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Abstract

Using the kinetic description, a self-consistent model for the electron flow in the crossed elec-

tromagnetic field configuration observed in a smooth-bore magnetron was developed. Through that

model, derived for both relativistic and nonrelativistic limit, it was possible to understand how the

stationary states solutions for the electron flow change when the injection temperature, the charge

intensity in the system, and the external electromagnetic fields were modified. Basing on the results,

it was possible to characterize the regime transition (accelerating to space charge limited), the sta-

bility transition (laminar to turbulent flow) and the mode transitions (transitions between the modes:

magnetic insulated, Child Langmuir, and non-cutoff). All the theoretical results were verified using

self-consistent computer simulations.
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Resumo

Nesse trabalho, utilizando a teoria cinética, desenvolveu-se um modelo auto-consistente para

o fluxo de elétrons na configuração de campos eletromagnéticos cruzados observada em magne-

trons planares. Através desse modelo, derivado tanto para o limite relativístico quanto para o limite

não relativístico, pôde-se compreender como os estados estacionários do fluxo são afetados quando

modifica-se a temperatura de injeção dos elétrons, a densidade de carga no sistema e os campos ele-

tromagnéticos externos. Com base nos resultados obtidos, caracterizou-se a transição em que o fluxo

de elétrons passa do regime acelerador para o regime desacelerador, a transição em que o fluxo de

elétrons passa do estado laminar para o estado turbulento e, além disso, caracterizou-se as possiveis

transições entre os modos estacionários confinado, parcialmente confinado e não confinado. Todos os

resultados obtidos do modelo cinético foram comprovados através de simulações computacionais em

que os campos eletromagnéticos auto-consistentes foram levados em conta.
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Chapter 1

Introduction

This chapter gives a brief introduction to the work developed in this thesis.

1.1 State of the art

The electron dynamics description in a crossed electromagnetic field device is relevant to the

development of several technological areas. Radar, electric thrusters, and linear accelerators have

evolved with the upgrading of the theories and the models for this problem [1, 2, 3, 4]. Using the

Newton’s law for a single charged particle, Child [5], Hull [6], and Langmuir [7] published, at the be-

ginning of the twentieth century, the first works describing the dynamics of a test electron in a crossed

field configuration. In those works, only the external fields were taken into account. Nowadays, the

theoretical description of the electron flow is more complex and, usually, in addition to the external

electromagnetic fields, the self-fields are also taken into account [8, 9, 10, 11, 12, 13]. From those

works, it is observed that the self-fields might be as relevant as the external fields. Nevertheless, due

to the complexity that the self-fields add to the problem, in order to find the theoretical solutions the

majority of the works assume the electron flow is cold [9, 10, 11, 14, 15, 16, 17] or is modeled by the

fluid equations with a predetermined equation of state [12, 13].

Those assumptions might be inadequate in some special limits. Then, in this work, a kinetic mo-
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1.2 Thesis outline 2

del was developed to describe the electron dynamics, in special, the stationary states of the electron

flow in a crossed electromagnetic field configuration like the one observed in a smooth-bore mag-

netron. The model was made taking into account the thermal effects and the self-fields together at

the relativistic and the nonrelativistic limit. Moreover, a particle simulation to verify the theoretical

solutions was run.

The smooth-bore magnetron is an approximation of the magnetron– an electromagnetic microwave

generator used both in technological and ordinary devices, like radars and microwave ovens. Usually,

a magnetron is composed of two concentric cylinders. The inner one is a cathode that emits electrons

and the external one is an anode. The electrons emitted by the cathode rotate in the gap between the

cylinders. In order to generate the microwaves, the anode has corrugates which produces small per-

turbations that accelerate and decelerate (a little bit) the electron flow. This acceleration/deceleration

process is the mechanism that generates the electromagnetic waves. The magnetron’s power can be

raised by controlling and increasing the charge intensity in the gap. By control, it is understood to eva-

luate the electromagnetic fields that confine the electrons in the gap between the cylinders [1]. Here,

to proceed with the evaluation of the electron confinement, firstly the corrugates were neglected and

then the ratio between the inner and the external radius was supposed approximately the unity. When

those conditions are satisfied, the planar shape of the smooth-bore magnetron is a good approximation

of the real magnetron. Therefore, analyzing the smooth-bore magnetron, it is possible to determine

the electron confinement and other important characteristics of the electron flow. A summary of the

main results reported in this work is presented in the next section.

1.2 Thesis outline

The present work obeys the following organizational structure: in the beginning of Chapter 2,

the theoretical model used to mathematically describe the smooth-bore magnetron is presented. To

simplify the numeric results presentation, dimensionless quantities and parameters relevant to the
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1.2 Thesis outline 3

system are defined1. Assuming the electron flow initial momentum distribution is a waterbag, it is

possible to show the charge density can be written as function of the position without knowing a priori

where each electron is in the gap. From this finding, nonlinear equations to describe the stationary

states of the flow at both relativistic and nonrelativistic limit are obtained. Moreover, in Chapter

2 the most relevant aspects of the particle simulation used here to verify the theoretical results are

presented.

In Chapter 3 the main results obtained in this work are shown. The first analyzes are made sup-

posing the electron flow is confined in the gap region and described by the nonrelativistic equations2.

Fixing the injection temperature in a relatively small value and varying the charge intensity, it is veri-

fied that when the charge intensity goes to zero, the self-electric field is irrelevant and one stationary

state governed by the external electric field is found. As the charge intensity is increased, the theory

shows a region where multiple stationary state solutions are possible to the same charge intensity

value. In that region, the electron flow could achieve the stationary state either being accelerated or

decelerated (space charge limited regime) entering in the gap. However, the N−particle simulation

indicates, in the multiple solutions region, the electron flow becomes stationary at the theoretically

more accelerated expected solution (it means the flow is accelerated). Increasing even more the charge

intensity, the multiple solutions region ceases, being replaced by a single decelerating stationary so-

lution. The change between the multiple and the single solution region promotes an abrupt transition

between the accelerate and the space charge limited regime.

Fixing the injection temperature in a relatively large value and varying the charge intensity, it is

verified that the multiple solutions region disappears and, consequently, the abrupt mode transition

does not occur. This indicates that there is a critical injection temperature which separates the abrupt

and the continuous regime transitions. The theoretical critical injection temperature value is obtained

through a parameter map. The results reported so far were obtained supposing the initial momentum

distribution was a waterbag (uniform distribution) but it could be obtained supposing a more complex

1As the system, it is understood the physical structure with the electron flow.
2In the nonrelativistic limit, the self-magnetic field goes to zero and then, only the self-electric field is relevant. It

simplifies obtaining both the theoretical and the computational results.

3



1.2 Thesis outline 4

distribution, like a Gaussian, for example. The multiple solutions region had already been observed in

the context of a cold plasma by Ref. [15], but nothing had been done for the thermal case. Therefore,

the thermal results presented in this thesis are new and, differently from the cold case where the flow

equations are linear, the thermal case results in complicated nonlinear equations, as it will be shown.

To observe the abrupt regime transitions, it is assumed that the electrons are pre-accelerated ente-

ring the gap. Although there are mechanisms to pre-accelerate the electrons (using lasers, for example

[18]), it is more natural to assume the electrons are not pre-accelerated. It means there are electrons

being emitted with velocities ranging from zero to large values, but the majority of the particles are

emitted with velocities ranging from zero to a determined finite value. When there are electrons

being emitted with zero initial velocity, it is found that the final steady state is modified due to intrin-

sic fluctuations of the charge density in the system. This result and the abrupt regime transition for

the waterbag distribution were reported in an article published in the Physics of Plasmas [19] and the

particular demonstration of the results validity assuming the initial Gaussian momentum distribution

was reported in the Proceedings of IPAC15 [20].

Supposing the electrons are not pre-accelerated and the charge intensity in the gap is enough to

shield the external electric field at the cathode (space charge limited regime), it is observed that at

certain injection temperatures, the electron flow never becomes stationary. In order to understand this

phenomenon, a theory based on an effective potential is developed. It is observed that the charge

density oscillations prevent the electrons leaving the gap. Those electrons which become trapped in

the gap oscillate indeterminately and, consequently, the flow can not achieve the steady state (it means

the flow is turbulent). The charge density oscillations can destabilize the flow only when the charge

intensity is large or when the injection temperature is small. It is also observed from the theory a

turbulent region near the transition accelerator to decelerator but that region is small and could not be

proved with the N−particle simulation due the precision required. To clarify for which parameters

the flow does not become stationary, a parameter map is constructed. These results are new and they

agree with the results for the cold case (which demonstrate the system never reaches the stationary

state) showed in Ref. [15] and prove that the flow at the space charge limited regime presented in

4



1.2 Thesis outline 5

Ref. [19] can3 be at the stationary state. Recently these results were accepted to be published in the

Physics of Plasmas [21].

The electron flow at the nonrelativistic limit when it is not confined (Child-Langmuir mode) is also

analyzed in Chapter 3. At finite injection temperatures, it is found that the regime transition (accele-

rated to space charge limited) is followed by a mode transition not confined to partially confined (it

means a mode transition from Child-Langmuir to no-cutoff). These transitions are continuous when

the electrons are not pre-accelerated and occur abruptly whenever the electrons are pre-accelerated

entering the gap. At the end of the nonrelativistic analysis, it is shown that the partially confined mode

(no-cutoff mode) discussed in Ref. [12] can be treated, in the waterbag model, as a composition of

the confined and the not confined mode. These latest results are unpublished and serve to understand

how the parameter modify the electron flow.

At the end of Chapter 3, the main results obtained for the relativistic limit are presented. Specifi-

cally, the parameters (injection temperature and charge intensity) required to promote mode transiti-

ons when the flow becomes slightly relativistic are presented. It is observed that the mode transitions

occurs due to variations in the self-magnetic field which modifies the magnetic shielding. Moreover,

it is observed that when the injection temperature and the charge intensity go to zero, the electron

flow is at the partially confined stationary state (no-cutoff mode) and increasing the injection tem-

perature, it is possible to obtain a confined stationary solution (magnetic insulated mode). However,

when the injection temperature is large enough, a partially confined solution emerge from the system

again. Those results are also new since it was not found in any reference a kinetic model that takes

into account the thermal and the self-fields effects simultaneously at the relativistic limit. Besides,

it can be used to explain the reasons why there are always electrons reaching the anode, even when

the common theories (which do not take into account the self-magnetic field and the thermal effects

together at the relativistic limit) predicts electron confinement [22].

In Chapter 4 the conclusions which may be drawn from this thesis are presented and, at the

Appendix A the solution for the scalar potential obtained using the Green’s function method is shown.

3In a fact they are.
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Chapter 2

Theoretical and computational approach

In this chapter, a theoretical model for the electron flow in a planar smooth-bore magnetron is

presented, developed and analyzed. Besides, important details of the computer simulation used to

verify the results from theory are described. At the end of the chapter, the nonrelativistic equation set

is obtained as a limit of the relativistic case.

2.1 The physical model

The planar smooth-bore magnetron model that is analyzed in this work is presented in Fig. 2.1.

There, two long parallel plates are kept at a constant potential difference. The plates are oriented in

the xz−plane and separated by a distance L along the y−axis. The plate on y = 0 is a cathode kept

at zero electric potential while the plate on y = L is an anode kept at V0 electric potential. As the

consequence of the electric potential difference, there is a constant electric field E0 = −(V0/L)ŷ

in the region between the plates. Moreover, there is an external uniform constant magnetic field

B0 = −B0ẑ that is orthogonal to the electric field E0, consolidating the crossed-field configuration

that is analyzed in this work.

Before the instant of time t = t0 = 0, there is vacuum in the gap region between the plates

(0 < y < L) but, at the instant of time t0, the cathode starts emitting electrons that enter in the gap.

6



2.2 The basic relativistic equations 7

Fig. 2.1: Schematic model of a planar smooth-bore magnetron. In the figure, L and V0 represent the
distance and the potential difference between the cathode and the anode, respectively, and E0 and B0

are the electric and the magnetic field.

There, they are accelerated by the electric field E0 along the y−direction while they are deflected by

the magnetic field B0 along the clockwise direction.

After a transient interval of time, an electron emitted by the cathode can reach the anode or return

to the cathode. It depends on its initial velocity, the charge intensity in the gap, and the electro-

magnetic fields (external and the self-fields). Because electrons moving in the gap region generate

self-electric Es and self-magnetic Bs field, just to predict whether a particular electron will either

reach the anode or return to the cathode is difficult but relevant to the industry. Thence, in the next

sections, the mathematical and the computational model developed to determine the electron flow

characteristics in crossed-field configurations are shown.

2.2 The basic relativistic equations

In this work, the kinetic theory is used to model the electron flow in the planar smooth-bore

magnetron. In the absence of collisions, the time evolution of the electron distribution function in

phase space f = f(r,P, t) is given by the Vlasov equation

df(r,P, t)

dt
= 0 (2.1)

with the Maxwell equations:

7



2.2 The basic relativistic equations 8

∇ · E =
ρ

ε0
, (2.2)

∇ ·B = 0, (2.3)

∇× E = −∂B
∂t
, (2.4)

and

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (2.5)

where ρ = −en, with n =
∫
f(r,P)dP being the charge density, J = −env is the current density,

−e is the electron charge, r is the particle position, P is the particle canonical momentum, v is the

particle velocity, and µ0 and ε0 are, respectively, the permittivity and the permeability of the free

space [23].

Observing that the electromagnetic fields exhibit planar symmetry and assuming that the cathode

emits large charge sheets in xz−plane, it is shown that the electron distribution function only depends

on the y−coordinate. Therefore, Vlasov equation (2.1) can be written as follows:

∂f

∂t
+
∂f

∂y

dy

dt
+

∂f

∂Py

dPy
dt

= 0. (2.6)

Although it is assumed that the cathode emits large charge sheets instead of single electrons, here

those are represented and treated like particles. The charge sheets supposition is usual [19, 20, 24, 25]

and necessary to validate the unidimensional model.

According to the Hamiltonian formalism, the time evolution of the position and the canonical

momentum along the y−coordinate are given by:

8



2.2 The basic relativistic equations 9

dy

dt
=
∂H

∂Py
(2.7)

and:

dPy
dt

= −∂H
∂y

, (2.8)

where H = H(r,P, t) is the single particle relativistic Hamiltonian. By using Eqs. (2.7) and (2.8),

Eq. (2.6) can be rewritten as:

∂f

∂t
+
∂f

∂y

∂H

∂Py
− ∂f

∂Py

∂H

∂y
= 0. (2.9)

Thus, the evolution of the electron distribution function in phase space is described by Eq. (2.9).

When ∂f/∂t = 0, the flow becomes stationary.

The relativistic Hamiltonian for an electron (a charge sheet) in the planar smooth-bore magnetron

can be written as:

H = c
√
m2c2 + (P + eA)2 − eφ, (2.10)

where c is the speed of light, m is the electron rest mass, and φ and A are the scalar and the vector

electromagnetic potentials [26]. It is worth to note that the electromagnetic potentials must reproduce

the electromagnetic fields that satisfy the Maxwell equations. Given the following relation between

the potentials and the electromagnetic fields [26]:

B = ∇×A (2.11)

and

E = −∇φ− ∂A

∂t
, (2.12)

it is possible to verify that Maxwell equations (2.3) and (2.4) are satisfied. Moreover, supposing the

9



2.2 The basic relativistic equations 10

electrostatic case (the potentials constant in time) and using the relation (2.12) in (2.2), the Poisson

equation for the scalar potential as function of the particle density is obtained, such that:

− ∂2φ

∂y2
= − e

ε0
n(y), (2.13)

where it was used that the particle density only depends on y−spatial coordinate. Eq. (2.13) must

satisfy the following boundary conditions:

φ(y = 0) = 0 (2.14)

and

φ(y = L) = V0. (2.15)

The boundary conditions (2.14) and (2.15) refer to the scalar potential over the cathode and the

anode, respectively. When there is no charge in the gap, Eq. (2.13) with the boundary conditions

reproduce the external scalar potential, consequently, the external electric field. However, as charges

enter the system, the scalar potential is modified such as the electric field become the superposition

of the external and the self-electric field.

Finally, supposing the electrostatic case and using the relation (2.11) in (2.5), a differential equa-

tion for the vector potential is obtained1. In this model, the electrons start moving along the y−direction

but due to the external magnetic field, they are accelerated especially along the x−direction. It sets

A = Ax(y)x̂. Consequently, the potential vector can be determined by the following equation:

− ∂2Ax
∂y2

= µ0Jx(y), (2.16)

where Jx(y) = −evx(y)n(y) is the x component of the current density. Eq. (2.16) must satisfy the

following boundary conditions:

1It was also used the mathematical relation∇×∇×A = ∇(∇ ·A)−∇2A and the Coulomb gauge ∇ ·A = 0.

10



2.2 The basic relativistic equations 11

Ax(y = 0) = 0 (2.17)

and
∂Ax
∂y

∣∣∣
(y=L)

= −B0. (2.18)

The potential vector value at cathode could be any constant but to ensure that the kinetic momentum

(p = P + eA) is equal to the canonical momentum of the particles at emission and that the particles

have only velocity along the y−direction (the electrons do not slip over the cathode), the condition

(2.17) is used. Moreover, it is assumed that, experimentally, the measure of the magnetic field is

made over the anode and results at −B0 value. As a consequence, the boundary condition (2.18) was

written. Note, there is not any information about the magnetic field measured over the cathode when

there are particles in the magnetron. Indeed, the particles moving in the gap produce a self-magnetic

field that decreases the magnetic field measured at the cathode.

Summarizing, to describe the steady states of the electron flow in the crossed-field configuration,

it is necessary to solve the Hamiltonian given by Eq. (2.10) where the electromagnetic potentials are

given by (2.13) and (2.16) [23, 26].

2.2.1 Dimensionless quantities

In this section, dimensionless quantities based on the physical model of the planar smooth-bore

magnetron are defined. The dimensionless quantities are useful because they can simplify the ba-

sic equation set. Since the cathode-anode distance is L (see Fig. 2.1), it is convenient to define a

dimensionless coordinate, such as:

ỹ ≡ y

L
. (2.19)

It is also convenient to define a dimensionless canonical momentum:

11



2.2 The basic relativistic equations 12

P̃ ≡ 1

ΩcmL
P, (2.20)

where Ωc = eB0/m is the cyclotron frequency. Additionally, a dimensionless electron velocity

ṽ ≡ 1

ΩcL
v, (2.21)

a dimensionless energy

H̃ ≡ 1

Ω2
cmL

2
H, (2.22)

a dimensionless scalar potential

φ̃ ≡ 1

V0
φ, (2.23)

and a dimensionless vector potential

Ãx ≡
1

B0L
Ax (2.24)

are defined. From this point on, these dimensionless quantities will be used but the superscript tilde

will be suppressed. Now, using the dimensionless quantities (2.19), (2.20) and (2.22)−(2.24), it is

possible to write the dimensionless Hamiltonian

H =
ν0
2ζ0

√
1 +

2ζ0
ν0

(
(Px + Ax)2 + P 2

y + P 2
z

)
− ν0

2
φ(y). (2.25)

where the dimensionless parameters

ζ0 =
eV0
mc2

(2.26)

12



2.2 The basic relativistic equations 13

and

ν0 =
V0
VH

, (2.27)

presented in Eq. (2.25) were defined as the relativistic parameter and the accelerating potential. The

relativistic parameter ζ0 measures how important are the relativistic effects. When ζ0 goes to zero,

the system becomes described by the nonrelativistic equations. In Eq. (2.27), VH = eB2
0L

2/2m

is the Hull potential [6]. In a nonrelativistic system, the Hull potential is the potential necessary to

accelerate an electron emitted from the cathode with zero velocity until it reaches the anode with the

same (zero) velocity. Therefore, when ν0 = 1 an electron emitted from the cathode with zero velocity

will reach the anode with the same zero velocity.

The Hamiltonian given by (2.25) does not depend explicitly on variables x and z. Therefore,

the canonical momenta Px and Pz are constants of motion and their values are determined by the

electron velocity entering the gap region. To simplify the analysis, it is assumed that the electrons

are emitted with orthogonal velocity to the cathode, such as Px = 0 and Pz = 0. However, it

should be noted, it does not imply that the velocity parallel to the cathode is zero2, indeed: v‖ =

(P‖ + A‖)/
√

1 + 2ζ0(P + A)2/ν0. Consequently, the x̂ component of the velocity is given by:

vx(y) =
Ax(y)√

1 + 2ζ0
ν0

(A2
x(y) + P 2

y )
. (2.28)

The potentials in Hamiltonian equation (2.25) are dimensionless, therefore, it is necessary to find

the normalized equations that describe those. Using definitions (2.19), (2.23) and

ñ ≡ n

n0

, (2.29)

where n0 is the electron density over the cathode, it is possible to write the Poisson equation (2.13)

as:
2To ensure the no-slip condition over the cathode, it is necessary to useAx(0) = 0. That justifies the bondary condition

presented in Eq. (2.17).

13



2.2 The basic relativistic equations 14

∂2φ

∂y2
= η0n(y). (2.30)

The scalar potential (2.30) must satisfy the dimensionless boundary conditions:

φ(0) = 0 (2.31)

and

φ(1) = 1. (2.32)

The parameter η0 is the charge intensity defined as:

η0 =
en0L

2

ε0V0
. (2.33)

The charge intensity is a measure of the charge importance in the gap. It means when η0 = 0 the

charge in the gap is not important and, consequently, the self-fields are null. Using definitions (2.19),

(2.21), (2.24), (2.26), and (2.33), it is possible to write an equation for the vector potential (2.16) as:

∂2Ax
∂y2

= η0ζ0vx(y)n(y) (2.34)

satisfying the following normalized boundary conditions:

Ax(0) = 0 (2.35)

and
∂Ax
∂y

∣∣∣
(y=1)

= −1. (2.36)

2.2.2 The initial charge distribution and the waterbag model

In this model, it is assumed that the electrons are emitted from the cathode (y = 0) with an initial

canonical momentum that is distributed according to a waterbag distribution. Thereby, the electrons

14



2.2 The basic relativistic equations 15

can be emitted with any initial canonical momentum value within a range defined by a minimum

(P0min) and a maximum (P0max) value. The waterbag distribution was adopted because series of

waterbag can recreate other function distributions [27, 28] and, in this case, it can reproduce results

obtained by using a more complex function, like a Gaussian distribution [20] (it will be shown in

Chapter 3).

Explicitly, the waterbag electron canonical momentum distribution on the cathode is given by:

f(Py, y = 0) =


1

P0max−P0min
if P0min ≤ Py ≤ P0max,

0 if Py < P0min and Py > P0max,
(2.37)

Observing that the convective derivative of f(y, Py, t) vanishes according to Vlasov equation, the

flow evolves over the phase space as an incompressible fluid and, therefore, the density at any point in

phase space must be the same. Then, multiplying the initial density (1/(P0max − P0min)) by the area

occupied by the electron flow in the phase space results in the electron density as function of position.

The area occupied by the electron flow in the phase space depends on the trajectory of the most and

the least energetic electrons of the distribution at the stationary mode (to clarify, see the solid lines

in Fig. 3.2). To the waterbag initial canonical momentum distribution of particles, three stationary

modes are possible [12], they are: magnetic insulation, Child-Langmuir, and no-cutoff mode. The

magnetic insulation (MI) mode occurs when all electrons emitted from the cathode return to it after

a transient time. In that stationary mode, the electron density as function of the coordinate can be

written as:

nMI(y) = 2
|Py(P0max, y)| − |Py(P0min, y)|

P0max − P0min

, (2.38)

where Py(P0max, y) and Py(P0min, y) are the canonical momentum as a function of the coordinate

y for the most and the least energetic electrons. The canonical momentum equation is obtained

observing that the equality H(y = 0) = H(y) for 0 ≤ y ≤ 1 is true at stationary state since the

system is conservative. Then, from the Hamiltonian (2.25), it is obtained:
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2.2 The basic relativistic equations 16

Py(P0, y) = ±
√
P 2
0 − A2

x(y) + φ(y)
√
ν0 (ν0 + 2P 2

0 ζ0) +
1

2
ν0ζ0φ2(y), (2.39)

where P0 is the canonical momentum of the electron at the cathode and the plus (minus) sign refers

to electrons moving toward the anode (cathode). The canonical momentum (2.39) is a real function

to be considered zero whenever it becomes imaginary. Supposing Py(P0max, y = 1) = 0 (the first

electron that can reach the anode) in Eq. (2.39), it is possible to conclude that the MI mode occurs

when

ν0 = νMI <
2 (A2

x(y = 1) + P 2
0max) ζ0 − 4

√
(A2

x(y = 1)− P 2
0max)

2
+ A2

x(y = 1)P 2
0maxζ

2
0

ζ20 − 4
, (2.40)

whereAx(y = 1) is the vector potential evaluated on the anode. It depends on the electron distribution

in the gap region such as, when only the external magnetic field is taken into account, Ax(y = 1) =

−1.

The Child-Langmuir (CL) mode occurs when all electrons emitted from the cathode reach the

anode after a transient time. In that stationary mode, the electron density as function of the coordinate

is:

nCL(y) =
|Py(P0max, y)| − |Py(P0min, y)|

P0max − P0min

. (2.41)

Differently from Eq. (2.38), in Eq. (2.41) the numerical factor “2” does not appear. This occurs

because in the MI mode the electrons are going to the anode and returning to the cathode while in the

CL mode they are just going to the anode. Supposing Py(P0min, y = 1) = 0 in Eq. (2.39) (This is

equivalent to assume that the less energetic electron reaches the anode), it is possible to observe that

the condition for the emergence of the CL mode is:

16



2.2 The basic relativistic equations 17

ν0 = νCL >
2 (A2

x(y = 1) + P 2
0min) ζ0 − 4

√
(A2

x(y = 1)− P 2
0min)

2
+ A2

x(y = 1)P 2
0minζ

2
0

ζ20 − 4
. (2.42)

Finally, the no-cutoff (NC) mode occurs when part of the electrons reach the anode and part

of electrons return to the cathode. In that stationary mode, the electrons emitted from the cathode

with momentum ranging from P0min to below P0lim return to it after a transient time and so the

mathematical treatment of those electrons is equal to the MI mode. In addition, the electrons with

momentum from P0lim to P0max reach the anode and so the mathematical treatment of those electrons

is equal to the CL mode. Here, P0lim is defined as the initial canonical momentum of the less energetic

electron which reaches the anode, satisfying the condition P0min ≤ P0lim ≤ P0max, such as:

P0lim =

√
A2
x(y = 1) + P 2

y (P0lim, y = 1) + (ν0ζ0)/2−
√
ν20 + 2ν0ζ0A2

x(y = 1) + ζ0P 2
y (P0lim, y = 1),

(2.43)

where Py(P0lim, y = 1) is the electron momentum of the first electron which arrives to the anode.

Thus, the electron density as function of position at NC mode can be written as follows:

nNC(y) = 2
|Py(P0lim, y)| − |Py(P0min, y)|

P0max − P0min

+
|Py(P0max, y)| − |Py(P0lim, y)|

P0max − P0min

. (2.44)

The first term of Eq. (2.44) refers to the electrons which return to the cathode while the second term

refers to the electrons which reach the anode. Combining the restrictions of the MI and the NC modes,

it is possible to observe that the NC mode occurs when νMI < ν0 ≤ νCL.

For a parameter set ν0, η0, ζ0 and initial momentum distribution, the stationary mode of the flow is

inferred and the electron density is given by either (2.38), (2.41) or (2.44). Then, the electromagnetic

potentials are obtained by using the selected electron density in Eqs. (2.30) and (2.34). Later, the

17



2.2 The basic relativistic equations 18

dynamics of the faster and the lower electron of the momentum distribution in phase space (Eq.

(2.39)) are evaluated using the electromagnetic potentials. The final result validates or discards the

assertion made about the electron density. If it is discarded, the process is restarted. The results

obtained from this theoretical approach are presented and compared with the results from particle

simulation in Chapter 3.

Since the equations for the potentials are nonlinear, it is hard (or impossible) to obtain an analytic

solution. So, an adaptive Sixth-order Runge-Kutta integrator to solve them numerically [29] was

used. In practice, the potentials were solved as an initial value problem by setting the boundaries

φ(0) = 0 and Ax(0) = 0 and taking a guess value for the electric (Ec) and the magnetic field at the

cathode (Bc). Then, using the Newton-Raphson Method [29], a value for Ec and Bc that satisfies the

correct boundary condition at the anode φ(1) = 1 and ∂Ax/∂y|y=1 = −1 was found.

Now, it is appropriate to define two more dimensionless parameters: the average electron momen-

tum and the injection temperature. The average electron momentum is defined as:

P̄0 =

∫
f(Py, y = 0)PydPy∫
f(Py, y = 0)dPy

. (2.45)

Using the waterbag distribution, the average electron momentum at emission can be written as:

P̄0 =
P0max + P0min

2
. (2.46)

The dimensionless injection temperature is defined as follow:

T0 =

∫
f(Py, y = 0)P 2

y dPy∫
f(Py, y = 0)dPy

− P̄ 2
0 . (2.47)

Specifically, to the waterbag distribution, it is found:

T0 =
(P0max − P0min)2

12
. (2.48)

Observe that T0 is a measure of the electron momentum spread around the average electron mo-

18



2.3 Relevant aspects of the computational model 19

mentum at injection supposing the Boltzmann constant equal to the unity [24]. From definition (2.46)

and (2.48), it can be found that: P0max = P̄0 +
√

3T0 and P0min = P̄0 −
√

3T0.

2.3 Relevant aspects of the computational model

In order to verify the assumptions used to obtain the theoretical solutions, a self-consistent com-

puter simulation was run. In the simulation, N particles are emitted from the cathode with a given

initial momentum distribution. The position evolution of the ith electron can be derived from the

Hamiltonian described in Eq. (2.25) resulting in:

dyi
dt

=
P i
y√

1 + 2ζ0
ν0

(
(P i

y)
2 + A2

x

) , (2.49)

where 1 ≤ i ≤ N is the electron label. Complementarily, the canonical momentum evolution is given

by:

dP i
y

dt
= −ν0

2
Ei
y −

AxBz√
1 + 2ζ0

ν0

(
(P i

y)
2 + A2

x

) , (2.50)

where the time in Eqs. (2.49) and (2.50) is normalized by Ωc. The electric field can be evaluated

from Eq. (2.30) with the boundary conditions (2.31) and (2.32), using the Green’s function method

[24, 30] (see appendix A) outcome in:

Ei
y = −

(
1 + η0ȳ − η0

nir
N

)
, (2.51)

where ȳ ≡ 1
N

∑N
i=1 yi is the electron average position, nir ≡ N − i + 1 is the number of electrons

above the ith electron plus one and N is the total number of electrons in the gap. On the other hand,

there is not a simple solution for the magnetic field, then, it is calculated by using an electrostatic

particle-in-cell (PIC) method3 [31]. In fact, it was used the Thomas algorithm to solve the equation

3Here it is called particle-in-cell because de the particle density was evaluated over small cells.
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2.4 The nonrelativistic limit 20

for the vector potential (2.34) with boundaries. In order to use the Thomas algorithm, the right side

of the (2.34) was given in a instant of time before to proceed with the evaluation of the differential

equation. Through this procedure, the second order differential equation (2.34) could be treated like a

linear equation. When the variations of the vector potential are small, that approximation is true [29].

In order to recreate a real device in the simulation, it is assumed that when t < t0, there is vacuum

in the gap region between the cathode and the anode. However, at the instant of time t0, electrons start

being emitted from the cathode (y = 0) with initial momentum determined by a waterbag distribution

(it will be also used a Gaussian initial distribution, see subsection 3.1.2). The dynamics of each

electron is given by Eqs. (2.49) and (2.50). When an electron reaches the anode or returns to the

cathode, it is removed from the simulation. Particularly to the waterbag distribution, the number of

electrons entering in the simulation keeps the density in the phase space constant and uniform. Thus,

it changes according to the phase space area. In the simulations made to this work, the number of

electrons in the gap region is approximately4 10000.

Through simulation, the time evolution of the electric Ec(t) and the magnetic field Bc(t) at the

cathode is measured. After a transient period of time, the fields become time independent. When this

happens, it is assumed that the flow is at the stationary state.

2.4 The nonrelativistic limit

Since the nonrelativistic case is more simple and has many applications, it will be exhaustively

analyzed in the chapter of the results (Chapter 3). To clarify which are the equations used there,

the nonrelativistic equations are derived here as a limit of the relativistic case. In the nonrelativistic

approach, the relativistic parameter and the self-magnetic field go to zero. Consequently, the particle

Hamiltonian becomes described by the classical equations of motion and the magnetic field described

by the external magnetic field. It simplifies the obtention of the theoretical and computational results.

Because the relativistic parameter goes to zero (ζ0 → 0), it is possible to use the Taylor series of

4In a special case to verify the flow stability a large number of particles was used (about 90000).
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2.4 The nonrelativistic limit 21

square root in the relativistic Hamiltonian equation (2.25), resulting in:

H =
ν0
2ζ0

(
1 +

1

2

(
P 2
y + A2

x(y)
) 2ζ0
ν0

)
− ν0

2
φ(y), (2.52)

where the result Px = Pz = 0 has been used. Observing that ν0/2ζ0 is a constant and defining,

without loss of generality, the nonrelativistic Hamiltonian Hc ≡ H − ν0/2ζ0, it is found:

Hc =
P 2
y

2
+
A2
x(y)

2
− ν0

2
φ(y). (2.53)

Although Eq. (2.53) was derived from the single particle relativistic Hamiltonian, it could be

derived from the classical formulation, resulting as the same. Moreover, it is possible to observe

that the equation for the vector potential (2.34) with the boundary conditions can be solved when the

nonrelativistic condition ζ0 → 0 is used, resulting in:

Ax(y) = −y. (2.54)

It means the self-magnetic field goes to zero in the nonrelativistic approach. Using the result (2.54)

in the Hamiltonian (2.53) and assuming Hc(0) = Hc(y), the following equation for the canonical

momentum is obtained:

Py(P0, y) = ±
√
P 2
0 − y2 + ν0φ(y). (2.55)

The scalar potential equation does not depend on ζ0, then the same equation used to describe

the scalar potential in the relativistic case (2.30) is used here to describe the nonrelativistic case.

However, the canonical momentum function used to describe the electron density must be replaced

by Eq. (2.55). In order to clarify, supposing the MI mode5, the scalar potential equation to be solved

is:
5To the MI mode, the particle density is given by Eq. (2.38).
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2.4 The nonrelativistic limit 22

∂2φ

∂y2
= 2η0

|
√
P 2
0max − y2 + ν0φ(y)| − |

√
P 2
0min − y2 + ν0φ(y)|

P0max − P0min

, (2.56)

subject to the boundaries φ(0) = 0 and φ(1) = 1. Note that, even in the classical case, the equation

for the scalar potential (2.56) is nonlinear and a numerical method is necessary to solve it. Once the

potential equation is solved, the classical Hamiltonian (2.53) becomes completely defined and then,

it is possible to get theoretical information about the trajectory of any particle in the system.

Finally, using the nonrelativistic approximation in Eq. (2.49) used in the simulation to describe

the electron position evolution, the following equation is found:

dyi
dt

= P i
y, (2.57)

where 1 ≤ i ≤ N is the electron label. Complementarily, using the nonrelativistic approximation

in Eq. (2.50) used in the simulation to describe the electron momentum evolution, the following

equation is obtained:

dP i
y

dt
= −ν0

2
Ei
y − yi, (2.58)

where the result (2.54) for the vector potential was used and the electric field Ei
y is still given by Eq.

(2.51). As it was anticipated, the equations derived in this section will be employed in the chapter of

results to describe the electron flow in the nonrelativistic approximation.
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Chapter 3

Results

In this chapter, the results obtained for the electron flow in the crossed-field configuration are

shown for both relativistic and nonrelativistic approach. Firstly, the results from the nonrelativistic

approach are presented and analyzed and then, at the end of this chapter, they are extended to the

relativistic limit.

3.1 Nonrelativistic magnetic insulation mode

Here, using the nonrelativistic equation set obtained in section 2.4, the magnetic insulation mode

is analyzed. In the MI mode, all electrons emitted by the cathode return to it after a transient time and

the scalar potential is given by Eq. (2.56) with the boundary conditions. Solving the scalar potential

equation (Poisson equation), it is possible to describe all the electron trajectories in the phase space

as well as to evaluate the electric field at the cathode Ec = −∂φ/∂y|y=0. The Ec value is important

because it identifies whether the electrons are accelerated or decelerated (space charge limited regime)

entering in the gap region. Using ζ0 = 0 and Eq. (2.54) in Eq. (2.40), it is possible to observe that

the MI mode occurs when the condition

ν0 < 1− P 2
0max (3.1)
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3.1 Nonrelativistic magnetic insulation mode 24

is true.

3.1.1 Continuous and abrupt regime transitions

The results from the theory (solid line) and from the simulation (points) for the normalized electric

fieldEc/E0 as a function of the charge intensity using ν0 = 0.8 (MI mode), P̄0 = 0.2 and T0 = 8.33×

10−4 are shown in Fig. 3.1(a). When η0 → 0, the scalar potential approaches the vacuum solution

φ(y) = y and, consequently, Ec = E0 = −1. As the charge intensity increases, the normalized

electric field decreases. It does occur because progressively more and more charges are present in

the gap region and that shield the external electric field. When η0 ≈ 0.836, the charge intensity in

gap region is large enough to shield the external electric field at the cathode and a single stationary

solution that corresponds to the space charge limited regime (Ec/E0 < 0) is found. When η0 < 0.820

or η0 > 0.835, there is only one stationary solution for the electron flow. However, when 0.820 <

η0 < 0.835 there are three different solutions, indicating that the electron flow can change from one

to another solution branch with the same η0.

Fig. 3.1: Normalized electric field at the cathode for the stationary state as function of the charge
intensity η0 for (a) T0 = 8.33× 10−4 and (b) T0 = 3.33× 10−3. The solid line corresponds to results
from the theory, whereas the symbols from the simulation. Accelerating and space charge limited
regime correspond to Ec/E0 > 0 and Ec/E0 < 0, respectively. Other parameters are ν0 = 0.8
(magnetic insulation mode) and P̄0 = 0.2.

This scenario was verified by a N−particle simulation (points in Fig. 3.1) and a very good agre-

ement with the theory was observed. Particularly, in the multiple solutions region, the results from
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3.1 Nonrelativistic magnetic insulation mode 25

simulation follow the upper (more accelerate) branch. However, as the charge intensity is increa-

sed, the multiple solutions region ceases and the system jumps from the accelerating (Ec/E0 = 0.2)

to the space charge limited regime (Ec/E0 = −0.05), characterizing transition that is similar to a

nonequilibrium1 first order phase transition [32, 33].

Fig. 3.2: Phase space plots of the stationary state in the vicinity of the abrupt regime transition. Dots
are the particle position in phase space obtained from simulation after the flow became stationary and
thick black lines correspond to the charge distribution boundaries predicted by the theory. A slight
change in the charge intensity from (a) η0 = 0.835 to (b) η0 = 0.836 drives the system from the ac-
celerating to the space charge limited regime, producing a dramatic change in the charge distribution.
Thin blue curves in (b) represent four real trajectories obtained from the simulation, showing that the
electron flow is laminar.

In order to visualize the abrupt regime transition, the electron flow phase space at stationary state

before and after the abrupt regime transition were plotted in Fig. 3.2. When η0 = 0.835 the electron

flow is accelerated entering the gap region as is shown in Fig. 3.2(a), in opposition, when the charge

intensity is increased slightly greater to η0 = 0.836, the electron flow is decelerated entering the gap

region as is shown in Fig. 3.2(b). In that figures, black lines are the results from theory for the most

(Py(P0max, y)) and the least (Py(P0min, y)) energetic electrons and dots are the particle position in the

phase space obtained from simulation after the flow became stationary. It is possible to observe the

theoretical solutions describe very well the results obtained from the simulation for the electron flow.

The blue lines in Fig. 3.2(b) were obtained from N−particle simulation and they show four real

electron trajectories since the emission until the absorption. Analyzing that curves, it is observed

1It because the collisions are neglected.
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3.1 Nonrelativistic magnetic insulation mode 26

that the electron flow is laminar2, even at the space charge limited regime. The laminar condition is

necessary to validate the theoretical analysis and to confirm the flow is at a true stationary state.

The results from the theory (solid line) and from the simulation (points) for the normalized electric

field Ec/E0 as function of charge intensity are shown in Fig. 3.1(b). There, the parameters are

the same used in Fig. 3.1(a), except the temperature which was increased to T0 = 3.33 × 10−3.

In contrast to the results of Fig. 3.1(a), now the theory predicts only a single stationary solution

branch. Consequently, the transition between accelerating and decelerating regime is continuous.

The prediction is confirmed noting the results from simulation (points) agree with the results from

theory (solid line).

3.1.2 Gaussian initial momentum distribution

Although the theory of the electron flow in the crossed-field configuration developed here was

based on the waterbag initial momentum distribution, it can predict results which are obtained by

using a more complex distribution, like the Gaussian initial momentum distribution [20]. Thereby,

the curves presented in Figs. 3.1 and 3.2 were redrawn in order to include the results obtained from

the computer simulation supposing the following Gaussian initial momentum distribution:

fg(Py, y = 0) =


1√
2πT 2

0

e
− (Py−P̄0)2

2T2
0 if P̄0 ≥ 0,

0 if P̄0 < 0,

(3.2)

where T0 used here is the same presented in Eq. (2.47). The parameters used in Fig. 3.1 was also

used in Fig. 3.3. It is possible to observe that the results obtained from the Gaussian distribution

(squares) approaches the theoretical (solid line) and the computational (points) results obtained from

the waterbag distribution. In this way, it is possible to conclude that even using a different initial

momentum distribution from the theoretical model, the flow behavior and electric field at the cathode

are almost the same. Moreover, Fig. 3.3(a) shows the abrupt transition between the accelerate and the

2As it will be shown in subsection 3.1.5, this is not always true.
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3.1 Nonrelativistic magnetic insulation mode 27

space charge limited regime is still occurring when the Gaussian distribution is used. It indicates that

the results from the waterbag distribution can be extended, and, Fig. 3.3(b) shows that even changing

the parameters (increasing injection temperature), there is still having a good approximation of the

results.

Fig. 3.3: Normalized electric field at cathode as function of the charge intensity for (a) T0 = 8.33 ×
10−4 and (b) T0 = 3.33× 10−3– the same parameters used in Fig. 3.1. The solid line corresponds to
results from the theory whereas the symbols from the simulation with waterbag (points) and Gaussian
(squares) initial momentum distributions. In this figure is observed that results from a waterbag and
a Gaussian are similar.

Fig. 3.4: Phase space plots before (a) and after (b) the abrupt regime transition showed in Fig. 3.3(a)
when the Gaussian distribution is used. These figures indicate that the dramatic change in charge
distribution presented in Fig. 3.2 occurs even for a different initial momentum distribution.

The phase space for a Gaussian distribution of the electron before (a) and after (b) the abrupt

transition presented in Fig. 3.3(a) are show in Fig. 3.4. There, solid lines represent theoretical

solution for the most and the least energetic electron of the flow (waterbag distribution) and dots
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3.1 Nonrelativistic magnetic insulation mode 28

represent the particle position obtained from simulation (Gaussian distribution). It is possible to

observe the theoretical solution describes the collective behavior of the flow before and after the

phase transition.

3.1.3 The critical temperature

The results introduced up to now show that when the initial electron temperature is relatively

small, the transition between accelerate and space charge limited is abrupt. In contrast, when the

initial electron temperature is relatively large, the transition between accelerate and space charge

limited is continuous. It indicates that there is a critical injection temperature T0c which separates the

occurrence of the abrupt and the continuous regime transition. In order to confirm that really exists

such critical injection temperature and to find its value, the phase-diagram η0 vs. T0 was constructed

and presented in Fig. 3.5. In the phase-diagram, for a determined injection temperature, the dashed

line defines where the transition is continuous while the solid line defines where the regime transition

is abrupt. The critical temperature that separates those regimes is represented by the point and its

value is T0c ≈ 1.4× 10−3. The region between the solid and the dotted line corresponds to the region

where multiple stationary solutions are found.

It is worth noting that the results presented in Fig. 3.5 are from theory assuming the initial momen-

tum distribution is a waterbag distribution. However, as discussed in subsection 3.1.2, these results

can be extended to the Gaussian initial momentum distribution resulting the same characteristics.

3.1.4 The stationary state when P0min → 0

The smallest momentum that an electron must have to be emitted from the cathode is P0min = 0.

It defines the higher injection temperature of the flow3 T0max ≡ T ∗0 = P̄ 2
0 /3 or, from Eq. (2.48), T ∗0 =

T0max/12. When the injection temperature is such as T0 → T ∗0 , another interesting dynamical feature

emerges. This is illustrated in Figs. 3.6 and 3.7, constructed assuming the following parameters:

3Although the temperatures T0 and T ∗
0 have the same physical meaning, they define two different systems, such as,

whenever T ∗
0 is used, it is assumed P0min = 0.
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3.1 Nonrelativistic magnetic insulation mode 29

Fig. 3.5: Phase-diagram η0 vs. T0 showing where the transition between accelerating and space
charge limited regime is continuous (dashed line) or abrupt (solid line). The point represents the
critical temperature T0c that separates those regimes. The multiple stationary solutions are found in
the region between the solid and the dotted line.

ν0 = 0.8 (MI mode), η0 = 0.6, P̄0 = 0.2 and T ∗0 = 1.33 × 10−2. For this parameter set, Eq.

(2.56) with the boundary conditions predicts a single stationary solution with Ec/E0 = 0.645. In

order to verify this result, Fig. 3.6 was made. There, the time evolution of Ec(t)/E0 obtained from

the N−particle simulation (solid line) is presented. When the electrons start entering the gap region

between the cathode and the anode, the Ec(t)/E0 value decrease from the unity until the expected

theoretical value (dashed line). However, at longer times (t ∼ 103), theEc(t)/E0 value decrease again

until the electron flow achieves a new laminar and stable stationary solution with Ec(t)/E0 ≈ 0.37.

To clarify what is happening, snapshots of the phase space obtained at different times are shown

in Fig. 3.7. While for t = 102 (a), the borders of the N−particle simulation agree with the theory,

for t = 2 × 103 (b) some particles start populating the region inside Py(P0min, y). This occurs

because the charges that enter in the system with vanishingly small momentum almost follow the

Py(P0min, y) curve in phase space. In the absence of any perturbation they would return to the cathode

and reach it with a correspondingly small momentum. However, due to oscillations in the electron

distribution, some of these particles loose energy while traversing the system, becoming unable to

reach back the cathode. In other words, those particles stay trapped inside the gap region. This
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Fig. 3.6: Time evolution of the normalized electric field measured over the cathode. The solid line
is the result obtained from the particle simulation while the dashed and the dotted lines are results
predicted from theory. The parameters used here were: ν0 = 0.8 (MI mode), P̄0 = 0.2 and T ∗0 =
1.33× 10−2.

process continues on and on, building progressively more charge in the system. It only ceases when

the region inside Py(P0min, y) is completely filled with the maximum density allowed by the Vlasov

equation. Thereafter, the particles stop being trapped and the flow becomes laminar again.

Fig. 3.7: Phase space obtained at different instants of time. Thick black lines correspond to the
charge distribution boundaries predicted by the theory while dots are the particle position in phase
space obtained from simulation when (a) t = 102, (b) t = 2 × 103 and (c) t = 104. In order to
compare, the parameters used here are the same as used in Fig. 3.6.

Hence, the particle density of the final stationary state is given by Eq. (2.38) supposing Py(P0min, y) =

0 (this can be observed in Fig. 3.7(c)). Replacing this result in the Poisson equation (2.30), the fol-
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lowing differential equation for the scalar potential is obtained:

∂2φ

∂y2
= 2η0

|
√
P 2
0max − y2 + ν0φ(y)|

P0max

. (3.3)

The Eq. (3.3) is subject to the boundaries φ(0) = 0 and φ(1) = 1. Now, solving Eq. (3.3) using

the same parameters of Fig. 3.6, the final stationary state predicted by theory is Ec(t)/E0 = 0.371

(dotted line in Fig. 3.6) and the corresponding Py(P0max, y) curve is shown in Fig. 3.7(c). Both

results clearly agree with the simulation. This process that destabilizes the stationary state of Fig.

3.7(a) is similar to the phenomena discussed in Refs. [9, 34] in the context of a cold electron flow.

The main difference is that there the instability is driven by external agents and leads to the onset of a

near-Brillouin flow [34], whereas, here it is driven by intrinsic oscillations of the electron distribution

and the final state (Fig. 3.7(c)) is an accelerating regime.

Fig. 3.8: Normalized electric field at the cathode for the stationary state as function of the charge
intensity η0. The parameters used here are: ν0 = 0.8 (magnetic insulation mode), P̄0 = 0.2 and T ∗0 =
1.33×10−2. The solid line is the result obtained from the theory when the curve Py(P0min, y) is taken
into account and the dashed line is the result obtained from the theory when the curve Py(P0min, y) is
considered null. Points are the results from particle simulation.

The results from simulation for the normalized electric field over the cathode at the stationary

state as a function of the charge intensity using the parameters ν0 = 0.8 (magnetic insulation mode),

P̄0 = 0.2 and T ∗0 = 1.33× 10−2 are shown in Fig. 3.8. There, the solid line is the theoretical solution
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when the curve Py(P0min, y) is taken into account and the dashed line is the theoretical solution

when the curve Py(P0min, y) is not taken into account. The results from simulation show that the

dashed solution is the true solution branch. Since the cathode can emit electrons with momentum

varying from zero to some finite velocity, the stationary solution with T0 = T ∗0 is the most likely to

be observed experimentally.

3.1.5 Stationary to nonstationary transition

Although Fig. 3.2(b) shows that the electron flow at space charge limited regime is stationary and

laminar for a finite injection temperature and charge intensity, it stops being true when the injection

temperature goes to zero (cold case) and the charge intensity is large enough. However, analyzing the

stationary solutions and discovering to which injection temperature and charge intensity the electron

flow is stationary or nonstationary (turbulent) is a difficult task. It happens because the linear stability

theory might not be useful to determine the occurrence of turbulence since the system starts far

from the stationary solution and might never reach it to be perturbed4. Then, in order to circumvent

this difficulty, a detailed nonlinear analysis of the electron dynamics in the gap was performed to

determine when the system is more or less robust against fluctuations.

To proceed with the nonlinear analysis, it was assumed that the flow was emitted with the maxi-

mum allowed temperature (T0 = T ∗0 ). As discussed in subsection 3.1.4, the electron flow under this

condition is driven to a single steady state solution region where the charge density is described by

Eq. (2.38) assuming Py(P0mim, y) = 0.

Supposing the phase space trajectory (Eq. (2.54)) of the most energetic electron emitted from the

cathode (Py(Pmax, y) ≡ Pymax) and taking the second derivative with respect to time, the following

differential equation is obtained5:

4The initial condition occurs with the gap empty and the stationary solution occurs when the gap is filled by electrons
in the allowed region.

5In order to obtain Eq. (3.4) these mathematical relations were used: Ṗymax = (∂Pymax/∂y)(∂y/∂t) =

(ν0/2)(∂φ/∂y)− y, P̈ymax = Pymax(∂Ṗymax/∂y), and ∂2φ/∂y2 = η0|Pymax|/P0max, where ∂y/∂t = Pmax.
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P̈ymax +

(
1− ν0η0

P0max

|Pymax|
)
Pymax = 0, (3.4)

subject to the boundary conditions Pymax(0) = P0max and Ṗymax(0) = −ν0Ec/2. Eq. (3.4) is equi-

valent to Llewellyn form [9, 35] for a thermal crossed field gap. Differently from the cold case, this

equation is nonlinear and does not have a simple solution. However, even without finding an explicit

solution, important properties of the particle trajectory are possible to get just constructing an effec-

tive potential for its momentum evolution. Multiplying Eq. (3.4) by 2Ṗmax/P
2
0max and integrating it

in relation to the time, it is found that:

K(Ṗymax) + V(Pymax) = E (3.5)

where,

K(Ṗymax) ≡
Ṗ 2
ymax

P 2
0max

(3.6)

is an effective kinetic energy,

V(Pymax) ≡
(

1− 2ν0η0
3

∣∣∣∣PymaxP0max

∣∣∣∣)(PymaxP0max

)2

(3.7)

is the effective potential that drives the dynamic of Pymax, and

E ≡ ν20E
2
c

4P 2
0max

+ 1− 2ν0η0
3

(3.8)

is an integration constant that acts like an effective energy for the trajectory. To evaluate it, the

boundary conditions Pymax(0) = P0max and Ṗymax(0) = −ν0Ec/2 were applied in Eq. (3.5).

The shape of the effective potential V is shown by the thick solid curve in Fig. 3.9 for the choice

of parameters ν0η0 = 1.5 (a) and ν0η0 = 0.95 (b). Both cases present a local minimum at Pymax = 0.

To the parameters of panel (a) there is also two symmetric maximums. From Eq. (3.7), it is observed
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that the maximums are located at Pymax = ±fp with fp = P0max/ν0η0. The maximums are absent

from panel (b) because for that case | P0max |<| fp |. In the figure is also presented the straight

line that represents the value of the effective energy for T ∗0 = 0.0075. To the trajectories shown, the

particle is injected with P0max and starts decreasing its momentum (moving to the left in the figure)

because Ṗymax < 0 at the cathode (space charge limited case). Since E > V for all Pymax there are

not turning points where Ṗymax changes its sign (see Eq. (3.5)). Hence, Pymax continuously decrease

until the particle reaches the cathode again with a momentum −P0max and leaves the system.

Fig. 3.9: Plots of the effective potential (solid curve) for ν0η0 = 1.5 (a) and ν0η0 = 0.95 (b). The
dashed lines show the corresponding values of the energy for T ∗0 = 0.0075.

In practice, however, as the system relaxes it presents fluctuations that will cause both E and V to
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vary in time. If at a certain instant of time E = V , there will be a change in the sign of Ṗymax and

the particle momentum will start bouncing inside the effective potential well, which may prevent the

system from reaching the time independent stationary state. It is expected the smaller is the difference

between the theoretically predicted values of E and V , the more likely is such an event. Then, the

following parameter was defined:

∆ = min[E − V(Pymax)], (3.9)

here the minimization is to be taken along the stationary solution trajectory −P0max ≤ Pymax ≤

P0max. The smallness of ∆ is foreseen to serve as an indicator of how sensitive the stationary solution

is to the fluctuations. From Fig. 3.9(a) is clear that when ν0η0 > 1 and the maximums of the effective

potential are present that ∆ = min[E − V(fp)]. On the other hand, when ν0η0 < 1, such as in Fig.

3.9(b), the minimization in Eq. (3.9) leads to ∆ = min[E − V(P0max)]. To perform a qualitative

analysis of the parameter space where the system is more sensitive to fluctuations, a region where

∆ is smaller than a chosen critical value ∆c was determined. This corresponds to the colored area

in Fig. 3.10. Since the solid line marks the transition between accelerating (left) and space charge

limited regime (right), it is possible to conclude that in a small region near to the regime transition,

the electron flow is sensitive to fluctuations. Moreover, from the theoretical curve is observed that

∆(η0, T
∗
0 ) = ∆c = 0.02 (dashed line), keeping the injection temperature constant and increasing the

charge intensity or keeping the charge intensity constant6 and decreasing the injection temperature,

the flow become more and more sensitive to fluctuations.

The evolution of the total force (Fe(yf ) = −ν0E(yf )/2 − yf ) acting upon a test particle fixed at

yf = 0.35 as obtained from simulations assuming the parameters ν0 = 0.8, η0 = 3.0 (space charge

limited regime), and two different values of T ∗0 is plotted in Fig. 3.11. There, it is observed that for

both injection temperatures the force undergoes violent oscillations in the beginning. However, for

the higher T ∗0 case (dashed curve), it eventually saturates to a nearly constant value indicating that the

6The charge intensity must be large enough to set the flow at the space charge regime.

35



3.1 Nonrelativistic magnetic insulation mode 36

Fig. 3.10: Parameter space of η0 vs. T ∗0 . The solid curve corresponds to the points where the cathode
electric field vanishes, Ec = 0, and marks the transition between accelerating (smaller η0) and space
charge limited (larger η0) regimes. The dashed curve shows the points where ∆(η0, T

∗
0 ) = ∆c, with

∆c = 0.02. The colored region represents the points where 0 ≤ ∆ ≤ ∆c

Fig. 3.11: Time evolution of the effective force acting on a test particle at y = 0.35 as obtained from
self-consistent simulations in the space charge limited regime. For T ∗0 = 0.0075 (dashed curve) the
force eventually reaches a stationary value that agrees with the theoretically predicted one, whereas
for T ∗0 = 0.0003 (solid curve) the force shows persistent oscillations. The other parameters are
η0 = 3.0 and ν0 = 0.8.

system has reached the stationary state. In fact, the stationary value of the total force at yf = 0.35

calculated from the theory is Fe = −0.0255 which is in excellent agreement with the one obtained in
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the simulation. Note that the total force is negative because in the space charge limited stationary state

all the particles are pushed back towards the cathode. The Fe value has been evaluated at different

positions and they all relax to constant values that match with the theoretically predicted ones. On the

other hand, for the lower temperature (solid curve) the solution presents persistent oscillations around

zero that do not fade and prevent the system from attaining the stationary state. These oscillations are

clearly related to the changes in the sign of Pymax as discussed. Based on the results of Fig. 3.11, it

is possible to conclude that the turbulent state is characterized by the occurrence of a positive total

force acting upon the particles after the initial transient time.

Fig. 3.12: Parameter space η0 vs. T ∗0 . The symbols show the injection temperature above which the
system attains a time- independent stationary state in the self-consistent simulations for the given η0.
The dashed curve corresponds to the theoretical curve ∆(η0, T

∗
0 ) = ∆c obtained with ∆c = 0.006.

The solid curve marks the transition between accelerating (left) and space charge limited regimes
(right).

Hence, in order to determine when the stationary to the nonstationary transition occurs, computa-

tional simulations for times longer than the transient time were run. In the simulations, the injection

temperature was increased from 0 at small increments until the condition Fe < 0 was found for all the

particles, indicating that a time-independent stationary regime has emerged. The results obtained for

different values of η0 are shown in Fig. 3.12, where the symbols represent the injection temperature

above which the system attains the time-independent stationary state. To test the theoretical results
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obtained from the effective potential analysis, the ∆c that best fits the numerical results was searched.

It was observed that the theoretical curve obtained using the value ∆c = 0.006 (dashed curve) fits with

a good accuracy the results of the simulation. Because the nonstationary region near the accelerating

to the space charge limited regime is very small to large temperatures, the N−particles simulations

were not accurate enough to prove that.

It is important to note that, although Fig. 3.12 is showing that there is no stationary states for

temperatures below T ∗0 ≈ 0.003, in conflict with the results of Fig. 3.5, it is not possible to com-

pare directly those, since they represent different problems. While the phase space region inside the

curve Py(P0max, y) is empty for the case represented in Fig. 3.5, it is completely filled for the case

represented in Fig. 3.12. Moreover, the average momentum of the electrons entering the gap is very

different in each case. While it is large in the case shown in Fig. 3.5, it goes to zero in the case shown

in Fig. 3.12 and, when the average momentum is quite small, the fluctuations become more evident.

Then, just to clarify, the results presented in Fig. 3.5 are in a true stationary state.

3.2 Nonrelativistic Child-Langmuir and no-cutoff modes

In this section, both the Child-Langmuir and the no-cutoff modes are analyzed in the nonrelativis-

tic limit. When the electron flow is at the stationary mode CL, all electrons emitted from the cathode

reach the anode after a transient time and the charge density as function of y is given by Eq. (2.41).

Then, in this mode, the scalar potential is given by the following equation:

∂2φ

∂y2
= η0

|
√
P 2
0max − y2 + ν0φ(y)| − |

√
P 2
0min − y2 + ν0φ(y)|

P0max − P0min

, (3.10)

subject to the boundaries φ(0) = 0 and φ(1) = 1. Using ζ0 = 0 and Eq. (2.54) in Eq. (2.40), it is

possible to observe that the CL mode occurs when:

ν0 > 1− P 2
0min. (3.11)
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The CL condition (3.11) is still valid until the charge density become large enough to the electron

flow be at space charge limited regime. When it happens, the slower electrons can no longer reach the

anode. However, because there are still electrons reaching the anode, the electron flow is at no-cutoff

mode and the particle density is given by Eq. (2.44). To the NC mode, the scalar potential equation

is given by:

∂2φ

∂y2
= 2η0

|Py(P0lim, y)| − |Py(P0min, y)|
P0max − P0min

+ η0
|Py(P0max, y)| − |Py(P0lim, y)|

P0max − P0min

, (3.12)

where P0lim is given by Eq. (2.43). Eq. (3.12) must satisfy the boundary conditions φ(0) = 0 and

φ(1) = 1.

The results from the theory (solid and dotted lines) and from the simulation (points) for the nor-

malized electric field Ec/E0 as a function of the charge intensity using the parameters ν0 = 1.2

(supposedly at CL mode), P̄0 = 0.2 and T0 = 8.33 × 10−4 are shown in Fig. 3.13(a). From the

simulation results, it can be observed that when η0 = 2.90 → 2.91, the normalized electric Ec/E0

value changes from Ec/E0 = 0 to Ec/E0 = −0.4. Analyzing the electron flow phase space before

(Fig. 3.14(a)) and after (Fig. 3.14(b)) that abrupt change in the Ec/E0 value, it is observed that there

is an abrupt regime transition from accelerated to space charge limited and there is a mode transition

from CL to NC. Thus, in Fig. 3.13(a), the solid line is the theoretical solution supposing the flow is at

the CL mode and the particle density is given by (2.41) and the dotted line is the theoretical solution

supposing the flow is at the NC mode and the particle density is given by Eq. (2.44). All the results

were verified by the N−particle simulation. As it is possible to conclude, there is a good agreement

between the results from theory and from simulation. Whereas in Fig. 3.14(a) the flow is descri-

bed by P (P0min, y) and P (P0max, y) curves, in Fig. 3.14(b) the flow is described by P (P0min, y),

P (P0lim, y), and P (P0max, y) curves. Note, the curve P (P0lim, y) is segmented in order to represent

the electrons which reach the anode and the electrons which return to the cathode.

The results from the theory (solid and dotted lines) and from the simulation (points) for the nor-
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Fig. 3.13: Normalized electric field at the cathode for the stationary state as function of the charge
intensity η0 for (a) T0 = 8.33 × 10−4 and (b) T ∗0 = 1.33 × 10−2. The solid and the dotted lines cor-
respond to the results from the theory supposing the CL and the NC mode, respectively, whereas the
symbols are the results of the simulation. Accelerating and space charge limited regime correspond
to Ec/E0 > 0 and Ec/E0 < 0, respectively. Other parameters are ν0 = 1.2 (supposedly at Child-
Langmuir mode) and P̄0 = 0.2.

malized electric field Ec/E0 as a function of the charge intensity when parameters are the same used

in Fig. 3.13(a), except T0 = T ∗0 = 1.33 × 10−2, are shown in Fig. 3.13(b). From the simulation

results, it can be observed that when η0 = 3.2, there is a continuous regime transition from accele-

rated to space charge limited and there is a mode transition from CL to NC mode. When η0 < 3.2,

the theoretical solutions are obtained supposing the flow is at the CL mode (solid line) and the par-

ticle density is given by Eq. (2.41). On the other hand, when η0 > 3.2, the theoretical solutions are

obtained supposing the flow is at the NC mode (dotted line) and the particle density is given by Eq.

(2.44). All the results were verified by the N−particle simulation. As it is possible to observe, there

is a good agreement between the results from theory and simulation and the mode transition CL to

NC really occurs. Observing that, when P0min → 0 the electric field to decelerate the flow is such as

Ec → 0, it follows that only when T0 = T ∗0 (it means P0min = 0), the mode transition CL to NC is

continuous.

When 1− P 2
0max < ν0 ≤ 1− P 2

0min, the electron flow is at the NC mode and the scalar potential

Eq. (3.12) with boundary conditions allows to describe the electron flow in the gap and to evaluate

Ec/E0. It is worth noting that the NC mode only occurs when there is a momentum spread (T0 6= 0)

around an average electron momentum.
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Fig. 3.14: Phase space plots of the electron flow at the stationary state. The solid lines in (a) are
the curves Py(P0min, y) and Py(P0max, y), and the solid lines in (b) are the curves Py(P0min, y),
Py(P0lim, y), and Py(P0max, y) obtained from the theory. The dots (simulation) represent the elec-
tron position in phase space. Specifically, the figures show the abrupt transition identified in Fig.
3.13(a). When the charge intensity is increased from (a) η0 = 2.90 to (b) η0 = 2.91, the electron flow
changes mode (CL to NC) and regime (accelerating to space charge limited).

The values obtained for Ec/E0 as function of the charge intensity using the parameters ν0 = 0.96,

P̄0 = 0.2 and T0 = 3.33 × 10−3 are shown in Fig. 3.15(a). There, the solid lines represent the

results from theory while the points represent the normalized electric field obtained from simulation.

The value of ν0 was chosen such that the electrons emitted from the cathode with P0 = P̄0 reach

the anode with zero momentum. In analogy to previous cases, it may be noted that as the charge

intensity in the system is increased, the electric field value on the cathode decreases. Specifically,

when η0 = 1.39 → 1.40 the electron flow regime changes from accelerate (Ec/E0 = 0.30) to space

charge limited (Ec/E0 = −0.20). Again, it can be observed that the values of Ec/E0 obtained from

simulation and theory agree with good accuracy.

The electron phase space before (a) and after (b) the regime transition identified in Fig. 3.15(a)

is show in Fig. 3.16. The dots represent the particle position, obtained from the simulation and the

solid lines represent curves Py(P0min, y), Py(P0lim, y), and Py(P0max, y) obtained from theory.

In Fig. 3.17, the particle evolution on the phase space assuming the parameters ν0 = 0.96,

P̄0 = 0.2, η0 = 1.0 and T ∗0 = 1.33 × 10−2 is shown. Because T0 → T ∗0 the particles evolve in the

phase space through a similar process discussed in section 3.1.4. All the electrons of the flow can

gain our lose energy because the charge distribution oscillations. Those electrons emitted from the
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Fig. 3.15: Normalized electric field at the cathode for the stationary state as function of the charge
intensity η0 for (a) T0 = 3.33× 10−4 and (b) T ∗0 = 1.33× 10−2. The solid line corresponds to results
from the theory when the curve Py(P0min, y) is taken into account and the dotted line is the result
obtained from the theory when the curve Py(P0min, y) is considered null. The symbols are the results
from the simulation. Accelerating and space charge limited regimes correspond to Ec/E0 > 0 and
Ec/E0 < 0, respectively. Other parameters are ν0 = 0.96 (no cutoff mode) and P̄0 = 0.2.

Fig. 3.16: Phase space plots of the stationary state. Dots are the particle position in phase space
obtained from simulation after the flow became stationary and thick black lines correspond to the
charge distribution boundaries predicted by the theory. A slight increase in the charge intensity from
(a) η0 = 1.39 to (b) η0 = 1.40 drives the regime from the accelerating to the space charge limited,
producing a dramatic change in the charge distribution.

cathode with small momentum P0min → 0 that lose energy might be trapped in the gap region not

returning to the cathode. At the time instant t = 50 (a) the curves Py(P0min, y), Py(P0lim, y), and

Py(P0max, y), obtained from the theory, describe the distribution bounds. However, when t = 300

(b) the distribution begins to populate the inner region of the curve Py(P0min, y) and finally, when

t = 5000 (c) the distribution reaches a new steady state. Therefore, solving the scalar potential

Eq. (3.3) with the boundary conditions is the correct way to treat the electrons confined in the gap
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(P0mim ≤ P0 < P0lim). With this result, it is possible to conclude that the NC mode is really a

composition of the MI and the NC mode and the phenomena observed in the MI case does also occur

in the NC case.

Fig. 3.17: Phase space at different instants of time. The solid lines are the results obtained from the
theory whereas the dots are from simulation. It can be concluded from the simulation that the flow
is driven to a new steady state obtained from theory assuming Py(P0min, y) = 0. Here, ν0 = 0.96,
η0 = 1.0, T ∗0 = 1.33× 10−2, and P̄0 = 0.2.

In Fig. 3.15(b), theEc/E0 value as function of the charge intensity using the parameters ν0 = 0.96

(NC mode), P̄0 = 0.2 and T ∗0 = 1.33 × 10−2 is shown. There, the points represent the normalized

values obtained from the simulation while the solid (dotted) line represents the theoretical solution

when the curve Py(P0min, y) is (not) taken into account.

3.3 Relativistic regime

In the relativistic approach, to describe the electron flow, the scalar and the vector potential

must be evaluated together. Thus, to obtain the theoretical solutions, it is necessary to solve self-

consistently Eqs. (2.30) and (2.34) with their boundary conditions7. Once these potentials are deter-

mined, from the relativistic Hamiltonian Eq. (2.25) is possible to get information of each electron

in the gap. Additionally, to obtain the computational results, it is necessary to solve Eqs. (2.49) and

7Since the Hamiltonian was used to determine the particle density, implicitly it is solved with the electromagnetic
potentials.
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(2.50) where the electric field is given by Eq. (2.51) and the vector potential and the magnetic field

are obtained using an electrostatic particle in the cell (PIC) method.

Fig. 3.18: Parameter space of η0 vs. T ∗0 . These figures show the parameter regions where each
stationary mode is found supposing ν0 = 0.8. It can be observed that when ζ0 = 0.00001 and the
flow is nonrelativistic (a) the mode transition MI to NC occurs to a theoretical injection temperature
T ∗0 ≈ 0.016. On the other hand, when ζ0 = 0.2 and the flow is relativistic (b), the parameter regions
where each stationary mode is found become completely different. Then, changing the injection
temperature or the charge intensity, the electron flow can change to different stationary modes. In
addition, it is possible to observe a large region where there is no theoretical solution predicted by the
theory developed here.

Since in the relativistic approach the self-magnetic field is taken into account, it is not possible to

know what is the vector potential at the anode (Ax(y = 1)) and then, it is not possible to determine

a priory which is the stationary state of the flow. This difficulty is evidenced at the parameter space
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of η0 vs. T ∗0 presented in Fig. 3.18. It was made to show that setting ν0 = 0.8 and changing

the ζ0 parameter, going from the nonrelativistic limit (ζ0 = 0.00001) to the slightly relativistic case

(ζ0 = 0.2), the parameter regions where each stationary mode occur is strongly modified. In the

nonrelativistic case presented in Fig. 3.18(a), two distinct parameter regions corresponding to the MI

or the NC stationary mode are observed. Thus, for example, when the injection temperature is lower

than 0.016, regardless of the charge intensity, the flow is at the stationary state MI. In contrast, when

the injection temperature is higher than 0.016, the flow is at the stationary state NC. Theoretically,

it is possible to obtain from the relation (3.1) that the transition between the MI and the NC mode

occurs when T ∗0 = 0.0166, regardless of the charge intensity. Furthermore, from relation (3.11), it is

possible to conclude when ν0 = 0.8 the transition between the NC and the CL mode is not possible,

independently of the injection temperature.

In contrast to the results of the nonrelativistic case, when the flow is slightly relativistic (ζ0 = 0.2),

as shown in Fig. 3.18(b), the mode transitions happens in different parameter regions. This because

now the transitions between the modes are determined by Eqs. (2.40) and (2.42) which depend on the

vector potential value over the anode. The potential vector changes according to the charge intensity

in the gap, and then, when the charge intensity is modified, the steady state of the flow is also modified.

Physically, the electrons moving in the gap generate a self-magnetic field that decreases the magnetic

shielding, making them get closer or reach the anode. Another characteristic observed in Fig. 3.18(b)

is that there is a region where no theoretical solutions are found using the waterbag model developed

here. However, that region can be accessed using the N−particle simulation (see Fig. 3.22).

In Fig. 3.19, the phase space plots of the electron flow at the stationary state setting ν0 = 0.8, ζ0 =

0.2, and η0 = 0.22 and varying the injection temperature is shown. When T ∗0 = 0.006 → 0.001875,

the electron flow changes from the NC mode (a) to the MI mode (b). From the classical equations is

expected that setting the parameters and decreasing the injection temperature, the flow became more

confinable (see Fig. 3.19(a)). However, it is possible to note that for a lower temperature, such as

T ∗0 = 0.0006, the flow is at NC mode again (c) and that is completely unexpected. This result shows

that for small injection temperatures, the electron flow may not be confined.
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Fig. 3.19: Phase space plots of the stationary state. Dots are the particle position in phase space
obtained from simulation after the flow became stationary and thick black lines correspond to the
charge distribution boundaries predicted by the relativistic approach. When the charge intensity is
kept constant and the injection temperature is decreased from T ∗0 = 0.006 to T ∗0 = 0.001875, the
electron stationary flow changes from the NC (a) to the MI mode (b). This type of behavior was
expected by the nonrelativistic approach. However, reducing even more the injection temperature
until T ∗0 = 0.0006, the flow changes to the NC mode (c) and it was not expected. Here: ν0 = 0.8 and
η0 = 0.22.

In addition, in Fig. 3.20 the phase space plots of the electron flow at the stationary state setting

ν0 = 0.8, ζ0 = 0.2, and T ∗0 = 0.006 and varying the charge intensity is shown. When the charge

intensity is small such as η0 = 0.01, a solution that corresponds to the MI mode is found and presented

in Fig. 3.20(a). Increasing the charge intensity until η0 = 0.22, it is observed the flow changes to the

NC mode (see Fig. 3.19(a)) and, increasing even more the charge intensity until η0 = 2.4, it is found

that the flow is at the CL mode, as shown in Fig. 3.20(b).

It is important to note when the charge intensity goes to zero, the injection temperature to promote

the transition between the MI and the NC mode presented in Fig. 3.18(b) should be the same for the

relativistic and the nonrelativistic case. However due to the normalization used here, increasing the

relativistic parameter results in increasing the canonical momentum and thus, even when η0 = 0, the

injection temperature to the mode transition is different. Moreover, it appears the mode transitions are

promoted by the self-magnetic field, since using the classical equations and the self-magnetic field

the mode transitions are still occurring.

Therefore, although variations produced by the self-magnetic field are small, they are enough to
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Fig. 3.20: Phase space plots of the stationary state. Dots are the particle position in phase space
obtained from simulation after the flow became stationary and thick black lines correspond to the
charge distribution boundaries predicted by the relativistic approach. Setting the injection temperature
and increasing the charge intensity from η0 = 0.01 to η0 = 2.4, the flow changes from the MI (a) to
the CL mode (b). Here: ν0 = 0.8 and T ∗0 = 0.006.

Fig. 3.21: Normalized magnetic field (a) and normalized electric field (b) at the cathode for the
stationary state as function of the charge intensity for T ∗0 = 0.006 and ν0 = 0.8. The solid line was
obtained from the theory supposing the magnetic insulated mode, and the dotted line was obtained
from the theory supposing the no-cutoff mode. The symbols are the results obtained from the N−
particle simulation.

promote the mode transitions. In Fig. 3.18(b) the smaller magnetic field value is such as: Bc/B0 =

0.9. It means that a variation of 10% in the magnetic field is enough to the transitions showed in Fig.

3.18(b) occur. To clarify, Fig. 3.21 shows how the magnetic field (a) and the electric field (b) changes

as the charge intensity is increased and T ∗0 = 0.006 and ν0 = 0.8. To those parameters, the theoretical

transition MI (solid line) to NC (dotted line) does occur when η0 = 0.113. It means in that case a

variation of 3% in the magnetic field promoted the mode transition. These results were verified by
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the N−particle simulation (symbols).

Fig. 3.22: Phase space plots at the no solution region showed in Fig. 3.18. Dots are the particle
position in phase space after a long transient of time. The figure (a) shows that particles are partially
confined when the particle density is η0 = 0.22 and the injection temperature goes to zero (T ∗0 =
0.000133). The figure (b) shows that when η0 = 1.5 and T ∗0 = 0.006 the particles are partially
confined and the flow presents two different densities.

Finally, Fig. 3.22 shows two phase space plots of the electron flow corresponding to the "no

solution"region of Fig. 3.18(b). When the charge intensity is η0 = 0.22 and injection temperature

goes to zero (T ∗0 = 0.000133), the flow is partially confined, as evidenced in Fig. 3.22(a) but that

could not be the final stationary state since that system configuration is very sensitive. Therefore, the

limit T ∗0 → 0 needs to be more investigated in order to confirm if in the no solution region the flow

is really at the NC mode when the maximum injection temperature is equal to zero8. When η0 = 1.5

and T ∗0 = 0.006, the electron flow is partially confined and the existence of two densities stands out

why the theoretical solutions were not found in that region as is shown in 3.22(b).

8The simulations become complicated in the limit T ∗
0 → 0 because the electron density goes to infinity.
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Chapter 4

Conclusions

In this thesis, a mathematical model to describe the electron flow in a crossed electromagnetic field

configuration was presented. Specifically, the stationary states of an electron flow subjected to the

fields observed in a smooth-bore magnetron was analyzed. From the theoretical and the computational

results, it was possible to understand how the system parameters (average initial momentum, injection

temperature, electron density in the gap, and potential difference between the cathode and the anode)

change the stationary states of the electron distribution.

Among the many results obtained, it was observed that in the nonrelativistic magnetic insulated

(MI) mode, when the electron injection temperature went to zero, the transition between the acce-

lerating to the space charge limited regime was abrupt1. The abrupt transition disappeaed when the

electron injection temperature was increased, indicating there was a critical temperature that separa-

tes both regimes. The critical temperature was found through a parameter map. As it was shown,

those results could be found by using a more complex initial momentum distribution, like a Gaussian.

Moreover, it was verified, when the electrons were not pre-accelerated entering the gap, the final

stationary state was modified due to charge oscillations. In a special condition, when the injection

temperature went to zero and the charge intensity was large enough to drive the flow to the space

1It means increasing a little bit the charge intensity, the stationary state is modified changing from the accelerating to
the space charge limited regime.
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charge limited regime, the electron flow has not achieved the stationary state and only a turbulent so-

lution was found. The turbulent solution occurrence was because particles trapped in the gap. Then,

the transition between the laminar and the turbulent flow was characterized by different parameters.

Analyzing the nonrelativistic Child-Langmuir (CL) mode, it was observed the regime transition

(accelerating to space charge limited) occurred together with the mode transition Child-Langmuir

to no-cutoff. Those transitions were always abrupt except when there were electrons being emitted

from the cathode with zero velocity. As it was shown, the no-cutoff mode was a composition of the

magnetic insulated and the Child-Langmuir mode.

Studying the relativistic limit, both electric and magnetic self-fields were taken into account. This

because even small the self-magnetic field could promote mode transitions which were not foreseen

when only the self-electric field was taken into account. Through these results, a better understanding

and controlling of the experimental results is expected to be achieved.

As a next step to develop the theoretical electron flow description in the crossed field configura-

tion, it is necessary to verify what happens at the low temperature and charge intensity limit when the

relativistic parameter goes to zero, it is also desirable to investigate the "no solution"region using a

two (or more) charge density model to verify if it is possible to get theoretical solutions in that region.

Moreover, to evolve and validate this work is necessary to confirm experimentally all these theoretical

results.
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Appendix A

Green’s functions

In this appendix it is presented how Green’s functions are used to solve analytically the Poisson

equation (2.30) satisfying the boundary conditions (2.31) and (2.32).

A.1 Scalar potential solution

In computer simulation discussed in section 2.3, N particles generate a self-consistent potential

φs(y)- observe that the scalar potential φ(y) is composed by self-consistent φs(y) and the external

potential φ0(y). Each charge in gap region produces a small perturbation in the electric potential; it is

assumed these perturbations are Dirac delta functions in geometric space; thus the Green’s function

indicates the weight of these Dirac delta functions must have for the scalar potential differential

equation be satisfied with its contours [30].

Let an inhomogeneous differential equation (2.30) with boundaries (2.31) and (2.32); whether

there is solution for the differential equation:

∇2G(y, s) = δ(y − s), (A.1)

satisfying Dirichlet boundary conditions:
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G(y = 0, s) = 0 (A.2)

and

G(y = 1, s) = 0, (A.3)

where G(y, s) is a Green function, s is the position where the Dirac delta functions are measured (it

is the particles position in the geometric space) and δ(y − s) is the Dirac delta function, such that:

δ(y− s) = 0 if y 6= s and δ(y− s)→∞ if y = s; then, the scalar potential solution φ(y) is given by:

φ(y) = η0

∫
G(y, s)n(s)ds+ φ0(y). (A.4)

Note that, boundary conditions (A.2) and (A.3) are equal to zero because the particles can not change

the potential over both the anode and the cathode. The differential equation (A.1) with boundaries

(A.2) and (A.3) can be solved resulting in the following Green’s function:

G(y, s) =

 (s− 1)y if y < s,

(y − 1)s if y ≥ s.
(A.5)

From (A.4) and (A.5), the scalar potential can be written as:

φ(y) = η0

∫ y

0

s(y − 1)n(s)ds+

∫ 1

y

y(s− 1)η0n(s)ds+ y. (A.6)

Observing the particle density is n(s) =
∑N

j=1
δ(s−sj)
N

; equation (A.6) can be written as:

φ(y) = y

(
1 +

η0
N

N∑
j=1

∫ 1

0

sδ (s− sj) ds−
η0
N

N∑
j=1

∫ 1

y

δ (s− sj) ds

)
− η0
N

N∑
j=1

∫ y

0

sδ (s− sj) ds.

(A.7)

Solving the integrals in equation (A.7), it is obtained:
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A.1 Scalar potential solution 53

φi(y) = y

(
1 +

η0
N

N∑
j=1

sj −
η0
N

N∑
j=i+1

1

)
− η0
N

i+1∑
j=1

sj. (A.8)

Defining ȳ ≡ 1
N

∑N
j=1 sj as the average position of the particles, ȳil ≡ 1

N

∑i+1
j=1 sj as the average

position of the particle below the particle i and nir ≡
∑N

j=i+1 1 as the number of particles above the

particle i plus one, it is found:

φi(y) = y

(
1 + η0ȳ − η0

nir
N

)
− η0ȳil . (A.9)

From equation (A.9) and relation (2.12), it is observed the electric field in the gap region is:

Ei
y = −

(
1 + η0ȳ − η0

nir
N

)
. (A.10)

Equation (A.10) is the same presented in (2.51).
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