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In this article, numerical solutions of the generalized weak turbulence equ&ith Yoon, Phys.
Plasmas7, 4858(2000] are carried out. In the generalized weak turbulence theory, the generation
of the 2w, -harmonic Langmuir mode is treated as a fundamental process in turbulent beam-plasma
interaction process, in addition to, and concomitant to, the well-known nonlinear processes such as
Langmuir and ion-sound mode coupling and wave-particle interactions. The present numerical
analysis shows that the harmonic mode, which is a solution to a nonlinear dispersion equation, hence
a “nonlinear” eigenmode, grows primarily due to an induced emission process, which is a “linear”
wave-particle interaction process. The harmonic Langmuir mode generation has been observed
since the late 1960s in laboratory experiments, simulations, and in space. However, adequate and
quantitative theoretical explanation has not been forthcoming. The present work represents a step
toward an understanding of such a phenomenon2@®2 American Institute of Physics.

[DOI: 10.1063/1.1421371

I. INTRODUCTION In the theory by ManheiméP, a beam-mode dispersion

relation,
The beam-plasma(or bump-on-tail instability has

played a crucial role in the development of nonlinear plasma ~ @~Kkvy, 1)

turbulence theories, the simplest of which is the well-known,

quasilinear theory? Although turbulence theories based ' assumed, where, k, andvy, represent the wave angular
maquency, wave number, and the average beam speed, re-

upon random-phase approximation cannot describe cohere ively. A dina o I th Id b N
nonlinear processes such as particle trappingyhich was spectively. According 1o linear Iheary, a cold beam canno
excite electrostatic mode with frequency above the plasma

observed in early numerical simulatiéng and ) - h L 4mne?lm) 2 i the el
experiment12 and thought to be one of the primary non- TEAUENCY.w > wpe, Wherewye=(4mhe’/me) *“is the elec-
ron plasma frequency, A, andm, being the unit electric

linear saturation mechanisms for the beam-plasma instabilit);,h th bient bl densit d elect
it is now known largely in part due to more carefully de- charge, the ambient plasma density, and electron mass, re-

signed simulatiorfs'3~%2 and experiment&!~?® that for a spectively. However, Manheimer assumes that such a solu-
weak or sufficiently warm beam, the incoherent turbulence©" 'S Val_'d for al freque_nmes,_ and finds that an approximate
theories provide a rather good description of the beam[en(_)rmallzed p'asm"’? d|sper§|_on_ relatibwomputed on the

plasma instability developmeht:2>3°Among these theories, basis of trapped particle equilibrium supports enhanced fluc-

a straightforward perturbative theory called the weak turpyluations at the multiple .harmo.nlcs. of the plasma frequency
lence theory}~**which uses the wave-field amplitude as an along the beam-mode dispersion line Ex),

expansion parameter, and which generalizes the quasilinear
theory, is most widely used.

An interesting phenomenon, first observed in 1967 bywhere n=1,2,3;--. However, as Dupree indicates latér,
Apel in his beam-plasma interaction laboratory experinfént, such modes are not genuine eigenmodes of a system, but are
and yet not adequately investigated in detail to this date, isjuasi-ballistic modes which can be related to the clump for-
the generation of harmonic Langmuir modes. Subsequemhation.
laboratory experiment$~124¢47and particle-in-cell and Vla- According to the theory proposed by O’'Neil and his
sov simulation§14161821.23 confirmed this finding, and colleagued;®> harmonic generation is attributed to electrons
space observations show that such a phenomenon may ocdwapped in a monochromatic large-amplitude wave. These au-
in a natural environmerf Most of the early theoretical at- thors consider the perturbed electric potential field computed
tempts to explain such a phenomenon were based upon paw the basis of complicated electron orbits in the field of a
ticle trapping dynamics and/or the so-called “ballistic’ large-amplitude wave. Then they show that the wave electric
quasi-beam mode generatibn®>4° field potential possesses the harmonic structure in frequency

0n~Nwpe, Ky=Nwpelvy, 2
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space with the plasma frequency as the fundamental frebeing the ambient magnetic field, are thermal eigenmodes of
quency unit. This theory assumes a cold beam interacting ithe fundamental cyclotron frequenay;~(}; .
a large-amplitude coherent wave, and as such, the theory is Such a characteristics associated with the harmonic
not fully self-consistent. Also, the harmonics predicted bymodes were revealed in more recent simulations by Kasaba
such a theory are, again, not eigenmodes of the system. and his colleagué$®3and by Schriveet al?* These authors
On the other hand, Joycet al’s explanatioh® and a  show that when plotted iw-k diagram, the Langmuir mode
similar theory by Klima&* are based upon a concept similar (denoted byL) and the harmonic Langmuir moddenoted
to the recently proposed theory by Y3érin that they in- by N in accordance with Ref. 52, and which corresponds to
volve an eigenmode of a nonlinear dispersion relation. In thdiarmonic mode number=2) appear to satisfy approximate
theories by Joycet al!® and Klimas!* the harmonic modes dispersion relations given, respectively, by
;elre treateq as Iegltlmatg eigenmodes of a plasma in which wk1~w e(1+3k2’\20e/2)5wk1
arge-amplitude Langmuir waves are excited. However, these P
theories are strictly coherent versions, which do not take the 0P~ wp( 2+ 3KNB 2+ )= 0}, ®)
finite wave spectrum into accournfLater interpretation by
Klimas'® however, relies on the electron-beam phase-spac#ith a broad spectrum for each mode centered arokind
vortex formation, or particle trapping dynamics, which is = ®pe/vp for the case ot 1 andk~2we/v}, for L2, spec-
similar in spirit with the earlier theoretical ide48*9 tral widths of both modes being roughly comparable. Here
Detailed Vlasov simulation analyses of electrostatichbe=Te/(4me?) is the square of the Debye lengff, is
Langmuir harmonic modes were first performed bythe electron temperature, andrepresents a small but finite
Klimas **®although Joycet al’s earlier simulation study ~ nonlinear frequency shift the magnitude of which is on the
also discusses the excitation of such modes. Klimas’ workgrder of the fundamental Langmuir wave intensity.
show that harmonic Langmuir modes possess the character- Note that the simulation by Schrivet al** deals with a
istics specified by Eq.2), namely, w,~nw,e and k, situation with a relatively dense beam. As a consequence, the
~nk_, where @,,k,) represents the angular frequency-simulatedL1 andL2 mode dispersion relations do not ex-
wave number pair of the theth harmonic. Moreover, it was actly follow Eq.(3), but rather the simulation exhibits signa-
shown that the harmonic modes possess the beam-modi¢res of both the beam-acoustic and Langmuir modes. In
characteristicsw,~k,v,. On such a basis, it could be ar- particular, the most intense simulated mode lies just be-
gued that the results of Klimas’ Vlasov simulations are inloW wpe, Which is typical of a strong-beam instability, and
overall agreement with ballistic beam-mode or single-waveikewise, L2 mode is also observed to be exicted slightly
theories***° The simulation by Nishikawa and Caiffis below 2w,.. In contrast, the present representationLdf
shows that the harmonic Langmuir modes can also be ex@ndL2 mode dispersion relatior{8), is applicable to a clas-
cited in the particle-in-cell simulation, which confirms the sical bump-on-tail instability situation, i.e., a tenuous beam
Vlasov simulation results. Their work shows that the excita-and sufficiently broad beam velocity spread, as will be spe-
tions of these modes are not likely to be numerical artifactgifically considered under the subsequent choice of physical
peculiar to Vlasov simulation somehow, but rather, are genuparameters. In this respect, results obtained by Kasaba and
ine dynamical results of a nonlinear plasma system. his colleague¥*® are more closely related to the present
Klimas' observation that the harmonic modes begin totheory.
grow even in the linear stage where the full phase-space References 21-23 only analyzed the fundamental and
vortex characteristics of particle trapping is presumed to bdirst harmonic, but presumably higher harmonics are ex-
not fully developed, is extremely interesting. He also notedPected to possess similar characteristics, namely,
that the higher the harmonic mode number, the faster the Ln_ 2y 2
initial (Iinego growth rate, although the harmonic modes X = wpeN+ 3KNDe/2H 77n), @
saturate at low amplitudes. As we will discuss, these findingsvith a spectrum ok values centered arouhd~nwpc/vy, . In
are highly relevant to the present theory. the above, we have denoted the nonlinear correction factor
It should be emphasized that the simulation studies byy, to indicate the possibility thay, may be different for
Joyceet al,*® Klimas*® and by Nishikawa and Cairtfs  each higher harmonics. In light of these developments, it is
are limited in the sense that full dispersive characteristics oimperative that we re-examine the theory of harmonic Lang-
the harmonic modes are not revealed. The characteristics ofrauir mode generation. In particular, it is desirable to explain
mode is best described in terms of an instantaneouthe harmonic Langmuir modes in terms of turbulence theo-
frequency-wave number dispersion relation. In a simulatiorries which imply broad wave spectrum by definition. It is
study, this can be obtained by plotting the intensity of a modelso desirable to formulate a theory in which the harmonic
in w-k space, averaged over a period of time interval. Thanodes can be described as eigenmodes of a turbulent
above cited works did not present such an analysis, andlasma. Note that random-phase averaged turbulence theo-
failed to observe that the harmonic modes are not excitedes exclude the trapping dynamics by default. Hence, the
along nondispersive beam-mode lines=kv,, [Eq. (1)], but  present approach is an alternative explanation to those theo-
rather, they appear as genuine eigenmodes, much like thies which rely on phase-space vortex dynarfiics16:4°
higher-order cyclotron harmonic modes in a warm magne-  With these aims in mind, YoGA obtained an eigenmode
tized plasma,w~n{); (e.g., Bernstein modgswhere () solution for the(first) harmonic Langmuir mode, by formu-
=e;B/m;c is the cyclotron frequency of particle specjes3 lating and solving a nonlinear dispersion equation which in-
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cludes broad spectrum of waves with random phases, i.e., thively, defined in Eq.4) of Ref. 52. From Eq(5) one can
turbulent generalization of the coherent nonlinear dispersioeasily see that if we ignore the wave coupling term, the dis-
equations discussed by Joyeeal1* and by Klimas'* Yoon  persion relation reduces to the usual linear limit,
also formulated a generalized weak turbulence theory which
) . . Ree(k,w)=0.
incorporates the harmonic Langmuir wave as part of the sys-
tem of eigenmodes in a turbulent plasma. In the present formalism we restrict ourselves to the so-
The purpose of the present paper is to present the nwzalled kinetic instability limit, in which the angular fre-
merical solution of the generalized weak turbulence kinetiqquency is considered to be real with an implicit infinitesi-
equations, and to examine the characteristics and timemally small but positive imaginary party=w+1i0, in Eq.
development of the self-consistent system of electrons(s). Essentially, the harmonic Langmuir mode solutien,
Langmuir and ion-sound modes as well as the harmonie= wi:'“pre and k=ky~2k, is possible becausew(k)
mode. The structure of the paper is the following: In Sec. ||=(2wpe,2k|_) is a quasi-root of the denominator on the
we formulate the theoretical equations to be numerically anaright-hand side of Eq. (5), e(k—k’,o— w::/)we(kN
Iyz_ed in detail. In S_ec. 11 we conduct the numerical compu- — ’w'k“_ wpe) ~ €(KL ,wpe) ~0. However, such a solution
tation of the equations. Finally, some comments on the regannot be an exact root, otherwise it will lead to a singular-
sults obtained and on the perspectives for future work appeagy, put rather, the denominator must be of the same order of

in Sec. IV. magnitude as the numerator, which balances the linear re-
sponse terme(k,w). The simplified expression for the non-
Il. THEORETICAL FRAMEWORK Iti)near dispersion equation is derived in Ref. 52, and is given
y

A. Nonlinear dispersion relation for the harmonic

. 2
Langmuir mode

2
2 “pe
1+3k2>\D67

w
0=1-—5
For the sake of completeness, let us briefly review the w
nonlinear eigenmode analysis within the framework of the 1 o2 f ,ai,k’ (w—wt,)zlL(k’)

generalized weak turbulence thedfyBy way of doing so, - 512 ,
we also address some ambiguities associated with the ap- @pe (4Me) (0= ) —o ",
proximate form of the nonlinear dispersion relation, as it 2 , L

appears in Ref. 52. The eigenmode of the nonlinear disper- akk,:(ka ) +3(,k K )[,k (k—k )],
sion equation of interest to us corresponds to the first har- kK" [k—k’|

monic (h=2) Langmuir mode, with wave frequency in the
vicinity of 2w, (some authors refer tos2,.-mode as “sec-
ond” harmonic, 3v,e-mode as “third” harmonic, etc., but
our convention here is that,, Langmuir mode is the fun- denominator (v—wb)z—wkfw—wﬁeio- As such, the

damental, Z,-mode being its first harmonic, ,-mode wave coupling term can be ignored. This situation corre-

being the §econo_l _harmonic, and so )o_nn order fo_r this . sponds to the fundamental Langmuir mode solution. On the
mode to exist, a finite but not necessarily substantially high

. . ; = other hand, if we are interested in the reging; 2wy,
level of Langmuir wave turbulence is required. If we retain .
. . . . then we can see that the denominator can be very small, as
the nonlinear wave coupling term which arises from the pres-

. . explained above. Thus, the balance of the linear response
ence of a broaden spectrum of incoherent Langmuir wave . : .
. ! . . the first two terms on the right-hand sjdend the nonlinear
then the nonlinear dispersion equation can be shown to b

iven by a generic forre wave coupling term(the last term on the right-hand sjde
9 yag ’ leads to the desired solution with characteristic frequency
e( near 2v,, i.e., the eigenmode of a nonlinear dispersion re-
R

(6)

where wk=wpe(1+3k2}\2De/2) is the familiar fundamental
Langmuir mode dispersion relation. If we assume that the

solutionw of interest lies neaw, then one can see that the
L2

ek,w)—4 2 lation.

!
o' =*1

In Ref. 52, an approximate analytical solution to E5).

|X(2)(k',U'wt,|k—k',w—a'wt,)|2 , is givgn, which foIIovy; from a number of simplifying as-
XJ dk’ ’ —- 17 (k") sumptions. The specific form of the approximate solution
e(k—k',o—0'w) suggested in Ref. 52 is given by

=0, (5) =0} = w2+ 3k2\3J4+ ),

where o is the dispersion relation for the nonlinear eigen- 2 e?
mode(harmonic Langmuir modewhich is expected to pos- =3 MT)ZJ dk’ aik, I (k).
sess frequency nearude, I‘L"(k’) is the spectral wave in- pe ¢

tensity associated with the primatfundamental Langmuir  However, the thermal correction factor to the dispersion re-
wave. In this notationg=1 ando= —1 represents, respec- lation, namely, a)pek%\gem does not seem to be in agree-
tively, forward and backward propagating components of thenent with the simulated nonlinear mode dispersion
primary Langmuir waves. The quantitye(k,0) and relation?’~2* which closely resembles «3,ok?\3./2. The
x@(ky,w1]ky,0,) are the linear dielectric response func- original solution Eq(7) is based upon a number of approxi-
tion and the second-order nonlinear susceptibility, respeamations, and therefore, it is possible that the detailed numeri-

)
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cal .factor of 3/4 may n.ot' necessarily relpresent the bgst wf:wpe(me/mi)1/2(1+3-|-i ITe) YN e,
choice. For this reason, it is better to devise an alternative
approximation scheme. In the present approach, let us flrs
approximate the resonant denominator by

nd these three modes form the basic excitations of turbulent
unmagnetized plasma in the electrostatic approximation.
Note that we are concerned with the first harmdiie.,
wp=wg?) mode only. However, the analysis by Yodran
be generalized to all higher harmonics by making use of the
~2wpe[w—2wpe—3wpek2>\De first-harmonic @kz) mode as the source of nonlinear wave-
'2 , coupling for the second-harmonief®) mode, and so on.
~3wpe(k’"—k-k")]. The resulting nonlinear dispersion relation is expected to be

We then approximate Eq6) by assuming thaw~2w,. of the form

L2 L
(w— wk,) —o = (o— wk,+wk ) (0= wk, O _y1)

everywhere except in the denominator of tke integral.
Neglecting the small thermal correction associated with the 0=Re| e(k,cwL")—4 > dk’
linear response and ignoring terms which contain the integra- o'=*1
tion variablek’ in the denominator, we obtain |X(2) a’wL(”71)|k—k’ cot"— o' L(“ by2
1
2 e fdkal, I (K) etk—k' 00"~ 0" 0" )
0~1- ’

Bwpe (4Me)” 0 —2wpe— 3wpek?N /2

. . . . X1 n-1y(K") |
From this, we now obtain an alternative approximate

expression for the harmonic Langmuir mode, wheren=2,3,4;--, the superscriptea—1 andn designate
_  N_ 2y 2 the (h—1)th andnth harmonics of the Langmuir mode. For
0= 0l = wpel 2 3K NDS2H 7). ® n=1 (the fundamenta) we simply ignore the nonlinear
In the subsequent analysis, we shall resort to this expressiodave-coupling term. The detailed analysis of the above dis-
for the harmonic Langmuir mode, which is an eigenvalue ofpersion relation is beyond the scope of the present article,
the nonlinear dispersion equation, hence the superscrifitowever.
“N.” The above dispersion relation is to be considered to-  Finally, note that although we consider only the real part
gether with the linear eigenmode dispersion relations, th@f Eq. (5) to determine the wave dispersion relation, the
well-known (fundamental Langmuir mode dispersion rela- imaginary part of Eq(5) is not discarded, but rather, it is
tion, incorporated in the wave kinetic equation for tNemode,
wk=wpe(1+3k2?\% /2), where, together with other nonlin_ear responses, the. imagi-
nary part of Eq.5) balances the time-rate of change in the

and the ion-soun(br ion-acoustiz mode dispersion relation, wave intensitydl y(k,t)/dt,%

dln(k,t) 2 Ime(k,c0)) 4
at é’Ree(k (rwk)/r?a'wN In(k,)= &Ree(k,a'ww)/ﬁ(rw{:l
X > dk’ Im | 2 {x®(k’, ,O'wE—U’w:z,)}z
o'=*1
X P 1N — XK, 0" o |~k — 0 o, [Kool) | 1Lk ,1) Ty(k,t)
e(k—K', oo —0d' w,) k K
4
(2) / 2
ﬁRee(k a'wk)/&(ra){zlg g_rr_+l j dk’x d wk'|k K',o! wk k')l
L(K", 1) In(k,t) (k=K' t) In(k,t) L L
4 ’ o ).
(&Ree(k—k’,o"wtk,)/&a”wtk, IRee(k’ 0’ wb)ld0" @ [ | Sowii= o' oo uy ) ©

In the above,x®(k;,w|k,,w,|ks,w3) is the third-order fusion equation were obtained. In the present approach, how-
nonlinear susceptibilitysee Eq.(4) of Ref. 52. ever, we take a simpler view in that the ions are considered
as quasi-stationary and the electrons are assumed to be gov-
erned by the simple quasilinear diffusion equation, except
that the wave intensity which enters the diffusion coefficient

In Ref. 52, particle kinetic equations for the ions andis the combined Langmuir and the nonlinear eigenmode in-
electrons which generalize the conventional quasilinear diftensities,

B. Particle and wave kinetic equations
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Fe(v,t)  me? dk d where the first term on the right-hand side represents the
a S f K\ oy induced emission/absorption process, which is the only term

2
m
¢ considered in the traditional quasilinear theory, the second
x:[g(gwt_k.v) 17(K,t) + 8wl —k-V) term represents the three-wave decay/coalescence term con-
sidered in the literature on conventional weak turbulence

IFe(v,t)
ov

X19(k,t)] (k'

The Langmuir wave kinetic equation which takes into

10 theory, the third term corresponds to the modification to the
' (10 traditional Langmuir wave kinetic equation which comes
from the three-wave decay/coalescence process involving the

account the nonlinear coupling with the harmonic nonlineal-2"9muir wave and the nonlinear harmonic mode, the fourth

mode is derived in Ref. 52, which is given by

dIZ(k,t) _[9 9 n 9 ticles via nonlinear wave-particle interaction process, and the
ot Mg emiss. decats Ot decayin final term corresponds to the induced-scattering process in-
P p volving a Langmuir mode and the nonlinear eigenmode, me-
+ﬁ + - )'f(k,t), (11)  diated by the particlegelectrons. Specific expressions for
ind. scattLL ind. scattLN the various processes are given by
alr(k,t) f dFe(V,1)
) L o e\ T
—_— =cwy | dvI{(k,v) k-———I7(Kk,1),
Jt ind. emiss. N

2
w
re(k,v)= wk—‘;e S(owt—kV),

(K1)

= = > aw,&fdk'vg;g’ﬂ”(k,k’){awklf’(k',t)|g"(|<—k',t)

decayLS o¢',0"=%1

— [0 o 1 (k=K' )+ "o 17 (K ,D]17(K,D},

7€ uy_y (kk')?

___rrt2 > 7 _ L n S )
2T§ k2k12|k_k/|2 ’

’ I
7’ _ L
Vg 7 (kK= Sowg—0' o, —0"w,_,,

= KBNS (Mo /mp) Y1+ 3T, /T2,

07|0(|(,'[) ron " !
—Lm = > awkf dk’ VI 7 (k kD [aop 1T (k=K' )= "o 17(kDTIT (K1),
decayLN o', 0"=*1
2
ron a e
VIR 7 (kK= mﬁai,’k 5(0'w'g—a’wt,—o'”w|’:'7k,),
pe ''le
a7 (k,t) ,
— -- 3 dk’Jdv Uz (kk'v) (k=K
at ind. scattLL o'=*1
J L y L Me L o’ ’ T
v (cwg— 0’ w,,) Fe(v,t)—ﬁcrwk Fiw) |17 (k"0 17(k,t),
o0’ ’ ™ ez (k.k,)z L r oL ’
L,’L (k,k ,V)Zw—zﬁwﬂﬂwk—a wk,—(k—k )‘V],
pe ''le
(kb , AF(V,)
—— —gwt > dk’fdv ‘L’;ﬁ(k,k’,v)(k—k’)~%lﬁ(k’,t)lf(k,t),

ind. scattLN o'==*1

2
e2 ak,’k 50.10./

" 1602, M2 [k—K' [P e(k—K ,ocwt—0o' 0}

Us (k,k',v) )|2§[0'wk—o-’w|’:',—(k—k’)~v],

le(k—K',awk— o' wp)|?=] 3[2k-(k—K')+k' 2] \3.— 27 |2.

term represents the conventional induced-scattering term
which involves two Lagmuir waves interacting with the par-

(12)
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y y g y p
In the above, the coefficiest,,  is defined exactly as in Eq. Ag(k,b)
(6), except thatk and k’ are interchanged. Similarly, the —r = X (Tw{llf dk’
i i i i decayNL o' o"=*1
quantity . is the same as that defined in E{a) except for YN
the argumentk’. In the definition forUy g o (k,k",v), we mr o’ (k k')
have explicitly used the fact that in its der|vat|on the as-
sumption thato and o’ be of the same sign has been used. X[o”wt, I‘L’"(k—k’,t)
Such an assumption was implicitly used in Ref. 52, but not )
explicitly stated there. + 0'"wt7k, IV (k" t)]1%(k,t),
In Eq. (12), an induced scattering term involving an ion- 5
sound wave, Langmuir wave and the ions, which appears in Vi <r o’ (k k')= 774 3232 ,
Ref. 52 is ignored. Reference 52 shows that such a term is 16wpe Mg K
. - 'S . .
dlctated. by the resqnance C('.?n.dltl(ﬁ(q Ol QUR W|th an % 5(0%':‘—0'60:2/—(’"@40,
appropriate scattering coefficietts (k,k’,v). This type
of process, which appears as a nonlinear correction term in  dI{(K,t) N ,
i : i di : L > ooy | dk | dv
the wave kinetic equation, yet is dictated by linear wave at , ;
. . . - . . . ind. scattNL o' =*1
particle resonant interaction condition, is not considered in
the standard literature, and although such a term naturally xU‘N"‘[/(k,k’,v) (k—k")
appears in the generalized weak turbulence theory of Ref. 52, '
its consequence or interpretation is not clear at this point. A (7 Fe(V,t) I" (K0 17(k.1)
preliminary numerical analysis of weak beam-plasma inter- av N
action which includes such a term on the right-hand side of oo , e
Langmuir wave kinetic equation shows that it only has a nL (KK V)= 2%, m2
marginal effect. Therefore, we have decided to ignore such 22 5,
an interaction term at the outset in the present numerical kK’
analysis. |k k'|?|e(k—k',cof— o' w,,)[?
The wave kl_netlc equat|o_n f(_)r the harmonic nonlinear Xé[crwk o’ wk, (k—k')-v],
mode, the generic form of which is given by ), can be
made explicit as le(k—K' 0ol — o' wy,)|?=|3[2(k—k') -k’ —k?]\3,
+27 |2 (14
aly(k,t)  alj(k,b) aly(k,t) The reader may notice that the detailed expression for
= + — ’ r N ’ r oL
ot at 4 emiss ot decaL le(k—k ,a'w:;—a' “’k')|2 and |e(k—k ,O'w{zl—a' wk,)|2 in
' ' Egs. (12 and (14) differ from those found in Ref. 52. The
alj(K,t) primary reason is because of the different thermal correction
T . ' (13 factor associated with the nonlinear mode dispersion rela-
ind. scattNL

tion. In Ref. 52, the expressiomy=w,e(2+ 3k?\5/4

+ 7)) was used. In contrast, we now adopt the expression
wpe(2+3k2)\2De/2+ 7)), as already explained. How-
in view of the fact that the detailed expression for ther-
aI correction factor in the wave dlspersmn relation |s un-

N
where the first term on the right-hand side represents thgver
induced emission of harmonic nonlinear eigenmode, the se
ond term depicts the decay/coalescence of nonlinear mo certam and thae(k—k', ook — o wk,) and e(k—k', ool
into two Langmuir waves and vice versa, and the third term both I q h th
represents the induced scattering of nonlinear mode off elec- ¢ 'w,;) are both quite small in magnitude such that any

trons mediated by the enhanced Langmuir turbulence. Thesinall modification to the thermal factor may lead to poten-
terms are given by tially large differences, we have decided to adopt a much

simpler approach in computing the detailed expression for
|e(k—k',o‘wk—o"w|’:‘,)|2 and |6(k—k’,0'w|':‘—o"wt,)|2.
Specifically, we have employed the simplifying approxima-

Ily(k,t) :
N —kaJ dvT§(k,v) k tion, wi=wpe(2+ 7).
Jt ind. emiss. Finally, the wave kinetic equation which governs the de-
velopment of ion-sound wave intensity is given by
aFe(Vvt) o k
T kb, skt alsk,b) a1s(k,D) s
at at ind. emiss. at

decaySL
where the first term represents the induced emission/

absorption of ion-sound waves and the second term repre-
sents the decay process. These are given by

2
w
'K,V =4wk—"ze S(owl—k-v),



102 Phys. Plasmas, Vol. 9, No. 1, January 2002 Gaelzer, Ziebell, and Yoon

alg(k,t) In Eq. (15), we have ignored the induced scattering term
it —kaf dvI's(k,v) | k== Fe(V,t) which involves two ion-sound waves and the ions. This pro-
ind. emiss. cess is much slower than any of the processes considered
Me hitherto.
+—Fi(v)| 1E(k,1), . : :
m C. One-dimensional formulation
" wge s In what follows, we simplify the analysis by considering
I's(k,v)= TRz Sow—kev), a one-dimensional limit where both the particles and the ex-
cited waves propagate along the same or opposite directions.
ag(k,t) ) Defining the following nondimensional quantities:
P = 2 opgop | dk
decaysL o', 0"==1 z=wlwpe, q=Kvelwpe, T=wpd, U=v/vg,
o0 0’ ’ Lyo /s (17)
XV (k,k Y{owd ] (k',t) ) i )
‘ wherevg=2T./m, is the thermal velocity of bulk electrons,
><|‘L’"(k—k’,t) and normalizing the distribution functions and the wave
, spectral intensities,
— [0’ oy, 17 (k=K' t)
+ows 17 (K D1k, ) f a Fa(v):fdu':a(u)’
g w ’ , ’ ’
k—k . s (18
0.0 0" ™ €%y [K'-(k—k")] s R fdkl“k =fd 12(q),
VS,’L ' (k,k ):Zﬁwé(awk 8’7TnTe a( ) q a(Q)
L .l wherea=L,S,N denotes the wave modes, the kinetic equa-
—olo o). (160 tions for waves and particles can be written as follows:
A{(a) _mozg IF o(U) . o o
= qJ du——d8(ozg—qu) I{(a) +mozg 2, dq £la—q'|[{ozg17 (a")1¢ (a—q")
q —o0 5U 0" o'=+1 —
—[UZ 1< (q—q )+0'"Zq o A7) ]17(q)8( azg—az azq o)
12 oe) 00
g 102517 (a=a)—o"zg_ 11T (@) Sozg— o'z~ "7, ) > dq'f du
o'=+1 — 0 —o0
, JFs(u) m JF;(u)
"o ’ L L e __e L ! L L o
x| (a=a)1{ (a >(<azq %) G T Oy )6[ozq 0’25~ (q-q") u]
L 12 o'
0259'2 8,0 1% (a") IF o(u) }
q ) e
- ; - ; oloz;— z u 19
Q-1 [290@—0)+q 7= A7y B u A% 7'z~ (a-a)uljiia), 19

e © )
d S(q) 7T§q|q| f dU(&Fe(U)'F%aFI(U)

S_ s
ar au m, du )5(02‘1 qu) I's(a)

7T§ *© ’ "
+—lalozg X da’ {ozg 17 (q") 1{ (a—a")

o, o"=+1 7%
~[0'24 17 (a=a") + 0”25, 17 (A)]18(Q) }8(0zg— 02— 025 ), (20)
) ozy (» . dFe(u) \ .
e —47-rT ﬂcdu 0 d(ozq—qu) 1\(q)
_9_77 d 2 |— Io’" —a )+ o" L IU’ /) 1o )5 N_ )
5 % (,u,ul - da' q7lo'zq 17 (A=0")+ 072 1T (A)]1R(Q) S(ozy =o' 2~ 0"24_,
024 9 8o 17 (A 1R(Q)  9F(u)
q o0’ 'L N e N_ /L A
L) dqf S 20— a)a g angBP u %7 AT (maul 2D
JF<(U) J dF(Uu)
P L)) ﬁu(f dg17(q) 8(ozg—qu) +15(a) 8(ozy—qu) | —-—, (22
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where we have omitted the time varialiédrom various dy- that although we compute the wave intensities over positive-
namic quantities for the sake of simplicity. In the above g space only, in the subsequent plots of numerical results,
2 —1+3q%4 however, we will plot the intensity of the backward-
q ' propagating modd,, (q) in the negativey space, again in-

z§=§q(1+q2/2)‘1’2~§q, voking the symmetry relation Ed24), in order to provide
23) the view of completey-space. Moreover, since we will pay
£=(mg/2m)Y(1+3T;/Te) "2 our attention to beam velocity in the range of 5 to 10 times
the thermal velocity of the bulk electrons, it is evident that
=2+39%4+3yq%4, 7_ f dq17(q,7), the significant wave-particle and wave—wave interactions

take place only fog<1.

are the dispersion relations for Langmuir, ion-sound and non- N What follows, let us pay attention to the terms which

linear waves, respectively, and where we have used the faPErtain to the harmonic nonlinear eigenmode, which appear
that\2,=T,/(4mhe?) =v2/(2w2,) in the three-wave decay and induced-scattering resonance
‘ .

conditions in Eqs(19) and (21). These are also the terms
flabeled withLN andNL in Egs.(12) and(14). Consider the
three-wave resonant interaction condition,

Equationg19)—(20) have to be solved simultaneously in
order to obtain a self-consistent solution for the evolution o
the spectral intensities of the waves and particle distribu-
tions. Before.we prgsent the numerical sollut|o.n, we note that UZ;_OrZ o -0 (26)
the spectral intensity for waves propagating in the forward a
direction (c=1) is different from the intensity for waves Suppose that the ratio of beam to thermal speeds s
propagating backwardso=—1), that is, 1 (q)#!(q). Then, according to the linear growth rate prediction, the pri-
The difference shows itself when one considers the solutiongary Langmuir wave should peak arougd-0.2. A simple
for the resonance conditions contained in the delta functiongnalysis of the above relation shows that the only possible
in Egs. (19—(20). Thus, first of all, one has to perform a solutions occur folc=—0¢'=0¢" and forq~1.6, which is
careful investigation of all existing physical solutions of this high above they values where the interactions are bound to
set of delta distributions. In order to accomplish that, one hagccur. Therefore, all waves in thig regime are completely
to consider all possible combinations of the dummy variableslamped. Thus, we can conclude that
(o,0’,0"). For those terms of Eqg19)—(20) that corre-

spond to the standard weak-turbulence theory, this analysis M ~0. (27)
was already performed in Ref. 53 and will not be repeated ar decayLN
P;;?i'ox\ée will-only mention that, thanks to the symmetry The induced-scattering processes involving the nonlinear
mode are dictated by the nonlinear wave-particle resonance
8= —zq, lg(=q)=lg(a), (24  condition,
for a=L,S,N, we can restrict the analysis tp>0 only. We azg— 0"22', —(gqxq’)u=0, (28

warn the readers thdt, (q)#1 (—q), but that the above
(@) # 1o (—0) where thex signal takes into account the fact that we are

symmetry is applicable only for the same signeof A ) ;
Here, a word of caution on the application of the abovet0nsidering only the>0 region. This means that the elec-

symmetry condition is called for. From E€@3), it is easy to  FONS must have a resonant velocity of

see that the ion-sound wave dispersion relatagss £ g, au- ozt — o' 2N
: . o S q q’'
tomatically satisfies the symmetry condition; ;= —z;. Upeem———————. (29
. . . q . q res q_,_q/
However, at first sight, th& and N mode dispersion rela- -

tions, z;=1+3q2/4 and Zg‘=2+3q2/4+ 3yg?/4, respec- Again, assuming a normalized beam velocity for the elec-
tively, do not appear to satisfy the required symmetry. Thigrons around five times the thermal speed, the maximum lin-
apparent contradlctlon can be easily resolved if we mterpreear growth should occur for Langmuir waves with-q,

that the expressiong, L=1+309%4, z —§q, and z, N=2 ~0.2. Since the nonlinear mode has a frequency about twice
+309°%/4+3yq?/4, are appllcable only “for positive, while that of fundamental Langmuir wave, the main wave-particle
for negative q, we simply impose symmetry rulez, interaction is expected to occur for a phase velocity similar
=—24, (=L, N). In short, we apply the following rule to the fundamental, which means thgt~qy~2q,=0.4.
for the dispersion relations: For forward-propagating Langmuir waves€ 1) we have
zg=1+3q2/4, ZEq=—ZE, (q>0), tfe follovying possibilities:ures=(z'a—.zg,.)/(q—q’)~1/q,_
=5, in this case, the resonant velocity is near the beam ve-
zi:gq, z§q an (q>0), (25) locity and this term can have an important effect on the in-
N ) ) N N ducedLN scattering. The only other possibility i§.—= (z
Zq=2+3q°/4+3yq%/4, zZ4=-2z;, (9>0). +z )/(g+q')~5, which has to be kept. For backward-

In the following, we are only interested in positive propagatmg Langmwr wavesr(= —1) we have the possi-
space. In Egs.(19—(21), we also convertq’-integrals, bilities: Ures= (—2z4 +Z )(@—q')~—-1/g,=—5 and Uy
JZ..dqg’, to integrals over positivey’ range, [, dq’, by =—(z +z )/(q+q )~—1/qL——5 which will affect the
invoking the symmetry condition Eq24). Here, we note partlcles |n the tail of the distribution with negative velocity.
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For theNL term, one can easily show that the three-paye y = (z z )(q—q')~1/g,=5 and U= (z
wave decay processes will also not contribute to the dynam+z )(q+q")~ 1/Q|_—

5. Again, both terms are equally im-
ics of the system. Thus,

portant and thus, will be kept. Far=—1 we haveu,e
L ’ L
a%(q,7) =(—2z4+2,)(q—0q")=-5 and U= —(24+2,)/(q
a7 ~0. (30) +q')~—5, which can also be of equal significance, and
decayNL may affect the electrons in the tail with negative speeds.
On the other hand, for the induced-scattering process to be As mentioned, the ions will be considered stationary,
effective, the electron resonant velocity must be with their distribution function in normalized form given by

UZE‘—U’Z:, 12
Ues— - (31 _ 1 (mTe m; Te 2
s gxq’ Filuy=—=|—=| exp——=u|.
\/; Me Ti Mg Ti

Again, using the case of beam to thermal speed ratio of 5, we
see that in this case, the main contribution to the resonance After performing all possible integrations, the resulting
will come fromg~qy~0.4, andq’ ~q,~0.2. Forc=1 we  equations are

(@) +wzg IF4(U)
ar  — g° du

IC(Q)+7p 2z (Z5 17 (a+p) 14(2a+p)— [z, 1 $(20+p) — 254, 17 (A+P)T 1L (qQ)

u:tz:/q

+H{zg 15 (P~ ) 15(20-p) = [25_o15(2p— )+ Z5q_, 1 (P~ ]I ()}O(p—q)O(29—p)
+H{zg 15 (pP—a) 15(20-p) =[5 o1 §(P—20) = Z5_ o0 1 (P~ 1 (0)}O(P—q)O(p—20)
+{zg 17 (q=p) 15(29—p) 25, 15(2q—p) + 254, | (A= P)] 15 (@)}O(q—p))

© ;[ OFe(u) 2Tz -
—wjodq[lq—ql ( oY F(U)) I-(g")

T q q u==*=3(q+q’)/4
L (g+q) (&Fe(u)+2T zg - )) )
q+q)u|——= u q
ou Ti q+q I u==*3(g—q’)/4 :
_25 9= a'—al T oFe(w) )
e Y 12 __ 2 N
4 [ZQ(q q )+q 47]q’/3] Jdu U:i(Z’;,*Z:)/(q'*q)
z4 q'%(q+q’) 2 IF (u)
T+ id * *
T 7 7 I I , 32
-+ 4 [2q(q+q )+q 2_477q,/3]2 Ju b=t My N(q )] L(q) ( )
dlg(a) 3w JFe(u) 2T . 7Pz .[a+p| .[pP—q
ar —i?pqé( au T; 7, uFi(w u:+ZS/qIS(q)+ 7 (At il
~q
p+q

_ +(P—q
+ ZI(p+q)/2|L(_2 )_Zl(pq)m' s(Q))@(P Q)

mpZg[ , .(P+d| .(q-p
+—2 qu,_ - IL >

JN(q) 4wz oF4(u)

2

L | q—p L Ii pt+q
| Zprqrell| 5| T Za-prell| 5

|§(q)](q—p). (33

(=) Ha—a'|"t  dFu)

=+ |ir + ZZNI d T~
T TR L L T ([2<q—q>q —qH A | e
q q q'
. (q+q')? IF o(u) e ) e
><IL(q )+ [2(q+q/)q/+q2_477q/3]2 Ju IL(q ) lN(q)v (34)

u=(z)+2)I(a+a’)

JF¢ J .
&(TU) ; (9—( |{[I C(@) =10 O(FW H[1](A) ] g=21u O (= u)} Felu ))_ (35)
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In the abovep is defined by
p=4¢/3,

¢ being defined in Eq(23). Equations(32)—(35) must be
solved simultaneously in order to describe correctly the dy-log,,Fe(u)
namics of the wave-particle system. In the next section, we o+
present numerical solutions of this set of equations. We reit-

erate that Eq932)—(34) are applicable fog>0 only. How- -2
ever, in plotting the numerical results, we invoke the sym-

metries, I, (q)=1_(—q), Is(@)=Is(—q), and Iy(q) 47

10000

=Iy(—Q), to plot backward-propagating wave intensities in o000 T
the negativeg-range. 6
I1l. NUMERICAL SOLUTIONS o6 4 2 0 2 4 6 8 10 0

In this section, we present some numerical solutions of o .
Egs.(32)—(35). Let us further define normalized quantities FIG. 1. Plot of electron distribution functiomf;¢(u,7), vsu and r, for the
as. : a ' case ofn, /INg=2X10"% upy=5, T/T;=7.
Ne Tp T \ Me
0=~y PbTT . PiTT UpT - HT o
0 e e Ub | energetic tail develops for both the forward- and backward-

(36) propagating electrons, and a plateaulike feature is seen to
wheren, andng, are number densities for the beam electrongform for the electrons possessing negative speed. These fea-
and the background thermal electrons, respectivElyrep-  tures are more or less identical to that already discussed in
resents the thermal spredkinetic temperatuneassociated Ref. 53, where it is explained that the heating of electrons
with the beam;V, and v,=(2T,/m)*? are the average and negativa: plateau are owing to the combined effects of
beam speed and thermal speed of the beam electrons defineahtinuous absorption of the initial level of turbulence and
in the reference frame of the beam. In terms of these quarthe feedback effects of wave-coupling processes. From this,
tities, the initial electron distribution function and the quasi-it may be concluded that the excitation of additional eigen-
stationary ion distribution are given, respectively, by mode(i.e., the harmonic Langmuir mogldoes not affect the
(U—up)? particles in any significant manner.

_b) , Let us now move on to the discussion of wave dynamics.
Pb In Fig. 2, we plot thgfundamentalLangmuir-wave intensity
2 spectrum] (q), in logarithmic vertical scale versus normal-
——). (37 ized wave numberg=kv./wpe, and normalized times
Kpi (left-hand panel Here, the time-dependence kf(q,7) is
In the numerical computation, we have chos&an./n,  implicitly assumed. To aid the visualization, we have added a
=2%x10"% pp=Tp/Te=1, p;=T;/Te=1/7, u,=V,/v, small constante=1x10"° to the spectrum (q). As a re-
=5, and of courseu=1/1836. Sets of parameters which sult, Fig. 2 actually displays lag[l (q)+ €]. In order to
include the present choice were adopted in our recent studyelp the readers interpret the numerical results in a more
on numerical analysis of conventional weak turbulence ki-quantifiable way, we have also plotted the same results in
netic equation in which nonlinear eigenmode is not consid{wo-dimensional formatright-hand pane| superposing the
ered as part of the eigenmode systénThe purpose of curves at different time steps, although in this format it be-
choosing the same set of parameters as in Ref. 53 is so thavmes difficult to distinguish results at different time steps.
we can make direct comparisons, and assess the dynamickhe best way to look at our result is to compare the left- and
role of the nonlinear eigenmodghe harmonic Langmuir right-hand panels.
wave. Note that the portion of the wave spectrum correspond-
Figure 1 shows the self-consistent time-development ofng to q>0 is the forward-propagating modg; (q), while
the total (thermal plus beainelectron distributionF4(u). the negativeq represents the backward-propagating mode,
The vertical axis represents the logarithmic of the distribu-l, (q) (originally computed oveq>0), which is replotted
tion, log;oFe(u), while the two horizontal axes represent the over — g using the symmetry property, (—q)=1,(qg). The
normalized speed)=v/ve, and normalized timer= wt, initial level of Langmuir mode is taken to be a flat spectrum
respectively. We have chosen to plot the numerical results aiver the entire range af values considered in our compu-
time intervals corresponding te=0, 250, 500, 1000, 2000, tation (—0.5<q<0.5). That is, we assumed that initially,
3000, 4000, 6000, 8000, andx10*. The development of the spectrum is give bl (q,0)=1, (q,0)=2x10"*. Again,
F<(u) during relatively early times is as expected accordingthis choice is the same as that of Ref. 53. We could have
to the usual quasilinear diffusion theory in that the bump-on-adopted a more realistic profile such as a certain power-law
tail feature rapidly flattens out to form a plateau in velocity spectrum, or that computed on the basis of thermal sponta-
space. The long-time behavior of the electrons shows that theeous fluctuation theory. However, as the present formalism

Fo(U0)= Y p(
0)= exp(— exp —
e(u,0) g Xp(—Uu) 71_;L/zpé X

1 u
0= o
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log,,I1.(q) 25 : :
gl_? log,, I, +¢&)

0.5 -4

-0.2 -0.1

0 °q

-0.5

FIG. 2. Plot of Langmuir wave intensity:(r), vs g and 7 (left-hand pané| for the case of, /n,=2X10"%, u,=5, T,/T;=7, and with initial wave level
of Ig(0)=2>< 10"*. To aid the visualization, we have added a small constarit X 10°, so that the actual quantity plotted above is;}ph (q) + €]. The
right-hand panel is the same result shown in two-dimensionajgllo§q) + €] versusq, format.

does not have the single-particle fluctuation effects, the spe- Overall feature associated with(q), when compared
cific choice of initial wave spectrum becomes arbitrary. Foragainst that of Ref. 53, shows that the Langmuir mode dy-
this reason, we chose a simple white-noise flat spectrum. Theamics is largely unaffected by the presence of nonlinear
initial wave level is indicated by the straight line. eigenmodeN. This means that the additional nonlinear cou-
As Fig. 2 shows, the modes in the linearly unstable repling terms on the right-hand side of Eq82) and (34),
gime (aroundq~1/5=0.2) begin to grow exponentially at which involve corrections due to the presenceNsfode,
early times, but rapidly saturate as a result of the flattenindrave relatively insignificant role in the Langmuir wave ki-
out of the beam electrons. Those modes in the damped ponetic equation. As is well-known, the induced-scattering term
tions of theq range undergo Landau damping. The dampingnvolving the electrons is largely unimportant. It turns out
of the initial waves lead to the bulk electron heating in thethat the nonlinear mechanisms responsible for the generation
tail, as already indicated. Relatively smgll+ange (q of backward-propagating Langmuir mode are the induced-
|<0.2) does not suffer heavy Landau damping, and as acattering off ions and three-wave decay process, although
result, the initial level of turbulence spectrum remains morethe scattering off ions is the more important of the two,
or less unchanged over time. Beyond the initial quasilineawhich is also well-known in the literature, and confirmed in
stage, the combined effects of induced-scattering off ions andur recent work>
three-wave decay process lead to the formation of backscat- Figure 3 plots the ion-sound wave intensity spectrum in
tered Langmuir mode@egativeq in the range roughly cor- the same format as that of Fig. 2. The evolution gfq) in
responding tay~ —0.2) and long-wavelengthg~0) Lang- time is very similar to that shown in Ref. 53 in that the

muir modes, as discussed in Ref. 53. S-mode continuously damp out over time, except ngar
log Is (9) 3
log,(Is+€)
-3.5
4+
4.5
5t
5.5
$s 0 0.5
q

FIG. 3. Plot of ion-sound wave intensityg(r), in the same format as Fig. 2. Note that the peak a0 is simply the remnant wave intensity initially
imposed which is undamped.
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FIG. 4. Plot of nonlinear eigenmod&armonic Langmuir moc}eintensity,lg(r), in the same format as Fig. 2, for the casengin,=2x10"%, u,=5,
T./T;=7, and with initial wave level 0f2‘(0)=2>< 1076,

=0, where the initially imposed wave intensity is largely to the usual quasilinear wave kinetic in which only the in-
unchangednote that the intensity does not grow higher thanduced emission/absorption effect is taken into account. We
the initial leve), and nearg=0.4, where the peak in thg  then have ignored the induced emission term, but only re-
spectrum is prominent. This is the result of weak decay intained the second and third terms on the right-hand side of
stability. Eq. (34), which represent the scattering Mfmode off elec-
The dependence of the beam-plasma interaction procesons induced by the presenceloimode. By comparing the
on the various input parameters has been investigated in tavo results, we may then determine the primary effect which
fairly extensive manner in Ref. 53, and thus we shall notis responsible for the excitation of the harmonic Langmuir
repeat such a study here. Among the findings of Ref. 53 armode, N. In principle, both the induced emission and in-
that the increase in the electron-to-ion temperature ratioduced scattering can be of equal significance since the linear
T./T; increases the efficacy of both the induced scatteringesonant velocity,
off ions and the decay instability, and that the choice of N
initial wave level has a significant effect on the later evolu- Ures= £24/9~£5,
tion of the wave intensity.
We now focus our attention on the generation of har-
monic Langmuir mode, or equivalently, the nonlinear eigen-  y = i(ZQ—Z:,)/(q—q’)’v +5,
mode,N. Figure 4 is the plot of wave intensity fod mode
in the same format as before. For the harmonic Langmuifre comparable. In the above estimates, we have used the
mode, we expect that the initial wave level should be veryfelations,z:,~1, z’(}'~2, g~0.4, andq’~0.2. However, the
low, since in the quiescent plasma, such a mode should be eg¢sult of our analysis shows that the induced emission/
an extremely low level. The exact level of initil mode  absorption(quasilinear procegss the dominant term for the
cannot be determined within the context of the present colexcitation ofN mode, although the induced scattering effect
lisionless theory. We thus made an arbitrary choice ofleads to gradual damping of the mode in later times.
15(9,0)=14(g,0)=2x10"°. The time evolution oN-mode The result of the comparative numerical studies is pre-
intensity shows that the initial exponential growth is fol- sented in Fig. 5. The two panels show the respective numeri-
lowed by quasilinearlike saturation, with an overall temporalcal result in which one of the two competing effects are
rate of intensity amplification comparable to thatemode. ignored. Figure 5 clearly shows that the induced emission is
Note that the wave frequency df mode is near @,., and  the primary cause of the wave growth. As is well-known,
the characteristic wave number is also about twice that of induced emissiofor quasilinear processs largely driven by
mode. Note also that the bandwidth associated Witmode the positive gradient in the velocity distribution, such that the
in g-space is comparable o mode. These characteristics quasi-saturation of the waves should be concomitant with the
are in a reasonably good and qualitative agreement with rgparticle plateau formation. Comparison of Fig. 1 and Figs. 4
cent simulation results of harmonic Langmuir m3d&21t  or 5 (left-hand panélshows that, indeed, the saturationNof
is interesting to note that the backward-propagahingnode,  mode largely follows the plateau formation associated with
i.e., Iy(q), corresponding to the negativg portion of the the electron beam distribution.
total Iy(q), is not excited. This finding is highly relevant to the earlier findings by
To understand the dynamical role of each term on theklimas;* who reports on the basis of his Vlasov simulations
right-hand side of wave kinetic equation fof mode, we that the harmonic modes begin to grow even in the linear
have first ignored the nonlinear wave-coupling term on thestage, and that the initial growth rates of the harmonic modes
right-hand of Eq.(34). The resulting equation is equivalent are higher than the linear growth rate of the primary Lang-

and nonlinear resonant velocity,
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FIG. 5. Comparative study of the effects due to induced emission and induced scattering. The result clearly shows that the induced emissioerocess is
primary effect responsible for the generation of the harmonic Langmuir fpteel(a)], although pane(b) shows that the scattering leads to damping of the
harmonic mode at later times.

muir mode roughly by the mode numbeyt*~ny[®). The = same time period during which the primary Langmuir mode
growth of the harmonic mode during the linear stage is easilyndergoes the quasilinear saturation. Since the harmonic
explained by the fact that the quasilinear process is the dommode starts to grow from a much lower initial level when
nant wave generation mechanism fiir mode, which is compared with thd. mode, the saturation amplitude bf
equivalent toL2 mode in the general scheme of harmonicmode is also comparatively lower than that of thenode.
Langmuir modes of all ordet,n. The induced emission pro- This explains why the harmonic mode saturates at a much
cess, which is essentially a linear instability in nature, causewwer level although it grow twice as fast initially. The basic
the harmonic mode to amplify during the same time periodeason is the initially low level of harmonic mode which
over which the primary Langmuir waves amplify. leads to low subsequent saturation level.

The observation by Klimas that the harmonic modes  Within the framework of the present collisionless theory,
possess higher initial growth rates than the fundamentahe choice of initial wave level is arbitrary, although from
Langmuir modgalthough harmonic modes saturate at muchphysical grounds we know that the harmonic Langmuir
lower levels can also be explained. From E2), the linear mode should possess much lower initial wave level than that
growth rate of the primary Langmuir mode (or, L1) is  of the fundamental Langmuir mode, since the notion of har-
given by monic mode is ill-defined when the plasma is quiescent. The

level of harmonic mode in a thermal plasma must be deter-

i (39) mined from the theory of spontaneous fluctuation in which

u=25/q the effects of nonlinear mode coupling is incorporated. This
is beyond the scope of the present analysis. However, we
may discuss the effects of initial choice Nf mode on the
later time development of the same mode, by simply choos-
ing a different number for the wave intensitytat 0. There-
(39 fore, we have considered a case of inifieinode with one-

772'(; dF&(u)

yu(@)=vyu(q)= ? au

In contrast, the “linear” growth rate of the “nonlinear”
eigenmodeN (or L2), can be defined bjsee Eq.(34)]

472y IF o(u)
()= yi2(q)= _qz_ au

u=zy/q tenth the wave level as considered before, namgjgg,0)
Noting the fact thatyL should maximizes arounq~o_2, =2x10"’. The result is pIOtted in Flg 6, where the earl_ier
while yy should possess the peak aroupd0.4, it can be ~ case ofi\(q,0)=2x10"° and the new case are plotted side
seen clearly that by side, in a format where the fundamental Langmuir inten-
sity and the harmonic mode intensity are plotted in a com-
N2, or Y2 (40)

bined logarithmic plot, logy[ 1, (q,7) +1y(d,7) + €], where
In general, we expect that e=1x10 ° is added, as before, to aid visual presentation.
max max The same results are plotted in a 2D format in Fig. 7, in order

Yin T (4D to aid the readers read the vertical scales more or less accu-

although the present analysis is restrictedhto2 only. De-  rately, although superposition of curves makes it difficult to

spite the fact that th&l mode grows twice as fast as the distinguish each curve. The dashed lines are the initial levels

fundamentalL mode, we again note that it derives its free of L andN modes, respectively. The best way to look at the

energy from the beam. As the beam flattens out forming aresent result is compare both Figs. 6 and 7. Note that for

plateau, the free energy source of the harmonic mdel  case(b), which corresponds to lower initid-mode level,

the fundamental mode, for that majtés exhausted. Conse- the saturatedN-mode level is much lower than that of case

quently, the saturation of the harmonic mode occurs at théa). Note also that the primary and backscattered Langmuir
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I FIG. 7. The same plot as in the previous figure, except that combined wave
loglo I+ (b) intensity, log 1, (q,7) +In(g,7)+1Xx107%], is plotted versug for cases
2 (a) and(b).

to a finite level due to an induced emission process, which is
essentially a linear instability process. That is, the generation
of “nonlinear” eigenmode is dictated by a “linear” wave-
particle interaction process. The initial growth rate of the
2wpe harmonic mode is shown to be twice as high as the
bump-on-tail instability growth rate, although the harmonic
mode saturates at a much lower level than that of the Lang-
muir mode. The basic reason is because the primary excita-
0 tion and saturation mechanisms for both the Langmuir and
0 s g harmonic modes are the same linear growth and quasilinear
FIG. 6. Plot of combined wave intensity, Igfl (q,7)+1n(q.7) .Satura.tl.on by plateau_ formatlon as I.n the classic bum_p-_o_n-tall
+1x10°] vs q and r for the case when the initil-mode wave level is instability and quasilinear saturation theory. The initially
(@ 14(9,00=2x10"%, and when it is(b) 14(q,0)=2x10"7. For both much lower level of the harmonic mode when compared
cases, the initial Langmuir and ion-soufibt shown mode intensities are  with the fundamental Langmuir wave level is thus, directly
the samel (q,0)=14(q,0)=2x10"*. reflected in the saturated levels of the two modes.
The excitation of the @, harmonic Langmuir mode
e('and even higher-order harmonics as weth3, 4wy, €tc)
Is known since the late 1960s, first discovered through labo-
c{Fﬁtory experiment§~4"19-12An early simulation study by
oyceet al!® also revealed the existence of such a mode.
arly theoretical attempts to explain such a phenomenon
ere largely based upon the trapped particle dynafmés.
The harmonic Langmuir mode phenomemon was indepen-
dently rediscovered in the 1980s by Klimas through his Vla-
sov simulation¥"'®and confirmed by Nishikawa and Cairns
In this article, we have numerically solved a one-in their particle simulatio® More recent carefully designed
dimensional version of the generalized weak turbulencgarticle-in-cell and Vlasov simulatiofs 2revealed that the
equation for the first time. The generalized weak turbulencé2w.) harmonic Langmuir mode possesses broad spectrum
theory? incorporates the harmonic Langmuir mode as part ocomparable to the fundamental Langmuir mode, and that
the eigenmode system in a turbulent plasma. Textbookuch a mode is better characterized as a legitimate eigenos-
plasma theory only considers Langmuir and ion-sounctillation of a plasma. This means that it is better to describe
modes as the eigenmodes of an unmagnetized plasma intehe generation of broad-spectrum harmonic mode in terms of
acting through electrostatic field in a uniform medium. In therandom-phase turbulence theory, rather than in terms of co-
conventional view, plasma turbulence is described in term&erent theories such as trapping theory. Generalized weak
of mode coupling among Langmuir and ion-sound modesturbulence theoR? does just that, as it treats the harmonic
The generalized weak turbulence theory considers the hatangmuir mode as a solution of a nonlinear dispersion equa-
monic mode generation as part of the basic turbulent beantion, hence, a nonlinear eigenmode.
plasma interaction process. The present numerical analysis The present numerical solution confirms a number of
shows that the harmonic mode grows from a low initial levelfeatures associated with the harmonic mode as revealed

0.5

waves possess slightly higher peaks in the case of low
initial N-mode level(b), than caséa). This can be attributed
to the fact that, even though the harmonic mode does n
greatly affect the evolution df mode, it nevertheless affects
the L mode, since the harmonic mode extracts wave energ
from L mode.

IV. CONCLUSIONS AND DISCUSSION
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