reference the

first instance of set 1. The piecewise-linear formulation uses κ(j) = 10, j ∈ N for all instances.

To transform a SSCFLP instance into a CSP instance, let lc the smaller and gc the higher gas

rate values of all compressors j ∈ N in the reference instance. Accordingly, let lw the smallest

and gw the highest values of gas rate demands of all wells i ∈M in the reference instance.

The function rand(x, y) represents a random value between x and y, where the seed

value used corresponds to the index of facility/customer. The correspondence of each parameter

is described in Table 6.1

The models were solved in a computer with AMD-FX-8150 processor, running at 3.6

GHz on a single core, with 32 GB RAM. The operational system was the Ubuntu 13.04, kernel

3.8.0-27, and the algorithms were implemented in C++ with the CPLEX API 12.5.0.

We first compare in Section 6.2 the lower-bounds provided by the column generation

and the linear relaxation of Model (3.2). Next in the sections 6.3 and 6.4 we present the results

for the CPLEX solver and the proposed B&P, respectively. For each analysis, we report results

for each instance, running with time limit of 300 seconds, 1, 5 and 10 hours. First we present

the comparative results of the piecewise-linear formulation with binary and SOS2 variables for

CPLEX and the B&P approaches. Next, we compare the best results of each approach.
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Table 6.1 – Transformation of SSCFLP instances to CSP instances.

Parameter name SSCFLP CSP

Facility & Compressor
Installation cost: cj cj
Energy cost loss - dj = rand(1, 7)
Capacity bj qc,minj = bj/rand([bj/lc], [bj/gc])
Capacity bj qc,maxj = bj/rand(0.11, 0.44)
Pressure parameter - α0,j =qc,maxj ∗ rand(0.2887, 0.7983)
Pressure parameter - α1,j = rand(−1.215,−0.14)
Pressure parameter - α2,j = α1,j ∗ rand(−0.12,−0.09)
Pressure parameter - α3,j = α1,j ∗ rand(0.0061, 0.0138)
Pressure parameter - α4,j = α1,j ∗ rand(−1.6258,−0.976)
Client & Well
Demand di qwi = di/rand([di/lw], [di/gw])
Demand - pwi = rand(0.74, 5)
Client/Well x Facility/Compressor
Supply cost cij cij
Pipeline pressure drops - lij = 0.1

Source: from the author (2016).

6.2 Lower bounds results

Although the SOS2 is an implicit model of the piecewise-linear approximation and we

need to remove these sets in the problem P̂ to obtain the linear relaxation, the relaxation of

models (3.2) and (3.3) are equivalent, and produced the same lower bounds. Similarly, the

lower bounds obtained by column generation using pricing subproblem models (4.4) or (4.5)

are the same. Thus, in Table 6.2 we just present the lower bounds obtained by the relaxation

of Model (3.2) in the column LBDCC , and in the column LBCG we present the lower bound

obtained by column generation using the pricing subproblem ŜP j . Column I represents the

index of the instance, column N shows the number of compressors, and column M presents

the number of wells. The column BKV represents the best-known value (BKV) found in our

experiments, and is marked with a ‘*’ when it is known to be optimal. For each lower bound

approach, we present in column Time(s) the processing time to obtain the lower bound. In the

GAP(%) column, we calculate the lower bound relative deviation 100(BKV−LB
LB

) from the best-

known value, and LB represents the value of the lower bound found for each approach. The

lines below the last instance of each set correspond to the average values obtained in the set,

and the last line of the table presents the average values from the three sets.

For LBCG we present in the columns RMP(%) and SP (%) the portion of the total time

spend to solve the relaxation of the restricted master problem and the pricing subproblems,
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Table 6.2 – CSP Lower bounds

I N M BKV
LBDCC LBCG

Time(s) GAP(%) Time(s) GAP(%) RMP(%) SP (%) #Cols
1 5 6 *274.86 0.02 22.26 0.10 0.00 0.00 61.39 29
2 7 16 *428.90 0.02 37.52 0.56 4.98 0.00 86.83 97
3 8 18 *434.30 0.01 27.74 1.39 0.00 0.00 92.45 138
4 9 14 *360.98 0.01 34.24 0.44 2.19 0.00 83.56 90
5 14 20 *411.14 0.01 23.47 1.90 0.89 0.00 89.12 232
6 14 32 *585.55 0.01 16.15 6.62 0.98 0.08 94.81 397
7 31 64 *1,003.17 0.12 21.97 17.37 0.39 0.51 94.73 851

0.03 26.19 4.06 1.35 0.08 86.13 262.00
8 20 50 *18,278.43 0.03 27.91 17.46 0.47 0.28 97.45 739
9 20 50 *15,581.52 0.03 28.52 14.83 0.41 0.32 97.07 725
10 20 50 *19,505.43 0.03 25.65 18.36 0.46 0.28 97.50 726
11 20 50 *23,305.43 0.04 24.12 19.99 0.42 0.27 97.65 749
12 20 50 *18,278.43 0.03 27.91 17.47 0.47 0.29 97.50 739
13 20 50 *15,581.52 0.03 28.52 14.84 0.41 0.32 97.07 725
14 20 50 *19,505.43 0.03 25.65 18.38 0.46 0.29 97.47 726
15 20 50 *23,305.43 0.04 24.12 20.00 0.42 0.27 97.65 749
16 20 50 *18,278.43 0.03 27.91 17.46 0.47 0.28 97.45 739
17 20 50 *15,581.52 0.03 28.52 14.85 0.41 0.32 97.07 725
18 20 50 *19,505.43 0.03 25.65 18.38 0.46 0.29 97.55 726
19 20 50 *23,305.43 0.04 24.12 19.99 0.42 0.27 97.64 749

0.03 26.55 17.67 0.44 0.29 97.42 734.75
20 30 60 15,240.21 0.09 4.31 21.98 0.67 0.71 94.62 1,442
21 30 60 18,297.27 0.09 18.66 72.53 1.59 0.18 98.63 1,241
22 30 60 57,526.87 0.12 18.59 86.21 2.07 0.13 98.87 1,233
23 30 60 51,954.48 0.11 21.01 88.13 2.47 0.15 98.89 1,287
24 30 60 63,895.96 0.12 19.11 99.23 1.61 0.14 98.93 1,268
25 30 60 64,722.34 0.11 17.52 85.32 0.95 0.15 98.83 1,250
26 30 60 91,149.77 0.12 16.68 85.01 1.22 0.16 98.86 1,298
27 30 60 212,516.16 0.13 26.27 93.55 3.58 0.13 98.99 1,252

0.11 17.77 78.99 1.77 0.22 98.32 1,283.88
Avg 0.06 23.50 33.57 1.19 0.20 93.96 760.21

Source: from the author (2016).

respectively. In the column #Cols is presented the total number of generated assignments Sj for

all j ∈ N , including the initial columns, the artificial columns, and the columns generated by

solving ŜPj, j ∈ N .

In Table 6.2 we mark in bold the technique that obtained the best average time compu-

tation and the best average GAP. We observe that average GAP of the column generation is less

than 2% from the best-known solution. Although LBCG requires more computational time, it is

almost 20 fold tighter than the lower bounds of obtained in LBDCC . Furthermore, the column

generation found the optimal solution in the instances 1 and 3. We can observe that the pricing
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subproblems consume almost all processing time as they are solved as a MILP, while the RMP

consume an insignificant portion of the processing time (it is solved as linear problem).

6.3 CPLEX results

In Table 6.3 we present the results obtained by CPLEX for solving Model (3.2), named

DCC, and Model (3.3), named SOS2. The column Time(s) presents the CPU time in seconds

spent to solve each instance with a limit of 36,000 seconds (10 hours). The column GAP(%)

presents the percentage deviation (S−BKV
BKV

)100, where S represents the objective value from

the best feasible solution found by the solver and BKV represents the best-known value. The

‘NFS’ marked in the column GAP(%) means that no feasible solution was found by the solver

within the time limit. Similarly to Table 6.2, after the last instance of each set, we present

the average values of the set, and in the last line, the average values from all instance sets are

presented.

In Table 6.3 we mark in bold the best results between the two models. When an optimal

solution is found we mark in bold the formulation that was solved in a shorter time. Otherwise,

we mark the model that found the smallest deviation. When no bold mark appears on the line,

we consider that the results are equivalent. Analyzing Table 6.3 we observe that the model SOS2

found the optimal solution in shorter time than DCC model only for the instance 1 . However,

this time is insignificant. In other four cases (instances 7, 9, 13 and 17) the results with the

specified time limit are equivalent. For the remaining 22 instances, the model DCC had better

results than model SOS2, both in Time(s) and GAP(%).

Table 6.4 presents the average results for solving the CSP with the solver CPLEX. We

show the results with four different time limits as described in the column Time Limit. The

column Instance Set indexes the average results of the three instance sets. Column #Optimal

present the notation a/b, where a is the number of instances that were solved until optimality,

and b is the total number of instances in the set. Column Time to opt(s) shows the average time

in seconds to reach these optimal values. With same notation of column #Optimal, the column

#Feasible Solutions indicates the number of instances that integer feasible solutions were found

in the specified time limit. The average percentage deviation GAP(%) was calculated in the

same way that in Table 6.3. But in this case, the GAP(%) considers only the instances where

the optimality was not proved, and an integer feasible solution was found.
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Table 6.3 – CSP results with the CPLEX Solver.

I N M BKV
DCC SOS2

Time(s) GAP (%) Time(s) GAP (%)
1 5 6 *274.86 0.06 0.00 0.03 0.00
2 7 16 *428.90 1.73 0.00 2.29 0.00
3 8 18 *434.30 1.12 0.00 2.00 0.00
4 9 14 *360.98 1.12 0.00 2.10 0.00
5 14 20 *411.14 4.09 0.00 13.06 0.00
6 14 32 *585.55 79.02 0.00 1,014.21 0.00
7 31 64 *1,003.17 36,000.02 0.00 36,000.50 0.00

5,155.31 0.00 5,290.60 0.00
8 20 50 *18,278.43 3,447.65 0.00 36,000.03 0.01
9 20 50 *15,581.52 36,000.07 0.00 36,000.01 0.00
10 20 50 *19,505.43 36,000.01 0.01 36,000.04 0.02
11 20 50 *23,305.43 7,245.18 0.00 36,001.97 0.00
12 20 50 *18,278.43 3,352.56 0.00 36,000.59 0.01
13 20 50 *15,581.52 36,000.02 0.00 36,000.03 0.00
14 20 50 *19,505.43 36,000.01 0.00 36,000.03 0.02
15 20 50 *23,305.43 7,323.04 0.00 36,002.85 0.00
16 20 50 *18,278.43 3,224.70 0.00 36,000.59 0.01
17 20 50 *15,581.52 36,000.02 0.00 36,000.03 0.00
18 20 50 *19,505.43 36,000.03 0.00 36,000.03 0.01
19 20 50 *23,305.43 7,277.82 0.00 36,000.86 0.00

20,655.92 0.00 36,000.59 0.01
20 30 60 15,240.21 36,079.66 0.06 36,000.85 0.06
21 30 60 18,297.27 36,000.64 0.00 36,003.40 0.00
21 30 60 57,526.87 36,001.17 0.03 36,000.66 NFS
23 30 60 51,954.48 36,000.82 0.02 36,001.82 NFS
24 30 60 63,895.96 36,001.03 0.02 36,000.79 0.07
25 30 60 64,722.34 36,000.17 0.09 36,001.66 0.09
26 30 60 91,149.77 36,000.90 0.05 36,064.94 NFS
27 30 60 212,516.16 36,000.19 0.01 36,000.18 0.03

36,010.57 0.03 36,009.29 0.05
Avg 20,607.27 0.01 25,766.82 0.02

Source: from the author (2016).

In Table 6.4, the bold mark represents which of the two models had the best results when

they can be compared directly. For example, if #Optimal are equal for Binary and SOS2, and

represents the same instances, there is a draw and we compare the results marking in bold the

best Time to opt(s). Similarly, if the number of feasible solutions found for each approach is

equal, we compare the average GAP of both and mark the best with bold. The ‘-’ represents

that no solution was found in the columns #Optimal and #Feasible Solutions. In the columns

Time to opt(s) and GAP(%) the same mark ‘-’ means that the corresponding value cannot be

calculated, i.e. if no optimal solution was found, the Time to opt(s) will be ‘-’, and if no feasible

solutions were found the GAP(%) will be ‘-’.
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Table 6.4 – CSP average results with CPLEX Solver.

Time Instance #Optimal Time to opt (s) #Feasible Solutions GAP (%)
Limit Set DCC SOS2 DCC SOS2 DCC SOS2 DCC SOS2

300 s
1 6/7 5/7 14.65 3.89 7/7 7/7 0.00 0.01
2 - - - - 12/12 - 0.02 -
3 - - - - 8/8 5/8 0.10 0.12

1 h
1 6/7 6/7 14.65 172.28 7/7 7/7 0.00 0.01
2 3/12 - 3351.74 - 12/12 9/12 0.01 0.01
3 - - - - 8/8 5/8 0.04 0.05

5 h
1 6/7 6/7 14.65 172.28 7/7 7/7 0.00 0.00
2 6/12 - 5334.53 - 12/12 12/12 0.00 0.01
3 - - - - 8/8 5/8 0.04 0.05

10 h
1 6/7 6/7 14.65 172.28 7/7 7/7 0.00 0.00
2 6/12 - 5334.53 - 12/12 12/12 0.00 0.01
3 - - - - 8/8 5/8 0.03 0.05

Source: from the author (2016).

As we can see in Table 6.4, the DCC Model (3.2) found feasible integer solutions for all

instances with a time limit of 300 seconds, while no feasible solution was found for 3 instances

of set 3 by the Model SOS2 (3.3), even with a time limit of 10 hours. The time to reach the

optimal solution can be compared directly only for the instance Set 1, where the formulation

with binaries variables obtained better results. For the instance Set 2, the optimality was reached

for 6 out of the 12 instances by the model DCC in the time limit of 5 hours. With a time limit

of 10 hours, the optimal value was found in 11 instances of this set, but the optionality was not

proved. Similarly, although the model SOS2 cannot prove the optimality for any instance of set

2 with a time limit of 10 hours, the optimal value was found in three instances. For the instance

set 3, no optimal solutions was found in both models and the DCC model obtained best integer

solutions.

As more optimal solutions have been found by Model (3.2) in the specified running times

than Model (3.3), and considering that the integer feasible solutions are better, we consider the

first model for comparing the results to the branch-and-price.

6.4 Branch-and-price results

In Table 6.5 we compare the results for the CSP obtained by our Branch-and-Price with

the pricing sub-problem models (4.4) and (4.5), represented in the tables as columns BPDCC

and BPSOS2, respectively. Also, we present in RMP(%) the portion of the total time spent to
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Table 6.5 – CSP results with Branch-and-Price: Times and gap

I N M BKV
BPDCC BPSOS2

Time(s) GAP (%) RMP(%) SP(%) Time(s) GAP (%) RMP(%) SP(%)
1 5 6 *274.86 0.34 0.00 0.00 84.30 0.09 0.00 0.00 60.47
2 7 16 *428.90 28.59 0.00 6.05 90.03 9.12 0.00 5.71 84.66
3 8 18 *434.30 2.97 0.00 0.00 95.04 1.38 0.00 0.00 92.17
4 9 14 *360.98 8.13 0.00 2.73 93.23 2.76 0.00 4.81 84.59
5 14 20 *411.14 28.38 0.00 6.47 89.21 15.91 0.00 10.09 82.22
6 14 32 *585.55 36,000.13 0.00 56.31 41.37 36,000.01 0.00 35.60 20.23
7 31 64 *1,003.17 36,001.12 0.00 71.74 27.34 36,001.13 0.00 72.00 27.03

10,295.66 0.00 20.47 74.36 10,290.06 0.00 18.32 64.48
8 20 50 *18,278.43 179.79 0.00 3.55 95.14 143.33 0.00 4.64 93.83
9 20 50 *15,581.52 219.74 0.00 4.56 93.93 111.85 0.00 5.23 92.85
10 20 50 *19,505.43 169.37 0.00 4.05 94.70 203.71 0.00 6.42 91.93
11 20 50 *23,305.43 539.53 0.00 7.86 90.72 407.77 0.00 8.00 90.47
12 20 50 *18,278.43 165.96 0.00 3.55 95.05 143.43 0.00 4.63 93.82
13 20 50 *15,581.52 189.22 0.00 4.50 93.80 111.90 0.00 5.23 92.85
14 20 50 *19,505.43 145.29 0.00 4.06 94.52 203.90 0.00 6.42 91.93
15 20 50 *23,305.43 538.78 0.00 7.87 90.73 407.87 0.00 7.99 90.48
16 20 50 *18,278.43 187.16 0.00 3.51 95.22 143.67 0.00 4.64 93.82
17 20 50 *15,581.52 222.57 0.00 4.53 94.00 112.01 0.00 5.23 92.83
18 20 50 *19,505.43 178.85 0.00 4.02 94.79 203.84 0.00 6.42 91.92
19 20 50 *23,305.43 518.03 0.00 7.76 90.75 407.91 0.00 8.00 90.47

271.19 0.00 4.99 93.61 216.77 0.00 6.07 92.26
20 30 60 15,240.21 36,007.81 0.00 73.03 26.35 36,005.43 0.00 69.32 29.92
21 30 60 18,297.27 36,015.57 0.01 94.72 5.19 36,005.22 0.01 89.71 10.15
22 30 60 57,526.87 36,004.73 0.00 99.47 0.52 36,010.62 0.01 99.42 0.57
23 30 60 51,954.48 36,004.50 0.00 99.35 0.65 36,013.76 0.00 99.42 0.58
24 30 60 63,895.96 36,008.82 0.00 99.37 0.58 36,012.57 0.00 99.47 0.53
25 30 60 64,722.34 36,011.07 0.00 98.85 1.14 36,009.24 0.04 99.57 0.42
26 30 60 91,149.77 36,021.06 0.00 25.94 73.28 36,006.69 0.00 29.00 70.30
27 30 60 212,516.16 36,009.87 0.00 99.44 0.56 36,008.53 0.00 99.42 0.58

36,010.43 0.00 86.27 13.53 36,009.01 0.01 85.67 14.13
Avg 15,525.76 0.00 37.24 60.50 15,505.28 0.00 36.68 56.96

Source: from the author (2016).

solve the Model (5.9), including the time for solving the RMP as an integer problem. Column

SP(%) represents the portion of time spent to solve subproblem S̃P j for BPDCC and subprob-

lem ŜP j for BPSOS2. The others columns are already explained for the tables 6.2 and 6.3.

In Table 6.5 we mark in bold the best results in relation of Time(s) when optimality was

reached, otherwise we mark the best results in the column GAP(%). When a line has no bold

mark, we cannot compare the approaches by these two columns.

Concerning the time to reach the optimal solution, the BPSOS2 approach needs less

time in 14 out of the 17 cases than the BPDCC considering the sets 1 and 2. A statical test of

Wilcoxon signed-rank with a significance level of 0.05 obtain a p-value = 0.0075, which means

that we accept the hypothesis that BPDCC takes longer than the BPSOS2 to find the optimal

solutions. The percentage deviation of both approaches is the same on seven of ten cases that
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Table 6.6 – CSP results with Branch-and-Price: Number of nodes, cuts and columns.

I N M
BPDCC BPSOS2

#Nodes #Cuts #Cols #Nodes #Cuts #Cols
1 5 6 1 1 28 1 1 29
2 7 16 107 54 329 81 41 337
3 8 18 1 1 145 1 1 138
4 9 14 27 14 134 27 14 150
5 14 20 51 26 391 51 26 417
6 14 32 55,217 27,580 9,496 43,317 21,629 8,108
7 31 64 7,488 3,730 12,103 7,611 3,794 14,144

8,984.57 4,486.57 3,232.29 7,298.43 3,643.71 3,331.86
8 20 50 63 32 977 59 30 996
9 20 50 95 48 987 55 28 939
10 20 50 51 26 989 95 48 1,116
11 20 50 233 117 1,491 203 102 1,428
12 20 50 63 32 977 59 30 996
13 20 50 95 48 987 55 28 939
14 20 50 51 26 989 95 48 1,116
15 20 50 233 117 1,491 203 102 1,428
16 20 50 63 32 977 59 30 996
17 20 50 95 48 987 55 28 939
18 20 50 51 26 989 95 48 1,116
19 20 50 233 117 1,491 203 102 1,428

110.50 55.75 1,111.00 103.00 52.00 1,119.75
20 30 60 7,851 3,924 8,311 10,535 5,266 9,028
21 30 60 445 220 2,803 1,193 593 3,576
21 30 60 15 0 1,276 17 0 1,275
23 30 60 15 0 1,347 18 0 1,352
24 30 60 14 0 1,328 18 0 1,320
25 30 60 35 0 1,399 11 0 1,282
26 30 60 2,403 1,177 10,665 2,260 1,108 11,265
27 30 60 12 0 1,301 13 0 1,300

1,348.75 665.13 3,553.75 1,758.13 870.88 3,799.75
Avg 3,481.27 1,735.82 2,632.35 3,053.18 1,522.20 2,750.45

Source: from the author (2016).

the optimal solution was not found. Also, the BPDCC obtained two better integer solutions than

the BPSOS2 approach.

For both B&P approaches, the portion of processing time spent to solve the RMP grows

in relation to the results in Table 6.2, especially in the large instances, because the time for

solving the integer restricted master problem is also recorded in the column RMP(%).

In Table 6.6 we present other comparative results for BPDCC and BPSOS2 approaches.

The column #Nodes presents the number of explored nodes in the B&P tree, and column #Cuts

shows the number of applied cuts in the B&P tree, i.e. cuts by infeasibility and optimality. The

column #Cols presents the total number of columns at the end of branch-and-price.
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From the results of Table 6.6, we can observe that the columns #Nodes, #Cuts and #Cols

diverge between the approaches. Analyzing the logs, it happens because the Solver CPLEX

considers values with a large number of decimal cases that can diverge after the 8th decimal

digit for the same parameter. It can occur in a column cost cSj
, and consequently, the relaxation

of the master problem can produce symmetric solutions in each approach, which can affect the

branch rule, and the branch-and-price tree can be explored in a different way.

Similarly to Table 6.4, Table 6.7 presents the average results obtained with the branch-

and-price considering the pricing sub-problem Model 4.4 in the columnBPDCC , and the pricing

sub-problem model 4.5 in the column BPSOS2.

Table 6.7 – CSP average results with Branch-and-Price.

Time Instance #Optimal Time to opt (s) #Feasible solutions GAP (%)
Limit Set BPDCC BPSOS2 BPDCC BPSOS2 BPDCC BPSOS2 BPDCC BPSOS2

300 s
1 5/7 5/7 13.68 5.85 7/7 7/7 0.00 0.00
2 9/12 9/12 184.22 153.07 12/12 12/12 0.01 0.01
3 - - - - 8/8 8/8 0.01 0.02

1 h
1 5/7 5/7 13.68 5.85 7/7 7/7 0.00 0.00
2 12/12 12/12 271.19 216.76 12/12 12/12 - -
3 - - - - 8/8 8/8 0.00 0.01

5 h
1 5/7 5/7 13.68 5.85 7/7 7/7 0.00 0.00
2 12/12 12/12 271.19 216.76 12/12 12/12 - -
3 - - - - 8/8 8/8 0.00 0.01

10 h
1 5/7 5/7 13.68 5.85 7/7 7/7 0.00 0.00
2 12/12 12/12 271.19 216.76 12/12 12/12 - -
3 - - - - 8/8 8/8 0.00 0.01

Source: from the author (2016).

In Table 6.7 the number of optimal and integer feasible solutions is equal for both ap-

proaches in all time limits defined. Then we compare the models in a sense of time to reach

the optimal solution, and the average GAP of the integer feasible solutions found. As earlier

observed in Table 6.5, the average time limit to find the optimal solution was lesser for the

BPSOS2 than BPDCC approach.

About the average GAP for the integer feasible solutions, just with the time limit of 300

seconds the average results are better for the BPSOS2 in the instance set 1. When the runtime

is extended, the BPDCC have the same average GAP for the instance set 1 and can find better

integral solutions than the BPSOS2 for the instance set 3, including four best-known values.

For the next section we elect the result of BPSOS2 to compare with the CPLEX solver.
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6.5 Comparative Results

Table 6.8 presents a comparison between our Branch-and-Price and the CPLEX solver

for solving the Compressor Scheduling Problem. As explained earlier, we compare the B&P

that uses the pricing subproblem Model (4.5) with SOS2 variables and the DCC MILP Model (3.2)

for the piecewise-linear formulation in the columns B&P and CPLEX, respectively. The results

are compared in relation to time in seconds to obtain the optimal solution (column Time(s)) and

the relative deviation of the integral solution found (column GAP(%)). We present only the

results of the execution with the time limit of 10 hours.

Table 6.8 – CSP Results: Branch-and-Price vs CPLEX

I N M BKV
B&P CPLEX

Time(s) GAP (%) Time(s) GAP (%)
1 5 6 *274.86 0.09 0.00 0.06 0.00
2 7 16 *428.90 9.12 0.00 1.73 0.00
3 8 18 *434.30 1.38 0.00 1.12 0.00
4 9 14 *360.98 2.76 0.00 1.12 0.00
5 14 20 *411.14 15.91 0.00 4.09 0.00
6 14 32 *585.55 36,000.01 0.00 79.02 0.00
7 31 64 *1,003.17 36,001.13 0.00 36,000.02 0.00

10,290.06 0.00 5,155.31 0.00
8 20 50 *18,278.43 143.33 0.00 3,447.65 0.00
9 20 50 *15,581.52 111.85 0.00 36,000.07 0.00
10 20 50 *19,505.43 203.71 0.00 36,000.01 0.01
11 20 50 *23,305.43 407.77 0.00 7,245.18 0.00
12 20 50 *18,278.43 143.43 0.00 3,352.56 0.00
13 20 50 *15,581.52 111.90 0.00 36,000.02 0.00
14 20 50 *19,505.43 203.90 0.00 36,000.01 0.00
15 20 50 *23,305.43 407.87 0.00 7,323.04 0.00
16 20 50 *18,278.43 143.67 0.00 3,224.70 0.00
17 20 50 *15,581.52 112.01 0.00 36,000.02 0.00
18 20 50 *19,505.43 203.84 0.00 36,000.03 0.00
19 20 50 *23,305.43 407.91 0.00 7,277.82 0.00

216.77 0.00 20,655.92 0.00
20 30 60 15,240.21 36,005.43 0.00 36,079.66 0.06
21 30 60 18,297.27 36,005.22 0.01 36,000.64 0.00
21 30 60 57,526.87 36,010.62 0.01 36,001.17 0.03
23 30 60 51,954.48 36,013.76 0.00 36,000.82 0.02
24 30 60 63,895.96 36,012.57 0.00 36,001.03 0.02
25 30 60 64,722.34 36,009.24 0.04 36,000.17 0.09
26 30 60 91,149.77 36,006.69 0.00 36,000.90 0.05
27 30 60 212,516.16 36,008.53 0.00 36,000.19 0.01

36,009.01 0.01 36,010.57 0.03
Avg 15,505.28 0.00 20,607.27 0.01

Source: from the author (2016).
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From the results of Table 6.8, CPLEX outperforms our B&P in the first six instances

in instance set 1. In particular in instance 6, the B&P cannot find the optimal solution in 10

hours of processing, while the CPLEX can find the solution in approximately 80 seconds. For

instance 7 the obtained solution was not proved optimal for both approaches, and the integer

solution value was the same.

Considering instance set 2, our B&P can find all optimal solutions in less than 10 min-

utes, while CPLEX found the optimal value just for six instances with a time greater than 55

minutes for the instances 8, 12 and 16, and a processing time greater than 2 hours for the other

tree instances (11, 15, and 19). For the other six instances (9-10, 13-14, and 17-18), although

CPLEX found the optimal value for five of them, the optimality cannot be proved since the

solver cannot apply any cut in the branch-and-cut procedure. This issue should be investigated.

In the instance set 3, the results showed that the B&P found integer solutions sensibly

better in general than the CPLEX, and just in one instance CPLEX found the best-known value.

We extended the time limit to 24 hours for the set 3 and the instance 7. We observe that CPLEX

can prove the optimal solution for the BKV = 1,003.17 in instance 7 in approximately 20 hours

while branch-and-price cannot prove the optimality, although it found the same objective value

as the best integer. On the other hand, there were no improvement in any instance of the set 3

in both CPLEX and B&P. However, CPLEX stopped earlier than the stipulated time limit due

the memory overflow in 6 instances.

Finally, the global average values of our Branch-and-Price outperformed CPLEX in time

and average deviation, which is an important result.
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7 CONCLUSION

Decisions problems in the oil production receive considerable attention in research areas

as combinatorial optimization since these problems can impact on the costs of the oil produc-

tion, and consequently in the profits of the petroleum industry. The Compressor Scheduling

Problem consists in defining for a production field which gas-lift compressors will be installed

or activated to supply a set of wells, minimizing the associated costs. The problem is an exten-

sion of the classical Single-Source Capacitated Facility Location Problem and can be classified

as a mixed integer nonlinear problem that was converted into a mixed integer linear problem by

the piecewise-linear formulation.

This work proposed a Branch-and-Price algorithm to solve the CSP. Two piecewise-

linear formulations were tested in the pricing subproblem to handle the nonlinear function,

showing that the Special Ordered Set of type two obtained better results than the disaggregated

convex combination approach. Moreover, the lower bounds achieved by the column generation

procedure were up to 20 times tighter than the linear relaxation of the compact model for some

instances.

The computational experiments we tested for three instance sets, out of which two sets

we generated based on instances of the SSCFLP. We compared the results of the B&P with the

commercial solver CPLEX, and although the second obtained better results than our algorithm

for the set 1, the first found an optimal solution faster for the set 2 and obtained better inte-

ger feasible solutions for the third set, which no optimal solution was found in the stipulated

time limit. Another remark is that CPLEX consumes more memory than the B&P and can

compromise the quality of solution in larger instances.

As future work we intend to improve the branch-and-price algorithm, using a two-phase

approach for solving faster the pricing subproblem as suggested in Savelsbergh (1997), Barn-

hart et al. (1998), using a heuristic to find columns with negative reduced cost and solving the

MILP problem just to prove that the RMP cannot be improved in a column generation iteration.

Moreover, a different approach for find feasible solutions as upper bound can be considered:

Solve the integer restricted master problem with CPLEX just in some nodes chosen in a heuris-

tic manner or apply a heuristic method to build a feasible solution. These approaches may be

useful to explore the nodes faster, especially in large instances.

We also intend to propose a branch-and-bound algorithm for solving the Model (3.2) and

compare its results with the branch-and-price. As techniques based on Lagrangian relaxation are

effective for solving the SSCFLP (KLINCEWICZ, 1986; HO, 2015), and as CSP is an extension
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fo SSCFLP, we intend to implement a solution method based on Lagrangian relaxation for

solving CSP too.
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APPENDIX : RESUMO EM PORTUGUÊS

No processo de produção de petróleo, ao longo do tempo de extração dos hidrocarbone-

tos (mistura de petróleo, gás e água), a pressão interna do poço de extração diminui e pode não

ser suficiente pra elevar tal mistura até a superfície em quantidade rentável. Para contornar tal

situação, são utilizadas técnicas de elevação artificial, tal como o continuous gas-lift, ou gás de

elevação. Essa técnica consiste em injetar gás sob alta pressão proveniente de compressores até

o fundo da tubulação de produção de um poço. O gás entra no tubo de produção através de

válvulas e mistura-se aos hidrocarbonetos. Com a gaseificação, ocorre a redução do peso da

coluna de fluído e então a mistura consegue ser elevada até a superfície.

Para utilização do gás de elevação em um poço, é necessário um estudo prévio que

define o volume e pressão de gás a ser injetado no poço ao longo de sua vida útil. Esses valores

são superestimados devido a eventos não-preditivos, com a mudança na natureza física de um

poço ou a falha de um compressor. Se um compressor comprimir mais gás que a demanda dos

poços que ele atende, existe uma perda de energia, pois o gás excedente deve ser exportado ou

queimado (flaring), o que acarreta em um aumento nos custos de produção. O problema de

escalonamento de compressores (CSP) consiste em alocar um conjunto N de compressores de

gás de elevação a um conjunto M de poços de petróleo de forma que os custos de operação

sejam minimizados.

Proposto e formulado por Camponogara, Castro e Plucenio (2007), o CSP é uma ex-

tensão do problema Single-Source Capacitated Facility Location Problem, sendo classificado

como um problema misto inteiro não-linear (MINLP). Para a aplicação de técnicas de progra-

mação linear inteira ao CSP, é necessário utilizar a linearização por partes, onde é definido um

número de pontos sobre a função não-linear, e entre os pontos são traçadas retas. Esse trabalho

apresenta 2 tipos de linearizações por partes, conhecida como combinação convexa desagre-

gada (DCC) e combinação convexa através de variáveis do conjunto especial ordenado do tipo

II (SOS2). Ambas formulações são denominadas de modelos compactos.

Esse trabalho propõe um algoritmo de branch-and-price (B&P) para a resolução do CSP

de forma exata. B&P consiste em embutir um algoritmo de geração de colunas (CG) em um

framework de branch-and-bound.

A partir do modelo de linearização por partes, o problema é decomposto em um prob-

lema mestre e em subproblemas (um para cada compressor). No problema mestre, as variáveis

são associadas a uma atribuição de um compressor a poços, denominada de coluna. O número

de colunas para cada compressor é potencialmente exponencial, o que limita muito a resolução
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de instâncias para o problema. Dessa forma, define-se o problema mestre restrito (RMP), que

nada mais é que o problema mestre somente com um sub-conjunto de colunas. A cada iteração

o algortimo de geração de colunas resolve a relaxação linear do RMP, e utiliza os valores das

variáveis duais para resolver os subproblemas de pricing, que utilizam a linearização por partes.

O subproblema irá fornecer o custo reduzido de uma nova coluna que não esteja no RMP. Se

o custo reduzido for negativo, a coluna pode melhorar a solução do RMP, portanto ela é adi-

cionada ao problema. O algoritmo itera até que nenhuma coluna com custo reduzido negativo

seja encontrada, o que significa que a solução ótima relaxada do RMP é ótima também para o

problema mestre.

Quando a relaxação do problema mestre restrito é fracionária, é necessário aplicar o

B&P, ramificando o problema em dois subproblemas. Para isso, foram definidas duas regras

de ramificação que são baseadas nas variáveis da formulação compacta. A primeira regra é

denominada branch (A), que consiste em definir um compressor com valor de variável mais

próximo da integralidade, e então impor que o compressor seja ativado no ramo à esquerda, e

no ramo à direita é imposto que esse compressor seja desativado, i.e. ele não atenderá nenhum

poço.

Quando a regra branch (A) não puder ser aplicada, ou seja, quando nenhum compressor

está parcialmente ativado, define-se a segunda regra de ramificação, branch (B). Ela consiste

em selecionar uma coluna Sbj com valor de variável mais próximo da integralidade, e a partir

dela definir a regra de ramificação: dado o compressor jb a qual a coluna Sbj está associada, e

sendo ib um poço que é atendido nessa coluna, o ramo à esquerda impõem que o compressor jb

atenda ao poço ib, e o ramo à direita proíbe que o mesmo compressor atenda o poço ib.

Para a realização dos testes computacionais foram utilizados 3 conjuntos de instâncias,

sendo duas delas propostas nesse trabalho, baseadas em instâncias do SSCFLP. Primeiramente

foram comparados os valores de limitante inferior (LB) obtidos pela relaxação dos modelos

compactos e pelo geração de colunas. Observou-se que o tempo para obtenção do LB através

da relaxação do modelo compacto é muito inferior em relação ao necessário para execução do

algoritmo de CG. Contudo o LB obtido pelo CG é muito mais apertado, sendo em média inferior

a 2%.

Foram realizados testes com a execução dos dois modelos compactos lineares por partes

através do solver CPLEX. Os resultados mostraram que a utilização da combinação convexa

desagregada foi mais eficiente na resolução do CSP, obtendo a solução ótima em menor tempo,

bem como qualidade de soluções factíveis sensivelmente melhores quando a solução ótima não

foi encontrada.
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Em relação ao B&P, foram feitos testes computacionais comparando as duas lineariza-

ções por partes utilizadas na resolução do sub-problema de pricing. Nesse caso, a utilização

de variáveis SOS2 mostrou-se mais eficiente do que a utilização do modelo DCC, obtendo a

solução ótima em um tempo de processamento menor.

Por fim, foram comparados os resultados obtidos pelo CPLEX com a linearização por

partes DCC e pelo branch-and-price com a utilização do sub-problema de pricing com variáveis

SOS2. Definido um tempo máximo de processamento de 10 horas, CPLEX obteve melhores

resultados em relação a tempo para obter a solução ótima do que o B&P no primeiro conjunto

de instâncias. Já para o segundo conjunto, o B&P obteve melhores resultados, encontrando a

solução ótima em todas as 12 instâncias do conjunto, levando menos tempo que o CPLEX, que

por sua vez provou a otimalidade somente em 6 instâncias do conjunto. Em relação ao último

conjunto de instâncias, ambas abordagens não puderam encontrar a otimalidade no tempo es-

tipulado. Contudo, a qualidade das soluções inteiras encontradas pelo B&P foi sensivelmente

melhor que as soluções encontradas pelo CPLEX. Ainda, para esse último conjunto de instân-

cias, e para a instância 7 do conjunto 1, o tempo de execução foi estendido para 24h. Com

isso, o CPLEX conseguiu provar a otimalidade para a instância 7. Nas demais instâncias não

houveram melhoras na solução tanto do CPLEX quanto do B&P, contudo o CPLEX consumiu

muita memória, ocasionando a parada abrupta do processo pelo sistema operacional.

A partir dos resultados obtidos, a abordagem de B&P mostrou em média ser mais efi-

ciente que o solver CPLEX em relação a tempo para obter a solução ótima, e em relação à

qualidade das soluções inteiras encontradas. Como trabalhos futuros pretende-se aperfeiçoar

o algoritmo de duas formas: a primeira consiste em utilizar uma abordagem de 2 fases para

resolver os sub-problemas de pricing (SAVELSBERGH, 1997; BARNHART et al., 1998). A

segunda propõe utilizar uma abordagem heurística para obter uma solução factível durante o

procedimento de B&P, de forma que os nós sejam explorados mais rapidamente.
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