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“No fim tudo da certo...

Se não deu certo, é porque ainda não chegou no fim.”

“Al final todo sale bien...

Si aún no ha salido bien, es porque aún no ha llegado el fin.”

“In the end, everything will be ok...

If it’s not ok, it’s not yet the end.”

— FERNANDO SABINO
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ABSTRACT

Reliability is an important design constraint for critical applications at ground-level and aero-

space. SRAM-based FPGAs are attractive for critical applications due to their high perfor-

mance and flexibility. However, they are susceptible to radiation effects such as soft errors in

the configuration memory. Furthermore, the effects of aging and voltage scaling increment the

sensitivity of SRAM-based FPGAs to soft errors. Experimental results show that aging and

voltage scaling can increase at least two times the susceptibility of SRAM-based FPGAs to

Soft Error Rate (SER). These findings are innovative because they combine three real effects

that occur in SRAM-based FPGAs. Results can guide designers to predict soft error effects

during the lifetime of devices operating at different power supply voltages. Memory scrubbing

is an effective method to correct soft errors in SRAM memories, but it imposes an overhead in

terms of silicon area and energy consumption. In this work, it is proposed a novel scrubbing

technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-

scrubbing) with minimum energy consumption overhead without compromising the correction

capabilities. As a case study, the FLR-scrubbing controller was implemented on a mid-size Xil-

inx Virtex-5 FPGA device, occupying 8% of available slices and consumes six times less energy

per scrubbed frame than a classic blind scrubber. Also, the technique reduces the repair time

by avoiding the use of an external golden memory for reference. As another contribution, this

work presents the details of a Multiple Fault Injection Platform that emulates the configuration

memory upsets of an FPGA using dynamic partial reconfiguration. Results of fault injection

campaigns are presented and compared with accelerated ground-level radiation experiments.

Finally, using our proposed fault injection platform it was possible to analyze the effectiveness

of the FLR-scrubbing technique. Accelerated radiation tests confirmed these results.

Keywords: SRAM-based FPGA. Soft Error. Memory Scrubbing. Reliability. Single Event

Upsets. Fault Tolerance. Microelectronics.





Técnica de correção usando a redundância a nível de quadros para FPGAs baseados em

SRAM

RESUMO

Confiabilidade é um parâmetro de projeto importante para aplicações criticas tanto na Terra

como também no espaço. Os FPGAs baseados em memoria SRAM são atrativos para im-

plementar aplicações criticas devido a seu alto desempenho e flexibilidade. No entanto, estes

FPGAs são susceptíveis aos efeitos da radiação tais como os erros transientes na memoria de

configuração. Além disso, outros efeitos como o envelhecimento (aging) ou escalonamento da

tensão de alimentação (voltage scaling) incrementam a sensibilidade à radiação dos FPGAs.

Nossos resultados experimentais mostram que o envelhecimento e o escalonamento da tensão

de alimentação podem aumentar ao menos duas vezes a susceptibilidade de FPGAs baseados

em SRAM a erros transientes. Estes resultados são inovadores porque estes combinam três

efeitos reais que acontecem em FPGAs baseados em SRAM. Os resultados podem guiar aos

projetistas a prever os efeitos dos erros transientes durante o tempo de operação do disposi-

tivo em diferentes níveis de tensão. A correção da memoria usando a técnica de scrubbing é

um método efetivo para corrigir erros transientes em memorias SRAM, mas este método im-

põe custos adicionais em termos de área e consumo de energia. Neste trabalho, nos propomos

uma nova técnica de scrubbing usando a redundância interna a nível de quadros chamada FLR-

scrubbing. Esta técnica possui mínimo consumo de energia sem comprometer a capacidade de

correção. Como estudo de caso, a técnica foi implementada em um FPGA de tamanho médio

Xilinx Virtex-5, ocupando 8% dos recursos disponíveis e consumindo seis vezes menos energia

que um circuito corretor tradicional chamado blind scrubber. Além, a técnica proposta reduz o

tempo de reparação porque evita o uso de uma memoria externa como referencia. E como ou-

tra contribuição deste trabalho, nos apresentamos os detalhes de uma plataforma de injeção de

falhas múltiplas que permite emular os erros transientes na memoria de configuração do FPGA

usando reconfiguração parcial dinâmica. Resultados de campanhas de injeção são apresentados

e comparados com experimentos de radiação acelerada. Finalmente, usando a plataforma de

injeção de falhas proposta, nos conseguimos analisar a efetividade da técnica FLR-scrubbing.

Nos também confirmamos estes resultados com experimentos de radiação acelerada.

Palavras-chave: FPGA baseado em SRAM, Erros Transientes, Correção de Memoria, Confia-

bilidade, Single Event Upsets, Tolerância a Falhas, Microeletrônica.
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1 INTRODUCTION

Electronic systems are immersed in almost every day activity. From personal comput-

ers and smartphones to massive transport systems and healthcare medical equipment, these

electronic systems assist us in our daily duties. However, there is a big difference between a

smartphone and the system control computer of an aircraft. The main difference is the level of

criticality of the electronic system.

In a critical system, a failure in its functionality may cause significant injuries or death

of persons or generate very high economic losses. An example of a critical system is the anti-

lock system (ABS) that controls the brakes of modern cars since an error in its functionality can

endanger people’s lives. Another example is the onboard computer of an aircraft. Spacecrafts

and satellites are also considered critical systems due to their costs, and because it is almost

impossible to repair in case of failure.

Therefore, dependability should be a major design constraint for critical applications.

Commercial-off-the-shelf (COTS) SRAM-based FPGAs are attractive for critical applications

due to their high performance and flexibility. Radiation hardened SRAM-based FPGAs (XIL-

INX, 2014b) are also available, but they are costly, with less performance and with buy restric-

tions compared to its COTS counterparts.

It is possible to find some applications of radiation hardened FPGAs, as in (LANGE

et al., 2015). The paper presents a satellite instrument implementation using FPGAs. The

instrument has two operation modes: acquiring data and processing data. For both operations,

they use radiation hardened SRAM-based FPGAs. They take advantage of the reconfiguration

capability to use the same FPGA to implement two different functions, reducing physical space,

weight and power consumption.

SRAM-based FPGAs are CMOS regular devices with a unique characteristic. They can

be reconfigured on the field. The reconfiguration capability relies on a configuration memory

based on SRAM cells. However, this configuration memory is the responsible for most of the

dependability issues on SRAM-based FPGAs.

SRAM-based FPGAs are highly susceptible to ionizing radiation due to their large

amount of SRAM memory cells that compose the configurable architecture. These radiation

effects are known as Single Event Effects (SEEs). Highly energetic particles can interact with

silicon and can provoke transient pulses at transistors nodes leading to single and multiple bit-

flips in the configuration memory of the FPGA and other undesirable effects. Multiple bit-flips

are getting more common in newer technology nodes due to smaller geometries of transistors
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and lower operating voltages (CHANDRA; AITKEN, 2008). As a result, MBU in modern

SRAM-based FPGAs are increasing (QUINN et al., 2007). MBU can be up to 10% of the total

bit-flips observed in the configuration memory bits of an FPGA fabricated in 28nm technology

(WIRTHLIN; TAKAI; HARDING, 2014).

In addition, some FPGAs working in a harsh environment may operate in systems with

hard limitations of power due to its remote access. It is well known that SRAM-based FPGAs

have a relative high static and idle power due to their millions of SRAM cells in the configurable

memory. In order to reduce this power consumption, one standard technique is to reduce the

voltage supply of the entire FPGA core (CHOW et al., 2005). However, when doing that, the

FPGA may be more susceptible to soft errors as well.

In order to implement critical systems on SRAM-based FPGAs, efficient mitigation

techniques must be applied. Fault tolerance techniques are used to avoid failures. Triple modu-

lar redundancy (TMR) is the most common fault tolerance spatial redundancy solution. But un-

like ASICs where SEEs are usually transient, SEEs in the configuration memory of an SRAM-

based FPGA have a persistent effect. The persistent effect of the fault means that the fault will

remain until some correction mechanism is executed. So, TMR must be coupled with some cor-

rection mechanism to avoid fault accumulation in the configuration memory. Power cycle and

full reconfiguration are well-known correction mechanisms. However, these techniques imply

that the circuit will not be 100% of the time available to execute its function. Depending on the

application, may not be possible.

Memory scrubbing is a correction technique to avoid fault accumulation in the config-

uration memory of SRAM-based FPGAs. This method can correct the configuration memory

without stopping the circuit. However, with the increase of the soft error rate in modern de-

vices, the scrubbing rate is also increasing, and this will impact in the power consumption of

the system.

Memory scrubbing can correct the memory by using Error Detection and Correction

Codes (EDAC) or using an external golden reference memory. When using EDAC, there exists

an inherent tradeoff between correction capability and scrubber1 complexity and overhead.

In the current scenario, where MBU events are increasing, the complexity and overhead of

scrubbers are increasing too. On the other hand, if a golden reference memory is used, the main

problem is the time to repair the fault. There exists a data throughput bottleneck in the access to

an external memory. As shown in Yang et al. (2013), the typical bandwidth of off-chip storage

is 33 Mbps, while the bandwidth to access to the internal configuration memory can be as high

1A scrubber is the circuit in charge of the scrubbing process.
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as 3.2 Gbps. There is a 100 times gap between both. Also, the power consumption of the

external memory should be taken into account. So, low data bandwidth combined with extra

power consumption from the external memory are major problems in current scenario where

the size of the configuration memory is increasing exponentially as shown in Fig. 1.1.

Figure 1.1: Configuration memory size in largest components of Virtex FPGAs families.
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Source: XILINX DOCUMENTATION.

1.1 Main Objective and Contributions

The primary objective of this thesis is to define a better correction technique for soft

errors in the configuration memory of the FPGA regarding power consumption, correction ca-

pability (i.e. capable of correcting several patterns of MBU) and time to repair.

The first step is to analyze the radiation effects on the configuration memory of the
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FPGA. It was investigated the factors that could alter the inherent susceptibility of SRAM cells

in an FPGA. The experimental results show that the voltage scaling technique that helps to

reduce the power consumption increases the soft error susceptibility. Also, the effects of aging

increase the sensitivity of the SRAM cells through the lifetime of the device.

So, one essential characteristic of this correction technique is the capability to correct

any MBU type. However, the main drawback of methods that do not use an external golden

memory is that the MBU correction/detection is limited. One of the questions this work will

answer is if there is any way to circumvent this limitation.

If this correction capability is possible, the power consumption and the time to repair

are going to be improved. The use of an external reference memory has extra power costs each

time it is accessed, and the data bandwidth is small when compared to the internal configuration

memory of the FPGA.

In order to validate the technique, it was used fault injection methods such as accelerated

neutron radiation tests. Also, it was performed fault injection campaigns by doing bitstream ma-

nipulation using a novel fault injector that can reproduce the effects of SEUs in the configuration

memory found in neutron radiation experiments.

1.2 Thesis organization

This thesis is organized as follows:

• Chapter 2: This chapter analyzes the dependability threats of SRAM-based FPGAs, fo-

cusing on Single Event Effects (SEEs) on the SRAM configuration memory of the FPGA.

This chapter first presents the dependability taxonomy used through the manuscript and

an architecture overview of SRAM-based FPGAs. Then, the radiation effects on FPGAs

and the factors that influence the susceptibility to those effects are described. Finally, a

problem definition is elaborated.

• Chapter 3: This chapter exhibits an overview of the methods to analyze the reliability

of systems implemented in SRAM-based FPGAs. The chapter focuses on fault injection

methods where a novel fault injection platform is proposed.

• Chapter 4: This chapter presents an overview of the mitigation techniques found in the lit-

erature related to the correction of soft errors in SRAM-based FPGAs. It is also proposed

a classification for scrubbing techniques.

• Chapter 5: The details of the proposed Frame-level Redundancy scrubbing (FLR-scrubbing)
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technique are presented in this chapter. The proposed design flow followed to obtain a

circuit protected by the technique is explained. Finally, the details of the scrubber logic

and the procedure to correct faults is described.

• Chapter 6: This chapter presents the characteristics of the technique in terms of area and

power overhead as well as correction capability and time to repair compared with state-

of-the-art solutions. The results of the proposed technique in terms of reliability are also

presented.

• Chapter 7: Finally, in this chapter are presented the conclusions and the planned future

work.
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2 DEPENDABILITY THREATS OF SRAM-BASED FPGAS

The configuration memory of SRAM-based FPGAs is the primary source of depend-

ability threats. So, this chapter presents the details of the architecture of modern SRAM-based

FPGAs and the radiation effects on their sub-components. The chapter is composed of five sec-

tions. In the first section, we present the taxonomy of dependability and reliability of electronic

circuits. After that, an overview of the SRAM-based FPGAs architecture is depicted with some

details of the configuration memory of Xilinx Virtex-5 FPGA. In the third section, radiation

effects on FPGAs are described in detail. The fourth section describes the factors that increase

the soft error rate in modern SRAM-based FPGAs. Finally, the problem of dependability of

SRAM-based FPGAs is formulated.

2.1 Dependability Concepts

Dependability concepts are not well established in the literature. That is why these

concepts need to be defined. Most of the concepts described here are based on the work of

Avizienis et al. (2004) and Shooman (2002).

2.1.1 Fault, Error and Failure

Fault, Error and Failure are three concepts related by a cause-effect link as shown in

Fig. 2.1. These three concepts are explained in the context of a system that offers a service. A

system is the general definition of computing or communication system. A fault is the cause of

an error in a system. Faults can be internal or external to the system.

In the scope of this work, the faults are external to the system, specifically charge accu-

mulation due to high-energy particles that pass through the device. An error is the manifestation

of the fault and represents a deviation from a correct state of the system. This variation in a state

of a system can produce a service failure of the system, also know as a failure. It is important

to note that not every error generates a failure.

When a fault causes an error, such fault is considered as active. Faults are classified as

transient, intermittent or permanent. Faults are defined as a logic abstraction of a physical defect

or upset. An upset or defect is an unexpected difference between the implemented hardware and

the planned function of it. Intermittent or permanents upsets can be caused by a problem in the
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Figure 2.1: Fault, error and failure.
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Source: (TARRILLO, 2014).

manufacturing process. On the other hand, transient upsets can appear due to the perturbation

of the system by the environment. Transient upsets are also known as soft errors.

The fault latency is the time between the fault occurrence and the error manifestation. In

the same way, the error latency is the time between the error occurrence and the failure event.

2.1.2 Reliability and Availability

Since upsets can happen at any time, Avizienis et al. (2004) define dependability as

the ability of a system to evade service failures that are more frequent or more severe than is

acceptable. Dependability is a concept that integrates different attributes. Two of the main

characteristics are:

• Reliability or (R(t)): the conditional probability that the component operates correctly

throughout the time interval (t0; t1), given that it was working properly at the time t0. In

other words, reliability is the probability of no failure within a given operating period

(SHOOMAN, 2002).

• Availability or (A(t)): probability that a system is operating correctly and is available to

perform its functions at the instant of time, t.

Reliability is defined in equation 2.1:

R(t) = e−λ t (2.1)
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Where λ is the failure rate, and t is the operation time of the evaluated system. As can

be observed, the reliability of the system decreases with the time by an exponential factor of λ .

If a single unit has no repair capability, then the availability A(t) = R(t). If repair is

available, then R(t) does not change, but A(t) becomes greater than R(t) (SHOOMAN, 2002).

In order to improve the dependability of a system, many techniques can be applied. One

of them is fault tolerance. The objective of fault tolerance techniques is to avoid failures, via

error detection and system recovery. Error detection can be performed during normal service

delivery (concurrent detection) or when the service is suspended (preemptive detection). In the

case of system recovery, two strategies are used. The first one eliminates the error from the

system state. This strategy is known as error handling. The second approach prevents that

faults are activated again and is known as fault handling.

In error handling, redundancy can be used to mask the error. However, such masking will

progressively lose the masking capability due to fault accumulation (AVIZIENIS et al., 2004),

and eventually a fatal loss of protective redundancy can occur. So, it is common that practical

implementations of masking involve error detection (and possibly fault handling), leading to

masking and recovery. On the other side, fault handling can be implemented using isolation or

reconfiguration. Isolation consists of removing the faulty components from further participation

in service delivery, and reconfiguration consists in using spare components or reassigning tasks

among non-failed components.

The dependability of a system can be quantified through metrics that indicate how good

a system is. The most relevant metrics are:

• MTTF: Mean Time to Failure is the average time for a system to present the first failure.

• MTTR: Mean Time to Repair is the average time to take the system from a failure state

back to a correct one.

• MTBF: Mean Time Between Failures is the average time between failures of a system.

• FIT: Failures in Time is defined as the expected amount of failures per 109 device hours

of operation.

Reliability and MTTF are related by the following equation:

MT T F =
∫ ∞

0
R(t)∂ t (2.2)

Availability is related to the time that the system is available to be used. Availability is

defined in equation 2.3:
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A(∞) =
MT BF

MT T R+MT BF
(2.3)

Where A(∞) is the steady-state availability. In a system where failures can be repaired,

the system behavior follows the sequence depicted in Figure 2.2. First, the system works cor-

rectly until a fault appears (MTBF); then it is necessary to correct the fault (MTTR) to continue

working until the following fault.

Figure 2.2: MTBF and MTTR relation.
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Figure 2.2: MTBF and MTTR sequenceSource: (TARRILLO, 2014).

2.2 SRAM-based FPGA Architecture Overview

The FPGA can be seen as a device with two layers as shown in Fig. 2.3. One is the logic

layer that includes all the user application resources such as the Configurable Logic Blocks

(CLB), the Block RAMs, I/O blocks, etc. The other is the configuration layer that comprises

the configuration memory and the associated access ports. Understanding the organization of

the configuration memory will allow us to know the relation between configuration bits and

resources of the FPGA. The configuration bits are stored in the configuration memory and

define a circuit in an FPGA. This group of bits are commonly known as bitstream. SRAM-

based FPGAs are manufactured by two major companies: Altera and Xilinx. Both have similar

architectures. However, the following description is focused mostly on the Xilinx architecture

that is the FPGA manufacturer of the selected devices for this thesis.
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Figure 2.3: FPGA conceptual layers.

Fig. 1. Xilinx Virtex conceptual layers: Application Layer (user logic andSource: (HERRERA-ALZU; LOPEZ-VALLEJO, 2013).

2.2.1 Logic layer

A general description of the user application resources of a modern FPGA is illustrated

in Fig. 2.4. These resources are interconnected in a matrix structure by a set of programmable

interconnections, creating an array of programmable logic blocks of different types. These

programmable blocks can be general logic, memory, multipliers or other specialized circuits.

The array of programmable blocks is surrounded by programmable input/output blocks (I/O)

that connect the FPGA with other systems.

The main difference between a regular CMOS digital design and an SRAM-based FPGA

is its reconfiguration feature. This reconfiguration flexibility is based on the programmable

array of programmable blocks. With this structure it is possible to implement different functions

in the FPGA after the fabrication of the FPGA chip.

The programmable blocks and routing are configured by the bitstream that is loaded in

the configuration memory during device power-up. The purpose of logic blocks is to provide

the necessary computation and storage elements used in digital logic. To obtain a good tradeoff

between flexibility and circuit performance metrics (area, power and speed), modern FPGAs

use Look-up tables (LUTs). A LUT is a multiplexer with 2n inputs and n selectors. The inputs

are connected to SRAM-cells that are part of the bitstream. So with this architecture it is

possible to implement any combinational circuit with n inputs. Modern FPGAs have 5 or 6

inputs LUTs in their configurable blocks. Fig 2.5 shows an example of a LUT implementing a

3-input majority voter. It is common in the Xilinx and Altera architectures that some LUTs can

also be configured as distributed memory and shift registers.
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Figure 2.4: Basic FPGA structure.

Source: (KUON; TESSIER; ROSE, 2007).

Figure 2.5: Example of a 3-input LUT implementing a majority voter.
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In addition to LUTs, configurable blocks are commonly composed of flip-flops, multi-

plexers and carry propagation chains. Xilinx names the group of these blocks as configurable

logic blocks or CLBs. In Xilinx 7-series architecture, LUTs are grouped into slices. Each slice

contains four 6-input LUTs, eight flip-flops, a carry propagation chain and multiplexers to inter-
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connect the LUTs, flip-flops and carry chain in different ways. Fig 2.6 shows the block diagram

of a 7-series slice.

Figure 2.6: Diagram block of a slice in a 7-series device.
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Slices, in turn, are grouped in configurable logic blocks or CLBs. Each CLB has two

slices as shown in Fig 2.7.

In addition to CLBs, FPGAs have blocks of embedded memory. These blocks are based

on SRAM cells and dedicated for the user circuit. These blocks are more efficient implementing

large memories or FIFOs than flip-flops in CLBs. Also it is important to mention that flip-flops

are mainly used for registers or pipeline barriers, so this type of memory is not abundant in the

FPGA.
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Figure 2.7: Relationship between CLBs and slices.
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It is also possible to find dedicated arithmetic blocks named DSP blocks. These blocks

contain hardcore multipliers and adders to implement DSP functions as digital filters.

The clock distribution in the FPGA is done by dedicated global and local clocks routing

wires and buffers. These signals divide the FPGA into clock regions, and these regions are

controlled by clock buffer primitives. It is possible to apply clock gating to an entire clock

region. There are also specialized clock management blocks where it is possible to multiply or

divide the reference clock frequency.

In the case of I/O blocks, in modern FPGAs it is possible to configure some features

as the voltage level, signal direction and programmable delays. Some devices also incorporate

transceiver blocks to enable high-speed communications.

2.2.2 Configuration layer

The configuration bits have different functions. Some of them define the function of

LUTs, other bits define the configuration of embedded resources like memory, DSP blocks,
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I/O blocks and other bits define the interconnection of the configurable blocks. The FPGA

configuration memory is composed of small memory segments called configuration frames. So,

a configuration frame is the smallest addressable portion of the FPGA configuration memory,

and the frame size varies among FPGA families. In the case of Virtex-5 FPGA, it is composed

of 41 words of 32 bits (1,312 bits) (XILINX, 2012b).

Each frame has a unique address that is related to the physical position in the FPGA

floorplan. The frame address is composed of five fields. Each field is described in Table 2.1 and

corresponds to the organization of the floorplan.

Table 2.1: Frame address field descriptions.

Field Description
Type Defines the type of frame. Can be a configuration frame (type 0),

BRAM content (type 1) and other 2 types not well documented in
the literature or the manufacturer’s manual.

Top/Bottom Defines the half (Top or Bottom) of the FPGA where the frame is
located.

Row Defines the frame row. The row number increases from the middle
of the FPGA.

Column Defines the frame column. A column is defined by the type of
resource (ex. CLB, DSP, etc).

Frame in column Defines the frame position inside the column.

Source: (XILINX, 2012b).

Due to this organization, frame addresses are not consecutive. A graphical description

of the structure of the floorplan is shown in Fig. 2.8.

The floorplan is divided into two main regions: top and bottom. Each region is orga-

nized in rows and columns. One frame has the height of a row, and the columns are arranged

according to the type of resource (e.g. CLB, BRAM, DSP, etc.). Each column contains a group

of frames. The number of frames on each column depends on the type of column as shown in

Table 2.2. Depending on the device selected, some of the frames in this organization are not

implemented. One common case is IOB columns, where not all the rows of an IOB column

have the corresponding frames since the IOB resources depend on the number of pins of the

FPGA.

The access to the configuration memory is possible through several interfaces. In the

particular case of Xilinx, the configuration memory can be accessed externally or internally to

the device. Example of external interfaces are: JTAG, Byte Peripheral Interface (BPI), Serial

Peripheral Interface (SPI) and SelectMAP. The SelectMAP interface is a proprietary interface
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Figure 2.8: Example of the organization of the configuration memory of a Virtex-5 FPGA in
frames.
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that achieve the fastest configuration time because it is a programmable parallel interface that

can achieve up to 3200 Mbps of data throughput (XILINX, 2012b).

On the other side, the ICAP interface is the internal configuration port of Xilinx FP-

GAs. It has the same interface as the SelectMAP with the only difference that the ICAP can be

accessed from the configurable logic.
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Table 2.2: Number of frames per column.

Column Type Number of Frames
CLB 36
DSP 28

Block RAM (configuration) 30
IOB 54
CLK 4

Source: (XILINX, 2012b).

2.3 Radiation Effects on Field-Programmable Gate Arrays (FPGAs)

Radiation is any process of energy transmission / emission through a medium or space

(WEISSTEIN, 2007). Radiation can also be ionizing and non-ionizing. Ionizing radiation has

the enough energy to ionize particles, so, this is the main source of radiation effects on silicon

components (BAUMANN, 2005).

There are several particles that induce ionizing radiation including alpha particles, pro-

tons, neutrons, heavy ions and gamma rays. The presence of these particles in the environ-

ment can be grouped into two main zones: outer space (outside the Earth) and terrestrial. In

outer space, the primary sources of radiation are solar and galactic cosmic rays (CGRs) and are

composed mainly of protons. Heavy ions are also a major concern for electronics because of

the high linear energy transfer (LET) of the particles (BARTH; DYER; STASSINOPOULOS,

2003). The Linear Energy Transfer or LET is the quantity of energy that a particle can transfer

to the silicon.

In terrestrial environment, the primary concern is neutrons that indirectly induce ioniza-

tion. These neutrons are generated due to the interaction of GCR with the oxygen and nitrogen

of earth’s upper atmosphere (BAUMANN, 2005).

When these particles hit a silicon device, part of the particle’s energy is deposited in the

silicon and may generate an undesirable effect. Fig 2.9 depicts the main radiation effects in

silicon devices (EDMONDS; BARNES; SCHEICK, 2000).

These effects can be permanent or transient. Total Ionization Dose (TID) effects have

permanent consequences due to the accumulation of charged particles within the silicon. On the

other side, Single event effects (SEEs) mainly generate transient effects. TID effects in modern

SRAM-based FPGAs are reduced due the technology scaling of the gate oxide of transistors.

The trapped charges from energetic particles are reduced because the gate oxide of transistors is

reduced (FACCIO; CERVELLI, 2005). However, we have studied the effects of TID in the SEU
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Figure 2.9: Classification of radiation effects in silicon devices.

Source: from author.

susceptibility of a modern SRAM-based FPGA (TAMBARA et al., 2014). The results showed

that TID can increase the SEU rate due to neutron radiation.

Single event effects are generated by a charge collection process on a sensitive node of a

transistor. The sensitive node is usually the reversed-bias p-n junction (DODD; MASSENGILL,

2003). When an ion passes through the sensitive node, it produces a trail of electron-hole

pairs. Then the carriers are collected by the p-n junction. If the collected charge is higher

than the critical charge, then an SEE may occur. Thus, the critical charge is the minimum

charge collection which will induce a change in the state of the circuit (DODD; SEXTON,

1995; NASEER et al., 2007) . The collected charge generates a current pulse in the node that

can alter the state of the circuit. This current pulse is known as Single Event Transient or SET.

For the particular case of modern SRAM-based FPGAs, SETs can generate the following

SEEs:

• Single Event Upset (SEU): This type of SEE generates a soft error in a memory element

(e.g. flip-flop, SRAM cell), so, the bit stored in that memory element is corrupted and

flipped. SEU is the most common SEE in SRAM-based FPGAs.

• Single Event Functional Interrupt (SEFI): This type of SEE interferes with the normal

functionally of the FPGA. To return to normal operation, it is necessary a full reconfigu-

ration and sometimes a power cycle.

There are also other types of SEEs with less concern due to the low probability of oc-

currence in modern SRAM-based FPGAs. Single Event Latchup (SEL), Single Event Gate

Rupture (SEGR), Single Event Burnout (SEB) are some examples.
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So far, six types of SEFI have been identified in SRAM-based FPGAs (ALLEN; SWIFT;

CARMICHAEL, 2008):

• Power-on reset (POR) SEFI: Results in the loss of all program and state data.

• SelectMAP (SMAP) SEFI: Results in the loss of the capability to write or read from the

configuration memory through the SelectMAP interface.

• Frame address register (FAR) SEFI: Results in the frame address register continuously

incrementing.

• Global signal SEFI: Results in the disruption of global signal in the FPGA such as Global

Write Enable (GWE) and Global set/reset (GSR).

• Readback SEFI: Results in a false-positive of an SMAP SEFI and occurs when a portion

of the configuration memory cannot be corrected.

• Scrub SEFI: This is a design dependent SEFI and is caused when the scrubber is affected

by an SEU, causing a significant corruption of the bitstream being written.

The effect of SEUs in the configuration memory is depicted in Fig. 2.10. SEUs can alter

the bits that define the combinational function of the LUTs, so, in this case, the implemented

function is altered. Also, SEUs can alter the interconnection of the circuit, by generating open

connections, and shorts between connections (REORDA; STERPONE; VIOLANTE, 2005).

The most important to mention is that the modifications of the circuit are persistent

until some action is taken to correct the configuration memory. The persistence of the fault is

the main difference between the effects of SEUs in ASICs and SRAM-based FPGAs. These

persistent corruptions turn FPGAs designs more vulnerable to SEUs.

Flip-flops are also susceptible to SEU, but the difference is that the effect is transient

until the next data is loaded in the flip-flop.

In modern SRAM-based FPGAs, an single particle impact can flip more than one SRAM

cell, this phenomenon is named Multiple Cell Upset (MCU). When the flipped cells belong to

the same data word or frame, this event is also known as Multiple Bit Upset (MBU). In the first

generation of FPGAs, this was not an issue because the probability of occurrence of an MBU

was low. However, in new generations of FPGAs, the percentage of MBUs is higher than before

(QUINN et al., 2005; QUINN et al., 2007; WIRTHLIN; TAKAI; HARDING, 2014).

Fig. 2.11 shows the predicted trends in MCU ratio of total SEE events and maximum

multiplicity of an MBU event from 250 nm to 22 nm technology SRAM cells. The maximum

multiplicity is the maximum number of cells flipped by a single particle. It is possible to ob-

serve that the MCU ratio and the maximum multiplicity increase exponentially with technology
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Figure 2.10: SEUs can affect different features of SRAM-based FPGAs.
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scaling.

The sensitivity of a device depends on several factors such as the device density, tem-

perature, the supply voltage and aging effects (CHANDRA; AITKEN, 2008; BAGATIN et al.,

2008; IBE et al., 2010).

In order to determine the susceptibility of a device to a particular radiation environment,

the Soft Error Rate (SER) must be obtained. Usually, the SER is expressed in Failure in Time

(FIT) units. The SER of a device can be obtained with two approaches for the case of terrestrial

radiation environment (neutron-induced SER) (JEDEC, 2006):

• Real-time SER: Test a large number of actual production devices for a long enough time

(weeks or months) until enough soft errors have been accumulated to give a confident

estimate of SER.

• Accelerated SER: Test a small number of devices exposed to a particular radiation source

whose intensity is much higher than the ambient levels of radiation the device would usu-

ally encounter. These type of tests are usually done at specific facilities as Los Alamos
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Figure 2.11: Predicted trends of MCU ratio and maximum multiplicity in SRAM cells with
technology scaling. CB and FF stands for checkerboard pattern and all ’1’s pattern, respectively.

Source: (IBE et al., 2010).

National Neutron Science Center (LANSCE) in the USA, the Rutherford Appleton Lab-

oratory (RAL) ISIS neutron source in the UK or TRIUMF laboratory in Canada.

For real-time SER, the measurement of SER is directly following equation 2.4 (JEDEC,

2006):

SER =
Total number o f SEUs

Time exposed
(2.4)

The cosmic-ray-induced terrestrial neutron flux varies with longitude, latitude, altitude,

and the solar activity. So, the calculated SER needs to be standardized and scaled to the de facto

standard location that is New York City at average solar activity (JEDEC, 2006).

In the case of accelerated SER, the SER is obtained indirectly using a parameter named

static cross section (σstatic). The static cross section is an intrinsic parameter usually expressed

in terms of area (usually cm2/device or cm2/bit), and is related to the minimum susceptible

area of the device to a particle species (e.g. neutron, proton, heavy ion, etc.) (JEDEC, 2006).

The expression to obtain the static cross section of a device is:
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σstatic−device =
NSEU

Φneutron

(2.5)

Where NSEU is the number of SEUs and Φneutron is the fluence of neutrons. In addition,

the static cross section per bit is:

σstatic−per−bit =
NSEU

Φneutron ×Nbit

(2.6)

Where Nbit is the number of bits of the device. Depending of the neutron energy spec-

trum, it is possible to obtain the soft error rate. As demonstrated in Violante et al. (2007),

the neutron spectrum of ISIS or LANSCE resembles the atmospheric one (Fig. 2.12). So, the

neutron cross section obtained in these facilities resembles the neutron cross section at sea level.

Figure 2.12: ISIS neutron energy spectrum compared to those of the LANSCE and TRIUMF
facilities and to the terrestrial one at sea level multiplied by 107 and 108.

Source: (VIOLANTE et al., 2007).

With this information it is possible to calculate the SER at New York City as shown in

equation 2.7.

SER = 13×σstatic (2.7)

Where 13(cm−2h−1) is the neutron flux of the reference city of New York (JEDEC,

2006, p. 56).

In the case of Xilinx SRAM-based FPGAs, it is possible to obtain three different static

cross sections because the FPGAs have three different types of memory elements: SRAM cells
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for configuration bits, SRAM cells for block RAMs and flip-flops. The primary concern is the

first two because the number of bits is expressively higher than flip-flop bits.

Similarly, it is possible to obtain the sensitivity of a circuit implemented in an SRAM-

based FPGA using a parameter named dynamic cross section (σdynamic). It is defined as the

probability that a neutron particle generates an error in the design. The expression to obtain the

dynamic cross section is:

σdynamic =
NERROR

Φneutron

(2.8)

Where NERROR is the number of errors observed in the design behavior and Φneutron is

also the fluence of neutrons.

2.4 Factors that increases the soft error rate in modern SRAM-based FPGAs

Technology scaling is one of the main factors that increases the soft error rate in elec-

tronic devices. In the case of Xilinx SRAM-based FPGAs, the main reason for susceptibility

increase is the device density and not the sensitivity of the SRAM cell itself. In fact, Xilinx has

achieved to reduce the sensitivity of the SRAM cells in their new generations of FPGAs. Fig

2.13 depicts the neutron cross section per bit of configuration memory bits and BRAM bits for

different FPGA families. UltraScale family is the most recent.

Figure 2.13: Neutron cross section per bit for different FPGA families from Xilinx.

��������	
���
 ��������	
���������

���������

���������

���������

���������

���������

���������

���������

���������

���������

����
����� !����"

#$%��%��!� �����"

����
��!� �����"

&�'
��
'�(�������%�)�*
�+� �,���"

&�'
��
'�(�-���
��%�)�����
�� �,���"

.���%#�%�
� �����"

/
$
����#��	��
��

0

1

��
�
��

�
��

''
�'


�
��
�
��

$

�

�2
��
� 
��

34
2
��
"

Source: (XILINX, 2015a).

Xilinx accomplishes to reduce the susceptibility of BRAM bits to the same level of

configuration bits. In the case of Virtex-5, BRAM SRAM cells are almost ten times more
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susceptible. For the 7-series family of FPGAs, the susceptibility of both is practically the same.

As mentioned in Hussein and Swift (2015), White (2012), Curd and Crabill (2015), Xilinx uses

circuit design and layout techniques to improve the tolerance of SRAM cells to soft errors.

Also, Xilinx strictly controls the device packaging and assembly process to avoid contaminants

that provokes alpha particle-induced upsets.

In Fig.2.14 is depicted the neutron-induced SER for the largest device of each of the

Virtex families. These FPGA families are the largest devices among all Xilinx FPGAs. So, it is

possible to observe that the SER is incrementing mainly due to the increment in the density of

devices.

Figure 2.14: Neutron-induced Soft Error Rate (in FIT units) for the largest devices of Virtex
FPGAs families.
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Source: (XILINX, 2015a) (XILINX, 2012b).

In the next subsections are presented two factors studied during this work. The first

work (TONFAT et al., 2014) presents an analysis of the impact of voltage scaling. The second

work (KASTENSMIDT et al., 2014) analyzes the combined impact of voltage scaling and aging

effects.
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2.4.1 The Impact of Voltage Scaling for Soft Error Susceptibility

The main drawback of using SRAM-based FPGAs in embedded applications, when

compared to ASICs, is its high power consumption (KUON; ROSE, 2007). This issue lim-

its the usage of FPGAs in applications with a tight energy budget. To deal with this limitation,

low power techniques can be applied to improve the energy efficiency of FPGAs. Voltage

scaling is an example of an effective low power technique (NUNEZ-YANEZ; CHOULIARAS;

GAISLER, 2007; CHOW et al., 2005) and consists of reducing the supply voltage of the device

at the cost of increasing delays.

This approach is very effective because voltage scaling can reduce both static and dy-

namic power. The dynamic power reduction is expressive since the dynamic power component

is quadratically proportional to the supply voltage value. However, the critical charge can also

be reduced, and the susceptibility is augmented.

The selected device for this experiment is a Spartan-6 Xilinx SRAM-based FPGA, part

XC6SLX45-3CSG324. This device is manufactured with 45 nm technology, and it has a nom-

inal core voltage of 1.2V. This FPGA has 6-input Lookup Tables (LUTs), Flip-Flops (FFs),

embedded memory (BRAM), dedicated multipliers (DSP), clock management circuits and a

hierarchical routing scheme. All these resources are configured by means of a bitstream in-

serted into the 11,939,296 bits SRAM configuration memory. Further details can be found at

the manufacturer datasheet (XILINX, 2014c).

In order to evaluate the soft errors under the effects of voltage scaling, the test was

divided into two steps. The first step is a static test where the FPGA configuration memory

is loaded with a known pattern, with no clock interference. The second step is a dynamic test

where a test case design (MIPS processor) protected by Triple Modular Redundancy (TMR)

is implemented within the FPGA matrix. The clock frequency of the test case design was 50

MHz.

The voltages used in both tests are shown in Table 2.3. In order to determine the core

voltages for each test (static and dynamic), trials were done before irradiation to find the min-

imum core voltage where the FPGA circuit remains working. For the static test, the minimum

voltage is dominated by the minimum voltage needed to do a readback operation of the config-

uration memory through the JTAG interface. For the dynamic test, the original intention was to

set the same voltages obtained for the static test, but due to set up issues during the irradiation

experiment, the selected voltages were different from the static test.

Neutron radiation tests have been performed at the ISIS facilities. The device was
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Table 2.3: FPGA VDD core voltages for static and dynamic tests.

Test Core Voltage 1 Core Voltage 2 Core Voltage 3
Static 0.95 V 1.10 V 1.20 V
Dynamic 0.86 V 0.89 V 1.07 V

Source: (TONFAT et al., 2014).

irradiated with an average neutron flux of 3.43 × 104neutrons/cm2/s for the static test and

4.27× 104neutrons/cm2/s for the dynamic test. Irradiation was performed at room tempera-

ture with normal incidence. Based on the time exposed, we calculate the neutron total fluence.

Results are shown in terms of static cross section, dynamic cross section and Failure in Time

(FIT) units.

Fig. 2.15 presents the device static cross section result. For the static test, we observed

an increment of 30% in the device cross section when the core supply voltage is reduced in

8.3%.

Figure 2.15: Static cross section from the static test at different core supply voltages.

Source: (TONFAT et al., 2014).

For the dynamic test, the cross section is calculated based on the errors that occurred

in one of the TMR modules and consequently are masked by the majority voter. There is a

high fault masking probability in a design synthesized into SRAM-based FPGAs. According

to Xilinx Reliability Report (XILINX, 2015a), it is necessary in average 20 bit-flips in the

bitstream in order to provoke a functional failure in one module of the observed case-study

design.
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The calculated dynamic cross section of the MIPS TMR is shown in Fig. 2.16 for dif-

ferent voltages.

Figure 2.16: Dynamic cross section of each processor core at different supply voltages.

Source: (TONFAT et al., 2014).

The soft error rate is calculated as described in equation 2.7. Table 2.4 presents the soft

error rate of each soft-core at different voltages.

Table 2.4: Error rate of each soft core at different supply voltages.

Circuit VDD Error Rate (FIT)

MIPS Processor
0.86 V 26.53
0.89 V 16.99
1.07 V 17.05

Source: (TONFAT et al., 2014).

The increment in the error rate is 55% for a 19% reduction in supply voltage (from

1.07V to 0.86V). This increase shows that the soft error rate will vary significantly for the

same design if the VDD supply voltage is reduced. We also notice that these variations are not

linear. Designers must take this information into account if reliability is a priority of the system

implemented in the FPGA.

Finally, we found that the increase in the sensitivity of the device was different from

the increase in the susceptibility of the implemented design. This difference in the sensitivity

of the soft error rate must be taken into account when designing reliable systems in FPGAs.

Fault detection and correction techniques such as memory scrubbing can be used to prevent
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functional failures in the system even when the VDD supply is reduced.

2.4.2 The Cumulative Impact of Voltage Scaling and Aging for Soft Error Susceptibility

Aging and soft errors have become the two most critical reliability issues for nano-scaled

CMOS designs (BORKAR, 2005; BAGATIN et al., 2010). Aging is defined as a set of degen-

eration effects, such as Hot-Carrier Injection (HCI), electromigration, and Bias Temperature

Instability (BTI) and others (BAGATIN et al., 2010). Negative BTI (NBTI) affects PMOS tran-

sistors, increasing their threshold voltage and is considered to be the most significant long-term

effect to degrade circuit performance. It increases transistor switching delays that may even-

tually lead to timing errors. The impact of NBTI on SRAM cells performance has been under

research, and NBTI modeling in static and dynamic operation has been investigated (CERATTI

et al., 2012).

Timing errors in CMOS designs can be avoided by reducing the clock frequency of the

circuit during its lifetime. However, the impact of the transistor switching delay may lead to an

increase in the susceptibility to neutron-induced soft errors in SRAM memory cells due to its

slow answer to signal recovery, as discussed in (CANNON et al., 2008; BAGATIN et al., 2010).

Systems operating in harsh environments during an extended period, e.g. in automotive,

medical, and avionic applications, are the most critical ones as they are stressed during their

lifetime. In consequence, they may present a significant aging effect and must be tolerant

to neutron-induced soft errors. Related works have already shown that NBTI can lead to a

small increase of the soft error rate in SRAM cells fabricated in 45 nm CMOS technologies

(BAGATIN et al., 2010; CANNON et al., 2008; LIN et al., 2013).

For the experiments, we use the same FPGA mentioned in the last subsection, the Xilinx

Spartan-6 FPGA. We investigate the SER under neutron radiation when accelerated aging has

been performed. We compare the measured static cross section of the device after an accelerated

aging process with the cross section before the aging process. Results show that the cross

section can increase more than twice due to aging effects.

In addition, we have analyzed the cumulative effect of voltage scaling that also con-

tributes to the increment of the susceptibility to soft errors as mentioned before.

Two FPGAs were tested: one FPGA without stress (hereafter ’FPGA before stress’)

and one FPGA stressed (hereafter ’FPGA after stress’). The stress is achieved by exposing the

FPGA to an elevated temperature and core supply voltage (MAITI; MCDOUGALL; SCHAU-

MONT, 2011). In this case, the core was supplied with an external power supply at 1.8 V (above
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its nominal value of 1.2 V). The FPGA was heated to 80 °C using a thermal chamber, while the

FPGA was in operation. The aging period refers to 10 days, including 7 days of effective aging

and 3 days of recovery, required to clear the effects of reversible aging.

The radiation tests were performed at the ISIS facilities. Irradiation was performed at

room temperature with normal neutron incidence. The FPGA boards are placed in the radi-

ation chamber while the computer used to remotely monitor the test is located in the control

room. One USB connection is used between the FPGA board and the computer for the FPGA

configuration memory readback via JTAG. The two FPGAs were irradiated with an average

neutron flux of 3.43×104 ±10%neutrons/(cm2 × s) and 4.10×104 ±10%neutrons/(cm2 × s)

respectively.

The experiment consists of configuring the FPGA with a golden bitstream containing

the test-circuit and then continuously read the FPGA configuration memory with the Xilinx

iMPACT tool through the JTAG interface. In the experiment control computer, the golden

bitstream is compared against the readback bitstream. If differences are found, the FPGA is

reconfigured with the golden bitstream and the differences are stored in the computer. This

procedure is repeated for each core supply voltage and both FPGAs. For both FPGAs, the errors

are defined as any bit-flip in the configuration memory detected by the readback procedure.

Fig. 2.17 presents the cross section per bit of configuration memory bits for both FPGAs

and the three different supply voltages. Since SEUs in the configuration memory are considered

independent events and their probability of occurrence can be modeled with a Poisson distri-

bution, the error bars are calculated using Poisson statistics. The formula used to calculate the

errors bars for a 95% confidence interval is:

λ̂ ±1.96×
√

λ (2.9)

where λ̂ is the number of events and
√

λ is the standard deviation. To use this approxi-

mation, the number of events needs to be more than 20 according to (CRUISE, 2012).

As the power supply voltage is reduced, the nominal neutron cross section increments

for both FPGAs. Moreover, we also clearly observe that the aging process impacted more

significantly the cross section than the voltage scaling.

Results have shown that the error rate can increase more than twice when considering

aging and voltage scaling, so it is important to add this type of measurement and discussions

when considering SRAM-based FPGAs for high-reliable applications.
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Figure 2.17: Neutron cross section of the configuration memory bits for Spartan-6 FPGAs
before and after stress (aging effect) for different power supply modes.

Source: (KASTENSMIDT et al., 2014).

2.5 Problem Definition

In summary, in this chapter it was explained the main dependability threats of SRAM-

based FPGAs, focusing on soft errors. The trend shows that the soft error rate is increasing, and

also it is necessary a particular attention to MBU events. It is a fact that new technology nodes

are more sensitive to MBU events (QUINN et al., 2005; QUINN et al., 2007; WIRTHLIN;

TAKAI; HARDING, 2014). A novel mitigation technique mandatory needs to deal with MBU

events.

Also another concern is power consumption, we have analyzed the voltage scaling that

is one of the most effective low power techniques, but as secondary effect, the susceptibility to

the soft error increases, mainly due to the critical charge reduction.

Another strong trend is the exponential increase in the density of new devices that in turn

increments the soft error rate but also increments the time to reconfigure the device as shown

in Nazar (2013). Fig 2.18 depicts the total reconfiguration time for the largest device of each

Xilinx FPGA family. In newer devices, the figure clearly shows that the time to reconfigure has

augmented considerably. One aspect is the size of the configuration memory, and the other is

the data throughput of the interface that configures the configuration memory. Please note in the

figure the Virtex families, since Virtex-4 the data throughput of the fastest configuration inter-

face (SelectMAP or ICAP) remains constant at 3200 Mbps (32-bits at a clock frequency of 100
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Figure 2.18: Total reconfiguration time for the largest Xilinx FPGA of each family.

Source: (NAZAR, 2013).

MHz). This information is also a major consideration when designing correction mechanisms

for the configuration memory.

In the next chapter, it is presented a review of methods to analyze the reliability of

circuits based on SRAM-based FPGAs. The chapter focus on fault injection by emulation

methods, and also in a fault injection platform developed in this work.



54



55

3 METHODS FOR SYSTEM RELIABILITY ANALYSIS IN SRAM-BASED FPGAS

Field Programmable Gate Arrays (FPGAs) nowadays are not only used for ASIC pro-

totyping but also to replace them in ground-level and space applications. SRAM-based FPGAs

take advantage of the latest semiconductor fabrication processes, allowing high-density logic

integration. This scenario allows them to achieve expected performance levels in a variety of

applications. Moreover, the reconfigurability feature of SRAM-based FPGAs allows the same

device to perform multiple functionalities during its lifetime.

These characteristics make SRAM-based FPGAs attractive to critical applications. But

since configuration bits are stored in volatile SRAM cells, radiation effects can generate single

or multiple bit-flips in the configuration memory. Such single event upsets (SEUs) or multiple

bits upsets (MBUs) can induce functional errors in the implemented design. In order to tolerate

these faults, many techniques were proposed in the literature. However, it is necessary to val-

idate the efficiency of these methods closest to the real effect as possible, but also considering

the controllability, observability and cost.

Analytical methods use mathematical models to evaluate the reliability of a design. The

main drawback is that this method loses accuracy and becomes too complex when the design is

complex as well. On the other hand, simulation-based methods became very time-consuming

when analyzing larger systems.

This chapter will focus on fault injection methods with particular attention on fault in-

jection by emulation methods as these methods have the required controllability, observability

and cost to evaluate mitigation techniques in SRAM-based FPGAs.

3.1 Fault Injection by Emulation

Fault injection by emulation is a well-known method to analyze the reliability of a cir-

cuit. With this method it is possible to predict in the early stages of the design phase the

susceptibility of the design under upsets. Emulation of SEUs and MBUs by flipping the config-

uration bits on an FPGA is an attractive technique to evaluate the behavior of a design before it

is working in radiation environments. In addition, fault injectors can take advantage of partial

reconfiguration capabilities of SRAM-based FPGAs to reduce even more the time to inject up-

sets. The primary goal of this approach relies on the fact that it allows fast injection campaigns,

once the circuit under test (CUT) executes at the full FPGA speed and not on simulation speed.

Moreover, the amount of injected faults per unit of time (upset rate) is higher compared
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to radiation tests on particles accelerators since a bit-flip is directly injected into the memory

cell. The control of the test is also superior compared to an accelerated radiation test since a

precise location is flipped (a known bit).

The fault injection can be performed by an external or internal programmable port of

the FPGA. The internal configuration access port (ICAP) (XILINX, 2012b) provides some ad-

vantages such as the possibility to reconfigure frame by frame without the necessity of using

input/output pins. The ICAP can be controlled by the SEU controller macro (CHAPMAN,

2010) and an embedded soft-core as PicoBlaze; or by a particular control design developed by

the user (TARRILLO et al., 2014). SEUs can be injected in the bitstream in random locations,

sequentially (every configuration bit or configuration control register is flipped in sequential

order), or user-defined.

Featured fault injection platforms are available to inject SEUs in SRAM-based FP-

GAs as described in (ALEXANDRESCU; STERPONE; LOPEZ-ONGIL, 2014). FLIPPER

(ALDERIGHI et al., 2008) is targeted to Virtex-2 FPGA devices is one example. It uses a

scheme based on a control motherboard and a DUT board. The fault injector is implemented

on the motherboard FPGA and a host PC. The DUT board contains the target FPGA. The con-

figuration memory of this FPGA is modified with partial reconfiguration using an external con-

figuration port. In (STERPONE; VIOLANTE; REZGUI, 2006) the fault injector and the DUT

are implemented in the same FPGA and to inject faults a host PC creates faulty bitstreams.

FT-SHADES (GUZMAN-MIRANDA; TOMBS; AGUIRRE, 2008), (NAZAR; CARRO, 2012)

and (KRETZSCHMAR et al., 2014) are other examples of fault injectors but in this case they

use an internal injection approach using the ICAP to inject single faults in the bitstream.

It is not needed to reconfigure the entire FPGA with internal fault injection. So, the

fault injection speed is increased, but a problem arises. The quality of the fault injection can

be reduced by fault injection side-effects as shown in (KRETZSCHMAR et al., 2014). A fault

injected in the configuration memory can affect the fault injector itself. So the fault injection

can stop unexpectedly or even worst, the fault injector can wrongly report that a fault is injected

when actuality it does not.

A multiple fault injector platform was developed and it is able to emulate SEU and

MBU in the configuration memory bits of an SRAM-based FPGA. Our goal is to replicate the

effects of radiation to validate protection techniques and improve the radiation test methodolo-

gies and test plans under accumulated multiple faults. The proposed Fault Injection Platform

uses the ICAP module to flip a configuration bit and takes the bit location from an external

database bank. The bit-flip locations were taken from previous experiments in neutron radiation
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test performed at ISIS facilities (VIOLANTE et al., 2007) and also generated by a MATLAB

pseudo-random generator.

In the next section are presented the details of the proposed Multiple Fault Injection

Platform and the analysis of the configuration memory upsets of the FPGA. Results of fault

injection campaigns are also presented and compared with those issued in accelerated radiation

experiments.

3.2 Proposed Fault Injection Platform

The proposed Multiple Fault Injection Platform is composed of a single SRAM-based

FPGA, a flash-based external memory and a host computer. The Digilent Genesys prototype

board is used containing a Xilinx Virtex-5 FPGA, part XC5VLX50T-FFG1136 and other re-

sources. For the fault injection platform, an external flash memory is used to store the bit-flip

locations. These bit locations are the SEU locations database bank. A block diagram of the

Multiple Fault Injection Platform is shown in Fig. 3.1.

Figure 3.1: Architecture of the Multiple Fault Injection Platform.
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Source: the author.
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3.2.1 Fault Injection Architecture

The FPGA contains the Design Under Test (DUT) and the fault injector. It is well

known that internal injectors suffer from side-effects because an injected fault can provoke an

error on the injector itself. But to mitigate these effects, the fault injector can avoid bit-flips in

its configuration bits.

The fault injector is composed of an ICAP controller, a flash memory controller and a

PicoBlaze 8-bit soft processor. The main function of the PicoBlaze is to control the execution

of a fault injection campaign. The ICAP controller manages all the commands to read and write

frames from the configuration memory using the ICAP. The ICAP is the interface that enables

access to the configuration memory from an internal circuit in the FPGA. With the right set of

commands, it is possible to modify the configuration memory without stopping the application

running in the FPGA. This method is also known as dynamic partial reconfiguration. In order

to control the ICAP, we must understand the configuration memory of the FPGA and the way

to read and write in this memory.

3.2.2 Fault Injection Campaign Methodology

With the information of the organization of the configuration memory (please refer to

section 2.2) and the commands to manipulate frames, we can flip any bit of the configuration

memory emulating the SEU effect.

Fig. 3.2 shows the procedure executed by the ICAP controller to inject one fault into the

configuration memory. The only information needed to flip a bit is the selected frame address

and the selected bit inside this frame. This information comes from the SEU database stored

in the external memory and is managed by the PicoBlaze soft processor. It is also important to

mention that this method can emulate MBUs.

Since the smallest segment of the configuration memory is a frame, the ICAP controller

needs to read the entire frame and store it in a temporal buffer. Then the selected bit(s) positions

are flipped. Finally, the modified frame is written back to the configuration memory. In order

to verify the correct insertion of the fault, the frame is read back again and compared to the

modified frame stored in the temporal buffer. If any differences are found between them, the

ICAP controller reports a fault injection error. Most of the time injection errors are due to the

inexistence of the selected frame address in the FPGA as mentioned in section 2.2). This type

of error injection does not interfere with our results since real SEUs cannot flip these missing



59

frames. The ICAP controller reports failed injections to take into account this information when

the fault campaign report is generated. So, the fault injection of one SEU/MBU is completed in

310 clock cycles. With a clock frequency of 50 MHz, one injection is completed in 6.2 µs.

Figure 3.2: Flow diagram with the procedure to inject one fault.
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Source: the author.

The PicoBlaze manages the execution of a complete fault injection campaign. The pro-

cedure is described in Fig. 3.3.

The procedure starts with the definition of the parameters of the campaign. These pa-

rameters are the start memory position of the SEU database, the fault injection rate and the

definition of the fault-free area. The start memory position of the SEU database is the reference

point to the PicoBlaze in order to read consecutively from this point the bit-flip data stored in

the external memory. The fault injection rate defines the amount of faults injected per time unit.

This parameter can be used to emulate different radiation environments.
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The definition of the fault-free area is to protect the circuits that can interfere with the

execution of the fault injection campaign.

Figure 3.3: Flow diagram of the procedure to control a fault injection campaign.
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Source: the author.

For instance, the fault injector area needs to be included in this protected area. This

method minimizes the possibility of a functional error in the fault injector itself that is one of

the side-effects of internal fault injection. Other circuits that can be included are, for example,

the circuit that controls the execution of the DUT. Since a functional error in this block can

generate a false functional error of the DUT, this block must be protected from bit-flips. The
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fault-free areas need to be in agreement with the placement constraints set during the design

implementation phase. So, when the fault injection campaign starts, each SEU position read

from the external memory is analyzed to determine if it is inside the fault-free area. When the

bit-flip position is inside the protected area, the bit-flip is not injected, and the next SEU position

is loaded. If not, the PicoBlaze commands the ICAP controller to inject the corresponding fault.

At the top level, the host PC is in charge of the execution of multiple fault injection

campaigns. The procedure is shown in Fig. 3.4.

Figure 3.4: Flow diagram with the procedure to control multiple fault injection campaigns.
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Source: the author.

The first step is to set the corresponding parameters. The first parameter is the maximum

time for a single fault injection campaign. This time is variable and depends on the DUT and
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the fault injection rate. This setting helps to determine when a fault injection campaign reaches

an unknown state. The start memory position of the SEU database defines the starting point of

the first fault injection campaign. The subsequent campaigns will start from the last injected

SEU position. In this way, each fault injection campaign assures different SEU patterns. The

fault injection rate and fault-free areas are also defined. These parameters can be fixed for all

the fault injection campaigns or can be variable among campaigns according to the user needs.

When all parameters are set, the host PC configures the FPGA with the DUT and the fault

injector module through the JTAG interface and the fault injection campaigns begins.

To recognize the end of a fault injection campaign, it is necessary a DUT end condition

event. In our case, we want to test the maximum number of accumulated faults that a design can

tolerate before it starts to fail. When it reaches a certain condition, the DUT sends a signal that

is captured by the host computer. It also receives the information of SEU positions injected and

the information when a fault injection has failed. The fault injector was implemented into the

Virtex-5 XC5VLX50T FPGA of the Genesys Digilent board, and the synthesis result is detailed

in Table 3.1.

Table 3.1: Resource utilization of the Fault Injection Platform.

Sub-module LUTs Registers Block RAMs
PicoBlaze Soft Processor 147 76 1
Flash Memory Controller 86 68 0
ICAP Controller 705 417 1
Total 938 561 2

Source: the author.

3.2.3 Methodology for Capturing and Modeling SEUs and MBUs

The injected faults are modeled mainly with two different approaches:

• By using a radiation database from previous radiation experiments.

• By using a computer generated database based on a pseudo-random generator with a

uniform distribution.
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3.2.3.1 Modeling Using Data From Previous Ground-level Radiation Experiments

The database is composed of multiple and accumulated faults in Virtex-5 FPGA. These

faults were issued from previous radiation experiments at ISIS facilities. During the tests, bit-

flips in the configuration memory were detected using a readback procedure as described in Fig

3.5. It is important to mention that this process logs bit-flips in the configuration memory and

the content of block RAMs. So we use the mask file (generated by Xilinx tools) to filter our

logs from bit-flips in block RAMs and bit-flips due to shift registers or LUT RAMs used by the

DUT.

Figure 3.5: Procedure to capture bit-flips in the configuration memory.
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Source: the author.

Based on our knowledge of the FPGA configuration memory and the readback bitstream,

we can precisely determine the frame address and bit position of each SEU registered during

the experiment. The localization of the bit-flip is the information needed by the fault injector to

inject a bit-flip. We developed a software tool to automate this process. The tool takes the text

reports from the radiation experiments and creates the binary file for the external flash memory

automatically. Fig. 3.6 shows a screenshot of the GUI of this tool.

In our previous radiation experiments, more than 2,600 SEUs were identified. This
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Figure 3.6: Tool GUI to create SEU databases.

Source: the author.

information is stored in the external flash memory. In the case of the Genesys board, it has a

flash memory of 256 Mbit (organized as 16-bit by 16 Mbytes) for non-volatile storage of FPGA

configuration files. Three memory addresses of 16-bit are needed to store the information of

each SEU. The first two positions store the frame address and the last position store the bit

position inside the frame. Up to 5 million SEUs can be stored in this memory.

3.2.3.2 Modeling SEUs Using Computer-generated Data

Based on the analysis of the accumulated bit-flips issued from radiation experiments at

ISIS, bit-flips locations that resemble the original ones were also generated. We achieve this

using MATLAB and a pseudo-random generator with a uniform distribution. Fig. 3.7 shows

a graphical comparison between collected bit-flips and generated bit-flips. Each bar represents

the number of accumulated bit-flips per resource in the FPGA (ex. 1 CLB). The color scale is

only for visualization purposes. In the case of the Virtex-5 XC5VLX50T FPGA, the resources

are arranged in a matrix of 120 rows by 39 columns.

The option to generate bit-flips is also included in the same tool that creates the SEU
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Figure 3.7: Comparison of bit-flips from radiation experiments and MATLAB generated.

(a) 50 ISIS bit-flips. (b) 50 MATLAB generated bit-flips.

Source: the author.

database from radiation experiments.

3.2.4 Comparing Fault Injection Campaings with Acelerated Neutron Radiation Testing

In order to validate the fault injection platform, one case study design have been eval-

uated. Then, the fault injection results are compared with the neutron radiation experiments

results. This design implements an N-modular redundancy (NMR) scheme as a technique to

tolerate multiple fault accumulation. The nMR is composed of n functionally identical mod-

ules, which receive the same m-bits input and deliver p-bits output to the Self-Adapted voter

(SAv), as shown in Fig. 3.8 (TARRILLO et al., 2014b).

The SAv receives n x p bits from all modules and generates the fault-free p-output, n-

error status flags (ESF), and a non-masked fault signal (NMF). In this scheme, the system allows

for the accumulation of defective modules while remaining at least two modules without fault.

SAv is a majority voter, considering as population fault-free modules. The implemented design

is a 7-MR adder chain. The architecture is shown in Fig. 3.9. The criteria for selecting this

design were the low logic masking of faults and the ease to scale. This design has a control

module to manage the input pattern generator of the adder chains and to monitor the correct

response of the 7-MR system. When a functional error is detected, the control block sends error

signals to the host PC, and the fault injection campaign ends.

Fig. 3.10 shows the final placement of the 7-MR adder chain and the fault injector. The
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Figure 3.8: nMR-based technique with SAv voter.
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Figure 3.9: Block diagram of the adders chain DUT and the fault injector.

Source: the author.

areas of the fault injector and the control module are included in the fault-free area of the fault

injector.

The objective of the test is to determine if the fault injector can predict the tolerance of

this design under neutron radiation. The test reports the number of accumulated faults needed

to provoke the failure of each of the seven modules. The end condition of the test is when only

two correct modules remain. Fig. 3.11 presents the results of the fault injection campaigns. We

run 25 injection campaigns, and it was injected an average of 98.33 faults per campaign. The

error bars were calculated using.....
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Figure 3.10: Placement of the adders chain DUT and the fault injector.
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Input pattern generator

Test control

Source: the author.

Figure 3.11: Number of accumulated faults needed to provoke multiple faulty modules under
fault injection for the adder chain case-study.

Source: the author.

Fig. 3.12 shows the results issued from the radiation experiment. Due to beam time

restrictions, we were able to run the test few times.
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Figure 3.12: Number of accumulated faults needed to provoke multiple faulty modules under
radiation experiment for the adder chain case-study.

Source: the author.

Finally, Fig. 3.13 shows the comparison between the results of fault injection and ra-

diation experiments. Both present similar average accumulated faults for each of the faulty

modules count.

Figure 3.13: Comparison between fault injection and radiation experiment results of adder chain
case study.

Source: the author.
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3.3 Summary

A multiple fault injection platform to evaluate accumulated SEU effects in Virtex-5

FPGA is presented. The platform uses bit-flip positions generated by a pseudo random gen-

erator or taken from a database composed of pre-collected real bit-flips location detected from

previous neutron accelerated experiments at ISIS facilities. The flipped bits distribution of real

radiation test and fault injector were shown and analyzed. Also, the effects of accumulation

SEUs on a design using real radiation test and fault injection were tested. Results show the

capability of the proposed platform to predict the effects of radiation in FPGA designs and

mitigate the side-effects related to internal fault injectors.

In the next chapter, it is presented a survey of correction mechanisms for SRAM-based

FPGAs, and these solutions are analyzed taking into account the current and future context of

FPGAs.
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4 MITIGATION TECHNIQUES TO CORRECT SOFT ERRORS IN SRAM-BASED FP-

GAS

Soft errors in the configuration memory bits of SRAM-based FPGAs have a persistent

effect, and they remain until the original configuration is restored. Hardened by design tech-

niques at the design level such as TMR (Triple Modular Redundancy) (BOLCHINI; MIELE;

SANTAMBROGIO, 2007), X-TMR (BRIDGFORD; CARMICHAEL; TSENG, 2008), partial

TMR (PRATT et al., 2006), are commonly used to increase the radiation tolerance by means of

fault masking. TMR masks the effects of soft errors by using majority voters and hardware trip-

lication (spatial redundancy) but does not correct the faults. Still, it is necessary to complement

these techniques with a correction mechanism to avoid fault accumulation in the configuration

memory. This approach effectively increases the mean time to failure (MTTF) as shown in

Ostler et al. (2009).

Memory scrubbing is a well-known correction technique for the configuration memory

of SRAM-based FPGAs. It consists on writing the configuration memory after the FPGA is

configured to restore its original content. It is often a transparent operation for the running

application. This capability is possible because modern FPGAs offer a dynamic partial recon-

figuration (DPR) feature. The circuit that enables the scrubbing is commonly named scrubber.

Additionally, readback is the process of reading the configuration memory of the FPGA after

it is configured. Both processes (readback and scrubbing) can be used to implement different

scrubbing methodologies as shown in Herrera-Alzu and Lopez-Vallejo (2013).

Any of the following scrubbing architectures or methodologies can correct SEU or MBU

in the configuration memory of the FPGA. It all depends on the resources used to protect the

configuration memory. For example, if the internal ECC (SECDED) of the configuration mem-

ory frames is used, the scrubber will only be able to correct one bit-flip and detect two bit-flips.

On the other hand, if an external golden reference of the configuration memory is used, the

scrubber will be able to correct any MBU size. Also, it is possible to use ad hoc ECC codes

protection schemes with scrubbing to correct SEU and MBU.

4.1 Scrubbing Architectures and Methodologies

Two primary criteria can classify scrubbers. The first is the architecture of the scrubbing

system and the second is the scrubbing methodology adopted. The scrubbing classification is
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summarized in Fig. 4.1.

Figure 4.1: Proposed scrubber classification.
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Source: the author.

Regarding the architecture criteria, it is possible to classify scrubbers by the location and

the implementation method of the scrubber.

Scrubbing can be implemented using an internal or external configuration interface as

shown in Berg et al. (2008). When an external configuration interface is used, the scrubbing

logic is implemented outside the FPGA. The SelectMAP interface has the highest data through-

put. So, it can enable the fastest method to scrub the configuration memory. As an example,

the maximum frequency of the ICAP module in the Xilinx 7 Series Family of Xilinx is 100

MHz, and it has a 32-bit data interface. This configuration interface can achieve a maximum

data throughput of 400 Mbytes/s. The JTAG interface is also suitable to scrub the configuration

memory (VERA, 2009), however, depending on the application and the radiation environment,

it is not suitable for a scrubbing implementation. External scrubbers are presumed to be more

radiation tolerant than internal scrubbers since they can be implemented as a custom ASIC.

On the other hand, there is only one internal interface, the ICAP (XILINX, 2012b). An

internal scrubber needs to be implemented with the programmable blocks of the FPGA, so, it is

also vulnerable to soft errors. However, it is possible to apply hardening by design techniques

to internal scrubbers (HEINER; COLLINS; WIRTHLIN, 2008; LEGAT; BIASIZZO; NOVAK,

2012; EBRAHIM; ARSLAN; ITURBE, 2014). Using an internal scrubber, we avoid the power

consumption penalties of another device in the system. Fig. 4.2 represents the difference be-

tween internal and external scrubbers.

Also, scrubbers can be implemented in software or hardware. Hardware implementa-

tions use custom logic such as FSMs (Finite State Machines). This approach achieves faster

error detection and correction, but it lacks flexibility. The scrubbing process can be imple-
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Figure 4.2: Internal vs. external scrubber.

Source: (HERRERA-ALZU; LOPEZ-VALLEJO, 2013).

mented in software using a microprocessor with the advantage of high flexibility to implement

different complex scrubbing methodologies but with lower configuration speeds and lower en-

ergy efficiency. For the highest energy efficiency, a hardware approach must be used. Fig.

4.3 shows a scrubber implemented in software. Few works in the literature use the software

approach; one example is the work of Vera (2009) that implements the scrubber in a custom

processor.

Figure 4.3: Software-based scrubber.

Source: (HERRERA-ALZU; LOPEZ-VALLEJO, 2013).

Regarding the methodology approach, it is possible to classify scrubbers by the event

that triggers the configuration memory correction and also by the granularity of the scrubbing.

The event that triggers the scrubbing process can classify scrubbers in four different

methodologies. The first is informally known as a blind scrubbing and also open loop scrubbing.

This method implements a preventive scrubbing and is the simplest methodology. It consists of a

periodic scrub of the configuration memory after a predefined scrub interval. The scrubbing rate

can be fixed or adaptive. On the other hand, readback scrubbing (or close loop scrubbing) refers
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to do periodical readbacks until a soft error is detected; only then a scrub cycle is executed.

With a readback scrubbing methodology, it is possible to achieve lower energy consumption

since only when a soft error is detected, the scrubbing is enabled.

Fig. 4.4 shows the difference between preventive and readback scrubbing.

Figure 4.4: Examples of: (a) Preventive scrubbing (Blind). (b) Readback scrubbing.
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Source: the author.

The soft error detection during readback can be implemented using Error Detection and

Correction Codes (EDAC) on the configuration frames or comparing the configuration data

with an external reference. This reference is usually a radiation-hardened external memory that

keeps a copy of the original configuration. A more detailed description of different schemes

using EDAC is presented in the next section.

The third methodology is the functional error-driven scrubbing. A scrub cycle is enabled

when the scrubber receives an error signal from the functional design. This method can be used

in TMR designs where the voter can detect a module with a functional error.

The last methodology is based on the task implemented in the FPGA. This method is

proposed in Santos et al. (2014), and it adapts the scrubbing time according to the criticality

of the task. The motivation is explained in Fig. 4.5. It is possible to observe that if the time

between the scrubbing execution and the task execution is long enough, there is the possibility

that an error affects the task before another scrubbing is executed (case I). Another case is when

there are wasted scrubbing executions because between executions the user design is idle (case

II). The last case (case III) is when the scrubbing is executed close to the task execution time

minimizing the probability of an error affect the task execution.
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Figure 4.5: The relation of scrubbing execution and task execution.
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Fig. 1. Motivation example.Source: (SANTOS et al., 2014).

Finally, the scrubbing granularity can classify scrubbers in three groups. The first is

the device-oriented scrubbing, also known as full scrubbing. It treats the configuration mem-

ory as a whole. On the other hand, frame-oriented and module-oriented methodologies repairs

only selected zones. These methodologies are also known as partial scrubbing. Frame-oriented

scrubbing is the finest granularity possible, and a good knowledge of the configuration memory

is needed. Module oriented scrubbing can be implemented with the assistance of a dynamic par-

tial reconfiguration design flow and partial bitstreams. Fig 4.6 presents the differences between

module-oriented and device-oriented scrubbing.

The arrows indicate the repair direction of the configuration memory. This repair direc-

tion is standard for the Xilinx Virtex FPGA families.

Device-oriented scrubbing can be very costly in terms of energy consumption and time

to repair (scrubbing time) because the size of the bitstream is becoming very large each new

generation. Thus, to reduce the overhead of memory scrubbing, module-oriented scrubbing

must be applied.

Please note that memory scrubbing has some limitations. It cannot detect, nor correct

soft errors in user flip-flops or latches, nor in LUTs used as shift registers (SRL161) or as

distributed RAM (LUT-RAM). The user logic modifies the bits in these storage resources, so

1SLR16 are Xilinx primitive blocks to implement shift registers using LUTs.
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Figure 4.6: Comparison of scrubbing methodologies with different granularities.
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the scrubber is not able to detect if a change in a bit is intended or not. In these cases, other

techniques as EDAC should be used. Also, it cannot correct soft errors in the internal circuitry

of the configuration controller (like Xilinx ICAP, JTAG or SelectMAP). In these cases, a power

cycle and full reconfiguration are needed to restore its functionality.

4.2 Ad hoc schemes using error detection and correction codes (EDAC)

Readback and scrubbing is one of the techniques mentioned before that have gained at-

tention by the scientific community in recent years. This technique is also the one that Xilinx

uses to mitigate soft errors in their FPGA devices. Combining EDAC with readback and scrub-

bing have been a good solution to mitigate soft errors in FPGAs until now. However, these

techniques will always have a tradeoff between overhead and detection or correction capability.

Xilinx offers two approaches to deal with soft errors in the configuration memory. The

first approach (CHAPMAN, 2010) is based on the inherent ECC bits (Hamming codes) stored

in each of the frames of the configuration memory and, also in the CRC value that protects

the whole configuration memory. This approach is the first solution from Xilinx to automate

the soft error mitigation in the configuration memory of the FPGA. It can be implemented in

Xilinx FPGAs with dynamic partial reconfiguration capability as the Virtex-4 and Virtex-5.

The scheme can only correct one bit-flip and detect two bit-flips per configuration frame, but

the correction is fast because the correction is done without accessing to an external memory
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reference. During the bitstream generation, the ECC parity bits are calculated. In the case of

Virtex-5 FPGA, each frame has 12 ECC bits.

The solution is implemented using two Xilinx primitive blocks: the ICAP block and

the FRAME_ECC block. The ICAP block is the access port to the configuration memory, and

the FRAME_ECC is responsible for calculating the ECC parity bits when the frame is read

back. Then, it is possible to find bit-flips in the frame by a syndrome value. The syndrome is

generated from the ECC parity bits and the other data bits from the frame. Table 4.1 explains

how to interpret the syndrome value in Virtex-5 FPGAs.

Table 4.1: Syndrome value interpretation.

Syndrome Bit 11 Syndrome Bit [10:0] Error Status
bit 11 = 0 bits [10:0] = 0 No bit-flips.
bit 11 = 1 bits [10:0] 6= 0 Single bit error, bits [10:0] denote indi-

rectly the bit-flip position.
bit 11 = 1 bits [10:0] = 2n Single bit error in a parity bit,
bit 11 = 0 bits [10:0] 6= 0 double-bit error, not correctable.

Source: (XILINX, 2012b).

The second approach is based on Xilinx proprietary IP core named Soft Error Mitigation

(SEM) (XILINX, 2012a). This core is targeted only for the newer FPGA families: Virtex-

6, Spartan-6 and 7 series, including the Xilinx SoC Zynq, which is composed by a dual-core

ARM processor and an FPGA. This scheme has three options for error correction. The first is

also based on the inherent ECC bits as shown in the first approach and has the same correction

capabilities. The second option is based on the combination of the ECC bits and the CRC

code of all the configuration bits. This option increments the correction capability, and now is

possible to correct up to two bit-flips (adjacent) per configuration frame. The third option is

based on the classic approach of a scrubber, using an external golden reference to repair bit-

flips in frames. With this option, the scrubber can correct any size of MBU in the configuration

memory. During the synthesis, place and route of this IP core, it is possible to determine which

are the essential bits of a design, so it is possible to discriminate if a bit-flip in the configuration

memory can affect the design or not (CRABILL; CHANG, 2014).

Due to increase of MBU events in modern devices, works in the literature (LANUZZA et

al., 2010; ARGYRIDES; PRADHAN; KOCAK, 2011; PARK; LEE; ROY, 2012; VENKATARA-

MAN et al., 2014a; VENKATARAMAN et al., 2014b) proposes solutions to correct MBUs us-

ing Hamming codes and parity codes without requiring access to a golden configuration mem-

ory reference. These works have low correction latency, and each work focuses on minimizing
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the area overhead of the protection scheme.

For example Lanuzza et al. (2010) propose a solution where the configuration frame is

divided in data words, in order to obtain a virtual bit interleaving of the frame. A Hamming code

protects each data word as shown in Fig. 4.7. The effectiveness to correct MBU is dependent

on the number of data words used to divide the configuration frame. Also, the area overhead is

dependent on the number of data words selected.

Figure 4.7: Virtual interleaved data words to protect a configuration frame with Hamming
codes.
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Fig. 2. EDAC codes calculation. Source: (LANUZZA et al., 2010).

In addition, Argyrides, Pradhan and Kocak (2011) propose a combination of Hamming

codes and parity codes to protect the configuration memory. Park, Lee and Roy (2012) propose

to apply 2-D Hamming codes. Both works suggest to map each configuration frame in a 2-D

matrix. Then, it is possible to use single error correction codes (SEC) to rows and columns.

The main limitation is that the correction capability strongly depends on the MBU pattern as

shown in Fig. 4.8. The figure shows examples of 2-D Hamming codes, where D, ER, EC are

configuration bit, row parity bit and column parity bit respectively. The X represents a bit error.

Recently, Venkataraman et al. (2014a) proposed the same virtual bit-interleaved scheme

presented in Lanuzza et al. (2010). However, the main difference is that the Hamming codes

are embedded in the configuration frames reducing the area overhead as shown in Fig. 4.9.

f+ is the configuration frame where Xi are the bits that are not essential for the functional

design. This work takes the advantage that usually the functional design does not use more

than 50% of the configuration bits of a frame. Nevertheless, the work does not mention that
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Figure 4.8: Examples of correctable and non-correctable MBU patterns with an 2-D Hamming
Code. In (A), it is shown a 2-D Hamming codes with a 7× 7 matrix of configuration bits. In
(B), a correct execution of 2-D Hamming codes correction with two iterations. In (C), a correct
execution in 3 iterations. In (D), two cases with incorrect execution. In (E), an equivalent case
as (C).

Source: (PARK; LEE; ROY, 2012).

depending on the configuration frame, it is possible to create shortcuts in the functional design.

These shortcuts appear because some of the non-used configuration bits are the controllers of

the interconnections close to the functional interconnections of the design.

Figure 4.9: Examples of Hamming codes embedded in the configuration frame.
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Source: (VENKATARAMAN et al., 2014a).

Also, the same author presents another approach in Venkataraman et al. (2014b) where

the 2-D Hamming approach is extended to 3-D. Fig. 4.10 shows a frame protected by the 3-D

Hamming scheme. Extending Hamming codes to 3-D allows a better correction capability, but

the error correction latency is incremented.

Another work (RAO et al., 2014) proposes a technique to correct MBUs using inter-

leaved 2-D parity to detect MBUs in configuration frames. The detection capability is also

dependent on the MBU pattern. The interleaved approach allows them to reduce the area over-

head without a significant loss of the detection capability compared to a full 2-D parity as shown

in Park, Lee and Roy (2012).

The correction mechanism is implemented using Erasure codes. An Erasure code is a

data recovery mechanism that transforms m blocks into m+ n blocks such that the original m

blocks can be recovered from an arbitrary set of m blocks among m+n coded blocks as shown
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Figure 4.10: Examples of Hamming codes extended to 3-D. A frame bits matrix of nr rows and
nc columns is shown. The number of row hamming bits is nr × hr. The number of column

hamming bits is nc×hc. And the number of diagonal hamming bits is
nd

∑
j=1

hd j, where hd j is the

number of hamming bits for each diagonal j.
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Source: (VENKATARAMAN et al., 2014b).

Figure 4.11: The erasure code approach.
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Source: (RAO et al., 2014).

in Fig. 4.11.

For the implementation of the technique, each block is a configuration frame + parity

bits. They need to group the configuration frame in clusters to reduce the time to correct a

frame and also to reduce the area overhead. The time to repair is reduced because to correct one

frame it is necessary to read all the frames (included the redundant frame). The area overhead is

reduced because, with several clusters, it is possible to add only one redundant frame per cluster

as shown in Fig. 4.12. It is important to mention that this is the first work that focuses the

correction in the whole frame and not in the particular bit(s) flipped. This feature is important
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because according to the architecture of modern FPGAs, the smallest addressable unit in the

configuration memory is the configuration frame.

Figure 4.12: Implementation of erasure codes in the configuration memory of an FPGA.
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The area overhead and the detection and correction time tradeoff are shown in Fig. 4.13.

The detection time is constant because it is only dependent on the parity bits in each frame. The

correction time is reduced when more clusters are used. With more clusters, fewer configuration

frames are needed to correct one error, but the memory (BRAM) overhead increases.
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Figure 4.13: Error detection and correction time vs. memory overhead.
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4.3 Enabling MBU correction capability with TMR

An example of a work that takes advantage of the TMR masking technique to implement

the correction mechanism is shown in Herrera-Alzu and Lopez-Vallejo (2011). It is imple-

mented a self-reference scrubber, where the correction mechanism is based on the information

of three identical FPGAs (in device-level TMR) with identical bitstreams. Fig. 4.14 shows the

block diagram of the self-scrubber. This approach can correct any MBU pattern since it can re-

construct the configuration frame based on the information of the other two copies of the frame.

The scrubber needs to be implemented outside of the three FPGAs in order to maintain the same

bitstream in all the three FPGAs. The main drawbacks are the increased power consumption

and area overhead due to the triplication of the system at device-level.

Another work that benefits from the hardware redundancy to correct the bitstream is

shown in (UPEGUI; IZUI; CURCHOD, 2012). This work mentions a method to create repli-

cated partial bitstreams of modules in a TMR fashion as the proposed technique in this work.

The method is based on the dynamic partial reconfiguration design flow, using reconfigurable

partitions (RPs) and reconfigurable modules (RMs). This work describes all the steps to gener-

ate the bitstream triplication but it lacks of information related to the reliability of the technique

or any comparison of the performance of the technique with other works.
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Figure 4.14: Block diagram of a self-reference scrubber.

Source: (HERRERA-ALZU; LOPEZ-VALLEJO, 2011).

4.4 Comparison of Correction Techniques

This chapter described most of the architectures and methodologies used to implement

scrubbing mechanisms. In this last section, a comparison between them is done, comparing

the main aspects of the scrubbing mechanism: area overhead, performance (error correction

latency), power consumption and reliability using the same classification proposed in Fig. 4.1.

For the architecture criteria, it is compared the area overhead, power consumption and reliabil-

ity. For the methodologies criteria, it is compared the performance (error correction latency)

and power consumption. Regarding the techniques that use ad hoc schemes using EDAC will

always have some overhead in terms of area because in these schemes it is needed some type of

redundancy (e.g. parity bits) to be stored in a memory device.

Table 4.2: Comparison of scrubber architectures due to the location of the scrubber.

Area Overhead Power Consumption Reliability
Internal Low because is in-

cluded in the config-
urable logic.

Lower compared to ex-
ternal implementation.

More susceptible to soft
errors because it is imple-
mented in programmable
logic.

External High due to one extra
device to the system.

Higher due to extra de-
vice in the system.

Better because it is presumed
that can be implemented in a
rad-hard device.

Source: the author.
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Table 4.3: Comparison of scrubber architectures due to the implementation method.

Area Overhead Power Consumption Reliability
Software High, it needs a proces-

sor and memory.
Higher compared to the
hardware approach.

Depends on the processor,
and if is a hardcore or soft-
core.

Hardware Low, it is implemented
with a FSM

Lower compared to the
software approach

Depends if is implemented on
a rad-hard device or in pro-
grammable logic.

Source: the author.

Table 4.4: Comparison of scrubber methodologies due to the correction trigger.

Error Correction Latency Power Consumption
Preventive Depends on the scrub rate High compared to the other methods
Readback The lowest latency, Soft errors are

corrected as soon is detected.
Lower than preventive scrubbing but the
readback rate imposes a penalty

Error-
driven

Soft errors are only corrected when
a functional error is detected.

Do not need a readback, the scrub rate
is adapted to the error rate, reducing the
power consumption.

Task-
driven

Soft errors are accumulated until
the design needs to execute its task

Do not need a readback, the scrub rate is
adapted to the task execution rate, reduc-
ing the power consumption.

Source: the author.

Table 4.5: Comparison of scrubber methodologies due to the granularity.

Error Correction Latency Power Consumption
Device The highest compared with the other two. High compared to the other methods
Frame Only the frames with faults are scrubbed.

It requires knowledge of the configuration
frames structure.

As with Module-oriented, offers lower
consumption than device-oriented.

Module The scrubbing is focused on the zone
where the user design relies.

As with Frame-oriented, offers lower
consumption than device-oriented.

Source: the author.
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5 PROPOSED MITIGATION TECHNIQUE

The proposed scrubbing technique (FLR-scrubbing) depends on a coarse grain TMR

design, where each TMR domain has the same frame data. So, each configuration frame of

the TMR design is triplicated in the FPGA. Therefore, any frame of the TMR design can be

repaired using the information of the other two identical frames. In this proposed technique,

coarse grain TMR is used to mask faults at the circuit level and also to enable the correction of

the faults in the configuration memory.

The description of the FLR-scrubbing technique is divided into two parts:

• In the first part, the process to generate the coarse grain TMR circuit with a customized

design flow is detailed. This process ensures that the configuration frames in each TMR

domain are the same.

• In the second part, a new scrubbing logic that uses the information of the triplicated

configuration frames to correct bit upsets is described.

Fig. 5.1 shows a block diagram of a coarse grain TMR design implemented using this

technique.

Figure 5.1: Block diagram of the frame redundancy scheme based on TMR design.
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5.1 Customized Design Flow

The TMR design needs a particular placement to obtain the same configuration frames

for each TMR domain. Also, each TMR domain should be implemented in the FPGA with

same resources and routing. The placement of each TMR domain is obtained by placement

constraints, and it depends on the structure of the configuration memory of the target FPGA.

In Xilinx FPGAs, the configuration memory is structured as an array of configuration frames

vertically placed in the matrix. One frame fits into a single row, and each column may have

many vertical frames. For example in a Xilinx Virtex-5 FPGA, a CLB row and column has 36

frames each one with 1312 bits disposed vertically. Consequently, the height of a frame has

1312 bits, and each row has the height of a frame. TMR domains must be placed vertically

aligned, and covering an integer number of rows, as shown in Fig. 5.1.

This technique cannot be applied to the majority voter due to the limitations of tripli-

cating the majority voter with three identical placements of logic and inputs. So, there are two

possible solutions to correct upsets in the voters. The first one is to have a copy of the ma-

jority voter configuration frames in a memory and load this frames when needed to restore the

corrupted frames of the majority voter. The second solution is to place the voter outside the

FPGA. This option implies the use of another device as a rad-hard antifuse FPGA; however, it

may increase the system complexity and board area, but assuring the voter functionality under

radiation effects.

To obtain a coarse grain TMR design, where each TMR domain is synthesized, placed

and routed in the same manner, it is proposed a customized design flow as shown in Fig. 5.2.

This design flow is partially based on the Xilinx Standard design flow that uses the commercial

Xilinx tools to generate an FPGA bitstream from a hardware description of the design; and it

is also based on the RapidSmith tool (LAVIN et al., 2011), an academic tool to generate Hard

Macro Blocks (HMB) that assures that each TMR domain has the same configuration frames.

These HMB are used to implement each of the TMR domains because these blocks are

already placed and routed designs that can be instantiated in an FPGA design. The proposed

design flow begins with the generation of a placed and routed circuit from the original design

with the Xilinx standard design flow. Then, the RapidSmith tool receives the placed and routed

circuit in a Native Circuit Description (NCD) format and creates the HMB with a Native Macro

Circuit (NMC) format.

The second step is to create a new design project, which includes the three instances

of the HMB with the placement constraints. The voter of the coarse grain TMR design and
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Figure 5.2: Customized design flow.
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the scrubber circuit can be optionally included in the project because they can be implemented

outside the FPGA. If the internal scrubber is selected, the ICAP block is used to access the

configuration memory. Otherwise, the SelectMAP port is used. Xilinx tools support the com-

bination of HDL designs with HMB to generate the final bitstream which has the same frame

data for the three TMR domains.

5.2 The Scrubbing Technique

The customized design flow ensures that the three TMR domains have the same config-

uration frames. The FLR-scrubbing technique uses this information to correct these regions.

The scrubber circuit needs to be configured with the location of the three TMR domains.

When the scrubber begins a scrub cycle, it reads the first frame of each TMR domain. Then, the

scrubber executes a bit level majority voting of the three frames and creates a fault-free (voted)

frame. In the best-case scenario, none of the frames needs to be corrected, so the scrubber

moves to the next frame position of each TMR domain. If any of the three frames is corrupted,
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the scrubber replaces it with the fault-free (voted) frame.

In the worst-case scenario, three frames are corrupted due to the accumulation of bit

upsets. The scrubbing technique will be able to correct all the upsets if there is no more than

one upset per each relative bit position, as shown in Fig. 5.3. Please note that the frame from

the TMR domain 1 has an MBU, which would not be corrected by ECC (CHAPMAN, 2010),

but because our method votes bit by bit, the MBU of the frame from TMR domain 1 will be

voted out correctly.

Figure 5.3: Procedure to correct three identical frames with bit-level majority voting.
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The correct execution of the scrubbing is based on the assumption that at most one of the

three bits voted is faulty. This scenario is expected because the three bits compared by the voter

are not physically adjacent, so it is very unlikely to have multiple bit upsets in two of the three

bits. We have not observed such cases under radiation to an accumulation up to 274 bit upsets

in average. However, if such unlikely case occurs, the scrubber will not detect nor correct the

frames and golden bitstream must be loaded from an external memory.
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6 RESULTS ANALYSIS OF THE PROPOSED MITIGATION TECHNIQUE

6.1 Performance Results

We have validated our scrubbing technique into a Virtex-5 FPGA, part XC5VLX50T-

FFG1136. This device is manufactured with 65 nm technology, and it has a nominal core

voltage of 1.0V. It is worth noting that although, in this study we consider Xilinx FPGAs, the

proposed technique is generic and extendable to any SRAM-based FPGA that offers configura-

tion memory readback.

The scrubber was implemented in the FPGA, thus, it uses the ICAP block to access the

configuration memory. The ICAP block has a 32-bit data interface and can work at a maximum

clock frequency of 100 MHz.

6.1.1 Area Overhead

The area overhead of the FLR-scrubbing technique is low, and it corresponds to the area

of the scrubber circuit because it does not need any extra memory to store frame parity bits

or copies of the original frames. When comparing to techniques such as (RAO et al., 2014)

that need extra memory to store parity bits or (BERG et al., 2008; XILINX, 2012a) that needs

external memory to read the original (golden) configuration memory, our method can show a

good advantage. The area overhead of the FLR-scrubbing technique is also independent of the

size of the FPGA, and it is similar to Xilinx SEU Controller (CHAPMAN, 2010). The area

of Xilinx SEM IP (XILINX, 2012a) depends on the size of the FPGA and the selected error

correction method that can be based on the embedded ECC bits only, a combination of ECC

and CRC or the external golden memory. Related works compared in this paper (XILINX,

2012a; RAO et al., 2014; CHAPMAN, 2010) do not mention any mitigation technique for the

scrubber circuit. In our method, we propose to triplicate the scrubber to improve the reliability.

The presented area considers the triplication of the scrubber circuit. Table I presents our results

compared with previous works.

In our proposed method, it is not necessary to use an external memory to store the

original configuration memory as in the Xilinx solution (XILINX, 2012a) or a classic blind

scrubber. So the only area overhead comes from the scrubber circuit logic. Table 6.1 presents

our results compared with previous state-of-the-art related works.

The energy consumption overhead in our scheme is only limited to the consumption
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Table 6.1: Area comparison results.

Scrubbing Scheme CLBs BRAMs External Memory
Work in (RAO et al., 2014)a 1100 (6 %) 4 (1 %) No
Xilinx SEU Controller (CHAPMAN, 2010) 98 (3 %) 1 (2 %) No
Xilinx SEM IP (XILINX, 2012a)b 108 (2 %) 3 (1 %) Yes
Blind Scrubbing (TMR) 341 (10 %) 12 (20 %) Yes
FLR-Scrubbing (TMR) 113 (3 %) 6 (10 %) No

aimplemented for a Virtex-6 VLX240T FPGA with 50 clusters and TMR redundancy. In this device, one frame
has 2,592 bits.

bimplemented for an Artix-7 A100T FPGA without optional features. In this device, one frame has 3,232 bits.

Source: the author.

of the scrubber itself. For the Xilinx SEM IP (XILINX, 2012a) and the blind scrubbing, it

must take into account the power consumption of the external memory that stores the original

configuration memory. In the next sub-section is analyzed in detail the energy consumption.

6.1.2 Energy Consumption Overhead

We cannot neglect the power overhead imposed by the configuration memory scrubbing.

It is well known that the power consumption depends on the readback or scrub rate and the

scrub methodology adopted. So, to compare different scrubbing methodologies, we propose to

compare the energy consumed per configuration frame (Escrub− f rame). This parameter will give

us a better idea of the energy-efficiency of the technique and it is independent of the scrub rate

or the scrub methodology.

In the following it is explained the procedure to obtain the Escrub− f rame parameter. In

order to determine the energy consumption of our scrubbing technique, we measured the power

consumption (PFLR−scrubbing) and the scrub time (tscrub−time). With both parameters, it is possi-

ble to calculate the energy consumption as shown in equation 6.1:

EFLR−scrubbing = PFLR−scrubbing ∗ tscrub−time (6.1)

PFLR−scrubbing is composed of the static and dynamic power. In order to compare the

energy consumption of our technique with other scrubbing methodologies, the static power is

excluded. The main premise for this decision is that in the case of SRAM-based FPGAs, the

static power mainly depends on the size of the FPGA and is relatively constant during circuit

operation.
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To perform the power measurements, it is used the INA219 current/voltage monitor chip

included on the Digilent Genesys FPGA board. The monitor chip is configured to return 16-

bit samples at 5 Hz, with each returned sample being the average of 128 sub-samples. The

measurement resolution of this monitor is 2 mA for the current and 4 mV for the voltage. One

monitor is placed on three different power sources: FPGA core, FPGA I/O and external flash

memory.

The average power consumption is calculated using equation 6.2:

PFLR−scrubbing = Pavg(n) =VCORE−RMS(n) ∗ ICORE−RMS(n) (6.2)

Where n is the number of samples, and VCORE−RMS(n), ICORE−RMS(n) are RMS values

of VCORE and ICORE respectively. The power consumption of the FPGA I/O interface and the

external flash memory are not considered since the FLR-scrubbing technique does not use any

interface with an external component. The RMS value is used to obtain the average power

because the current is not constant during the whole scrub cycle. As shown in equation 6.3, the

RMS value is defined as the quadratic mean of n samples.

IRMS(n) =

√
I2
1 + I2

2 + · · ·+ I2
n

n
(6.3)

To obtain the dynamic power, first the static power is measured. For this, the FLR-

scrubber is implemented in the FPGA but with no clock stimuli. In a second step, the power

consumption is measured when the FLR-scrubber is set to run scrub cycles continuously. Sub-

tracting both power measurements, it is possible to obtain the dynamic power.

In order to measure the scrub cycle time, it is used an oscilloscope to measure the period

of a strobe signal that is toggled each time the scrubber finishes a scrub cycle. With the scrub

cycle time and the dynamic power, it is possible to obtain the energy consumption per scrub

cycle. So the last step is to divide by the number of frames protected during the scrub cycle as

shown in equation 6.4:

Escrub− f rame =
EFLR−scrubbing

Framesscrub−cycle

(6.4)

The same procedure was followed to obtain the energy consumption of a blind scrubber

that uses as reference an external flash memory. We decided to choose the blind scrubber as a

reference point since it implements the simplest scrubbing methodology. In this case, we must

take into account the power consumption from the FPGA I/O interface and the external memory

as shown in equation 6.5:
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Pblind−scrubber =VCORE ∗ ICORE +VIO ∗ IIO +Vext−mem ∗ Iext−mem (6.5)

Our measurements show that the current of the FPGA I/O power source is below the

monitor chip resolution (2 mA), so we are not considering it in the calculus.

The results are summarized in Table 6.1.2. It is observed that our proposed technique

has at least six times less energy consumption per scrubbed frame. This value is independent of

the scrub rate or methodology utilized.

Also, we can mention that the dynamic power consumption of our technique is higher

since the logic to implement our scrub methodology is more complex. However, the use of an

external memory makes the blind scrubbing slower.

Table 6.2: Energy and power results for the FLR-Scrubbing technique and blind scrubbing.

FLR-scrubbing (TMR) Blind scrubbing (TMR)

Parameter FPGA Core FPGA Core Flash Memory All

Source (1.0 V) Source (1.0 V) Source (1.8 V) Sources

Dynamic Power (RMS) 33.24 mW 21.2 mW 3.93 mW 25.13 mW

Scrub cycle time 3.67 ms @ 50MHz 178.55 ms @ 50MHz

Energy per scrub cycle 121.9 µJ 3.785 mJ 0.7 mJ 4.485 mJ

Number of protected frames 1386 8376 (all the device)

Energy to scrub a frame

(Escrub− f rame)

87.9 nJ 451.9 nJ (84.3%) 83.89 nJ (15.7%) 535.79 nJ

Source: the author.

For the blind scrubber working at 50 MHz, it is shown that the energy is more signifi-

cantly spent within the FPGA core (84.3 %) than within the external memory (15.7 %). From

this results, it was decided to also evaluate the power consumption of the blind scrubber at a

different operation frequency. The motivation of this analysis was the fact the time bottleneck

of the blind scrubber is the access to the external memory. So, most of the time the scrubber

logic is waiting for the reading process of the external memory. Table 6.3 presents other energy

consumption measurements done for the blind scrubber.

The frequency of the flash controller is keeped at 50 MHz because if it is reduced, the

time to complete a scrub cycle is incremented. It is possible to observe that reducing operation

frequency of the scrubber logic does not significantly reduce the overall energy consumption.

The explanation of this behavior can be that the flash controller is dominating the dynamic

energy consumption of the FPGA.

In the energy comparison, the blind scrubber covers all the device configuration frames.

On the other hand, the FLR-scrubber is only correcting a specific area of the FPGA where the
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Table 6.3: Total energy consumed per scrubbed frame for the blind scrubber at different opera-
tion frequencies. From all supply sources (flash memory + FPGA core)

Blind scrubber version Escrub− f rame (nJ)
Flash Controller @ 50 MHz,
Scrubber logic @ 6.25 MHz

475.58

Flash Controller @ 50 MHz,
Scrubber logic @ 50 MHz

535.79

Source: the author.

functional design is placed. It is impossible to cover the whole FPGA because the location of

the ICAP block and the internal scrubber logic prohibits the implementation of our customized

design flow explained in Section 5.1 This limitation can be solved by implementing the scrubber

externally to the FPGA as shown in Fig. 6.1.

Figure 6.1: Two options to implement the FLR-scrubber logic externally to the FPGA.
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Source: the author.

One option is to implement the FLR-scrubber logic in another ASIC/FPGA and using

an external interface to access the configuration memory as the SelectMAP interface. Another

option is to use a modern System on Chip (SoC) like the Xilinx Zynq-7000 All Programmable

SoC (XILINX, 2015b) to implement the FLR-scrubber logic in the ARM processor and access

the configuration frames through the dedicated interface.



94

6.1.3 Fault Detection and Repair Latency

The fault detection latency is the time needed to detect a soft error in the configuration

memory. This parameter depends on the number of configuration frames under analysis. The

upset repair latency is the time needed to correct a soft error in the configuration memory.

For the Xilinx SEM Controller (XILINX, 2012a), it must consider the read access time to the

external memory.

In the worst-case scenario, the upset detection latency is the time required to scan all the

analyzed configuration frames. This event can happen when an SEU/MBU occurs in a frame

after it has just been analyzed. The average upset detection latency is the half of the full scan

time. In Table 6.4, it is presented a comparison with other approaches taking into account

the time to scan one single frame (upset detection) and the time to correct one frame (upset

correction/repair). In the case of the Virtex-5, each frame has 1,312 bits.

Table 6.4: Comparison of the time to scan one frame and the time to repair one frame.

Scrubbing Scheme
Scan Time for Time to repair

Characteristics
one frame (µs) one frame (µs)

Work in (RAO et al., 2014)a 0.65 351 Uses BRAM to store parity frame

bits

Xilinx SEU Controller

(CHAPMAN, 2010)

0.82 240 The scrubber is based on a Pi-

coBlaze

Xilinx SEM IP (XILINX,

2012a)b

1.04 12 Uses an external memory (replace

method)

Blind Scrubbing (TMR) N/A 21 Uses an external memory

FLR-Scrubbing (TMR) 1.96 5 BRAM or external memory is not

needed

aimplemented for a Virtex-6 VLX240T FPGA with 50 clusters and TMR redundancy. In this device, one frame
has 2,592 bits.

bimplemented for an Artix-7 A100T FPGA without optional features. In this device, one frame has 3,232 bits.

Source: the author.

One can observe that in our scheme, it is not necessary to scan all the configuration

frames of the FPGA, it only scans the configuration frames of the TMR design. In these frames

reside the highly potential bits that can generate a functional error in the circuit when flipped by

an energetic particle. In our case, the correction latency depends on the time to read the three

analyzed frames and the time to write the frame back into the configuration memory. For the

Xilinx SEM controller, the upset correction latency is strongly dependent on the access time to

the external memory. For the obtained result, we assume an external flash memory with a 16-bit



95

interface and a clock frequency of 50 MHz.

6.2 Neutron Radiation Results

The efficiency of the proposed scrubbing technique was evaluated with a Virtex-5 FPGA,

part XC5VLX50T-FFG1136. This FPGA has the capability of dynamic partial reconfiguration

through the ICAP interface. This interface is used to implement our scrubbing technique.

Experiments were performed in December 2014 at Los Alamos National Laboratory

(LANL), Los Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electron-

ics House II. The FPGA device was tested at normal incidence with an approximated neutron

flux of 1.43× 106(n/cm2 × s). The neutron energy spectrum resembles the atmospheric one

between 1 and 750 MeV (VIOLANTE et al., 2007).

The board was placed in the radiation chamber and it was connected to a host computer

via two USB connections. The first one is used for the FPGA configuration and readback via

JTAG while the second one is used for the RS232-C communication with the scrubber.

The objective of the test is to analyze the efficiency of the proposed scrubbing method-

ology to correct multiple accumulated SEUs and MBUs. Therefore, the scrubber is protected

with TMR.

Fig. 6.2 shows the placement of the scrubber, and the three TMR domain zones that

the technique protects. The scrubber protects an area of 1,386 configuration frames, where the

TMR design is located. This area represents 720 CLBs (20 % of device CLBs) and 24 18K

BRAM blocks (20 % of device BRAM blocks). The protected area is relative small compared

to the FPGA total area because the ICAP position at the center of the FPGA, limits the area that

can be triplicated at the frame level. This inconvenience can be overcome implementing the

scrubber outside the FPGA and configure it with the SelectMAP interface.

The test procedure starts with the configuration of the FPGA, including the scrubber

circuit and the TMR protected zone. The FPGA is exposed to radiation and to the accumulation

of bit upsets in the configuration memory. The FLR-scrubbing technique is configured with

two pre-defined scrubbing rate during the test: one of 30 minutes and other one of 60 minutes.

During the accumulation period, periodic readbacks are performed with intervals of 5 minutes

to analyze the accumulation of upsets. So, once 30 minutes or 60 minutes are reached, the

FLR-scrubbing technique is activated to correct the TMR protected zone.

In order to save every scrubbing execution in a log file, when the scrubber finds bit upsets

in the TMR protected zone, it transmits to the host computer the frame address of corrupted
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Figure 6.2: Placement of the TMR scrubber and the three TMR domain zones on a Virtex-5
VLX50T.
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Source: the author.

frames. The host PC executes a last readback to verify if TMR protected zone was correctly

scrubbed and if there is no remaining bit upsets. The host PC reconfigures the FPGA with the

original bitstream and a new run begins.

Experimental results are classified in four cases:

• Case 1: The scrubber sends a correct report to the host PC, and the readback files confirm

the proper operation of the scrubber.

• Case 2: The scrubber sends a wrong response to the host PC, and the readback files

confirm an error on the scrubber.

• Case 3: The scrubber sends a correct report to the host PC, but the readback files present

a wrong scrubbing correction.

• Case 4: The scrubber sends a wrong response to the host PC, but the readback data show

a correct scrubbing operation.

The percentage of occurrence of the four cases (1 to 4) is shown in Table 6.5. One can

see the average number of accumulated upsets per radiation test runs, the number of radiation
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test runs and the percentage of occurrence of each one of the four cases described above.

Table 6.5: Classification and quantification of results after the scrubbing technique is applied.

avg. acc. upsets Total runs Case 1 Case 2 Case 3 Case 4

Scrub rate 1 (30 min) 145.7 33 87.8% 6.1% 6.1% 0%

Scrub rate 2 (60 min) 274 30 66.7% 26.7% 3.3% 3.3%

Source: the author.

Case 1 represents the correct behavior of the scrubber. In this case, the TMR in the

scrubber was adequate to mask any functional error, and the proposed technique was able to

correct all the accumulated bit-flips in the protected area. A graphical view of readback files

before and after the scrubbing is applied is shown in Fig. 6.3.

Figure 6.3: Graphical view of readbacks of a correct run (case 1). The spots are bit upsets in
the configuration memory.

(a) Readback just before the scrubber is activated. (b) Readback after the scrubber finished.

Source: the author.

Cases 2, 3 and 4 are wrong behaviors of the scrubber. Cases 2 and 4 are detectable errors

since the response of the scrubber shows some functional error. Fig. 6.4 shows a representative

example of a wrong behavior.

A detailed analysis of bit-flips in the readback files was done to diagnose if the origin of

functional error was in the scrubber circuit or the internal configuration controller of the FPGA

(ICAP). Since we have the information of the bit-flips occurred before each run execution, it was



98

Figure 6.4: Graphical view of readbacks of an incorrect run (cases 2 and 3).

(a) Readback just before the scrubber is activated. (b) Readback after the scrubber finished.

Source: the author.

developed an script to generate a faulty bitstream from the original bitstream with the accumu-

lated bit-flips of each run executed to compare the results obtained at the radiation experiment

and the results obtained by injecting the bit-flips in the original bitstream. If the results are the

same, the origin of the functional error relies on the scrubber circuit, but if not, there is the

possibility that the functional error was originated in the internal configuration controller of the

FPGA (ICAP).

After the analysis, it was found that 2 out of 63 runs have evidence of a possible error

in the internal configuration controller of the FPGA (ICAP). This means that, the majority

of functional errors observed during the radiation test were originated in the scrubber circuit

because the TMR scheme was defeated by the upset accumulation.

Case 3 is an undetectable error that was only observed after the analysis of the readback

files. The few cases analyzed show a behavior that the scrubber achieves the complete correction

of the protected zone but introduces bit-flips in other zones of the FPGA. This case is candidate

for a future analysis.

Case 3 is also the candidate case for finding an example where the scrubbing technique

is not able to correct or detect a fault when, as described in section 5.2, more than one bit of the

same relative bits position of the voted frames has an upset. However, after the analysis of the

readback files, it was not found any evidence of such scenario. All the runs, when the scrubber
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failed to correct the configuration memory of the protected area, were due to a functional error

in the scrubber itself or because of a Single Event Functional Interrupt (SEFI) in the ICAP

block. So, this means that the error was in the scrubber and not in the technique itself.

Table 6.6 presents the cross section and Failures in Time (FIT) results of the scrubber

circuit considering the three cases of functional errors observed during the tests. As expected,

the reliability of the scrubber is reduced when more bit-flips are accumulated. The FIT is ob-

tained considering a flux of 13 neutrons/(cm2×h) (The New York City reference flux (JEDEC,

2006)). As a reference, it is also mentioned the estimated soft error rate of the Xilinx SEU Con-

troller (CHAPMAN, 2010). Please note that in this radiation test the focus is to demonstrate the

effectiveness of the FLR-scrubbing technique and not the reliability of the scrubber. Neverthe-

less, the scrubber reliability is critical for a real application.

Table 6.6: Cross section and Failure in Time at New York City.

Cross section (cm2) FIT
Scrub rate 1 (30 min) 4.41×10−11 5.73
Scrub rate 2 (60 min) 6.59×10−11 8.57
Xilinx SEU Controller (CHAPMAN, 2010) N/A 8.6

Source: the author.

6.3 Fault Injection Results

The analysis of the results of the neutron radiation experiment showed that, in either

case, the FLR-scrubbing technique was defeated due to accumulated soft errors in the protected

area. Remembering that the only case where the technique is not able to detect or correct a fault

is when the same bit(s) position(s) of the same frames in each of the three regions have upset

bits within the same scrub cycle.

Therefore, the objective of the fault injection campaign is to determine the maximum

number of accumulated faults that the FLR-scrubbing mechanism can correct.

The fault injector is also implemented in the FPGA and shares the ICAP block with

the scrubber. The emulated upsets are a combination of random generated SEUs locations and

locations recorded from previously accelerated neutron radiation tests. The scrubber protects

the same area mentioned in the neutron radiation test (1,386 frames), and the fault injector is

constrained to inject faults in the same area protected by the scrubbing technique.

Fig. 6.5 shows the final placement of the scrubber, the fault injector and the three iden-
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tical regions where the TMR design is located.

Figure 6.5: Placement of the scrubber, the fault injector and the three TMR domain zones on a
Virtex-5 VLX50T.

TMR Domain 1 

TMR Domain 2 

TMR Domain 3 

Scrubber 

Fault Injector 

ICAP 

Source: the author.

The methodology to find the maximum number of accumulated SEUs was to inject faults

in steps of 10 faults per injection and then activated the scrubber to analyze if all the faults were

corrected. When faults remain in the protected area after executing the scrubbing mechanism,

the incrementation process of the number of accumulated SEUs is stopped. Then, the injector

starts to decrement the number of accumulated SEUs injected in steps of one fault to find the

final value. Finally, the fault injection campaign is ended. Figure 6.6 presents an example of a

fault injection campaign.

More than two hundred fault injection (FI) campaigns were performed, and more than

250,700 faults were injected. The results are summarized in Table 6.7. The maximum number

of accumulated bit upsets obtained in the fault injection campaign is ten times higher than the

bit upsets accumulated during the radiation test. These results can explain why in the neutron

radiation experiments it was not possible to find a case where the technique failed due to the

massive fault accumulation.

The results show that the technique can correct more than one thousand accumulated
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Figure 6.6: Example of one fault injection campaign.
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Table 6.7: Fault Injection Results.

Maximum accumulated Value
SEUs corrected
Number of FI campaigns 212
Average 1182.66
Standard Deviation (σ ) 556.91
Minimum 83
maximum 2680

Source: the author.

faults on average in the protected area. This value represents a small percentage of the total

configuration bits in this area (less than 1 % in the tested area), but it represents a high accumu-

lation time of faults in a real environment.

In Fig. 6.7 is also show the fault injection results distribution and the probability distri-

bution fitness of a normal distribution using the kolgomorov-Smirnov test (NIST/SEMATECH,

2012) with the IBM SPSS software tool.

Fig. 6.8 shows the results issued from one fault injection campaign where after 224 ac-

cumulated faults the technique failed. In (a) is shown the readback of the configuration memory

before the technique is executed, and the result after the scrubbing mechanism is executed in

(b). In the figure, the matrix represents the configuration memory of the FPGA. Each cell of the

matrix represents a set of configuration bits related to a particular resource (e.g. CLB, BRAM,

etc.). In the case of Virtex-5 VLX50T, the matrix has 39 columns and 126 rows.
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Figure 6.7: Histogram of the obtained results with fault injection and the Normal distribution
fitness.

Source: the author.

Figure 6.8: Fault injection in the configuration memory. Red squares represent bit-flips in the
configuration memory.

(a) 224 injected faults in the protected area (b) Only three faults remain after the scrub cycle.

Source: the author.
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7 CONCLUSIONS AND INCOMING WORK

SRAM-based FPGAs are suitable for critical applications, but they are particularly sus-

ceptible to radiation-induced soft errors in the configuration memory. In this thesis, it was

analyzed the major dependability treats of SRAM-based FPGAs, focusing on SEEs. Also, it

was studied the factors that increases the susceptibility to soft errors such as voltage scaling and

aging. Then, it was presented the methods to analyze the reliability of systems implemented in

SRAM-based FPGAs with a particular interest in fault injection by emulation methods. Finally,

a novel scrubbing technique for the configuration memory of SRAM-based FPGAs is presented

and tested under radiation experiments and fault injection campaigns.

In the next sections, the main contributions of this thesis are summarized, then, the

future works are presented. Finally, the publications product of this thesis and the work did in

cooperation with other researchers are listed.

7.1 Main Contributions

7.1.1 Factors that increases the soft error rate in modern SRAM-based FPGAs

Radiation-induced soft errors in the configuration memory of SRAM-based FPGAs are a

major concern for critical applications implemented in these devices. The trend shows that this

scenario is getting worse. FPGA manufacturers as Xilinx achieved to reduce the susceptibility

of the SRAM cells that compose the configuration memory but due to the high densities of newer

devices, the soft error rate is continuously increasing. Based on neutron radiation experiment

results, we also observe the influence of aging and voltage scaling to the soft error rate in

SRAM-based FPGAs. Results have shown that the error rate can increase more than twice

when considering aging and voltage scaling. Also, it was found that aging effects have more

influence in the increment of the susceptibility than voltage scaling. So, it is important to

add this type of measurement and discussions when considering SRAM-based FPGAs for high

reliable applications.
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7.1.2 Proposed Fault Injection Platform

It was presented a multiple fault injection platform to evaluate accumulated SEU effects

in the configuration memory of SRAM-based FPGAs. The platform uses bit-flip positions

generated by a pseudo-random generator or taken from a database composed of pre-collected

real bit-flips location detected from previous neutron accelerated experiments at ISIS facilities.

The location distribution of real radiation test and fault injector were shown and analyzed.

Also, the effects of accumulation SEUs on a design using real radiation test and fault injection

were tested. Results show the real capability of the platform proposed to predict the effects of

radiation in FPGA designs in a short time and mitigate the side-effects related to internal fault

injectors successfully.

7.1.3 Proposed Scrubbing Technique

It is presented a novel scrubbing mechanism that can effectively correct SEUs and MBUs

in the configuration memory of SRAM-based FPGAs. This technique offers good characteris-

tics in terms of area and energy overhead with low repair latency compared with other solutions.

The area overhead is independent of the selected device or area protected. The correction mech-

anism does not need an external memory, reducing effectively the system energy consumption

and the time to repair the fault. A comparison with a blind scrubber shows an energy reduction

of six times. It is important to mention that the correction effectiveness is not dependent on the

MBU pattern.

We have also presented an experimental evaluation of a novel scrubbing technique. Ra-

diation experiment results and fault injection campaigns have demonstrated the effectiveness of

the proposed method to correct multiple accumulated soft errors.

7.2 Future Work

7.2.1 Improving the proposed fault injection platform

In this thesis, it was proposed a fault injection platform that emulates soft errors in the

configuration memory using dynamic partial reconfiguration. The SEUs locations are taken

from previous radiation tests, and they are stored in a external flash memory. This architecture
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achieves a high speed fault injection, but this characteristic is not always necessary. For ex-

ample, when it is required to predict the effects of an accelerated radiation test, the SEU rate

emulated is low compared with the maximum speed capacity.

A drawback of the current implementation is the flexibility of the fault injection plat-

form. When it is needed to adapt the fault injector to a particular application, it is required to

modify RTL codes, and also it is necessary to do some modifications to the assembly code that

runs in the PicoBlaze soft processor.

Therefore, an idea to improve the flexibility of the fault injection platform is to migrate

all the logic related to the fault injection process to the host PC. In the FPGA will only remain

the ICAP controller that is in charge of the low-level protocol required to access to the config-

uration memory. The rest will be controlled by the host computer. So, the SEU locations and

the time to inject the faults can be managed by the computer. The frame address and the bit

position to flip can be sent through a RS-232C communication. This will reduce the maximum

injection speed but can be tolerate by most of the practical cases we have used. To circuvent the

low speed interface communication, it is possible to implement the fault injector in the Zynq

SoC.

7.2.2 Evaluate the effectiveness of a TMR voter to trigger the scrubbing mechanism

In this work, it is presented the FLR-scrubbing technique with a fixed scrubbing rate.

The main idea is to analyze the reliability and power consumption when the voter of the TMR

protected circuit acts as the trigger of the scrubbing process. The voter will trigger the scrubbing

when one of the TMR domains presents a discrepancy with the other two. In this way, the

scrubbing rate dynamically adapts to the soft error rate. It will be possible to analyze if the FLR-

scrubbing technique can correct the accumulated faults after one of the TMR modules fails.

Another open question is if the TMR will mask the error the enough time until the scrubbing

finishes its execution.

7.2.3 Analyze the tradeoff between number of processed frames, time to repair and area

overhead with the FLR-Scrubbing technique

In the implemented version of the FLR-scrubbing presented in this work, the number

of frames processed in a single operation is three, one frame of each TMR domain. Since the
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read and write operations to the configuration memory have fixed commands overhead (e.g. the

command overhead for reading one frame is the same as for 30 frames), it can be interesting to

analyze the benefits of processing more than three frames in the time to repair. As a penalty,

more area will be required to temporally store more frames than three.

7.2.4 Improving the reliability of the FLR-scrubber

To improve the reliability of the internal scrubber, the own FLR-scrubbing technique

can be applied to the scrubber. So, it will be triplicated with equal configuration frames for

each TMR domain. The scrubber will be capable of self-correct faults in its own configuration

frames and it will not need an external reference memory.

However, the ICAP should be also protected. The ICAP port is a critical part of the

scrubber since any error in the internal registers will provoke a wrong correction of the config-

uration memory. One possible solution is to test the ICAP before executing an scrubbing cycle.

The test will consist in reading and writing into an unused frame of the FPGA. The latest FPGA

families come with more than one ICAP module. To deal with errors in the ICAP, it will be

proposed a method to switch the selected ICAP in cases where the test of this block fails.

7.2.5 Improving the correction capability of the FLR-Scrubbing technique

One possible method to improve the correction capability of the FLR-Scrubbing tech-

nique is to use the information of the internal ECC of each frame to deduce if the bit-level voting

inside the scrubber is correct.

7.2.6 Improving the methodology to generate identical bitstream modules

The method to generate identical bitstream modules is based on Hard Macro blocks.

An academic tool was used to generate these blocks, but one limitation of theses blocks are

that commercial tools have unpredicted behaviors when using these blocks together with other

modules. Sometimes the bitstream generation process hangs at some point of the design flow

due to the use of these blocks. So, one possibility is to avoid using these blocks and create the

identical configuration frames using the XDL language (BECKHOFF; KOCH; TORRESEN,

2011). This language is a human-readable representation of the circuit and can be modified by
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tools like the RapidSmith (LAVIN et al., 2011).

7.3 Publications related to this work
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KASTENSMIDT, F.; TONFAT, J.; BOTH, T.; RECH, P.; WIRTH, G.; REIS, R.; BRU-

GUIER, F.; BENOIT, P.; TORRES, L.; FROST, C. Voltage scaling and aging effects on soft

error rate in SRAM-based FPGAs. In: MICROELECTRONICS RELIABILITY, Elsevier

Ltd, v. 54, n. 9-10, p. 2344-2348, sep. 2014.

TONFAT, J.; KASTENSMIDT, F.; RECH, P.; REIS, R.; QUINN, H. Analyzing the

Effectiveness of a Frame-level Redundancy Scrubbing Technique for SRAM-based FPGAs. In:

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, v. 62, no. 6, pp. 3080-3087, dec. 2015.

7.3.2 Book chapter

TONFAT, J.; TARRILLO, J.; TAMBARA, L.; KASTENSMIDT, F.; REIS, R. Multiple

Fault Injection Platform for SRAM-based FPGA based on Ground-level Radiation Experiments.
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level Redundancy Scrubbing Technique for SRAM-based FPGAs. In: MILITARY AND
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                    APPENDIX A

TÉCNICA DE CORREÇÃO DE ERROS PARA FPGAS BASEADOS EM SRAM

          USANDO REDUNDANCIA A NIVEL DE FRAME

(PORTUGUESE EXTENDED ABSTRACT)

A.1 Introdução

Confiabilidade é um parâmetro de projeto importante para aplicações criticas tanto na

Terra como também no espaço. Os FPGAs baseados em memoria SRAM (doravante refer-

enciados como FPGAs) são atrativos para implementar aplicações criticas devido a seu alto

desempenho e flexibilidade (LANGE et al., 2015). No entanto, estes FPGAs são muito sus-

ceptíveis aos efeitos da radiação tais como os soft errors na memoria de configuração. Além

disso, outros efeitos como o envelhecimento (aging) ou escalonamento da tensão de alimen-

tação (voltage scaling) incrementam a sensibilidade à radiação dos FPGAs. (KASTENSMIDT

et al., 2014).

Existem FPGAs fabricados para serem tolerantes aos efeitos da radiação (XILINX,

2014b), mas eles são mais custosos, com menor desempenho e de difícil acesso de compra

comparados com seus pares comerciais conhecidos como COTS (Commercially-of-the-shelf )

FPGAs.

COTS FPGAs são dispositivos CMOS tradicionais com uma característica única. Eles

podem ser reconfigurados em campo. Isto significa que a sua função pode ser reprogramada de-

pois de ter sido fabricado. Esta capacidade de reconfiguração é possível devido a que os FPGAs

utilizam uma memoria de configuração baseada em células SRAM. Contudo, esta memoria de

configuração é a responsável da maioria de problemas de confiabilidade em FPGAs. Os FPGAs

são altamente susceptíveis a radiação ionizante devido a grande quantidade de células SRAM

na memoria de configuração.

Os efeitos em circuitos integrados devido à radiação ionizante podem ser classificados

como Single Event Effects (SEEs) ou Total Ionization Dose (TID). Para os FPGAs baseados em

SRAM, os SEEs são de mais preocupação.

Partículas altamente energizadas podem interatuar com o silício dos circuitos integrados

e podem provocar pulsos transientes nos nós dos transistores das células SRAM. Estes pul-

sos transientes podem ocasionar inversões nos bits (bit-flips) das células SRAM. Uma mesma

partícula pode inverter um ou mais de um bit na memoria de configuração de um FPGA. Quando
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a partícula inverte um bit só, o evento é chamado de Single Event Upset (SEU), mas quando são

invertidas mais de uma célula de memoria o evento é chamado Multiple Bit Upset (MBU) ou

Multiple Cell Upset (MCU) dependendo da estrutura logica das células de memoria. Inversões

múltiplas de bits são cada vez mais comuns em nós tecnológicos modernos devido a peque-

nas dimensões dos transistores e a baixas tensões de operação (CHANDRA; AITKEN, 2008).

Como resultado, eventos com múltiplas inversões de bits estão aumentando em FPGAs moder-

nos (QUINN et al., 2007; WIRTHLIN; TAKAI; HARDING, 2014).

Então para poder implementar sistemas críticos em FPGAs, técnicas eficientes de mit-

igação de falhas devem ser usadas. Técnicas de tolerância a falhas são utilizadas para evitar

falhas nos sistemas. Redundância modular tripla ou TMR é a técnica de tolerância a falhas mais

comum de redundância espacial. Mas, a diferença dos ASICs onde os SEEs são usualmente

transientes, SEEs na memoria de configuração de um FPGA têm um efeito persistente. O efeito

persistente da falha significa que ela permanecerá ate alguma ação de correção for executada.

Então em FPGAs, TMR deve ser utilizado em conjunto com um mecanismo de correção da

memoria de configuração para evitar a acumulação de falhas. Ciclos de energia (power cycles)

ou reconfigurações completas do FPGA são mecanismos de correção conhecidos. No entanto,

estas técnicas implicam que o sistema não estará o 100% do tempo disponível para executar sua

função. Dependendo da aplicação, esta situação não é tolerável.

Memory scrubbing é outra técnica de correção de falhas para a memoria de configuração

do FPGA. Esta técnica pode corrigir a memoria de configuração sem ter que parar a execução

do sistema. Porém, com o aumento da taxa de falhas em FPGAs modernos, a taxa de scrubbing

também esta aumentando. Este fato impacta diretamente no consumo de potencia do sistema

(HERRERA-ALZU; LOPEZ-VALLEJO, 2013).

A técnica de scrubbing pode corrigir a memoria usando códigos de detecção e correção

de erros (EDAC) ou usando uma memoria de referencia golden que garante conter a infor-

mação original da memoria de configuração. Quando a abordagem EDAC é utilizada, existe

um balanço inerente entre a capacidade correção, a complexidade do scrubber1 e os custos em

área ou potencia. E no cenário atual, onde os eventos de falhas múltiplas estão aumentando, a

complexidade do scrubber e os custos de área e potencia estão aumentando também.

Por outro lado, se uma memoria de referencia golden é utilizada, o problema principal

é o tempo gasto para reparar as falhas. Existe um gargalo no acesso aos dados armazenados

numa memoria externa. A típica largura de banda de uma memoria externa é de 33 Mbps,

enquanto a largura de banda do acesso a memoria de configuração do FPGA pode chegar ate

1Um scrubber é o circuito encarregado de executar o processo de scrubbing.
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3.2 Gbps (YANG et al., 2013). Existe uma brecha de mais de 100 vezes entre a largura de

banda de ambas as memorias. Além, o consumo de energia da memoria externa deve ser levado

em conta. Então, baixa largura de banda combinada com consumo extra de energia são os

problemas principais num cenário onde o tamanho da memoria de configuração dos FPGAs

modernos esta aumentando de maneira exponencial como mostrada na Figura A.1.

Figure A.1: Tamanho da memoria de configuração nos FPGAs maiores de cada uma das
famílias Virtex da Xilinx.
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Fonte: DOCUMENTAÇÂO DA XILINX.

A.2 Motivação

Soft errors ou upsets são uma ameaça à confiabilidade dos FPGAs para seu uso em apli-

cações criticas. A tendência mostra que a taxa de falhas esta aumentando em FPGAs modernos,
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e também esta aumentando a quantidade de eventos com falhas múltiplas como mostrado na

Figura A.2. Qualquer proposta de técnica de correção de falhas para FPGAs modernos deve

conseguir lidar com eventos de falhas múltiplas.

Figure A.2: Tendência da porcentagem de MCUs com respeito ao total de eventos para cada nó
tecnológico.

Fonte: (IBE et al., 2010).

Outra preocupação é o consumo de potencia dos FPGAs. Na literatura podemos encon-

trar diversas técnicas para reduzir o consumo de energia dos FPGAs, no entanto, uma das mais

efetivas é a redução da tensão de alimentação. Porem, como efeito secundário, a redução da ten-

são de alimentação incrementa a susceptibilidade a soft errors em FPGAs (KASTENSMIDT et

al., 2014).

Também devemos de considerar o aumento exponencial na densidade de FPGAs mod-

ernos que em consequência incrementa a taxa de falhas nestes dispositivos. Mas o aumento na

densidade dos dispositivos também incrementa o tempo para reconfigurar eles como mostrado

na Figura A.3.

A Figura mostra que para novos dispositivos o tempo de reconfiguração aumenta con-

sideravelmente. Dois fatores são os responsáveis por este aumento. Por um lado esta o aumento

da densidade e por outro esta a largura de banda do acesso a memoria de configuração. Na
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Figure A.3: Tempo total de reconfiguração para o FPGA maior de cada família da Xilinx.

Fonte: (NAZAR, 2013).

Figura é possível identificar que desde a família Virtex-4, a largura de banda se mantem con-

stante a 3200 Mbps. Esta informação é importante levar em conta quando se analisam técnicas

de correção da memoria de configuração.

Um FPGA pode ser visto como um dispositivo de duas camadas. A camada logica

é aquela que implementa os recursos necessários dos circuitos funcionais como logica pro-

gramável (LUTs), elementos de DSP (somadores, multiplicadores, etc.) e memoria embarcada.

A outra camada seria a de configuração onde esta armazenada a memoria que configura todos

os recursos da camada logica.

Os bits de configuração do FPGA também são conhecidos como bitstream. O bitstream

está organizado em pequenos segmentos chamados frames. Cada frame possui um endereço que

esta relacionado com a sua posição física no FPGA. Na Figura A.4 é mostrada a organização da

memoria de configuração de um FPGA Virtex-5.

Na literatura podemos encontrar diversas abordagens para corrigir a memoria de con-

figuração do FPGA (CHAPMAN, 2010; BERG et al., 2008; EBRAHIM; ARSLAN; ITURBE,

2014; HEINER; COLLINS; WIRTHLIN, 2008; XILINX, 2012a; PARK; LEE; ROY, 2012;

RAO et al., 2014; SANTOS et al., 2014; VENKATARAMAN et al., 2014b; VERA, 2009;

NAZAR; SANTOS; CARRO, 2013). A forma mais simples é utilizar uma memoria externa

golden que contenha o conteúdo original da memoria de configuração e um circuito que se en-

carregue de sobre escrever o conteúdo da memoria de configuração do FPGA com o conteúdo

da memoria externa. Este processo é conhecido como blind scrubbing.

As técnicas de scrubbing podem ser classificadas como é mostrado na Figura A.5.
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Figure A.4: Organização da memoria de configuração de um FPGA Virtex-5.
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Figure A.5: Classificação de técnicas de correção da memoria de configuração do FPGA.
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O analise destes trabalhos nos levou na conclusão que um dos problemas das técnicas

atuais era o uso da memoria externa, já que esta limita a largura de banda disponível para

escrever na memoria de configuração do FPGA e aumenta o consumo de potencia do sistema.

Por outro lado, as técnicas que não envolviam o uso de uma memoria externa, sempre tinham

uma relação de custo entre a capacidade de correção e a área utilizada.
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A proposta neste trabalho é uma técnica que não utilize uma memoria externa, mas que

não comprometa a capacidade de correção com um custo de área e potencia baixos. A seguir é

descrita com mais detalhe esta técnica.

A.3 Técnica de Scrubbing em Nível de Frame – (FLR-SCRUBBING)

A técnica proposta baseia-se na geração de um circuito em TMR de grão grosso, onde

cada domínio do TMR possui a mesma informação de frames. Com isso conseguimos que

cada frame do circuito funcional implementado esteja triplicado. Consequentemente, é possível

reparar qualquer frame do circuito usando a informação dos outros dois frames idênticos.

Este mecanismo permite a correção de múltiplas falhas acumuladas na memoria de con-

figuração, incluindo SEUs and MBUs. Na técnica proposta, o TMR não é somente utilizado

como uma técnica de mascaramento de falhas, mas também como a base para a correção das

mesmas.

Dois etapas principais são necessárias para implementar esta técnica de scrubbing:

• Um fluxo de projeto customizado que garanta que os frames de cada domínio de TMR

sejam idênticos.

• Uma nova abordagem de scrubbing que permita a reparação dos frames do circuito us-

ando a informação das outras duas copias.

A Figura A.6 mostra um diagrama de blocos básico de um circuito implementado usando

esta técnica.

A.3.1 Fluxo de Projeto Customizado

A premissa central da técnica proposta é que cada um dos módulos de TMR possui a

mesma informação no nível de frames. É por isto que um posicionamento individual dos módu-

los é requerido, além de que cada módulo deve ser implementado no FPGA usando os mesmos

recursos e roteamento. O posicionamento dos módulos esta relacionado com a organização

da memoria de configuração. Este conhecimento é o resultado de um estudo aprofundado da

memoria de configuração do FPGA.

Não é possível triplicar a informação dos frames do votador maioritário do TMR porque

as entradas do votador compreendem os três domínios de TMR. No entanto, como a área do
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votador geralmente representa uma pequena fração da área total do circuito triplicado, a proba-

bilidade de falhas no votador e menor que nos módulos triplicados. Uma possível solução para

proteger o votador poderia ser armazenar copias dos frames do votador em blocos BRAM e

aplicar a mesma técnica de scrubbing.

As ferramentas comerciais da Xilinx, não garantem que duas instancias do mesmo mod-

ulo sejam sintetizadas, posicionadas e roteadas da mesma maneira, então foi proposto um novo

fluxo de projeto como mostrado na Figura A.7.

Neste fluxo de projeto utilizamos o conceito de Hard Macro Blocks (HMB). Estes blocos

são circuitos previamente posicionados e roteados da mesma maneira que podem ser instanci-

ados em circuito. As características especiais destes blocos junto com um posicionamento

especifico garantem que cada modulo de TMR possua a mesma informação de frames. As fer-

ramentas comerciais oferecem um suporte parcial a estes blocos. Então para poder gerar estes

blocos utilizamos uma ferramenta acadêmica chamada RapidSmith (LAVIN et al., 2011).

O fluxo de projeto proposto começa com a geração dos blocos HMB a partir do circuito

original usando o fluxo comercial da Xilinx. A ferramenta RapidSmith recebe o circuito posi-

cionado e roteado e cria o bloco HMB com o formato NMC. Depois de ter criado o HMB, um

novo projeto é criado, onde serão instanciadas três copias do bloco HMB e opcionalmente o

votador e o scrubber. O votador e o scrubber são opcionais porque eles podem ser implemen-

Figure A.6: Diagrama de blocos do esquema de redundância de frames baseado em TMR.
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Figure A.7: Fluxo de projeto customizado.
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tados fora do FPGA. Nesta etapa também é definido o posicionamento final dos blocos HMB.

Finalmente, o bitstream final é gerado usando o fluxo de projeto padrão da Xilinx.

A.3.2 Mecanismo de Scrubbing

Após garantir que os três domínios de TMR possuem a mesma informação no nível de

frames, a técnica de scrubbing usará esta informação para corrigir estas regiões.

Primeiramente, é necessário configurar as regiões dos três domínios de TMR no scrub-

ber. Quando começa um ciclo de scrubbing, o primeiro frame de cada uma das regiões é lido.

Depois, é executado uma votação maioritária bit a bit dos três frames lidos e cria-se um frame

golden (livre de falhas) e também se identifica quais dos três frames lidos possuem alguma

discrepância. No pior cenário, os três frames analisados terão alguns bits incorretos e os três

precisarão ser reescritos com a informação do frame golden. No melhor cenário, nenhum dos

frames precisará ser corregido e finalmente o scrubber continuará seu ciclo passando a ler os
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próximos três frames.

Desta maneira simples é possível corrigir falhas nos frames pertencentes ao circuito

mesmo na presença de falhas do tipo MBU como mostrado na Figura A.8.

Figure A.8: Procedimento para corrigir três frames usando votação maioritária nível de bit.
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O processo descrito é repetido ate percorrer todos os frames do circuito. Existe um

caso onde a técnica de scrubbing não poderá detectar nem corrigir as falhas dos frames. Isto

acontecerá quando as mesmas posições de bit de mais de um frame triplicado possuam uma

falha dentro de um mesmo ciclo de scrubbing. Neste caso, o scrubber determinará de forma

errada o conteúdo do frame golden. Isto originará que a falha seja propagada para os três frames

triplicados. Não obstante, a probabilidade de esse tipo de evento acontecer é extremamente

baixa como foi demonstrado nos experimentos de radiação.
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A.4 Resumo dos Resultados

O consumo de area da técnica proposta é baixo e correspondem à área do circuito scrub-

ber porque a técnica não precisa de memoria adicional para armazenar bits de paridade dos

frames ou copias dos frames originais. Quando comparado com técnicas como (RAO et al.,

2014) que precisam de memoria adicional para armazenar bits de paridade ou (CHAPMAN,

2010) que precisa de uma memoria externa para ler a configuração original (golden) da memoria

do FPGA, nossa técnica mostra uma boa vantagem. O consumo de área é também independente

do tamanho do FPGA e é semelhante ao obtido por (CHAPMAN, 2010).

Em termos de consumo de energia, a técnica foi comparada com uma implementação da

metodologia blind scrubbing. A energia consumida por nossa técnica somente vem do circuito

scrubber. No entanto, a metodologia blind scrubbing consume energia do circuito scrubber e

da memoria externa. Nos resultados é possível observar que o consumo por frame da nossa

técnica é pelo menos seis vezes menor que o obtido na metodologia de blind scrubbing.

Na técnica proposta, o tempo de reparação de um frame depende do tempo de leitura de

três frames e da escrita do frame correto (votado). Comparado com outros trabalhos similares,

o nosso trabalho possui melhores resultados devido a que não utiliza uma memoria externa,

o circuito scrubber foi implementado como um hardware dedicado (FSM) e a quantidade de

frames que precisa ler ou escrever e menor também.

Os resultados de radiação e de injeção de falhas mostram que a técnica tem a capacidade

de corrigir múltiplas falhas acumuladas. Nos testes de radiação acelerada foram observados

alguns erros na execução da técnica de correção, mas após a analise dos dados obtidos, foi

determinado que a causa desses erros não foi devido a técnica senão devido a um erro funcional

no circuito do scrubber ou no controlador do modulo ICAP. Nas campanhas de injeção de falhas

foi determinado que a técnica consegue corrigir uma media de 1136 bit upsets acumulados na

área protegida. Este valor representa uma porcentagem baixa dos bits totais de configuração

protegidos pela técnica, mas representa um tempo maior de acumulo de falhas em um ambiente

real de radiação.

A.5 Conclusões

Os FPGAs baseados em SRAM são atrativos para aplicações criticas, mas eles são muito

sensíveis a erros transientes devido a radiação na memoria de configuração. Neste trabalho de

doutorado, foram analisadas as principais ameaças a dependabilidade , focando nos SEEs. Tam-
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bém foram estudados os fatores que incrementam a susceptibilidade a erros transientes como o

escalonamento em tensão (voltage scaling) e o envelhecimento (aging). Em seguida, foi presen-

tado os métodos para analisar a confiabilidade de sistemas implementados em FPGAs baseados

em SRAM com um particular interesse em métodos de emulação utilizando injeção de falhas.

Finalmente, foi apresentada uma nova técnica de scrubbing para a memoria de configuração

de FPGAs baseados em SRAM. Esta técnica foi avaliada com campanhas de injeção de falhas

e testes de radiação acelerada. Os resultados da implementação mostram que a técnica pre-

senta boas características em termos de área e consumo de energia com um tempo de reparação

baixo quando comparado com outras técnicas. Os resultados do teste de radiação acelerada e

injeção de falhas demonstram a efetividade da técnica para corrigir erros transientes múltiplos

e acumulados na memoria de configuração.

Trabalhos futuros devem-se focar no melhoramento da confiabilidade do circuito scrub-

ber para reduzir ou eliminar comportamentos errados vistos durante os testes de radiação acel-

erada. Um mecanismo de teste antes da execução da correção da memoria é necessário para

evitar uma correção errada da memoria de configuração.
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