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We consider the collective neutrino plasma interactions and study the electron plasma instabilities

produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interac-

tion between neutrino flavor oscillations and electron plasma waves. We show that the neutrino fla-

vor oscillations are not only perturbed by electron plasmas waves but also contribute to the

dispersion relation and the growth rates of neutrino beam instabilities. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896254]

I. INTRODUCTION

Neutrino interactions with plasma are very important to

understand supernova explosions and many other astrophysi-

cal phenomena.1 Two types of effects arise from such interac-

tions. First, they modify the neutrino flavor oscillations2 and

introduce a resonant coupling between different flavor states,

known as the MSW (Mikheyev-Smirnov-Wolfenstein)

effect.3–5 Second, they create an induced neutrino charge,6,7

which can lead to collective plasma oscillations and signifi-

cantly increase the collision cross sections. The energy trans-

fer between a neutrino beam and a plasma wave is mediated

by the neutrino Landau damping.8 The individual flavor proc-

esses are important to understand the solar neutrino deficit,

while the collective plasma effects could play a major role in

supernova explosions.9 It should be noticed that the core-

collapse problem is still unsolved.10 A possible solution could

be given by these plasma effects.

In a recent work, we have proposed to build a bridge

between these two kinds of phenomena and have introduced

plasma physics methods in the discussion of neutrino flavor

oscillations in matter. In particular, we have derived exact

BGK (Bernstein-Greene-Kruskal) like solutions for electron

plasma density profiles compatible with given neutrino flavor

parameters11 and have determined the modified neutrino

flavor oscillations in the presence of plasma waves and

turbulence.12 Here, we take a further step in the same direc-

tion, by considering the mutual influence between flavor

oscillations and plasma instabilities. We will show that the

neutrino flavor parameters are not only perturbed by electron

plasma oscillations but can also contribute to both the disper-

sion relation and the growth rates of neutrino beam instabil-

ities in a plasma.

This paper is organized in the following way. In Sec. II,

we consider the basic equations of our problem, using a sim-

ple fluid description where ions are assumed at rest and the

neutrino flavor oscillations are taken into account. In Sec.

III, we consider a plasma in steady state, and characterize

the unperturbed solutions for both the electron plasma pa-

rameters and the flavor polarization vector. In Sec. IV, we

consider the perturbations induced by a plasma wave and es-

tablish the evolution equations for the perturbed quantities.

From this perturbative analysis, it becomes clear that plasma

waves induce perturbations in the neutrino flavor parameters

which lead to new dispersive effects. In Sec. V, we consider

the case of electron plasma waves excited by an incoherent

neutrino beam and determine the corresponding growth

rates. In Sec. VI, we generalize this analysis to the case of a

coherent neutrino beam and show that the flavor oscillations

can contribute to the dispersion relation of electron plasma

waves. Finally, in Sec. VII, we state our conclusions.

II. FLUID DESCRIPTION

We assume a simple fluid description for both the

plasma electrons and the neutrino beam, with immobile ions.

A unit system with �h ¼ c ¼ 1 will be used. The electrons are

described by the non-relativistic fluid equations

@n

@t
þr � nvð Þ ¼ 0;

@p

@t
þ v � rp ¼ Fþ F� �

rP

n
; (1)

where n and v are the electron mean density and velocity,

p ¼ mv and P is the electron pressure. We have also used

the Lorentz force F and the neutrino force F� , defined by

F ¼ �eðEþ v� BÞ; F� ¼
ffiffiffi
2
p

GFðE� þ v� B�Þ; (2)

where E and B are the electric and magnetic fields, e is the

electron charge, GF is the Fermi constant of weak interac-

tions, and E� and B� are effective fields induced by the weak

interactions, determined by

E� ¼ �rNe �
@Je

@t
; B� ¼ r� Je: (3)

The electron-neutrino density Ne and current Je ¼ Neve are

coupled to the muon neutrino density Nl and current

Jl ¼ Nlvl, as shown by the continuity equationsa)Electronic address: titomend@ist.utl.pt
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@Ne

@t
þr � Je ¼

N0

2
X0P2;

@Nl

@t
þr � Jl ¼ �

N0

2
X0P2;

(4)

where the quantity P2 pertains to neutrino coherence, as

clarified below. Here, for simplicity, we restrict our analysis

to the familiar two-flavor model,1 but extension to the three

neutrino flavor states would not be difficult. In these two

coupled equations, we have also used the constants

X0 ¼ x0 sin 2h0; N0 ¼ Ne þ Nl: (5)

Strictly speaking, Eq. (4) only apply to a coherent neutrino

beam with a defined energy E0 and cannot be used in arbi-

trary situations. For this reason, we will only restrict our dis-

cussion to the neutrino beam interaction with a plasma,

where the frequency x0 can be unequivocally defined as

x0 ¼ Dm2=2E0, where Dm2 is the neutrino square mass dif-

ference. On the other hand, the quantum coherence factor P2

satisfies the relations

dP1

dt
¼ �XP2;

dP2

dt
¼ XP1 �

X0

N0

Ne � Nlð Þ; (6)

where we have defined

X ¼ x0 cos 2h0 � fð Þ; f ¼
ffiffiffi
2
p

GF
n

x0

: (7)

The meaning of the total time derivative in Eq. (6) will be

clarified in Sec. III. To complete the description of the neu-

trino populations, we should consider the neutrino momen-

tum equations

@pe

@t
þ ve � rpe ¼

ffiffiffi
2
p

GF Ee þ ve � Beð Þ;

@pl

@t
þ vl � rpl ¼ 0;

(8)

with pe ¼ veEe and pl ¼ vlEl. The quantities Ee and Be

appearing in these equations are effective fields7 defined as

Ee ¼ �rn� @

@t
nvð Þ; Be ¼ r� nvð Þ: (9)

The quantity X0 in Eq. (5) depends on the energy of the neu-

trino beam, and is well defined for a (nearly mono-energetic)

beam, such that Ee ¼ El ¼ E0. The momentum equations in

(8) show that, in the presence of plasma perturbations E 6¼ 0

and B 6¼ 0, the quantities ve and vl are not necessarily

identical.

In conclusion, we have a rather detailed model for the

neutrino-plasma coupling. The electron variables n and v are

determined in a self-consistent way together with the fields

E, B through Maxwell’s equations with self-consistent

charge and current density, with a coupling produced by the

neutrino force F� in the electron momentum equation (1).

The neutrino force depends on the effective neutrino fields

E�;B� , which in turn are specified by the electron neutrino

variables Ne; ve. However, in the present two-flavor model,

the electron neutrino variables oscillate due to the quantum

coherence P2, which is influenced by the muon neutrino

quantities Nl; vl. Finally, the neutrino oscillations are influ-

enced by the plasma in two ways: the coupling with n in f in

Eq. (7) and the role of the electromagnetic field in the elec-

tron neutrino momentum equation (8). In the following, il-

lustrative examples of applications are provided.

III. EQUILIBRIUM STATE

For simplicity, we consider a non-magnetized plasma,

although future work accounting for a non-zero ambient

magnetic field could be relevant with respect to supernovae

settings. In equilibrium, we have n¼ n0, v ¼ 0 and

E ¼ B ¼ 0. This implies that, for a mono-energetic neutrino

beam, the velocity of both flavors are identical, so that we

can use ve ¼ vl ¼ v0. In this case, Eq. (4) reduces to

dP3

dt
� @

@t
þ v0 � r

� �
P3 ¼ X0P2; (10)

with P3 ¼ ðNe � NlÞ=N0. In this context, the coupled equa-

tions (6) and (10) can describe the evolution of a three-

dimensional flavor polarization vector P � ðP1;P2;P3Þ,
where the total time derivatives are defined without ambigu-

ity. They can be rewritten as

dP1

dt
¼ ��XP2;

dP2

dt
¼ �XP1 � X0P3;

dP3

dt
¼ X0P2;

(11)

where �X ¼ x0 cos 2h0 �
ffiffiffi
2
p

GFn0. This implies that

d2P2

dt2
¼ ��x2P2; �x2 ¼ �X

2 þ X2
0: (12)

Introducing a new angle �h, we can also write

�x ¼ X0

sin 2�h
; tan 2�h ¼ X0

�X
: (13)

Equation (12) can be solved as

P2ðtÞ ¼ P20ðtÞ ¼ A expð�i�xtÞ þ B expði�xtÞ: (14)

It is convenient to define the constants of integration as

A ¼ �B ¼ ðb=2iÞ sin 2�h, in terms of a free parameter b
related to quantum coherence, leading to

P20ðtÞ ¼ �b sin 2�h sin �xt: (15)

A phase constant was chosen so that P20ð0Þ ¼ 0, without

loss of generality. For completeness, we show the results for

the remaining polarization vector components, taking into

account the normalization condition jPj ¼ 1

P10ðtÞ ¼ sin /� b sin 2�h cos 2�hðcos �xt� 1Þ;
P30ðtÞ ¼ cos /þ b sin22�hðcos �xt� 1Þ:

(16)

Here, the angle / satisfies

sinð2�h � /Þ ¼ b sin 2�h cos 2�h: (17)
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For instance, in the absence of quantum coherence (b¼ 0)

one has / ¼ 2�h. We can explicitly see that b is a measure of

the amplitude of the flavor oscillations, since for b¼ 0 there

are no oscillations at all.

The corresponding solution for the equilibrium electron-

neutrino density is

Ne0 tð Þ ¼ N0 1� b
2

sin22�h 1� cos �xtð Þ
� �

; (18)

and Nl0ðtÞ ¼ N0 � Ne0ðtÞ. These results are strictly valid for

a mono-energetic beam satisfying DE0 � E0. A finite value

of DE0 would introduce a temporal (and/or spatial) decay of

these oscillations.1

Nothing that Eq. (11) contains total derivatives (in a

Lagrangian variables sense), we can also consider another class

of initial conditions, Neðr ¼ 0Þ ¼ N0 and Nlðr ¼ 0Þ ¼ 0. The

resulting solutions would then be expressed in terms of spatial

coordinates as

P2ðrÞ ¼ A expð�ik0 � rÞ þ B expðik0 � rÞ; (19)

where k0 ¼ ð�x=v2
0Þv0. In the following, we will focus on

equilibrium solutions of the type (14), although a similar

analysis could be done for solutions of the type (19).

IV. PERTURBATIVE ANALYSIS

In Sec. III, there was no electromagnetic field at all. We

now consider the possible excitation of electron plasma

waves by a mono-energetic neutrino beam, as described by

the perturbed densities ~n ¼ n� n0; ~Ne ¼ Ne � Ne0, and
~Nl ¼ Nl � Nl0. We restrict our discussion to electrostatic

waves, with B ¼ 0 and E determined by Poisson’s equation

r � E ¼ � e

�0

~n: (20)

Linearizing the electron fluid Eqs. (1) and (2), with B� ’ 0,

we get

@~n

@t
þ n0r � v ¼ 0;

@p

@t
¼ �eE�

ffiffiffi
2
p

GFr ~Ne �
r ~P

n0

: (21)

In addition, the displacement current contribution from (3)

has been disregarded due to the non-relativistic assumption.

Taking the time derivative of the continuity equation and

using (20) we obtain

@2

@t2
þ x2

p � v2
thr2

� �
~n ¼

ffiffiffi
2
p

n0

m
GFr2 ~Ne; (22)

where we have used the electron plasma frequency

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=�0m

p
, and the electron thermal velocity

vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3T=m

p
, where T is the electron temperature. In the

expression (22), we can easily recognize the usual wave

equation for electron density perturbations, with an addi-

tional term associated with the electron-neutrino oscillations.

In order to determine the quantity ~Ne, we linearize Eqs.

(4)–(7), assuming that the unperturbed neutrino flavor

solutions Ne0; Nl0, and P20 are given by the (homogeneous

in space) solutions of Sec. III. This leads to

d ~Ne

dt
þr � Ne0~veð Þ ¼ N0

2
X0

~P2;

d ~Nl

dt
þr � Nl0~vlð Þ ¼ �

N0

2
X0

~P2;

(23)

complemented by the neutrino momentum equations

d~pe

dt
¼

ffiffiffi
2
p

GFEe;
d~pl

dt
¼ 0: (24)

In these expressions, we have used the total time derivative

d=dt � ð@=@tþ v0 � rÞ. We can immediately recognize that

the muon-neutrinos are not accelerated by the electron

plasma wave, because they are not directly coupled to the

electron perturbations. This is strictly valid only for a neutral

electron-proton plasma. We should also note that

~ve ¼ ~pe=E0, where E0 is the unperturbed neutrino beam

energy. From here, we can derive an evolution equation for

the perturbed electron-neutrino density, of the form

d2 ~Ne

dt2
þ dNe0

dt
r � ~ve � a2

pr2~n ¼ N0

2
X0

d ~P2

dt
; (25)

with

a2
p ¼

ffiffiffi
2
p

GF
Ne0

E0

: (26)

It can be seen that the evolution of the perturbed density ~Ne

is coupled to ~n and also depends on the perturbed coherence
~P2. An equation for this quantity can be derived from Eq.

(6), reading

d2 ~P2

dt2
þ �X

2 ~P2 ¼ ~X
dP10

dt
� �XP20

� �

� X0

N0

d

dt
~Ne � ~Nl

� �
þ P10

d ~X
dt
; (27)

where it was defined ~X ¼ X� �X. Using the above Eqs. (23)

and (24), and taking the definition of �x into account, we can

then transform Eq. (27) into

d2 ~P2

dt2
þ �x2 ~P2 ¼ �

ffiffiffi
2
p

GF
dP10

dt
� �XP20

� �
~n þ P10

d~n

dt

� �

þ X0

N0

Ne0r � ~ve; (28)

where the perturbed neutrino velocity is determined by the

equation of motion d~ve=dt ¼ ð1=E0Þ
ffiffiffi
2
p

GFEe. We now have

all the equations for the perturbed quantities, which will be

solved in Secs. V and VI.

V. INCOHERENT NEUTRINO BEAM

Let us first consider the simple case of P20 ¼ 0 and

b¼ 0, which corresponds to the absence of quantum coher-

ence. In this case, we have two coupled equations for the vari-

ables ~Ne and ~n. On the other hand, no flavor oscillations will
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occur, so that dNe0=dt ¼ 0. We therefore take Ne0 ¼ N0

¼ const. For perturbations evolving as expðik � r� ixtÞ, we

can reduce Eqs. (22) and (25) to

ðx2 � x2
p � v2

thk2Þ~n ¼
ffiffiffi
2
p

GFðn0=mÞk2 ~Ne (29)

and

ðx� k � v0Þ2 ~Ne ¼ a2
pk2~n: (30)

From here, we can derive the dispersion relation for plasma

waves in the presence of an incoherent neutrino beam, as

x2 � x2
p � v2

thk2 ¼
ffiffiffi
2
p

GF
n0

m

k4a2
p

x� k � v0ð Þ2
: (31)

This can also be written in the standard form, by introducing

the plasma dielectric function �ðx; kÞ, as

�ðx; kÞ � 1þ veðx; kÞ þ v�ðx; kÞ ¼ 0; (32)

where the electron and neutrino susceptibilities are defined

by the expressions

ve x; kð Þ ¼ � 1

x2
x2

p þ v2
thk2

	 

;

v� x; kð Þ ¼ � x4
�

x� k � v0ð Þ2x2
; x4

� ¼
ffiffiffi
2
p

GFn0k4a2
p

m
:

(33)

This dispersion relation shows the possible occurrence of

neutrino beam instabilities. Maximum growth rates occur for

the double resonance condition x2
r ¼ x2

p þ v2
thk2 ¼ ðk � v0Þ2,

where we have assumed x ¼ xr þ ic. The corresponding

growth rate for the unstable solution is

c ¼
ffiffiffi
3
p

2
xp

Ne0n0G2
F

mE0v4
0

 !1=3

/ G
2=3
F (34)

valid for k k v0 and high frequency waves with x2
p � k2v2

th.

In the growth rate expression, the free parameters are Ne0

(the initial electron neutrino population), E0 (the defined

coherent neutrino beam energy) and the neutrino beam ve-

locity v0 as well as the equilibrium electron density. Finally,

it should be observed that Eq. (33) is valid for v0 6¼ 0.

Indeed, it can easily be shown from Eq. (30) that there is no

instability if v0 ¼ 0, as expected. Hence, the above growth

rate estimate is always defined for the relevant scenarios.

Also, the growth rate is / G
2=3
F , which is the same estimate

found in Ref. 8 for a weak neutrino beam.

Revealing insights can be obtained rewriting the disper-

sion relation in terms of a characteristic function FðxÞ as

F xð Þ ¼
x2

p þ v2
thk2

x2
þ x�

4

x� k � v0ð Þ2x2
� 1: (35)

The dispersion relation is a fourth degree equation for x.

Hence, it admits complex conjugate solutions and hence an

unstable mode, if the local minimum at x ¼ x� (see Figure 1)

satisfies Fðx�Þ > 1. To leading order in the neutrino coupling

effects, we find

x� ¼ k � v0 �
x4=3
� k � v0ð Þ1=3

x2=3
p

; (36)

together with the instability condition

F x�ð Þ ¼
x2

p þ v2
thk2

k � v0ð Þ2
þ x�xp

k � v0ð Þ2
� �4=3

> 1; (37)

where k � v0 > x2
� was also assumed. Notice that the instabil-

ity is enhanced by larger neutrino effects as apparent from

the second term in Eq. (37). Moreover, if the double reso-

nance condition is fulfilled the instability condition is also

immediately satisfied since the neutrino term is always posi-

tive and never stabilizing.

VI. COHERENT NEUTRINO BEAM

Let us now consider the case of a coherent and nearly

mono-energetic neutrino beam, where we have to retain the

contributions of the coherence parameter P2. To enhance this

contribution, we suppose b ¼ 1;/ ¼ 0 in the unperturbed

solutions (15) and (16). We can then rewrite the coupled

equations (25) and (28) as

d2 ~Ne

dt2
� a2

pr2~n ¼ N0

2
X0

d ~P2

dt
; (38)

and

d2 ~P2

dt2
þ �x2 ~P2 þ a sin �xtð Þ þ a0 cos �xtð Þ � 1½ 	

� �
~n ¼ 0; (39)

with the following auxiliary quantities

a ¼ 2
ffiffiffi
2
p

GF
�X sin 2�h; a0 ¼ a

2
cos 2�h: (40)

FIG. 1. On the left: characteristic func-

tion from Eq. (35), in a generic unsta-

ble case such that Fðx�Þ > 1, where

x� is the local minimum. There are

only two real roots for the dispersion

relation equation. On the right: the

same but for a generic stable case such

that Fðx�Þ < 1, allowing four real

roots for the dispersion relation.
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To simplify the analysis, we neglect the terms containing the

perturbed electron and muon neutrino velocities. We then

assume perturbations of the form

ð~n; ~Ne; ~P2Þ ¼
X

l

ð~nl; ~Nel; ~P2lÞ exp ðik � r� ixltÞ; (41)

with xl ¼ xþ l�x. This allows us to establish the following

relations

x2
l � x2

p � v2
thk2

	 

~nl ¼

ffiffiffi
2
p

GF
n0

m
k2 ~Nel; (42)

xl � k � v0ð Þ2 ~Nel ¼ �a2
pk2~nl þ

i

2
xl � k � v0ÞN0X0

~P2l;
�

(43)

and

xl � k � v0ð Þ2 ~P2l � �x2 ~P2l ¼
ia

2
~nl�1 � ~nlþ1ð Þ

þ a0

2
~nl�1 þ ~nlþ1 � 2~nlð Þ: (44)

From here, we obtain the recurrence relation

x2
l �ðxl; kÞ~nl ¼ �aAðxl; kÞ½ð~nl�1 � ~nlþ1Þ

� i cos 2�hð~nl�1 þ ~nlþ1 � ~nlÞ	; (45)

where �ðxl; kÞ is given by Eq. (32) with x replaced by xl.

The coupling function is defined by

A xl; kð Þ ¼
ffiffiffi
2
p

GF

4m

n0N0X0k2

xl � k � v0ð Þ½ xl � k � v0ð Þ2 � �x2	
: (46)

In order to study mode coupling contributions, we can use an

approximation in Eq. (45), by noting that the differences between

~nl�1 and ~nlþ1 are very small if we assume l�x � xp. Using Eq.

(42), we obtain by differentiation 2xl~nldxl þ x2
l d~nl ’ 0. This

leads to

d~nl � ~nl�1 � ~nlþ1 ’ �2
dxl

xl
~nl: (47)

Now, using dxl � �2�x and noting that xl ’ xp, we finally

arrive at the simple estimate

~nl�1 � ~nlþ1 ’ 4
�x
xp

~nl: (48)

Taking l¼ 0, this leads to the dispersion relation

� x; kð Þ þ 4a

x2

�x
xp

A x; kð Þ ¼ 0: (49)

This result shows that the previous dispersion relation (32)

for the neutrino beam interactions is corrected by an addi-

tional factor due to quantum correlations, which is of the

order of �x=xp � 1. Such corrections result from the cou-

pling between quantum flavor oscillations and electron

plasma waves, or in other words, between the quantum

properties of neutrinos and their collective interactions with

the plasma. Another interesting case, where stronger effects

can be expected, would be that of a near resonance between

plasma and flavor oscillations, so that �x ’ xp.

VII. CONCLUSIONS

We have studied the influence of the neutrino flavor

oscillations on electron plasma waves created by neutrino

beams, or in other words, the influence of the neutrino quan-

tum properties on their collective behavior. The flavor oscil-

lations are due to a difference between neutrino mass states

and neutrino interaction states. On the other hand, the neu-

trino beam instabilities result form their weak coupling with

the plasma. We have shown that the existence of flavor oscil-

lations gives a new contribution to the plasma dispersion

relation, thus changing the frequency and growth rates of the

beam instabilities.

In our model, we have introduced a number of simplify-

ing assumptions. First, we have only retained the charged

weak current and ignored the contributions from the neutral

weak current. It is known that the electron neutrinos are

coupled by the charged bosons W6 to the electrons, and all

neutrino flavors are coupled by the neutral boson Z with both

electrons and protons. For a plasma of electrons and protons

in equilibrium, this weak coupling would give no net contri-

bution to the neutrino-plasma interactions. In contrast, in the

presence of a perturbation, this would lead to a correcting

factor of order one to the terms proportional to GF.

Furthermore, our work was only focused on electron

plasma oscillations, and the protons (or ions) were assumed

immobile. But we could also consider the excitation of ion

acoustic waves, with frequencies of the order of the flavor

oscillation frequency. These excitations could be driven by

flavor oscillations. We should notice that the collective ion-

neutrino coupling is mediated by the electrons, which can be

assumed in Boltzmann equilibrium in the electrostatic and

weak field potentials.

Turning now to the relevance of the present theory to

core-collapse supernova, we can evaluate the instability

growth rate. In SI units, Eq. (34) reads

c ¼
ffiffiffi
3
p

2
xp

Ne0n0G2
Fc2

mE0v4
0

 !1=3

: (50)

A typical10 electronic density n0 ¼ 1035 m�3 yields a

plasma frequency xp ¼ 1:8� 1019 s�1. Considering also

Ne0 ¼ 1035 m�3, E0 ¼ 50 MeV, v0 ¼ c=10 and with GF ¼
1:45 �10�62 J m3, one finds a growth rate

c
xp
¼ 2:75� 10�9 ) c�1 ¼ 0:02 ns; (51)

which is far shorter than the time scale (
1 s) of the explo-

sion. This instability definitely appears fast enough to alter

neutrino mixing in core-collapse supernova.

The present results show that electron plasma waves

excited by intense neutrino beams are intimately linked with

quantum processes associated with flavor oscillations. The
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dispersion relation and growth rates of these plasma instabil-

ities are directly influenced by these flavor oscillations. It

should however be noticed that we have restricted our analy-

sis to nearly mono-energetic neutrino beams. The general

case of an arbitrary neutrino population can only be treated

in the frame of a quantum statistical approach, which will be

considered in a future publication.
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