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A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma

dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for

the wave envelope, in the form of a nonlinear Schr€odinger type equation (NLSE). The inclusion of rel-

ativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic

case—in the conditions for modulational instability. The role of relativistic effects on the linear disper-

sion laws and on envelope soliton solutions of the NLSE is discussed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4952774]

I. INTRODUCTION

The elucidation of the dynamics of ultra-high density

plasmas in one-dimensional (1D) geometry1 is recognized as

a challenging area of research among researchers in the last

decade. Dense plasmas occur in “extreme” astrophysical envi-

ronments, such as white dwarfs or neutron stars2–4 and in the

core of giant planets (e.g., Jovian planets).5–8 Such plasmas

may also occur in the next generation of laser-based matter

compression schemes.8,9 The topic has gained momentum

recently, thanks to its relevance to high-power laser-assisted

energy production (fusion) research and in particular, to the

target normal sheath acceleration (TNSA) mechanism10 dur-

ing the irradiation of solid targets with a high-intensity laser

beam.11 Other applications of (1D) degenerate plasmas

include the dense quantum diode,12 the electron-hole plasma

in quantum wires,13 the 1D fermionic Luttinger liquid,14 and

1D semiconductor quantum wells,15 to mention a few.

In such extreme plasma environments, magnetic fields

can be extremely strong, effectively varying over many

orders of magnitude, from a few kilogauss to gigagauss (or

even petagauss) in white dwarfs (neutron stars, respectively),

hence effectively confining particle motion to one dimension

(1D). On the other hand, temperatures can be quite high,

comparable to fusion plasma (�108 K).9 In such conditions,

quantum degeneracy and relativity effects are ubiquitous,

since the de-Broglie wavelength may approach, or even

exceed, the inter-particle (fermion) distance. At extremely

high densities, the electron Fermi energy EFe0 can exceed by

far than thermal energy, hence the electron thermal pressure

may be negligible, compared to the Fermi degeneracy pres-

sure; the latter arises due to the combined effect of Pauli’s

exclusion principle and Heisenberg’s uncertainty principle.

From a nonlinear dynamical point of view, ultrahigh-

density plasmas pose a real challenge; their rich and varied

dynamics may sustain a wide range of excitations, from

breather-mode oscillations in 1D semiconductors15 and

Lagrangian structures in dense 1D plasmas16 to 1D nonlinear

envelope modes in dense electron-positron-ion plasmas,17

quasi-1D solitons,18 wakefields in quantum wires,19 among

others. It may be added that the study of the dynamics of 1D

plasmas is certainly not restricted to dense systems only. In

Ref. 20, kinetic theoretical arguments have been employed

to found the possibility of reconnection between Langmuir

and Alfv�en modes in a strongly magnetized, non-degenerate,

relativistic pair plasma.

For ultra-high plasma densities, relativistic effects need

to be included in plasma modeling, since the relativistic

parameter pF=mc21 (pF is the Fermi momentum, m is the elec-

tron mass, and c is the light speed) acquires large values, thus

modifying the equation of state and hence the dynamical

plasma profile. Many authors have considered the problem of

relativistically dense plasma before, from different angles.

Problems such as the formation of electrostatic shocks within

an electron-ion plasma,22 the existence of arbitrary-amplitude

solitary structures,23 and small-amplitude envelope modes24

within an electron-positron-ion plasma have been studied in

the past. Stationary profile electrostatic pulses and Langmuir-

type excitations have been investigated in Refs. 25 and 26,

respectively. However, the majority of works tacitly apply

Chandrasekhar’s (three-dimensional, 3D) equation of state,27

a reasonable assumption since the environments under consid-

eration in the above (e.g., white dwarf stars) certainly occupy

three dimensions. What we aim for, in the study at hand, is an

understanding of envelope modes in a dense, 1D plasma, such

as is used as a model for the study of target normal sheath

acceleration (TNSA).10

We shall here focus on a relativistic one-dimensional

model for dense plasmas. Our aim is to propose a self-

consistent fully relativistic theoretical framework for low

(ionic) frequency electrostatic modulated envelope structures

propagating in unmagnetized electron-ion plasma. The model

comprises an inertialess electron fluid, which is described by a

quantum-mechanical degenerate distribution function, and a

classical inertial ion fluid. A fully relativistic fluid model is

adopted for both components. The use of Fermi-Dirac statis-

tics in the description of the electron fluid forces us to counte-

nance the exclusion principle. In the case of high densities, a

significant overlap of the electrons’ position-wavefunctions

leads to a pressure, which, according to Pauli’s exclusion
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principle, exists to resist degeneracy as would occur if two

electrons were to share the same state. Such a pressure results

in a considerable (density-dependent) momentum near the

Fermi surface (the surface in momentum-space below which

all states are occupied) of the electron gas, the magnitude

of which demands a relativistic treatment. To this end, an

equation of state is employed that is similar to that of

Chandrasekhar27 but is essentially that of the one-dimensional

“water-bag” distribution.28 Unlike the original Chandrasekhar

equation of state,27 which was developed for one-dimensional

(1D) propagation (in fact, in the radial direction) within a

spherical-symmetric geometry, our equations of state is suita-

ble for modeling strictly 1D propagation dynamics.25

The electrons will be treated as “cold,” so as to avail of

the zero-temperature Fermi-Dirac distribution. Such an

approximation is justified under certain conditions that

depend on the density, entering the algebraic description via

the relativistic electron Fermi energy EFe;rel, viz.,

kBTe � EFe;rel ¼ mec2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

Fe=m2
ec2

q
� mec2: (1)

Here, kB is Boltzmann’s constant, Te is the electron (thermal)

temperature, c is the speed of light in vacuo, and pFe and me

are, respectively, the local Fermi momentum and the

rest mass of the electron. The local Fermi momentum is

expressed in terms of the local density, ne, and Planck’s con-

stant, h, as pFe ¼ hne=4.

The layout of this article goes as follows. In Section

II, a self-consistent, relativistic fluid model is introduced.

The evolution equation for the plasma state variables is

then scaled, and a dimensionless system is presented in

Section III. A multiple scale perturbation technique is

employed in Section IV and then analyzed in the lowest

(linear) and higher (nonlinear) order(s) in Sections V and

VI, respectively. The modulational wavepacket profile is

outlined in Section VII. Localized envelope structures are

introduced in Section VIII. A parametric analysis is pre-

sented in Section IX, and the results are summarized in

Section X.

II. FLUID MODEL

We are interested in investigating ion dynamics in a

degenerate relativistic plasma. We shall adopt the quantum

hydrodynamic description,29 by introducing a fluid model

that is described in the following. The ion fluid is described

by its particle (number) density, ni, and velocity, vi. It is a

“cold,” fully ionized fluid of singly charged, positive ions,

whose dynamics is dominated by electric forces deriving

from an electrostatic potential, /ðx; tÞ. A magnetic field has

not been considered, for the sake of simplicity.

The electron fluid constitutes an inertialess background

to the ion dynamics. It is characterized by a number density

ne and a fluid velocity, ve, directed along the x�axis. The

electrons are considered to be relativistically degenerate, and

therefore the appropriate equation of state to govern their

motion is provided by the expression for relativistic degener-

acy pressure in one dimension28,30

Pe ¼
2m2

ec3

h
ne n2

e þ 1
� �1=2

� sinh�1ne

� �
; (2)

where ne ¼ pFe=ðmecÞ is a dimensionless parameter measuring

the effect of relativistic electron effects. The latter equation of

state is a consequence of the Pauli exclusion principle and is valid

for arbitrary strength of relativistic effects. Note that an expansion

of the pressure (2) for low density—n0 � 1—yields the non-

relativistic 1D Fermi pressure, Pe ¼ 2EFe0n0ðne=n0Þ3=3.

Similarly, an ultrarelativistic (ne � 1) approximation is found to

be Pe ¼ cpFe0n0ðne=n0Þ2=2, where pFe0 ¼ hn0=4.

The model comprises five equations, namely, the fluid-

dynamical equations expressing continuity (number density

conservation) and momentum conservation for the ion and

electron fluid(s), with the system closed by Poisson’s equa-

tion for the electrostatic potential /, which essentially cou-

ples the dynamical variables to one another.

@ cinið Þ
@t

þ @

@x
cinivið Þ ¼ 0;

@ ceneð Þ
@t

þ @

@x
ceneveð Þ ¼ 0;

@ civið Þ
@t

þ vi

@ civið Þ
@x

þ e

mi

@/
@x
¼ 0;

e
@/
@x
� ce

ne

@Pe

@x
þ ve

c2

@Pe

@t

� �
¼ 0;

@2/
@x2
þ e

�0

cini � ceneð Þ ¼ 0:

(3)

Note that electron inertia has been neglected, according to the

underlying assumptions of our model, as discussed above.

Adopting the electrostatic approximation, we have suppressed

(neglected) magnetic field generation; hence, the remaining

Maxwell relations were omitted. As expected in a relativistic

model, the factor ce;i ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

e;i=c2
q

appears in the fluid-

dynamical equations, as a result of Lorentz transformations

and relations between quantities, such as the electron and ion

number density (functions), between different inertial frames.

It is understood that the validity of our model equations

(3) above assumes that assumption (1) holds, i.e., for suffi-

ciently high density.

III. DIMENSIONLESS MODEL

It is appropriate to derive a dimensionless model, by scal-

ing by appropriate quantities. A natural speed scale in our phys-

ical problem is the characteristic quantity cs ¼ ð2EFe0=miÞ1=2
,

where EFe0 ¼ h2n2
0=ð32meÞ is the non-relativistic electron

Fermi energy: This is the equivalent of the ion “sound speed”

in classical plasma dynamics. Accordingly, well adopt the fol-

lowing scaling:

x! xpix

cs
; t! xpit;

ne;i !
ne;i

n0

; ve;i !
ve;i

cs
; /! e/

mic2
s

:
(4)

Note that ne0 ¼ ni0 ¼ n0 from the quasi-neutrality condition

(obtained upon considering Poisson’s relation at equilibrium).
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Finally, a natural pressure scale P0 ¼ e/0n0 is considered.

The evolution equations take the form:

@cini

@t
þ @

@x
cinivið Þ ¼ 0;

@cene

@t
þ @

@x
ceneveð Þ ¼ 0;

@civi

@t
þ vi

@civi

@x
þ @/
@x
¼ 0;

@/
@x
� ceneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
0n2

e

q @ne

@x
þ ave

@ne

@t

� �
¼ 0;

@2/
@x2
þ cini � cene ¼ 0;

(5)

where

ce;i ¼ 1� c2
s

c2
v2

e;i

� ��1=2

: (6)

With this scaling, there is only one free parameter left:

n0 ¼ hn0=4mec. The electron Fermi energy can be expressed

as EFe0 ¼ mec2n2
0=2 and so can a as a result

a ¼ c2
s

c2
¼ 2EFe0

mic2
¼ men

2
0

mi
: (7)

We may, where appropriate, still retain the notation for a
below, recalling (rather than substituting with) the exact

expression above, for the sake of analytical tractability.

Concluding this section, we note that the essential

physics of our model is elegantly “hidden” in the parameter

n0, which incorporates the relativistic effect, here manifested

in terms of the (high) plasma density.

IV. MULTISCALE PERTURBATION SCHEME

A multiple-scales technique will be employed in the fol-

lowing.31 We anticipate a solution that comprises a fast car-

rier wave and a slowly evolving envelope amplitude

u � uðX1;X2; :::; T1; T2ÞeiðkX0�xT0Þ; (8)

where Tr ¼ �rt and Xr ¼ �rx; � > 0 is a small, free parameter

(it is independent of Xr and Tr).

The state functions are expanded around their equilib-

rium values as

ni � 1þ �ni1 þ �2ni2 þ �3ni3

ne � 1þ �ne1 þ �2ne2 þ �3ne3

vi � �v1 þ �2v2 þ �3v3

ve � �ve1 þ �2ve2 þ �3ve3

/ � �/1 þ �2/2 þ �3/3:

(9)

Furthermore, each of the functions is decomposed into

Fourier components; for instance, for the velocity contribu-

tion in order �n

un ¼
Xn

l¼�n

uðlÞn eilðkX0�xT0Þ: (10)

This relation holds 8n ¼ 1; 2; 3; :::, hence

• l ¼ �1; 0; 1 for n¼ 1,
• l ¼ �2;�1; 0; 1; 2 for n¼ 2,

and so on. Since these functions are real-valued, it must be

imposed that

uð�rÞ
n ¼ �uðrÞn :

Upon substituting into the model equations (3) above

and then isolating successive contributions (orders in �), this

perturbation/expansion scheme yields a system of polyno-

mials in � whose coefficients are required to vanish inde-

pendently, since � is free (arbitrary-valued). For any given

value of n (¼ 1; 2; :::), these coefficients can be decomposed

into their separate harmonics, expressed by the second index

l (taking values from �n to n). Each decomposition suggests

a relation to be imposed between its constituent variables,

which provides the solution for the given harmonic (ampli-

tude). These expressions for the harmonics are then fed into

the next order in n, and so on. The tedious, but straightfor-

ward algebraic procedure, is presented in detail in Ref. 31.

As an example, consider Poisson’s equation at the sec-

ond order of �

@2/2

@X2
0

þ 2
@2/1

@X0@X1

þ ni2 � ne2 þ
a
2

v2
i1 � v2

e1

	 

¼ 0:

This can be split into equations for the “zeroth,” first, and

second harmonics, respectively

n
ð0Þ
i2 � n

ð0Þ
e2 þ aðvð1Þi1 vð�1Þ

i1 � vð1Þe1 vð�1Þ
e1 Þ ¼ 0

�k2/ 1ð Þ
2 þ 2ik

@/ 1ð Þ
1

@X1

þ n 1ð Þ
i2 � n 1ð Þ

e2

� �
¼ 0

�4k2/ 2ð Þ
2 þ n 2ð Þ

i2 � n 2ð Þ
e2

� �
þ a

2
v 1ð Þ

i1
2 � v 1ð Þ

e1
2

� �
¼ 0:

Analogous equations are obtained at all expansion and har-

monic order(s), thus providing explicit solutions for the

harmonic amplitudes. The tedious details of the algebraic

procedure are omitted here: in the following, we shall pro-

vide the main steps. The relevant expressions for the har-

monic amplitudes are reported in the Appendix.

V. LINEAR RESPONSE AND DISPERSION RELATION

At the first order, there is only a first harmonic to inves-

tigate. The equations are presented below

�xni1 þ kvi1 ¼ 0;

�xne1 þ kve1 ¼ 0;

�xvi1 þ k/1 ¼ 0;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

0

q
/1 þ ne1 ¼ 0;

�k2/1 þ ni1 � ne1 ¼ 0:

(11)

The electrons’ equation of motion is used to eliminate ne1

from Poisson’s relation. The electrons’ equation of continu-

ity is used to find ve1 but contains no other state variables.

052120-3 McKerr, Haas, and Kourakis Phys. Plasmas 23, 052120 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Mon, 30 May

2016 12:41:51



The remaining three equations (the equations of continu-

ity and of motion for the ions and Poisson’s equation) can be

arranged as follows:

�x k 0

0 �x k
b 0 �ðc1 þ k2Þ

0
@

1
A ni1

vi1

/1

0
@

1
A ¼~0;

where

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

0

q
: (12)

The vanishing determinant condition for a non-trivial solu-

tion to exist leads to the dispersion relation

x2 ¼ k2

c1 þ k2
: (13)

Note that c1 (defined above) essentially regulates the long-

wavelength behavior of electrostatic waves, since x ’ k=
ffiffiffiffiffi
c1
p

for k� 1, while x ’ 1 for k� 1.

Two important quantities are to be retained (and distin-

guished) at this stage, of high importance in the dynamics of

modulated wavepackets: the phase speed (vph ¼ x=k) and

the group velocity (vg ¼ dx=dk). These can directly be

obtained as functions of the wavenumber k (see Fig. 1).

Caution must be exercised in the interpretation of the plots,

as the scales are density-dependent, so curves with different

equilibrium densities are not presented on the same scale.

This will be discussed further below.

The solutions for the first harmonic amplitudes, as

obtained in this order, can be expressed as functions of the

electrostatic potential (leading-order disturbance) amplitude

/ð1Þ1 ¼ w as

n 1ð Þ
i1 ¼

k

x
v 1ð Þ

i1 ¼
k2

x2
w ; v 1ð Þ

e1 ¼
x
k

n 1ð Þ
e1 ¼

c1x
k

w: (14)

VI. NONLINEAR TREATMENT

We may now consider the evolution equations at the

next (second) order in the expansion parameter �. The five

equations for the first harmonic at the second order of � are

reduced to three by the use of the expressions derived for the

first order. The three remaining equations can again be

expressed as a matrix equation, and this time the vector

formed of n
ð1Þ
i2 ; vð1Þi2 , and /ð1Þ2 being acted upon by the same

matrix operator as before. The degeneracy of this matrix

forces the following condition on the first-order amplitudes:

@w
@T1

þ vg
@w
@X1

¼ 0: (15)

This condition essentially ensures that secular terms (which

would potentially lead to divergent solutions) are eliminated.

From Eq. (15) we have that w ¼ wðX1 � vgT1Þ, so that the

envelope moves at the group velocity vg ¼ dx=dk.

We can freely set /ð1Þ2 to zero. Using the linear relations

between these second-order quantities, we find

/ 1ð Þ
2 ¼ 0

n 1ð Þ
i2 ¼ �2ik

@w
@X1

v 1ð Þ
i2 ¼ �ix

@w
@X1

n 1ð Þ
e2 ¼ 0

v 1ð Þ
e2 ¼

ic1

x
1� x

k
vg

� �
@w
@X1

:

(16)

The second-harmonic and zeroth-harmonic amplitudes are

found to be proportional to w2 and jwj2, respectively. The

exact formulae are given in the Appendix.

Applying the same method to the five equations in the

first harmonic at third order in �, we obtain a consistency

condition in the form of a non-linear Schr€odinger Equation
(NLSE)

i
@w
@s
þ P

@2w

@n2
þ Qjwj2w ¼ 0: (17)

Here, the time and space variables are s ¼ T2 ¼ �2t and

n ¼ X1 � vf T1 ¼ �ðx� vgtÞ, respectively. The coefficient

P ¼ d2x=2dk2 gives rise to dispersion, where the coefficient

Q represents cubic nonlinearity: the full expression for Q is

given in the Appendix, owing to its length.

It may be appropriate to discuss the long-wavelength

(small k) behavior of the coefficients P and Q, by

deriving approximations to their respective expressions;

these are

P � � 3k

2c
3=2
1

;

Q � 1

12c
3=2
1 k

4þ 3n2
0 � 2ac1

� �
4þ 3n2

0 � ac1

� �
: (18)

Note that P< 0 in this region, while Q can be shown to be

positive, thus ensuring stability for large wavelengths, as

will be discussed below.

VII. MODULATIONAL STABILITY ANALYSIS

Let us adopt a periodic reference solution, w0 ¼ a0eiQa2
0
t.

To derive a dispersion relation for a periodic disturbance to
FIG. 1. .Plot of the frequency xðkÞ for density values: n0 ¼ 1011m�1 (con-

tinuous upper line) and n0 ¼ 3� 1012m�1 (dashed lower line).
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this solution, we append small, real corrections of the same

magnitude to both the amplitude and the phase

w0 7! ða0 þ a1ÞeiðQa2
0
tþb1Þ: (19)

Since the corrections take real values, the NLSE (17)

can be separated into real and imaginary parts after inserting

the perturbed solution. The two equations thus obtained are

� @b1

@t
þ P

@2a1

@x2
þ 2Qa2

0 ¼ 0

@a1

@t
þ P

@2b1

@x2
¼ 0:

(20)

The corrections are periodic, taking the form a1 ¼ Aeiðjx�XtÞ

þc:c: and b ¼ Beiðjx�XtÞ þ c:c:, where A and B are complex

and X and j are real. Inserting this into the equations above

yields a pair of simultaneous equations in A and B, the con-

sistency condition of which is the required dispersion

relation

X2 ¼ Pjð Þ2 1� 2Qa2
0

Pj2

� �
: (21)

It is evident that X is always real if Q=P > 0. If Q=P < 0,

then X will be imaginary below a certain threshold

j < jcrit ¼ a0

ffiffiffiffiffiffi
2Q

P

r
; (22)

up until which point the solution will be unstable. This inter-

val is dependent on the value, k, of the wavenumber of

the solution. The growth rate attains its maximum at

jmax ¼ a0

ffiffiffiffiffiffiffiffiffi
Q=P

p
. This mechanism is equivalent to the

Benjamin-Feir instability in hydrodynamics.31,32

VIII. LOCALIZED ENVELOPE STRUCTURES

Various exact solutions to Eq. (17) are known,33 includ-

ing envelope solitons34,35 and breather-type structures.36

Interestingly, these have been employed recently in model-

ing freak-waves (rogue waves).

Envelope solitons, of particular interest to us here, fall

into two broad classes: “bright-type” and “dark-type” soli-

tons.31,35 Bright solutions take the form of a localized region

of high intensity and correspond to the case when Q=P > 0—

that is, they can exhibit instability for j within the interval

described above. Grey or dark solutions are localized reduc-

tions of intensity within a constant ambient background am-

plitude. They can arise when PQ< 0 and are therefore stable

under the periodic disturbance described above.

In order to avoid iterative work, we do not provide

detailed information on envelope structures, as this can be

found elsewhere. Envelope structures are described in full

detail in Refs. 34 and 37 and summarized in Ref. 31. Breather-

type solutions as models for rogue waves were described, e.g.,

in Ref. 36; also see Refs. 17 and 39 for a recent review.

We shall here limit ourselves to pointing out the basic

amount of information needed to follow the parametric inves-

tigation provided in the following paragraph. In particular,

we emphasize that a quantity of crucial importance is the

ratio Q/P. As shown above, the sign of Q/P determines the

stability profile of modulated wavepackets from a qualitative

point of view: a positive (negative) sign implies modulational

instability (stability). The value of Q/P is proportional to the

(square) wavenumber j; in other words, a perturbation may

become unstable in the window ½0; j�. Furthermore, the ratio

Q/P is related to the inverse width of a bright pulse of given

amplitude w0: to see this, recall that a bright soliton solution

of the NLSE (17) in the form w0 sech n�ues
L

� �
satisfies the

relation w0L � ðP=QÞ1=2
. Therefore, for given w0 (pre-

scribed, i.e., by the lump of energy launched in the system),

an envelope soliton will be wider (i.e., larger L) if Q/P
acquires smaller values, and vice versa. The same is true for

dark type solitons, viz., w0L � jP=Qj1=2
. Recalling that the

coefficients Q and P are functions of the carrier wavenumber

k, we see that the geometric characteristics of envelope soli-

tons will vary from one value of k to another.

The parametric variation of the ratio Q/P will be dis-

cussed in Section IX.

IX. PARAMETRIC ANALYSIS

In this section, we shall discuss the parametric depend-

ence of the coefficients Q and P (and of their ratio) on rele-

vant plasma parameters. We recall that our basic model

involved the single parameter n0, essentially a function of

the (equilibrium) density n0. A comment is required there-

fore on the density treatment throughout the analysis that fol-

lows. This is a one-dimensional setting, so we adopt the

Wigner-Seitz (WS) density as a reasonable one-dimensional

equivalent to a three-dimensional density. The WS density is

formulated as the inverse of the diameter of a sphere whose

volume is equal to the mean volume per particle, in three

dimensions. In our case, the “diameter” of this mean sphere

corresponds to the mean separation of the particles in one

dimension (assuming each particle to lie in the center of its

own “sphere”). The density is expressed as nWS ¼ pn3D

6

	 
1=3
.

Now, since the scaling involved the (electron) Fermi energy,

which in turn depends on the density, we have had to face

the fact that our “yardstick” in the plots would be density-

dependent. Although this (scaling choice) does not affect our

analysis qualitatively, some questions might arise on quanti-

tative predictions. To account for this inherent ambiguity in

the analysis, one may introduce a (fixed) reference density

value, leading to fixed scaling units. We have chosen n0 ¼
1011 m�1 as a reference density, since this corresponds

roughly (by the above formula), in order of magnitude, to

representative densities encountered in such places as the in-

terior of a dense dwarf star (n3D � 1033–1036 m�3).8 It is in

such environments that the density is thought to be high

enough for the manifestation of the relativistic effects under

investigation here.

Fig. 2 depicts Q/P versus the electron equilibrium den-

sity. As stated above, we have worked with representative

values corresponding roughly to those found in the interior of

a white dwarf star. It is clear that any solution for these two

values of the density will be stable for small wavenumbers
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since the coefficients P and Q are of opposite signs for small

k—see Eq. (18).

We have shown that instability sets in when the sign of

PQ becomes positive. In practical terms (cf. plots), this occurs

above a wavenumber threshold, say kcrit, corresponding to a

root of Q in our case (recall that P is negative here). Fig. 3

shows the root of Q on the k-axis. This root, denoted kcrit, is

the lower bound on the interval over k within which instability

can be established. An increase in equilibrium density results

in the possibility of instability for lower values of the wave-

number. However, the dependence on density changes (in the

interval of interest) is weak. Although the plot shows an

increase in kcrit with equilibrium density, this is true only

because kcrit is given in units that depend on density. In real

terms, one sees a decrease in this critical wavenumber.

The growth rate (21) is depicted in Fig. 4. For ease of

viewing, it has been rescaled so that the middle (blue) curve

crosses the j-axis at 1. X is effectively given in units of xpi

for each curve. Since j scales as L�1
0 / n

�1=2
0 , the apparent

increase in jcrit with equilibrium density is misleading, the true

trend (a decrease) being revealed upon restoring dimensions.

Therefore, the window of instability decreases for higher den-

sities. However, X refers to units of xpi / n
1=2
0 , so the trend in

maximum growth rate (increases with n0) is much stronger in

reality. That is to say that there is a larger growth rate over a

narrower region of wavenumber for larger equilibrium density.

X. CONCLUSIONS

We have investigated the modulational dynamics of elec-

trostatic wavepackets in an electron-ion plasma, modeled via

a novel relativistic fluid description. We have shown by

adopting a multiscale perturbation methodology that a one-

dimensional model of an electron-ion plasma comprising ions

and relativistically degenerate electrons will support envelope

structures. The dispersion relation for the carrier wave has

been found and the evolution equation for the envelope has

been shown to be the nonlinear Schr€odinger equation.

Our equation of state contains the cold, non-relativistic

quantum degeneracy pressure as a low-density limit. Acc-

ordingly, our model reduces to the classical (non-relativistic)

fluid equations in the appropriate limit (neglecting relativis-

tic effects). The only tuneable parameter available is the

equilibrium density, since the plasma components were

assumed to be “cold” from the outset, as far as the thermal

pressure is concerned (see Eq. (1)).

Following the paradigm of the Benjamin-Feir instability,35

we have found conditions for modulational instability of

harmonic-amplitude (Stokes’ wave like) solutions. The depend-

ence of these conditions on the wavenumber of the carrier and

on equilibrium density has been investigated. We have shown

that the window for instability narrows for higher equilibrium

densities, but the maximum growth rate increases.

Our work may be of relevance in white dwarf stars5

where the existence of acoustic-type modes has been pro-

posed,39,40 in which ions would provide the inertia and mainly

the electron degeneracy pressure provides the restoring force.

Such modes have been predicted41 but have not been observed

to date.40 The lack of observations does not imply the absence

of acoustic-modes but may be associated with plasma motion

below the detection limit.39 The possibility of the formation of

finite amplitude acoustic waves is also suggested in the case

of extreme events such as supernova explosions.8,39 Various

relevant theoretical investigations have been proposed, pre-

dicting excitations that are yet to be detected.17,42–44

Considering the possibility for experimental confirma-

tion (realization) of our predictions in the laboratory, we

note that the present model becomes relevant for ultra-high

FIG. 2. Plot QðkÞ=PðkÞ for n0 ¼ 1011 m�1 (blue) and 1012 m�1 (black).

FIG. 3. The carrier wavenumber (instability) threshold, kcrit, beyond which

modulational instability is possible, is shown as a function of the electron

equilibrium density, n0 (in m�1).

FIG. 4. The growth rate (in plasma frequency units) is shown above as a

function of perturbation wavenumber, j0 ¼ j=jcritjn0¼5�1011 . We have taken

k¼ 2.5 throughout this plot. With reference to the maximum growth rate,

the lowest (red), middle (blue), and highest (black) correspond, respectively,

to n0 ¼ 1011 m�1; 5� 1011 m�1; and 1012 m�1.
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densities, when both degeneracy and relativistic effects

come into play. For instance, an one-dimensional density

n0 � 1011m�1, corresponding to n0 � 0:1 (and a 3D equiva-

lent of n3D � 1033m�3), is not at all inconceivable in view of

the already available laser-plasma compression technol-

ogy.45,46 Such ultra-dense fermion systems tend to be more

ideal (collisionless) in view of the Pauli blocking of

electron-electron collisions,47 so that propagating nonlinear

structures can be expected to occur.

It might be appropriate, in closing, to discuss the limita-

tions of our work. We have based our analysis on an electro-

static fluid plasma model, which relies on the one-dimensional

(1D) equation of state (EoS) (2) above, in order to close the

system of fluid equations (3). If one were to assume a 3D ge-

ometry, the EoS (2) should be replaced by an appropriate

function, as discussed in Refs. 28, 30, and 25. Applying the

same perturbation theory would lead to a 3D version of the

amplitude equation (17), which is non-integrable.33,48 As a

consequence, if envelope soliton solutions did exist, they

would presumably be unstable, and of little value, e.g., in real

experiments. Furthermore, one might consider going beyond

the electrostatic approximation by adding an electromagnetic

field. This would be a tedious algebraic task, involving taking

into account the full Maxwell’s equations. An example of

such use of reductive perturbation theory in classical plasmas

can be found in earlier work.38,49,50 The above lines of

research go well beyond our scope in this work and will not be

pursued at this stage.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR
HARMONIC AMPLITUDES AND NLSE (17)
COEFFICIENTS

The zeroth harmonic at the second order reads

/ 0ð Þ
2 ¼

�1

c1v2
g � 1

vg avg
k2

x2
� 2k3

x3
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� k2
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�
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jwj2: (A1)

Second harmonics at the second order

/ 2ð Þ
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The nonlinearity coefficient in Eq. (17) reads

Q ¼ x
2 c1 þ k2ð ÞD3 þ

k

2x c1 þ k2ð ÞD2 þ
1

2 c1 þ k2ð ÞD1;

(A3)

where
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APPENDIX B: LONG-WAVELENGTH APPROXIMATION

We derive approximate expressions for the coefficients

P and Q by first approximating their constituents

x
k
¼ vph ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c1 þ k2

r
¼

ffiffiffiffiffi
1

c1
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Combining the above, we arrive at
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