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In this article, numerical solutions of the generalized weak turbulence equation@P. H. Yoon, Phys.
Plasmas7, 4858~2000!# are carried out. In the generalized weak turbulence theory, the generation
of the 2vpe-harmonic Langmuir mode is treated as a fundamental process in turbulent beam-plasma
interaction process, in addition to, and concomitant to, the well-known nonlinear processes such as
Langmuir and ion-sound mode coupling and wave-particle interactions. The present numerical
analysis shows that the harmonic mode, which is a solution to a nonlinear dispersion equation, hence
a ‘‘nonlinear’’ eigenmode, grows primarily due to an induced emission process, which is a ‘‘linear’’
wave-particle interaction process. The harmonic Langmuir mode generation has been observed
since the late 1960s in laboratory experiments, simulations, and in space. However, adequate and
quantitative theoretical explanation has not been forthcoming. The present work represents a step
toward an understanding of such a phenomenon. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1421371#

I. INTRODUCTION

The beam-plasma~or bump-on-tail! instability has
played a crucial role in the development of nonlinear plasma
turbulence theories, the simplest of which is the well-known
quasilinear theory.1,2 Although turbulence theories based
upon random-phase approximation cannot describe coherent
nonlinear processes such as particle trapping,3–5 which was
observed in early numerical simulations6–8 and
experiments9–12 and thought to be one of the primary non-
linear saturation mechanisms for the beam-plasma instability,
it is now known largely in part due to more carefully de-
signed simulations8,13–23 and experiments,24–28 that for a
weak or sufficiently warm beam, the incoherent turbulence
theories provide a rather good description of the beam-
plasma instability development.17,29,30Among these theories,
a straightforward perturbative theory called the weak turbu-
lence theory,31–44which uses the wave-field amplitude as an
expansion parameter, and which generalizes the quasilinear
theory, is most widely used.

An interesting phenomenon, first observed in 1967 by
Apel in his beam-plasma interaction laboratory experiment,45

and yet not adequately investigated in detail to this date, is
the generation of harmonic Langmuir modes. Subsequent
laboratory experiments10–12,46,47and particle-in-cell and Vla-
sov simulations13,14,16,18,21,23 confirmed this finding, and
space observations show that such a phenomenon may occur
in a natural environment.48 Most of the early theoretical at-
tempts to explain such a phenomenon were based upon par-
ticle trapping dynamics and/or the so-called ‘‘ballistic’’
quasi-beam mode generation.4,5,13,49

In the theory by Manheimer,49 a beam-mode dispersion
relation,

v'kvb , ~1!

is assumed, wherev, k, andvb represent the wave angular
frequency, wave number, and the average beam speed, re-
spectively. According to linear theory, a cold beam cannot
excite electrostatic mode with frequency above the plasma
frequency,v.vpe , wherevpe5(4pn̂e2/me)

1/2 is the elec-
tron plasma frequency,e, n̂, andme being the unit electric
charge, the ambient plasma density, and electron mass, re-
spectively. However, Manheimer assumes that such a solu-
tion is valid for all frequencies, and finds that an approximate
renormalized plasma dispersion relation50 computed on the
basis of trapped particle equilibrium supports enhanced fluc-
tuations at the multiple harmonics of the plasma frequency
along the beam-mode dispersion line Eq.~1!,

vn'nvpe , kn'nvpe /vb , ~2!

where n51,2,3,̄ . However, as Dupree indicates later,51

such modes are not genuine eigenmodes of a system, but are
quasi-ballistic modes which can be related to the clump for-
mation.

According to the theory proposed by O’Neil and his
colleagues,4,5 harmonic generation is attributed to electrons
trapped in a monochromatic large-amplitude wave. These au-
thors consider the perturbed electric potential field computed
on the basis of complicated electron orbits in the field of a
large-amplitude wave. Then they show that the wave electric
field potential possesses the harmonic structure in frequency
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space with the plasma frequency as the fundamental fre-
quency unit. This theory assumes a cold beam interacting in
a large-amplitude coherent wave, and as such, the theory is
not fully self-consistent. Also, the harmonics predicted by
such a theory are, again, not eigenmodes of the system.

On the other hand, Joyceet al.’s explanation13 and a
similar theory by Klimas14 are based upon a concept similar
to the recently proposed theory by Yoon52 in that they in-
volve an eigenmode of a nonlinear dispersion relation. In the
theories by Joyceet al.13 and Klimas,14 the harmonic modes
are treated as legitimate eigenmodes of a plasma in which
large-amplitude Langmuir waves are excited. However, these
theories are strictly coherent versions, which do not take the
finite wave spectrum into account.~Later interpretation by
Klimas,16 however, relies on the electron-beam phase-space
vortex formation, or particle trapping dynamics, which is
similar in spirit with the earlier theoretical ideas.4,5,49!

Detailed Vlasov simulation analyses of electrostatic
Langmuir harmonic modes were first performed by
Klimas,14,16although Joyceet al.’s earlier simulation study13

also discusses the excitation of such modes. Klimas’ works
show that harmonic Langmuir modes possess the character-
istics specified by Eq.~2!, namely, vn;nvpe and kn

;nkL , where (vn ,kn) represents the angular frequency-
wave number pair of the thenth harmonic. Moreover, it was
shown that the harmonic modes possess the beam-mode
characteristics,vn;knvb . On such a basis, it could be ar-
gued that the results of Klimas’ Vlasov simulations are in
overall agreement with ballistic beam-mode or single-wave
theories.4,5,49 The simulation by Nishikawa and Cairns18

shows that the harmonic Langmuir modes can also be ex-
cited in the particle-in-cell simulation, which confirms the
Vlasov simulation results. Their work shows that the excita-
tions of these modes are not likely to be numerical artifacts
peculiar to Vlasov simulation somehow, but rather, are genu-
ine dynamical results of a nonlinear plasma system.

Klimas’ observation that the harmonic modes begin to
grow even in the linear stage where the full phase-space
vortex characteristics of particle trapping is presumed to be
not fully developed, is extremely interesting. He also noted
that the higher the harmonic mode number, the faster the
initial ~linear! growth rate, although the harmonic modes
saturate at low amplitudes. As we will discuss, these findings
are highly relevant to the present theory.

It should be emphasized that the simulation studies by
Joyceet al.,13 Klimas,14,16 and by Nishikawa and Cairns18

are limited in the sense that full dispersive characteristics of
the harmonic modes are not revealed. The characteristics of a
mode is best described in terms of an instantaneous
frequency-wave number dispersion relation. In a simulation
study, this can be obtained by plotting the intensity of a mode
in v-k space, averaged over a period of time interval. The
above cited works did not present such an analysis, and
failed to observe that the harmonic modes are not excited
along nondispersive beam-mode line,v'kvb @Eq. ~1!#, but
rather, they appear as genuine eigenmodes, much like the
higher-order cyclotron harmonic modes in a warm magne-
tized plasma,v;nV j ~e.g., Bernstein modes!, where V j

5ejB/mjc is the cyclotron frequency of particle speciesj , B

being the ambient magnetic field, are thermal eigenmodes of
the fundamental cyclotron frequency,v;V j .

Such a characteristics associated with the harmonic
modes were revealed in more recent simulations by Kasaba
and his colleagues22,23and by Schriveret al.21 These authors
show that when plotted inv-k diagram, the Langmuir mode
~denoted byL! and the harmonic Langmuir mode~denoted
by N in accordance with Ref. 52, and which corresponds to
harmonic mode numbern52! appear to satisfy approximate
dispersion relations given, respectively, by

vk
L1'vpe~113k2lDe

2 /2![vk
L ,

~3!
vk

L2'vpe~213k2lDe
2 /21h![vk

N ,

with a broad spectrum for each mode centered aroundk
'vpe /vb for the case ofL1 andk'2vpe /vb for L2, spec-
tral widths of both modes being roughly comparable. Here
lDe

2 5Te /(4pn̂e2) is the square of the Debye length,Te is
the electron temperature, andh represents a small but finite
nonlinear frequency shift the magnitude of which is on the
order of the fundamental Langmuir wave intensity.

Note that the simulation by Schriveret al.21 deals with a
situation with a relatively dense beam. As a consequence, the
simulatedL1 andL2 mode dispersion relations do not ex-
actly follow Eq.~3!, but rather the simulation exhibits signa-
tures of both the beam-acoustic and Langmuir modes. In
particular, the most intense simulatedL1 mode lies just be-
low vpe , which is typical of a strong-beam instability, and
likewise, L2 mode is also observed to be exicted slightly
below 2vpe . In contrast, the present representation ofL1
andL2 mode dispersion relations~3!, is applicable to a clas-
sical bump-on-tail instability situation, i.e., a tenuous beam
and sufficiently broad beam velocity spread, as will be spe-
cifically considered under the subsequent choice of physical
parameters. In this respect, results obtained by Kasaba and
his colleagues22,23 are more closely related to the present
theory.

References 21–23 only analyzed the fundamental and
first harmonic, but presumably higher harmonics are ex-
pected to possess similar characteristics, namely,

vk
Ln'vpe~n13k2lDe

2 /21hn!, ~4!

with a spectrum ofk values centered aroundk'nvpe /vb . In
the above, we have denoted the nonlinear correction factor
hn to indicate the possibility thathn may be different for
each higher harmonics. In light of these developments, it is
imperative that we re-examine the theory of harmonic Lang-
muir mode generation. In particular, it is desirable to explain
the harmonic Langmuir modes in terms of turbulence theo-
ries which imply broad wave spectrum by definition. It is
also desirable to formulate a theory in which the harmonic
modes can be described as eigenmodes of a turbulent
plasma. Note that random-phase averaged turbulence theo-
ries exclude the trapping dynamics by default. Hence, the
present approach is an alternative explanation to those theo-
ries which rely on phase-space vortex dynamics.4,5,13,16,49

With these aims in mind, Yoon52 obtained an eigenmode
solution for the~first! harmonic Langmuir mode, by formu-
lating and solving a nonlinear dispersion equation which in-
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cludes broad spectrum of waves with random phases, i.e., the
turbulent generalization of the coherent nonlinear dispersion
equations discussed by Joyceet al.13 and by Klimas.14 Yoon
also formulated a generalized weak turbulence theory which
incorporates the harmonic Langmuir wave as part of the sys-
tem of eigenmodes in a turbulent plasma.

The purpose of the present paper is to present the nu-
merical solution of the generalized weak turbulence kinetic
equations, and to examine the characteristics and time-
development of the self-consistent system of electrons,
Langmuir and ion-sound modes as well as the harmonic
mode. The structure of the paper is the following: In Sec. II
we formulate the theoretical equations to be numerically ana-
lyzed in detail. In Sec. III we conduct the numerical compu-
tation of the equations. Finally, some comments on the re-
sults obtained and on the perspectives for future work appear
in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Nonlinear dispersion relation for the harmonic
Langmuir mode

For the sake of completeness, let us briefly review the
nonlinear eigenmode analysis within the framework of the
generalized weak turbulence theory.52 By way of doing so,
we also address some ambiguities associated with the ap-
proximate form of the nonlinear dispersion relation, as it
appears in Ref. 52. The eigenmode of the nonlinear disper-
sion equation of interest to us corresponds to the first har-
monic (n52) Langmuir mode, with wave frequency in the
vicinity of 2vpe ~some authors refer to 2vpe-mode as ‘‘sec-
ond’’ harmonic, 3vpe-mode as ‘‘third’’ harmonic, etc., but
our convention here is thatvpe Langmuir mode is the fun-
damental, 2vpe-mode being its first harmonic, 3vpe-mode
being the ‘‘second’’ harmonic, and so on!. In order for this
mode to exist, a finite but not necessarily substantially high
level of Langmuir wave turbulence is required. If we retain
the nonlinear wave coupling term which arises from the pres-
ence of a broaden spectrum of incoherent Langmuir waves,
then the nonlinear dispersion equation can be shown to be
given by a generic form,52

ReS e~k,v!24 (
s8561

3E dk8
ux (2)~k8,s8vk8

L uk2k8,v2s8vk8
L

!u2

e~k2k8,v2s8vk8
L

!
I L

s8~k8!D
50, ~5!

wherev is the dispersion relation for the nonlinear eigen-
mode~harmonic Langmuir mode!, which is expected to pos-

sess frequency near 2vpe , I L
s8(k8) is the spectral wave in-

tensity associated with the primary~fundamental! Langmuir
wave. In this notation,s51 ands521 represents, respec-
tively, forward and backward propagating components of the
primary Langmuir waves. The quantitye(k,v) and
x (2)(k1 ,v1uk2 ,v2) are the linear dielectric response func-
tion and the second-order nonlinear susceptibility, respec-

tively, defined in Eq.~4! of Ref. 52. From Eq.~5! one can
easily see that if we ignore the wave coupling term, the dis-
persion relation reduces to the usual linear limit,

Ree~k,v!50.

In the present formalism we restrict ourselves to the so-
called kinetic instability limit, in which the angular fre-
quency is considered to be real with an implicit infinitesi-
mally small but positive imaginary part,v5v1 i0, in Eq.
~5!. Essentially, the harmonic Langmuir mode solution,v
5vk

N;2vpe and k5kN;2kL is possible because (v,k)
5(2vpe ,2kL) is a quasi-root of the denominator on the
right-hand side of Eq. ~5!, e(k2k8,v2vk8

L );e(kN

2kL ,vk
N2vpe);e(kL ,vpe)'0. However, such a solution

cannot be an exact root, otherwise it will lead to a singular-
ity, but rather, the denominator must be of the same order of
magnitude as the numerator, which balances the linear re-
sponse terme(k,v). The simplified expression for the non-
linear dispersion equation is derived in Ref. 52, and is given
by

0512
vpe

2

v2 S 113k2lDe
2

vpe
2

v2 D
2

1

vpe
4

e2

~4me!
2 E dk8

ak,k8
2

~v2vk8
L

!2 I L~k8!

~v2vk8
L

!22vk2k8
L2 ,

~6!

ak,k85
~kÃk8!213~k"k8!@k"~k2k8!#

k k8 uk2k8u
,

where vk
L5vpe(113k2lDe

2 /2) is the familiar fundamental
Langmuir mode dispersion relation. If we assume that the
solutionv of interest lies nearvpe then one can see that the
denominator (v2vk8

L )22vk2k8
L2 ;2vpe

2 Þ0. As such, the
wave coupling term can be ignored. This situation corre-
sponds to the fundamental Langmuir mode solution. On the
other hand, if we are interested in the regime,v;2vpe ,
then we can see that the denominator can be very small, as
explained above. Thus, the balance of the linear response
~the first two terms on the right-hand side! and the nonlinear
wave coupling term~the last term on the right-hand side!
leads to the desired solution with characteristic frequency
near 2vpe , i.e., the eigenmode of a nonlinear dispersion re-
lation.

In Ref. 52, an approximate analytical solution to Eq.~5!
is given, which follows from a number of simplifying as-
sumptions. The specific form of the approximate solution
suggested in Ref. 52 is given by

v5vk
N5vpe~213k2lDe

2 /41hk!,
~7!

hk5
2

3vpe
4

e2

~4me!
2 E dk8 ak,k8

2 I L~k8!.

However, the thermal correction factor to the dispersion re-
lation, namely, 3vpek2lDe

2 /4 does not seem to be in agree-
ment with the simulated nonlinear mode dispersion
relation,21–23 which closely resembles 3vpek2lDe

2 /2. The
original solution Eq.~7! is based upon a number of approxi-
mations, and therefore, it is possible that the detailed numeri-
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cal factor of 3/4 may not necessarily represent the best
choice. For this reason, it is better to devise an alternative
approximation scheme. In the present approach, let us first
approximate the resonant denominator by

~v2vk8
L

!22vk2k8
L2

5~v2vk8
L

1vk2k8
L

!~v2vk8
L

2vk2k8
L

!

'2vpe@v22vpe23vpek
2lDe

2

23vpe~k822k"k8!#.

We then approximate Eq.~6! by assuming thatv'2vpe

everywhere except in the denominator of thek8 integral.
Neglecting the small thermal correction associated with the
linear response and ignoring terms which contain the integra-
tion variablek8 in the denominator, we obtain

0'12
2

3vpe
3

e2

~4me!
2

*dk8 ak,k8
2 I L~k8!

v22vpe23vpek
2lDe

2 /2
.

From this, we now obtain an alternative approximate
expression for the harmonic Langmuir mode,

v5vk
N5vpe~213k2lDe

2 /21hk!. ~8!

In the subsequent analysis, we shall resort to this expression
for the harmonic Langmuir mode, which is an eigenvalue of
the nonlinear dispersion equation, hence the superscript
‘‘ N. ’’ The above dispersion relation is to be considered to-
gether with the linear eigenmode dispersion relations, the
well-known ~fundamental! Langmuir mode dispersion rela-
tion,

vk
L5vpe~113k2lDe

2 /2!,

and the ion-sound~or ion-acoustic! mode dispersion relation,

vk
S5vpe~me /mi !

1/2~113Ti /Te!
1/2klDe ,

and these three modes form the basic excitations of turbulent
unmagnetized plasma in the electrostatic approximation.

Note that we are concerned with the first harmonic~i.e.,
vk

N5vk
L2) mode only. However, the analysis by Yoon52 can

be generalized to all higher harmonics by making use of the
first-harmonic (vk

L2) mode as the source of nonlinear wave-
coupling for the second-harmonic (vk

L3) mode, and so on.
The resulting nonlinear dispersion relation is expected to be
of the form

05ReS e~k,svk
Ln!24 (

s8561
E dk8

3
ux (2)~k8,s8vk8

L(n21)uk2k8,svk
Ln2s8vk8

L(n21)
!u2

e~k2k8,svk
Ln2s8vk8

L(n21)
!

3I L(n21)
s8 ~k8!D ,

where n52,3,4,̄ , the superscriptsn21 and n designate
the (n21)th andnth harmonics of the Langmuir mode. For
n51 ~the fundamental!, we simply ignore the nonlinear
wave-coupling term. The detailed analysis of the above dis-
persion relation is beyond the scope of the present article,
however.

Finally, note that although we consider only the real part
of Eq. ~5! to determine the wave dispersion relation, the
imaginary part of Eq.~5! is not discarded, but rather, it is
incorporated in the wave kinetic equation for theN mode,
where, together with other nonlinear responses, the imagi-
nary part of Eq.~5! balances the time-rate of change in the
wave intensity,]I N(k,t)/]t,52

] I N~k,t !

]t
52

2 Ime~k,svk
N!

] Ree~k,svk
N!/]svk

N I N~k,t !2
4

] Ree~k,svk
N!/]svk

N

3 (
s8561

E dk8 Im S 2 $x (2)~k8,s8vk8
L uk2k8,svk

N2s8vk8
L

!%2

3P 1

e~k2k8,svk
N2s8vk8

L
!

2x̄ (3)~k8,s8vk8
L u2k8,2s8vk8

L uk,svk
N! D I L~k8,t ! I N~k,t !

2
4p

] Ree~k,svk
N!/]svk

N (
s8,s9561

E dk8ux (2)~k8,s8vk8
L uk2k8,s9vk2k8

L
!u2

3 S I L~k8,t ! I N~k,t !

] Ree~k2k8,s9vk2k8
L

!/]s9vk2k8
L 1

I L~k2k8,t ! I N~k,t !

] Ree~k8,s8vk
L!/]s8vk

L D d~svk
N2s8vk

L2s9vk2k8
L

!. ~9!

In the above,x̄ (3)(k1 ,v1uk2 ,v2uk3 ,v3) is the third-order
nonlinear susceptibility@see Eq.~4! of Ref. 52#.

B. Particle and wave kinetic equations

In Ref. 52, particle kinetic equations for the ions and
electrons which generalize the conventional quasilinear dif-

fusion equation were obtained. In the present approach, how-
ever, we take a simpler view in that the ions are considered
as quasi-stationary and the electrons are assumed to be gov-
erned by the simple quasilinear diffusion equation, except
that the wave intensity which enters the diffusion coefficient
is the combined Langmuir and the nonlinear eigenmode in-
tensities,
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]Fe~v,t !

]t
5

pe2

me
2 (

s561
E dk

k2 S k"
]

]vD
3H @d~svk

L2k"v! I L
s~k,t !1d~svk

N2k"v!

3I N
s~k,t !# S k"

]Fe~v,t !

]v D J . ~10!

The Langmuir wave kinetic equation which takes into
account the nonlinear coupling with the harmonic nonlinear
mode is derived in Ref. 52, which is given by

]I L
s~k,t !

]t
5S ]

]t U
ind. emiss.

1
]

]t U
decayLS

1
]

]t U
decayLN

1
]

]t U
ind. scatt.LL

1
]

]tU
ind. scatt.LN

D I L
s~k,t !, ~11!

where the first term on the right-hand side represents the
induced emission/absorption process, which is the only term
considered in the traditional quasilinear theory, the second
term represents the three-wave decay/coalescence term con-
sidered in the literature on conventional weak turbulence
theory, the third term corresponds to the modification to the
traditional Langmuir wave kinetic equation which comes
from the three-wave decay/coalescence process involving the
Langmuir wave and the nonlinear harmonic mode, the fourth
term represents the conventional induced-scattering term
which involves two Lagmuir waves interacting with the par-
ticles via nonlinear wave-particle interaction process, and the
final term corresponds to the induced-scattering process in-
volving a Langmuir mode and the nonlinear eigenmode, me-
diated by the particles~electrons!. Specific expressions for
the various processes are given by

]I L
s~k,t !

]t
U

ind. emiss.

5svk
LE dv GL

s~k,v! k"
]Fe~v,t !

]v
I L

s~k,t !,

GL
s~k,v!5p

vpe
2

k2 d~svk
L2k"v!,

]I L
s~k,t !

]t
U

decayLS

5 (
s8,s9561

svk
LE dk8 VL,S

s,s8,s9~k,k8!$ svk
L I L

s8~k8,t ! I S
s9~k2k8,t !

2 @s8vk8
L I S

s9~k2k8,t !1s9vk2k8
L I L

s8~k8,t !# I L
s~k,t !%,

VL,S
s,s8,s9~k,k8!5

p
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U
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p

32vpe
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2 d~svk
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L
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N
!,

]I L
s~k,t !

]t
U

ind. scatt.LL

52 (
s8561

E dk8E dv UL,L
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•

]
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vpe
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~k"k8!2

k2 k82 d@svk
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L
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]I L
s~k,t !
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L (

s8561
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] Fe~v,t !

]v
I N

s8~k8,t ! I L
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p

16vpe
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e2

me
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L2s8vk8
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N
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In the above, the coefficientak8,k is defined exactly as in Eq.
~6!, except thatk and k8 are interchanged. Similarly, the
quantityhk8 is the same as that defined in Eq.~7!, except for

the argument,k8. In the definition forUL,N
s,s8(k,k8,v), we

have explicitly used the fact that in its derivation, the as-
sumption thats ands8 be of the same sign has been used.
Such an assumption was implicitly used in Ref. 52, but not
explicitly stated there.

In Eq. ~11!, an induced scattering term involving an ion-
sound wave, Langmuir wave and the ions, which appears in
Ref. 52 is ignored. Reference 52 shows that such a term is
dictated by the resonance condition,d(s8vk8

S
2k"v), with an

appropriate scattering coefficientUL,S
s,s8(k,k8,v). This type

of process, which appears as a nonlinear correction term in
the wave kinetic equation, yet is dictated by linear wave-
particle resonant interaction condition, is not considered in
the standard literature, and although such a term naturally
appears in the generalized weak turbulence theory of Ref. 52,
its consequence or interpretation is not clear at this point. A
preliminary numerical analysis of weak beam-plasma inter-
action which includes such a term on the right-hand side of
Langmuir wave kinetic equation shows that it only has a
marginal effect. Therefore, we have decided to ignore such
an interaction term at the outset in the present numerical
analysis.

The wave kinetic equation for the harmonic nonlinear
mode, the generic form of which is given by Eq.~9!, can be
made explicit as

]I N
s~k,t !

]t
5

]I N
s~k,t !

]t
U

ind. emiss.

1
]I N

s~k,t !

]t
U

decayNL

1
]I N

s~k,t !

]t
U

ind. scatt.NL

, ~13!

where the first term on the right-hand side represents the
induced emission of harmonic nonlinear eigenmode, the sec-
ond term depicts the decay/coalescence of nonlinear mode
into two Langmuir waves and vice versa, and the third term
represents the induced scattering of nonlinear mode off elec-
trons mediated by the enhanced Langmuir turbulence. These
terms are given by

]I N
s~k,t !

]t
U

ind. emiss.

5svk
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s~k,v! k

•

]Fe~v,t !
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I N
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N2k"v!,

]I N
s~k,t !

]t
U

decayNL

52 (
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s8~k8,t !# I N
s~k,t !,

VN,L
s,s8,s9~k,k8!5

p

16vpe
4

e2

me
2 ak,k8

2

3d~svk
N2s8vk8

L
2s9vk2k8

L
!,

]I N
s~k,t !

]t
U

ind. scatt.NL

5 (
s8561
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NE dk8E dv

3UN,L
s,s8~k,k8,v! ~k2k8!

•

] Fe~v,t !

]v
I L

s8~k8,t ! I N
s~k,t !,

UN,L
s,s8~k,k8,v!5

p

4vpe
2

e2

me
2

3
ak,k8

2 ds,s8

uk2k8u2 ue~k2k8,svk
N2s8vk8

L
!u2

3d@svk
N2s8vk8

L
2~k2k8!•v#,

ue~k2k8,svk
N2s8vk8

L
!u25u 3 @2~k2k8!"k82k2#lDe

2

12hk u2. ~14!

The reader may notice that the detailed expression for
ue(k2k8,svk

L2s8vk8
N )u2 and ue(k2k8,svk

N2s8vk8
L )u2 in

Eqs. ~12! and ~14! differ from those found in Ref. 52. The
primary reason is because of the different thermal correction
factor associated with the nonlinear mode dispersion rela-
tion. In Ref. 52, the expressionvk

N5vpe(213k2lDe
2 /4

1hk) was used. In contrast, we now adopt the expression
vk

N5vpe(213k2lDe
2 /21hk), as already explained. How-

ever, in view of the fact that the detailed expression for ther-
mal correction factor in the wave dispersion relation is un-
certain, and thate(k2k8,svk

L2s8vk8
N ) and e(k2k8,svk

N

2s8vk8
L ) are both quite small in magnitude such that any

small modification to the thermal factor may lead to poten-
tially large differences, we have decided to adopt a much
simpler approach in computing the detailed expression for
ue(k2k8,svk

L2s8vk8
N )u2 and ue(k2k8,svk

N2s8vk8
L )u2.

Specifically, we have employed the simplifying approxima-
tion, vk

N.vpe(21hk).
Finally, the wave kinetic equation which governs the de-

velopment of ion-sound wave intensity is given by

]I S~k,t !

]t
5

]I S~k,t !

]t U
ind. emiss.

1
]I S~k,t !

]t U
decaySL

, ~15!

where the first term represents the induced emission/
absorption of ion-sound waves and the second term repre-
sents the decay process. These are given by
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]I S~k,t !
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ind. emiss.

5svk
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s~k,v! S k"
]

]vD FFe~v,t !

1
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mi
Fi~v!G I S
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s~k,v!5p mk

vpe
2
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5 (
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L

2s9vk2k8
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!. ~16!

In Eq. ~15!, we have ignored the induced scattering term
which involves two ion-sound waves and the ions. This pro-
cess is much slower than any of the processes considered
hitherto.

C. One-dimensional formulation

In what follows, we simplify the analysis by considering
a one-dimensional limit where both the particles and the ex-
cited waves propagate along the same or opposite directions.
Defining the following nondimensional quantities:

z5v/vpe , q5kve /vpe , t5vpet, u5v/ve ,
~17!

whereve
252Te /me is the thermal velocity of bulk electrons,

and normalizing the distribution functions and the wave
spectral intensities,

E dv Fa~v !5E du Fa~u!,

~18!
1

8pn̂Te
E dk Ia

s~k!5E dq Ia
s~q!,

wherea5L,S,N denotes the wave modes, the kinetic equa-
tions for waves and particles can be written as follows:
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L2qu! I L
s~q!1p szq

L (
s8,s9561

E
2`

`

dq8 S j uq2q8u $ szq
L I L

s8~q8! I S
s9~q2q8!

2@s8zq8
L I S

s9~q2q8!1s9zq2q8
L I L

s8~q8!# I L
s~q!%d~szq

L2s8zq8
L

2s9zq2q8
S

!

1
9 q82

8
@szq

L I L
s9~q2q8!2s9zq2q8

L I L
s~q!# I N

s8~q8! d~szq
L2s8zq8

N
2s9zq2q8

L
!D 2p (

s8561
E

2`

`

dq8E
2`

`

du

3F ~q2q8! I L
s8~q8! S ~szq

L2s8zq8
L

!
]Fe~u!

]u
2

me

mi
szq

L ]Fi~u!

]u
D d@szq

L2s8zq8
L

2~q2q8! u#

2
szq

L q82 ds,s8 I N
s8~q8!

4~q2q8! @2q~q2q8!1q8224hq8/3#2

]Fe~u!

]u
d@szq

L2s8zq8
N

2~q2q8! u#G I L
s~q!, ~19!
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where we have omitted the time variablet from various dy-
namic quantities for the sake of simplicity. In the above

zq
L5113q2/4,

zq
S5j q~11q2/2!21/2'j q,

~23!
j5~me/2mi !

1/2~113Ti /Te!
1/2,

zq
N5213q2/413g q2/4, g5 (

s561
E

0

`

dq IL
s~q,t!,

are the dispersion relations for Langmuir, ion-sound and non-
linear waves, respectively, and where we have used the fact
that lDe

2 5Te /(4pn̂e2)5ve
2/(2vpe

2 ).
Equations~19!–~20! have to be solved simultaneously in

order to obtain a self-consistent solution for the evolution of
the spectral intensities of the waves and particle distribu-
tions. Before we present the numerical solution, we note that
the spectral intensity for waves propagating in the forward
direction (s51) is different from the intensity for waves
propagating backwards (s521), that is, I a

6(q)ÞI a
7(q).

The difference shows itself when one considers the solutions
for the resonance conditions contained in the delta functions
in Eqs. ~19!–~20!. Thus, first of all, one has to perform a
careful investigation of all existing physical solutions of this
set of delta distributions. In order to accomplish that, one has
to consider all possible combinations of the dummy variables
(s,s8,s9). For those terms of Eqs.~19!–~20! that corre-
spond to the standard weak-turbulence theory, this analysis
was already performed in Ref. 53 and will not be repeated
here. We will only mention that, thanks to the symmetry
relations

z2q
a 52zq

a , I a
s~2q!5I a

s~q!, ~24!

for a5L,S,N, we can restrict the analysis toq.0 only. We
warn the readers thatI a

6(q)ÞI a
7(2q), but that the above

symmetry is applicable only for the same sign ofs.
Here, a word of caution on the application of the above

symmetry condition is called for. From Eq.~23!, it is easy to
see that the ion-sound wave dispersion relation,zq

S5j q, au-
tomatically satisfies the symmetry condition,z2q

S 52zq
S .

However, at first sight, theL and N mode dispersion rela-
tions, zq

L5113q2/4 and zq
N5213q2/413gq2/4, respec-

tively, do not appear to satisfy the required symmetry. This
apparent contradiction can be easily resolved if we interpret
that the expressionszq

L5113q2/4, zq
S5j q, and zq

N52
13q2/413gq2/4, are applicable only for positiveq, while
for negative q, we simply impose symmetry rule,z2q

a

52zq
a , (a5L,S,N). In short, we apply the following rule

for the dispersion relations:

zq
L5113q2/4, z2q

L 52zq
L , ~q.0!,

zq
S5j q, z2q

S 52zq
S , ~q.0!, ~25!

zq
N5213q2/413gq2/4, z2q

N 52zq
N , ~q.0!.

In the following, we are only interested in positiveq
space. In Eqs.~19!–~21!, we also convertq8-integrals,
*2`

` dq8, to integrals over positiveq8 range,*0
` dq8, by

invoking the symmetry condition Eq.~24!. Here, we note

that although we compute the wave intensities over positive-
q space only, in the subsequent plots of numerical results,
however, we will plot the intensity of the backward-
propagating mode,I a

2(q) in the negative-q space, again in-
voking the symmetry relation Eq.~24!, in order to provide
the view of completeq-space. Moreover, since we will pay
our attention to beam velocity in the range of 5 to 10 times
the thermal velocity of the bulk electrons, it is evident that
the significant wave-particle and wave–wave interactions
take place only forq,1.

In what follows, let us pay attention to the terms which
pertain to the harmonic nonlinear eigenmode, which appear
in the three-wave decay and induced-scattering resonance
conditions in Eqs.~19! and ~21!. These are also the terms
labeled withLN andNL in Eqs.~12! and~14!. Consider the
three-wave resonant interaction condition,

szq
L2s8zq8

N
2s9zq6q8

L
50. ~26!

Suppose that the ratio of beam to thermal speeds is'5.
Then, according to the linear growth rate prediction, the pri-
mary Langmuir wave should peak aroundq;0.2. A simple
analysis of the above relation shows that the only possible
solutions occur fors52s85s9 and for q;1.6, which is
high above theq values where the interactions are bound to
occur. Therefore, all waves in thisq regime are completely
damped. Thus, we can conclude that

]I L
s~q,t!

]t
U

decayLN

'0. ~27!

The induced-scattering processes involving the nonlinear
mode are dictated by the nonlinear wave-particle resonance
condition,

szq
L2s8zq8

N
2~q6q8! u50, ~28!

where the6 signal takes into account the fact that we are
considering only theq.0 region. This means that the elec-
trons must have a resonant velocity of

ures5
szq

L2s8zq8
N

q6q8
. ~29!

Again, assuming a normalized beam velocity for the elec-
trons around five times the thermal speed, the maximum lin-
ear growth should occur for Langmuir waves withq;qL

'0.2. Since the nonlinear mode has a frequency about twice
that of fundamental Langmuir wave, the main wave-particle
interaction is expected to occur for a phase velocity similar
to the fundamental, which means thatq8;qN'2qL50.4.
For forward-propagating Langmuir waves (s51) we have
the following possibilities:ures5(zq

L2zq8
N )/(q2q8)'1/qL

55, in this case, the resonant velocity is near the beam ve-
locity and this term can have an important effect on the in-
ducedLN scattering. The only other possibility isures5(zq

L

1zq8
N )/(q1q8)'5, which has to be kept. For backward-

propagating Langmuir waves (s521) we have the possi-
bilities: ures5(2zq

L1zq8
N )/(q2q8)'21/qL525 and ures

52(zq
L1zq8

N )/(q1q8)'21/qL525, which will affect the
particles in the tail of the distribution with negative velocity.
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For the NL term, one can easily show that the three-
wave decay processes will also not contribute to the dynam-
ics of the system. Thus,

]I N
s~q,t!

]t
U

decayNL

'0. ~30!

On the other hand, for the induced-scattering process to be
effective, the electron resonant velocity must be

ures5
szq

N2s8zq8
L

q6q8
. ~31!

Again, using the case of beam to thermal speed ratio of 5, we
see that in this case, the main contribution to the resonance
will come fromq;qN'0.4, andq8;qL'0.2. Fors51 we

have ures5(zq
N2zq8

L )/(q2q8)'1/qL55 and ures5(zq
N

1zq8
L )/(q1q8)'1/qL55. Again, both terms are equally im-

portant, and thus, will be kept. Fors521 we haveures

5(2zq
N1zq8

L )/(q2q8)'25 and ures52(zq
N1zq8

L )/(q
1q8)'25, which can also be of equal significance, and
may affect the electrons in the tail with negative speeds.

As mentioned, the ions will be considered stationary,
with their distribution function in normalized form given by

Fi~u!5
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Te
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u2D .

After performing all possible integrations, the resulting
equations are
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In the above,p is defined by

p54j/3,

j being defined in Eq.~23!. Equations~32!–~35! must be
solved simultaneously in order to describe correctly the dy-
namics of the wave-particle system. In the next section, we
present numerical solutions of this set of equations. We reit-
erate that Eqs.~32!–~34! are applicable forq.0 only. How-
ever, in plotting the numerical results, we invoke the sym-
metries, I L

2(q)5I L
2(2q), I S

2(q)5I S
2(2q), and I N

2(q)
5I N

2(2q), to plot backward-propagating wave intensities in
the negativeq-range.

III. NUMERICAL SOLUTIONS

In this section, we present some numerical solutions of
Eqs.~32!–~35!. Let us further define normalized quantities,

d5
ne

n0
, rb5

Tb

Te
, r i5

Ti

Te
, ub5

Vb

vb
, m5

me

mi
,

~36!

wherene andn0 are number densities for the beam electrons
and the background thermal electrons, respectively;Tb rep-
resents the thermal spread~kinetic temperature! associated
with the beam;Vb and vb5(2Tb /me)

1/2 are the average
beam speed and thermal speed of the beam electrons defined
in the reference frame of the beam. In terms of these quan-
tities, the initial electron distribution function and the quasi-
stationary ion distribution are given, respectively, by

Fe~u,0!5
12d

p1/2 exp~2u2!1
d

p1/2rb
1/2expS 2

~u2ub!2

rb
D ,

Fi~u!5
1

p1/2~mr i !
1/2expS 2

u2

mr i
D . ~37!

In the numerical computation, we have chosend5ne /n0

5231024, rb5Tb /Te51, r i5Ti /Te51/7, ub5Vb /vb

55, and of course,m51/1836. Sets of parameters which
include the present choice were adopted in our recent study
on numerical analysis of conventional weak turbulence ki-
netic equation in which nonlinear eigenmode is not consid-
ered as part of the eigenmode system.53 The purpose of
choosing the same set of parameters as in Ref. 53 is so that
we can make direct comparisons, and assess the dynamical
role of the nonlinear eigenmode~the harmonic Langmuir
wave!.

Figure 1 shows the self-consistent time-development of
the total ~thermal plus beam! electron distribution,Fe(u).
The vertical axis represents the logarithmic of the distribu-
tion, log10Fe(u), while the two horizontal axes represent the
normalized speed,u5v/ve , and normalized time,t5vpet,
respectively. We have chosen to plot the numerical results at
time intervals corresponding tot50, 250, 500, 1000, 2000,
3000, 4000, 6000, 8000, and 13104. The development of
Fe(u) during relatively early times is as expected according
to the usual quasilinear diffusion theory in that the bump-on-
tail feature rapidly flattens out to form a plateau in velocity
space. The long-time behavior of the electrons shows that the

energetic tail develops for both the forward- and backward-
propagating electrons, and a plateaulike feature is seen to
form for the electrons possessing negative speed. These fea-
tures are more or less identical to that already discussed in
Ref. 53, where it is explained that the heating of electrons
and negative-u plateau are owing to the combined effects of
continuous absorption of the initial level of turbulence and
the feedback effects of wave-coupling processes. From this,
it may be concluded that the excitation of additional eigen-
mode~i.e., the harmonic Langmuir mode! does not affect the
particles in any significant manner.

Let us now move on to the discussion of wave dynamics.
In Fig. 2, we plot the~fundamental! Langmuir-wave intensity
spectrum,I L(q), in logarithmic vertical scale versus normal-
ized wave number,q5kve /vpe , and normalized time,t
~left-hand panel!. Here, the time-dependence ofI L(q,t) is
implicitly assumed. To aid the visualization, we have added a
small constant,e5131026 to the spectrumI L(q). As a re-
sult, Fig. 2 actually displays log10@ I L(q)1e#. In order to
help the readers interpret the numerical results in a more
quantifiable way, we have also plotted the same results in
two-dimensional format~right-hand panel!, superposing the
curves at different time steps, although in this format it be-
comes difficult to distinguish results at different time steps.
The best way to look at our result is to compare the left- and
right-hand panels.

Note that the portion of the wave spectrum correspond-
ing to q.0 is the forward-propagating mode,I L

1(q), while
the negativeq represents the backward-propagating mode,
I L

2(q) ~originally computed overq.0!, which is replotted
over2q using the symmetry property,I L

2(2q)5I L
2(q). The

initial level of Langmuir mode is taken to be a flat spectrum
over the entire range ofq values considered in our compu-
tation (20.5,q,0.5). That is, we assumed that initially,
the spectrum is give byI L

1(q,0)5I L
2(q,0)5231024. Again,

this choice is the same as that of Ref. 53. We could have
adopted a more realistic profile such as a certain power-law
spectrum, or that computed on the basis of thermal sponta-
neous fluctuation theory. However, as the present formalism

FIG. 1. Plot of electron distribution function,Fe(u,t), vs u andt, for the
case ofnb /n05231024, ub55, Te /Ti57.

105Phys. Plasmas, Vol. 9, No. 1, January 2002 Generation of harmonic Langmuir mode by beam-plasma . . .

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Wed, 04 May

2016 16:41:34



does not have the single-particle fluctuation effects, the spe-
cific choice of initial wave spectrum becomes arbitrary. For
this reason, we chose a simple white-noise flat spectrum. The
initial wave level is indicated by the straight line.

As Fig. 2 shows, the modes in the linearly unstable re-
gime ~aroundq'1/550.2! begin to grow exponentially at
early times, but rapidly saturate as a result of the flattening
out of the beam electrons. Those modes in the damped por-
tions of theq range undergo Landau damping. The damping
of the initial waves lead to the bulk electron heating in the
tail, as already indicated. Relatively small-q range (uq
u,0.2) does not suffer heavy Landau damping, and as a
result, the initial level of turbulence spectrum remains more
or less unchanged over time. Beyond the initial quasilinear
stage, the combined effects of induced-scattering off ions and
three-wave decay process lead to the formation of backscat-
tered Langmuir modes~negativeq in the range roughly cor-
responding toq'20.2! and long-wavelength (q;0) Lang-
muir modes, as discussed in Ref. 53.

Overall feature associated withI L(q), when compared
against that of Ref. 53, shows that the Langmuir mode dy-
namics is largely unaffected by the presence of nonlinear
eigenmode,N. This means that the additional nonlinear cou-
pling terms on the right-hand side of Eqs.~32! and ~34!,
which involve corrections due to the presence ofN-mode,
have relatively insignificant role in the Langmuir wave ki-
netic equation. As is well-known, the induced-scattering term
involving the electrons is largely unimportant. It turns out
that the nonlinear mechanisms responsible for the generation
of backward-propagating Langmuir mode are the induced-
scattering off ions and three-wave decay process, although
the scattering off ions is the more important of the two,
which is also well-known in the literature, and confirmed in
our recent work.53

Figure 3 plots the ion-sound wave intensity spectrum in
the same format as that of Fig. 2. The evolution ofI S(q) in
time is very similar to that shown in Ref. 53 in that the
S-mode continuously damp out over time, except nearq

FIG. 2. Plot of Langmuir wave intensity,I q
L(t), vs q andt ~left-hand panel!, for the case ofnb /n05231024, ub55, Te /Ti57, and with initial wave level

of I q
L(0)5231024. To aid the visualization, we have added a small constante5131026, so that the actual quantity plotted above is log10@ I L(q)1e#. The

right-hand panel is the same result shown in two-dimensional, log10@ I L(q)1e# versusq, format.

FIG. 3. Plot of ion-sound wave intensity,I q
S(t), in the same format as Fig. 2. Note that the peak nearq50 is simply the remnant wave intensity initially

imposed which is undamped.
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50, where the initially imposed wave intensity is largely
unchanged~note that the intensity does not grow higher than
the initial level!, and nearq50.4, where the peak in theq
spectrum is prominent. This is the result of weak decay in-
stability.

The dependence of the beam-plasma interaction process
on the various input parameters has been investigated in a
fairly extensive manner in Ref. 53, and thus we shall not
repeat such a study here. Among the findings of Ref. 53 are
that the increase in the electron-to-ion temperature ratio,
Te /Ti increases the efficacy of both the induced scattering
off ions and the decay instability, and that the choice of
initial wave level has a significant effect on the later evolu-
tion of the wave intensity.

We now focus our attention on the generation of har-
monic Langmuir mode, or equivalently, the nonlinear eigen-
mode,N. Figure 4 is the plot of wave intensity forN mode
in the same format as before. For the harmonic Langmuir
mode, we expect that the initial wave level should be very
low, since in the quiescent plasma, such a mode should be at
an extremely low level. The exact level of initialN mode
cannot be determined within the context of the present col-
lisionless theory. We thus made an arbitrary choice of
I N

1(q,0)5I N
2(q,0)5231026. The time evolution ofN-mode

intensity shows that the initial exponential growth is fol-
lowed by quasilinearlike saturation, with an overall temporal
rate of intensity amplification comparable to that ofL-mode.
Note that the wave frequency ofN mode is near 2vpe , and
the characteristic wave number is also about twice that ofL
mode. Note also that the bandwidth associated withN mode
in q-space is comparable toL mode. These characteristics
are in a reasonably good and qualitative agreement with re-
cent simulation results of harmonic Langmuir mode.21–23 It
is interesting to note that the backward-propagatingN mode,
i.e., I N

2(q), corresponding to the negativeq portion of the
total I N(q), is not excited.

To understand the dynamical role of each term on the
right-hand side of wave kinetic equation forN mode, we
have first ignored the nonlinear wave-coupling term on the
right-hand of Eq.~34!. The resulting equation is equivalent

to the usual quasilinear wave kinetic in which only the in-
duced emission/absorption effect is taken into account. We
then have ignored the induced emission term, but only re-
tained the second and third terms on the right-hand side of
Eq. ~34!, which represent the scattering ofN mode off elec-
trons induced by the presence ofL mode. By comparing the
two results, we may then determine the primary effect which
is responsible for the excitation of the harmonic Langmuir
mode, N. In principle, both the induced emission and in-
duced scattering can be of equal significance since the linear
resonant velocity,

ures56zq
N/q;65,

and nonlinear resonant velocity,

ures56~zq
N2zq8

L
!/~q2q8!;65,

are comparable. In the above estimates, we have used the
relations,zq8

L ;1, zq
N;2, q;0.4, andq8;0.2. However, the

result of our analysis shows that the induced emission/
absorption~quasilinear process! is the dominant term for the
excitation ofN mode, although the induced scattering effect
leads to gradual damping of the mode in later times.

The result of the comparative numerical studies is pre-
sented in Fig. 5. The two panels show the respective numeri-
cal result in which one of the two competing effects are
ignored. Figure 5 clearly shows that the induced emission is
the primary cause of the wave growth. As is well-known,
induced emission~or quasilinear process! is largely driven by
the positive gradient in the velocity distribution, such that the
quasi-saturation of the waves should be concomitant with the
particle plateau formation. Comparison of Fig. 1 and Figs. 4
or 5 ~left-hand panel! shows that, indeed, the saturation ofN
mode largely follows the plateau formation associated with
the electron beam distribution.

This finding is highly relevant to the earlier findings by
Klimas,14 who reports on the basis of his Vlasov simulations
that the harmonic modes begin to grow even in the linear
stage, and that the initial growth rates of the harmonic modes
are higher than the linear growth rate of the primary Lang-

FIG. 4. Plot of nonlinear eigenmode~harmonic Langmuir mode! intensity, I q
N(t), in the same format as Fig. 2, for the case ofnb /n05231024, ub55,

Te /Ti57, and with initial wave level ofI q
N(0)5231026.
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muir mode roughly by the mode number (gLn
max;ngL1

max). The
growth of the harmonic mode during the linear stage is easily
explained by the fact that the quasilinear process is the domi-
nant wave generation mechanism forN mode, which is
equivalent toL2 mode in the general scheme of harmonic
Langmuir modes of all order,Ln. The induced emission pro-
cess, which is essentially a linear instability in nature, causes
the harmonic mode to amplify during the same time period
over which the primary Langmuir waves amplify.

The observation by Klimas that the harmonic modes
possess higher initial growth rates than the fundamental
Langmuir mode~although harmonic modes saturate at much
lower levels! can also be explained. From Eq.~32!, the linear
growth rate of the primary Langmuir modeL ~or, L1! is
given by

gL~q!5gL1~q!5
pzq

L

q2

]Fe~u!

]u
U

u5z
q
L/q

. ~38!

In contrast, the ‘‘linear’’ growth rate of the ‘‘nonlinear’’
eigenmode,N ~or L2!, can be defined by@see Eq.~34!#

gN~q!5gL2~q!5
4pzq

N

q2

]Fe~u!

]u
U

u5z
q
N/q

. ~39!

Noting the fact thatgL should maximizes aroundq;0.2,
while gN should possess the peak aroundq;0.4, it can be
seen clearly that

gN
max;2gL

max, or gL2
max;2gL1

max. ~40!

In general, we expect that

gLn
max;ngL1

max, ~41!

although the present analysis is restricted ton52 only. De-
spite the fact that theN mode grows twice as fast as the
fundamentalL mode, we again note that it derives its free
energy from the beam. As the beam flattens out forming a
plateau, the free energy source of the harmonic mode~and
the fundamental mode, for that matter! is exhausted. Conse-
quently, the saturation of the harmonic mode occurs at the

same time period during which the primary Langmuir mode
undergoes the quasilinear saturation. Since the harmonic
mode starts to grow from a much lower initial level when
compared with theL mode, the saturation amplitude ofN
mode is also comparatively lower than that of theL mode.
This explains why the harmonic mode saturates at a much
lower level although it grow twice as fast initially. The basic
reason is the initially low level of harmonic mode which
leads to low subsequent saturation level.

Within the framework of the present collisionless theory,
the choice of initial wave level is arbitrary, although from
physical grounds we know that the harmonic Langmuir
mode should possess much lower initial wave level than that
of the fundamental Langmuir mode, since the notion of har-
monic mode is ill-defined when the plasma is quiescent. The
level of harmonic mode in a thermal plasma must be deter-
mined from the theory of spontaneous fluctuation in which
the effects of nonlinear mode coupling is incorporated. This
is beyond the scope of the present analysis. However, we
may discuss the effects of initial choice ofN mode on the
later time development of the same mode, by simply choos-
ing a different number for the wave intensity att50. There-
fore, we have considered a case of initialN-mode with one-
tenth the wave level as considered before, namely,I N(q,0)
5231027. The result is plotted in Fig. 6, where the earlier
case ofI N(q,0)5231026 and the new case are plotted side
by side, in a format where the fundamental Langmuir inten-
sity and the harmonic mode intensity are plotted in a com-
bined logarithmic plot, log10@ I L(q,t)1I N(q,t)1e#, where
e5131026 is added, as before, to aid visual presentation.
The same results are plotted in a 2D format in Fig. 7, in order
to aid the readers read the vertical scales more or less accu-
rately, although superposition of curves makes it difficult to
distinguish each curve. The dashed lines are the initial levels
of L andN modes, respectively. The best way to look at the
present result is compare both Figs. 6 and 7. Note that for
case~b!, which corresponds to lower initialN-mode level,
the saturatedN-mode level is much lower than that of case
~a!. Note also that the primary and backscattered Langmuir

FIG. 5. Comparative study of the effects due to induced emission and induced scattering. The result clearly shows that the induced emission process isthe
primary effect responsible for the generation of the harmonic Langmuir mode@panel~a!#, although panel~b! shows that the scattering leads to damping of the
harmonic mode at later times.
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waves possess slightly higher peaks in the case of lower
initial N-mode level~b!, than case~a!. This can be attributed
to the fact that, even though the harmonic mode does not
greatly affect the evolution ofL mode, it nevertheless affects
the L mode, since the harmonic mode extracts wave energy
from L mode.

IV. CONCLUSIONS AND DISCUSSION

In this article, we have numerically solved a one-
dimensional version of the generalized weak turbulence
equation for the first time. The generalized weak turbulence
theory52 incorporates the harmonic Langmuir mode as part of
the eigenmode system in a turbulent plasma. Textbook
plasma theory only considers Langmuir and ion-sound
modes as the eigenmodes of an unmagnetized plasma inter-
acting through electrostatic field in a uniform medium. In the
conventional view, plasma turbulence is described in terms
of mode coupling among Langmuir and ion-sound modes.
The generalized weak turbulence theory considers the har-
monic mode generation as part of the basic turbulent beam-
plasma interaction process. The present numerical analysis
shows that the harmonic mode grows from a low initial level

to a finite level due to an induced emission process, which is
essentially a linear instability process. That is, the generation
of ‘‘nonlinear’’ eigenmode is dictated by a ‘‘linear’’ wave-
particle interaction process. The initial growth rate of the
2vpe harmonic mode is shown to be twice as high as the
bump-on-tail instability growth rate, although the harmonic
mode saturates at a much lower level than that of the Lang-
muir mode. The basic reason is because the primary excita-
tion and saturation mechanisms for both the Langmuir and
harmonic modes are the same linear growth and quasilinear
saturation by plateau formation as in the classic bump-on-tail
instability and quasilinear saturation theory. The initially
much lower level of the harmonic mode when compared
with the fundamental Langmuir wave level is thus, directly
reflected in the saturated levels of the two modes.

The excitation of the 2vpe harmonic Langmuir mode
~and even higher-order harmonics as well, 3vpe , 4vpe , etc.!
is known since the late 1960s, first discovered through labo-
ratory experiments.45–47,10–12An early simulation study by
Joyceet al.13 also revealed the existence of such a mode.
Early theoretical attempts to explain such a phenomenon
were largely based upon the trapped particle dynamics.4,5,49

The harmonic Langmuir mode phenomemon was indepen-
dently rediscovered in the 1980s by Klimas through his Vla-
sov simulations14,16 and confirmed by Nishikawa and Cairns
in their particle simulation.18 More recent carefully designed
particle-in-cell and Vlasov simulations21–23 revealed that the
(2vpe) harmonic Langmuir mode possesses broad spectrum
comparable to the fundamental Langmuir mode, and that
such a mode is better characterized as a legitimate eigenos-
cillation of a plasma. This means that it is better to describe
the generation of broad-spectrum harmonic mode in terms of
random-phase turbulence theory, rather than in terms of co-
herent theories such as trapping theory. Generalized weak
turbulence theory52 does just that, as it treats the harmonic
Langmuir mode as a solution of a nonlinear dispersion equa-
tion, hence, a nonlinear eigenmode.

The present numerical solution confirms a number of
features associated with the harmonic mode as revealed

FIG. 6. Plot of combined wave intensity, log10@ I L(q,t)1I N(q,t)
1131026# vs q andt for the case when the initialN-mode wave level is
~a! I N(q,0)5231026, and when it is~b! I N(q,0)5231027. For both
cases, the initial Langmuir and ion-sound~not shown! mode intensities are
the same,I L(q,0)5I S(q,0)5231024.

FIG. 7. The same plot as in the previous figure, except that combined wave
intensity, log10@ I L(q,t)1I N(q,t)1131026#, is plotted versusq for cases
~a! and ~b!.
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through simulation studies. These include the excitation of
the harmonic mode during the linear stage, and the compa-
rable spectral characteristics of the fundamental and har-
monic Langmuir modes.

At this point, it is appropriate remark on the following
relevant fact: In an earlier theoretical discussion by Yoon54

on the so-called nonlinear beam instability, he predicts that
the nonlinear beam mode, which is essentially the same as
the present harmonic Langmuir mode in that it is a solution
to a nonlinear dispersion equation with frequency in the vi-
cinity of 2vpe , should grow in a linear fashion. This is in
qualitative agreement with the present finding. However, the
major difference is that the nonlinear beam instability pre-
dicts long-wavelength mode~k'0 range of the harmonic
mode! to grow, whereas the present numerical results show
that short-wavelength harmonic mode (k'vpe /vb) is ex-
cited with no evidence for the excitation of long-wavelength
harmonic Langmuir mode.

The limitations of the present study are, first, that the
single-particle fluctuations are ignored. As such, the choice
of the initial wave spectrum for both linear modes, i.e.,
Langmuir and ion-sound modes, as well as the harmonic
mode becomes arbitrary. From physical grounds, the har-
monic mode at the initial stage cannot be very high. How-
ever, the present theory cannot dictate the relative level of
harmonic to fundamental Langmuir wave level. The second
limitation is the fact that the present study is limited to first
harmonic (2vpe) mode only, although this deficiency can be
easily overcome by a straightforward generalization of the
present theory to include higher-order modes. These are the
subject of future studies.
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