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Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For
this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles
can be important, and often, the description of plasmas is incomplete without properly taking the discrete
particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential
formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the
standard material found in the literature does not treat the discrete particle effects and the associated fluctuations
emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in
all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by
considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes)
satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows
that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes
the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the
collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.
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I. INTRODUCTION

In the context of kinetic theory, plasmas can be considered
collisionless if one is interested in the study of phenomena
that evolve on time scales much shorter than time scales of
binary collisions. For such cases, the Vlasov-Maxwell system
of equations, which is a complex set of coupled equations, may
be employed. The Vlasov equation is a nonlinear partial dif-
ferential equation, which is customarily solved under different
degrees of approximation. Under the linear approximation,
which is the simplest, it is possible to obtain the dispersion
relations, which allow the identification of different modes
of oscillations (i.e., eigenmodes or normal modes) that may
be excited in a plasma, and how they propagate. Well-known
examples may be the high-frequency oscillations known as
the Langmuir wave (L) and the low-frequency oscillations
called the ion-acoustic or ion-sound wave (S). These are both
longitudinal electrostatic oscillations. Another well-known
example may be the Alfvén wave, which is a low-frequency
transverse wave that exists in a magnetized plasma. Of course,
plasmas excite a host of other complicated normal modes,
especially when it is immersed in an ambient magnetic field.

The dispersion relations obtained by employing linear
theory provide information on the characteristics of these
modes of oscillation and describe conditions under which
such waves exponentially damp or grow, given a state
of the plasma. However, linear theory cannot provide the
necessary information about the time evolution of the system
or how unstable oscillations saturate. For these one needs
to incorporate nonlinear effects. The lowest order approach
to incorporating nonlinear effects is the quasilinear theory,
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which utilizes adiabatic dispersion relations that are formally
identical to those described by the linear theory, but which
depend on velocity distribution functions that evolve in time,
on a time scale slower than that which characterizes the periods
of plasma oscillations. The time evolution of the particle
distribution function is governed by a diffusion equation in
velocity space, with a diffusion coefficient that depends on the
spectral distribution of wave energy.

The subsequent step in this chain of approximations is
the weak turbulence theory, which incorporates nonlinear
effects of lowest order, that is, the quadratic nonlinearity.
It is represented by a set of coupled equations that de-
scribe the time evolution of particle distribution functions
and the time evolution of spectral intensities of the wave
modes. The weak turbulence theory was largely developed
between the late 1950s and the 1970s [1-10] and has been
used since then in many studies of plasma phenomena,
which are ongoing to this date [11-15]. The formal fur-
ther development of weak turbulence theory was resumed
by one of us (P.H.Y.) in recent years, starting from first
principles and proceeding in a systematic way. Initially the
formalism included only electrostatic oscillations, taking into
account wave-wave and wave-particle interactions without
considering discrete-particle effects [16]. The formalism was
later expanded to include effects due to processes related
to spontaneously emitted fluctuations, which come from
discrete-particle effects, both for wave equations and for
particle equations [17]. Further extension occurred when
electromagnetic waves were incorporated into the formalism,
initially without the discrete-particle effects [18], but later
by incorporating effects representing spontaneously emitted
thermal fluctuations [19,20]. The foundational equations that
resulted from these developments were applied for actual ap-
plications, mostly related to quantitative analyses of nonlinear
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processes associated with the beam-plasma instability. Thus,
numerical analyses were carried out in one or two dimensional
systems, such as in Refs. [21-31].

The afore-mentioned formal developments on weak turbu-
lence theory and numerical analyses thereof have not taken into
account the collisional interaction between plasma particles.
The reason had been that the time scale of the instability
development, such as the growth of Langmuir waves due
to the presence of a particle beam, as well as subsequent
nonlinear three-wave decay and scattering processes, should
be shorter than the time scale associated with binary collisional
processes. However, in some of the applications that have been
made, it was shown that nonlinear effects continue to operate
far beyond the time scale of the instability saturation and
nonlinear mode coupling, to the extent that an asymptotically
steady state, or quasiequilibrium state, of the turbulent system
becomes of relevance. Specifically, it was demonstrated
that plasma in such a “turbulent equilibrium” state can be
associated with a background of electromagnetic radiation
[30,32]. It was also shown that the long-range, asymptotic
state of the turbulence is associated with the inverse power-law
velocity distribution function called the “kappa” distribution
[25-27]. It is therefore pertinent to raise the question whether
collisional processes can play a role in these processes of
long-time evolution or not, even in tenuous turbulent systems.

In addition to the interest motivated by the above-mentioned
theoretical conjecture and fundamental plasma physics issues,
another salient point may be that there are space plasma
phenomena whose explanation requires the presence of beams
of particles under the influence of collisional processes.
The prime example may be the emission of x rays via
bremsstrahlung, by electrons traveling in the solar chromo-
sphere [33-35]. There is evidence that suggests that the
generation of Langmuir waves due to the presence of a beam
may have influence on the velocity distribution of the x-ray-
generating electrons [36], such that without properly taking
the wave phenomena into account, the correct interpretation
of the x-ray spectra collected by spacecraft in the source region
may not be achieved [37-39].

It is therefore deemed necessary that the long-time evolu-
tion of the beam-plasma system, and possibly other physical
systems, may have to be reconsidered by taking into account
not only the wave-particle and wave-wave interactions, but
also the collisional interactions as well. In the literature,
it is not difficult to find examples of studies that include
collisional effects in the particle equation, but hardly any in
conjunction with and within the context of the formalism of
weak turbulence theory [40]. This is especially true if one
is concerned with plasmas in tenuous space environments.
For the equations that describe the evolution of the wave
intensities, collisional effects are sometimes included, often
in the form of a collisional damping term, but such a term
is customarily introduced via heuristic arguments, instead of
being derived from first principles of the kinetic theory [41].

These considerations motivate the present analysis, in
which we start from first principles of kinetic theory and
reformulate the standard weak turbulence theory, keeping
contributions that arise from electrostatic fluctuations that
are normally ignored in the literature. The approach to be
used in the paper can be introduced as follows. The N-body

PHYSICAL REVIEW E 93, 033203 (2016)

probability distribution function in phase space (r,p), called
the Klimontovich function, N,(r,p,?), defined by

N
No(r,p,t) = Y 8[r —r4()]s[p — p5 0],

j=1

(1.1

plays a central role in the kinetic theory of a classical many-
body system. In the above r?(t) and pj’.(t) are exact particle
orbits for the jth particle of species a, ij(t) = i“]?(t), p‘;(t) =
F, [rjf(t),pj(t),t], where F,(r,p,?) is the microscopic force
that governs the interactions among the classical particles.
For ionized gas, i.e., plasmas, F, is, of course, the Lorentz
force, F,(r,v,t) = e,E(r,t) + (e, /c)vxB(r,t), where a = e,i
represents the electrons and ions, respectively, e, = —e for
electrons and e, = e for ions (protons), e being the unit
electric charge, and E and B are electric and magnetic
field vectors, respectively, satisfying Maxwell’s equation. The
governing equation that determines the time evolution of
the Klimontovich function in phase space is equivalent to the
Liouville equation for exact phase space mapping. Together
with the Maxwell’s equation, the fundamental equations for
plasmas are thus given by

9 9 9
2 vl LB + SxBa) |- N, ep.) = 0,
ot ar c ap

9 E(r,1) + ! 8B(rt) 0
—XxE(r.1) + - —B(r,1) = 0,
or c ot

O Br.)— L LRy - ¥ 3 /d No(r,p,t) = 0
—xBr,) — - —Ern) - — ) e .0 =0.
or c ot c ae PYAa(L.p

(1.2)

In Eq. (1.2), the other two equations of Maxwell’s equations,
V-B=0 and V-E=47) ¢, [dpN, are implicit. The
above exact dynamical equation for N,(r,p,f) contains no
microscopic dissipation. The dissipations, be they collective
or collisional, arise as a result of the loss of information from
the ensemble average procedures.

The one-particle distribution function, f,(r,p,?), is the
ensemble averaged Klimontovich function:

Ja(r,p,1) = (No(r,p.1)). (1.3)

The Vlasov equation is formally identical to the first of
Egs. (1.2), except that the equation describes the dynamical
path of the smoothed ensemble averaged function f,(r,p,?).
For plasmas, the Vlasov-Maxwell equations are thus given by

0 0 0
{— vl 4o, [E(r,z) + XxB(r,t)]—}fa(r,p,t) =0,
at ar c ap

8xE(rt)—i—laB(rt)—O
or ’ cor 77

) 19 4t
axB(m) - ;gE(r,r) -— Xa:eafdpvfa(r,p,t) =0.

(1.4)

The Klimontovich and Vlasov equations, (1.2) and (1.4), are
mathematically identical. The only difference is the initial
configuration. In the case of the Klimontovich equation, the
initial condition contains the information on the discrete nature
of the particles, N,(r,p,0) = Z;V:l S[r —r;(0)]5[p — p;0)],
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as evidenced from singular delta function conditions. In
contrast, the Vlasov equation acts upon the smoothed, or
ensemble averaged one-particle initial distribution function,
fa(r,p,0).

It is the discrete particle property that determines the
importance of binary collisions or spontaneous thermal fluc-
tuations. The purely collisionless plasma corresponds to the
limit of g = 0, where g is the plasma parameter defined by
g = 1/(Air3,,), Ap. = +/T./(4mie?) being the Debye length.
Here T, is the electron temperature defined in the unit of
energy and 71 is the ambient number density. For a finite g, the
discrete particle effects become nonnegligible. Conceptually,
the Vlasov equation describes the situation for g = 0. The
more general Klimontovich equation, on the other hand, is
applicable for small but finite g, for which binary collisions
and effects owing to spontaneous thermal fluctuations become
nonnegligible. In the literature on collisional effects on the
wave dynamics, sometimes the collisional operator is simply
added to the right-hand side of Eq. (1.4) in an ad hoc manner
[42],

{ ;t +v. aa + e, |:E(r )+ — xB(r t):| }fa(r p.t)

=" Cap(far o). (15)
b

where Y, Cup(fa, f») represents the collision operator, and
sometimes the discussion of collisional effects is made in a
context in which nonlinear effects do not play effective role
[40]. For numerical analysis of the relatively dense plasmas
discussed in fusion research, collisional effects have been
applied for decades in the context of quasilinear theory, by
simply adding the collision operator to the right-hand of the
equation for the time evolution of the particle distribution
function [43-47]. It is also a common approximation in the
literature to heuristically replace the collision operator by
an effective collision frequency, >, Cup(fu, fo) = —Veoll fa-
With this approximated collision operator, upon linearization
of the resulting equation and upon coupling the perturbed
particle distribution function with the wave equation, the
particle collision frequency then gets absorbed into the
wave-particle resonance conditions, @ — K-v — v,y = 0, and
thereby the collisional damping rate is calculated. In short, in

J
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the standard heuristic treatment of the collisional effects on
wave phenomena, the particle collision frequency automati-
cally gets translated to the wave collisional damping rate.
However, the procedure found in the literature is not rig-
orous. The proper procedure is to derive the collision integral
on the basis of the equation for exact phase space mapping,
i.e., Eq. (1.2). The collisional integral should emerge only
as a result of systematic statistical averaging procedure and
upon introducing a hierarchy of correlations. Moreover, the
collisional damping rate for plasma waves must be computed
independently of the effective particle collision frequency. The
purpose of the present paper is to discuss the correct way of in-
corporating the collisional dynamics in the plasma turbulence
from the standpoint of first principles. Starting from the correct
governing microscopic equation (1.2), namely, the Klimon-
tovich equation with no ad hoc collision term on the right-hand
side and having no microscopic dissipation, it will be shown
that upon introducing a hierarchy of correlations and ensemble
averages, a particle kinetic equation that contains both the col-
lective effects, spontaneous thermal effects as well as collision
integral emerges, while at the same time, the generalized wave
kinetic equation that contains the collective linear and non-
linear wave-particle interaction terms, nonlinear wave-wave
interaction terms, and collisional damping terms emerges.
The present paper is organized as follows. In Sec. II
we present the basic formalism of weak turbulence theory,
including discrete particle effects, and obtain formal kinetic
equations for waves and particles. In Sec. III we discuss with
further details the application of the basic formalism to the
analysis of the nonlinear evolution of linear modes of plasma,
discussing the different mechanisms which can be identified in
the kinetic equations. In Sec. IV we present a detailed analysis
on the extension of the weak turbulence formalism, which can
be made by taking into account the effect of noneigenmodes of
plasma, that is, the effect of fluctuations which do not satisfy
the dispersion relations for normal modes of plasma, and show
that these new effects lead to a collisional term in the particle
equations, and to terms which can be identified as collisional
damping and as emission of electrostatic waves by collisional
processes, in the equation for the evolution of the spectral
wave intensities. Section V is dedicated to final comments on
the work which has been presented in the paper and on possible
developments to be obtained with application of the formalism.

II. WEAK TURBULENCE FORMALISM INCLUDING DISCRETE PARTICLE EFFECTS

A. Nonlinear plasma kinetic equation

In what follows, let us assume that the plasma under consideration is immersed in a field-free environment, and the predominant
mode of interaction is the electrostatic force. Under such a situation the basic equation (1.2) reduces to

d 0 0
[3[ +ve— + ¢, E(r,1)- —p]N (r,p,t) =0, 3 E(r,t) —4n Zea/dea(r p,t) =

or

2.1

It is useful to consider the Klimontovich function (1.1) describing the phase space evolution of free particles (ideal gas) that do

not interact with each other,

Ng(r,p,

-2t

—-r°m]s[p — p° )],

(2.2)
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where r‘j.o(t) and p‘;o(t) are exact orbits of free streaming particles satisfying p;o(t) =0and V;O(t) = l"‘jo(t). The corresponding
Klimontovich equation is

d d
- — |N© =0. 2.
<8t +v ar) . (r,p,1)=0 (2.3)

Let us denote the deviation of the Klimontovich function N,(r,p,t) from its average f,(r,p,t) = (N,(r,p,?)), that is, the
fluctuation, 8 N, (r,p,?):

SN, (xr,p,t) = N,(r,p,t) — (N,(r,p,1)). 2.4)

Assuming that the random phase for the fluctuations the ensemble average of SN, (r,p,t) is zero, (§N,(r,p,t)) = 0. Since the

medium is free of average field, by definition, the electric field is made only of fluctuations, E(r,#) = §E(r,7). Then Eq. (2.1) can
be reexpressed as

<§t +v i)fa(r p.t) + Cay i (BE(r 1)3No(r,p,1)) = 0, (2.5)
< d d ) fa r,p,t) a
— 4+ ve— |8N,(r,p,t) + e, SE(r,t) ———— + ¢, —+[SE(r,1) N, (r,p,t) — (SE(r,1)d N,(r,p,1))] = 0, (2.6)
ot or op ap

—8 SE(r,t) — 4w E /dpSN (r P t)=0 2.7
. . .
a ’ - ea a k) il

We also define the fluctuation of the free streaming Klimontovich function:
SNJ(r,p,1) = NJ(r,p.1) — (NJ(r,p.0). (2.8)

Upon assuming that the ensemble average of the free streaming Klimontovich function is, in fact, the same as the one-particle
distribution function,

fa(e,p,t) = (N7 (x,p,1), 2.9
the equation for § NO(r,p,?) is simply given by
(3 + v-i)(SNS(r,p,t) =0. (2.10)
at or
We may subtract Eq. (2.10) from the equation for § N, in Eq. (2.6), to obtain
<§t +v. %) [SN.(r,p.t) — SN2 (r,p,t)] + e, 8E(r,1)- 0fal al’)p’ + ea;—p.[cSE(r,t)SNa(r,p,t) — (8E(r,1)8 N, (r,p,1))] =

@2.11)

In Eq. (2.11) we are not interested in SNg(r,p,t) per se, but rather in the ensemble average of the product of two quantities
8N3(r,p,t) and SN 2 (r',p’,t"), that is, the two-body correlation function for the fluctuations of the free-streaming Klimontovich
function, (§N(r,p,t)S NO(r/,p’,#')). We may compute this quantity directly from the definition (2.2), which is explicitly written
as

N
NO(r,p.1) Z (r—v¢1) 8(p — pf). (2.12)

Note that one could include the initial phase space positions of the free-streaming particle position in the above definition,
N C?(r,p,t) = ZZN=  0(r — re0 — v{t) 8(p — p?). However, in the end, the initial particle position becomes irrelevant, as we shall
see shortly. Equation (2.12) is, thus, a convenient shortcut definition. From this we have

(BNJ.p.)SN (1)) = ([N(r.p.t) — (NO(r.p.0) ][ Ny p' 1) — (N (. p 1))
= (NJ(e.p.nON)( p' 1)) — (N (x.p.0)(N) (¢’ .p'. 1))
—((N2.p.O)NJ(@ P 1)) + (N p. )N (. p' 1))
= (NJ(e.p.nONJ( p' 1)) — (N (x.p.0))(Ny (x'.p'. 1)

= < Y s(r—vin)s(p—pf)s(r — vir)s(p - P’})>

i#j=1

N
+8ab8(r—r’—vt~|—V/t’)8(p—p’)<25r vit)s(p— p,)>—(Nf(r,p,z))(N,?(r’,p’,z’)). (2.13)
i=1
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Note that the inclusion of initial particle positions would not have made a difference since the delta-function condition §,;, exactly
cancels out the difference in the initial position vectors r*® — r®. For free-streaming particles

N
< > s(r—vir)s(p—pf)s(r' — vir)s(p' — p’;)> = (N2(x,p.0))(Ny (' ,p',1"). (2.14)
i#j=1
Thus we have

(NI, p,HOSNY (', p/ 1)) = Sapdlr — ¥’ — ¥(t — t)]8(p — P') fu(x.,p.1). (2.15)

To summarize, the set of self-consistent equations, which forms the basis for nonlinear plasma turbulence theory including the
effects of single-particle fluctuations, are given by the formal particle kinetic equation, i.e., the equation for f,(r,p,?) [Eq. (2.5)],
the equation for perturbed distribution function § N, (r,p.?) [Eq. (2.11)], the wave equation (2.7), and the definition (2.15). It is
convenient to work in the spectral representation. We assume that the perturbed quantities are functions of two distinct time scales,
the fast time scale of the fluctuations, #’, and the slow time scale of the evolution of the distribution function and the wave amplitude,
t. This means that we may express 8 N,(r,p,t) — SN, (r,p,t,t"), SNO(r,p,t) — SNO(r,p,t,t’), and SE(r,t) — SE(r,t,t'). We are
henceforth interested in spatially uniform system, f,(r,p,t) = f.(p,t). We assume that the perturbations can be decomposed in
the sense of the customary Fourier-Laplace transformation over the fast time scale of the fluctuations, #’, while the amplitudes of
the spectra vary in the slow time scale, ¢,

SN,(r,p,t,t') = f dk / dwSNE (p,0)e™ ™" SE(r,1,1') = / dk / dwSEy,(1)e* ",
L L

1 o0 Kertiof 1 o0 Kertioof
SN (p.1) = o / dr /0 dt' SN, (r,p.t,t)e ¥+ SE (1) = By f dr /0 dt'SE(r, 1,1 )e ¥t (2.16)

where the integration [, dw is taken along the path L stretching from w = —00 4+ io tow = 00+ io (0 > 0 and 0 — 0). In the
Fourier-Laplace transformation defined above, the time dependence of the spectral amplitudes § N (v,t) and SEy,(¢) is assumed
to be slow and adiabatic. These quantities are calculated as if they are independent of time on the fast wave scale (' ~ »~'). We
also write the electrostatic field in terms of the potential:

ik
8Ek,w =~ 8¢k,a)- 2.17)
|k|
Then, in the two-time step approximation, the relevant equations are
0fu(p,t . , ., 0 o N
fg) = ’ea/dk/d‘”/dk /dw K= (0.0 (DN, (p, e el (2.18)
p ,

] a )t py
(a) —kv+ i5>[8N|?yw(p,t) - Sng)(p,t)] = —e,8¢k »(H)k: f“;ﬁ ) _ ea/dk’/da) k

d
-%[8¢kf,w/(r)8N.‘;_kr,w_w/(p,z> — (8¢, (DSNE o oy (@.D))]. (2.19)

4re,
Shal) = Y =5 / dpS Ny ,(p.1). (2.20)

The Fourier transformation of the free streaming particle fluctuations, (8 Ng(r,p,t,t’)é N, ,? (r',p’,t,1”)), in fast time scale ¢’ is given
by

o0
(BN (P.DSN, (1)), = Sapd(p — PH(2m) ™" / dre *VTHOTAT £ (p 1)
0

0
+5ab5(p _ p/)(Zﬂ)_4/ dTe—ik~vT+iw‘t+A‘rfa(p’t), (221)

—00

where A — 0% and T = |t/ — ¢"|. The above definition reduces to the customary Fourier transformation for A = 0 exactly. From
this we have

(BN @.OSN) D), = 8upd(p — PI27) *8(w — k+V) fu(p,1). (2.22)

For stationary and homogeneous turbulence (which means that the correlation of two fluctuating quantities depend only the
relative time and distance, not on absolute values; of course, such an assumption is violated when the underlying turbulence
exhibits intermittent behavior), the cumulants of two fluctuating quantities A(r,7) and B(r,t’) are a function of the relative
distance and relative time only:

(A(t,H)B(,t)) = (AB)y—y v = G(r — ¥ ,t —1). (2.23)
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In spectral representation, this implies
(AB)kw = (AkwB ko) (2.24)
or more generally,
(AkwBi.w) = (AB)k.od(k + K)S(w + o). (2.25)

This simplifies the formal particle kinetic equation (2.18).
At this point, we make the approximation by formally absorbing the slow time derivatives into the definition for the angular
frequency,

0
| —, 2.26
a)—>a)+zat ( )

and suppress the slow time ¢ henceforth, until we reintroduce it at an appropriate later stage. Employing the above approximations
we now have a set of equations that forms the basis of subsequent weak turbulence analysis:

9fa¥) _ ie / dk / da)k-i(&p SN _,(P) (2.27)
ot a ap k,w —k,—w s .
€a 3fa(P) e
SN ,(p) = SN (p) — k- Sk — —————=
ko(P) = O P) = o oK T 0%k T S Ty 10
Y,/ a a a
x / dx’ / do'k -%[(quk,,w,szvk,k,,wm,(p) — (8¢ SNE 0 -y D)) (2.28)
dre, u
o = 3 5" [ dpong o) (2.29)
a
(SNIDBSN®)), , = ) 828(p — P)8(@ — k-¥) fu(P). (2.30)
Let us introduce the following short-hand notations:
(ko) ; I (231)
= (k,w), = = .
1 8 = B = T T kvt i0 ap

We also omit § for the perturbed quantities. Then the nonlinear equation for the perturbed distribution can be expressed compactly
as

Ny =N+ k- g fapy + / dq'K g4 (¢ Ny_, — (bg Ny_,)]- (2.32)

B. Iterative solution of nonlinear equation for perturbed distribution

To solve the nonlinear equation for N?, we employ iterative means,
N:]l — N;(l) + N;(Z) + N(?(S) + -, (233)

under the assumption that each order in the perturbative expansion is of the similar magnitude with the electric field perturbation
of the same order:

NI™ o gl (2.34)

Under this assumption, let us write the iterative solution order by order. Then we have to the third order:

a(l a0 a2 ./ a(l) a(l) a3 n,’ a(2) a(2)
Nq( '= Ny~ +K-gq fady, N‘i( '= /dq k 'g‘i[%’quq’ - <¢‘1'quq’>]’ Nq( = /dq k 'g‘/[‘pq’quq’ - <¢q’quq’>]'
(2.35)

The truncation of the iterative solution up to third order (or for that matter, any finite order) implies that the perturbation expansion
in electric field wave amplitude is valid. This assumption is one of the key ingredients of the weak turbulence theory where
the wave energy density is assumed to be sufficiently lower than the particle thermal energy. For a highly turbulent system,
the perturbation expansion fails. Theories that attempt to partially sum the infinite series such as Eq. (2.33) are known as the
renormalized kinetic theory. The present paper does not discuss such a theory. For interested readers, see, e.g., a recent monograph
by Diamond et al. [48].

The effects of single particles are embodied by the term N, 50 in the equation for N j(l). This term will be treated as a correction
term to the collective term k-g, f,¢,. This will be justified a posteriori by the fact various terms in the particle and wave kinetic
equations that owe their existence to the single-particle effects turn out to be proportional to the so-called plasma parameter
g=1/ (ﬁ)%e) (the inverse of the number of plasma particles within a sphere with radius equal to the Debye length), which is
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generally very small for plasmas. Consequently, we may ignore nonlinear terms that arise from N ;0 term. An iterative solution
is thus given by

NS = N2+ kegg fudy
N;(z) = /dq/k/-gq(k = K)gy—g falbgbg—g — (bgbg-g)], (2.36)
N;(3) = /dq/ / dq"K'-gk"-g) g (K =K —K") 8y g fuldy by bg—g—q» — g (@ g—q'—q") — (b Bgrbg—q'—4")]-

We may add the results to obtain the net solution. However, we symmetrize the final expression with respect to the dummy
integral variable:

Ng = N+ au(@) fudg + DY @ P(q11q2) fu[ bg b4, — (0, 00)]

(qllll+qzq=2q)
+D 3> o (q11g21g3) fa bg, b bas — Par (00 bas) — (ba, Bnbis) -
(;111+qzq42-q3=q;)
a.(q) = k-g,, (2.37)

1
0(q1162) = S (Ki-8gr40.) (ka-8.) + (K-8 40) (K1 -84,) ]

1
ac(¢3)(ql lg21q3) = 5( "gq1+qz+qs)[(kz'gflz+qz)(k3'gqa) + (k3'gq2+qs)(k2'g(12)]'

Let us now combine the solution (2.37) and the perturbed Poisson’s equation (2.29):

dme,
by = Z :26 /dp{N;O(p) + aq(q) fa(P)py + Z Z %(12)(611 |‘12)fa(l3)[¢q1¢qz - <¢q1¢qz>]

9 92
(g1+92=q)
+D 3> o (@11g2lg3) fa(0)[bg, B0 bay — By (b0 Bes) — (B0 Par b)) } (2.38)

qa 92 g3
(g1+92+q3=9)

We next define the various response functions for each species,

4re, 4re? k-df,/dp
(q) = — dpa, - (p) = a | g — 2.39
Xa(q) 2 / Pa(q) fa(P) = —3 f > — kv 110 (2.39)
drie,
@) _ a doa®
X (q11q2) kK + K] pa,; (q1192) fa(P)
—ie, dre? 1 9 k,-9f,/0p B k;-9f,/0p
= dp — ko —— )tk — | ——=]|,
2 kiklky +ky| w1 +wy, — (K + kp)-v+1i0 ap \w2 — kp-v+i0 ap \w; — k;-v+i0
(2.40)
4e
) — a doa® 3
Xa (q1192193) kikakalkr T 1o K] pe, (q1192193) fa(P)
_ (—i)%e? 4me? 1

d
2 kikoksk; + ko + k| / P o T s+ w3 — (ki + Ko+ ks)v + 0

G 1 0 k3-0f,/0 9 k,-0f,/0
x Ko gy O (Jor0alOR e 0 (ka0 AL g g
op | w2 + w3 — (kK + k3)-v+i0 op \ w3 —kz-v+i0 op\wy —ky.v+i0

and the total susceptibilities by summing over the particle species:

XD =) %@ €@=1+x@, x@le)=7) xP@le), P@lel) =) 1P @lpla).  (242)
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The definitions and notations of the various dielectric susceptibilities are consistent with Ref. [9]. Then Eq. (2.38) may be
reexpressed as

0=Ke@p,— Y. ikikokx®(q11q2)[bg, bq, — (6,%4)]

q1 Q2
(q1+92=q)
=Y D0 kakaksk XV (q1192193)[ b, o Bs — P (00, B4) — (b1 bas bes)] Z4nea / dpN’(p).  (2.43)
a9 92 g3

(g1+a92+q3=q)
Multiplying ¢_, to Eq. (2.43), and taking the ensemble average, we have

0=Ke@) ™)y —i Y kK'k—KIxP(q'lg — )y $g—gb-y)
q

2R = ¢ ), — e [ dvlo-in;w). (2.44)
q
Next, let us multiply N fg (p) to Eq. (2.43) and take the average. Then we replace ¢ by —q to obtain

Pe(=q)p-gNO)) = —i Y _kK'[k =K' |x*(q'lg — ¢)p-gD—q+a N (D))
q

+23 K239 — 4 1) @7y (D N (B)) + Y _ 4me, / PN @OINS (). (245
q’ b

We make use of Eq. (2.30) and the property €(—q) = €*(g) to arrive at

4 a 2 14 = * / / a
<¢—<1N;0(P)) = (27_[)3];{—21*(61)5(60 —kv) fu(p) + =@ Zk 2304’ — ¢ |q)(¢2)qr(¢_quo(p)>
= Zk k=K1l = 4oy &-q10 Ny ®)). (2:46)

Note that the term (¢_, N;O(p)) appears on both sides of Eq. (2.46). Since the quantity (¢_, N;’O(p)) that appears on the right-hand
side can be treated as a small correction to the linear solution, we may ignore such a term. Consequently, inserting Eq. (2.46) to
the right-hand side of Eq. (2.44), we arrive at

0= e(@NE?), —i / dq'x?(q'lq — ¢k |k — K [(pybg—gd—g) — /dq x| - q'lgE?  (E?),

(4re,)’ @re)x®*@'la —a" 0 1 .
_ Za:/ (27[)3](2 @ )5(60 k-v) fu(p) + i Zf / ke (@) Klk—k |<¢7q’¢7q+q’Nqo(p)>,

(2.47)
where we have made use of
(E%)g = (K¢%)g. (2.48)

Note that we use summation and integral over ¢ = (k,®) interchangeably in the present paper, that is, ) = f dg = f dk f dw.

C. Three-body cumulants and nonlinear spectral balance equation

Equation (2.47) shows that we need to obtain third-order cumulants, (¢, ¢,y #—,),and (¢_, P_,4 4 N;O(p)) . We may construct
these quantities from Eq. (2.43) by ignoring the third-order nonlinearity at the outset. We first note that the three-body cumulants
are zero if nonlinear terms are neglected, since the linear eigenmodes are essentially plane wave solutions such that odd moments
of the wave amplitudes vanish upon taking the ensemble average. Consequently, if we write the perturbed field as a sum of
the plane-wave solution that satisfies the linear wave equation plus the correction owing to nonlinear terms, ¢, = ¢;0) + oW,

where qbflo) satisfies the linear wave equation, e(q)q&((;)) = 0, then upon inserting this expression in Eq. (2.43) and retaining the
lowest-order terms within the nonlinear terms on the right-hand side, we obtain

¢y = Y ikik ki =KX P lq1 — a9 05" — (b by )] +

a0
kie(qr) p ;47% / dvN,'(p). (249

kie(q)
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The quantity (¢, ¢, ¢—4) can be constructed by successively making use of Eq. (2.49) for each of ¢, ¢4_,, and ¢,

@1 0 (0) 0 (1) ) ©0) 0 (1)
(b bg—qd-q) = (8070 60) + (V60 6N + (000 ¢ + - (2.50)
After inserting Eqs. (2.49) to (2.50) we omit the superscript (0) on the right-hand side to obtain

KKK — KXl ~ ¢")
(G bg—q-q) = ; ed)

N Z l|k _ k/|k”|k — kK — k//lx(Z)(q//|q _ q/ _ q//)
Ik —K'|*e(g —q")

[<¢q”¢q’fq”¢q7q’¢fq> - <¢q”¢q’fq”><¢q7q’¢fq>]

[(¢q”¢q—q/—q”¢q’¢—q) - (¢q”¢q—q’—q”>(¢q’¢—q>]

q
+Z ikk//|k+k//|x(2)(q//| —q - q//)
; k*e*(q)

[(¢q”¢—q—q” ¢q’¢q—q’> - <¢q”¢—q—q”> <¢q’¢q—q’ )]

q

N’ (D)¢g-q b- N2 (P)by - N D)y bg—q
+Z4T(€a/dp < q P2¢q q¢q)+< qqp¢q¢q>+< 1(P)bg Dy v) . 2.51)
p, k“e(q") lk —K'[*€(qg —g") k2e*(q)
Making use of the symmetry property,
xP (a1l = q2) = —x*(q1lq2). (2.52)

and decomposing the four-body cumulants as products of two-body cumulants while ignoring irreducible components, thereby
closing the hierarchy of correlations,

<¢q1¢qz¢q3¢q4> = 5(611 + q2 + q3 + q4)[(¢q1¢qz)(¢q3¢q4>8(QI + 612)

+<¢q1¢q3)<¢qz¢q4>8(‘1] +q3) + (¢q1¢q4)<¢q2¢q3>8(ql + 6]4)], (2.53)
we obtain
o [ xPUl—a+49), 2 xPl—q) 50 o xXP*W@la—4), 5
(¢q’¢q%}’¢ﬁ)—21kk |k_k ||:T(C]’)<¢ >qﬁq’<¢ >q + m(fp )q’(¢ )q—w(fﬁ )q’(¢ )qﬂ]’]
<¢q—q/¢—q Ng'O(P)) <¢q’ ¢y N;_Oq'(P» (¢q’ g’ N (P)>
+;4”“/ dp[ gy k—KPeq-g) Re@ |
(2.54)

The closure scheme introduced in Eq. (2.53), namely, ignoring the irreducible four-body cumulant, is the simplest closure, which
in the theory of neutral fluid turbulence, is known as the quasinormal closure [49].
Let us insert Eq. (2.54) to Eq. (2.47). The result is

(4re,)? x?ql—q+4q)

0= e(g)(E?), — Z e | W@ kL@ +2 / dq’{x‘”(qwq - q/)[ @) (E?)g—q
—X(:();q'_x) <E2>q/] =291 = 4l E?) } (E?), -2 / dq’—'X(Z)(qelfq)_ D (52,48,
~i T e [ da [ apkix—x {x@(qwq - ‘”[W
iy gy |

where we have made use of Eq. (2.48). The above shows that we need to evaluate the remaining third-order cumulants
(bg—q'P—q Ng,o(p)), (g P—g N;Eq,(p)), (¢q«¢q,q/Nﬁ?1(p)), and (¢,qz¢>,q+q/N;0(p)). These quantities are but special cases of a
generic form (¢g, ¢—g,+4, Nﬁgz (p)). Let us proceed to evaluate this quantity. Making use of Eq. (2.49) to evaluate ¢, and ¢_, 4,
successively, we have

@(_
x( q1|q2)<E2

a0 —
<¢q1¢*611+qu7qg(p)> - e(—q1 + q2)

8e,i xP(@lq1 — q2)
|: <E2)CI1*£12 +

8w — Kaev) £u(D).
(27T)3k1k2|k1 —kale(gr) €(q1) >CI|i| (w2 2+V) fu(P)

(2.56)
Identifying g1 = ¢ — ¢’ and ¢, = —q’, we may obtain the expression for (¢, ¢_, N, ;’,O(p)). Making the identification for ¢; = ¢’
and g» = —q + ¢q’, we may also have (¢, ¢_, N, ;’9 o (V). Likewise, setting ¢, = q' and g, = ¢q leads to (d)q/d)q_q/Nig(v)). Finally,

033203-9



YOON, ZIEBELL, KONTAR, AND SCHLICKEISER PHYSICAL REVIEW E 93, 033203 (2016)

identifying g; = —¢’ and g, = —q yields the expression for (qb,q/qb,ququgo(v)). In this way, the contributions from all the
necessary third-order cumulants to Eq. (2.55) can be obtained.

After some tedious but otherwise straightforward algebraic manipulations, one may derive the nonlinear spectral balance
equation,

(4me,)?

Ix®(q'lg — q")I*
(2 )3k%e*(q)

2 2
P A

0=e@)E>,— Y

E®, o E?),
+2qu/|:{x(2)(q/|q _q/)}2<< )q/ q + ( >q - ) _ X(3)(C]/| _ C]/|Q)<E2>q’:|<E2>q
€(q’) €lg—q")

2 2,7 M2 Q) N2
+Z/d‘1/ 2(4me,) [{x (4'lg —q"} (Ez)q_lX (q'lq — 4"l

dp3( — k-v) fu(p) — 2 / dq

<E2>q—q’] /dp3(w'—k"V)fa(p)

Qr)3k?e(q)? €@ —q) €*(q)
, 24me,)? [{x(z)(q’lq -,
+ d E
Z/ T 2 Ik — K Pleld —q)P o) E
Ol 1|2
—W@%} / dpsio — o — (k — K)-v1f,(p). (2.57)

D. Formal nonlinear wave kinetic equation

At this point, we reintroduce the slow-time derivative, which was formally absorbed into the definition for new angular
frequency in Eq. (2.26). Such a procedure was an approximate and heuristic treatment since the angular frequency w appears in
Eq. (2.19) in many places without the slow-time derivative. In fact, the only place where w appears with the slow-time derivative
factor id/dt is on the left-hand side of the equation for perturbed distribution. Consequently, when we extract the slow-time
derivative from the angular frequency, we should be careful to implement it only in the leading term, namely, the linear response
function:

0 i 0e(q) 9
2 2 2
e(@IE ) — 6<k,a) —i—lE)(E Yg = |:6(q) + 3 9w 37 (E7)q. (2.58)
More rigorous method is to employ mathematical multiple time-scale perturbation analysis, as discussed in Ref. [5]. The present
paper adopts the above heuristic approach. The reason for factor 1/2 above is because the time derivative d/9¢ is supposed to
operate only on E, within the ensemble average (Eg) = (E,E_,), but since both E, and E_, are affected by d/d¢, we simply
divided the net result by the factor 2. This leads to

i dRee(k,w) d(SE>)

0— 2 4+ Ree(k,0)(E)k o + i Ime(k,0) (SE)
2 o ot ’
SEX) koo (OE?)k o
2 dk, d ’ 2) k/, / k _ k/, _ NY2 ( ,O— RO
+ / / ) |:{X ( w | @ w)} E(k/,a)/) + e(k—k’,a)—a)/)

-7VK, 0| - K, —w’|k,w)<8E2>k/,w} (BE ko

?2) k/ /k—k/, _ /N2
o f " f doy WK Z K0 = OO oy S e
2

e*(k,w)

1
e f dp §( — k-v) fu(p)

4 1 2) k,, /k—k/, _ /M2
+—/dk’/dw’ 5 [{X Ll o)) (OE ko
T k= le(K,w)|? ek —-K,0— o)

IXPK, o'k - Koo

<8E2>k—k’,w—w’:| Z 65 f dp 5(60/ - k/'V)fa(P)

e*(k,w)
4 1 (Z)k/, /k—k/, _ /2
+—/dk’/da/ ok — Ko = D) oy
T k —K'|2le(k — K, 0 — o)|? e(K,)
2) k/, / k _ k/, _ .2
_ I o] @ =) (SEM) i o Zei/dp(S[a)—w/—(k—k/)'V]fa(p)v (2.59)
e*(k,w) B

where we have resorted back to the long-hand notation.
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E. Formal particle kinetic equation

From Eq. (2.27), the particle kinetic equation is given by

dfa . d a
i —zea/dk/da)k-%(qb,qu). (2.60)

For the particle kinetic equation, it is sufficient to retain only the linear solution for N¢, that is, Nj = N, (‘;0 + aq(q) faPy; see
Eq. (2.37). It is possible to retain corrections to the particle kinetic equation. In fact, Refs. [7,50] considered just such a problem,
but they found that the nonlinear modification only leads to a small correction to the velocity-space diffusion coefficient.
Substituting this to the quantity (¢_, N, ;’) on the right-hand side of Eq. (2.60), we have

dre, ea(Ez) k afa dmre,
— o —-kV)f=——m——— + ——
(2 )3k2e*(q) w—kv+i0k2 op  (2m)3kZe*(q)

1
(¢7qN;> aa(Q) fa §(w — k'v)fa-

2.61)

This results in the desired formal particle kinetic equation:

oo _ k 9 1 . [k df,
o /dk/dw( >S(a) k- v)[Im e )fa + (8E )k"’(k 8p)] (2.62)

Formal particle kinetic equation (2.62) together with the formal nonlinear wave kinetic equation (2.59) provide the basis of
subsequent analysis of traditional weak turbulence theory that includes contributions from the linear eigenmodes only, as well
as the more general weak turbulence theory for collisional plasmas that takes into account the additional contributions from
fluctuations that are not characterized by the linear dispersion relations, i.e., the noneigenmode contributions.

III. CUSTOMARY WEAK TURBULENCE THEORY FOR LINEAR EIGENMODES

The customary weak turbulence theory found in the literature is tantamount to taking only the contributions from the linear
eigenmodes. The basic idea is the following: the general electrostatic fluctuations (E?)y , are characterized by all k and w.
However, in the customary theory, the assumption is made such that only those w that satisfy the dispersion relation, ® = wy
are important so that fluctuations characterizing noneigemodes, w # wy, are ignored. The starting point is Eq. (2.59). The
imaginary part of Eq. (2.59) leads to the wave kinetic equation. The real part of the same equation leads to the wave dispersion
relations. The real part of Eq. (2.59) has linear and nonlinear terms, as well as terms associated with discrete-particle effects.
The discrete-particle terms in Eq. (2.59) are those terms associated with f,(p), and these terms will eventually be responsible for
various spontaneous emission and scattering process. In the customary approach, as far as the real part of Eq. (2.59) is concerned,
nonlinear terms and spontaneous emission terms are ignored, thus leading to

Ree(k,w)(E?)y.o = 0. 3.1

If one does not ignore the nonlinear terms in the real part of Eq. (2.59), then one obtains a theory either of nonlinear frequency
shift of linear eigenmodes [51] or of nonlinear eigenmodes [52]. These will not be discussed here. We denote the dispersion
relation Re e(k,wy) = 0, so that we may express the electric field fluctuation in terms of the eigenmode intensity by

(SE ke = Z Z I298(w — o), (3.2)
o=*xla=L.,S

where I)* is the intensity for each eigenmode, oo = L, S denotes the eigenmode or normal mode of the plasma, namely, Langmuir
and ion-sound (or ion-acoustic) modes, respectively, whose respective dispersion relations are given by
e (1+37,/T)"

3
L 242 S 2
Wy = wpe(l + Ek )\.De), Wy = —mi a)pek)»l)e—(l N kz;&)e)m s 3.3)

where wp, = (4rie? / m,)"/? is the plasma frequency, A p, is the Debye length introduced earlier, 7; and 7, are ion and electron
temperatures, respectively, and m, and m; are electron and proton masses, respectively. Then the imaginary part of Eq. (2.59)
can be manipulated to yield

-y Z|:8Ree (kowy) 912"

+ 2Ime(k,awﬁ)]§“:|6(w —owy)

o=*1 « ot
¢ — o'y ,}k K,o"w!_ /)}2 p
+ 41m / dK/ k—k el
Gzil Zoz: 21 2y: (k/ oWy —0o wlz k’) K
X (K ool [k =K o0f —a'of)})” s

DI

B K
oi—tl B k K ooy — aa)k,)
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- Z ZX(3) -k, - “)I]S,ﬂ:| I]f“(S(a) - oa)]"(‘)

o'=%1 B
(2) 13 ’ 2
3 Z4Im/dk/|X (Ko Ik K, aywk W)l 11 80— ool — "ol )
o'0"=%+1 By (k,a a)k, + U//a)kfk’)
4 2
T e (k) Z a f dps(@ —k-¥) fu(P)
/ ’ 2(47T€a) C() |k K’ O_wk w/)}Z
21 Kk gy .
+ mXa:/d dw (27T)3k/2|6(k/ /)|2 |:02:t:1 Xa: k % O'a)k — w) K (Cl) Ua)k)

@(k a)|k K ,o’ a)k k)iz

|X o ’
-> > e T oTol ) EL8(w—ao —o"of ) f dv 8(w — K -v) fu(p)

o'=x1 vy

2(4me,)?
21 dK'do’
* mZ/ © Q2r)3k —K|?le(k — K, 0 — o)|?

{x(z)(k/ a)/|k—k/ owg —a)/)}z

X |: Z Z ’ e(k’,a;’) Il‘(mS(w — oa)l‘;‘)

2) k/, /IK — k/, _ .2 ,
-y s Tk = ke =D g — ol | [ dpsio — of — (k — K)vifup).
o'=%1 B 6*(k’a)) " '

Since the linear eigenmodes satisfy the dispersion relation, e(k,cwy) ~ 0, @ = L, S, we have

1 1718 aa)k) 1 1718 cra)k)
clow) e(ka)) P> dkoof) = ko) *(ka)) 22 kaa)) ’

o=xla=L,S o=*xla=L,S

where a short-hand notation
d Ree(k,w)

e'k,w) = ™

is used. The following relations hold for linear eigenmodes w = owy, where o = L, S:

1 owt 1 O Ukwk m, 3T; 12
= k’ = Mk k’ l/«k:k3)‘3Dg Zelq 4+ _
6/(k,oa)k) 2 e’(k,awk) 2 V m; T,

Equations (3.5) and (3.7) lead to the reduction of Eq. (3.4):

I ZIme(k,owﬁ) 4¢? /
S 7Y + —4—— [ dpS(owg — k-v) fu(p)
o = etod) T 2 feteoapy J PIOATHY

(2)(k/ o'l Ik K. ,owf — a/a)]’f)}

"1 ’ |
koa) Z Z /dk |: K o _ B
k e(k K,owy —o'w )

o'=+1p=L.S %

—x (K o'l

)((2) awk,’k k’cm)k—aa)k)}2
_Z kaa)k Z Z/ B

a=e,i o'=+1p=L,S k — k'|2 (k_k,’awk_aa)k)|2

-k, - o/a)ﬁ,}k,oa)]"(‘)} 1P ree

« R _ I'Zﬁ fdp&[oa) — o'l —(k -k V]f (p)
E(k/’o./wllf/) E/(k,O'Cl)ﬁ) , K ’
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S Y [ Kok Koo )

o', 0"=%1 B,y=L,S

Ilf Llaa + Ilzﬁllga Ilz/ﬂllfﬁi’ 5( ;B "oy 3.8)
| Soel) Tk Woal ) loay) POk T T k). G,

k aa)k

This is the formal wave kinetic equation for conventional weak turbulence theory, which involves only the linear eigenmodes,
namely, « = L and S. In this formalism, contributions from noneigenmode portions of the electric field fluctuations (E 2)11Lw¢awk
are ignored. We will investigate the effects of including noneigenmodes in the generalized weak turbulence theory later. For
the moment, we note that the first term on the right-hand corresponds to the induced emission, and the second term depicts the
spontaneous emission. The third term represents the induced scattering, the fourth term describes the spontaneous scattering,
and the final term depicts the decay processes. Of the terms depicting the decay processes, the first two terms within the large
brackets are responsible for the induced decay process, while the final term corresponds to the spontaneous decay. We next
calculate specific forms of each term in the above wave kinetic equation.

A. Induced and spontaneous emissions

We make use of nonrelativistic definition for momentum-velocity relation, p = m,v, henceforth. Let us introduce the velocity
distribution function with the ambient density explicitly taken out of the definition:

Ja(V) = i Fy (V). (3.9)
The induced emissions terms are given by
aIgt 2Ime(k,00k) | L@, IF, .,
7 N = —Wlk —nawkﬁ dVS(UCL)k kV)k 9y Ik
args 2Ime(k,owy) a)2 9 m, s
=S dvé kv)k-—| F,.+ —F | I°, 3.10
ot ind. emiss. 6’(k,0‘a)i§) K ﬂMkka k2 / Y (ka V) av + m; k ( )

where we have made use the definitions for the linear dielectric response function (2.39).
Spontaneous emission terms are given by

Izt 4¢? . fe? i ;
— = —4 [ dvs(owt — k) fulv) = —2= /dv6 owy, —K-V)F,
ot spont. emiss. Xa: k2 [E’(k,d(u]%)]z / ( K ) ( k )
0 Ilfs 4¢2 / s uﬁﬁezwfm / s
= —% | dvé(ow, — k) fu(v) = ———— [ dvé(ocwp — k-V)(F, + F)). 3.1D)
ot spont. emiss. Xa: kz[e’(k,oa)]f)]z ( K ) k2 ( k )

B. Induced and spontaneous decay processes

Reference [9] discusses the various approximate and limiting forms of the nonlinear susceptibilities. We also make use of
results obtained by one of us (PH.Y.) in his earlier publications [16,17] in subsequent simplifications of various nonlinear
susceptibilities. The following limiting forms for the second-order susceptibility are useful:

. 2
léeg w/m

20,10 =0, x?PK,0ky,0)=——2— ¢
Xq(0,0110,w7) , Xg (k1,0lk>,0) T, kol + kol o2

xP (k0 ks, 02) = ——

—i e, @, 1 [k%kz-aq +ky) K3k -(kp + k)
2 mg wrw(w) + w2) kika |k + ksl

] w2

n (k1 + ko)?k; ko

i| (fOI' w1 > klvfh, wy > kzv;’h, and w) + wy > |k1 =+ k2|v§’h),
w) + wy

(V37 AN ’ / i eq K k-(k — k/) AN
X, Kolk-—Ko—-o)=-— Xa(K',0')
2m, w(w— ') klk — K|

e ©p  ke(k—K)
T 2T, w(w — ) kk'|K — K|

th?

(for w > kvé, @ — o' > |k — K| 0§, and o < k'v),
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i e, |k — K| kK
XOK 0k~ K. — o) = - e KX

2m, ww kk' Xa(k =K' — )

e @, kK

2T, wo' kk'|k — K/|
i eq Kk K-k-K)
2m, o' (w— ') Kk —K|
ieq o, Ke(k—-k)
2T o'(w— ) kk'|k — K|

Q

(for w > kv, & > K'vfj, and w — o' < [k — K| v%),

xPK, o'k —K,0— o) = Xa (K, )

(for ' > k'v%, 0 — ' > [k — K[ v, and 0 < kv%).  (3.12)

In the above vf, = \/2T,/m, is the thermal speed for particle species a. The following approximate properties of third-order
nonlinear susceptibility will also be used:

()
1PK,0 —K,0k0) = -2 LU —— — 390,0/|0, —0'|0,0) = 0
a v

O W _ _‘a
LK ol K=ol ko) = 55 2 .

(k — k)’ (k-k)

1e 03 kK [2k2k'2 K2k-(k — k)] 8k*(k-K) L 2Akx K)? + 3k2[K+(k — k)]

ww’ o'(w— ) w w(w— o)

:| (for w > kv, w — @' > [k —K'|vf,, and ' > K'v8},),

(w —w')?

1 e kK [2k? «(k — k")
5 (3) K,0-kK,-okow)=——-"2— | — 4+ — " |x,kK,0
AP, o'| o' |k, w) 207 m2 k2|:a)+ i| ( )

j k-K)k—K
= j;—”m{%z(w—w’) + [k-(k—K)]o}xP (K ,0' |k—K ,0—«') (for arbitrary o),
G Y2 WABN] / / 1 eg |k - k/|2 (k'k,)2 ’ ,
X K, -k, —o'kw) = —EWWWXa(k—k,w—w)

_ ek Kk — K xP K, o'k —K,0 — ) (for arbitrary  — o). (3.13)
m, kk'  @?

Making use of Eq. (3.12), the decay processes can be obtained, following Refs. [16,17]. We note that the second-order
nonlinear susceptibility is largely determined by the electrons, since the electrons with low mass are much more mobile than the
ions, thus responding to perturbed electric field much more rapidly. We also note that Langmuir waves are fast waves satisfying
of > kv, while the ion-sound frequency satisfies the slow mode condition, a)lf < kvy,. This means that wlf may be treated as
an arbitrary frequency. Various approximate forms of the second-order susceptibilities in Eq. (3.12) are then applicable, leading
to

Izt f 2
= dK'[x @ (K o' op |k — K 0" wp_)]
ot decay k aa)k o, Z
It It R
k,k - — /k kflz S(owy —o'wy — 0" wp_y)
(k Nol wk,) (k KkK',o" a) k,) € (k,aa)k)
(k-k')? L L
= ow dk’ S(owk —o'wk —o"w?_,,
D S R et S Y
o’,0"=%1
(Ua)k KRR — o op IS I — o pkew g 17 F ITE),
allgs Ny O(K .o ok r o L 2
3 = Z dk|x a)k,|k—k oo )
! decay k ka o' 0" =%1
I° L,I”S Ia,’LIaS IO' LIO' L/
k/k L ’ : / k// L - L l;‘ S(O-a)li -0 wlg’ - O-//a)lf k’)
(k Nos wk/) € (k —K.,o a)k_k,) (k,aa)k)

[k/'(k - l{,)]2 / ”
= 4 TZ Z auka)k / mS(awﬁ —o'wf —o"of_ k,)

(cr,u,kwkl"LIl‘(’ o =0 WL LIS — o k1T IT). (3.14)
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The first terms on the right-hand sides represent the spontaneous decay processes, while the remaining two terms correspond to
induced decays.

C. Induced and spontaneous scattering processes

For this process, earlier Refs. [16,17] discussed the derivation in detail. For L mode, Refs. [16,17] shows that the most
important terms are induced scattering involving two L modes. For the second-order nonlinear susceptibility of relevance
to such a process, one may treat cwp — o’wp, as the slow mode. One may also approximate the real part of the dielectric
constant €(k — k',cwf — o’wf) by 1/|k — K'|*A3,,. The imaginary part of the above dielectric constant has both electron and
ion contributions. Upon treating the imaginary part as a small quantity, one may expand the term 1/e(k — k’,oa)k - cr’a)lf,)
as 1/|k —K'|?A3, — i Ime(k — K',cwt — o’wk). The third-order nonlinear susceptibility can also be approximated by treating
owk — o’'wf; as arbitrary (slow mode) frequency. The resulting expression, which was derived in the above references, is given

by

o ! / ! 2
W ¥ [am[p kK oed)
ot ind. sc. kawk o'—=+1 E(k—k/,dw{(‘ —owlf,)
V(K. 0 wp| — K, —aa)k/kawk):|ll‘(’LIlfL
- kK)ol ol
! ’ /
= a)2 ) Z /dk/ o Slowy — o'wg — (k — K)+v]
€ o'=%1
N0 L /L me L o'L joL
x(k—k)-a— (Ga)k —ka,)Fe——(Ga)k)F,» Ig =10~ (3.15)
v m;

For S waves, Refs. [16,17] discuss that the most important terms are those related to two S mode waves nonlinearly interacting
with the ions. The basic derivation that can be found in the above references is similar to that of L mode scattering problem,
which will not be repeated here. Instead, we present the final result,

3]1‘(75 _ Z /dk m |: X(z)(k/,o'/wi/|k _ k/,cra)k _O_/wl[z)}

/ N N
I ind. se. ¢ (koof) et e(k—K.,o0p —o'wy)

—X(3)(k’,a’wlf,| -k, - U’a)lf,

k,awﬁ)]llz’sllg‘s

T , (k-K)? K
a)2 o Uk oa)k Z fdk / k4k/4k4 <Wk,k/ + oo z)

o'=%l1
I E _ _ ’ o'SyoS
x(k — K- 5 Slowy — 0wy — (k —K)V]IZS IS, (3.16)
v
where
T !
Kk = ;
(ok —o'k')? |k — k/|4k“De|e(k — K, 00 — o’a)lf,) g
2(k-k' — o'k’ ? e (k— o0’k e k—o0'k')?
Mk*%@_a@y%p kK — oo >2] ZEL_E%;F Pm£_111}
|k —K2(k — o0’k A}, 2 m; |k —K|%A7, 2m; |k—K|?
1/2 3/2 1,127 2
m; T, T, (k—od'k)
— — -—— |t . 3.17
+<m> (T) exp[ 2 k—KP “ G
Spontaneous scattering terms are given by [17]
aIge Z 16¢2 Z 3 / o O ool k—K,oof —o'of)|
ot spont. scatt. k ka =+1B=L,S |k k/| | (k k' cra)k — 0 w£)|2
" If’ﬂ /d 8[ (k —K')- ]f() (3.18)
X - vé[ow! — o'Wl — V| fa(v .
e(k’,a’wﬁ,) E’(k,aa)ﬁ) k k “

033203-15



YOON, ZIEBELL, KONTAR, AND SCHLICKEISER PHYSICAL REVIEW E 93, 033203 (2016)

For the Langmuir waves Ref. [17] obtains

Izt
at

fie /2
—(owy) TZ)\.4be Z /dk// ) o' ob gt — copIZF)8[owk — o'wf — (k — K)-V](F, + F).

Spont. scatt.
(3.19)

For the ion-sound modes, Ref. [17] also obtains
) (k k/)Z
,LLk ka 2 : /dk / k4k/4)\4

X Wik (w0’ wg IS — po o I3 5)8[owf — o'ofy — (k — K)-v] (F, + F). (3.20)

args
ot

spont. scatt.

D. Langmuir and ion-sound wave Kinetic equations

Following the convention employed in Refs. [16,17], we renormalize the ion-sound wave intensity with the factor uy explicitly
absorbed into the definition of the wave intensity:

IO'S
. (3.21)
Mk
We then obtain the following wave kinetic equations for the Langmuir (L) and ion-sound (§) modes, which can be constructed by
adding all the terms that we have derived, namely, the induced emission terms in Eq. (3.10), terms representing the spontaneous
emission, Eq. (3.11), terms depicting (spontaneous and induced) decay processes (3.14), induced scattering (3.15) and (3.16),
and spontaneous scattering (3.19) and (3.20). Adding all the terms lead to the wave kinetic equations for linear eigenmodes for
which only the contributions from linear eigenmodes in the electric field fluctuations are taken into account; see Eq. (3.2). The
result is

Tt .
akt Lyoyolet +2 Z /dk’v,ﬁk, (b IZ IS — ool 1T 3 1T — 0" ok 1P ITT)
—Zfdk (c'opI{" — oo I L) - wlf’k/llf,,LIfL],
allgs oS oS yoS o'L yo''L "L yoS n, L o'L yoS
P SeY 42y 1 + Z dK'vg  (wf I I — o' o I IS — o wy Lo I3 M IT°)

o',0"==%l1
-> f dK [up o (0 0B ITS — ook 19S) — wi 125 175, (3.22)
=

where the spontaneous emission terms are defined by

ﬁe2w2 he’w?

n
Sk = T/dva(owlﬁ —kv)F.(v), S7° = 7 be /de(awk k-v)[F.(v) + F;(V)], (3.23)

the induced emission terms are associated with the collisionless (Landau) damping rates, defined by
T dF,(V)
oL _ L %pe e L
W =ow— 3 /dv|:k- - i|8(oa)k —k-v),

7'[6026 0 me
WS = ouof 2k§ f dv(kﬂ) [Fe(v) +-— E(v)] (cwy —kev), (3.24)

i

the decay coefficients are redefined by absorbing the three-wave resonance delta functions,

L7T€ - (k-K')?

W = owp 7 Kk — K S(owy —o'wy — 0" wp_),
me? (k- (k — K)J? / "
Vi =0 §4T2 Rk —KP S(owy —o'of —o"wp_y), (3.25)
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the spontaneous scattering terms are defined in terms of the coefficients,

Lﬁ(kk/)z dvé[owt — (k — K)-V][F.(v) + F;(v)
ukk,—a kmg ée 202 v aa)k Ua)k V|[Fe(v V)],
s . fhet (kK
”k,k/ = UkMUK O Wy Z—W Wk’kf dVS[O'(,()k — 0 (,()k/ (k k) V][F (V) + F (V)] (326)
e De
and finally, the induced scattering terms are defined in terms of the coefficients:

we? (k-kK)? 0 ][ me /
u)lf’k, = m 5T /dv|:(k — k)-g} I:m—ioa)l%F,-(v) (aa)k —0 a)k)F (V)] [aa)é — a’a)lf, — (k- k).v],

wer  (k-k)? N . OFi(v) )
Wy = /,Lk,uk/aa)lfm i KRR (Wk,k, +oo E) /dv[(k — k)-T}S[a wy — ooy — (k—Kk)v].  (327)
el pe e

In the induced emission term the Landau damping rate can become positive (instability) when the distribution has a positive
velocity gradient. The induced scattering is sometimes called the nonlinear Landau damping. For L mode, the induced scattering
or nonlinear Landau damping has two pieces, one associated with the ions, i.e., the term with F;(v), and the other associated
with the electrons, F,(v). Of the two, the ion Landau damping, also called the scattering off thermal ions, is the dominant term,
and the electron Landau damping can be ignored for all practical purposes. However, we retain the electron term for the sake of
completeness. In Eq. (3.27) the coefficient Wy y is defined by Eq. (3.17).

E. Electron and ion particle kinetic equations

The particle kinetic equation in the conventional weak turbulence theory that takes only the linear eigenmode contributions
into consideration was already derived in Ref. [17]:

oF, 2 k a oF,
a':V) = %Z/dk(;g)ﬂawﬁ — k- v)[awk4 F(v )+1”L{k av(V)”’
oF; 2 k a oF;
3I(V) - %Z/dk(z.g>uk8(aw]f—k V)[owk4 Fi(v )+1"S{k aiV)”' (3.28)

IV. WEAK TURBULENCE THEORY INCLUDING COLLISIONS: EFFECTS OF NONEIGENMODES

A. Absence of noneigenmode contribution to quasilinear wave kinetic equation

Consider Eq. (2.59) without nonlinear terms:
2

i dRee(k,w) I(BE*) 0 1
R T Re e(K,w)(8E?)y.o + i Ime(K,w)(§E )y, = TP ;eg / dvs(w —kv) fu(v). (4.1)

We reiterate that the dielectric constant is given by [see Eq. (2.39)]

47'[6‘ k-of,/0v
e(k,w) = —. (4.2)
a) —k-v+i0
Taking the real part of Eq. (4.1), we have
Ree(k,w)| (EX) ko — 2 Zez/dv Sw—KkV) () [ =0 4.3)
’ s T k2|e(k,a))|2 - a a . .

Notice two regimes of the wave number-frequency space. If one is interested in the region of (k,w) space for which |e(k,w)|* # 0,
then one may balance the left- and right-hand sides of the above equation by writing

(SE* )k = (SEP) ., 4.4

where
2 1
BEM, = 7 ko)l ;ei / dvé(w —Kk-v) fu(v). 4.5)

The validity of the solution (4.4) depends on the denominator |e(k,w)|?> not being zero. For eigenmodes e(k,wy) = 0, which
means that the denominator remains nonzero only if @ does not satisfy the dispersion relation, @ # wy. Therefore, the electric
field fluctuation (§ E 2)%0) must represent the contribution from noneigenmodes. The customary weak turbulence theory does not
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take such a contribution into account. Instead, the traditional theory is concerned only with the eigenmode contributions, as we
have already outlined in Sec. III. Equation (3.1) defines the dispersion relation for the eigenmodes, where one is concerned with
the vicinity of the zeros of Re €(k,w). In the generalized theory, we may treat both the eigenmode and noneigenmode fluctuations
by defining a quantity

o = (8E%)kw — (SEZ) - (4.6)
Then the function Wy , becomes the total eigenfunction of Eq. (4.3):
Ree(k,w)¥g , = 0. 4.7
Consequently, W ., can be expressed as
= Z Z Iﬁ“é(w—ow,‘f), (4.8)
o=+la=L,S
where o wy, is the eigenvalue, which satisfies
Ree(k,omf) = 0. 4.9)

Thus, we encompass two situations, that is, the collective modes that satisfy the eigenmode condition and the noneigenmode
contribution,

BE o= BED ,+ > Y (0w —owf), (4.10)
o=x1a=L,S

which directly generalizes Eq. (3.2).
Upon substituting Eq. (4.10) to the imaginary part of Eq. (4.1), we have

'(k, —‘” 2Ime(k,w) (8 E?) (k k_ 1 2Ime(k,00?)I% |8(w — o
€' (k,w) + 2Ime(k,w)( kw—i-azil;[ oW ) —— o T me (k,owf ) Iy } (w—owg)
=ImLZe2/dvé(w—k-v)f ) 4.11)
ket (k,w) &~ o ’

We next make use of Eq. (3.5) to write the denominator €*(K,w) on the right-hand side as the sum of the principal part and the
eigenmode contribution, and use as well Eq. (4.5):

ISE?)

3 4 2 —_— .
- HmEQEQEbiwmlwmm

—i—ZZ[ koa)k " —{—ZIme(kawk)I‘m]S( awﬁ)

o=*x1 «

aa)
=ImP —5 *(k )Z /dv&(cu kV)fa(V)"r‘ZZ ) Z /dva (cof —kev) fu(v).  (4.12)

o=%1 « kaw

€' (k,w)

Within the definition for (§ E 2)k » appears the dielectric constant € (k, ). Since the argument of € (k, ) excludes the eigenmodes,
the second term on the left-hand side of Eq. (4.12) is implicitly taken with the principal value. This means that it exactly cancels
out the first term on the right-hand side of Eq. (4.12). If we assume that 9(§ Ez)k,w /9t = 0, then we are left with

ZZ[ (k.owy) al +21me(kawk)1m]5 w—owy) szz —owi) Z /deawk K-v) fu(V).

ao

o=*1 « o=*1 « k O'(,()
(4.13)
If we remove the common factor, D _,, >, 8(w — cwy), then we obtain
a7 2Ime (K, 0w 462
i ( - “)113“ Z%/dv&(cwﬁ —Kkv) fu(V), (4.14)
o1 ¢ (k.o ) ~ 12[e (k,owt)]

which is none other than the first two terms on the right-hand side of the conventional weak turbulence wave kinetic equation
(3.22) that are dictated by linear wave-particle resonance conditions, owy — k-v = 0. This shows that in the (quasi-) linear
theory, noneigenmodes do not affect the wave kinetic equation.
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B. Particle kinetic equation including collision integral

Unlike the (quasi-) linear wave kinetic equation, the influence of noneigenmode electric field fluctuations on the particles is
important, and it leads to the collision integral. The formal particle kinetic equation is given by Eq. (2.62). Inserting the total
wave electric field intensity [Eq. (4.10)] and making explicit use of the definition for (§ E 2)2@ [Eq. (4.5)], we have

of.
ot

m, P 2 1
203k e*(k,w) " 7 k2 |e(k,w)|?

a k 0fs
Xzeb/dV5(w kV)ly )<k v ) ZZ”2’77;3]<6 kaowwk fa+ZZ1gaa _w“)<k'a£>]'
k

(4.15)

dk

dw(%-%)é(w —k-v) |:ImP

Upon carrying out the w integration, and making use of the definition for Im e(k,®), we readily obtain the generalized particle
kinetic equation that includes both the eigenmode and noneigenmode contributions:

dF,(V) 2ﬁ6262 0 Jkikj 8(k-v —K-v') m, 0
ar =2 ’ dk/d ——(————)Hv)Fh(v)

m2 v, k* ek k-v)|> \dv;  my V]
k 0 Tm, 0F,(v)
dk| —-— )8 ¢ _Kv)| ——2—F, I . 4.16
(k av> (o0 V)[zn*ke (koap) ‘O {k av ” (4.16)

In the above, the first term on the right-hand side comes from noneigenmodes, while the second term represents the contribution
from plasma normal modes. In Eq. (4.16), we have expressed the final result in terms of F,, where the velocity distribution is
defined by taking the ambient density factor 7i out of the distribution function, f, = iiF,. Equation (4.16) is the generalized
particle kinetic equation that includes the well-known Balescu-Lenard collision integral, which is the first term on the right-hand
side of Eq. (4.16). In comparison, Eq. (3.28), which only contains the velocity drag (or friction) term owing to the spontaneously
generated electrostatic fluctuations and the velocity space diffusion term, the generalized kinetic equation for the particles (4.16)
contains both the collision integral, which is the first term on the right-hand side, as well as the terms representing collective
processes, that is, the second term on the right-hand side of Eq. (4.16).

In Eq. (4.16), the linear response function with the angular frequency w replaced by k-v appears in the denominator of the
first term on the right-hand side. Since the most important contributions to the noneigenmode fluctuations come from particles
with the highest concentration, i.e., near v = 0, we may treat these various angular frequency arguments having the basic form
k-v as close to zero. We thus approximate

w, 20, T,
e(kkv)~e(k0)_1+2k22 =1+k22 1+?. (4.17)
Te t

If we further approximate e(k,k-v) ~ 1, then we must assume that 2[w,, /(vae)]2 « 1. This assumption implies that for
noneigenmode fluctuations, the wave number range should be restricted to short wavelength regime, k°A%,, >> 1. Such an
approximation leads to the Landau collision integral. Since the Landau integral contains k integration that diverges for k — 0
and k — oo, one heuristically limits the lower and upper & integration to )LZ,:, <k < T,leqep| ™", which leads to the well-known
Coulomb logarithm, which in the case of electrons is given by In A = In(Ap,7T,/e®) = In(4m7i)}),). Note that 4w AL}, represents
the number of electrons in a sphere with radius A p,. Since the plasma parameter g = 1/ (ﬁ)% ) is supposed to be small in order
for the ionized gas to qualify as plasma, it can be seen that the quantity A must be large. In the present discussion, however,
we do not make the approximation to the dielectric constant that leads to the Landau collision integral, but rather, we adopt the
approximation (4.17). This leads to

dF,(V) _ Z dk/ k,-kj)fl‘)ea(k-v —k-v) i Mg 0 FL) Fy(v)
ot 5 m2 al), |1+Te/Ti +k2)\%e|2 ij my 31);

Tmy

k 0 o oo | K 3F(V)
dk(%'5>8(aw"_k'v)[2n3ke (ko l()F(V)Jrlk {k av ” 19

Note that the collision integral (the first term on the right-hand side) is but a variation of the Balescu-Lenard collision integral, or a
modified Landau collision integral, the discussions of which can be found in the standard literature. The effects of noneigenmode
fluctuations on the particle kinetic equation is thus to add the collision integral to the standard Fokker-Planck type of particle
kinetic equation given by Eq. (3.28). This is not entirely new, although the systematic exposition of the mutual relationship
between the eigenmode versus noneigenmode contributions to each term within the particle kinetic equation (4.18) may not have
been made clearly in the existing literature. The real novelty and significance of the noneigenmode fluctuations appear in the
wave dynamics, which we turn to next.
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C. Wave kinetic equation including collisional damping and electrostatic bremsstrahlung

We now consider Eq. (2.59) again, which is reproduced below:

i dRee(k,w) I(SE )k 0 ) ) ) 2 1 )
3 S Rk O i Im ek~ s 30 / 4V 8@ — k-v) f(v)
SE*) kK oo (SE?) o
=2 | dK [ do'| {xPK &' |k —K,0 — o)}? < O @
/ / w[{x (. @O Ty ek Koo —)

Ix? K o'k - K0 - o)
e (K,)

7K, 0| - K, —w’|k,w)<5E2>k/,w} (BE ko +2 / dK/ / do' (BE) .0 (SEX )kt 0o

4 1 (2)k/7 /k—k/, /M2
__/dk//dw’ 0ok Ko = @) oy
T k2 le(k,0')|? ek —K,0— o) ’
IXPK, o'k - K, 0— o)
e*(K,w)

4 1 2) K.o'k —K _ /M2
__/dk’/dw’ ok ko o 52,
E1d k —K|%|le(k — K, 0 — o)|? ek,

Ix@K, o'k —K,0—o)
e*(k,w)

<6E2>kkf,ww/] > e / dv 8w —K'v) fu(v)

(SE®) ]Z /dva[w o — (k — K)-v] fa(v).

In the above, terms on the left-hand side correspond to linear processes, which we have already discussed. All the terms that
appear to the right are characterized by nonlinear interactions. We substitute Eq. (4.10) for the total electric field fluctuation,
(8 E?)x o, to the nonlinear terms. We already established that the linear terms are unaffected by such a procedure. Consequently we
pay attention only to the nonlinear terms. Since we are interested in w = o wy, in the end, those terms containing (§ E 2)%0) can be
ignored at the outset, since such terms are by definition, excluded from the region satisfying w = o wy. However, noneigenmode
fluctuations having different arguments, (§ £ 2)k, cand (6E 2)k K.0—o» Must be retained. This leads to the following equation that
shows the balance of nonlinear terms on the rlght -hand side of Eq (2.59):

NL terms = —2/dk’/dw/{{x(2)(k’,w/|k —K,0—o))?

2 o’ 2,0 o'p B
y (6FE )k Koo T2 o Z I v S(a)—w’—a”wifk,) N (BE N+ g Zﬂ I, 8(0) —G’a)k,)
e(K,w) ek —K,0— o)

— 5K, 0| - K, -0k w)[(8E2)0 +ZZ[""’5 (o — 0’0} ]}ZZ[” w—owf)
) ) ) k', o' k' k' k k
o B
’ /I)(Q)(k’,a)/lk—k’,a)—a)’)|2 o'B 1B

+2/dk/da) ) (BEM) ,—i—ZZl (' — o'l

—— "
x [<6E2>ﬁ_kf,w_w/ +) D Kkdw—o - U”wi-kf)}

o’ vy

4 /dk,fd 1 (PK ok — K0 — o) S5 s( )
- w w— ow,

T k/2|6(k/,a)/)|2 6(k - k/’w - w/) o o y )

2) k/, /k—k/, 2 ,_a—, Y
K ok —K 0w | [(SEZ ' ,+221k¥5w W ="l ) “Zei/dv&(w’—k’.v)fa(v)

e*(k,w)

4 1 {x(z)(k’,w k- K.0 — o)
o dk/ d / ICT[X 8 _ o
n/ / @ |k—k’|2|6(k—k’,a)—w’)|2{ (K. ZZ 3w —oei)

Q) (! . 1/ Y2 [ ——t— ,
x (k,w!l:(k 1;),0) o) [<352>g,’w,+221553w —o'wf) }}Z /dva[w o —(k—K')v] fa (V).
’ o' ﬁ

(4.19)
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In the above, we have indicated the new terms corresponding to noneigenmode fluctuations by overbraces —— in order to aid
visual identification. Of the various terms above, if we are interested only in nonlinear terms that arise from collective excitations
and spontaneous fluctuations in the eigenmode range, then we can ignore all source fluctuations associated with the superscript
0, that is, the terms indicated by overbraces. In that case, one obtains the same results as Egs. (3.8) or (3.22).

We now consider the correction terms coming from noneigenmode source fluctuations. Retaining only the correction terms,
Eq. (4.19) is now written as

corr. = —Z/dk//da}’{{x(z)(k/,w’lk—k’,a)—a)/)}z[

GE yo  BEDD,
e(K,w) ek —K,0— o)

— 7K, 0| — K, —o|k0)(SE?)y. ,}ZZ[{“ w—owy)

x @K, o'k —K,0 — o)
+2 / dK / do o BEH o (BE 4oy o

S X 5 ML IR IR0 3 S SRR o8]
o B

1 O, o'k — K,
—/dk// k/2|6( [P (K, o w— o) (8E2)ﬁ,k/,w,w/Z€§/dV5(w’—k/-V)fa(V)
a

k/ /)|2 *(k’w)
fdk//d , |X(2)(k’,a)/|k—k’,a)—a)’)|2 <8E2)0
Ik — k'|2 |e(k K. — o) e*(k,w) e
XY el / dvslw — o' — (k — K)-v] fa(v). (4.20)

Upon making use of the definition (4.5), namely, (8 E?)? o = {2/[nk?|e(k,w)|*]} Y€ fdv 8(w — k-v) f,(v), we may rewrite
Eq. (4.20) alternatively as

SEZO SE?), |
corr. = —Z/dk//dw/ XPK, 0k - K0 — o)) ] S O o
e(K,w) ek —-K,0— o)
K | — K, —o k) (SEDY, w] ZZZ (0 —owf)

O, o'k —K,0 —o
+2/dk’da)/|x ( !*(k o ik [((SEZ 0 ZZI,(,% (0 —o'of)

+(8E%) . ,ZZ[J Y 6 a) — o —a"a)l):_k,):|

2) k/, k—k/, _ /N 2
+6/dk’fda)’ X wel*(k w)w al (SE2Y W (SED oo o 4.21)

Rewriting the noneigenmode fluctuations (§ E 2)%@, and (6 F 2>ﬁ7k’,w7w’ explicitly by making use of Eq. (4.5) we have

X@ K K-v[k—K,o0f —K-v)}?

corr.——z4e ZZ/dk// < k K,omp —k'- )

7% f:(0) 8(w — o)
k’2|6(k/,k/'V)|2
X(z) K.o o |k — K, 0 — a/w£)|
k — k' 2e*(k,0)|e(k — K0 — o'wp)|

_)_((3)(k/,k,'vl _ k/, _k/'V|k,O‘(,()lo:))

+Z B, ZZ/dk’/
X @K K vk - K, (k = K)-v]]*

24e2e} / ,/ / , ) ,
+ ——= | dk' | dv [ dv
Xa:Xb: 2 K2k — K 2e*(k,)|e[K K -v)|2|e(k — K/, (k — K')-v']|2

x 8l — K'+v — (k — K)-vV'1 fu(¥) fy(V), (4.22)

177 f.) 5[0 — o' wf — (k —K)-v]
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where we have carried out the ' integrations by virtue of the various delta functions, and rearranged certain terms by making
use of the symmetry properties associated with the second-order nonlinear susceptibility.

Next, we make use of Eq. (3.5) to decompose the denominators 1/e(k — k',cwy — k’-v) and 1/€*(k,w) into principal parts and
imaginary terms. Upon taking the imaginary part of the resulting equation, the nonlinear correction term that owes its existence
to noneigenmode fluctuations finally emerges:

2 UK K vk — K, 00 —K-v))
corr. = —246“ /dk'/dv ! Im[P (K] T %% v}
el K2 e(k K-v)P2 e(k — K. o0y —Kk-v)

O[K,0'wp |k — K, (k — K)- v]|
—(%) /1, / / oo / X k‘
(K K-v| - K, —K-vkoof) ]1k fa(v) — § § § 8¢? /dk/ T k/|2|6[k RCEIE

x i e’ 8[ — (k — K)-v] fa(v)
- ocwy — 0o a)
6’(k’ a,w]/le) 6’(k,o‘wl"(‘) k k' a

24 QK K-V [k — K, (k — K)-v]|?
€ /dk’/dv/d’2 [x 9K K -v| ( )-vl|
k' |k — K'|?|e(k’ K -v) |’ |e[k — K',(k — Kk')-v]|

S[Gwﬁ —kv+K-(v—V)]
x e’(k,awﬁ)

The right-hand side of Eq. (4.23) is to be added to the right-hand side of Eq. (3.8). The result is a generalized wave kinetic
equation that includes both the eigenmode and noneigenmode fluctuations, and which directly generalizes Eq. (3.8):

e f5(V). (4.23)

I ZIme(k oa)k /
= @y dvé(ow) —Kk-v) f,(v)
9t (k,Ua)k Z k O'a)k)]2 ( k )f
2 @ (k |k — K o ﬁ/
ZZ/dk/ Im[P X (Ko'w | oW — 0 wk)}
e/(k,aa)]"(‘) e (k ~K,o0f —0o wf)
5O, o'Wl K, —a’wﬁ,yk,awﬁ)]lg'ﬁlf“ - kwk Z ;/mx@ o'of [k —K,0"w] )|

[ e, eer” it oy

_ 8 _ ﬂ/ _ )
E(k/’a “’f) ¢ (k—K.0"wy_y) (k’ka)] (o0k = oo = o"olc)

2) (1 Bl _ 1/ B
_Z ZZ/dv/dk/ (X2 (K .00y [k — K.owf 0‘;1«)‘

kowk = |k — k’|2| (k—k’,oa)]"(‘—aa)k,)|2
Il((m Ilzﬂ :| o B ’ Sga 1 / // 1
_ Slow? —o'wl —k—K)v| -3 X~k [dv—
X[e’(k/,o’wﬁ) eoag) 1705 7 = OO = LS Ve K
2 X(z) k/,k/'V k_k/,awa —K.v 2 _ /4 ’ ’ o oa
B B L

, |X(2) o’ ﬂik_k/ (k—k')-v]|2
L g 22 o [ 2
'(k Ga)k ~ k — k’| le[k — K/, (k — K')-v]|
X [ i — e ! }s[a -0’ (k — K)-v] fu(v)
6/(k/ U’wﬁ,) é(k,owl"(‘) “ wk ¢

.S 48¢2 eb /dk’fd / Ix @K K-V [k — K,k — K)-v]]?
v
~ 1 [e(koo)] YK = KPRl KV Plelk — K (k — K)-v]]?

x 8[oay — kv +K-(v— V)] fu(W) f(V). (4.24)

The last three terms on the right-hand side of Eq. (4.24) are new terms associated with noneigenmode fluctuations. In these terms,
we encounter various response functions with the angular frequency replaced by k-v. We make use of the approximation (4.17),
namely, e(k,k-v) =~ €(k,0) =1 + (Zwlz,e / ksze)( 1+ T,/T;), which was used to simplify the collision integral for the particles,
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Eq. (4.18). Recall that further approximation, €(k,0) ~ 1 leads to the reduction of the Balescu-Lénard collision integral to Landau
collision integral, which physically implies particle interacting through Debye-screened collisional processes. However, here we
do not assume kzk%)e > 1, because the waves are not subject to Debye screening. We then have

Iz ZIme(k awk /
- “+ dvé(owd —Kk-v) f,(V)
8t (k,()'a)k Z k O'Ll)k)]z ( k )fa
2
k ka (rz(;/ﬁz);/dk’b(ﬁ) o wk,|k K O'Na)l}: k/)|
RO rer’ LR ] g
- ) ol .,
[E(k/"’ o) €(k—K.o'wg ) € (kooy) (c0k —o'w — o o y)

4 ZZfdk/I I:P 2{X(2)(k/va/w]€|k_k/,0(z)k _G/wﬁ/)}
) m
6/(kgga)loé) o’ B é(k — k/’o.wg — o a)l/z/)

s
Y e ZZ/df [k Koo o)
kaa)k v |k k/|2 B2

. (k= K.oof —o'af)

—)‘((3)(k 0w, | -k, —0o wk,

X2 (K0 0 [k~ K.0) }[ I* I’ } :
—~ S[owf —o'wp — (k—K)-v] £,
T k- K0P o) ekoen) 100k~ ok~ K=KV
2 / 2{x? (K, 0k—K o0f)}’
_ 8e;; 1 / dk /dVIm |:P {X ( ;0] ,(T(,()k)} —)_((3)(k/,0|—k/,0|k,0’a)ﬁ):|fa(V)[|?a
— 1 €(koaf)) kle,0)] e(k—K,o0f) R
2 QK 0k — K.0)[2
N Z48eaeb 1 Z/dk//dv/dv’ : Ix@ (K 0k — K',0)|
w7 [¢kow)] k7 k — K 2le(k’,0)[*|e(k — K',0)[2
X 8[0(01"(‘ —kev+K(v— V/)] fa(v) f;,(V’)} . (4.25)
B

In the above

1

v (4.26)

T,
e(k,0)=1+(1+ )

It is seen that the contributions from noneigenmodes lead to three new effects. One is the term indicated by the underbrace ,

which is a new term that arises from the noneigenmode fluctuation, and this term has a net effect of modifying the spontaneous
scattering term. The second term contained within the large square brackets and indicated by subscript “A” exhibits the overall
dependence on the wave intensity, 7. This term thus has the structure that is representative of the collisional damping term.
The final term has the appearance of the electrostatic bremsstrahlung, which describes the emission of electrostatic fluctuation
in the eigenmode regime, @ = o wy, but its causation is the particle scattering (hence, the “breaking radiation”).

Here we should caution readers that the term “electrostatic bremsstrahlung” is not to be confused with a process sometimes
known in the literature by the same terminology, which is unfortunate. In the literature, the process of relativistic electrons
scattering Langmuir waves into transverse radiation is also called the “electrostatic bremsstrahlung” [53—-58]. However, this
process, which should be more accurately called the “inverse plasmon scattering” [56], is actually an induced scattering of
transverse radiation off relativistic electrons mediated by Langmuir waves. In contrast, the present “electrostatic bremsstrahlung”
is an emission of electrostatic eigenmodes by collisional process, which is analogous to the emission of transverse electromagnetic
radiation by collisional process. Note that several authors discussed the electromagnetic bremsstrahlung within the context of
plasma kinetic theory [59-62] but a similar process involving electrostatic modes has never been discussed in the literature.

Concerning the collisional damping rate, we should also caution the readers that the present formulation differs from that
customarily found in the literature. As noted in the Introduction, one of the customary approaches to discuss collisional damping
of plasma waves is to simply add the collisional operator to the particle kinetic equation in an ad hoc manner [42]; see Eq. (1.5).
Upon replacing the full collision integral by an effective collision frequency and upon linearizing the particle equation, the
particle effective collision frequency gets absorbed to the wave-particle resonance condition. In this approach, the particle
collision frequency automatically gets translated as the wave collision frequency.
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A slightly more rigorous discussion of the collisional damping formula can found, e.g., in a monograph by Melrose [8],
according to which, first, the bremsstrahlung radiation formula is derived by considering the single particle dynamics. The essential
formula for the radiation power is generalized to an ensemble of charged particles by multiplying the single-particle formula by the
particle number density distribution [see Eq. (3.81) of Ref. [8], Vol. 1]. Then, the Kirchoff’s law, which in the parlance of plasma
kinetic theory is none other than the balance of the right-hand side of the quasilinear wave kinetic equation that describes emission
and reabsorption of waves [see Eq. (5.19) of Ref. [8], Vol. 1], is invoked in order to deduce the collisional damping rate of the
radiation [see Eq. (6.3) of Ref. [8], Vol. 1]. Adopting such a formula for the collisional damping Ref. [38] includes the collisional
damping of Langmuir waves in their discussion of wave-particle interactions of the solar flare electron context; see Eq. (3) of
Ref. [38]. However, strictly speaking, the collisional damping rate discussed in Ref. [8] rigorously applies to the transverse
radiation only. Also, simply invoking the Kirchoff’s law to determine the collisional damping rate is not entirely self-consistent.
In contrast, the present formalism actually derives the Kirchoff law plus other terms within the wave kinetic equation.

The third new effect, namely, the modification of the spontaneous scattering term via noneigenmode contributions has not
been discussed in the literature. The ramifications and actual applications of the present improved weak turbulence formalism
will be carried out in the future, but for the moment, the subsequent exposition is by necessity, formal.

1. Electrostatic bremsstrahlung

The electrostatic bremmstrahlung terms for L and § mode wave kinetic equations come from term B in Eq. (4.25):

arer 12fz2e262 2 OK.0[k—K.,0)[2
k il /dk//dv/dv 5 O] ) $[owg —k-v + K (v—v)] Fa(v) F,(V),
I loremss 57 k= k—K'|?|e(K’,0)]*|e(k—Kk',0)|?
9IS 124%e2ela?, A ,0k—Kk,0)|?
k P €a%Ope fdk /dvfdv 5 X 2( /' . ) / 25[aw;§—k.v+ K'-(v—v)] Fo(v) Fp(V).
ot bremss a,b k' |k_k/| |€(k 70)| |€(k_k 7O)|
4.27)
Upon making use of Eq. (3.12), we make the following approximation:
@/ / Nl W 1 ie 1 T2 w7,
x K ,0k —K',0) = —i o5 =5 (1 _ (4.28)
—~ T, kk'k =K' vz, T vz, kk'|k — K|’
This leads to the simplification of bremsstrahlung terms in Eq. (4.25) fore = L and @ = S,
aIgt 3e’T, T2\* 1 / T 20\ T. 20 |7
= 1—=%) —— [dK'|[1+ —+K") 1+ —=+&—-Kk)2x
0 e 167, \| 77 K203, 7, T 7, P
X / dv / dvé[aa)]f —kev+K(v— v’)] Z F,(v) Z F,(v),
a b
IS 36T, T2 Uk T, 5 -2 T -2
= ‘1 dk'( 1+ =2 + k2] 1+ ==+ (k — k)27
B s 1670, 2, / TRy R
x / dv / dVS[Ua)]f —kv+K-(v=V)] Y F.WF). (4.29)
a b

2. Noneigenmode correction to spontaneous scattering

The noneigenmode corrections to the spontaneous scattering comes from the term indicated by the underbrace in Eq. (4.25):

8I<7L ?2) k/ Kk — k/ 0 2

S —4ﬁezz/dk’/dv|x ( f””k| )

I eorr p Ik —K'[?le(k — k,0)|

xoof(o'ob 7" — cof ITF)s[owk — o' wf — (k — K)+v] Z F,(v),
2
aIgs / / X2 (K.0'wii [k — K.0)]|
= —4i / dk' [ dv
o1 |y = IOk ) k= KPletk— K0P

x (o' wp 1Y — ok I )8[owy — o'wf — (k —K)-v] Z Fy(v). (4.30)

For the second-order susceptibility xP(k’,0'wk |k —k',0) we may assume o > k'vr, and wf > k'vr;. For
xPK,o a)k |k — K’,0), the approximation involves wy, < k'vr, and a)k, > k’vr;. The second-order nonlinear susceptibility
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for L mode, X(z)(k’,a’wﬁ, |k — Kk’,0), and the ion partial susceptibility for S mode, Xi(z)(k’ o wk, |k — Kk’,0), lend themselves to the
well-known approximation, namely,

X(Z)( aa)k,}k K',0) ~ X(Z)(k/,cr/wlﬂk—k/,O) _ —_iik-—k/’
‘ 2 T, kk'k — K|

—ie 1 k-K

2T ki'k — K3, k?

X(Z)( o a)kl}k K,0 ) (4.31)

However, to compute the electron partial susceptibility x 6(2)(k’,o’a)lf, |k — K’,0) requires fundamental reconsideration since in this

case, both arguments representing angular frequencies are slow modes. We thus manipulate the original definition (2.40) and
write

x? (k o' wy

; 1 8 (k—K)-0F,/d 0 K-9F./d
k—k.0) = LA [k/-——( )-0Fe/0v / /0¥ }

—_—— — +k-K)———|.
2m, kk'|k—K’| aa)k,—k v+i0 ov—(k—Kk’)-v+i0 v o'wp, —K-v+i0
(4.32)

Upon assuming that the bulk electron population can be approximated by a Gaussian distribution we may trivially carry out the
velocity integrations. Since a)lf < k'vr., we may ignore a)lf, in comparison with k’-v. This readily leads to

ie 1
2T, kk'|k — K'|A%,,

x2P(K.o'wp |k —K.,0) = (4.33)

Gathering all the results, namely, Eqgs. (4.31) and (4.33), the correction term to the spontaneous scattering effects that arises
from noneigenmodes, Eq. (4.25), is now given by

Izt / / (k- ’)2 ;
= ocw dk’ oot — o'k — (k —K)-v
ot corr mz 2e K Z k2k’ Iz K K ( ) ]
T N2q2 oL Lyo'L
1+?+(k—k) 22, (a oL IZE — ok I )ZFa(v),
E = Uk O W) Z / dk’/ [aa)]f —0 a)k —(k — K- V]
ot corr mg ?ze kzk/z 4
T, -2 T, k-kK , o
x [1 +3+ (k — k/)zk%e:| <1 - 77) (o' wE IS — ok 1) za: F,(v). (4.34)

3. Collisional damping

The terms in the wave kinetic equation (4.25) which describe collisional damping are given by the new term designated by
subscript A:

It 4 dK’ 2{x?(K .0k — K.00k)}’
k — _Z feg fz—/dvlm[P b (k0 g 3) — 7¥(K,0] — K, 0]k, awk)i|F(v)I“L,
A |eon k" le(k’,0)|? e(k —K,o0f)
2
IS 4irel L/ dK' / [ 2{x? (K., 0k —K,00})]
=— ¢ oukog | ————— [ dvim|P — 79K ,0| — K, 0|k, 00)) |F.(WIZS.
Y Z x O e o)) e(k —K,00)) 7500 — KOk 0wy) | Fa(w)
(4.35)
The collisional damping terms above are associated with the following approximate forms of the nonlinear susceptibilities:
(2) ’ (2) / —ie k'(k — k/)
(k Olk k O'C!)k) (k Olk k ,O k) Te m,
] 1
(2)(k’ Ok — K cra)k) i T o
2T, kk'|k — K'|A%),
1 -k — K
x2 (K 0k — K, 00f) = ie k-tk —K) (4.36)

T kk'k —K[23, K

For the third-order susceptibility, in the case of @ = owf, both electron and ion susceptibilities pertain to two slow modes
and one fast mode, for which we do not have standard approximate formula [see Eq. (3.13)]. We thus write down the specific
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expression on the basis of the general definition (2.41):

O 0] — K Ok.o) = - ©po /d Iy
YK ,0] - K, 0ko) = -—% v :
Aa 2 m2 k2k'* o —Kk-v+i0

3 1 3 ( k-dF,/d 2\

2 _ | K.— # Tkv(—) E |}

ov|w—((k—-K)v+i0 ov\w —k-v+i0 v%a
For = owf we have

) 12 1 , 0., 9 (K9F,/9v 2 \?
Xe(3)(k/,0| — k/’0|k,0'wl€) = Eﬁm / dvk 'E[k -5<#) + k‘V(T) Fe = 07
e k

UTe

1 e 1 3 3 (K-OF;/0v 2\’
-3 (1, / L ’ / i
P (K ,0] — K0k, =-——— [ dvK-—|K-— [ — 2= ) +kv[ =) F | =0, 437
Xi ( | | ka) 2 mom, kzk’z,/ v 8V|: 3V( Oa)l% >+ V<U%i> ( )

where we have taken the partial integrations. For w = aa)lf , since a)lf < kvr,, the electron susceptibility can be approximated by

e* kK 1

-3 1,/ I S\ ~ 7@K . -
72 (K0l — K,0k,0p) ~ xP(K,0] — K,0k,0) = TR T

(4.38)

For the ions, we have the same situation as Eq. (4.37), namely, two slow modes and a fast mode:

1e? o’ 1 3 3 (Kk-0F;/0 2\?
72,0l — K0k 00f) = ~— pz—Z/dvk/-— k’-—(#) —i—k-v(T) F|=0. (439
2 m; K2k (wg) v av owy, v

Ti

The approximations (4.36)—(4.40) lead to the simplifications of collisional damping terms (4.35):

aIgt 8ae* | fd , [k-(k — K)]*A%, Ime(k—K.,o0f)
= ——; 0wy kK
3t eon ; Rk — K21+ T/ T + k22, |e(k — K o0)|’
oIS 2het , 1 2T, k-(k — K)|Ime(k — K00
k = ——za,uka){;/dk : 2[ 5 } ( "2) 175, (4.40)
o Jeon  7Ie K2k —K[2[1+ T,/ T + k223, | ik le(k — K.,00))|

Making use of the definition (2.39), we may write down the final form of the partial wave kinetic equation corresponding to the
collisional damping terms:

Izt _ 8ietws, ool / ) [k-(k — K)2A4),
o |en T2 K2k — K4 (k — K o0f)*|1+ T./ T + k23,
oF, ,
x /dv(k K- W Slowl — &k — k)] I,
81{5 2hetw? 1

= Lom a)L/dk/
i len ¢ T2 K K2k — K [4e(k — K 00)|*[1 + T/ T; + k223,

2T, k-(k — k) T? o OF,(v) , -
X[1+ 2 T} /dv(k_k).TB[owlf—(k—k)-v] Ies, (4.41)

where we have a trivial change of integral variable, k' <> k — K'.
Collecting all the results, we may finally write the generalized wave kinetic equation that includes contributions from
noneigenmode fluctuations, and which directly extends the customary weak turbulence wave kinetic equation (3.22)—(3.27),

Izt

= e ] (P A V e Y / dk vf (cop IT IS — oo I S ITE — ooy I “ 1Y)

’

oo

., L /L yoL Lyo'L L jo'LjyoL
- E /dk [uk,k’ (c'ogI{" —ow IZ") — wi o [0 E I ],
p
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IS

N N S(coll) N 'L 'L 'L N L 'LyoS
- =S5+ P 2w+ n NS+ Y f dk v (oo IT I — o' wb I L TS — oo L IV ITS)

o',0"=%1
— Z/dk’ (o' wop 1Y — owf IgS) — w135 175], (4.42)

where the spontaneous emission terms SZ* and S 5 are already defined in Eq. (3.23), but a new term that represents the
electrostatic bremsstrahlung appears in Eq. (4.42), namely,

. 36T, T2\ 1 T. 2, \° T, ) -2
Pt = <1—T—2)—/dk’<l+?+k /\%)e) [1+Te+(k—k)2x§)e}

1673m, k223, ; ;
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k Mk 167T3mg ( 7_;2) kz)\.zDe + T, + De + T, + ( ) De

X f dv / dv §[owy — kv +K-(v—V)] Z F,(v) Z Fy(V). (4.43)
a b

The collisionless (Landau) damping rates 3,7~ and 5 are also already defined in Eq. (3.24), but Eq. (4.42) now contains
new terms associated with collisional dampmg rates

| 4hete? k-k')2A T, -2 dF,
yl:rL(co]]) _ ka - Dpe /dk’ E‘ ) DeL ; |:1 + =24+ (k — k/)z)»%)e:| /d PN (V) ( a)]f — k/.v),
T, K2k e (K owf)| Ti av

e

4 2

. -2
o S(coll) L e a)pe / / 1 |: T N2 2
Y, = 0 UKW I+ =+ &=K)Ap,
) Lo ik o) Pl T P
2T, k-K d
x(l + T e )/d kK.— o |:F V) + — F(V):| (oa)k K. ) (4.44)

The decay coefficients vli i and vy, are identical to those defined in Eq. (3.25). However, the coefficients describing the
spontaneous scattering terms, u. , and “ﬁ,kw are generalized to include the effects of noneigenmode electrostatic fluctuations:

4 k- kl 2 1
uky = ool ”64 ( - /2) 1+ - /dv8[awk—0wk, (k —K) - V][F.(v) + F;W)],
mwy, Kk |1+ T./T + (k — K)?AD, |
L8 St ool het 1 [(k-k/)z Wt 1 (1 T.k- k/> }
r — MKMK kK’ e
“miof Kk, LR 14T/ T o+ kR, TR
X / dvi[owy — o'wy, — (k —K) - V][F.(v) + F;(V)]. (4.45)

Finally, the coefficients associated with the induced scattering terms, wy,, and wlf’k,, remain the same as defined in Eq. (3.27).

V. SUMMARY AND DISCUSSION

The present paper formulated the weak turbulence theory that includes effects of binary collisions as well as collective
processes. For the sake of simplicity, unmagnetized plasmas interacting through electrostatic force were considered. In spite
of this simplification, the new formulation presented in this paper extends the customary formalism found in the literature.
The new aspect of the theory pertains to the issue of treating the spontaneously-emitted electrostatic fluctuations in a complete
fashion. The spontaneous emission is a discrete-particle effect, and thermal plasmas emit such fluctuations in all frequencies and
wave vectors (w,k). However, in the customary literature, these fluctuations are approximately treated by considering only those
frequency-wave number regimes corresponding to the eigenmodes, w = wy, while ignoring contributions from noneigenmodes,
o # wg. In the present paper, we include the noneigenmode contribution to the electrostatic fluctuations and rigorously show
that a systematic weak turbulence theory that encompasses collisional processes emerges.

In the literature, collisional effects are sometimes included in the particle kinetic equation, but not in conjunction with and
within the context of the weak turbulence theory, developed from first principles. It is customary simply to add a collisional term
to the right-hand side of a linearized particle kinetic equation, approach which is particularly common in the literature that deals
with the collisional transport processes in fusion research. On the other hand, in the literature related to the analysis of the time
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evolution of wave modes, a collisional damping term is sometimes added to the right-hand side of the wave kinetic equation, with
the damping rate directly related to the effective particle collision frequency which is obtained from the particle kinetic equation.
However, these procedures found in the literature are not rigorous. The present paper lays out a proper procedure in which the
collision integral for the particles and a rigorous wave collisional damping rate are derived on the basis of the Klimontovich
system of equations. The result comprises of the particle kinetic equation that contains both the collective effects, spontaneous
thermal effects as well as collision integral [Eq. (4.18)], and the generalized wave kinetic equation that contains the collective
linear and nonlinear wave-particle interaction terms, nonlinear wave-wave interaction terms, collisional damping terms, as well
as terms that depict the bremsstrahlung emission of plasma eigenmodes [Eq. (4.42)].
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