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Don't you believe in flying saucers, they ask me?  

Don't you believe in telepathy? — in ancient astronauts? — in the Bermuda 

triangle? — in life after death? 

“No”, I reply. “No, no, no, no, and again no.” 

 

One person recently, goaded into desperation by the litany of unrelieved negation, 

burst out “Don't you believe in anything?” 

“Yes”, I said. “I believe in evidence. I believe in observation, measurement, and 

reasoning, confirmed by independent observers. I'll believe anything, no matter 

how wild and ridiculous, if there is evidence for it. The wilder and more ridiculous 

something is, however, the firmer and more solid the evidence will have to be.” 

―Isaac Asimov, The Roving Mind (1997), 43  

 

~…~ 

 

http://www.goodreads.com/author/show/16667.Isaac_Asimov




 

vii 

Abstract 

Most organizations nowadays depend on some kind of computer infrastructure to 

manage business critical activities. This dependence grows as computer systems 

become more reliable and useful, but so does the complexity and size of systems. 

Transactional systems, which are database-centered applications used by most 

organizations to support daily tasks, are no exception. A typical solution to cope 

with systems complexity is to delegate the software development task, and to use 

existing solutions independently developed and maintained (either proprietary or 

open source). 

The multiplicity of software and component alternatives available has boosted the 

interest in suitable benchmarks, able to assist in the selection of the best candidate 

solutions, concerning several attributes. However, the huge success of performance 

and dependability benchmarking markedly contrasts with the small advances on 

security benchmarking, which has only sparsely been studied in the past.  

This thesis discusses the security benchmarking problem and main characteristics, 

particularly comparing these with other successful benchmarking initiatives, like 

performance and dependability benchmarking. Based on this analysis, a general 

framework for security benchmarking is proposed. This framework, suitable for 

most types of software systems and application domains, includes two main phases: 

security qualification and trustworthiness benchmarking. Security qualification is 

a process designed to evaluate the most obvious and identifiable security aspects of 

the system, dividing the evaluated targets in acceptable or unacceptable, given the 

specific security requirements of the application domain. Trustworthiness 

benchmarking, on the other hand, consists of an evaluation process that is applied 

over the qualified targets to estimate the probability of the existence of hidden or 

hard to detect security issues in a system (the main goal is to cope with the 

uncertainties related to security aspects).  

The framework is thoroughly demonstrated and evaluated in the context of 

transactional systems, which can be divided in two parts: the infrastructure and the 

business applications. As these parts have significantly different security goals, the 

framework is used to develop methodologies and approaches that fit their specific 

characteristics. First, the thesis proposes a security benchmark for transactional 

systems infrastructures and describes, discusses and justifies all the steps of the 



 

viii 

process. The benchmark is applied to four distinct real infrastructures, and the 

results of the assessment are thoroughly analyzed.  

Still in the context of transactional systems infrastructures, the thesis also addresses 

the problem of the selecting software components. This is complex as evaluating 

the security of an infrastructure cannot be done before deployment. The proposed 

tool, aimed at helping in the selection of basic software packages to support the 

infrastructure, is used to evaluate seven different software packages, representative 

alternatives for the deployment of real infrastructures. 

Finally, the thesis discusses the problem of designing trustworthiness benchmarks 

for business applications, focusing specifically on the case of web applications. 

First, a benchmarking approach based on static code analysis tools is proposed. 

Several experiments are presented to evaluate the effectiveness of the proposed 

metrics, including a representative experiment where the challenge was the 

selection of the most secure application among a set of seven web forums. Based 

on the analysis of the limitations of such approach, a generic approach for the 

definition of trustworthiness benchmarks for web applications is defined. 

Keywords: Security, Benchmarking, Transactional Systems, Databases, Security 

Metrics, Security Evaluation, Security Benchmarking. 
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Resumo 

A maioria das organizações depende atualmente de algum tipo de infraestrutura 

computacional para suportar as atividades críticas para o negócio. Esta dependência 

cresce com o aumento da capacidade dos sistemas informáticos e da confiança que 

se pode depositar nesses sistemas, ao mesmo tempo que aumenta também o seu 

tamanho e complexidade. Os sistemas transacionais, tipicamente centrados em 

bases de dados utilizadas para armazenar e gerir a informação de suporte às tarefas 

diárias, sofrem naturalmente deste mesmo problema. Assim, uma solução 

frequentemente utilizada para amenizar a dificuldade em lidar com a complexidade 

dos sistemas passa por delegar sob outras organizações o trabalho de 

desenvolvimento, ou mesmo por utilizar soluções já disponíveis no mercado (sejam 

elas proprietárias ou abertas). 

A diversidade de software e componentes alternativos disponíveis atualmente torna 

necessária a existência de testes padronizados que ajudem na seleção da opção mais 

adequada entre as alternativas existentes, considerando uma conjunto de diferentes 

características. No entanto, o sucesso da investigação em testes padronizados de 

desempenho e confiabilidade contrasta radicalmente com os avanços em testes 

padronizados de segurança, os quais têm sido pouco investigados, apesar da sua 

extrema relevância. 

Esta tese discute o problema da definição de testes padronizados de segurança, 

comparando-o com outras iniciativas de sucesso, como a definição de testes 

padronizados de desempenho e de confiabilidade. Com base nesta análise é 

proposta um modelo de base para a definição de testes padronizados de segurança. 

Este modelo, aplicável de forma genérica a diversos tipos de sistemas e domínios, 

define duas etapas principais: qualificação de segurança e teste padronizado de 

confiança. A qualificação de segurança é um processo que permite avaliar um 

sistema tendo em conta os aspectos e requisitos de segurança mais evidentes num 

determinado domínio de aplicação, dividindo os sistemas avaliados entre aceitáveis 

e não aceitáveis. O teste padronizado de confiança, por outro lado, consiste em 

avaliar os sistemas considerados aceitáveis de modo a estimar a probabilidade de 

existirem problemas de segurança ocultados ou difíceis de detectar (o objetivo do 

processo é lidar com as incertezas inerentes aos aspectos de segurança). 
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O modelo proposto é demonstrado e avaliado no contexto de sistemas 

transacionais, os quais podem ser divididos em duas partes: a infraestrutura e as 

aplicações de negócio. Uma vez que cada uma destas partes possui objetivos de 

segurança distintos, o modelo é utilizado no desenvolvimento de metodologias 

adequadas para cada uma delas. Primeiro, a tese apresenta um teste padronizado de 

segurança para infraestruturas de sistemas transacionais, descrevendo e 

justificando todos os passos e decisões tomadas ao longo do seu desenvolvimento. 

Este teste foi aplicado a quatro infraestruturas reais, sendo os resultados obtidos 

cuidadosamente apresentados e analisados. 

Ainda no contexto das infraestruturas de sistemas transacionais, a tese discute o 

problema da seleção de componentes de software. Este é um problema complexo 

uma vez que a avaliação de segurança destas infraestruturas não é exequível antes 

da sua entrada em funcionamento. A ferramenta proposta, que tem por objetivo 

ajudar na seleção do software básico para suportar este tipo de infraestrutura, é 

aplicada na avaliação e análise de sete pacotes de software distintos, todos 

alternativas tipicamente utilizadas em infraestruturas reais. 

Finalmente, a tese aborda o problema do desenvolvimento de testes padronizados 

de confiança para aplicações de negócio, focando especificamente em aplicações 

Web. Primeiro, é proposta uma abordagem baseada no uso de ferramentas de 

análise de código, sendo  apresentadas as diversas experiências realizadas para 

avaliar a validade da proposta, incluindo um cenário representativo de situações 

reais, em que o objetivo passa por selecionar o mais seguro de entre sete alternativas 

de software para suportar fóruns Web. Com base nas análises realizadas e nas 

limitações desta proposta, é de seguida definida uma abordagem genérica para a 

definição de testes padronizados de confiança para aplicações Web. 

Palavras Chave: Segurança, Testes Padronizados, Sistemas Transacionais, Bases de 

dados, Métricas de Segurança, Avaliação de Segurança, Testes Padronizados de 

Segurança. 

 



 

xi 

List of Papers 

This thesis relies on the published scientific research presented in the following 

peer reviewed publications.  

Book Chapter: 

Afonso Araújo Neto, Marco Vieira. 2012. Assessing the Security of 

Software Configurations. In Threats, Countermeasures, and Advances in 

Applied Information Security. IGI Global, 2012. Pages 129-157.  

Journal Papers: 

1. Afonso Araújo Neto, Marco Vieira. 2011. Selecting Secure Web 

Applications Using Trustworthiness Benchmarking. International Journal 

of Dependable and Trustworthy Information Systems (IJDTIS). Volume 

2(2):1-16. 

2. Afonso Araújo Neto, Marco Vieira. 2011. Security Gaps in Databases: A 

Comparison of Alternative Software Products for Web Applications 

Support. International Journal of Secure Software Engineering (IJSSE). 

Volume 2(3): 42-62. 

3. Afonso Araújo Neto, Marco Vieira. 2010. Benchmarking 

Untrustworthiness: An Alternative to Security Measurement. International 

Journal of Dependable and Trustworthy Information Systems (IJDTIS). 

Volume 1(2): 32-54.  

Conference Papers: 

1. Afonso Araújo Neto, Marco Vieira. 2011. Trustworthiness Benchmarking 

of Web Applications Using Static Code Analysis. Proceedings of the Sixth 

International Conference on Availability, Reliability and Security (ARES). 

Pages 224-229. 

2. Afonso Araújo Neto, Marco Vieira. 2011. Selecting Software Packages for 

Secure Database Installations. Proceedings of the Sixth International 

Conference on Availability, Reliability and Security (ARES). Pages 67-74. 

3. Afonso Araújo Neto, Marco Vieira. 2011. Towards benchmarking the 

trustworthiness of web applications code. Proceedings of the 13th 



 

xii 

European Workshop on Dependable Computing (EWDC 2011). Pages 29-

34. 

4. Afonso Araújo Neto, Marco Vieira: TO BEnchmark or NOT TO 

BEnchmark security: That is the question. 2011. Proceedings of the 2011 

IEEE/IFIP 41st International Conference on Dependable Systems and 

Networks Workshops. (HotDep 2011). Pages 182-187. 

5. Afonso Araújo Neto, Marco Vieira. 2009. Untrustworthiness: A trust-

based security metric. Proceedings of the Fourth International Conference 

on Risks and Security of Internet and Systems (CRiSIS 2009). Pages 123-

126. 

6. Afonso Araújo Neto, Marco Vieira. 2009. Benchmarking 

Untrustworthiness in DBMS Configurations. Proceedings of the Fourth 

Latin-American Symposium on Dependable Computing (LADC'09). Pages 

1-8. 

7. Afonso Araújo Neto, Marco Vieira 2009. Appraisals Based on Security 

Best Practices for Software Configurations. Proceedings of the Fourth 

Latin-American Symposium on Dependable Computing (LADC'09). Pages 

57-64. 

8. Afonso Araújo Neto, Marco Vieira. 2009. A Trust-Based Benchmark for 

DBMS Configurations. Proceedings of the Pacific Rim Dependable 

Computing Conference (PRDC 2009). Pages 143-150. 

9. Afonso Araújo Neto, Marco Vieira and Henrique Madeira. An Appraisal 

to Assess the Security of Database Configurations. 2009. Proceedings of 

Second International Conference on Dependability (DEPEND'09). Pages 

73-80. 

10. Afonso Araújo Neto, Marco Vieira. 2008.Towards assessing the security 

of DBMS configurations. Proceedings of the IEEE International 

Conference on Dependable Systems and Networks With FTCS and DCC 

(DSN 2008). Pages 90-95.  

11. Naaliel Mendes, Afonso Araújo Neto, João Durães, Marco Vieira, 

Henrique Madeira. 2008. Assessing and Comparing Security of Web 

Servers.  Proceedings of the Pacific Rim Dependable Computing 

Conference (PRDC 2008). Pages 313-322 

 



 

xiii 

Table of Contents 

1 Introduction ....................................................................................1 
1.1 Benchmarking Security ...................................................................... 4 
1.2 Main Contributions of the Thesis ....................................................... 6 
1.3 Structure of the Thesis .................................................................... 10 

2 Background and Related Work ....................................................... 13 
2.1 Overview of Computer Security Aspects .......................................... 13 
2.2 Security Evaluation ......................................................................... 19 

2.2.1 The Common Criteria ....................................................................... 20 
2.2.2 The OCTAVE method ........................................................................ 24 
2.2.3 The Center for Internet Security benchmarks ................................. 26 
2.2.4 Additional Security Evaluation and Risk Analysis Methodologies ... 28 
2.2.5 Security Characteristics Identification Techniques .......................... 29 

2.3 Threat Modelling ............................................................................ 30 
2.4 Benchmarking ................................................................................. 36 

2.4.1 Performance Benchmarking ............................................................ 37 
2.4.2 Dependability and Resilience Benchmarking ................................... 38 
2.4.3 Security Benchmarking .................................................................... 39 

2.5 Security Benchmarking as an Open Problem .................................... 41 
2.5.1 Dependability Benchmarking vs Security Benchmarking ................ 41 
2.5.2 Benchmarking Trust ......................................................................... 45 

2.6 Conclusion ...................................................................................... 47 

3 A Framework for Security Benchmarking ....................................... 49 
3.1 Threat Vectors as Basis for Benchmarking Security ........................... 54 
3.2 Security Benchmarking Framework ................................................. 56 

3.2.1 Security Qualification ....................................................................... 60 
3.2.2 Trustworthiness Benchmarking ....................................................... 64 
3.2.3 Instantiating the framework ............................................................ 67 

3.3 Transactional Systems: the Case Study ............................................ 70 
3.3.1 Elements of a Transactional System ................................................ 70 
3.3.2 Security Benchmarking of Transactional Systems ........................... 72 

3.4 Conclusion ...................................................................................... 74 

4 Security Benchmarking of Transactional Systems Infrastructures ... 75 
4.1 Base Scenario .................................................................................. 77 
4.2 Security Qualification ...................................................................... 80 



 

xiv 

4.3 Trustworthiness Benchmarking ........................................................ 81 
4.3.1 Threat Vectors ................................................................................. 84 
4.3.2 Security Recommendations ............................................................. 91 
4.3.3 Pessimistic Scenarios ..................................................................... 101 
4.3.4 Benchmark Procedure ................................................................... 108 
4.3.5 Benchmark Metrics ........................................................................ 111 

4.4 Case Study ..................................................................................... 116 
4.4.1 Systems Under Testing .................................................................. 117 
4.4.2 Analysis of the Results of the Tests ............................................... 118 
4.4.3 Trustworthiness Assessment ......................................................... 121 

4.5 Conclusion..................................................................................... 125 

5 Trustworthiness Benchmarking of Web Applications ................... 127 
5.1 Web Applications from a Security Perspective ................................ 130 
5.2 Benchmarking the Trustworthiness of Web Applications using Static 

Code Analysis ......................................................................................... 134 
5.2.1 Trustworthiness Metrics ................................................................ 135 
5.2.2 Empirical Analysis of the Metrics ................................................... 141 
5.2.3 Experimental Evaluation ................................................................ 146 
5.2.4 Lessons Learned ............................................................................. 154 

5.3 Towards a General Approach for Trustworthiness Benchmarking of 

Web Applications ................................................................................... 156 
5.3.1 Web Applications Code Threat Vectors ......................................... 157 
5.3.2 Security Precautions in Web Applications ..................................... 158 
5.3.3 Accounting for Secure Coding Practices ........................................ 161 
5.3.4 Trustworthiness Metrics ................................................................ 164 
5.3.5 Preliminary Experimental Evaluation ............................................ 167 

5.4 Conclusion..................................................................................... 169 

6 Selecting Software for Transactional Systems Infrastructures ...... 171 
6.1 Identifying Security Mechanisms .................................................... 174 
6.2 Establishing the Impact of Security Mechanisms ............................. 179 
6.3 Benchmark Metric and Execution ................................................... 181 
6.4 Experimental Evaluation ................................................................ 182 

6.4.1 Software Packages Assessed ......................................................... 182 
6.4.2 Comparing the Software Packages ................................................ 182 
6.4.3 Software Packages Gap Analysis.................................................... 184 

6.5 Conclusion..................................................................................... 192 

7 Conclusions and Future Work ...................................................... 195 

References ........................................................................................ 203 



 

xv 

Annex A Security Recommendations Tests, Weights and Analytical 
Results .............................................................................................. 221 

Annex B Pessimistic Scenarios ........................................................... 233 
 





 

xvii 

List of Figures 

FIGURE 2.1 OVERVIEW OF THE OCTAVE METHOD PHASES. ............................... 25 
FIGURE 2.2 DEPENDABILITY VS PERFORMANCE BENCHMARKING ........................ 42 
FIGURE 3.1 HIGH LEVEL VISION OF THE BENCHMARKING PROCESS ..................... 57 
FIGURE 3.2 A TYPICAL TRANSACTIONAL SYSTEM ARCHITECTURE. ..................... 71 
FIGURE 4.1 GENERAL UNTRUSTWORTHINESS FOR EACH SCENARIO. .................. 122 
FIGURE 4.2 UNTRUSTWORTHINESS FOR EACH THREAT, GROUPED BY CASE ...... 123 
FIGURE 4.3 ALTERNATIVE PRESENTATIONS FOR UNTRUSTWORTHINESS 

COMPARISON BETWEEN CASES ................................................................... 123 
FIGURE 4.4 FINE GRAIN ANALYSIS OF UNTRUSTWORTHINESS, FOR EACH CASE . 124 
FIGURE 4.5 UNTRUSTWORTHINESS COMPUTATION FOR THE INTERACTION 

CLASSES ..................................................................................................... 125 
FIGURE 5.1 BENCHMARK RESULTS OF OUR CONTROLLED TPC-APP VERSIONS . 143 
FIGURE 5.2 COMPONENT LEVEL EVALUATION OF RAW-NVR ............................ 144 
FIGURE 5.3 RAW-NVR EVOLUTION IN 16 VERSIONS OF 3 DIFFERENT SERVICES, 

RANGING FROM 0 TO 4 VULNERABILITIES .................................................. 145 
FIGURE 5.4 CALIBRATED METRIC ANALYSIS FOR THE 16 VERSIONS OF EACH 

SERVICE ...................................................................................................... 146 
FIGURE 5.5 OVERALL BENCHMARK RESULTS ..................................................... 168 
FIGURE 6.1: MECHANISMS BY COMPONENT OF THE ANALYZED PACKAGES....... 185 
FIGURE 6.2. AVAILABILITY OF MECHANISMS ..................................................... 185 
FIGURE 6.3: NUMBER OF MECHANISMS AVAILABLE ACROSS PACKAGES. .......... 186 
 





 

xix 

List of Tables 

TABLE 4.1 POTENTIAL THREAT VECTORS IN DBMS INFRASTRUCTURES ............. 87 

TABLE 4.2 DBMS CONFIGURATION SECURITY BEST PRACTICES DEVISED FROM 

THE ANALYSIS OF THE CIS DOCUMENTS ...................................................... 93 

TABLE 4.3 COMPLEMENTARY DOD BEST PRACTICES .......................................... 98 

TABLE 4.4 BEST PRACTICE IMPACT KEY ............................................................. 100 

TABLE 4.5 BEST PRACTICES ORDERED BY RELATIVE WEIGHTS .......................... 100 

TABLE 4.6 PESSIMISTIC SCENARIOS ASSOCIATED WITH NOT FOLLOWING 

SECURITY RECOMMENDATIONS. ................................................................ 106 

TABLE 4.7 SET OF ATTACKS CORRELATING THE PESSIMISTIC SCENARIOS AND THE 

THREATS ..................................................................................................... 106 

TABLE 4.8 MAPPING FOR THE FOURTEEN MOST IMPORTANT SECURITY 

RECOMMENDATIONS .................................................................................. 108 

TABLE 4.9 BENCHMARK SECURITY TESTS (SAMPLE) .......................................... 109 

TABLE 4.10 INFRASTRUCTURES DETAILS ........................................................... 117 

TABLE 4.11 CASE 1, ORACLE 10G INSTALLATION .............................................. 119 

TABLE 4.12 CASE 2, SQLSERVER 2005 INSTALLATION ..................................... 119 

TABLE 4.13 CASE 3, MYSQL 5.0 INSTALLATION ............................................... 119 

TABLE 4.14 CASE 4, POSTGRESQL 8.1 INSTALLATION ...................................... 119 

TABLE 4.15 MOST IMPORTANT BEST PRACTICES YET TO BE IMPLEMENTED ...... 120 

TABLE 4.16 TESTS WITH UNANIMOUS RESULTS IN ALL FOUR CASES ................. 121 

TABLE 5.1 WEB FORUMS RANKED BY TRUSTWORTHINESS (TM)....................... 148 

TABLE 5.2 EXPERTS’ RANKINGS ......................................................................... 150 

TABLE 6.1 CLASSIFICATION OF DATABASES SECURITY BEST PRACTICES IN 

REGARD TO THEIR REQUIREMENTS ............................................................ 176 

TABLE 6.2 EXAMPLES OF THE MAPPING BETWEEN SECURITY BEST PRACTICES, 

SYSTEM STATE GOALS AND MECHANISMS GOALS. ..................................... 177 

TABLE 6.3 MOST IMPORTANT SECURITY MECHANISMS IDENTIFIED ................... 180 

TABLE 6.4. OVERALL RESULTS OF THE EXPERIMENTAL EVALUATION OF THE 7 

DIFFERENT SOFTWARE PACKAGES. ............................................................ 183 

TABLE 6.5 LIST OF MECHANISMS AVAILABLE IN ALL PACKAGES ....................... 187 

TABLE 6.6 LIST OF MECHANISMS NOT AVAILABLE IN ANY OF THE PACKAGES .. 189 

TABLE 6.7 LIST OF MECHANISMS AVAILABLE IN SOME OF THE PACKAGES (X 

MEANS THAT THE MECHANISM IS AVAILABLE IN THE CORRESPONDING 

PACKAGE) ................................................................................................... 190 

TABLE 6.8 MECHANISMS AVAILABLE ONLY IN SPECIFIC SETS OF PACKAGES .... 192 



 

xx 

TABLE A.1 SECURITY RECOMMENDATIONS DEVISED FROM THE ANALYSIS OF THE 

CIS DOCUMENTS ........................................................................................ 221 

TABLE A.2 COMPLEMENTARY DOD CONFIGURATION BEST PRACTICES ............ 223 

TABLE A.3 BEST PRACTICES WEIGHTS .............................................................. 223 

TABLE A.4 COMPLETE LIST OF TESTS. ................................................................ 225 

TABLE A.5 ANALYTICAL RESULTS OF THE INFRASTRUCTURES EVALUATED ..... 230 

TABLE B.1 COMPLETE LIST OF PESSIMISTIC SCENARIOS .................................... 233 

 



 

1 

1  
 

Introduction 

There is no disagreement nowadays about the importance of security in computer 

systems. The need for considering security as one of the pillars of any software 

architecture or implementation fills the pages of many popular newspapers and 

magazines, and the extensively documented consequences of security breaches 

range from public embarrassment to the loss of time, credibility and money. 

Security of computer systems is a flourishing field with several distinct but 

complementary branches of research. Starting from pure theoretical aspects, like 

cryptography, security considerations are so wide that ultimately reach the 

complexity of the human factors that are inherently involved (Patrick 2003). Secure 

software design, development and configuration, attack mitigation and tolerance 

technologies, vulnerability discovery, analysis and prevention, are just some 

examples of research topics that are currently discussed in top security conferences. 

All these topics are applicable, generally or specifically, to almost all other 

branches of computer science. As a matter of fact, security research can be seen as 

a layer of concern that spreads in parallel with applied computer science research. 

A key particularity of computer security is the central role played by human factors. 

In practice, there are two concepts that are fundamentally important in any security 

context: capabilities and intention. When analyzing a computer system from a 

security perspective, these concepts lead to questions that in other contexts are not 

usually taken into consideration. Take as example the following deliberation about 

a given System A: “can any part of System A offer any advantage to any third party 

not considered in its specifications?”. The security implications of the potential 

answers to this question are clear when we instantiate System A as a system running 

in a bank, designed to manage bank accounts, in contrast to instantiating System A 

as a simple program that makes calculations (i.e. a software calculator). This 

exercise quickly leads to the following conclusion: the reason why the developer 

of the calculator program could, to a certain point, disregard security aspects, is that 



Chapter 1  Introduction 

2 

breaking the specifications of the application does not pose any significant 

advantage (or disadvantage) to anyone, while that is clearly not the case for the 

system running the bank operations, at least in the majority of the contexts where 

these systems are used. 

Although the intention of breaking a system’s specification is usually related to the 

value that this action would provide to a given person/entity (which could, or not, 

be the attacker that attempts the breaking), it is important to realize that the 

intention is not the only condition to trigger an attack attempt: attacking a system 

also requires the attacker to have the means to do it. In that sense, the security of a 

system is not related only with the possibility of facing attacks, but also with the 

amount of resources – in a very broad sense – that are needed to break the system. 

Here, we are talking about the capabilities of the attacker. 

In a simplistic view, the amount of effort required to break a system represents its 

level of security, which is a property independent from the motivations of the 

potential attackers. In fact, the amount of effort is a relationship between the 

technical capabilities available to the attackers versus the amount of barriers, or 

security mechanisms, which are put in place to disable those capabilities. If the 

mechanisms available allow nullifying completely the capabilities of an attacker, 

then the system can be classified as secure with respect to this particular attacker. 

In practice, when it comes to finding ways to effectively secure a computer system, 

the real challenge is answering the following questions:  

Is the system already secure? 

How far is the system from ideal security? 

How do we modify the system in order to make it more secure? 

Identifying all the potential attackers of a system is an impossible task, as this 

involves knowing exactly the persons to which the system has some kind of value 

(and as the system evolves and societies change, this becomes an endless, ever 

changing task). Given the pervasive nature and interconnectedness of computer 

systems, the only sensible approach is to assume that the system will be (sooner or 

later) attacked and that the attackers will have a considerable amount of resources 

available to accomplish the task. Due to this lack of precise knowledge, the 

approach followed by most organizations nowadays is to implement the highest 

number of security mechanisms they can afford, mostly following expert advice 

and intuitions about how much these mechanisms actually help. 
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An ad hoc approach to security, while usually helping in some way, has several 

clear disadvantages. Without a systematic method to properly assess the security of 

the system, the blind implementation of security mechanisms ends up being much 

more costly and less effective than it should. For instance, after adding a new 

security mechanism to the system, the inability to check if the security state really 

improved leaves the administrator with no clue whether the mechanism helped in 

any way. At the same time, if a highly secure state is achieved, the administrator 

cannot appreciate whether implementing any further mechanisms will be a waste 

of resources or not. Furthermore, while additional security mechanisms may 

effectively help in some way, the system administrators are left with no way to 

identify additional problems in the security barrier that may have been introduced 

by those same mechanisms. This ad hoc approach also leads to another unfortunate 

consequence: having a large number of costly mechanisms in place tends to 

transmit an unfounded sense of security. As the mere volume of security 

mechanisms never guarantees that all details are accounted for, the system may 

potentially be left with problems whereas the administrators think their security 

goals have already been accomplished.  

Without a deterministic, representative and simple enough approach to evaluate 

security, it is utterly impossible for administrators to understand the security impact 

of systems’ structural or functional changes. Administrators are also unable to 

make informed decisions concerning security aspects when it comes to tasks such 

as choosing between alternative software packages during the process of installing 

new software systems to support the organization activities. Means for reliably 

supporting the evaluation of the security level of computer systems are thus 

indisputably important. 

The process of comparing systems in a standard, representative and accepted 

manner is called benchmarking (Gray 1993). In particular, a security benchmark is 

a method that is expected to support, at least, the following two tasks: 

a) Compare the level of security of a same computer system in two 

distinct points in its lifetime. This process allows understanding how the 

security of the system varies when it is subjected to modifications, be these 

modifications of the system itself or of the environment where it is 

integrated in; 

b) Compare the level of security of alternative systems aimed at 

implementing the same task. This allows making informed decisions 

regarding the selection of alternative software solutions taking into account 

existing organizational needs. 
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The computer industry already holds a reputed infrastructure for performance 

evaluation, where the Transaction Processing Performance Council (TPC) (TPC 

2012) and the Standard Performance Evaluation Consortium (SPEC) (SPEC 2012) 

benchmarks are recognized as the two most successful benchmarking initiatives 

ever pursued. Furthermore, the concept of dependability benchmarking has gained 

ground in the last few years, having already led to the proposal of dependability 

benchmarks for several domains, including: operating systems, web servers, and 

databases and transactional systems in general (Kanoun and Spainhower 2007). 

Security, however, has been largely absent from previous efforts, in a clear 

disparity to performance and dependability benchmarking (Kanoun 2001, Vieira 

2009). Researching alternative solutions for security benchmarking is precisely the 

goal of this thesis. 

1.1 Benchmarking Security 

Security evaluation methodologies have been proposed in several forms. One of 

the most popular security evaluation frameworks available is the Common Criteria 

standard (CC 1999) supported by the ISO/IEC group. While marginally allowing 

the comparison of systems, the Common Criteria is not considered a much 

successful approach due to several reasons, including its high complexity and 

emphasis in the analysis of specification documents instead of real implementations 

(Jackson 2007). Another important methodology for security evaluation is the 

OCTAVE® (Operationally Critical Threat, Asset, and Vulnerability EvaluationSM) 

approach (Alberts et al. 2002) from the Software Engineering Institute (SEI) of the 

Carnegie Mellon University, which is a risk-based strategic assessment and 

planning technique for security. The OCTAVE approach is actually a set of security 

evaluation guidelines that support the process of self-evaluation within an 

organization. However, it is quite difficult to use this approach to compare different 

environments, to understand the impact of security decisions, or to evaluate the 

security of software alternatives, as the methodology is designed for the 

organization as a whole. Furthermore, risk based approaches require understanding 

the potential damage that attackers may cause in the assessed system, which is an 

extremely hard task due to the lack of historical data (Jaquith 2007).  

Approaches like the ones introduced above can be classified as security evaluation 

methodologies, and indeed help organizations improving computer systems 

security when applied correctly. However, they are not suitable for supporting the 

tasks that a security benchmarking methodology is expected to support, as they are 

either too complex to be used by average system administrators or they require 

external expert analysis to be carried out (as is the case of Common Criteria). 

Expert analysis, in particular, is problematic in benchmarking contexts mainly 
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because people change. Being a standard approach, benchmarking requires the 

measurements performed in distinct points in time to be done using absolutely the 

same criteria, which is difficult to guarantee when we rely on what a person (or 

group of people) exactly knows. This nullifies the possibility to accomplish task a) 

(self-comparison in two points in time) mentioned previously, as we cannot be 

certain whether variations on the metrics are due to system changes or due to 

changes in the knowledge of the person running the benchmark. Benchmarking 

should rely on metrics that are standard and precise enough, so that evaluations in 

different points in time or of distinct targets are as little biased by external variables 

as possible (Gray 1993). 

When trying to establish the security level of a computer system, in the terms 

mentioned previously, we find two distinct key perspectives. The first is related to 

actually finding real characteristics that can be exploited by attackers to cause some 

damage to the system or its owners. Those characteristics are usually called 

vulnerabilities or weaknesses and, depending on the system in question, may come 

from different aspects (Lyu 1996). For instance, when evaluating a web page, a 

typical vulnerability would be a software bug allowing attackers to apply input 

modifications capable of changing the pre-defined behavior of the application. 

Another example would be either buffer overflow vulnerabilities, which are coding 

mistakes that may allow injection of commands directly on the operating system, 

or configuration vulnerabilities, which arise from configuration inconsistencies or 

errors that may allow malicious users to obtain privileges they should not have (and 

therefore can be abused). Nowadays, the scientific community is putting a very 

significant effort in techniques and tools to find all sorts of vulnerabilities in all 

kinds of systems (e.g. penetration testing, static analysis, code inspections, etc.) 

(Livshits 2005, Long 2007, Antunes 2009). The vulnerabilities detected in a system 

may be corrected or not, depending on several contextual factors, but finding them 

is the main the goal of evaluation methodologies. 

The second perspective for assessing the security level of a system is related to the 

fact that the entire set of vulnerability detection methods available nowadays is not 

enough to guarantee that systems are secure (as detectors typically suffer from 

coverage limitations) (Antunes and Vieira 2010). After trying to actually find 

existing vulnerabilities, we must consider the probability of the system still having 

hidden, hard to detect vulnerabilities, and that certain characteristics of the system 

may be used as leverage to facilitate attacks (e.g. an improper file system 

configuration may allow an attacker that has already gained access to the system to 

obtain even more information, or the fact that a server is not physically protected 

allows for alternate ways of gaining access the system). Such properties are much 
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more complex to find and evaluate as, by definition, they cannot be identified as 

vulnerabilities that either exist or not, but rather as characteristics that can raise the 

probability of occurrence of security incidents. 

The type of analysis involved in comparing alternative systems in terms of their 

level of security is much more than simply trying to find actual vulnerabilities 

(Bondavalli 2009). In fact, when we are comparing two different systems, it is 

important to understand the following: even after applying a large amount of effort 

into finding vulnerabilities in two alternative systems, the fact that they both show 

zero obvious vulnerabilities does not mean that they are equally secure. This is 

mainly due to our inability to assure that no other vulnerabilities exist. This way, 

distinguishing the security level of two systems with no obvious vulnerabilities is 

still an open problem, which we thoroughly discuss in this work.  

In this thesis we propose a security benchmarking framework that takes into 

consideration the issues and difficulties just presented. The fundamental 

assumption of our proposal is that to achieve fair comparison, security 

benchmarking must necessarily consider the two perspectives mentioned 

previously: the active search for vulnerabilities and security problems, and the 

propensity for other hidden or unidentified problems to exist. This is crucial, 

especially because each of these perspectives arise from different systems 

characteristics and may lead to different considerations when such information is 

used to support decision making processes.  

1.2 Main Contributions of the Thesis  

In this thesis we study the problems involved in performing security benchmarking, 

and show the type of concerns and characteristics that such benchmarks should 

have in order to attain their goals (i.e. allow comparing alternative solutions from 

a security point-of-view). To the best of our knowledge, we propose the first 

generic framework that is designed to support practical, representative, and useful 

security benchmarks.  

The proposed security benchmarking process is divided in two key steps: security 

qualification and trustworthiness benchmarking. The first step is where the System 

Under Test (SUT) is evaluated to have a minimum level of security in order to be 

considered acceptable for use in a given application domain. The goal of this step 

is to actively try to find vulnerabilities in the system and also evaluate the security 

mechanisms it provides. A SUT that fails this step is automatically classified as 

insecure, with security level equal to zero. In a comparison process, where two or 
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more SUTs are being compared, this step is qualificatory, in the sense that the 

systems with vulnerabilities are immediately disqualified for practical use.  

The second step of the benchmarking process, which makes sense only for systems 

that pass the first one (and therefore have no obvious vulnerabilities), is based on 

trustworthiness benchmarking concepts. This step is designed to provide, to a 

certain extent and given some premises, a relative level of probability that the SUT 

may be compromised when facing attacks that try to accomplish certain malicious 

effects. In a way, trustworthiness benchmarking provides the level of trust that a 

user can justifiably have when it comes to the ability of the system in avoiding a 

specific set of threats. In other words, the goal is to identify the system 

characteristics that entitle it to be trustworthier in face of uncertainties. 

The proposed framework is a guide for the definition of concrete security 

benchmarks for specific application domains. In this thesis we present and discuss 

thoroughly the framework, devoting particular attention to the reason why a 

security benchmarking process should be divided and structured in such a way. 

Understanding the motivations for this benchmarking approach allows identifying 

its properties and, in particular, its limitations, which are also extremely important. 

As a case study and proof of concept, we apply the proposed framework to design 

and run security benchmarks in the context of transactional systems, also referred 

to as On-Line Transaction Processing (OLTP) systems (Vieira 2003). These 

systems are characterized by having a central Database Management System 

(DBMS) and several remote clients running one or more applications that define 

the business rules of the data that are stored in the database. In this context, we 

divide a transactional system in two main parts (the transactional system 

infrastructure and the business applications that use the infrastructure) and 

proposed a specific benchmark approach for each of them. By applying our 

framework to both complex and simple realistic scenarios, we aim to demonstrate 

its generality and practical viability. 

The focus on transactional systems is justified by the fact that this kind of systems 

are used to support the business operations of almost all organizations, making 

them a very representative use case (Sawyer 1993). Additionally, managing a 

transactional system is a complex task that many times is performed by people with 

very little security knowledge. This is a key concern as the security of such systems 

is absolutely vital for the success of a company’s business. Therefore, a way to 

systematically evaluate and compare the security of transactional systems without 

complex trainings or requirements is of utmost importance.  
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In summary, the main contributions of this thesis are: 

 A survey on the state of the art on security evaluation and computer systems 

benchmarking. The first important contribution of this thesis is the 

systematization of the work that has been done in the security evaluation 

and benchmarking domains. We discuss some of the existing approaches 

and identify the major aspects and difficulties that should be considered 

when devising generic security benchmarking approaches. 

 A security benchmarking framework composed of two steps (qualification 

and trustworthiness benchmarking) based on a reference domain and 

representative threat vectors for that domain. Considering the difficulties 

identified before, we develop a framework aimed at overcoming those 

difficulties. The framework breaks the problem in two parts, each one 

providing a particular semantic outcome: the first is related to what we can 

clearly evaluate about systems security, and the second is related to the 

aspects that we can only estimate. The reasoning behind this approach and 

the goals of each step of the benchmarking process are discussed in detail. 

 The application of the proposed security benchmarking framework to the 

domain of transactional systems, in order to study and understand its 

effectiveness and viability. The first consequence of the framework 

instantiation is the need for dividing the transactional system in two parts: 

the transactional system infrastructure, and the business applications 

based on that same infrastructure. This results from the fact that the security 

goals of these two parts are essentially different, and the framework 

automatically forces the benchmark to have a consistent view of them. The 

instantiation of the framework to each of these parts resulted in several 

complementary contributions, as presented next.  

 A security benchmark for transactional systems infrastructures, which 

resulted in the following detailed contributions: 

o A representative set of security recommendations for transactional 

systems infrastructures, which can be used to support other 

assessments and security evaluation methodologies besides the 

proposed benchmark.  

o A set of representative threats that should be of knowledge of any 

database administrator, and a set of security tests that can be used 

for understanding the security problems that may arise in 

transactional system infrastructures. 
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o A complete trustworthiness benchmarking methodology and 

implementation for transactional system’s infrastructures, which 

allows understanding, from a high level perspective, the biggest 

security concerns that may manifest in the infrastructures under 

benchmarking. To demonstrate its effectiveness, the proposed 

trustworthiness benchmark was applied to four different real 

transactional systems infrastructures. 

o The development of a tool to assist on the selection of the software 

components (e.g.. DBMS engine and operating system) that best 

fit the security requirements of the transactional system 

infrastructure. This tool was used to assess seven representative 

distinct software packages (i.e. a combination of several DBMS 

engines and operating systems), which allowed evaluating them 

from the point-of-view of the existing security mechanisms. 

 A study on the implementation of the framework in the context of web-

based business applications, which resulted in the following contributions: 

o A detailed discussion on alternatives for conducting 

trustworthiness benchmarking of business applications, taking 

into account the security characteristics of the code of the 

applications under benchmarking. The study was done focusing on 

web technologies, which are the technology of choice nowadays, 

and whose security is largely dependent on the correct design.  

o A detailed study, including a complete validation cycle, on the use 

of static code analyzers as reliable and effective tools for the 

automated computation of trustworthiness metrics in web 

applications. In detail, we considered a representative use case, 

where a user would have to choose the most secure among seven 

existing software alternatives (in this case, seven web forums), and 

compared the automated benchmark proposal with the evaluation 

conducted by six security experts. The comparison of the results 

allowed the validation of the effectiveness of our proposal, along 

with the identification of its most important advantages and 

limitations. 

o The proposal of a generic approach for the definition of 

trustworthiness benchmarks for web applications, based on the 

findings of the previous study. In this case, we focused on the 

design of a tool that does not depend on the characteristics of static 

code analyzers, which could eventually change due to a diversity 
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of factors. Even though we did not implement a real tool based on 

this generic approach, we demonstrate it by manually computing 

and interpreting the metrics in a small-scale scenario. 

It is important to emphasize that all the studies, proposals and methodologies are 

accompanied with detailed justifications and discussions about their limitations, 

particularly about why and how they could fail their objectives. In fact, it is 

probable that the most important contribution of this thesis are not the tools or 

studies presented, but rather a consistent view on how to correctly rationalize 

security aspects when the goal is fair comparison. 

1.3 Structure of the Thesis 

This thesis is divided in seven chapters, as described in the following paragraphs. 

Chapter 1 introduces the problem of security benchmarking and describes the main 

contributions of the thesis. 

Chapter 2 presents the background and existing work related with this thesis. 

Section 2.1 presents an introductory view to security of computer systems. Section 

2.2 presents several security evaluation frameworks and methodologies, focusing 

on the few that are more important in the context of our work. Section 2.3 presents 

techniques and approaches for threat modeling, which is an important aspect of 

security evaluation. Section 2.4 presents a description of the evolution of 

benchmarking, from performance to dependability benchmarking. Section 2.5 

presents a discussion about the main difficulties of security benchmarking 

(particularly in contrast to the dependability benchmarking model), and presents a 

discussion about the idea of benchmarking trust and how the concept could be 

related with security benchmarking.  

Chapter 3 presents the security benchmarking framework. Section 3.1 discusses the 

aspects that have to be considered when benchmarking security. Section 3.2 

presents the concept of threat vectors, why they are needed and how to understand 

them. Section 3.3 describes the framework, starting with a general view, and then 

detailing the qualification and trustworthiness benchmarking phases. Section 3.4 

presents a decomposition of transactional systems needed to apply the framework, 

justifying why, this has to be done. 

Chapter 4 describes the application of the framework to the context of transactional 

systems infrastructures. Section 4.1 describes the base scenario used as a frame of 

reference for the whole benchmark, justifying its characteristics and 

representativeness. Section 4.2 put forward some ideas about the security 
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qualification step. Section 4.3 describes our approach for the evaluation of 

trustworthiness benchmarking of transactional systems infrastructures, including 

the threats vectors, the list of security elements, the pessimistic scenarios, the actual 

benchmarking tool, and the metrics. Section 4.4 is about the application of the 

benchmark to four distinct real infrastructures. 

Chapter 5 presents the study of trustworthiness benchmarking approaches in the 

context of business applications, using as case web applications. Section 5.1 

presents a general discussion of the security of web applications. Section 5.2 

describes the set of experiments we conducted to evaluate the plausibility of using 

static code analysis tools to accomplish trustworthiness benchmarking. Section 5.3 

draws from the limitations identified in the previous experiments, and proposes a 

general targeted approach for trustworthiness benchmarking of web applications. 

In both section 5.2 and 5.3, several experiments are presented. 

Chapter 6 discusses the problem of security qualification when applied to 

transactional systems infrastructures, proposing a tool that can help in the selection 

of the software components needed to support that infrastructure. Section 6.1 

describes how to identify security mechanisms from a set of security 

recommendations. Section 6.2 discusses the identification of the impact of such 

mechanisms. Section 6.3 discusses the metrics that are computed by the tool. 

Section 6.4 presents an experimental evaluation of the tool, where we used it to 

assess seven distinct software packages, consisting of multiple database 

management systems and operating systems. 

Chapter 7 presents generic conclusions and a general overview of the main lessons 

of this thesis, also putting forward future work that is directly related to the 

achievements of this thesis. 
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2  
 

Background and 
Related Work 

This chapter presents the fundamental concepts and overviews the state-of-the-art 

on techniques related to security evaluation and benchmarking. We start by revising 

the most important concepts regarding security, and then discuss existing 

approaches for security evaluation, introduce the concepts behind benchmarking in 

general, and discuss the main difficulties related to security benchmarking. Even 

though security aspects are vast and can be rationalized from a series of 

perspectives (from the technical aspects to the human factors and their relation with 

security in general), we introduced these topics from the perspective of their 

relevance to the approaches, techniques and tools proposed in the rest of the thesis.  

This chapter is organized as follows. Section 2.1 introduces basic computer security 

concepts. Section 2.2 presents an overview of relevant security evaluation 

methodologies and techniques. Section 2.3 addresses threat modeling and Section 

2.4 presents related work on benchmarking in general, and on the approaches that 

are being applied for security benchmarking. In Section 2.5, we discuss the main 

motivation for this thesis, putting it in contrast to the current state-of-the-art, and 

also discuss the idea of benchmarking trust and how this concept can be related 

with security attributes. Finally, Section 2.6 concludes the chapter. 

2.1 Overview of Computer Security Aspects 

Before addressing more specialized topics, it is necessary to define some aspects 

and characteristics of the terminology related to computer security. The term 

computer security, which is actually the idea of information security applied to 

computers, is an integrative concept that includes all aspects related to the 

preservation of the several different properties that can be attributed to a specific 

information asset (Russell 2011). However, to deeply understand the relevance of 
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these properties, it is necessary to define beforehand the elements over which they 

apply.  

First of all, security only makes sense when there is something to be secured. It is 

important to understand that the goal of computer security has nothing to do with 

security of hardware or people, even though it might involve these in certain cases. 

What computer security is concerned with is the security of the information that is 

generated, accessed and stored by computer systems (Siponen 2007). More 

specifically, within a given environment, the information always suffers a set of 

actions that might generate more information or trigger more actions. The rules that 

define the transformations that can or cannot be applied to the information are 

called business rules and represent essentially the principles that the system must 

follow to fulfill its objective. Each transformation defines not only the outcome, 

but also the allowed executors (usually the persons or other transformations that 

are allowed to trigger it). In that sense, computer security is related to ensuring that 

the information within the system will follow the business rules despite anything 

else, even assuming a very intelligent malicious person (or group of people) with 

an unpredictable amount of resources, trying to break any of the rules. 

Given a certain system, there is a multitude of ways through which the business 

rules can be violated. However, not all of these ways are security concerns, as some 

cannot cause any type of damage or loss to any of the people involved or affected 

by the system. For example, a typical operator error (like a mistype) is not usually 

a security concern but might be an example of a business rule violation. A breach 

of a rule that is related to security is usually called a security incident or simply an 

attack (Russel 2001). The methods and techniques used to execute the attacks are 

referred to as attack vectors or attack methods and the set of all attack vectors 

present in a system defines its attack surface.  

The issues that historically are considered security concerns are related to the 

violation of the following information properties (Parker 2002):  

 Confidentiality – property that guarantees that the information is not 

accessed, used, copied, or disclosed by anyone except the authorized 

individuals.  

 Integrity – property that guarantees that the information is not created, 

changed, or deleted by individuals without proper authorization. 

 Availability – property that guarantees that the information is timely and 

correctly available to authorized individuals. 
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For a long time, confidentiality, integrity and availability were considered the core 

properties of information security. In fact, these three properties were considered 

complete enough to be the only properties that the security mechanisms would be 

in charge of preserving. However, Donn B. Parker (Parker 2002) pointed out some 

small deficiencies in the original set of properties, and showed that some particular 

types of very important attacks could not be specified by the loss of any of these 

properties. He introduced three other security properties of information: 

 Authenticity – this property refers to the guarantee that the information 

is correctly labeled and that it is in fact what is said about it. This property 

is distinct from integrity because the information might not have been 

altered or deleted, but still be understood in a different way from what it 

was meant to. Fraudulent information is an example of non-authentic 

information that is correct from the point of view of its authorized creator. 

The security problem is that this information is not what its creator said it 

is. 

 Possession or Control – the information can be out of the control of the 

rightful owner, possibly being transferred to someone else or used in a 

non-authorized way. This property is distinct from confidentiality 

because an attacker can violate it without violating confidentiality and 

vice versa (e.g. when the attacker takes control of a machine but does 

nothing with this control). Another important kind of breach is when one 

makes an unauthorized copy of a copyrighted intellectual work (like a 

movie). Notice that in this case there is no breach of confidentiality (the 

owner is authorized to see the movie), no breach of integrity and the 

information is available to its rightful owner.   

 Utility – probably the most controversial “complementary property”, 

utility is related to guaranteeing that the information can still be used for 

its original purpose. The most common example for a breach of utility is 

when a user encrypts some data and then loses the encryption key. The 

idea is that the data is still confidential, available (it is there), integral (it 

is correct), under control and authentic, but cannot be used anymore 

because of a transformation that cannot be undone. Unauthorized source 

code obfuscation sometimes is also used as an example, as the code still 

compiles and generates the corresponding executable code, but can hardly 

be modified anymore (without an effort that would not be necessary with 

the original code). The critics, on the other hand, say that utility can 

always be understood as one of the other properties. In the first example, 

the data is actually not available anymore exactly as it would not be in the 

case of a hard drive that cannot be turned on (but with no damage to the 

magnetic data). In the second example, the source code is not integral 

anymore because it has lost the semantics that was present only in the 

original source code. 
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Most of the security properties of information are defined in terms of the figure of 

an authorized person. Although, usually, most actions in a system are executed by 

real people, sometimes the actions might be also triggered by other systems (for 

which authorized agent would probably be a more accurate term). Authorization in 

this context is directly defined by the business rules of the system and specifies the 

set of actions that each agent within the system has the right to execute and the set 

of actions that it cannot execute. Usually, there is also a default policy for all actions 

not explicitly defined, which could be “all else is authorized” or “all else is denied”, 

and also depends on the purpose of the system. The mechanisms through which 

authorization is actually implemented in a system might vary a lot (privileges or 

access controls lists are two common examples). However, the most complex 

security issue involved is related to identifying precisely who should have which 

authorization. This is called an authentication procedure (Daswani 2007) and is the 

process of assuring, to the desired level of certainty, that someone really is who he 

claims to be. 

Another security property, which can be considered as a special case of 

authenticity, but is, frequently, considered separately, is non-repudiation 

(Stallings 2010). This property is related to guaranteeing that if someone performs 

an action then that action cannot be denied in a later future. For example, the idea 

of digital signatures only works when the system is built with non-repudiation in 

its core, meaning that it has the same properties of undeniability of a traditional 

signature. Although not necessary in every context, several other scenarios might 

require the preservation of this property (possibly not in a so strong form). For 

instance, if a legitimate system operator excludes some information then it is 

important that the system registers, in a reliable way, who performed the exclusion, 

generating evidence that cannot be hidden. This kind of auditing preserves this 

property not as strongly as a digital signature (that no one should be able to forge), 

as the system administrator may be able to alter the evidence in some way. 

However, the property holds because the operator does not have the same privileges 

that of the administrator and that is sufficient for this purpose. In this case, the 

system administrator is expected to have the power to view or modify data in the 

system, and therefore that is not a security breach. The fact is that he is supposed 

to do it only according to what are his authorized assignments.  

A malicious administrator (which is an example of an insider threat, (Martinez-

Moyano 2006)) eliminating evidence or using its privileges to abuse the system in 

some way provides an example of the abuse of trust (Bishop 2008). This is a 

problem that circumvents any computer system and does not have a definitive 

solution. The biggest difficulty, in this case, is that it is mostly a human aspect and 
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not a technical one (Whittaker 2003). In any system, some amount of trust is posed 

upon all people involved, being it the administrator who bears a very large amount 

of trust, or a simple end user that has a very limited, but non-negligible, amount of 

privileges. The problem is inevitable because whenever the system poses any 

amount of authorization to a given individual, it is opening the possibility for 

someone to find ways to abuse it and break the rules. Actually, it is a known fact 

that the most access a person has to the system the higher is the number of 

combinations of actions that it can perform. Some of these actions can readily be 

used to cause a security breach and avoiding it is, in most scenarios, completely 

unfeasible. The principle of least privilege, which is to always place the least 

amount of privileges possible to any element within a system, is one of the most 

important and recognized principles of authorization distribution. This principle 

has been proposed more than 30 years ago, and has been proven right since it was 

first discussed in (Denning 1976). 

Computer security research is done not only to understand security aspects but also 

to develop security mechanisms designed to fulfill several goals. Mechanisms for 

the preservation of the security properties, mechanisms to allow reliable 

authentication and authorization and mechanisms to lower or eliminate the 

possibility of abuses of trust are just some examples. These security mechanisms 

are commonly known as security controls and can be classified in several forms. 

When a security control is active in a system and a security incident is about to 

happen, there are three moments in which the control may act (Bowen 2006): 

 It may act before the occurrence of the incident (or its completion), 

effectively avoiding its occurrence. In this case it is called a preventive 

control. An authentication mechanism is an example of a preventive 

control. 

 It may act during the incident by trying to identify its occurrence and, when 

possible, activate an alert so the person responsible can act accordingly. 

This is called a detective control and auditing and logs are examples of this 

type of control. 

 It may act after the incident, possibly reducing or eliminating the 

consequences of the attack. These are called corrective controls. Backups 

and redundant servers are examples of it. 

Security controls can also be classified in regard to their nature. They may be 

classified in one of the following four categories (Bowen 2006): 

 Physical controls, e.g. fences, doors, locks and fire extinguishers; 



Chapter 2  Background and Related Work 

18 

 Procedural controls, e.g. incident response processes, management 

oversight, security awareness and training; 

 Technical controls, e.g. user authentication and access controls, antivirus 

software, firewalls; 

 Legal and regulatory or compliance controls, e.g. privacy laws, policies 

and clauses. 

In theory, a system implementation together with its environment and appropriate 

security controls are expected to not be susceptible to attacks (as that is the goal of 

the security controls). However, in practice, it is impossible to have a completely 

secure system, especially if one considers an insider threat. The weaknesses that 

the system still presents and can be used as attack vectors, despite the security 

controls in place, are called vulnerabilities (McGraw 2006). Examples of classical 

vulnerabilities are software bugs or incorrectness (e.g., a buffer overflow and SQL 

injection attacks (Daswani 2007)), authentication weaknesses (e.g., the existence 

of weak passwords (Blackwell 2000)), configuration problems (e.g., a poorly 

configured firewall (Wool 2004)), or even a physical security problem (e.g., leaving 

the database server stationed in an uncontrolled room full of unauthorized people). 

Instead of being cases of exception, more and more the computer science research 

community is learning that vulnerabilities cannot be completely eliminated, despite 

all efforts to avoid them (McGraw 2006). As a consequence, two important 

guidelines are frequently emphasized as key security practices that should be 

applied to any context: security by design and defense-in-depth (Howard 2002).  

Security by design means thinking about the security of a system while designing 

it, instead of considering security as a new layer of features. This turns out to be a 

much more successful approach because of a simple fact: when one adds security 

functionalities to an existing system, the number of inconsistencies (i.e. 

vulnerabilities) that can emerge from the combination of the original state (without 

security controls) with the state with the new functionalities (the security controls) 

is much higher than the number of defects in a system that was designed with these 

functionalities from scratch. In other words, the attack surface of a system designed 

with security in mind is always smaller than the attack surface of a system that has 

been secure by the later appliance of security controls. 

Defense-in-depth, on the other hand, is the idea of always assuming that the security 

controls can be surpassed. In other words, instead of protecting a system with one 

huge barrier, always consider that each part of the system must be secured 

independently as if all other barriers were already defeated. The principle of least 

privilege, for instance, is an example of the application of the principle of defense-
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in-depth. If some attacker takes control of some agent in a system (e.g. a process) 

the damage it can do is limited by the original purpose of the agent if this agent 

does not have more privileges than the ones it needed in the first place. Securing a 

network with a global firewall and still having local firewalls on the operating 

systems of the machines on that network is also another example of defense-in-

depth. 

2.2 Security Evaluation 

Computer security evaluation, in some contexts referred to as risk analysis applied 

to computer systems, has been a concern for organizations and systems 

administrators for a long time. To decide if the security mechanisms present in an 

installation are enough or should be improved, first it is necessary to evaluate them. 

Security evaluation is the process of determining how well the security controls of 

a given system are working and how effective they are against known attacks and 

threats (Bowen 2006). 

The challenge faced by systems administrators is that computer security evaluation 

is a task that requires a very specialized knowledge. To perform a reliable 

evaluation, the analyst must have the capability for understanding all factors at 

stake, the nature of the threats involved, and how the security controls in place 

work, and these topics are usually not part of the administrators’ training. To solve 

this, the choices are either hiring outside help or learning and applying an 

appropriate security evaluation methodology. 

The urge in proposing security evaluation methodologies was always historically 

so strong that several private and governmental organizations have invested a lot 

of time and money on it. For example, in the early 80’s, the government of the 

United States through its Department of Defense started developing what later 

would be called the Rainbow Book Series. This is a series of standards designed for 

the evaluation of trusted systems, and describes the process to be used inside the 

US government. In particular, the Trusted Computer System Evaluation Criteria 

(DoD 1985), also known as the Orange Book, is a standard that sets basic 

requirements for assessing the effectiveness of computer security controls built into 

a computer system.  

In 1999, the concepts in the Orange book were merged together with other related 

standards like the Canadian Trusted Computer Product Evaluation Criteria (Mate 

Bacic 1990) and the Information Technology Security Evaluation Criteria (Jahl 

1991), giving rise to a new international standard that was supposed to be accepted 

worldwide. The Common Criteria for Information Technology Security Evaluation 
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(Common Criteria 1999), or simply the Common Criteria, became the standard 

ISO/IEC 15408 in a joint action of the International Organization for 

Standardization (ISO 2012) with the International Electrotechnical Commission 

(IEC 2012).  

This section focuses on the main aspects of three of the most representative 

approaches: the Common Criteria framework, the OCTAVE method and the Center 

for Internet Security benchmarks. These methodologies were chosen because they 

provide very distinct approaches to security evaluation, and most others either 

resemble one of them or share characteristics. However, additional methodologies 

for security evaluation and risk analysis are introduced in Section 2.2.4.  

2.2.1 The Common Criteria  

The Common Criteria standard (Common Criteria 1999) is a security evaluation 

framework that defines a process where a computer system is evaluated against a 

set of security requirements. The evaluation results in a level of assurance, or 

Evaluation Assurance Level (EAL) and a certification from the Common Criteria. 

Essentially, the assurance level expresses the effort that was applied by the 

Common Criteria evaluators in order to be certain that the system has the security 

requirements that it claims to have. The first draft of the standard was published for 

comments in 1993, and finally became an official ISO standard in its version 2.0, 

in 1999. The main objective of the standard was to replace the security evaluation 

and processes used in different countries by a unified process that would be 

accepted by all of them. This would allow product evaluations conducted in one 

country to be accepted in other countries.  

For a given Target Of Evaluation (TOE), which is the product or system under 

assessment, the evaluation within the Common Criteria framework is based on a 

fundamental document that describes the characteristics of the TOE: the Security 

Target. The security target, on the other hand, may or may not reference another 

document called a Protection Profile. Both documents are structurally similar but 

have distinct purposes. However, understanding a protection profile allows to more 

easily understanding a security target. 

The protection profile identifies the security requirements that the particular TOE 

must implement in order to be secure against an identified set of threats typically 

found in environments surrounding it. In other words, a protection profile is an 

implementation independent statement of security requirements that address threats 

in a specific environment. The most important elements that are part of a Protection 

Profile are: 
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 Security Environment definition: a high level description of the 

environment where the TOE typically operates.  

 Secure Usage Assumptions: definitions about some important 

characteristics of fundamental elements of the environment. For example, 

some characteristics of the network, considerations about the kind of 

physical control that is assumed regarding the TOE or the characteristics 

of trustworthiness of the administrators. These assumptions are the basis 

over which the evaluation is valid. 

 Organizational Security Policies: the policies that the organization must 

enforce in order for the product to effectively have the security stated. 

 Threats to security: enumeration of the security threats that must be 

addressed by the implementation of the TOE in order to be considered 

secure in the sense of this Protection Profile. 

 Security Functional Requirements: high level security elements that must 

be present in the TOE implementation and that should be employed to 

avoid the threats identified before. These elements are catalogued by the 

standard, and form eleven classes divided in 67 families, 138 components 

and 250 elements. 

 Security Assurance Requirements: the evaluation requirements to be 

performed over the TOE as to be able to certify it with a specific Evaluation 

Assurance Level. The possible assurance requirements are also catalogued 

by the standard. 

A protection profile is a document defined generically, meaning that it is 

implementation independent. In practice it defines a class of devices or scenarios 

working in a specific environment. For instance, it is possible to define a protection 

profile for a firewall in a particular scenario, or a smart card in another scenario. 

The definition of different protection profiles for the same class of devices is 

possible as well, with different security requisites for each one. Basically, the main 

purpose of protection profiles is to provide means for some person or organization 

to express the security requisites that are necessary for a given purpose. A 

government, for example, might require a particular product to be certified against 

a specific protection profile before considering its acquisition.  

The security target, on the other hand, specifies the characteristics of the product 

or system that will undergo the certification process. It can be seen as an 

instantiation of what would be a generic protection profile relatively to a particular 

product, and is usually provided by the developer of the product. A security target 

typically includes all elements that are part of a traditional protection profile, but 

explains how they are applied to the product in question. It also includes a detailed 

description of the mechanisms that are implemented to satisfy the security 
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functional requirements. Although not required, usually it also mentions a list of 

protection profiles which the TOE might comply with. The TOE is then evaluated 

against all of them, and the certification states that.  

The most important part of a security target or of a protection profile is the 

definition of the security functional requirements expected from the TOE. The 

standard defines the following eleven high level classes of functional requisites that 

a system or product might have: 

 Security Audit – monitor, capture, store, analyze, and report information 

related to security event. 

 Communication – Assure the identity of originators and recipients of 

transmitted information; non-repudiation. 

 Cryptographic Support – Management and operational use of 

cryptographic keys. 

 User Data Protection – Protect user data and the associated security 

attributes within a TOE and data that is imported, exported, and stored. 

 Identification & Authentication – Ensure unambiguous identification of 

authorized users and the correct association of security attributes with users 

and subjects. 

 Security Management – Management of security attributes, data, and 

functions and definitions of security roles.  

 Privacy – Protect users against discovery and misuse of their identity. 

 Protection of the TOE Security Functions– Maintain the integrity of the 

TSF management functions and data. 

 Resource Utilization – Ensure availability of system resources through 

fault tolerance and the allocation of services by priority. 

 TOE Access – Controlling user session establishment. 

 Trusted Path Channels– Requirements for trusted paths and trusted 

channels. 

The assurance requirements defined in the security target will set the level that the 

implementation of the TOE will be evaluated. In any certification process, the 

evaluation is done by the application of the Common Methodology for Information 

Technology Security Evaluation (CEM), also part of the standard. The evaluation 

process is done by a third party laboratory complying with the ISO/IEC 17025 

(Honsa 2003), which certifies and states management and technical requirements 

for testing and calibration laboratories. A successful evaluation provides a 
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certification of the TOE within one of the seven possible levels of assurance, with 

the following corresponding rigorousness: 

 EAL 1 – the TOE is functionally tested and a minimum level of confidence 

in the correct operation of the security functions is guaranteed. This EAL 

is appropriate for environments where no serious security threats are 

anticipated.  

 EAL 2 - the TOE is structurally tested, and a low to moderate level of 

confidence in the correct operation of the security functions is guaranteed. 

This EAL is assigned to systems for which little documentation exists.  

 EAL 3 - the TOE is methodically tested and checked and a moderate level 

of confidence in the correct operation of the security functions is 

guaranteed. EAL 3 represents a thorough investigation of the TOE and its 

development, starting at the design phase. Testing and evaluation are 

conducted against functions, interfaces, and guidance documents.  

 EAL 4 - the TOE is methodically designed, tested, and reviewed and a 

moderate to high level of confidence in the correct operation of the security 

functions is guaranteed. EAL 4 is the highest level of assurance usually 

provided to commercial off-the-shelf software.  

 EAL 5 - the TOE is semiformally designed, tested, and reviewed, providing 

moderate to high level of confidence in the correct operation of the security 

functions. EAL 5 is appropriate in environments where resistance to 

attackers with a moderate attack potential is needed.  

 EAL 6 - the TOE is semiformally verified design and tested, and provides 

a high level of confidence in the correct operation of the security functions. 

To be evaluated as EAL 6, the software design requires the use of 

systematic security engineering practices and techniques.  

 EAL 7 - the TOE is formally verified design and tested, providing a very 

high level of confidence in the correct operation of the security functions. 

EAL 7 represents complete, independent white-box testing that employs 

formal methods, similar to those in use by the safety engineering 

community. EAL 7 is intended for use in extremely high-risk environments 

that must protect high-value assets.  

Despite its popularity, the Common Criteria is not a standard unanimously 

accepted. The major criticism against the standard is that it tests almost only the 

design of the product, and not the implementation, even at the highest levels of 

evaluation. In the words of Alan Paller, director of research at the SANS Institute, 

“You are not testing the product at all. You are testing the paperwork” (Jackson 

2007).  As it is, a certificated product is a long distance from been considered 

secure, so the cost of certification (which is very significant) is actually not worth 
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it. One recurring example against the standard is the certification with EAL4 of the 

Windows 2000 operating system, which continuously had security corrections long 

after the certification (Baumhardt 2006). Jonathan Shapiro, assistant professor at 

Johns Hopkins University also puts it as not worth it: “The evidence so far suggests 

that it is a waste of time and resources. I would be extremely happy to see evidence 

to the contrary, but it doesn’t seem to be out there” (Jackson 2007). 

Another criticism against the common criteria is that the certification is valid only 

in regard to the security target document (and mentioned protection profiles). A 

certification, even with a correct implementation, means that the product is secure 

only with the configuration and environment defined in the document. For example, 

the configuration and environment defined in the Windows 2000 certification strips 

it of so much functionalities (for example, the Internet Explorer browser and the 

Internet Information Services) that sometimes it turns out to be almost a useless 

shell. In that sense, practically all installations of this operating system running 

today invalidate the certification.  

2.2.2 The OCTAVE method 

The Operationally Critical Threat, Asset, and Vulnerability Evaluation method 

(Alberts 2002) was developed in 2003 by the Software Engineering Institute (SEI) 

at Carnegie Mellon University on behalf of the Department of Defense of the 

United States government. It is a self-directed risk assessment methodology, suited 

for small teams of people from the operational and the IT departments of an 

organization. 

A fundamental difference of the OCTAVE approach comparing to most proposed 

risk assessment methodologies, is that it is driven mostly by operational risk and 

security practices instead of pure technology considerations. The design of the 

approach is aimed at allowing an organization to: 

 Perform self assessments without outside requirements; 

 Identify risks that are particular to the organization business and 

operations; 

 Identify and focus on the protection of the most important information 

assets of the organization; 

 Raise the security awareness at all levels of the staff. 
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Figure 2.1 Overview of the OCTAVE method phases. 

(Alberts 2002) 

Figure 2.1 presents a high level view of the methodology steps. The OCTAVE 

method is based on three main phases that are further broken down into processes, 

and evolves through a series of workshops carried out by the analysis team. In 

Phase 1, the analysis team identifies important information-related assets and the 

current protection strategy for those assets. The team then determines which of the 

identified assets are most critical to the organization’s success, documents their 

security requirements, and identifies threats that can interfere with meeting those 

requirements. In Phase 2, the analysis team performs an evaluation of the 

information infrastructure to complement the threat analysis performed in Phase 1 

and to support mitigation decisions in Phase 3. Phase 3 includes risk identification 

activities and the definition of a risk mitigation plan for the critical assets 

(Alberts 2002).  

All OCTAVE phases are supported by catalogues of information provided by the 

method, which are designed for teams without security expertise and without 

outside help. The main catalogues are the following: 

 Catalogue of practices - a collection of best strategic and operational 

security practices; 
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 Threat profile - the range of threats that a typical organization needs to 

consider; 

 Catalogue of vulnerabilities - a collection of vulnerabilities based on 

existing platform and applications, for consultation regarding technical 

aspects that should be considered. 

The OCTAVE method was designed as a complete process for large organizations. 

As is, it is not suitable for small organizations, which created a gap that was covered 

later by two other methodologies. These alternative methodologies are the 

OCTAVE-S and the OCTAVE Allegro, and are derived from the original 

OCTAVE method. While the OCTAVE-S methodology is just an adaptation of the 

original OCTAVE to smaller organizations (Alberts 2005), the OCTAVE Allegro 

has a slightly different approach, built up from the experience gathered with years 

of application of the original method (Caralli 2007).  

The idea of the Allegro approach is that when information assets are the focus of 

the information security assessment, all other assets can be easily brought into the 

process as containers where information assets are stored, transported, or processed 

(Stevens 2005). In this sense, a container can be a person (since people can store 

information as knowledge, transport information by communicating, or process 

information by thinking and acting), an object (e.g. a piece of paper), or a 

technology (e.g. a database). Thus, threats to information assets are identified and 

examined through the consideration of where they live, which effectively limits the 

number and types of assets brought into the process. Moreover, focusing on 

information assets effectively limits the amount of information that must be 

gathered, processed, organized, analyzed, and understood to perform a risk 

assessment. 

2.2.3  The Center for Internet Security benchmarks 

The Center for Internet Security (CIS) is a non-profit organization formed by 

several well-known academic, commercial, and governmental entities that has 

created a series of security configuration benchmark documents (CIS 2008). The 

documents, which in some cases are accompanied with tools that verify the 

compliance with the configurations suggested, cover specific brands of several 

kinds of very popular software. Most of the software for which CIS benchmarks 

were developed are fundamental pieces of software that are the basis of most 

information systems in use today: operating systems, database management 

systems and network devices. Although fundamental, it is known that this kind of 

basic software is usually complex and does not come with good security 

configurations by default (Schweitzer 2006). Building information system’s 

infrastructures over insecurely configured software results in systems that are 
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insecure in all their levels. Also, by being widespread, they are prime targets for 

attacks and knowledge regarding security vulnerabilities (especially coming from 

insecure default options) is very likely to spread fast. 

These CIS benchmarks are developed and maintained by the public and private 

members of the organization. Building from personal experiences, each document 

is created through discussions and consensus regarding the most secure 

configuration options applicable. They are based on best practices for deployment, 

configuration, and operation in networked systems. In essence, each document 

contains explicitly all relevant security configuration options that are considered 

important in the usual environments that they are found. The configurations are 

divided in two different levels of security: 

 Level 1 – prudent minimum due care. This is the set of configuration 

options that are considered the minimum level of security an organization 

should enforce. The suggestions are chosen to be simple, in a way that any 

system manager can understand and apply them, and are unlikely to cause 

any kind of disruption or degradation of the services they provide. 

 Level 2 - prudent security beyond the minimum level. This is the set of 

configuration options that are necessary for systems demanding high 

security. Also, these configurations might cause impact in the operation of 

the system, so a system’s manager with a reasonable level of security 

knowledge might be necessary to understand and apply them correctly. 

Even though most of the benchmarks do not take into account the actual business 

rules of the environment where the software is being used, the approach from CIS 

has a significant number of advantages over other security evaluation approaches. 

One important characteristic of the approach is that it separates the security 

knowledge from the technical knowledge necessary to apply it, making the 

suggestions much more accessible than other methodologies. Another relevant 

advantage is that it is widely accepted, as the documents are the product of 

extensive analysis and consensus of several distinct representatives from public and 

private sectors. Also, as they are based in field experience, the threat model that 

supports them has the advantage of already being put in practice, being perhaps a 

form of validation of the security ideas behind it.  

Despite the advantages, the CIS documents also have some noticeable drawbacks: 

 The documents are not designed and written in a single standard way, and 

are actually overlapping in some areas. This implies that when more than 

one document is used in a single installation (e.g. hardening an operating 
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system and then the DBMS installed on it), difficulties might arise if 

similar things are stated in different forms in each document. 

 Each document focuses specific software of a specific version. New 

versions of the software, even similar versions, cannot use the document 

without incurring in the risk of existing a significant difference that 

hinders the original settings as insecure; 

 The documents are focused only on the specific configuration options 

available in the particular software being configured. In some cases, this 

causes that major security principles are not even mentioned. If the 

administrator is not warned that some important security control is missing 

from the software he is using, he cannot evaluate if it is important enough 

that he replaces it or implement the control in an alternative way;  

 Even though some rationale is provided in some cases, the major security 

principles behind the choices are frequently not provided. Not mixing the 

security justifications with the actual configurations they provide is good 

from a practical sense, but the security principles behind them are 

necessary for several reasons: a) the administrator should be able to 

understand what are the risks he is facing when he is not able to comply 

with a recommendation (which might happen frequently in production 

environments); b) the administrator should be given the choice of coming 

out with alternative solutions to the security concern behind each 

suggestion (something he cannot do if he does not know what the 

suggestion’s goal is).  

Overall, the CIS approach is very interesting, very practical and is important in 

several ways. However, it is clear that there is room for improvement. In particular, 

because of some of these drawbacks, they cannot actually be considered 

representative benchmarks, as is discussed in Section 2.4. 

2.2.4 Additional Security Evaluation and Risk Analysis 
Methodologies 

While the Common Criteria standard presents a product oriented approach for 

security evaluation, the OCTAVE method appears as a self-evaluation process that 

takes in consideration as much aspects and particularities of the organization as 

possible. Even though they present complementary perspectives to security 

evaluation, several other frameworks, approaches and methods have been proposed 

and lie somewhere in between. Some relevant proposals that can be found in the 

literature: 

 MEHARI (CLUSIF 2004): a risk management methodology developed by 

the CLUSIF (Club de la sécurité de l’Information Français) and built on 
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the top of two other methods: MARION and MELISA not maintained 

anymore. 

 CRAMM (Siemens 2003): the CCTA Risk Analysis and Management 

Method is a risk management method from UK originally developed by 

CCTA3 in 1985 and currently maintained by Insight Consulting. 

 CORAS (Vraalsen 2007): CORAS (Risk Assessment of Security Critical 

Systems) was a European project developing a tool-supported framework 

based on UML, exploiting methods for risk analysis and risk assessment of 

security critical systems. 

 ISRAM (Karabacak 2005): methodology developed in December 2003 at 

the National Research Institute of Electronics and Cryptology and the 

Gebze Institute of Technology in Turkey. It is a survey-based model with 

a quantitative approach to risk analysis that allows for the participation of 

the manager and staff of the organization. 

 NIST SP 800-30 (Stoneburner 2002): The Risk Management Guide for 

Information Technology Systems was developed by the National Institute 

of Standards and Technology as a recommendation for use by all federal 

agencies of the US. The process is subdivided in several steps: system 

characterization, threat identification, control analysis, likelihood 

determination, impact analysis, risk determination, control 

recommendations and result documentation. Like the OCTAVE method, a 

small knowledgebase of common threats is provided to help the 

assessment.  

2.2.5 Security Characteristics Identification Techniques  

The security evaluation frameworks previously described are essentially aimed at 

evaluating systems security from a high level perspective, including very large 

classes of threats simultaneously. However, security evaluation can also be done in 

smaller scales, looking for known kinds of security problems which when corrected 

may indeed increase the overall level of security, even if they cannot express by 

how much. 

Static code analysis (Livshits 2005) is a technique where a program is used to 

analyze the source code of a program in order to find vulnerabilities in the source 

code. They usually are based on the search of coding patterns that normally can be 

attributed to vulnerabilities (Chess 2007). Several static code analysis tools are used 

in a series of experiments in Chapter 5. 

Vulnerability scanners (Shahriar 2012) are programs designed to test systems 

against a list of known vulnerabilities, listing the ones that are found and therefore 

allowing them to be corrected. They are highly dependent on vulnerability 
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databases, and therefore their effectiveness depends on them being constantly 

updated. Vulnerability scanners are tools that can be employed as integrative parts 

in the implementation of our benchmarking framework. 

Penetration testing tools or fuzzers (McClure 2009) are tools also designed for 

searching vulnerabilities. However, instead of being based on databases of known 

vulnerabilities, they interact with the system by submitting series of random or 

maliciously crafted input values in order to verify if the system has some kind of 

input validation failure. Most of these validation failures can be used to attack the 

system, and therefore can be considered vulnerabilities. Penetration testing is a 

technique that can also be done manually, in which a security expert will study and 

try to violate the input validation of the system (Long 2007). In this context, it is 

usually called manual code inspection. 

A whole set of alternative techniques for identifying vulnerabilities also exist, 

ranging from direct attack injection approaches (Fonseca 2009, Antunes et al 2010), 

software testing (Antunes and Neves 2012) to robustness testing approaches (Saad-

Khorchef 2007, Oliveira 2011). Most of these tools also can be used as components 

in our framework, and security benchmarking would not be possible without such 

capabilities. Nevertheless, their results and contributions in the context of 

benchmarking and selection have to be considered carefully. 

2.3 Threat Modelling 

Threat modeling is a technique that naturally appears as part of any kind of security 

and risk evaluation process, and started to take a formal shape in the last years. The 

idea behind threat modeling is to identify what are the potential threats against a 

particular scenario, and based on them determine what are the procedures or 

security controls necessary to mitigate these threats (Shahriar 2012). This kind of 

technique can be useful in the context of existing environments that must be further 

secured, but is especially useful when applied during the design phase of a system. 

In most security evaluation methodologies, identifying threats is always posed as 

the process of brainstorming about the potential attacks and vulnerabilities that the 

system might be susceptible to. Although the formal approach to this task also 

requires some inventiveness to try to cover as much threats as possible, threat 

modeling is currently evolving in the direction of being a methodology that helps 

to exploit the threat space even further. 

Formal approaches to threat modeling start to become considerably relevant with 

the STRIDE approach proposed in (Howard 2002) and supported by Microsoft 

(Swiderski 2004) as an important step to secure software design. STRIDE is 
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actually an acronym that stands for a threat classification method based on six 

different (possibly overlapping) ways of breaking the information properties. At 

the same time that it is used as a threat classification, it also forces the analyst to 

think about the ways that an attacker could implement each of the breakings. They 

are the following: 

 Spoofing – threats that involve an entity using an identity that is not its 

own. Examples: stealing and using authentication information, pretending 

to be a legitimate part of the system and feed bogus information to another 

part. 

 Tampering – threats that involve modifying data or another part of the 

system. Examples: modifying an unauthorized file or replacing the code of 

a particular function that is trusted (e.g. a DLL or an input validation 

function). 

 Repudiation – threats involving the denial of performing an action. 

Examples: the exclusion of data and consequent denial of such action or 

denial of performing a digital signature. 

 Information disclosure – threats involving the exposition of information 

to an unauthorized entity. Examples: reading other system user private 

files, eavesdropping the communication of a remote connection or reading 

the environment variables values of another operating system process. 

 Denial of service – threats involving that a particular service becomes not 

available to its legitimate users. Examples: defacement of a remote web 

server, exceeding the processing capabilities of an application device or 

changing the authorization rights of the users of an application. 

 Elevation of privileges – threats involving an entity obtaining more 

privileges than it was originally supposed to have. Examples: a regular user 

obtaining administrative rights or an application executing operating 

system commands. 

Threat modeling in the STRIDE approach is performed as follows. First, it is 

necessary to identify the assets that must be protected. To protect the information 

properties within a system, it is necessary to protect the devices that carry the 

information, the mechanisms that transmit the information and the means that are 

used to access it (e.g. the network). For these to become more visible to the analysts, 

it is suggested that a Data Flow Diagram (Stevens 1974) of the system being 

analyzed is drawn (or alternatively an UML deployment diagram (Booch 2005)). 

Further documentation about the scenario or application being analyzed is always 

welcome, and the most decomposed it is, easier will be the analysis done over it. 
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With all data flows exposed, the analysis proceeds by trying to envision ways that 

each of the STRIDE threats can be applied to each of the data flows and elements 

involved, even the most improbable ones. When all threats are documented, before 

starting to address them, they are usually ranked regarding their overall risk, as to 

address first the most relevant ones. To do this, another acronym for five different 

aspects that can be related to a threat is used, called the DREAD score, which then 

allows computing an overall risk value for the threat. Each of the DREAD 

components is assigned a rating value ranging from 1 to 10, which extremes can be 

interpreted roughly as follows: 

 Damage Potential: if an attack realized this threat, what is the consequent 

damage?  

o 1 = Disclosure of irrelevant information 

o 10 = Complete system and data destruction 

 Reliability: does the exploitation of the threat always cause damage?  

o 1 = It will cause damage only under the most improbable 

conditions 

o 10 = It will always cause the most possible damage   

 Exploitability: how easy is it for an attacker to exploit it? 

o 1 = It requires advanced programming and networking knowledge 

and physical access to a protected area of the organization. 

o 10 = Just a web browser and internet connection 

 Affected Users: How many users potentially can be affected by it? 

o 1 = Just one user which mostly does not use the system 

o 10 = All users 

 Discoverability: how easy is it to discover this threat? 

o 1 = Finding out about it requires knowledge of the inner workings 

of several closed source components and access to confidential 

parts of the system 

o 10 = The threat is available in public domain and fairly obvious 

The overall risk of a threat is computed as the average of the scores of all 

components, and the most risky ones are considered first. After that, it is possible 

to analyze each threat and evaluate if there is already a mechanism in the system 

that prevents it from occurring or not. Any threat that does not have a mitigation 

mechanism is considered a vulnerability of the system, which can be severe or not. 

Evaluating if threats are or not already mitigated in a system can be a challenging 

task on its own. 
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Despite the method of analysis used, techniques that deal with threats usually fall 

within one of the following four different categories (Dorfman 2007): 

 Avoidance – when a particular method is employed to completely eliminate 

the possibility of someone exploring the threat; 

 Reduction – when the probability of exploring the threat is diminished 

instead of eliminated, what in some cases is the only alternative; 

 Transference – when the risk is actually transferred for another party to 

solve. For instance, insurance is an example of transference of risk. 

 Retention – the idea of simply accepting the risk and deal with the attack if 

and when it occurs. 

Although the STRIDE approach does not explicitly provide formal ways to 

evaluate the threats and their mitigations individually, several alternatives exist in 

the literature. One popular method is using attack trees, which was suggested by 

Bruce Schneier in (Schneier 1999) and resembles the use of fault trees (Roberts 

1981) for the analysis of system dependability. 

The process of threat modeling using attack trees starts by the definition of a set of 

attack goals, which are considered the final objective of an attacker. An attack goal 

could be, for instance, reading an encrypted email, executing software in a 

particular remote machine or making a machine become unresponsive. The 

instantiation of the threats identified in a STRIDE approach might be considered as 

attack goals. The root of an attack tree is the attack goal, and the analysis start by 

identifying all methods that can be used by an attacker to accomplish the goal, 

which are state as children nodes. There might be several alternative ways of 

achieving goals or there may be necessary combined steps, which defines OR and 

AND nodes. A goal (or sub-goal in the case of a children node) is achieved if all 

AND nodes are achieved or if any OR node is achieved. The process continues 

recursively for the sub-goals, expanding the tree until the leafs are steps considered 

simple enough to be evaluated. 

A complete and correctly designed attack tree can be used for several different 

security analyses. It shows all ways that an attack can be accomplished and 

particularly any path from the root node to a plausible leaf can be considered a 

vulnerability of the system. The tree also helps in the sense that the attack can be 

avoided at any step of the path, providing different mitigations strategies. An 

advantage of the method is that when a goal depends on an intermediary step that 

has several possible ways of being achieved, mitigating this particular intermediary 

step avoids several different vulnerabilities simultaneously. 
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Although complete, expressing attacks as trees might not be the most flexible 

approach, meaning that a complex attack tree can be very difficult to analyze. One 

way to allow the approach to be more flexible is to, instead of trees, use Petri nets 

(or place/transition nets) that are directed graphs used to model transitions with pre 

and post conditions, as suggested in (McDermott 2000). Coloured Petri nets, which 

use coloured nodes as an additional formalization expression, are also proposed as 

a way to extend the formalization even further (Helmer 2007). 

Misuse cases (Alexander 2003) and abuse cases (McDermott 1999, 2001) are two 

other formal ways of expressing threats that can be useful to help understanding 

and identifying threats within a system. These methods, which are very similar with 

minor distinctions, are based on use cases, which are part of the UML language, 

being suitable to complement a system specification that already uses this language. 

Diallo in (Diallo 2006) presented and compared misuse and abuse cases with attack 

trees and the common criteria specification language, pointing out the advantages 

and disadvantages of formalizing threats in each of the approaches. Not 

surprisingly, this work shows that they are actually complementary, neither of them 

being the optimal solution for all perspectives.  

In all approaches for threat modeling, despite the formality of each one, a 

significant amount of security knowledge is still required. This happens because it 

is always necessary some creativity to be able to identify all the possible ways the 

system can be attacked, and the most reliable way to achieve this creativity is 

through security experience. To help with this problem, another branch of 

investigation is becoming more and more popular, which is the study of attack 

patterns (Hoglund 2004). An attack pattern is an abstract mechanism for describing 

how a type of observed attack is executed and providing a description of the context 

where it is applicable. A formal study of repeating attack patterns used to break 

software was first presented in (Hoglund 2004), and clearly is an approach that can 

be applied to any kind of attack. Although fairly new, there is already a considerable 

amount of investigation regarding ways of expressing attack patterns (Pauli 2008) 

and using them (Gegick 2005, Gegick 2007).  

The Common Attack Pattern Enumeration and Classification (CAPEC) sponsored 

by the Department of Homeland Security of the United States (National Cyber 

Security Division 2008) is an initiative that has as goal to try to build together with 

the community a comprehensive attack pattern database. The main idea behind the 

project is that such a database could be used to support any kind of security analysis 

process and evaluation, as it will provide an extensive attacker perspective (Barnum 

2007).   
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Possibly the most comprehensive threat modeling approach already proposed is the 

Trike methodology (Saitta 2005). Trike is a framework for threat modeling built 

from the experiences gathered from all other methods that were already proposed. 

It is a formal approach designed to be complete and had two main goals as 

motivation. First, it is known that extensive threat modeling is a very long process 

that demands lots of documentation and careful analysis. Trike is designed to allow 

the automation of the biggest most portion of the process possible, meaning that 

the analysts can focus where it is really needed. Second, identifying all threats 

within a particular system usually demands very extensive security knowledge. By 

using a base attack library (provided by the framework), Trike defines a process to 

generate all possible threats against the described system in an automated manner, 

as to miss the least possible number of threats. To achieve both these goals, the 

Trike framework was proposed together with the implementation of a tool that 

implements the methodology, but this is still under alpha stage development (Saitta 

2007). 

Trike differs from other threat modeling technologies from a number of ways. 

Instead of using an attacker perspective, Trike models the threats from a defensive 

perspective meaning that instead of considering attacks, it considers actions that 

should not happen. The basic elements of Trike are actors, assets and actions. The 

analyst identifies and models the actions that the actors are supposed to do over the 

assets and from these modeling, two types of threats can be exhaustively 

enumerated: 1) all actions that are not supposed to happen are considered elevation 

of privileges threats and 2) actions prevented from happening are considered denial 

of service threats. This automatic threat generation is possible because the 

methodology is based on the principle that all actions can be decomposed in smaller 

actions that ultimately are “create”, “read”, “update” and “delete” actions over 

assets. This way, for a consistent description of the systems intended behavior, the 

complementary action space can be systematically identified, which cannot be done 

in other more ad hoc methodologies. 

Trikes main advantages can also be considered its main disadvantages. To allow 

for automatic threat generation, the description of the system must be absolutely 

accurate, which can take a lot of work. Any missing details will cause either for the 

enumeration of non-existing threats or the failure of identifying important ones. 

Another problem is that the number of threats generated tends to grow 

exponentially with the number of assets within the system, which causes a serious 

scalability problem for analyzing complex systems. Also, threats involving 

elements outside the system boundaries are also missed in the algorithms, and must 

be considered in a traditional manner. For these and other reasons, the authors state 
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that the framework is still under development and advise care in the application of 

the methodology and of the supporting software. 

2.4 Benchmarking 

A computer benchmark is a standard procedure that allows assessing and 

comparing systems or components according to specific characteristics (Grey 

1993). Historically, the most common goal of benchmarking of computer systems 

was the evaluation of performance. In particular, methods for evaluating the 

cost/performance trade-off were much required as new computer architectures and 

systems were being designed (Steen 1989). Nevertheless, the idea of assessing 

computers, software and processes in a way that allows comparison between 

different solutions can be applied to any aspect that can ultimately be labeled as 

“good” or “bad”. 

A useful characteristic of performance benchmarking is that it is easy to come up 

with quantitative metrics capable of expressing the speed in which a system 

executes tasks. When this is possible, a good/bad comparison can be trivially done, 

only by numbers comparison. However, not all aspects are easily translatable to 

quantitative metrics, and security is one example (Torgerson 2007). The problem 

is that, even though it is easy to picture a scenario that can be labeled unanimously 

as “very good” and another one that can be unanimously labeled “very bad”, the 

ones in between are open for subjective interpretation. As an example, it is not rare 

to find magazines inventing benchmarks (e.g. performance, usability, security, etc.) 

and applying them to off-the-shelf software, authoritatively labeling them as good 

or bad. The problem is that this kind of benchmarking depends exclusively on the 

opinion of the evaluator and it is fairly easy to disagree with the results.  

To be useful, a benchmark must be reliable in a sense that its methodology and 

results should not be open for alternative interpretations. In particular, Gray 

suggests that a good benchmark must meet four different criteria (Gray 1993): 

 Relevance – it must be representative of the most typical operations within 

the problem domain. A benchmark that applies only too small subset of the 

problem domain is not useful as it allows limited comparison. 

 Portability – being portable amplifies the benchmark usefulness by 

allowing comparison of a wider range of different systems and 

architectures.  

 Scalability – the benchmark should be scalable in the sense that it should 

not depend on the size of the system being evaluated. 
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 Simplicity – the benchmark should be easy to understand, otherwise it will 

lack credibility. 

Vieira states six properties for a useful benchmark, restating and complementing 

the previous four (Vieira 2005a). The rationale is that, if carefully validated, having 

these properties will more easily demonstrate the benchmark usefulness and allow 

its acceptance by a larger number of users. These properties are representativeness, 

portability, repeatability, scalability, non-intrusiveness and simplicity of use. 

Portability and scalability bears the same definition as in (Gray 1993) and 

representativeness can be understood exactly as relevance.  

Repeatability is related to the ability of a benchmark to always produce the same 

overall results for the same system (in non deterministic systems, repeatability 

should be seen in statistical terms), no matter the number of times it is executed 

and by whom. This property is extremely important for the credibility of the 

benchmark; otherwise its results could always be disputed.  

Non-intrusiveness is related to the quality of requiring minimum changes in the 

system being evaluated (or none at all). The reasoning is that if the benchmark 

process requires significant changes in the system, then one is not benchmarking 

the original system anymore, but rather the modified one. This property is a big 

concern for automated benchmarks because they usually imply installing and 

executing some benchmarking software. The software will inevitably consume 

system resources, and these should be taken into account in the results. The 

installation of this software should not require system modifications for the same 

reason. 

At last, simplicity of use is related not only to the benchmark being easy to 

understand, but also easy to apply. A complex benchmark would never appeal to a 

large number of users, and therefore its usefulness would be compromised.  

2.4.1 Performance Benchmarking 

Benchmarking performance was historically so relevant that it is possible to find a 

large number of organizations proposing these types of benchmarks for several 

distinct domains. The Transaction Processing Performance Council (TPC 2012) is 

a consortium of vendors defining benchmarks for transaction processing and 

database domains. The System Performance Evaluation Cooperative (SPEC 2012) 

is a consortium that defines benchmarks for scientific and workstation domains. 

The Perfect Club (Cybenko 1990) is a consortium of vendors and universities that 

define benchmarks for the scientific domain, with particular emphasis on parallel 

or exotic computer architectures. The EuroBen group (Steen 1993) established a 
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series of benchmarks for the evaluation of high-performance scientific computers. 

The Parallel Benchmarking Working Group (Dunlop 1994), today the 

PARKBENCH committee, is a joint initiative for benchmarking parallel systems. 

Performance benchmarks (including the ones previously mentioned) typically fit in 

a general profile that includes three particular components: 

 Workload – a representative set of work that must be executed in the system 

being evaluated during the benchmark run. Work, in this sense, depends on 

what the benchmark is supposed to evaluate. In practice, the workload 

represents what would be required from the system in a typical real 

scenario, and the most representative it is the better. 

 Metrics – a set of performance metrics that must be extracted from the 

system as to characterize the effect of the workload on it. The set of 

measures will depend on the kind of workload being executed and, most 

importantly, on what are the factors that the benchmark is designed to 

evaluate.  

 Procedures and rules – the rules and procedures defining the steps that 

must be followed during the benchmark run. This set of rules establishes 

how the workload is executed, how the measures are collected and how the 

final benchmark results are computed. They must be clear, complete and 

unambiguous in order to allow the benchmark to be repeatable. 

2.4.2 Dependability and Resilience Benchmarking 

Although most performance benchmarks fit within the profile above, 

benchmarking other qualities of a system might require different approaches. The 

DBench project (Kanoun 2001; DBench 2000) was an initiative by several 

universities and organizations to develop dependability benchmarks. The 

justification for such project is that performance benchmarks are significant only 

in controlled environments, where the system suffers no adverse effects. 

Dependability benchmarks, on the other hand, would provide reliable indicatives 

of how a system degrades under the occurrence of faults and how is its capability 

to recover from them. Being able to evaluate systems from a dependability point-

of-view is a very important because in the real world, faults are expected. For 

example, no one would choose a high performance system that simply crashes in 

the event of a simple fault. Thus, a way to reliably identify how different systems 

behave under the presence of the most common faults is extremely relevant.  

A multitude of dependability benchmarks can be found in the literature for a very 

large diversity of domains (see (DBench 2000)), and a key characteristic of 

dependability benchmarking is the addition of a faultload, which represents the set 
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of typical faults that the systems in a particular domain are subjected to and a set of 

a dependability metrics, that aim at evaluating the degradation of the system 

performance and the efficiency of the dependability mechanisms. In Section 2.5.1 

we present a deeper discussion about the way dependability benchmarking works. 

With the evolution of computer systems, the dependability mechanisms they had 

also evolved and today we have the emergence of adaptation mechanisms (Almeida 

2011). Basically, instead of simply coping with a set of faults, now the systems can 

adapt to a wider range of environmental changes in order to keep the performance 

as high as possible given any imposed conditions. The evolution of the 

dependability mechanisms again created another set of difficulties to benchmarking 

of systems in general because now measuring the performance degradation due to 

faults is not enough anymore, as the systems adapt to the imposed environmental 

stresses of all sorts a wider range of conditions that are not only limited to faults 

have to be considered, and particularly the ability of evaluating the overall 

efficiency of such adaptation mechanisms becomes a crucial problem, as we have 

to account for the degradation imposed by the same additional algorithms and 

modules required by them. In the literature, the concept of faultload evolves into 

the concept of changeload (Almeida 2012a, Almeida 2012b) that is designed to 

model all the stressful conditions that the system being evaluated will be subjected 

to under real conditions.  

2.4.3 Security Benchmarking 

A very initial attempt to devise a security benchmark that could hold up to scientific 

standards can be found in (Vieira 2005b). This work proposes a methodology for 

benchmarking the security mechanisms of database engines, which is done through 

a set of classes. The benchmark defines a set of tests that are used to characterize 

the mechanisms, and from the results of these tests a class is assigned to the engine. 

The test set is generic in the sense that any relational DBMS can be evaluated, and 

the approach is applied to two engines, Oracle 9i e PostgreSQL 7.3. Although very 

limited in scope, the approach appears to have everything that is required for a 

useful benchmark.  

The security benchmarks proposed by CIS (presented in the Section 2.2.3), on the 

other hand lack several of the properties that are expected from a benchmark. 

Unlike the security benchmark of (Vieira 2005b), they are too specific for each 

version of the software for which they are designed. The problem is that, as 

benchmarks, their results are unreliable. First, even when a system follows all the 

configuration suggestions proposed, stating that it is more secure is problematic 

because security depends also on the way the system is used and on the 
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characteristics of the surrounding environment. Also, stating that a system is more 

secure because it follows more suggestions might be misleading, because 

sometimes some specific suggestions might have no influence on this particular 

environment. Moreover, all of these applications have security limitations, and 

these are never accounted for. Nevertheless, this is not to say that these suggestions 

are not useful, but that certainly means that they are hardly benchmarks. 

The recently finished Amber project (Assessing, Measuring and Benchmarking 

Resilience) (FP-7 2010), funded by the European Union under the FP7 program, 

gathered the experience and expertise in benchmarking from an international group 

of researchers, and successfully raised awareness of the lack of security 

benchmarks proposals. In the Research Roadmap that resulted from this project 

(Bondavalli 2009) the authors identify several research goals and suggest a strategy 

aimed at eventually achieving research mass able to accomplish the definition of 

security benchmarks. Their proposal is based in the expansion of the extremely 

succesful model used for dependability benchmarking, in which fault injection 

techniques are used to evaluate the behavior of the system under faults (Bondavalli 

2009). Their assumption is that devising a representative attackload and proper 

security metrics allow the specification of a security benchmark following the same 

approach. 

The literature already shows a number of research works based on attackloads. In 

most cases, the main approach is to model attacks in a similar way to faults, using 

attack injection techniques in an attempt to evaluate security aspects of systems. In 

(Friginal 2011) the authors model a few attack techniques in order to complement 

the analysis of COTS under the specification of ISO/IEC 25045 standard.  In 

(Friginal 2009, 2010) we find attack injection techniques being used to assess ad 

hoc networks. It is important to emphasize that such approaches are extremely 

useful and interesting, but are distant from the goal of a dedicated security 

benchmark that is capable of measuring security level of the evaluated system. 

Instead, the techniques obtain information about the dependability of the systems, 

the impact on performance of the system and of the security mechanisms and are 

also able to identify which systems can be breached and which cannot. However, 

selecting the most secure system is something that is extremely risky to do using 

only the results of such techniques, as we explore in the next section. 

A much bolder attempt at actually measuring the security level of systems can be 

found in (Mendes 2011), where the authors take a database of known vulnerabilities 

and use it to rank the evaluated systems in terms of the risk that these vulnerabilities 

incur in the system. Although this approach is useful, and could be an integrative 

part of a security benchmark, selecting components based on this approach can also 
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be misleading, particularly because vulnerabilities can be patched, and after they 

are patched they give no real clue of the real security of the remaining system.  

Attack injection (Antunes et al 2012, Fonseca 2009) and vulnerability finding 

(Shahriar 2012) are techniques that discover actual attack paths that can be used by 

attacker to harm systems, and this is important. However, we have to be extremely 

careful when interpreting what an existing vulnerability of attack path means to the 

security of a system, or else you incur in the real risk of expressing things that are 

actually not true, as we discuss in the next section. 

2.5 Security Benchmarking as an Open Problem 

Security benchmarking is still an open problem. Even though the community is 

clearly trying to move forward in the proposition of alternatives to devise solutions 

for this problem, the reality is that the path that security research is taking on this 

matter leads to several difficulties that will be extremely hard to overcome, due to 

the particularities of security that are not being taken into account. In the next 

sections we will discuss such difficulties, and begin the discussion of the 

measurement of trust, as an alternative to current approaches.  

2.5.1 Dependability Benchmarking vs Security 
Benchmarking 

The most common dependability benchmarking model in use today (Kanoun 2008), 

and which is slowly becoming an accepted standard as part of the TPC benchmarks 

(TPC 2012), is based on the definition of the following set of elements:  

 A representative workload, which should represent the average stress and 

environment conditions that the system under test will be subjected to. 

 A representative faultload, which includes typical faults that the system 

may face in the field. 

 Performance and dependability metrics. 

 Guidelines and procedures to run the benchmark and collect the metrics. 

The dependability benchmarking model is built upon already established 

performance benchmarks, as discussed before. The transition is depicted in Figure 

2.2. Typically, the benchmark execution is divided in two experiments: the golden 

run, where performance metrics are collected during the application of the 

workload, and a subsequent run where the system is subjected to the faultload 

concurrently with the workload (Kanoun 2001). Besides collecting dependability 

metrics relative to the fault tolerance of the system, the main goal of the second run 

is to obtain performance metrics under faulty conditions, which, when compared 
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with the performance during the golden run, allow the evaluation of the overall 

system degradation. 

 

 

Figure 2.2 Dependability vs performance benchmarking 

Possibly driven by the undisputed success of the dependability benchmarking 

model, the scientific community has shown a general feeling that such model could 

be successfully expanded and applied to the security field. For example, the Amber 

research roadmap (Bondavalli 2009) makes the following suggestions as short-term 

goals (should be accomplished in 3 years’ time frame): 

“Reference attackloads and injection tools to be used in the development 

of security benchmarks: Finding whether representative types of attack 

patterns and security vulnerabilities exist through field studies and 

analysis of information available; Definition and validation of reference 

attackloads for different security benchmarking domains and classes of 

targets; Development of tools to inject reference attackloads in different 

classes of benchmark target systems.”(Bondavalli 2009) 

It is clear that the Amber consortium feels that the dependability benchmarking 

model may work for security benchmarking, as long as representative attackloads 

are defined (in the same lines as representative faultloads), and that the community 

is able to design a representative set of security metrics that allow characterizing 

the system regarding its ability to prevent the attacks (or their effects) contained in 

the attackload.  

Assuming that there exists a set of security metrics with the above capabilities, the 

problem with the approach begins with the definition of what is a representative 

attackload. Obtaining a representative faultload is already a very complex problem 

(Arlat 2002). For example, should we consider a flooded room as a representative 

“fault”? It surely depends on where the system is, and how critical is the service it 

provides. But assuredly a faultload that does not include a flood as a potential fault 
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(despite the domain benchmarked) will not considerably hinder the benchmark 

representativeness. The fact is that every single fault included in the benchmark 

cumulatively renders it more representative, and any potential fault to which the 

system is tested against provides valuable information to the system owner. We 

may say that there is some fuzziness in the border dividing a representative faultload 

from an unrepresentative one, and that fuzziness does not have to be fully cleared 

for the benchmark to be useful. 

In the security domain, things are more complex. Suppose, for instance, that it is 

possible to determine a representative attackload for a particular domain. Using the 

dependability benchmark model enhanced with an attackload and security metrics, 

we apply the benchmark to choose the most secure of two systems. After evaluating 

the behavior of the two systems subjected to the attackload, any conceivable set of 

security metrics is expected to provide, at the very least, one kind of security 

information (even if able to express more): either the systems are completely 

immune to the attackload, or the systems are breached. What can we learn from 

each of these results? If a system is breached, the disclosure of the report of the 

benchmark run would make that information public, and it would become available 

to anyone with knowledge of the attackload. No sane person would choose a system 

that has a known security vulnerability, particularly because knowing that the 

system can be attacked is equivalent of saying that the system is essentially 

insecure. If confidentiality was lost, integrity was lost or the system became 

unavailable (to limit our discussion to these basic security properties) then the 

system was successfully breached and attributing a “level” of security when one 

cannot maintain the security properties makes no sense. On the other hand, if the 

properties were not breached, then the attack was not successful, and metrics that 

represent the degradation of the system due to the interference of the attacks are 

either performance or dependability metrics, but they are not security metrics, and 

this is true even if what we are measuring is the degradation of the security 

mechanisms themselves. In the end, if both systems are vulnerable, the benchmark 

user is left with little options, even if one of them is “slightly less attackable”, 

whatever that may mean. But then, what if both systems are immune to the 

attackload? Are both systems 100% secure, or the attackload is unrepresentative? 

Which is more likely? In fact, both answers have limited usefulness. 

The previous discussion assumes that it is possible to find a representative 

attackload. But when security is the issue, the dimness between a representative 

attackload and an unrepresentative one may not be tolerable. A single missed attack 

is enough to turn the most secure system in the world into the easiest one to break. 

Furthermore, a representative attackload would need to take into consideration the 
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attacker’s perspective, and thus the capabilities of most probable attackers (at least 

the technical capabilities, even if we ignore the financial ones), which usually are 

impossible to predict beforehand. Predicting how people will think and act in the 

future is simply too complex, and odds are that the exact achievement of a 

representative attackload automatically renders it unrepresentative. 

Perspectives regarding the set of security metrics are also not promising. In 

(Littlewood 1993) the authors proposed trying to measure the effort-to-breach a 

system, which would appear interesting when allied with a representative 

attackload. This kind of metric assumes that there is a value that varies between 

zero effort and a full breach effort, and would be somewhat useful to administrators 

and developers. The idea was likely borrowed from the cryptographic community, 

where encryption algorithms strength is evaluated based on the effort that the 

attacker has to do to break it. What is generally missed is that at any time, and given 

a particular technological situation, any cryptographic algorithm is assigned by the 

research community a binary status: either it is broken or it is not broken. This holds 

even for algorithms that have theoretical shortcomings that allow finding its 

solution faster than brute force, as the encryption algorithm AES (Nikolić 2009) 

(which has some theoretical shortcomings, but is not broken), and the cryptographic 

hash function SHA1 (Wang 2005) (which is considered broken even though no real 

break was computed yet). 

From a benchmarking perspective, the most information you can get from an attack 

- and therefore an attackload - is whether it works or not, which amounts to the fact 

that the system has a vulnerability that is not covered by a compensating defense 

mechanism. In other words, if a target is submitted to an attack that is successful, 

the most important usable information that you get is the fact that it is vulnerable 

to this attack. In a benchmarking context, whenever a benchmarked target is found 

to be susceptible to an attack, the likely procedure will be to correct or compensate 

the vulnerability, something that in the end will alter the benchmarked target. So, 

any security metric based on the amount of attacks that are successful is misleading 

because the actual system that will be used in the field will be the corrected version 

of the benchmarked target, and not the flawed one. If we assume that we could fix 

one system, then we have to assume that we could fix all benchmarked targets. The 

problem is that, now, we end up with a set of systems that is resistant to all attacks 

contained in our attackload, and the metric will result in the same value for all these 

targets, leaving the problem of security comparison unsolved. Moreover, attack 

effects will vary depending on the system usage and goal, and even if we could 

measure these, they most likely have no relation to the probability of the system 

being vulnerable to that specific attack, so they will not help solving the problem.  
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In contrast, this model works for dependability benchmarking because the injection 

of faults affords an opportunity to gain knowledge on the behavior of the system if 

and when those faults occur in the field and, if faults occur, the metrics will 

characterize their overall effects. For instance, the benchmark characterizes what 

happens after a disk effectively fails. In security, the goal is more to identify if we 

are secure during future attack events, and less to minimize the amount of damage 

resulting from a known successful attack. Comparing to dependability 

benchmarking, it would be like trying to understand the ability of the system in 

never allowing a disk to fail in the future. We know that disks will fail, and there is 

no correction/improvement on the system that may prevent, ever, a disk from 

failing. Vulnerabilities, on the other hand, when found should be corrected or 

circumvented. 

In other words, the dependability benchmarking model does not seem to be the 

most adequate for security, mostly because the goal of a useful security benchmark 

is slightly different from the one of a dependability benchmark. Although the 

knowledge of known attacks that are able to breach a given system is extremely 

valuable, allowing to correct flawed systems, this information does not help to 

select between candidates because if we allow all the candidates to be corrected 

according to the knowledge our attacks, we end up with several systems that 

measure equally concerning attackload based metrics. In the end, we are still left 

with the problem of choosing the system that will behave better when subjected to 

active, ingenious and malicious minds that have beforehand the entire knowledge 

about any existing security benchmark. To solve this, we need procedures and 

metrics that are not based only on known attacks and vulnerabilities, but that relate 

to the probability of the existence of unknown vulnerabilities and the ability of the 

system to resist to unknown attacks. 

2.5.2 Benchmarking Trust 

It is interesting that back in 1993, Littlewood (Littlewood 1993) cites the Orange 

Book (DoD 1985) levels as “represent(ing) levels of trust, an unquantified belief 

about security”, toning it as a downside of the approach, while at the same time 

proposing effort-to-breach as a useful quantifiable metric. Although the Orange 

Book levels are far away from being useful for benchmarking and comparison, 

maybe they were more on the right track than realized. 

The security community already noticed that the words trust and security have been 

more and more used interchangeably (Marsh 2005), as if a trusted system was a 

secure system, and security necessarily implied trust. This is a problem, as this use 



Chapter 2  Background and Related Work 

46 

of terminology is mixing up concepts that are necessarily different and actually 

complementary.  

A secure state is the state of “not being able to be attacked” or “not being 

vulnerable”. Although it is possible to come up with “levels” of how vulnerable the 

system is (i.e. levels of security), the definition of each of these levels is likely to 

be static, and the state will either be one or the other. The fact that a certain attack 

is possible effectively means one is less secure, even though it is hard to include 

the notion of future unknown attacks and unknown vulnerabilities in the concept of 

a definitive security state. 

Trust, which is an assumed reliance on something or someone (McKnight 2006, 

Sullivan 2010), on the other hand, can be thought of as a continuous concept, which 

can be increased and decreased in a variable amount, depending on the 

circumstances and events. This makes it automatically suitable as a metric for 

comparison and, therefore, for benchmarking. Also, the work done in trust 

quantification is far ahead than the research in security metrics, and approaches for 

measuring trust can be already found in the literature (Ray 2004). We believe that 

trust is a concept that more naturally accommodates probabilities and uncertainties 

related to unknown factors.  

Using a real life analogy, we happen to trust more someone the more evidence 

he/she provides that he/she can be trusted. Also, the degree of increased trust varies 

with each situation. For instance, if you pass by a person in the street and he does 

not steal from you, your trust in that person may increase a little bit. If the same 

person saves your life from being run over by a car, it may increase more. Both 

levels of trust are useful, as in one case it gives you the liberty of not being 

particularly afraid in a subsequent encounter, and in the other you may consider 

depending your life upon the person. Nevertheless, in neither case this trust 

guarantees that the person will not hit you with an axe when you turn your back 

away a next time. Notice that trust allows one to make informed decisions, but 

without providing any guarantees. This is probably the main concern of 

(Littlewood 1993) when considering trust levels as a downside of the Orange Book. 

However, the security community is already comfortable with the idea that there is 

no 100% secure system, so this may not be an unbearable problem if this issue is 

dealt with correctly, which is something that our benchmarking framework does. 

Regarding benchmarking, when we shift the focus from measuring security to 

measuring trustworthiness, several differences are evident. The most important and 

controversial one is exactly the fact that trust does not necessarily imply security, 

even though it may suggest it. So how could it be considered an alternative? First, 
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it is unlikely that we will ever be able to provide definitive guarantees against future 

unknown attacks. Also, vulnerabilities are things that are not definitive, and the 

simple advancement of security knowledge creates vulnerabilities where before 

there was none. Basically, certain characteristics start being vulnerabilities once 

someone finds out how to exploit them in an attack scenario. In this sense, it may 

be impossible to have more than trust in our systems. Second, and more important, 

aside from guarantees, a trustworthiness benchmark accomplishes all goals that 

would be required from a security benchmark in an easier manner. On average, a 

more trustworthy system will be more robust to attacks and less likely to be attacked 

than a less trustworthy one. Much like in dependability benchmarking, averages are 

the best possible predictions we can make about the future conditions under which 

the system will operate. 

By accepting these fundamental limitations in security evaluation, we find out that 

a trustworthiness metric should be based on the amount of evidence available that 

the system is secure. More evidence of security mechanisms, processes, 

configurations, procedures and behaviors (we may call each of these security 

elements) results in a more trustworthy system. Also, the more widespread or more 

narrow the protection provided by the existing elements, the more the degree of 

trustworthiness varies. In a way, we would be measuring how wide the umbrella of 

security elements of the system is, or its defensive surface (in contrast to the attack 

surface concept (Manadhata 2007) suggested by an attackload). The larger the 

umbrella, the less likely there is a hole somewhere, and more trust one can 

justifiably put in the system.  

One important characteristic of this approach is that the amount of trustworthiness 

of each security element has to be correct only in a relative way (i.e. the exact values 

are unimportant). For each security element, trustworthiness may be added to the 

system in the amount of known attack paths that it covers. It may also be weighted 

by its own constituent trustworthiness (e.g. does the element usually works as 

expected and has proven to prevent real attacks?). Here, probability of failure of 

security elements may play a part, and a whole lot of ideas can be incorporated to 

the concept, which is more deeply discussed in the next chapter. 

2.6 Conclusion 

This chapter presented an overview of the state of the art of several topics related 

with the rest of the thesis, ranging from security evaluation frameworks and 

methodologies to the state of the art and the evolution of benchmarking. We 

devoted particular attention to the reasons why current approaches to dependability 
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benchmarking do not fit the requirements of security benchmarking, which was the 

main motivation for the framework we propose in the next chapter. 

The security evaluation techniques covered are closely related with benchmarking, 

as they are also methods for assessing high level security aspects, and may be used 

in situations where benchmarking is not completely necessary (or not applicable). 

The chapter focused on three relevant methodologies, which can be viewed as 

complementary ways for evaluating security: the Common Criteria, the OCTAVE 

method and the Center for Internet Security Benchmarking approach. Two of those 

contributed to some aspects of our benchmark implementations (namely the 

Common Criteria and the CIS benchmarks). Other complementary security 

evaluation methodologies and frameworks are based on variations of these were 

mentioned for completeness. A few specific techniques, also important to our work, 

were presented. These techniques are not full security evaluation frameworks, but 

are used to evaluate more specific security aspects and play important roles in 

security benchmarking, such as vulnerability finding techniques, static code 

analysis and penetration testing.  

Another key topic covered was threat modeling. Even though we do not apply 

directly any specific threat modeling technique in our work, we do partially include 

one in the process of creating a list of threats for transactional systems 

infrastructures (presented in Chapter 4).  

As the goal is to provide a security benchmarking framework, this chapter also 

included a detailed discussion on benchmarking topics. We described what is 

traditionally expected from a benchmark, including some hints related to the 

evolution of the concept over the years. Essentially, benchmarking as a scientific 

research topic started with the goal of evaluating and comparing performance. 

However, in the last decade, the concept evolved towards the evaluation of 

dependability attributes of computer systems. This work appears exactly in a 

moment where the research community is beginning to extrapolate the 

methodologies, lessons and achievements from dependability benchmarking 

research to other aspects, including security. However, as discussed, the problem 

of benchmarking security is quite different from benchmarking dependability 

attributes. Finally, the chapter discussed the concept of benchmarking trust, namely 

on how it can be related with security aspects, which is an idea that we explore 

extensively in our framework. 
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3  
 

A Framework for 
Security 

Benchmarking 

 

The set of metrics is the central and indispensable component of a benchmark. 

Conceiving a security benchmark would be a trivial problem if the definition and 

collection of security metrics were easy tasks, which is not the case. In fact, 

Enterprise-Level Security Metrics were included in the 2005 Hard Problems List 

prepared by the INFOSEC Research Council, which identifies key research 

problems related to information security (INFOSEC 2005). Although there are 

many proposals of security metrics for computer systems, so far no consensual 

general security metric has been defined (Jansen 2009). 

Ideally, a security metric should portray the degree to which security goals are met 

in the System Under Test (SUT) (Payne 2006). The expectation is that the 

comparison of the result of measurements performed on two distinct systems – or 

the same system in distinct states or circumstances – provides enough security 

information to allow the system administrator/owner to make informed decisions 

regarding the selection of alternatives or necessary improvements. Furthermore, 

although the exact kind of output we expect from a security benchmark depends on 

the goals of the SUT and on the context in which it is (or will be) used, that output 

should always include information about the kind of security problems the system 

may have, and should allow the identification of the parts of the system that are 

more prone to security breaches (and therefore deserve more attention).  
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One of the biggest difficulties in designing such a generic security metric is related 

to the fact that the security level of a system is highly dependent on what is unknown 

about the system (Torgerson 2007). For example, vulnerabilities that exist in an 

application, but that nonetheless are not perceived by the developer/administrator, 

are the ones that (ideally) should influence the security metric the most; otherwise 

the metric will be of reduced usefulness, as decisions based on it will not take those 

vulnerabilities into account, thus leading to erroneous or misleading conclusions. 

This issue becomes even more challenging when we consider complex scenarios, 

with many devices, software and people involved, and where security 

vulnerabilities may exist not only because of faulty elements, but also due to the 

combination of the characteristics of these elements, including the environment 

around and the existing interactions (e.g. a database accessed by several 

applications and users). Given these factors, it is extremely hard to devise a numeric 

value that correctly expresses the actual security level of a computer system in a 

way that allows making meaningful and safe comparisons. 

Insecurity metrics based on risk try to cope with the uncertainty associated with 

measuring the security level of a system by incorporating the probability of attacks 

(Jelen 1998). Risk is usually defined as the product of the likelihood of an attack 

and the damage expected if it happens. In principle, this metric can be used to 

decide if the hazards to which the system is exposed are acceptable or not, and also 

to help selecting the ones that should be mitigated first. The problem with this 

approach, in addition to the already hard problem of compiling an exhaustive 

enough list of possible attacks, is that it is very easy to underestimate or 

overestimate the two values (the probability and the damage), exactly for the same 

reasons that a general security metric is hard to define and compute: again, these 

values are highly dependent on what is unknown about the system This is, 

obviously, a major problem when risks are used for supporting security related 

decisions.  

An additional problem of risk-based assessments is the fact that they rely too much 

on external information. Basically, the probability of attacks is directly related with 

“the probability of an external agent having some interest in attacking the system 

to begin with”, and the potential damage is biased by the possible interests of the 

attacker, which certainly varies wildly. Even if one manages to get accurate values 

in a certain point in time, the context evolves and changes depending on factors 

that have absolutely nothing to do with the system that is being assessed (Grey 

1993). 
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In essence, traditional security and insecurity metrics are hard to define and 

compute (Torgerson, 2007), as they involve making isolated estimations about the 

ability of an unknown individual (e.g. a hacker) to discover and maliciously exploit 

an unknown system characteristic (e.g. a vulnerability). Moreover, these metrics 

are often expected to depend only on information about the system itself, while at 

the same time incorporating the capabilities, behaviors and intentions of potential 

attackers, as if the information about the system could be enough to define the 

behavior of a potential attacker. In other words, this perspective starts from the 

assumption that a security metric can be made universal, in the sense that it will 

have the same value when seen from different perspectives (e.g. the administrators’ 

versus the attackers’ points of view). This will never be true as it is virtually 

impossible to know all attackers’ capabilities, and the number of ways a system can 

interact with its environment is practically infinite. We start the definition of our 

framework by assuming that this approach is unfeasible, and therefore we have to 

redefine the whole idea of benchmarking when it comes to security aspects. 

When pondering over security benchmarking, we have to be careful to never lose 

sight of some fundamental aspects. One of those aspects is that we do not want the 

portrayed level of security to vary depending on external variables, or else two 

distinct measurements will not be comparable. To illustrate how easy it is to miss 

this point let’s discuss the case of two “common” incident metrics found in 

organizations, and that are very frequently misinterpreted as “security metrics”. 

One we call NVD, the number of viruses detected in all computers of an 

organization, and the other is NSD, the number of spams/phishing detected in the 

overall bulk of email that circulates in the network (Kumaraguru 2007). Let’s 

assume that these numbers are collected with some predefined periodicity that 

allows us to compare two measures separated by one period (e.g. one month). 

NVD and NSD are interesting administrative metrics that can be used in practice 

to help in the security activities of an organization. For instance, if NVD or NSD 

numbers are high, this may lead to the decision of buying or implementing more 

security precautions against spam and viruses, allocating money for that task. In 

this case, such decision is justified by the simple fact that the number of incidents 

is high. In general, thresholds can be defined and used to raise awareness within 

the organization, in order to improve the attention of the employees to the problem 

and help find and mitigate potential causes. For benchmarking purposes, however, 

those numbers can be extremely misleading. To understand why, we have to 

consider the two main goals of security benchmarking: self-comparison over time 

(to evaluate improvement or degradation) and comparison of distinct software (for 

selecting the best alternatives).  
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Starting from the self-comparison goal, a key question can be stated as follows: if 

NVD and NSD rise dramatically over time, is the security of the organization 

getting worse in any sense? The answer is that it depends on why the numbers raise, 

which sometimes is not easy to know. In some situations, a simple rule modification 

or antivirus definitions update may trigger the detection of several infections that 

were already there, but were previously unknown (meaning that the overall security 

situation is improving, as the viruses that were there are now being eliminated). It 

may also be the case that targeted attacks are occurring at the present moment, and 

they are successfully being identified and blocked by the filters and antivirus. In 

this case, we may say that the situation is getting worse, in the sense that the 

organization is being attacked, but on the other hand it is good to verify that the 

tools are working as they are supposed to (even though we have no idea if they are 

solving the problem completely).  

This reasoning can get even trickier. Suppose that NVD raises and NSD keeps 

stable: this would probably turn the administrator attention to the antivirus, trying 

to understand why the metric changed. But this would lead nowhere if the case was, 

for example, that the users inside the organization were being victims of phishing 

attacks (e.g. clicking in malicious links in emails that were not caught by the spam 

filter, and infecting the machines with viruses). In such situation the problem would 

have nothing to do with the antivirus, but with the spam filter and with the lack of 

understanding of the employees about the problem. Alternatively, we may see both 

numbers going down. What could be the course of action in that case? Could it be 

because the security countermeasures lost effectiveness, or because the number of 

attacks just decreased? Should one be concerned or reassured if the number of 

viruses detected suddenly decreases by 50%?  

The main conclusion that has to be drawn from this illustrative discussion is that 

such numbers express information that can never be used to understand the status 

of the security level of the organization. Even though they portray some relation 

between the security level of the organization and the events that are occurring in 

real time (attacks, or lack of attacks), it is not possible to extrapolate the actual 

security level from this relation. 

Considering now the goal of comparison of software alternatives, the usefulness of 

such numbers for ranking is even worse. If an organization changes an antivirus or 

anti-spam solution to an alternative one, and the numbers for NSD and NVD go up, 

does that mean that the new solution is better? Again, following the same type of 

reasoning, we can conclude that those new solutions may very well be worse than 

the old ones, and that it is impossible to justifiably and confidently decide either 

way based on the values for NVD and NVD. It is important to remember that the 
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pattern of change of such numbers strongly depends on external factors that cannot 

be controlled. In practice, this kind of metrics cannot be used for benchmarking, as 

they can be significantly misleading. 

Security benchmarking must be a process that consistently and systematically 

identifies the actual security characteristics of the evaluated targets despite 

environmental influences, and conclusions must not vary for a single target even 

in the presence of new attacks or attackers, or this may invalidate the 

measurements. One key mantra that should not be forgotten is that we are 

measuring the system, not the attackers. In fact, whenever new attacks become 

relevant to the point of making a benchmark invalid, the solution is to define a new 

benchmark specification, and deem the old one as obsolete. As far as possible, 

under the same benchmarking specification, the security assessment of a target 

should be deterministic and not change with time or due to variations on the 

attackers’ capabilities. Given all these restrictions, it becomes understandable why 

security benchmarking is an extremely hard problem and why no effective model 

has been proposed so far.   

Another key aspect that needs to be emphasized is that security benchmarking will 

never be able to express more about security knowledge than what the current body 

of knowledge on security can provide. People should not expect security 

benchmarking to miraculously bring forth information that was invisible to 

everyone beforehand. In other words, security benchmarking should be perceived 

as a procedure able to extract, analyze, organize and summarize information related 

to the security level of a benchmarked target in such a way that this information 

can be used confidently for relative comparison and decision-making. From this 

perspective, the security characteristics of the assessed target are much more 

relevant than the capabilities of the attackers, which will serve only as a frame of 

reference for the threats that systems are expected to be protected from. One key 

idea that we try to convey in this work is that in security benchmarking we should 

model the attackers’ capabilities as the effects that they may cause in the 

system, independently of their actual capabilities or intents.  

The outline of this chapter is as follows. Section 3.1 we discuss the idea o threat 

vectors and what they are a good starting point for trustworthiness benchmarking. 

Section 3.2 we present our benchmarking framework. Section 3.3 we present the 

system that will be used as a case study of our framework. Section 3.4 concludes 

the chapter.  
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3.1 Threat Vectors as Basis for Benchmarking 
Security 

The main reason why computer security is important is the existence of threats. If 

there were no threats, we would not have to be concerned with security. Therefore, 

in a way, threats are the component that drives almost all security analysis 

approaches (Schmidt 2010).  

Even though we all understand the idea intuitively, in security research works the 

term “threat” (Im 2005) is frequently associated with different formal definitions. 

Particularly, the exact concepts that have to be present for a specific threat to be 

defined vary from one author to another. A commonly used definition is that a 

threat is the specification of whom, how and in what circumstance a given action 

will accomplish some undesirable effect (result) (Johnston 2010). For instance, a 

threat defined this way could be stated as follows: 

Terrorists may detonate a bomb in a bus causing it to explode. 

Improving the security of a scenario where this threat is assumed to be possible 

would require implementing measures that prevent it from being accomplished 

whenever there is an attempt. Notice that the threat specification already contains 

a lot of information. For example, the attackers are terrorists, not college students. 

They will use a bomb, not a missile or a biological weapon, and the event would 

involve a bus. Such definition also allows us to quickly understand the intended 

effects of the attack attempt. Even though the immediate effect is that people on the 

bus will die or be hurt, the main goal is to cause panic, first in the region where the 

explosion happens and then in the general population (relying on the helping hand 

of the automatic media exposure). The final goal is to cause general fear and, 

ideally, mass panic and a variety of damages in all levels of society.  

A way to improve security on this scenario would be to raise the awareness of the 

people that use buses for transportation, and to investigate manually suspicious 

buses and abandoned packages (if possible, without disregarding the side effects of 

such measures, such as the hindrance and delay imposed by such procedures). To 

consider a more general approach and broaden the security measures needed, we 

can change a few of the elements in the definition: for instance, let’s assume that 

also taxis may explode, and that college students and old ladies may also be 

recruited by terrorists. This clearly shows that the number of possible threats may 

increase exponentially if several such variations of the elements of the initial threat 

are considered, making the goal of “preventing all threats” impossible to achieve. 
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Computer systems are extremely complex, and exactly due to that, they can be 

attacked from an almost infinite number of angles with different approaches, 

causing a myriad of distinct effects (Chapman 2011). When we generically talk 

about the security of a computer system, we want to be broad, and therefore should 

include all those angles simultaneously. However, exactly like in the bombing 

threat we discussed previously, it is not feasible to enumerate all the possible threats 

we have to take into attention when securing the system, and as the systems evolve, 

so do the techniques used to accomplish the attacks. Our goal, however, does not 

change: we want to reduce the probability of the system being successfully attacked 

considering the set of all possible ways to do that. Theoretically, security 

benchmarking should help in driving the system modifications in a way that 

improves the probability of successfully stopping any possible attack. The key 

question is: how do we even start achieving such goal? 

In an evaluation context like security benchmarking, when we look at threats like 

the preceding example (i.e. the terrorist attack), it is not hard to notice that too many 

elements are fixed, and that this is not an adequate approach if the goal is to be 

broad. For instance, if we focus on buses, we are forgetting about trucks and cars. 

If we focus on bombs we are not considering biological weapons. If we are going 

to vouch that something is more secure than another, we better do it taking the 

widest angle possible, or else our assertion may be wrong in a huge number of 

scenarios. Furthermore, the “who/how/when” of attacks in computer contexts 

varies so much and changes so fast that we believe it makes little sense to try to 

focus on specific details of these variables. 

Another important aspect that cannot be forgotten is that accomplishing security 

benchmarking requires considering only the characteristics of the system in the 

assessment, avoiding the dependency on external factors. So, although the 

benchmark driver is the concern of preventing external threats, what we should 

look at and take into consideration are the characteristics of the system, and not the 

characteristics of the attacker or the attack itself. In fact, as these are the elements 

over which we can act (we cannot change the attackers; we can only change the 

system), we have to consider threats from an alternative perspective. 

In this work, threat vectors are defined as sets of characteristics of a system that 

are related to threats that accomplish certain specific effects. In the example above, 

mass panic would be a threat vector, which would be defined as the set of 

characteristics of the environment that lead to an increased probability of the 

occurrence of mass panic. In this case, we could extrapolate that certain 

agglomerations of people do favor the creation of mass panic, even if this is not the 

only requirement. The goal is to help discarding the information regarding specific 
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attackers and attacks and to focus on the characteristics of the system that have 

some relation with the probability that certain bad effects may occur. Also, while 

focusing on the effects, it becomes easier to identify alternative attack situations 

that may not be obvious from the start. For instance, could sound based weapons 

be effective to cause mass panic situations? What would be the precautions required 

in that case? More importantly, if we are concerned with panic, then we are open 

to techniques that act on the people that may suffer from that panic, fighting the 

effect instead of the cause. 

This definition of threat vector widens the way we look to security aspects, while 

at the same time maintains the focus on the system instead of on the attackers. As 

we are looking at systems’ characteristics that have to do with the possibility of 

certain bad effects, we can then aggregate these characteristics and translate them 

into probabilities of the effects being accomplished even without taking into 

account the attacker’s related details. Note that, we use the expression bad effects 

instead of, alternatively, malicious effects, as the later would usually assume 

intentions behind them. As we are focusing on the system, it is not necessary to 

consider someone with any kind of intention; what we are concerned with is that 

the effects, which by definition are unwanted, do not manifest themselves. 

The main challenge, therefore, is to determine, for a given domain, what are the 

threat vectors that are important to consider and, more importantly, what are the 

systems’ characteristics involved in accomplishing the related effects. In our 

framework, this definition is what provides, in the form of trustworthiness 

benchmarking metrics, comparison capabilities to a security benchmark. 

3.2 Security Benchmarking Framework 

The assumption that security has a lot to do with what we do not known about the 

system requires us to investigate how to include in a comparison framework (i.e. a 

benchmark) information about what we know and about what we do not know 

about a system. In the course of our research, we came to the conclusion that the 

most effective way to correctly tackle this problem is by explicitly separating the 

benchmark in two parts: first, the benchmark should evaluate the explicit security 

mechanisms and visible defects that the system has, and second, it should assess 

the possibility of the system still having unknown security problems. This way, the 

proposed security benchmarking framework requires two distinct evaluations to be 

carried out, namely: security qualification and trustworthiness benchmarking (see 

Figure 3.1). 
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Figure 3.1 High level vision of the benchmarking process 

Security qualification is related to the actual, tangible characteristics of the system, 

and their effectiveness on complying with a pre-defined level of security specified 

for a given application domain (i.e. the domain of the systems to which the 

benchmark should apply). Today, most domains have a minimum level of security 

that is required so that a system can be considered acceptable. For instance, the 

minimum absolute level of security that we would expect for a car is that it must 

require a key to be opened and to be turned on, and that the key would be only in 

the possession of the owner of the car. A car without a key would not be acceptable 

for most people, as that car could be easily vandalized or stolen. The same 

reasoning can be made for a bank account that does not require any authentication 

protocol for withdrawals. These examples (one car without keys, a bank account 

without authentication) are simply not acceptable for use in most domains, and a 

security benchmark would fail completely if it did not take into consideration these 

types of requirements. 

In computer systems, a qualification step of a security benchmark could require the 

software being benchmarked to not have any obvious vulnerabilities detectable by 

static code analysis tools or penetration testing tools (or both) and/or to have a 

certain type of construction pattern (e.g. it could require the application to employ 

specific algorithms, libraries or access methods in its programming). Another 

possibility for the qualification step would be to require the system to provide 

certain configuration options or security mechanisms (e.g. encryption capabilities, 

enforcement of certain policies or specific methods of authentication and access 

controls). These aspects are domain dependent and qualificatory, in the sense that 

a system is not considered acceptable for use if it fails these requirements.  

An example of a qualification requirement for an operating system security 

benchmark could be as follows: the system is disqualified if it does not ask for 

authentication before allowing any kind of user interaction. This requirement is 

quite intuitive and it is very easy to imagine situations where this is a fundamental 
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security requirement for an operating system (e.g. the operating system used in 

private workstation in an organization). At the same time, we can also find several 

other situations where this is clearly not a requirement (e.g. a public kiosk designed 

to show repeating slides), and therefore, a security benchmark for such case would 

not include a qualification requirement like this. The details and justifications that 

lead to the inclusion or not of each requirement are part of the definition of the 

domain, which is indeed a crucial part of the benchmark. The issues regarding the 

definition of the domain are presented in more detail in Section 3.3.3, when 

discussing some aspects related to the instantiation of the framework. For now, we 

may understand a domain as a particular use-case of some class of applications 

(e.g. operating systems for typical desktop home-users, and operating systems for 

web servers are two examples of use-cases for operating systems). 

Notice that the simple existence of an authentication mechanism in a qualified 

operating system provides very little information on how reliable that mechanism 

is; the qualification is simply stating that a system is not acceptable if it does not 

have it at all (i.e. at the very least, the mechanism must work and not allow an 

unauthenticated person to interact with the operating system easily). Other possible 

qualification requirements could be: to require the operating system software to not 

present any vulnerability during an automated source code analysis (possibly using 

a specific tool defined by the benchmark), or to require the operating system to 

employ one of a specific set of authentication protocols.  

In a general perspective, security qualification comes from the observation that it 

makes little sense to assign a security level to a system that has obvious ways of 

being attacked (be it due to the inexistence of a security mechanism or due to the 

existence of an obvious vulnerability). The main assumption is that, if one knows 

how to successfully attack the system, then the security is defined as zero and the 

SUT fails (i.e. is not acceptable for use). Obviously, the details and specificities of 

the qualification step depend not only on the particular application domain as 

discussed above, but also on how effective the benchmark will require the targets 

to be. For instance, the qualification could require the SUT to implement a two-

factor authentication by default, or, alternatively, express the existence of a simple 

pre-shared key setting to be enough. A more detailed discussion on security 

qualification is presented in Section 3.2.1. 

The systems that pass the first step are considered equally secure up to this point, 

and are therefore assigned for trustworthiness benchmarking, which is a 

quantitative evaluation that allows some kind of security comparison. The 

trustworthiness benchmarking step is designed to account for the security 

characteristics that cannot be expressed simply as have or don’t have verifications, 
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and is therefore intrinsically different from the qualification requirements discussed 

before. The main idea is to analyze and express a general level of trust that can be 

put on the SUT characteristics according to a set of plausible assumptions (which 

are based on the set of threat vectors relevant in the context of the application 

domain).  

Procedures for accomplishing trustworthiness benchmarking should enumerate and 

aggregate the systems characteristics that increase or decrease the probability of the 

effects defined by the threat vectors to manifest themselves, based on information 

on how this is usually accomplished in the field for each threat. For instance, in the 

context of a security benchmark for web applications let’s consider SQL Injection 

attacks as a threat vector: a trustworthiness benchmarking algorithm could look for 

evidences (e.g. patterns) showing that the code of the application has some 

probability of having errors that may lead to SQL Injection vulnerabilities 

(Amirtahmasebi 2009).  

An important aspect about trustworthiness benchmarking is that this kind of 

evaluation should be done only after verifying that no obvious ways of attacking 

the system exist. In the web applications security benchmark example, we would 

execute trustworthiness benchmarking only after trying to find actual SQL injection 

vulnerabilities (e.g. by using automated tools during the qualification step). This is 

a critical requirement of the approach, as the trustworthiness benchmarking 

algorithm will not look for actual vulnerabilities, but for the preponderance that 

hidden vulnerabilities may still exist within the assessed application or system. A 

more detailed discussion on the properties and justifications for such definition of 

trustworthiness benchmarking are presented in Section 3.2.2. 

In summary, the proposed security benchmarking framework includes a two-step 

procedure, as depicted in Figure 3.1. First, the systems under testing undertake the 

set of tests defined in the qualification step. The result states whether the SUT is 

acceptable for use or not (i.e. this step decides if the target has security level zero 

or more than zero). Qualified systems are subjected to trustworthiness 

benchmarking, which computes a metric (or set of metrics) that represents how 

trustworthy the system is in respect to the benchmark threat vectors, while 

considering the set of characteristics that increase or decrease the probability of the 

occurrence of the corresponding bad effects. By design, this probability does not 

take into account the intentions or capabilities of attackers, but only system’s 

characteristics, which are the ones that the system administrator is able to influence. 

The values are comparable among threat vectors, but not across threat vectors, as 

the measurement units may differ. For instance, if we have a SQL Injection threat 
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vector and a Denial of Service threat vector, the comparison of one against the other 

may or may not be meaningful depending on the way the values are computed. 

3.2.1 Security Qualification  

The security qualification step within our framework is related to the identifiable 

characteristics and properties that are considered, in a sense or another, security 

requirements for the target systems to have a security level higher than zero. 

Basically, in a given domain, the framework assumes that a system has security 

level zero if it does not comply with one of the following assertions: 

1) The system provides the set of mechanisms required for securely 

accomplishing tasks in the specified domain; 

2) The set of procedures specified by the benchmark are unable to detect a 

characteristic (e.g. a vulnerability) that guarantees that a malicious attacker 

can accomplish a certain effect that is either unwanted or violates the 

business rules of the system.  

The first assertion is related to the fact that some security mechanisms are 

naturally expected in certain domains. For example, access controls are expected 

in database engines, authentication is expected in operating systems, but neither of 

those are necessarily required for all types of software systems, and might even be 

optional for those same applications in certain specific use cases. The concrete list 

of security mechanisms that compose the qualification step definition is highly 

dependent on the benchmarking domain and on the list of security tasks and 

activities required in that domain (Section 3.2.3 discusses in detail the problem of 

the domain definition in the context of the identification of the domain that serves 

as the main use case in this thesis).  

Another example is disk data encryption, which is not a universally required 

security mechanism for database engines, even though for certain usages it could 

be a requirement (e.g. databases that hold private medical data) (Weber-Jahnke 

2007). Encryption of data in transit, on the other hand, is more frequently 

considered a requirement, unless the data that is transmitted is already of public 

access (Harbitter 2002). Notice, however, that this assertion is related with the 

capabilities of the target systems, and not with how these capabilities are used in 

practice. Also, the definition of the set of mechanisms for this step should take into 

account the fact that the lack of certain mechanisms may be compensated by the 

existence of others (Howard 2002). For instance, although encryption of data on 

the disk is not supported by some database engines, that can always be implemented 

by encrypting the same data at the application level - even though it could be harder 
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to do it correctly and securely. Nevertheless, there are certain mechanisms that are 

extremely difficult to compensate for and therefore urge for a qualification step. 

One example is the lack of authentication at the operating system level, which 

would be an extremely complex security flaw to compensate successfully.  

One possible argument against this first assumption is the fact that the security level 

of a target is not directly related to the security mechanisms it provides, exactly 

because often they can be compensated during use. Our assumption, however, is 

that security mechanisms being designed and implemented directly in the target 

system are always a better choice than adding them later as additional 

complementary procedures. In other words, when security features are considered 

from the design of the system instead of being included later as extraneous features, 

they are not only more efficient, but also provide more capabilities (McGraw 2006). 

As a simple example, suppose that a database engine providing an intrusion 

detection system for malicious SQL injection is required for a given scenario. One 

could argue that a network sniffing based solution (e.g. the one proposed in 

(Fonseca 2008)) using an external software would be more than enough to support 

this capability, making it pointless to include the existence if such a mechanisms as 

a qualification requirement. However, while a sniffing based solution can provide 

detection capabilities, it does not support prevention capabilities - by denying the 

execution of a malicious command - which can be certainly done if the intrusion 

detection system is designed within the database engine. And even if we could 

achieve the exact same capabilities with a network sniffing solution through the use 

of a complex set of communication processes and tools, this solution would, 

without a doubt, increase considerably the complexity of the architecture, raising 

the probability of configuration and interaction vulnerabilities and also the overall 

maintenance effort. Nevertheless, requiring the inclusion (or not) of each security 

mechanism as part of the qualification step for a given domain should always be 

based on appropriate reasoning. 

The second assertion is related to the existence of actual security flaws (i.e. failures 

of compliance with the defined design) on the SUT that are detectable by current 

security analysis methodologies. Nowadays there are several distinct techniques 

that can be used to automatically or manually detect different types of 

vulnerabilities in all types of systems, and a significant research effort is applied 

continuously to improve these capabilities. For instance, the effectiveness of static 

code analysis tools and penetration testing tools are already good enough so that 

using them to make an initial security evaluation of the target systems is actually 

worthwhile (Schulte 2012). Also, we have to consider the fact that using these tools 

is so easy that if the users/managers of a system do not take advantage of them, the 
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attackers might. Furthermore, even if the detection of such vulnerabilities depends 

partially on obtaining information that is not public (e.g. the source code of the 

software might not be open), this does not guarantee that attackers also cannot 

obtain it. This leads to the inevitable conclusion that we have to assume that every 

security flaw that an automated mechanism can detect should be considered of 

public knowledge, and therefore this should be the bare minimum analysis that a 

system should pass before being put into operation. 

Obviously, it is arguable whether this procedure should be part of a qualification 

step or not, in the sense that it may also contribute to the computation of the final 

metrics in the trustworthiness benchmarking step conducted later. This is an 

important issue that should be clearly examined. The argument boils down to the 

fact that the number of flaws detected (by such automated tools) in each system 

may differ greatly, and they can, to a certain extent, be translated into different 

degrees of security, allowing to compare them instead of simply disqualifying them 

as we are proposing.  

Let’s analyze this in the context of an example: a campaign for benchmarking two 

systems, A and B, and the benchmark specification states that, for qualifying, the 

systems should pass a static code analysis with a particular tool. Now, let’s assume 

that system A presents one vulnerability and system B presents ten vulnerabilities 

during this analysis. Consider the following question: why shouldn’t we define 

system A as more secure than system B? The reasons why we should not do so are 

actually many, and are summarized in the following points: 

 The visibility of a vulnerability has no relation with the total number of 

vulnerabilities in the system. It may be easier for attackers to find and 

exploit a unique vulnerability in system A than finding any of the ten 

vulnerabilities in system B. 

 If all vulnerabilities of systems A and B have the same visibility, it may be 

the case that the damage an attacker is capable of accomplishing in both 

systems (independently of the total number of vulnerabilities in each) is 

exactly equal. Therefore, using each system poses the exact same risk to 

the user. 

 It may be the case that one vulnerability in system A is more dangerous 

than all the others in system B, depending on the systems’ internal 

architecture. 

 More importantly, even if both systems had exactly the same number and 

types of vulnerabilities, the actual damage an attacker can cause depends 
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on the way the system is used and the value that the system has to the 

attacker, which is external information that, by definition, should not be 

part of a security benchmark specification, and therefore should not 

contribute to the security degree computation. 

The worse problem, however, is that the number of vulnerabilities - even a number 

weighted considering the severity of different vulnerabilities and their visibility and 

whatever else we could think of - is a fundamentally misleading metric, even if we 

could circumvent all the problems mentioned above. To understand this 

proposition, let’s assume that given any two systems there is an algorithm capable 

of determining, beyond any doubts, that the set of vulnerabilities that exist in 

system B is more dangerous than the set of vulnerabilities of system A. The key 

question is: what happens if we use this information to state that system A is more 

secure than B? We believe that the answer is that the benchmark user is encouraged 

to choose system A. The real problem arises from the consequence of this 

encouragement. Knowing that system A has a certain number of vulnerabilities 

(now of public knowledge) would also motivate the user to not put it into production 

before correcting those same vulnerabilities, turning system A into a corrected 

version, without public vulnerabilities, which we may call system A’. But the same 

can also be done for system B, in this case turning system B into the corrected 

version B’. Although the initial decision to select system A was based on the fact 

that A had less severe vulnerabilities, the decision was misleading because using 

the same rationale to compare systems A’ and B’ would result in a different 

conclusion: both systems A’ and B’ have zero known vulnerabilities and therefore 

have the same degree of security if we rank them from the perspective of the 

severity of the known vulnerabilities.  

This way, we have to assume that whatever flaws and vulnerabilities the 

qualification step of the benchmark discloses, those will not be present during the 

use of the system (unless they are harmless, and therefore are not actually 

vulnerabilities in the sense that they do not “allow a malicious attacker to 

accomplish a certain effect”). The reality is that the benchmark user has two 

choices: either he corrects the vulnerabilities (i.e. patches them), generating a 

second version of the system, or the vulnerabilities are not corrected and the system 

is not put into use (thus disqualified, as it has security equal zero, meaning that at 

least one possible way of attacking the system is of public knowledge). Obviously, 

in the first case (i.e. if the user patches the target systems), he will end up having a 

draw among all the SUTs (i.e. the corrected ones will not have known 

vulnerabilities), thus distinguishing the security of those applications cannot be 

done using information regarding known vulnerabilities. In our framework, this is 

be the task of trustworthiness benchmarking.  
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As a summary, we would emphasize the following: 

The actual publicly known flaws or security deficiencies of systems 

should never be used as official and standard benchmarking metrics in 

any way, because in a real situation they will likely not be present when 

the system is put into production. Instead, actual flaws should disqualify 

systems for use or point the fixes the system needs in order to be 

acceptable for use. Trustworthiness benchmarking, or the task of 

evaluating the propensity to unknown or hard to detect security problems, 

is the only kind of metric that can put one system before the other when 

nothing can be said about the actual existence of security flaws. 

We believe that this is one of the most important lessons of our thesis discussion 

and our framework is fundamentally based on this idea. 

3.2.2 Trustworthiness Benchmarking 

Trustworthiness benchmarking is a process ultimately based on a very intuitive 

reasoning: the system that should be trusted the most is the one that demonstrates 

more evidence of including trustable characteristics. For any particular domain, 

trustworthiness benchmarking is the formalization of this intuitive perspective in 

the form of algorithms able to compute quantitative attributes representing the 

tendency of the system for having good or bad security. As explained before, even 

though trustworthiness benchmarking should be applied to systems that do not 

present obvious security problems (i.e. that passed the qualification phase), this 

does not exempt them from having characteristics that are related with better or 

worse security characteristics in general. 

Based on the identification of the threat vectors selected for a given domain, the 

trustworthiness benchmark should identify and group the set of characteristics of 

the system related to each vector, and should allow a quantification of trust based 

on their presence, their absence and/or their effectiveness. Although such a 

benchmark will depend on the domain specification and on the threat vectors being 

considered, it should express how frequently one could find evidences that allow 

understanding the probability of the bad effects defined for each vector to manifest. 

In other words, given some predefined characteristics related to the threats, the 

process computes the prevalence of such characteristics and their manifestation 

density, based on a predefined expression of the size of the system under testing.  

As an example, consider a coding pattern (i.e. a programming style) that is in 

general known to be a bad programming practice in terms of security. A 

trustworthiness benchmarking algorithm could be based on counting the number of 
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times this pattern appears in the source code of the systems being benchmarked, 

normalized by the size of each system, thus providing a manifestation density of 

such practice. In a higher-level, where the source code is only a small part of the 

problem, the approach would start from a list of security recommendations that are 

consensually recommended in the context of the target application domain and 

compute a compliance level of the system against that list; the main challenge in 

this case is to understand the consequences of implementing or not such 

recommendations. In this thesis we explore both these approaches in the context of 

transactional systems, investigating both of them from their conceptual and 

fundamental propositions up to their application and validation, evaluating at the 

same time the limitations of such algorithms and approaches. 

A fundamental part of our trustworthiness benchmarking approach is the idea that 

the characteristics being evaluated and aggregated must be related to the threat 

vectors without actually being vulnerabilities themselves. In other words, those 

characteristics can be identified as potentially contributing to security or insecurity 

without being decisive to the existence of security flaws, which dictates the main 

difference between the qualification and the trustworthiness evaluation. By 

definition, the characteristics to be considered in this case are usually not enough 

to allow attacks, but instead they are either partially related with known attack 

scenarios or they are related with a higher probability of the appearance of 

vulnerabilities (even if we cannot be sure that any vulnerability really exists). 

Defined in this way, the system with the higher density of characteristics related 

with the accomplishment of the effects of threat vectors should be ranked as the 

least trustworthy one. 

The concept of trustworthiness benchmarking is one of the biggest challenges of 

this work and, in our opinion, the second most important contribution, in addition 

to the security benchmarking framework as a whole. As explained in the previous 

section, the result of the qualification step is a system (or set of systems) that has 

no obvious flaws and vulnerabilities - to the extent of the procedures defined in the 

benchmark specification - and that are considered acceptable for use. The goal of 

trustworthiness benchmarking is then to provide the relative level of confidence 

that the benchmark user can justifiably put into each system when it comes to its 

ability to avoid the bad effects defined by the threats vectors identified for the 

domain. This confidence, or trust, may be interpreted as the relative probability of 

attackers to be successful when trying to attack the system, even though this 

interpretation is not required. In other words, while the first step of the framework 

(qualification) provides some guarantees that the system can be put into work, this 

second step (trustworthiness benchmarking) provides an index that distinguishes 



Chapter 3  A Framework for Security Benchmarking 

66 

the qualified systems using an estimative of how robust the systems are expected 

to be in the long run. 

While there is plenty of information in the literature that can help in the 

specification of qualification steps within our security benchmark framework, 

trustworthiness benchmarking in this particular form is a new proposal, and very 

little work can be found in the literature concerning the concept (Yang 2011, Toma 

2010, Gefen 2002). This way, we devote two entire chapters to the concept, in order 

to show that the idea of trustworthiness benchmarking is sound and does in fact 

correlate with security aspects in practice. However, it is important to understand 

that this kind of evaluation can be seen as a generalization of concepts and practical 

ideas that are already being used in several areas computer science. Two techniques 

that are based on the same premises as our proposal are described next. 

A long-standing procedure used in the field of computer systems dependability that 

is based on the same principle we are proposing is called defect seeding (Sherriff 

2006). Defect seeding is the process of purposefully injecting random bugs in a 

piece of source code that will be later submitted to manual review for the 

identification of general bugs (i.e. programming errors). After the review, the ratio 

between the number of injected bugs that were found and the total number of bugs 

injected is used to compute an estimative of the number of real bugs that could not 

be found. The procedure takes advantage of the following assumption: if 

programming errors are not intentional (and therefore random), they present a 

normal distribution, and therefore the difficulty of finding errors will be the same 

for the injected errors and the real ones (assuming that the injected ones also have 

a normal distribution). This is also true for the distribution of security flaws and 

vulnerabilities, exactly because we know that, as general bugs, they are also not 

intentional, and can be viewed as a subset all the bugs of an application. This way, 

trustworthiness benchmarking will take advantage of the following relation: if a 

given characteristic of the system can sometimes lead, or be related to, a certain 

security flaw, then the number of hidden security flaws will tend to be proportional 

to the number of security characteristics that lead to it. This way, we connect 

trustworthiness benchmarking with real security characteristics. 

Another interesting work that is based on the exact same assumptions as 

trustworthiness benchmarking is the work on attack surface identification from 

Pratyusa K. Manadhata (Manadhata 2007). In this work the author demonstrates 

that a higher number of alternative entry points in a software system increases the 

probability of one of them being found and ultimately exploited by attackers. In 

other words, the work demonstrates that the insecurity of software can be correlated 
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with a higher or lower number of entry points, which are functions of the system 

that are primarily linked with the possibility of attacks.  

Trustworthiness benchmarking extrapolates the ideas presented in the examples 

above and generally assumes that a system with more evidences for insecurity will 

in the long run be less secure (or, from another perspective, the one with more 

evidences for security should be the one we trust more). The reasoning in which 

we base our approach, however, highlights one important limitation of 

trustworthiness benchmarking: evidences for security are no guarantee of security. 

For that reason, in our framework, any security guarantees that can be obtained 

without any doubt should be obtained in the qualification step, while the second 

step only deals with relative probabilities and unknown factors.  For example, if a 

system has a hidden vulnerability that no static code analyzer, penetration tester or 

even manual analysis can detect, it is unrealistic to expect any trustworthiness 

benchmarking procedure to take it into account.  

What we should expect is that if some hidden vulnerability is the result of detectable 

insecurity patterns in the construction or characteristics of the system, then this 

system will be ranked lower than another system that do not possess any kind of 

insecurity pattern, or at least has less insecurity patterns, correctly inducing the user 

to choose the system that is more likely to be secure. For instance, taking the 

example of the attack surface concept, if a vulnerability in one entry point is a direct 

result of the existence of too many entry points (i.e. more entry points increase the 

probability that one of them will have a programming error) then the attack surface 

metric will be a probabilistic expression of the hidden vulnerabilities. This is 

exactly trustworthiness benchmarking. 

3.2.3 Instantiating the framework  

The instantiation of the framework into a concrete benchmark instance is not 

simple, and several a-priori definitions have to be made. In the following 

paragraphs we discuss the main aspects that have to be considered, the reasoning 

behind those requirements and why they are important. We finish with a detailed 

summary of all the steps involved in the definition of a concrete benchmark.  

The actual specification of a benchmark instance starts from the definition and 

careful study of the domain in which we want to apply the benchmark. The term 

domain usually refers to the specification of some particular application area, like, 

for instance, operating systems, web servers, databases, etc. However, as we 

discussed before, security aspects have direct relation with value and utility both 

for the attacker and for the victim, and applications taken without any context 
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simply cannot have their security correctly evaluated, as one cannot identify the 

bad effects that might occur. For example, it is impossible to determine if the lack 

of authentication in an operating system is a security problem without any 

assumption of where and how it will be used. For this reason, any security 

benchmark has to start by assuming some kind of system usage and, depending on 

the case, the existence of roles of interaction with different security properties. This 

description of application use-case may be very detailed or extremely brief, 

depending on the specific situation and the objectives in terms of the 

representativeness of the results of the benchmark. In this thesis, we refer to this 

use-case as base scenario, which is also the main foundation from where we 

identify the threat vectors mentioned earlier. This way, without a precise definition 

of the base scenario it is not possible to make any kind of security judgment. 

Ideally, the base scenario description should provide information regarding the 

expected interactions and roles regarding the potential target systems usage. 

However, in a security context, more information is required for defining a 

benchmark. In particular, two very important aspects have to be specified carefully: 

the benchmark goals and the benchmark user, which actually are definitions that 

are basically intertwined. Even though the reasoning behind the need for the base 

scenario is quite intuitive, the reasons for these extra definitions have to be carefully 

understood.  

As already explained, benchmarking can be used to compare alternatives or to 

evaluate the evolution of a single system in time. However, these tasks presuppose 

that something in the domain has alternatives, or that something in the domain may 

evolve. But this may not be true for all systems at all times, and must be clearly 

expressed in the benchmark definition. To clarify the difficulties mentioned before, 

let’s consider the case of a DBMS, which is the core of most transactional systems, 

and let’s assume that we want to build a benchmark to compare alternative DBMS 

engines. A benchmark with such goal would be applied before the installation of 

the engine, while still being able to point the best engine to use. In this case, there 

is no environment to correlate with potential security problems, so the benchmark 

must be capable of taking into account, realistically and in a useful way, the 

conditions of the future use of the database, and not only the software engine in an 

isolated way. After the deployment of a chosen DBMS engine, the situation 

becomes considerably different. In this stage, it is not reasonable to assume 

anymore that the DBA will keep changing the engine even if a more secure one is 

found. In most cases, the step of choosing one DBMS engine is a commitment for 

the life of the system, as the effort to change it is quite significant (involving 

changing not only the DBMS, but also the applications that use it). Therefore, after 
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deployment, what we have is a specific engine operating within an environment 

that evolves. The type of benchmarks that make sense at this point is necessarily 

different from the ones that were used to select an engine in the first place even if 

we consider that the threats might be the same. In this case, what the administrator 

needs is a tool that allows understanding the potential security issues of the 

environment. 

The issues discussed above have direct impact in the utility of a benchmark, or, in 

other words, how useful the results of the benchmark will be for its user. Basically 

what this means is that certain results are only useful in particular moments of the 

lifetime of the target systems, and a security benchmark that does not take this into 

consideration might be practically useless despite its correctness. For instance, 

stating that a particular software is insecure (or is less secure than an alternative) in 

a context where the user is obliged to use it and cannot replace it is not a useful 

outcome. On the other hand, stating that one of the characteristics the user has 

control over (e.g. the configuration of the software or its environment) should be 

changed to a more secure state is a more useful result.  

These reasons show why clearly specifying the user of the benchmark is also an 

important aspect. In practice, the role of the user of the benchmark defines what 

makes sense to express in the benchmark and what does not make sense, which will 

influence the base scenario definition, the qualification and the trustworthiness 

benchmarking specifications. For instance, a DBA and an application developer are 

two distinct roles that have different capabilities and assignments, even under the 

same domain, and therefore would require two distinct security benchmarks. While 

the first may be interested in securing the DBMS engine against insecure software 

that connects to it, the second one should be more interested in making the software 

that connects to the DBMS more secure, even if both systems are part of the same 

transactional system architecture. 

In summary, the definition of a useful benchmark requires the following steps to 

be previously conducted: 

1. Definition of the high-level application domain (i.e. the base definition of 

the potential benchmark target systems).   

2. Specification of the application use-case, the base scenario. If applicable, 

this includes the specification of the main roles that are expected to exist 

in the use-case in terms of their interaction with the system. 

3. Specification of the benchmark user, or who will use the results of the 

benchmark. 
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4. Definition of what kind of guidance the benchmark user could expect from 

the benchmark (i.e. the benchmark goal). 

The definitions above allow then the actual development of the benchmark, which 

is done by the performing three steps: 

1. Identification of the threat vectors relevant to the security of the base 

scenario. These threat vectors specification should lead to a strategy for 

identifying the characteristics of the architecture that are related with the 

unwanted effects being considered. 

2. Qualification specification: definition of the set of procedures that allow 

identifying the systems that are not acceptable for use in the field (i.e. have 

security 0), given the base scenario specifications. Qualification requires 

the system under test to meet two requirements:  

a. Have the minimum set of security mechanisms needed to carry out 

the security tasks identified for the domain and taking into account 

the base scenario. 

b. Pass the minimum set of evaluations, automated or not, that show 

that there are no publicly known ways of attacking the system. 

3. Trustworthiness benchmarking specification: definition of the set of 

algorithms that compute the index that represents a relative amount of trust 

that can be put in systems, in terms of its characteristics to prevent the 

manifestation of the undesirable effects determined by the considered 

threat vectors. 

3.3 Transactional Systems: the Case Study 

In the previous sections we described transactional systems from a very high level 

perspective, assuming the reader to have a very basic knowledge of the domain. 

This section describes in more detail that domain, as it is the focus of the 

benchmarks presented in the next chapters. First, we describe what exactly a 

transactional system is and what distinct parts it has. Then, we present the parts of 

that domain were we made progress and what we actually study in detail throughout 

our work. Transactional systems were chosen because not only they are a very 

representative system, which is used by almost all organizations today, but also 

their complexity is high enough for it to be an interesting evaluation challenge. 

3.3.1 Elements of a Transactional System 

Transactional systems, as the name suggests, are systems that process data or 

perform actions through series of transactions (Reuter 2008). A transaction is 

usually defined as a set of elementary steps that should be considered as a unity, 
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and should not cause any effects if interrupted during mid-execution; either all of 

them are successful or none is to be executed. Another behavior usually expected 

from a transaction is that none of its effects are visible during mid-execution to 

other transactions (making concurrent transactions to not perceive the effects of 

each other before they are completely finished). These expected behaviors are 

usually referred to as the ACID properties (Atomicity, Consistency, Isolation and 

Durability (Gray 1992)). 

The utility of transactions is that they allow defining complex operations based on 

more basic commands. Transactions, therefore, endow systems with a trustworthy 

mechanism capable of composing simple commands into more complex ones, 

allowing for the system state changes to be as complex as required by the domain. 

In other words, a set of data can confidently be changed from one consistent state 

to another consistent state, even if the transformation from one state to the other 

requires several different processing steps that may fail independently (Gray 1992).  

A transactional system is usually based on an architecture designed to help and 

support some business domain, where a set of users want to use computing 

capabilities with the goal of supporting a specific set of business tasks (Zsifkov 

2004). The business domain is usually some specification of a real live enterprise 

process (or set of processes). In practice, the transactional system helps 

accomplishing the goals of the business, and is typically is composed by three 

distinct elements namely a database, a Database Management System (DBMS) 

engine, and one or more client applications. A general and very common setup is 

depicted in Figure 3.2.  

 

Figure 3.2 A typical transactional system architecture. 
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The database is the logical implementation of a data model, which is used to shape, 

store and maintain data regarding the business domain that the transactional system 

is designed to support (Gray 1992). The DBMS engine, on the other hand, is the 

software system that maintains the database and provides interfaces for interacting 

with it, allowing for the modification of the data model, as well as the provision of 

commands that allow the insertion, modification and removal of data from the 

database. In other words, the database data model is the vision that the DBMS 

provides to the users of the data they input into it. The DBMS is also responsible 

for maintaining and enforcing the series of access rules that ultimately define what 

is permitted and what is forbidden within the database (Gray 1992).  

The client applications are the software implementation of the rules of the business 

domain, even if some part of those rules sometimes are actually implemented inside 

the DBMS engine (Eisenberg 1996). For example, a client application may include 

the algorithms that decide what different types of data are to be stored together, the 

consistency requirements for this data to be valid, the computations that are 

permitted over this data, the methods and views through which the data is 

accessible and, also, what are the transactions that are required for maintaining the 

business rules of the domain. Transactions appear in this context as the sets of 

transformations that will keep the database in the consistent states defined by the 

business rules.  

One important characteristic of transactional systems is that most of them 

implement a client server architecture (in a two, three or multitier architectures 

(Ram 1999), meaning that the client applications and the DBMS engine 

communicate through a network of some sort. This leads to the reality that most 

clients applications run in an environment completely different from the DBMS 

engine, and, at the very least, the information that the user inputs may come from 

insecure environment and devices. This leads to a whole sort of security 

complications and characteristics that make transactional systems a very attractive 

domain for our study. 

3.3.2 Security Benchmarking of Transactional Systems 

To consider transactional systems as our case study, we need to examine the 

question of what do we expect from a security benchmark in this domain. The first 

aspect one notices from the description in the previous section is that even though 

we defined a transactional system has having 3 elements (i.e. the database, the 

DBMS engine, and the client applications), when we realize that the database itself 

is only a piece of data that is inside the scope of the DBMS engine, we conclude 

that actually there are preferable two levels of software to be considered: the DBMS 
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and the clients. Both of these have not only completely different operational 

environments, but also completely different security goals, as we examine next.  

The DBMS engine is a piece of software that must ensure the integrity of the 

databases it holds (Allard 2010). As being mainly software that receives orders and 

commands from the applications, it must provide guarantees to the clients that data 

changes do not occur except under authorized conditions. In other words, the 

primary goal of the DBMS is not prevent the data it holds from suffering any other 

manipulation besides the ones submitted by a correctly authenticated application. 

Such guarantees, however, have to take into account all the ways the potential 

attackers can use to interact with the database engine, which are not only associated 

with the engine itself, but extend also to the underlying operating system, hardware, 

network, etc., and all the personnel that is in charge of maintaining the correct 

functioning of the system, from the Database Administrators (DBAs), to the 

developers that interact directly with the DBMS and the maintenance crew in 

charge of backups. All these variables have to be accounted for if one wants to have 

some kind of clue about the security level of the DBMS engine.  

Throughout this thesis, we will refer to the DBMS engine plus the entire underlying 

environment as a transactional system infrastructure, in the sense that it is the part 

of the system that gives the fundamental support for the definition and 

implementation of end users business rules. Additional security characteristics of 

transactional systems infrastructures are discussed in Chapter 4, where we study 

the application of our framework to this part of a system and put forward ways for 

characterizing in a practical and comparable manner real live installations. It is 

important to notice, however, that given such complexity, the selection of the 

DBMS engine itself is also a very important, yet very difficult thing to do correctly 

from a security perspective. This particular problem is revisited in Chapter 6.  

The security goals of the client applications, on the other hand, are somewhat 

different. As they are the part of the system that defines and implements the 

business rules of the domain, the most important thing that we want to be sure is 

that such business rules are correctly implemented and cannot be broken. Usually, 

functional testing of the software that is being developed tries to identify if the 

defined business rules are correctly implemented, and if the system actually does 

correctly what the users require it to do (Zsifkov 2004). However, doing what it 

should is not the same thing as not doing what it should not do. Robustness and 

security testing (Shahriar 2012) are techniques that can be used to test the system 

conformity and correctness from the perspective of either unexpected interactions 

or malicious interactions (i.e. interactions where an attacker may use any mean 

available to lead the system to break some business rule). In practice, when 
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selecting an application one wants to know how likely it is for an attacker to be 

successful if he tries to force the system to execute an illegal action. We discuss 

these problems in detail in Chapter 5, where we identify and validate ways for 

supporting such selection process under the assumptions of our framework. 

3.4 Conclusion 

This chapter presented a security benchmarking framework, which is divided in 

two parts: security qualification and trustworthiness benchmarking. We thoroughly 

discussed the framework and the reasoning behind it. The main idea is that the 

correct classification of systems concerning security attributes has to be done by 

means of separating the processes used to evaluate the knowable security aspects 

of the target (e.g. the search of existing vulnerabilities) from the evaluation of the 

aspects we can only estimate (e.g. the probability of a system having hidden 

vulnerabilities.). 

Security qualification is the process designed to deal with the tangible security 

characteristics of the system being evaluated, and the main result of it is the 

identification of the systems that are acceptable for the domain. Identifiable 

security vulnerabilities and the lack of fundamental security mechanisms necessary 

for the accomplishment of the required security tasks in the domain are the primary 

reasons for disqualifying alternatives, which are then considered as having security 

level equal zero. 

Trustworthiness benchmarking should then be applied to the systems that are 

considered acceptable. This process, therefore, estimates the amount of trust that 

we can justifiably have that the system will not bring security problems in the future 

due to undetectable vulnerabilities or the lack of proper security precautions.  

The chapter ended with an introduction to the particular domain that will serve as 

use case for the instantiation of the framework on concrete benchmarks, i.e. 

transactional systems. From a security point-of-view, we divided transactional 

systems in two parts, the transactional systems system infrastructure, which is 

addressed in Chapter 4, and the business applications, which are studied in Chapter 

5. 
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4  
 

Security 
Benchmarking of 

Transactional 
Systems 

Infrastructures 

Database-centered transactional systems are typically designed following a client-

server architecture (Ram 1999). As such, they can be divided in two main parts: the 

database server infrastructure, which is centered on the DBMS engine and its 

related software and hardware appliances; and the business applications that 

implement the business logic and provide the end user interfaces. Although these 

two parts are highly tied, they have completely different characteristics, thus 

requiring different approaches in a security benchmarking context. 

The database server infrastructure is usually maintained by a small group of 

Database Administrators (DBAs). Its security characteristics are strongly 

influenced by the large number of configuration alternatives provided both by the 

DBMS engine and the network and server configurations that relate with it (for 

example, in most cases the operating system configuration directly affects the 
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DBMS security features). The problem here is that, for an average DBA1, it is 

extremely hard to keep track of all the details that may influence the security of a 

database installation. Furthermore, a key aspect regarding the security of the 

database infrastructure is that the damage that an attacker can cause strongly varies 

depending on the characteristic he exploits. This effect can be clarified by a simple 

example: consider an attacker that exploits a weakness in a backup system in order 

to obtain confidential information; this form of attack prevents him (on the majority 

of the scenarios) from modifying the information, which would otherwise be 

possible if he somehow obtained access directly to the DBMS engine. 

The business applications, on the other hand, are usually well specified and the 

security problems that they may have can be narrowed down to a much smaller list 

of possible variations and bad effects, making them much easier to understand 

(Russel 1991). In fact, as the goal of these applications is to enforce the business 

rules of the service they are built to support, security risks typically consist of 

failing in enforcing such rules. This is normally related with programming mistakes 

that allow following execution paths that were not originally intended (e.g. a SQL 

Injection vulnerability that permits a data change that should not be allowed). 

Although such mistakes are hard to detect and prevent during development, once 

exposed they are quite easy to analyze and correct (Shahriar 2012). 

In this chapter we apply the framework proposed in Chapter 3 to build a security 

benchmark for database-centric transactional system infrastructures (security 

benchmarking of business applications is addressed in Chapter 5). First, we define 

a generic scenario (the Base Scenario), in which we specify the boundaries of what 

we are considering to be a transactional system infrastructure. Then we discuss the 

approaches for security qualification and trustworthiness benchmarking of DBMS 

infrastructures, applying the abstract concepts defined in Chapter 3 to the concrete 

base scenario. To demonstrate the proposed benchmark, Section 4.4 presents a case 

study, where the benchmark has been applied to compare four real installations 

using four distinct DBMS engines. Finally, Section 4.5 concludes the chapter. 

                                                      

1 Defining an “average” DBA is not trivial. In this context, we consider an “average” DBA as someone 

that is not an absolute expert in every single system involved in the database installation (or 

installations) he is in charge of. Practice shows that most DBAs in small and medium size 

organizations are not security experts and do not hold extensive knowledge about all the possible 

configuration options of the infrastructure elements, including the OS, network elements, etc. 
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4.1 Base Scenario 

In order to be able to make decisions regarding the benchmark definition, we need 

to make some background assumptions regarding a few characteristics of the 

benchmarking domain (i.e. the environment for which the benchmark is being 

designed). As explained before, security is both related to value (something that the 

attacker may obtain or the victim might lose), and resources or capabilities needed 

to gain that value. Both of these require tangible properties to be considered, or else 

it is impossible to reason about security aspects in a practical manner. This way, 

two key restrictions are considered in this base scenario: first, the scenario is as 

generic as possible, to allow the benchmark to be applicable to the largest possible 

number of real installations; second, the scenario is specified in order to be 

representative of security concerns in real applications.  

In fact, even if personal database applications (e.g. an application for storing and 

managing personal notes) may have security implications, a security benchmark 

for such a domain would clearly have very limited interest. Much more relevant are 

situations where critical personal and business data are at stake, and/or where 

security problems may affect a very large number of individuals simultaneously. 

Furthermore, as we are targeting the transactional system infrastructure, the 

particularities of the business applications can be abstracted, focusing only on the 

classes of users that interact with the database (i.e. the virtual identities that relate 

with the system). The idea is that the database infrastructure should protect itself 

against exploitations of characteristics of the environment and vulnerabilities of the 

business applications; therefore, benchmarking the security of the infrastructure 

should not be constrained by the business applications specificities. 

The following points detail the key assumptions and characteristics of the proposed 

base scenario (their representativeness is discussed later in this chapter), which 

largely shape the benchmarking domain and provide the boundaries for the 

definition of the benchmark components: 

1. The infrastructure is composed of a relational DBMS engine on top of 

an operating system (OS) running on a single physical computer. Although 

this is a simple configuration, practice shows that it is representative of the 

large majority of database installation in the field. 

2. The platform is connected to a local area network (LAN), and the DBMS 

may be accessed locally (from the console) or through that network (from 

client hosts or application servers). The LAN may have a connection to the 

Internet. However, Internet users do not connect directly to the DBMS 
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(prevented via common network configurations), but only indirectly 

through web applications hosted by application servers. 

3. The DBA is the overall administrator of the environment, and either 

there is only one DBA or several DBAs that act as a single entity (by 

making consensual choices for the system configuration, which is a typical 

management approach in the context of complex installations). 

4. Threats are always associated to individuals, which might (or might not) 

have a legitimate relation with the system. The only trusted individual is 

the DBA. All others are assumed to be potentially untrustworthy (i.e. a 

pessimistic approach is followed when it comes to security issues), and 

thus may try to compromise the system in some way. 

5. Individuals always interact with the system through userids, which are 

virtual identities assigned to each individual (or set of individuals) 

depending on the relation he has with the system. Userids are verified by 

an authentication procedure and belong to one of the following interaction 

classes:  

a. Application userid: users that authenticate and interact with the 

database system using a business application (e.g. a web-based 

application), and whose actions are restricted by the application’s 

rules;  

b. Operating System (OS) userid: users that authenticate directly to 

the OS and whose actions are restricted by the configuration of the 

OS environment; 

c. DBMS userid: users that authenticate using the DBMS 

authentication mechanisms and whose actions are restricted by the 

DBMS configuration and environment.  

6. Real individuals have roles that entitle them for one or more userids. For 

example, end-users have only an application userid and developers may 

have a DBMS userid and also an OS userid. The DBA may hold the three 

types of userids, while maintenance staff typically has only an OS userid. 

Real individuals that are not users of the system do not have a legitimate 

userid, and they may interact with the system only through interfaces that 

have an anonymous network access (e.g. an authentication web page that 
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may be open to the Internet, or the operating system network layer that 

responds to ICMP (Stallings 2010) requests coming from the LAN). 

7. Custom business application code (implemented by developers and 

restricted by the database administration policies that dictate how 

applications may connect to the DBMS) may run on a local web server, on 

top of remote application servers, on remote client hosts inside the LAN, 

or inside the DBMS as stored procedures. 

A key characteristic of the scenario proposed above is related to the interaction 

classes (item 5). The definition of interaction classes assumes that a real individual 

either has its relation with the system defined by one (or more) of the three 

interaction classes (i.e. application, operating system, or DBMS userids) or has no 

official relation with the system. Although in practice the relationships may be 

much more complex than that, this approach simplifies the analysis of the system 

security, as a potential attacker must always act on the system through one of these 

classes. Each of the four relationships defines a distinct environment container, 

with a predefined set of privileges associated with it, which must be taken into 

consideration when analyzing the security of the system. This is particularly 

relevant in infrastructures as complex as a database installation, especially when 

inside threats are being considered Actually, we should emphasize that in database 

environments, inside threats must be seen as as relevant as anonymous Internet 

attacks: insiders may even be more hazardous, as they frequently have pre-

established security privileges within the system (Bishop 2008). Thus, small 

vulnerabilities may be more risky when facing an insider attack than when facing 

an unknown Internet hacker.  

In the case of applications that are publicly available to the Internet, we assume that 

all users have an application userid that grants them privileges to access the 

publicly available parts of the existing business applications. In our benchmark, all 

those cases (from the insider threats to the anonymous Internet users) are taken into 

account by evaluating each threat from the point of view of all the different 

interaction classes. 

It is important to realize that the definitions presented above are representative of a 

very large number of real DBMS infrastructures. Even though such definitions are 

quite complete (i.e. they include the most relevant aspects, from a security point-

of-view), they are at the same time very flexible. For instance, although the scenario 

considers the existence of application developers, it is flexible enough to consider 

the situations where the DBA is the only developer and also the situations where 

there is a software development team (i.e. the number of developers is not a 



Chapter 4  Security Benchmarking of Transactional Systems Infrastructures 

80 

constraint). Also, no specific structure is imposed on the local area network, as that 

would be extremely complex due to the large number of possible variants; the only 

assumption is that any connection to the Internet goes through a specific point of 

communication, and direct connections to the DBMS are not possible from outside 

the LAN. Obviously, we could also consider other scenarios with alternative 

assumptions, including: DBMS replicas, applications using more than one DBMS 

engine, three tier architectures, multiple DBAs and operating systems running 

inside virtual machines, etc. However, as we will show later, it would be quite 

straightforward to consider such cases during the benchmark definition. In practice, 

we decided not to overcomplicate the base scenario, as our main goal is to show 

the validity of the framework, and not to propose an universal benchmark. 

Benchmarking should be a joint initiative, taking input from several parties 

(Bondavalli 2009). 

A final relevant aspect is that the complexity of the environments that fit the 

assumptions above makes them highly prone to the appearance of vulnerabilities 

(Russel 1991). The benchmark must help the administrator understanding the 

threats to which a configuration is more exposed, allowing him to make educated 

decisions and address primarily the most critical problems from his own 

perspective.  

4.2 Security Qualification 

As defined by the base setup presented before, a transactional system infrastructure 

(sometimes also referred to as database infrastructure) is a set of network, 

hardware and software elements that are configured in a way that provides the 

support for the business applications (which in fact implement the end users 

solutions). Without considering an enclosing environment, evaluating the security 

of a DBMS infrastructure is very hard, as no threats can be assumed beforehand. 

This happens because we cannot pinpoint what is valuable and should be protected, 

and what is not valuable and would never impose a loss to the system owner. At 

the same time, the security of any business application, which is the main reason 

for the existence of the infrastructure, depends ultimately on the correct 

configuration of the DBMS infrastructure. Therefore, we face the fact that the 

choices made before the deployment of a business application do have impact in 

the security of all the systems involved. 

Security qualification is the step where we identify what is acceptable and what is 

not acceptable in terms of security within a domain. As explained in Chapter 3, this 

analysis is based on two key aspects: 1) the vulnerabilities that allow someone to 

attack the system, and 2) the security mechanisms that are required for a system in 
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that domain. The problem is that, without considering the business applications 

specificities it is not possible to reliably reason about the vulnerabilities that allow 

a transactional system infrastructure to be attacked, making security qualification 

based on the analysis of vulnerabilities misleading. This is due to two reasons: first, 

one cannot identify what is supposed to be protected (e.g. all resources may be 

public, thus some vulnerabilities are irrelevant); second, when protecting a scenario 

as complex as a transactional system, the system administrator usually follows a 

defense-in-depth approach (Howard 2002), meaning that any single vulnerability 

may be mitigated by an alternative security layer (thus, not actually being an 

exposed attacker entry point).  

The second aspect regarding security qualification (the security mechanisms that 

are required for the system to be used in the benchmark domain), can however be 

addressed without considering the business applications. In fact, assuming that for 

tuning the security configuration of a live infrastructure the administrator 

effectively makes use of the set of available mechanisms to maximize the system 

defense surface (following a defense-in-depth approach), then it is possible to 

qualify the underlying software (i.e. the software elements that will support the 

DBMS infrastructure) taking into account the specific configuration the 

administrator intends to deploy. In other words, it is possible to qualify final 

products (e.g. DBMS engines, OS) in terms of the mechanisms they provide for the 

administrator to defend his infrastructure. This can be done by comparing the 

intended configuration with the set of mechanisms provided by the benchmarked 

software (mechanisms that are required but not provided by a given software 

package, may disqualify in the proposed benchmarking process). 

This aspect is thoroughly discussed in Chapter 6, in which we propose a 

qualification benchmark that can be used by administrators to select software 

packages for transactional system infrastructures. Such qualification process is 

heavily based on the lessons learned when defining the trustworthiness benchmark 

presented in the next sections, and will allow answering a very specific question: 

how can a DBA choose a DBMS engine (and the other supporting software) that 

ultimately allows easily securing a transactional system infrastructure?  

4.3 Trustworthiness Benchmarking 

Within the framework proposed in Chapter 3, security comparison is given by 

performing trustworthiness benchmarking, where the goal is to provide some kind 

of estimation of the proneness of some security premise to be broken. As mentioned 

before, given an isolated DBMS infrastructure, it is not possible to reason about its 

security in terms of breaches of the business rules, as such rules are not 
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implemented yet: they will only exist when business applications are deployed 

(when considering a benchmark for a transactional system infrastructure, we are 

not considering the businesses applications, but the infrastructure that may be the 

backbone of a set of applications; we will discuss the design of such a benchmark 

in Chapter 5). However, as those business rules will eventually exist and will have 

to be enforced when a business application is deployed on top of the transactional 

system infrastructure, trustworthiness benchmarking can be used to: 

assess and compare how much control the administrator has over 

his infrastructure or, in other words, how much certainty the 

administrator can have that his infrastructure will not be used to 

break the business rules without his consent. 

In practice, the benchmark should allow the administrator (i.e. the DBA, as 

specified in the base setup) to assess and compare the effectiveness of different 

configurations on preventing attackers from using the infrastructure to break the 

restrictions imposed by the business applications. This is the most useful point-of-

view to take when benchmarking the security of a transactional system 

infrastructure, and therefore is the one chosen to guide the definition of our 

benchmark. 

For the actual benchmark definition we propose four key steps. Although these 

steps intend to be generic (i.e. applicable for the definition of any trustworthiness 

benchmark for transactional systems infrastructures), they are based on the base 

setup described before, and may need to be adjusted when considering scenarios 

with different characteristics. The steps are as follows: 

1) Identify the threat vectors that are relevant in the context of the scenario 

(i.e. that are representative of real threats). The first piece of information 

needed for defining a trustworthiness benchmark is the definition of what 

are the bad, undesirable or harmful effects that are considered to be 

relevant security issues. In a transactional system infrastructure, the threat 

vectors should be consist of generic effects that may allow or facilitate 

attackers to compromise the security of the business applications that run 

on top of the infrastructure. For example, Denial of Service prevents the 

business applications of obtaining the data they need, even if the 

applications themselves are working. Other example would be obtaining 

access to private information through means that the business applications 

developers are not even aware that exist (Side-Channel Information 

Disclosure). 
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2) Identify the system elements that influence the probability of one or more 

of the threat vectors being instantiated as attacks. After devising the list of 

harmful effects, we need to enumerate as thoroughly as possibly the set of 

elements related with them. For example, encrypting communication 

channels allow preventing obtaining private information, and so does the 

encryption of backups. Also, small precautions like having the DBMS 

engine daemon with the least amount of privileges also prevent extended 

damage in the case of application’s vulnerabilities (i.e. if privileges are 

correctly set, one application might not be able to affect another, improving 

the overall security of the infrastructure despite the vulnerabilities). Such 

elements may be directly extrapolated from the harmful effects, or 

identified based on other types of analysis and research, and may consist 

of security mechanisms, processes, configurations, procedures and 

behaviors associated with security in the benchmarking domain (in this 

case, the transactional system infrastructure). This list will serve as the base 

for the definition of what should be taken into account when evaluating 

trustworthiness aspects. 

3) Define how much each element influences the security of the infrastructure 

(in average). This is the most difficult and controversial part of the process, 

as it may depend on the characteristics of the environment being evaluated, 

something that should be avoided in a benchmark for portability reasons. 

At the same time, it is unrealistic to assume that all the security elements 

provide the same contribution to the security surface of a system, even from 

a generic point of view. For example, the security impact of having the 

DBMS daemon running with administrative privileges within the operating 

system cannot be the same as the impact of a complete lack of auditing or 

privilege management capabilities. This way we need to assign a level of 

influence to each element, even if in an approximate manner. 

4) Identify how the security elements relate with the threat vectors. Even 

though it is clear that the security elements identified in step 2 are related 

with security, the threat vector (or vectors) they are related with is not 

always obvious. The goal of this step is to perform an analysis that allows 

such identification. An example is: the execution of the DBMS engine 

daemon with excessive privileges may lead to what security problems? 

This identification is particularly tricky, especially because the original 

security elements cannot be obtained through a methodical and/or formal 

method. We thus propose the concept of pessimistic scenarios to make the 

correlation between security elements and threat vectors. For example, 

obtaining physical access to the DBMS engine server may allow either to 
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have access to the operating system or directly obtaining the raw data 

stored in the physical hard drives, but such things are only possible 

“everything goes bad”, which is more or less the idea of the pessimistic 

scenarios. 

These four steps allow the design of a benchmarking procedure to guide the 

assessment process of any concrete environment that fits our base setup 

specification, which should allow the computation of the trustworthiness metrics. 

The next sections thoroughly present the actual process we used to define the 

benchmark, discuss the difficulties and decisions taken along the process, and the 

set of concrete steps that allowed us to build a trustworthiness measurement tool 

that can be used by DBAs. As it will become evident, most of the steps takes 

advantage of field research and practice in an attempt to make the benchmark as 

representative and realistic as possible. Although we realize that work based on 

field research has limits (which is why formal methodologies are often preferred), 

there are no formal methods available to accomplish our goals (and it seems 

extremely hard to even propose one). This way, we are left with the field experience 

of professionals. To better understand the problem, we also discuss and analyze the 

limitations that such approach imposes on each step of the proposed benchmarking 

methodology. 

4.3.1 Threat Vectors  

In the context of our framework, the first step towards the implementation of a 

trustworthiness benchmark is the identification of the effects or circumstances that 

are considered security violations, which we define as threat vectors (as proposed 

in Chapter 3). In the context of transactional system infrastructures analyzed 

without taking into consideration any business applications, the effects that we 

want to identify are the ones that are generically associated to security breaches in 

the presence of any set of conceivable business applications. In other words, the 

goal is to identify the effects or circumstances that may allow (or facilitate) 

attackers to circumvent one or more of the rules that the business applications will 

be in charge of enforcing.  

Lists enumerating typical threats in the transactional systems domain are not 

obvious or easy to obtain, and a set based simply on the breach of CIA properties 

is too generic to be useful in practice (Parker 2002). A slightly more targeted 

approach could be based on the STRIDE threat modeling methodology (see 

Chapter 2 for more details), which proposes the following list of security threats:  

− Spoofing: threats that involve an entity using another identity that is not 

its own; 
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− Tampering: threats that involve unauthorized modification of data or 

another part of the system; 

− Repudiation: threats involving the denial of someone performing an 

action; 

− Information disclosure: threats involving the exposition of information to 

an unauthorized entity; 

− Denial of service: threats that may lead a particular service to become 

unavailable to its users; 

− Elevation of privileges: threats that may allow an entity to obtain more 

privileges than it was originally supposed to have. 

Although a relevant starting point, STRIDE is also too generic, and the actual 

semantics involved in the application of each of these threats in the context of 

transactional systems are too open for disagreements. To understand why, take, for 

instance, the Information disclosure threat. Whenever an end user provides some 

confidential information via a business application, this information immediately 

goes through the following workflow (or a variation of it): first it is processed by 

the user interface application, then it is transmitted through an arbitrarily complex 

network to a server (that may be the DBMS server directly or an intermediary 

application server), and finally it may be processed by this server or by the DBMS 

engine before being stored in the database files. The information may be 

temporarily stored in the server’s memory and written to a permanent storage 

device, which may then be copied to another media for backup. This way, 

unauthorized access to this information can happen through several distinct means 

(Payton 2006), including:  

- Physical access to the server: even if logical access to the server is 

protected through reliable authentication procedures, the data can be 

obtained from the memory footprints of RAM circuits, or even from the 

physical hard drives. Alternative system boot from optical or USB drives 

are also known to be possible. 

- Interception of traffic data:  network traffic can be collected not only on 

the intermediate network routing equipment, but also at the end-points, 

where privileged access to the operating system of the database server or 

to the client device would allow reading the information.  

- Interception of backup copies: physically and/or logically unprotected 

backup devices can also be used to access unauthorized information (even 

if backups can hardly be used to modify data). 
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- Insider threats: several different persons may work together in the 

maintenance and administration of the infrastructure, thus having 

legitimate access to the information. Thus, it is important to account for the 

possibility of people taking advantage of their privileges in order to obtain 

information they should not have access to. 

In practice, we need a list of threats like the ones defined by STRIDE, but that takes 

into account the characteristics of our base scenario. A possible approach that could 

be used to accomplish this would be to collect information concerning real 

instances of security breaches (i.e. real cases like the ones proposed above) and 

extrapolate the effects involved in each one, grouping them in large categories. The 

problem is that details concerning attacks to real installations are extremely hard to 

find. This is mainly due to the fact that administrators tend to follow a “security 

through obscurity” approach, thus hiding the occurrence of any successful attack 

events against their systems (Pavlovic 2011). Their reasoning is that disclosing 

such information could draw the attention to the existing weaknesses, opening the 

door for more attacks.  

Information that can be more easily found is related to implementation bugs in real 

DBMS engines that turn out to be security vulnerabilities (Messmer 2012). In 

theory, these bugs could be analyzed in terms of the threats to systems in the field 

(even if it is not always possible to identify how they can be used to breach business 

rules of applications, as this would depend on how these applications are designed). 

However, a trustworthiness benchmark for our base scenario cannot be based on 

this kind of information (at least not completely), for two reasons: first, because 

software bugs do not account for all the security effects in a DBMS installation, 

and are not representative of the large number of issues caused by the myriad of 

possible configuration errors; second, because fixing software defects in a DBMS 

engine is not usually the DBA’s responsibility, and therefore the effects of these 

bugs could hardly be avoidable in a real situation. The only measure the DBA can 

take is to install, as soon as possible, the existing patches that fix software defects. 

In other words, such benchmark would be of reduced usefulness for DBAs, in the 

majority of the cases, as it would simply provide information about something that 

the DBA is not able to change unless he replaces the whole infrastructure (which is 

unrealistic in most scenarios). 

To identify the relevant threat vectors for DBMS infrastructures we conducted an 

extensive field search. We started from a wild range of documents and papers from 

a variety of sources, like white papers, manuals, research papers, etc., and analyzed 

them for the kind of information we needed (i.e., what should we prevent from 

happening within a transactional system infrastructure). As this specific kind of 
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information is too scattered and most documentation we found just touch these 

issues superficially (and we need at least some level of justification for each threat), 

we finally ended up reducing the initial sample to three main sources of 

information: the original six STRIDE threats, two protection profiles for databases 

from the Common Criteria evaluation methodology (Common Criteria 1998, 

2000), and a popular white paper (Shoulman 2009) that presents a consensual “top 

10” of database threats. The reasoning behind this decision is that each of these 

sources already includes a summary of the consensual threats identified by the 

groups that created them. Thus, the intersection of the four documents provides, in 

our opinion, a representative set of the threats.  

We then analyzed the information contained in the chosen documents and rewrote 

the threat definitions that they present in the form required by our benchmark, 

which can be stated as: what effects that we do not want to happen in our base 

scenario infrastructure. Our analysis resulted in a set of eight infrastructure threats, 

which are representative of all the threat information that could be found in the four 

documents. We further validated and refined the list and the definitions regarding 

their completeness and correctness, by asking the opinion of a large set of experts, 

including database administrators (at least four administrators has more than 3 

years of practical experience) and researchers (at scientific conferences). Table 4.1 

presents the final threat vectors, their definition and some examples of security 

aspects related with each vector. 

Orthogonality was a key aspect considered in the definition of the threat vectors. 

In fact, the vectors have to be as representative as possible of the real attack threats 

and malicious effects that may occur in the context of our generic infrastructure, 

but they also have to be as orthogonal as possible among themselves, allowing for 

a reduced overlap among different vectors. For instance, the white paper analyzed 

(Shoulman 2009) includes platform vulnerabilities as one of the top 10 database 

threats. However, from a DBMS configuration point of view, most platform 

vulnerabilities (like operating system vulnerabilities) are used as a way for 

maliciously obtaining privileges. Thus, such a vector clearly matches a very 

important threat defined by STRIDE: privilege elevation. These observations, 

together with a careful analysis of the documents mentioned before, allowed us to 

define what we believe to be the eight more relevant DBMS infrastructure 

configuration threat vectors. Nevertheless, it is important that the threat vectors 

provided here are periodically evaluated, and whenever necessary, the list should 

be adapted and improved. 

Table 4.1 Potential threat vectors in DBMS infrastructures 
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Threat Vector Description 

Legitimate excessive 

privilege achievement  

(LegExPrA) 

This threat is related to configuration characteristics that 

increase the probability of allowing a user to obtain more 

privileges than the ones he is supposed to have. These 

excessive privileges are a threat because, by definition, 

they allow the user to perform unauthorized actions. 

Examples of issues that may lead to legitimate excessive 

privilege achievement are: granting privileges with using 

open ended expressions (e.g. ALL and ANY keywords, 

which define the way privileges can be forwarded), not 

implementing views to hide unnecessary columns, and 

using an administrator OS userid to execute the DBMS 

engine daemon 

Illegitimate privilege 

elevation  

(IllPrEl) 

This threat is related to configuration characteristics that 

increase the probability of allowing a user to obtain an 

arbitrary privilege that he should not have in any 

circumstances. An attacker usually achieves illegitimate 

privileges by actively exploiting vulnerabilities at some 

level of the system. Examples of vulnerabilities that may 

lead to illegitimate privilege elevation are: not using a 

dedicated platform, not patching the DBMS or OS 

software, and not disabling unused protocols on the 

network stack 

Denial of Service (DoS) 

This threat is related to configuration characteristics that 

increase the probability of a user being denied timely 

access to some functionality or resource. Examples of 

issues that may lead to DoS are: not making and testing 

backups, storing log information in the OS partition, and 

not properly setting OS file system privileges of the 

DBMS data files 

Communication Weakness  

(CommW) 

This threat is related to configuration characteristics that 

increase the probability of a communication channel 

between a user and the DBMS to behave in an improper 

way. This threat includes sensitive information 

disclosure as well as traffic manipulation and diversion, 

and may be due to: not encrypting a remote connection, 

using a default or self signed certificate for a server, and 

placing production and development servers on the same 

network segment, etc. 

Authentication Weakness  

(AuthW) 

This threat is related to configuration characteristics that 

increase the probability of allowing an individual to 

become authenticated to the system as another 

individual. Examples of vulnerabilities that may lead to 

this are: storing password information in clear text, not 

forcing strong password policies, not excluding default 

userids, and using host based authentication 
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Side-Channel Data 

Exposure  

(SCDtEx) 

This threat is related to configuration characteristics that 

increase the probability of sensitive information to be 

accessed through an alternative (i.e. illegitimate) access 

channel. Vulnerabilies that may lead to side-channel 

data exposure are: storing schema creation SQL files in 

the DBMS platform, not protecting backup files, not 

configuring access permissions of DBMS data files, etc. 

Audit Trail Weakness  

(AudTW) 

This threat is related to configuration characteristics that 

may result in a decreased ability to identify unexpected 

behavior (including its causes and possible suspects). It 

includes not only real audit functionalities, but also 

logging mechanisms and other tracking facilities. 

Problems include: not auditing sensitive information, not 

protecting log files, and not auditing application code 

changes 

SQL Injection 

Enhancement 

(SQLI) 

This threat is related to configuration characteristics that 

increase the probability of an SQL injection 

vulnerability to be exposed or enhanced. Examples of 

such characteristics are: not disabling DBMS extensions 

that allow file system operations, not implementing least 

privileges policies, and not protecting application code 

 

The threat vectors (presented in Table 4.1), combined with the interaction classes 

defined for the base scenario, will ultimately serve for calculating the 

trustworthiness index of the evaluated systems. These two dimensions give the 

DBA the flexibility to focus on the areas of the system that are more important 

considering the particularities of his particular installation, and allow the use of the 

same benchmark in very distinct transactional systems architectures. To exemplify 

and demonstrate how a DBA can use these dimensions to tailor the benchmark 

results to his environment, lets consider two different, but quite common scenarios: 

− Scenario A: in this scenario, the DBMS used is a MySQL engine over a 

Linux system. The operating system also hosts an Apache web server, 

which runs a single application developed in PHP that connects directly to 

the database that runs in the same server. The system is maintained by a 

single person that is, at the same time, the DBA and the developer of the 

application (i.e. no other person has a valid userid on the DBMS or on the 

operating system). All users connect to the system using via a business 

application, whose interface runs over a web browser, and that 

communicate with the server using the https protocol for security.  

− Scenario B: in this scenario, a dedicated machine hosts a SQL Server 

DBMS engine over a Windows 2003 operating system. The DBMS is 

accessed directly by several stand-alone applications developed using the 
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Delphi language. Applications run on client hosts spread over a LAN and 

on another server machine that hosts an Internet Information Services web 

server and several ASP web applications that are accessed from the 

Internet. A large team of developers has DBMS userids with a variety of 

roles and privileges, and the maintenance staff executes backup procedures 

every night, using operating system and DBMS userids. 

Applying the benchmark consists of executing the procedure and computing the 

corresponding levels of trustworthiness (as discussed later) for each threat vector 

within each interaction class. Tailoring the results consists then of focusing the 

analysis on the values that make sense for each scenario. For example, in scenario 

A threats related to communications channels are very unlikely to be a concern 

because communication with the database occurs only locally from the web server 

process, which then communicates with the users using the https protocol, which is 

known to be secure. At the same time, the DBA does not have to worry about 

regular operating system users causing problems because he is the only one with 

an OS userid. This way, he might decide not to spend time fixing privileges on the 

file system, something that could be a problem in another context. He should be, 

however, very concerned with application bugs (e.g. SQL Injection vulnerabilities) 

that would allow for a non-system user to obtain private information. Additionally, 

he should also worry about the availability of the database application. 

The concerns of the DBA in scenario B are quite different. With so many 

developers and applications he must not lose the control of privileges within the 

DBMS (which could lead to unintentionally granting someone excessive 

privileges). Also, the DBA is demanded to continuously collect and analyze reports 

about unusual behaviors and he must be able to pinpoint the suspects and the causes 

when attacks happen. At the same time, he should assume that several individuals 

that cannot be fully trusted (e.g. the developers) may run commands in the 

operating system, and therefore should apply measures to minimize the 

consequences in the case of a disgruntled maintenance staff. The DBA should also 

realize that the local network is very complex and insecure, and that connections 

between the remote clients and the database should be protected. 

The dimensions to consider when analyzing the benchmark results are obviously 

different for the two scenarios (e.g. threats related to communications channels are 

more relevant in scenario B than in scenario A), and should allow the DBA to 

prioritize the areas that are of more relevance for security revision (i.e. dimensions 

for which the configuration is less trustworthy). This might also help the DBA 

justifying the need for replacing specific components of the infrastructure. For 

instance, if it is too hard to obtain auditing information in a particular DBMS engine 

and that is identified as a high priority for the specific environment (as is the case 
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of scenario B), then the DBA may consider replacing his DBMS engine (or add 

some external auditing feature that provides the same information). The same 

reasoning applies to an operating system that makes it difficult to keep file system 

permissions organized, or that has vulnerabilities being frequently disclosed and 

reported. Whenever a DBA justifiably distrusts such aspects (being supported by a 

systematic evaluation approach, like the proposed benchmark), then there is a good 

justification to engage in radical environment modifications like these. 

4.3.2 Security Recommendations  

Reliably securing a database infrastructure (like the one represented by our base 

scenario) requires the administrator to follow a Defense-in-Depth approach 

(Howard & LeBlanc, 2002). Defense-in-Depth can be seen as a reasoning 

framework in which one always assume that any security mechanism can fail, and 

therefore, security depends on several layers of mechanisms that compensate the 

failures of each other. For instance, no one would ever test thoroughly an 

application and assume that this precaution would compensate the installation of a 

database engine with default settings and empty passwords. At the same time, no 

one would install a firewall on the network and assume that no outside user would 

ever be able to gain control of internal servers.  

Any level of acceptable security comes from the combination of several 

configurations which, in the end, allow a proper definition of who and when the 

access and modification of each piece of information is authorized. To accomplish 

such level of security in our base scenario, the DBA is expected to configure the 

whole set of existing elements available in the system, having three key goals in 

mind (Said 2009): 1) • apply and configure security mechanisms that guarantee that 

the existing security policies and rules are enforced to the maximum extent 

possible; 2) dissuade attempts to break the rules; and 3) maintain mechanisms that 

help identifying potential violations of the rules, including being able to pinpoint 

suspects (in order to support punishments and avoid additional attempts). 

The challenge is, therefore, to determine the following: 1) what are the security 

elements (mechanisms, processes, configurations, procedures and behaviors), in the 

form of security recommendations, that have to be put in place to accomplish the 

identified goals? and 2) what is the relative impact of each element in terms of 

security? The problem is that, as usually happens with security aspects in complex 

scenarios, to date there is no known process or methodology to automatically 

deduce a complete list of these elements, and therefore field research and practice 

is the only option to accomplish the task. 
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4.3.2.1 Identification of Security Recommendations 

A very important requirement for our benchmark is that it must be independent of 

specific components brand (to allow portability); for instance, independent of any 

particular DBMS engine or operating system. Therefore, the analyzed security 

elements should come from different sources and not be tied with the restrictions 

of specific software. At the same time, the list as to include a comprehensive and 

realistic set of practical security recommendations, based on existing and 

consensually accepted security practices and mechanisms that can be used in real 

situations, without the requirement of special conditions (e.g. considerable 

additional money or time/effort).  

Unlike in the case of security threats, there is an enormous quantity of security 

recommendations for databases and infrastructures in the form of books, reports, 

papers, manuals, etc. available for free in the literature. However, due to the 

complexity and time needed to gather all this information, the collection of 

recommendations must be narrowed. In our case, we focused on two reliable 

independent sources: the Center for Internet Security (CIS) (CIS 2008) and the 

USA Department of Defense (Defense Information Systems Agency 2001). Like 

in the case of threat vectors, we consider that these sources provide a representative 

list of all the security recommendations that exist for the domain of transaction 

systems: CIS documents from a software perspective (drawing from all security 

mechanisms available in the most important DBMS engines used nowadays), and 

the DoD document from a higher level behavioral perspective. Nevertheless, we 

note that the list could be extended easily, although the time to execute the analysis 

would grow accordingly.  

As mentioned before, CIS has created a series of security configuration (CIS 

Benchmarks 2012) documents for several commercial and open source DBMS, 

namely: MySQL, SQLServer 2000/2005, and Oracle 8i/9i/10g. These documents 

focus on the practical aspects of the configuration of these DBMS and state the 

concrete values each configuration option should have in order to enhance the 

overall security of real installations. Although CIS documents are indeed very 

useful, three key problems have to be noted: 

− The goal is to show which values or procedures should be used when 

configuring the system and not to provide a way to assess the DBMS 

configuration in terms of security. Although CIS refers to these documents 

as benchmarks they are not explicitly designed for DBMS configuration 

assessment or comparison. 
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− Each document targets a specific DBMS version and the configurations 

and concepts cannot be easily generalized. Additionally, each document 

follows a different approach regarding the way settings are presented. For 

example, the level of detail is different from one document to another and 

the way recommendations are written also differs. 

− Although there is a concise rationale in some cases, the general security 

problem that is being addressed by each choice is not clearly presented. 

This is a relevant problem as the DBA learns barely anything about what 

he is doing, which in the end prevents him from applying his own 

alternatives for the same goals. That may also stop the DBA from 

understanding the gains and dangers associated to each configuration 

option, keeping him from being able to assess configuration alternatives 

when new software is available. 

The other document we used in our study is the Database Security Technical 

Implementation Guide, version 8, release 1 (Defense Information Systems Agency. 

2001), developed by the Defense Information Systems Agency for use within the 

USA Department of Defense. This document contains a very complete series of 

mandatory and recommended requirements that the DoD employees must follow 

when installing a database in the department. Although it is a generic document 

applicable to any DBMS engine, it enforces a very strict set of requisites that clearly 

implement a policy defined by the US government, which therefore may make it 

incompatible with the requirements of database installations in general. 

Nevertheless, it is a very good and complete source of information on database 

security practices. 

The first set of security recommendations, presented in Table 4.2 and 

interchangeably referred as security best practices, is based on the detailed study 

and subsequent generalization of the configuration settings stated in the set of CIS 

documents. For each recommended setting, we identified the security property 

being targeted and analyzed the value and procedure recommended. This allowed 

us, for the majority of the cases, to determine the more general security 

recommendation being addressed by each setting. Additionally, we counted the 

number of different configuration recommendations that could be classified as 

having the same practice as basis. 

Table 4.2 DBMS configuration security best practices devised from the 

analysis of the CIS documents 

# SECURITY RECOMMENDATION (CIS) 
# of Recommendations 
in CIS documents 

  M O8 O10 S 

ENVIRONMENT 
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1 Use a dedicated machine for the database 1 1 1 28 

2 Avoid  machines which also run critical network services (naming, authentication, etc) 1 1 1 1 

3 Use Firewalls: on the machine and on the network border 1 3 3 1 

4 Prevent physical access to the DBMS machine by unauthorized people    1 

5 Remove from the network stack all unauthorized protocols   1 1 1 

6 Create a specific user to run the DBMS daemons 1 1 1  

7 Restrict DBMS user access to everything he doesn't need 1 4 4 3 

8 Prevent direct login on the DBMS user account 2 1 3 3 
INSTALLATION SETUP 

9 Create a partition for log information 2 1 1 1 

10 Only the DBMS user should read/write in the log partition 1    

11 Create a partition for DB data 1 1 1 2 

12 Only the DBMS user should read/write in the data partition 1    

13 Separate the DBMS software from the OS files 1 2 2 2 

 Remove/Avoid default elements:  

14 »»»Remove example databases 1   1 

15 »»»Change/remove user names/passwords 1 4 4 2 

16 »»»Change remote identification names (SID, etc...)  3 1  

17 »»»Change TCP/UDP Ports  1 1 1 

18 »»»Do not use default SSL certificates 1    

19 Separate production and development servers  1 1  

20 No developer should have access to the production server   5 5  

21 Use different network segments for production and development servers   1 1 1 

 Verify all  the installed DBMS application files:  

22 »»»Check and set the owner of the files 1 2 3  

23 »»»Set read/running permissions only to authorized users 4 18 22 14 
OPERATIONAL PROCEDURES 

24 Keep the DBMS software updated 3  1 1 

25 Make regular backups 1   4 

26 Test the backups 1  1  
SYSTEM LEVEL CONFIGURATION 

27 Avoid random ports assignment for client connections (firewall configuration)  1 1  

28 Enforce remote communication encryption with strong algorithms 1 1 11 3 

29 Use server side certificate if possible 1  1  

30 Use IPs instead of host names to configure access permissions (prevents DNS spoofing)  1 1  

31 Enforce strong user level authentication 2 6 8 4 

32 Prevent idle connection hijacking  2 2  

33 Ensure no remote parameters are used in authentication  1 2 1  

34 Avoid host based authentication  1 1  

35 Enforce strong password policies 1 2  2 

36 Apply excessive failed logins lock  1 1  

37 Apply password lifetime control  1 1  

38 Deny regular password reuse (force periodic change)  2 2  

39 Use strong encryption in password storage 3    

40 Enforce comprehensive logging 1 2 1  

41 Verify that the log data cannot be lost (replication is used)  2 2 1 

42 Audit sensitive information  14 19 25 

43 Verify that the audit data cannot be lost (replication is used)  1  1 

 Ensure no “side-channel” information leak (don’t create/restrict access):  

44 »»»From configuration files  2 1  

45 »»»From system variables 1    

46 »»»From core_dump/trace files  8 8 1 

47 »»»From backups of data and configuration files   1 1 4 

 Avoid the interaction between the DBMS users and the OS:  

48 »»»Deny any read/write on file system from DBMS used 2 3 2  

49 »»»Deny any network operation (sending email, opening sockets, etc...)  4 3  

50 »»»Deny access to not needed extended libraries and functionalities 1 11 11 54 

51 »»»Deny access to any OS information and commands 2    
APPLICATION LEVEL CONFIGURATION AND USAGE 
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52 Remove user rights over system tables 1 23 25 1 

53 Remove user quotas over system areas  3 1  

54 Implement least privilege policy in rights assignments  9 10 6 

55 Avoid ANY and ALL expressions in rights assignments 1 3 3  

56 Do not delegate rights assignments 1 3 3 3 

57 No user should have rights to change system properties or configurations 3 4 4 2 

58 Grant privileges to roles/groups instead of users  1 1 3 

59 Do not maintain the DB schema creation SQL files in the DB server  1   

Total number of recommendations 48 166 183 177 

 

The first column of Table 4.2 is a number that univocally identifies each security 

recommendation and the second is the recommendation description. The last four 

columns show the number of specific recommendations from each CIS document 

that was associated with each generic recommendation (or best practice). The 

column M is for the MySQL Benchmark document, O8 is for the Oracle 8i 

Benchmark document, O10 is for the Oracle 9i and 10g Benchmark document, and 

S is for the SQLServer 2000 Benchmark document.  

There are three key aspects that deserve special attention regarding the procedure 

followed to identify the best practices presented in the table. The first is related to 

the cases where a given configuration setting can be associated with more than one 

general best practice. For example, in the CIS document for Oracle 8i, 

recommendation 1.32 states that the “tkprof” utility, used to access trace data, 

should either be removed from the system (which can be associated with the 

security best practice #50) or have its permissions reviewed in order to be available 

only to authorized people (related to security best practice #23). In these cases, field 

database administration experience and expert judgment were used to determine 

the prevalent best practice. For the previous example (“tkprof”), we have 

considered this recommendation to be related with best practice #50.  

The second aspect is related to the configuration settings that are not clearly related 

to a generic security best practice (e.g. Oracle 10g recommendation 6.03 related to 

the Automated Storage Management, and SQL Server 2000 recommendation 5.4 

related to the SQL Profiler application). We were able to observe that these 

recommendations are typically related to database management and not to security 

aspects, and therefore are not exactly suitable for our goal. Also, in many cases, 

they are applicable only to a particular DBMS and can hardly be generalized. That 

is the reason why the number of items in each column does not match the exact 

number of recommendations presented in the CIS documents. 

The last noticeable aspect about the definition of the best practices is that some of 

them can be seen as special cases of more generic ones. The problem here is to 

decide when a specialization of a particular best practice is relevant enough to 
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spawn a new one. For example, best practices #48 and #49 may be seen as 

specializations of best practice #50. Practical experience on security trade-offs was 

then used to evaluate and decide when such separation was important. For the 

previous example, it is well known that network operations and access to the file 

system are extended functionalities that, although useful to some extent, represent 

potential sources of attacks and hence should be explicitly avoided. At the same 

time, a more generic practice related to other possible extensions and functionalities 

(as in practice #50) is also important. In fact, although in some cases it may not be 

possible to decide for sure if a given extension can or cannot be used as an attack 

path, the possibility frequently exists. 

Table 4.2 is divided in 5 groups of practices that have common characteristics. This 

division is useful when it becomes necessary to focus in a given subset of practices 

related to a specific configuration step (i.e. installation, operation, application 

deployment, etc.). The groups considered are:  

− Environment: recommendations related to elements surrounding the 

DBMS engine and the machine hosting it; 

− Installation setup: recommendations to be considered right before and 

after the installation of the DBMS engine; 

− Operational procedures: periodic operations related to the DBMS 

maintenance; 

− System level configuration: the general working parameters 

recommended for the DBMS; 

− Application level configuration and usage: recommendations that are 

application dependent. 

In terms of the representativeness of the best practices, a brief analysis of Table 4.2 

raises some immediate considerations. The first one is related to the fact that there 

are many recommendations that appear only in a subset of the CIS documents. This 

is mainly due to two reasons: on one hand, the documents are based on the empirical 

experience of different people, which results in different sensibilities of what are 

the most important security problems in each DBMS; on the other hand, the 

documents are focused on the configuration mechanisms and parameters available 

in each DBMS, meaning that whenever a particular feature is absent or not 

configurable in a given engine then it is not addressed in the corresponding 

document. 

The absence of certain best practices in a given document should be considered a 

problem, even if they represent minor issues in the context of DBMS targeted by 
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the document. By being completely subjective and dependent on the environment, 

security assessment should always be an exhaustive task, despite of the DBMS 

considered. For example, the precaution related to not storing sensitive information 

in system variables is mentioned only in the MySQL document (e.g. best practice 

#45). However, this can be clearly a problem in any database environment, and 

should not be overlooked. This is one of the reasons why our complete list, which 

comes from the aggregation of all documents, represents a better approach than 

simply using a specific document to harden a specific engine.  

Another case is when a specific feature is not available in a given DBMS. For 

instance, MySQL does not have auditing capabilities, so there are no 

recommendations related to auditing in the CIS document. However, it is easy to 

understand that auditing can be implemented, to a certain extent, using other DBMS 

features like triggers (Da-sheng 2010). The important issue to be focused is not to 

“have auditing turned on”, but instead to have ways of tracking operations done on 

the system (e.g. trigger based auditing). 

Another aspect that can be noticed in Table 4.2 is that some recommendations have 

a highly variable number of configuration settings across the four documents (e.g. 

best practice #1). That is a natural consequence of the fact that different people 

designed the documents. Thus, it can be seen as a side effect caused by the 

differences of how fine-grained the recommendations are.  

The total number of recommendations in each document (last line of the table) also 

shows an interesting aspect. Even though the commercial DBMS engines 

considered (Oracle and SQLServer) have a quite similar number of 

recommendations, the open source one (MySQL) has significantly less. This is 

understandable as the number of configuration settings presented in the CIS 

documents is obviously related to the number of functionalities and configuration 

options available. MySQL is an open source DBMS that provides a reduced set of 

functionalities when compared to more complex DBMS like Oracle and Microsoft 

SQLServer (this is a result we obtain beyond any doubt in Chapter 6). 

After identifying the set of security elements based on the analysis of the CIS 

documents, we turned to the second source: the DoD document. As we already had 

an initial table of security elements, our goal was then to screen the document 

looking for things that were not yet included in the list. After a very careful analysis, 

we were able to find only a small number of complementary recommendations that 

did not show in any of the CIS documents. All other advices in the DoD document 

can be generalized as at least one of the CIS related best practices shown in Table 

4.2. The new best practices and corresponding groups are presented in Table 4.3. 
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Table 4.3 Complementary DoD best practices 
# Complementary Best Practices (DoD) Group 

1A 
Monitor de DBMS application and configuration files 
for modifications 

Operational Procedures 

2A Do not use self signed certificates System Level Config. 

3A Protect/encrypt application code Appl. L. Config./Usage 

4A Audit application code changes Appl. L. Config./Usage 

5A 
Employ stored procedures and views instead of 
direct table access 

Appl. L. Config./Usage 

 

Following a Defense-in-Depth approach, all the 64 security recommendations 

presented in Table 4.2 and Table 4.3 were selected as the set of security 

recommendations for our base scenario (and will guide the rest of the benchmark 

definition). Obviously, we are aware that the process employed to create this set 

carries out some limitations namely: 

1) It may become outdated when technology advances. This is true for almost 

all aspects related to security, and most of all for practical and useful 

security tools. As technology advances, attack techniques also change and 

a set of recommendations that is enough in one time may become deficient 

in the future. 

2) It may be incomplete. We tried to the best of our knowledge to identify 

additional sources of security information that would provide more security 

recommendations for our base scenario, and we are aware that additional 

sources of information exist. For example, the documentation of most of 

the DBMS engines (usually several hundred pages of technical 

documentation) includes security information that is spread within the text 

in the form of configuration suggestions. Academic books about database 

administration and a very high number of research papers (some not 

focused on security) also contain security information that might 

complement our practices. However, the process of screening and 

evaluating such a high volume of disperse information is beyond the ability 

and the goal of a PhD work, being more suitable for a targeted research 

effort accomplished by several researchers simultaneously. This way, we 

decided to focus on a smaller, but more precise, set of documents, knowing 

that this may leave out some important aspects. Nevertheless, the 

incompleteness of the list presented in this thesis does not invalidate the 

methodology used to create it, nor it diminishes the process used to 

conceive and design the proposed trustworthiness benchmarking 

procedure. 
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4.3.2.2 Impact of Security Recommendations 

Although the identification of the security recommendations is the most relevant 

part of the process, we need to take into account that some of them are more 

effective than others in terms of their contribution to the reduction of the attack 

surface of the system. We may see this effectiveness as “how critical” it is to have 

the recommendation implemented. Defining this value, however, is not an easy 

task, as the security perception regarding the impact of any mechanism not only 

varies from one person to another, but also may depend on the target environment 

(e.g. the lack of communication encryption with the DBMS is only a concern if the 

business application is executing in a remote client, which is not the case if it is 

executing within a web server on the same physical machine, in which case the web 

server itself would be in charge of encrypting the communication). Additionally, 

although security recommendations can be identified from sources like books, 

forums, checklists, etc., their impact and contribution to the reduction of the attack 

surface is typically not addressed or is unclear. The representativeness of our 

benchmark would be compromised if this aspect was not taken into consideration. 

The process followed to incorporate the impact of each recommendation into the 

benchmark was based on the definition of weights, drawn for the consensual 

judgment of several experts. In this sense, the diversity of experiences becomes a 

relevant issue, and experts from different fields should be explicitly included (and 

not only security experts), including: database administrators, database application 

developers, operating systems experts, network specialists, etc. Ideally, this group 

should include a large number of both practitioners and academics. The expectation 

is that, in average, the most important practices are emphasized, even if there is no 

unanimity (this average should be representative of the reality taking into account 

a base scenario).  

Interviewing experts to obtain the importance of security recommendations is a 

complex problem, and there are a few caveats we have to consider. As we want to 

capture the most of a person’s experience and knowledge, the scale used for the 

classification needs to be well defined, easy to understand, and include a short (but 

adequate) number of values. For example, an excessively detailed scale with 20 

different values forces the expert to make irrelevant considerations to decide 

between close values (e.g. deciding between an 15 and a 16 is very difficult and 

may be irrelevant), and makes the weighting process a lot harder without gaining 

much from it.  On the other hand, a too vague scale (e.g. with 2 values) does not 

allow distinguishing and expressing the notion of importance of different 

recommendations. In this work, we use a scale with four values (from 1 to 4), with 

a very specific semantic for each one (the reason why use an even number of values 
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is to avoid falling into the “select the middle-one” syndrome, i.e. when in doubt 

select the middle value). The description we created for each value is intended to 

induce the interviewee to ask himself the following question: “how preoccupied 

would I be if the system I manage did not have this feature/security element 

implemented?” The semantics and scores we used are presented in Table 4.4. 

Table 4.4 Best practice impact key 
Score Importance to the system 

4 Critical to the system 

3 Important 

2 Advisable to implement 

1 Not much relevant 

 

Having decided on the scale, we designed a spreadsheet and handed it to the nine 

experts we invited to participate in our evaluation. We asked them to assign a score 

to each recommendation using the keys presented in Table 4.4. This group of 

experts included five people from academia and four engineers from industry. From 

the academics, three are professors in a university (two of them teach databases 

courses and the third one teaches a security course), and two are PhD students (one 

working on intrusion detection and security vulnerabilities emulation and the other 

working on security benchmarking for web servers). In the engineers group, we 

have three full time database administrators and one technical manager for the 

databases area in a medium size company. 

The individual weight of each security recommendation is computed as the sum of 

all scores assigned by each expert, normalized to a logarithm scale (base 10). This 

normalization tries to stress the difference of the scores, highlighting and 

distinguishing recommendations found critical even by a small number of experts 

(the idea is to differentiate these from the ones that no expert found critical). The 

final relative weight (which is a percentage) of each security recommendation is 

defined as the individual weight of the recommendation divided by the sum of all 

individual weights.  

The summarized relative weights are shown in Table 4.5. The recommendations 

presented in the second column of each row (see tables 4.3 and 4.4 for the 

correspondence between the numbers and the description of the practices) are 

ordered by the computed weights, and have a relative importance in the interval 

presented in the second column. For example, all the practices presented in the third 

row of Table 4.5 (Class 2) have a relative weight between 1% and 2.5%.  

 

Table 4.5 Best practices ordered by relative weights 
Class Weight (W) Ordered Recommendations (all 64 practices) 
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4 5,26 % > W ≥ 4% 4, 3, 19, 28, 57 

3 4 % > W ≥ 2,5% 2, 24, 39, 35, 15, 1, 6, 52, 25 

2 2,5% > W ≥ 1% 20, 23, 18, 31, 8, 29, 51, 32, 36, 54, 33, 37, 10, 12, 42, 41 

1 1% > W ≥ 0,15% 22, 34, 5, 48, 21, 47, 38, 55, 46, 50, 7, 44, 45, 49, 26, 40, 43, 9, 4A, 11, 17, 
13, 56, 30, 1A, 53, 58, 27, 2A, 14, 5A, 16, 59, 3A 

 

From the analysis of the detailed results (which can be found in Annex A) it is clear 

that each recommendation typically falls into one of four distinct groups: 1) the 

ones that are unanimously critical, 2) the ones that are not critical but are important, 

3) the ones that are advisable to implement, and 4) the ones that are unanimously 

not relevant. This is very interesting and can be seen as a guide of which best 

practices should be implemented in a system according to its criticality. For 

example, consider three database infrastructures: one for a business critical 

application like a bank, another for an important application like the human 

resources database in a small company, and the last one for a non-critical 

application like a web portal that disseminates information about cultural events. It 

is clear that a database in a bank needs to implement all best practices, including 

the less important ones; the human resources database should implement the best 

practices in the three first groups (the critical, important and advisable groups) and 

may relax the less important ones if their implementation brings unaffordable costs; 

and, finally, the less important database needs only to implement the best practices 

in the two first groups (the critical and important groups) and may relax the others. 

A very important observation is that the 14 most important recommendations 

account for exactly 51.61% of the security impact of the whole set of 

recommendations, while the other 50 best practices account for less than half that 

same impact. This is a major aspect that shows that there is a subset of the best 

practices that is unanimously considered as important for any DBMS installation. 

These 14 practices are the ones presented in the first and second rows of Table 4.5. 

4.3.3 Pessimistic Scenarios 

Having established the set of security recommendations (including a consensual 

relative impact weight) and the set of threat vectors relevant for our base scenario, 

we need to establish a relation between both. This relation specifies the threat 

vectors that are affected, directly or indirectly, by the implementation of the 

recommendations, and will therefore allow evaluating the relative contribution of 

each recommendation in preventing each threat from turning into real attacks.  

The key problem in establishing such relation is that, on one side, we have static 

configuration characteristics of the environment (i.e. the security 

recommendations) and, on the other side, we have the high-level bad, malicious or 
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otherwise undesirable effects and circumstances that are considered harmful 

whenever they occur in the infrastructure. In other words, the main difficulty of this 

analysis arises from the fact that real attacks or events (corresponding to particular 

threat vectors), may depend on other conditions that have little to do with the static 

characteristics of the environment. For example, how do we evaluate the security 

problems that may arise when an infrastructure does not implement 

recommendations, such as “separate development and production platforms or use 

a dedicated platform for the DBMS engine”, without taking into consideration a 

real environment configuration (and therefore no considering attackers or using 

business rules to differentiate a security breach from a normal usage of the assets 

involved)? At this stage of the benchmark design, we need a methodical reasoning 

process that allows identifying the connection between both sets (i.e. threat vectors 

and recommendations). 

As mentioned before, security recommendations (like the ones proposed in Section 

4.3.2.1) are typically provided by security experts and experienced practitioners in 

the form of procedures and state configurations that are consensually accepted as 

having the ability to make a system or environment more secure. However, this 

assumption also implies the opposite consequence: if the recommendations help 

making a system more secure, then, by definition, their absence can always be 

associated with a particular insecurity circumstance. Therefore, if our list of 

security recommendations is complete, then the list of insecurity circumstances 

yielded that can be drawn from the pessimistic scenario and the absence of each of 

the recommendations will be also complete. 

4.3.3.1 Mapping process 

Taking advantage of this reasoning, we propose the following methodology for 

establishing the relation among threats and security recommendations (to better 

understand the process, see example in Section 4.3.3.2): 

1. For each security recommendation, identify a situation where not following 

the recommendation creates an obvious vulnerability (in practice, a 

situation where the recommendation is in fact the last layer of defense, and 

where the associated insecurity would not exist if and only if the 

recommendation was enforced). In this work, we refer to these situations 

as pessimistic scenarios. They are pessimistic, in the following sense: 

although neglecting a recommendation may not necessarily lead to attacks, 

in this pessimistic circumstance it would certainly do. In other words, 

neglecting the security recommendation degrades the security of the 

infrastructure in the perspective posed by the pessimistic scenario. 



Security Benchmarking of Transactional Systems 

103 

2. Starting from each pessimistic scenario, identify any concrete attacks that 

could exploit the related vulnerability. These attacks should have harmful 

effects that may be correlated with the threat vectors. The reasoning is that, 

whenever a vulnerability in a pessimistic scenario and a threat vector are 

related by an attack that exploits the related vulnerability and instantiates a 

threat, a correlation between the original security recommendation and the 

threat vector can be established.  

3. While evaluating the attacks allowed by the pessimistic scenarios, it is 

important to recall that real individuals (and attackers) interact with the 

system by using one of the four interaction classes defined by our base 

scenario (i.e. application userid, OS userid, DBMS userid, or none). This 

is important because, to properly identify the plausible attacks, we need to 

know how much access an attacker already has inside the system and that 

is defined by the environment where the attacker is contained (i.e. the 

interaction class he is using). Different interaction classes may allow 

different attacks according to the different privileges associated to each 

class. 

4. This process, when completed for all pessimistic scenarios, for all 

interaction classes, and for all threat vectors, generates a list of attacks that 

identifies the trustworthiness relationship between each security 

recommendation, each interaction class, and each threat. 

It is important to emphasize that pessimistic scenarios are not the simple negation 

of a security practice. The absence of a security practice simply shows that the 

administrator is not fully aware of the potential system states in terms of security. 

A pessimistic scenario, however, is the definition of a system state where 

neglecting the associated practice derails into an obviously insecure circumstance 

that can easily be associated with actual security attacks (this notion is important 

as it supports the specific reasoning step that allows aligning the benchmark being 

proposed in this chapter with the definition of trustworthiness benchmarking 

presented in Chapter 3). In practice, by neglecting consensually accepted security 

recommendations, the administrator of a transactional system infrastructure is 

allowing for a certain set of circumstances to become possible, and therefore 

increasing the probability of a set of attacks to happen. The harmful effects that 

consequentially have their probability raised are defined by the consequences of 

each possible attack allowed by a specific pessimistic scenario. How much each 

probability is raised is given by the relative weights of the recommendation from 

which the pessimistic scenario was identified (which is related with the consensual 

impact identified for its implementation, as defined in Section 4.3.2.2).  
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We finally point out that, even if these probabilities give no guarantees that the 

system can be attacked, they provide necessarily some evidence that the system 

cannot be trusted to be secure, which is exactly what we are proposing to measure 

(see discussion on metrics in Section4.3.5). In order to better illustrate the process, 

next section presents a complete example detailing the reasoning behind each step.  

4.3.3.2 Mapping example 

Consider the security recommendation “separate development and production 

platforms”. In practice, what this recommendation defines is that the database 

server used by the developers to develop and test applications should not be the one 

that hosts the production data. Elaborating on the opposite of this recommendation 

allows us to identify a pessimistic scenario where developers have the ability to 

execute untested and under development code on the production database. Note 

that if testing and production platforms were in fact independent, then any code 

could be tested thoroughly before reaching production data, which may not happen 

when both environments coincide (the goal of the recommendation is to prevent 

users with access to the development infrastructures from executing malicious or 

potentially destructive code in the production environment).  

Given the pessimistic scenario “developers can execute code in the production 

DBMS engine”, we need to analyze the threat vectors from the point of view of the 

3 interaction classes (DBMS userid, OS userid, application userid) and also from 

the point of view of non-system users. First consider the Legitimate excessive 

privilege achievement vector (see Table 4.1). For each interaction class we should 

ask if the scenario enables “an increase of the probability of a user legitimaly 

obtaining more privileges than he should have”. Clearly, a malicious code injection 

is not a legitimate way for obtaining more privileges, so there is no mapping 

between the best practice (“separate development and production platforms”) and 

the vector (“Legitimate excessive privilege achievement”).  

Let’s now look to the second vector (“Illegitimate privilege elevation”) and assess 

if the scenario enables “an increased probability of an user obtaining an arbitrary 

privilege that he should not have in any circumstances”. As a relation seems to 

exist, each of the four interaction classes should be analyzed individually: 

1. From the point of view of non-system users the answer to the question is 

yes, as code injection may be used for bypassing authentication, allowing 

a non-system user to access private data.  

2. From the point of view of an application userid, the answer is also yes, as 

the malicious code injected could bypass privilege checks, augmenting the 

current userid privileges.  
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3. From the point of view of an operating system userid, the answer is no, as 

it is not possible to elevate OS privileges by executing code in the 

production DBMS engine.  

4. For a DBMS userid the answer is yes again, e.g. if code injection is 

performed over a stored procedure meant to control operations over tables. 

For a particular DBMS userid, the stored procedure could then behave in a 

malicious way and allow increasing privileges. 

This way, the final mapping of the security recommendation “separate 

development and production platforms” into the “Legitimate excessive privilege 

achievement” threat vector is not possible, while into the “Illegitimate privilege 

elevation” is possible for three interaction classes: application userid, DBMS userid 

and non-system users. The same process should be repeated for all remaining threat 

vectors and security best practices, resulting in a three dimensions matrix relating 

security recommendations, threat vectors, and interaction classes, as discussed in 

the next section. 

4.3.3.3 Complete mapping 

The process of relating the 64 security practices identified in Section 4.3.2 with the 

eight threats presented in Section 4.3.1 is extremely complex to be executed 

correctly, and actually not suitable to be executed by a small number of researchers. 

With the help of several database administrators and security researchers, we 

performed the complete process for the fourteen most important practices identified 

Table 4.5 (which already account for more than 50% of the identified impact). The 

fourteen pessimistic scenarios devised are presented in Table 4.6. 

Table 4.7 presents an excerpt of the complete correlation of pessimistic scenarios 

with threats (as the complete matrix is too extensive, it is presented in (PhD Thesis 

Complementary Info 2012)). The attacks presented in the table are preceded by one 

or more of four acronyms, stating that the attack presumes a given interaction class: 

A – Application userid; D – DBMS userid; O – Operating system userid; and N – 

Non-system user. Recall that these interaction classes do not map directly to real 

individuals, and it is expected that some roles need more than one interaction class. 

In particular, any real individual (including the ones that have userids) can 

accomplish attacks that require no relation with the system (identified by the N 

acronym). For instance, the attacks under the pessimistic scenario #1 can be 

accomplished by anyone able to achieve a physical proximity with the machine, 

and that has the knowledge needed to carry out the actions indicated (e.g. rebooting 

the system with a live CD for an illegitimate access to the file system). 
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Table 4.6 Pessimistic scenarios associated with not following security 

recommendations. 

# Pessimistic scenarios 

1 
The platform is physically stationed in a place where people that have nothing to do with the 

DBMS have regular unsupervised access 

2 

a) The platform does not have an operating system firewall, leaving all locally open ports 

accessible to the local area network 

b) The network does not have a firewall separating the internal network (LAN) from the servers 

that provide services to the Internet 

c) The network does not have a border firewall, leaving all network fully accessible to internet 

traffic 

3 

a) The development DBMS is installed in the same platform as the production DBMS, but use 

different DBMS instances with separate data and configurations 

b) The development DBMS and the production DBMS are the same, and are only set apart by 

privileges within the database 

4 
Remote communications with the DBMS can be very easily captured and understood (no 

encryption) 

5 
a) DBMS userids can alter or influence the DBMS environment and behavior 

b) OS userids can alter or influence the operating system environment and behavior 

6 
The DBMS platform also hosts a email, naming or similar critical network service which is 

completely open for access from the Internet 

7 The DBMS has known critical vulnerabilities which are of public domain knowledge 

8 Stored password information in the database is clear text 

9 
DBMS/applications/OS users may choose any password they like, even the most easy to guess 

ones 

10 
Information of one username/password pair that can be used to login in the database is public 

domain 

11 

a) The operating system of the DBMS loads several unknown default services on the boot 

process, which may open listening ports on the server and may contain security vulnerabilities 

b) The operating system of the DBMS have several applications and tools installed on the file 

system, which may be used by an operating system user as leverage to an attack (like a 

compiler, for instance) 

12 
a) The OS userid used to run the DBMS daemons has administrator’s privileges 

b) The OS userid used to run the DBMS daemons is used for other daemons and tasks as well 

13 
DBMS userids have privileges to access internal control information, and may alter the DBMS 

engine behavior 

14 

a) There is no regularly updated copy of the production data in a separate storage 

b) There is no regularly updated copy of platform file system and important configurations in 

a separate storage 

 

 

 

 

Table 4.7 Set of attacks correlating the pessimistic scenarios and the threats 
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# 
Legitimate Excessive 

Privilege Achievement 

Illegitimate privilege 

achievement 

Denial of 

service 

Communication 

Weakness 

1 

D: User can bypass 

application/network level restrictions, 

by logging directly to the database, as 

long he can login to the OS 

N: Boot by a CD/USB pendrive, 

copy all file system 

N: Disconnect cables, 

turn off the server or 

simply destroy it 

physically. Each of those 

actions can be intentional 

or not. 

N: Install a sniffer physically in the 

network adapter 

2a 
D: User can bypass application level 

restrictions and connect directly into 

the DB through a DB client 

N: A LAN user connects to a 

vulnerable local listening service, 

causes a buffer overflow allowing 

arbitrary code execution 

N: A LAN user connects 

to a local listening service 

and causes it to consume 

all CPU resources 

 

2b 

 N: An attack on a server with 

internet applications may be used to 

launch another attack on a private 

network host, achieving access to 

all computers on the network, 

including the DBMS platform 

 

 

2c 

 N: Internet port scans are free to 

find servers with vulnerabilities and 

which can be used as leverage to 

other attacks 

N: Internet users may 

request all kinds of 

connections to any ports 

in any network server, 

flooding the network and 

hogging resources 

N: Local network may be flooded 

with invalid requests consuming all 

Internet bandwidth 

3a A, D: Development and testing may 

cause effects on the behavior of the 

production applications 

  
O: Developers may be able to 

eavesdrop production connections 

3b 

A: Untested applications can mess 

with production server resources and 

data 

D: Execute malicious stored 

procedures may read or write over 

production data 

A, D: Activated 

malicious code may erase 

information 

O: A system command 

may consume all CPU 

resources 

O: Developers may be able to 

eavesdrop production connections 

4 
 N: LAN users may have access to 

the data transit 

O: OS users may sniff all traffic 

from the network interface 

 N: LAN users may have access to the 

data transit 

O: OS users may capture all traffic 

from the network interface 

5a 
  D: DBMS users may 

modify the size of 

working areas as to not 

allow correct operation 

 

5b  O: OS users may alter environment 

variables that affect the DBMS 

startup or behavior 

O: OS user may modify 

memory configurations 

affecting availability 
 

6 
 N: Buffer overflow in the offered 

service, taking control of the 

machine and the DBMS 

 

N: Overuse of the offered 

service, causing CPU or 

disk exhaustion  

N: Buffer overflow in the offered 

service, taking control of the 

machine installing a packet sniffer 

 

Table 4.8 presents the complete mapping for the fourteen most important security 

recommendations. It is important to emphasize that we are aware that this mapping 

is most probably incomplete, as it is very hard to envision all the ways security can 

be affected in such a complex environment, even when considering a focused 

approach with several assumptions (like the ones defined in the beginning of 

Section 4.1). The benchmark needs to be completed and perfected in an incremental 

way, by integrating knowledge of more and more experts and by incorporating the 

new attack information that becomes available. Nevertheless, we believe that even 

such an incomplete mapping can be used to implement a fairly representative 

benchmark, thus allowing demonstrating the effectiveness of our trustworthiness 

benchmarking approach. 
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Table 4.8 Mapping for the fourteen most important security 

recommendations 
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1 D N N N N N N  

2 D N N N N    

3 A, D D A, D, O O N, A    

4  N, O  N, O N N, O N N 

5  O D, O     O, D 

6  N N N N N N N 

7 A, D N, D, O       

8 O, D    N, D, A, O  N, D, A, O D, O 

9  N   N, D, A, O  N, D, A, O  

10 N, O N, O   N  N N 

11  N, O N, O N, O N, O N, O N, O N, O 

12 O N, O    O O N, O 

13 D A D     D, A 

14 A, O  O, D, A      

 

4.3.4 Benchmark Procedure 

In the previous sections we discussed the reasoning and justifications behind the 

internal assumptions and the design of the proposed trustworthiness benchmark. A 

key aspect that has to be addressed when proposing a benchmarking procedure is 

the practical use of the benchmark (i.e. the steps required for executing it). Any 

benchmark specification has to include a set of deterministic operations or 

procedures that, when carried out by benchmark user (which we assume to be the 

administrator of a transactional system infrastructure), allow the computation of the 

metrics (Grey 1993). 

A key aspect is that a benchmark is expected to be repeatable, at least in a statistical 

basis, and should depend the least possible on external variables (Grey 1993). 

Typically, a benchmarking process based on the simple execution of a deterministic 

software application (or a set of applications) ensures the “ideal” means for 

obtaining correct results. Unfortunately, in our case the person that executes the 

benchmark is, by definition, an external variable, as the input of the benchmark is 

the user perception about the status of the implementation of the security 

recommendations (which cannot be obtained in an automated manner). In fact, the 

high complexity and variability of the systems and environments targeted by the 
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proposed benchmark, allied with the complexity of the semantics of the security 

recommendations, makes it unfeasible to create a program able to perform this 

assessment automatically for all cases, even if for a small number of 

recommendations this could be accomplished. For example, identifying the 

privileges of the existing userids is something that is trivial to automate, while at 

the same time, identifying if the physical hardware that hosts the database is 

adequately protected is not so easy. 

In practice, as we cannot avoid having information gathered by a person, at least 

should prevent, to a certain extent, the security knowledge and biases of this person 

from affect the benchmark results. This can be done by focused only on technical 

details and procedures and in the configuration state of the system, as these 

elements are usually so evident that, assuming a competent and knowledgeable 

benchmark user, their identification would be unambiguous and independent of any 

particular previous knowledge.  

Taking into account these restrictions, the proposed benchmark is based on a non-

automated process that tries to minimize the human factor. In practice, the 

benchmarking tool consists of a list of deterministic tests, in the form of yes or no 

questions that depend exclusively on palpable characteristics of the environment 

and on the procedures applied to the systems. Examples of the tests are presented 

in Table 4.9, while the complete list can be found in the Annex A. 

Table 4.9 Benchmark security tests (sample) 
# Test Fail 

1 
If the machine is turned off, does any service other than the database become unavailable? 
Is there any process running on the machine which is not demanded by the DBMS, the OS 

or the machine maintenance/security? 

Yes 

2 
If the machine is turned off, does any critical network service, like naming, directory or 
authentication services, becomes unavailable? 

Yes 

3 

Is there a firewall on the network border? Is there a firewall running on the DBMS 

machine? Are both firewalls properly configured by experienced staff with solid network 

knowledge?  (Wool 2004, Kaufman 2002) 

No 

4 
Is it possible to an unauthorized person to physically access the machine without 

supervision at any given time? 
Yes 

5 
List the protocols available in the network stack in the OS of the DBMS machine. For each 

protocol, is there a clear justification for its availability?  
No 

19 Is there any kind of development or testing being done in the production server? Yes 

25 
Is a carefully thought out, documented backup procedure regularly executed? If the person 

in charge suddenly quit, is it easy for anyone else to resume its task? 
No 

32 
Establish a connection with the DBMS and let it stay idle. Is the connection severed in a 
reasonable amount of time? 

No 

 

The benchmark tests should be answered by an experienced DBA with deep 

knowledge about the operating system in use, and some knowledge about computer 

networks. For some of the tests, however, there are variable parameters that cannot 
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be easily predicted, and may require the security knowledge of the user to be 

correctly determined. Such parameters are identified using the figures security 

expert and experienced staff, the later also assuming deep knowledge about the 

usage of the underlying infrastructure. In practice, input coming from professionals 

that do understand security is required to pass some of the tests (i.e. to have a yes 

answer). In these cases, to simplify the work, we provide references to bibliography 

where such security knowledge can be obtained (e.g. in test #3 we provide solid 

references to information regarding the correct configuration of firewalls).  

Two other figures that appear in the tests, reasonable and regularly, also depend 

on bounds that cannot be defined without taking into account the business 

applications that are using the database (e.g. in test #32 we have to define a 

reasonable time for a timeout, which clearly depend on the application in question). 

In these cases, we expect the DBA to either estimate those bounds or to discuss 

them with the system analysts and other experts. We could have provided average 

values for these cases, but obtaining this information would require detailed field 

studies that were not in the scope of this work. 

As can be observed in the second column of Table 4.9, the tests typically include 

two steps. The initial step, which is not defined for every case, is a procedure to 

obtain the particular information necessary to answer the test (e.g. in test #32 we 

indicate a procedure that will provide the timeout configuration to the benchmark 

user even if he does not know what a timeout is or where this information is 

configured). This step is also of optional execution, in the sense that the DBA might 

obtain the same information in alternative ways (e.g. technical manuals or previous 

experience). The second step is a series of yes/no questions that should be answered 

systematically. If, for any of the listed questions, the answer is the one stated in the 

rightmost column of Table 4.9, then the test is considered as failed. Also, in some 

cases, the benchmark user might not know how to answer a particular question, 

which is an “unknown” answer that should be treated as a failed test (we follow a 

pessimistic approach, as one cannot trust in if there are some unknown aspects). In 

this case, the user is expected to further investigate in order to better understand the 

current state of the system.  

Although for some recommendations designing the tests is a straightforward task, 

for others this brings two key difficulties. The first difficulty is related to knowing 

if the test really covers all aspects of the recommendation implementation. This is 

tricky due to the specificities of each scenario and is widely dependent on the 

generality of the best practice statement. For example, test #25 is designed for a 

recommendation that states that regular backups should be made. However, 

checking whether the DBA is in fact accomplishing this practice correctly is 
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something that cannot be done by means of only two complementary questions. In 

this case, we heavily assumed that a backup procedure that is not documented and 

that cannot be quickly understood by anyone other than the DBA would not be a 

reliable backup procedure, and therefore the test should fail.. 

The second difficulty is about how easily it will be for the benchmark user to 

perform the tests. This problem does not have an obvious solution, and it is possible 

that, depending on the case, the administrator might not have enough knowledge to 

execute some of the tests. As mentioned above, we suggest these cases to be treated 

as failed tests, meaning that if the administrator does not know whether a given 

security practice is implemented or not, then he should assume it is not (i.e. should 

follow a pessimistic approach). As a matter of fact, this is very much expected to 

happen with non-security experts: either they do not understand what they should 

do to improve security or they were never called attention to a particular aspect. In 

fact, having an administrator that does not know if a certain configuration is in 

place or not can already be considered a security risk, even in the cases where the 

system is correctly configured. As a consequence, by applying the tool, he will have 

the benchmark user attention redirected to the configuration aspects that experts 

believe are more important to improve security in such an environment (which will 

therefore increase the trust the user can put in the configuration).  

4.3.5 Benchmark Metrics 

The main goal of a benchmark is to allow comparison, and that requires the 

existence of metrics. In the previous sections we discussed and analyzed the steps 

required to build a body of knowledge, whose goal is to allow the calculation of a 

set of metrics that can be used for comparing the trustworthiness of transactional 

systems infrastructures. This section presents a deeper discussion regarding the 

benchmark metrics, including the algorithm needed to compute them. 

As mentioned before, the metrics are represented as a percentage that should be 

interpreted as the relative proneness of the bad or harmful effects of the threat 

vectors to manifest. These percentages arise from the analysis of several 

characteristics of the system that may allow, given certain events, the emergence 

of circumstances equivalent to the pessimistic scenarios identified. The 

characteristics we are concerned with are the lack of rigorous enforcement of the 

set of security recommendations identified for our base scenario. The main 

assumption is that if these recommendations are not enforced, then the system 

cannot be trusted as being protected against the bad effects of the threat vectors 

effects.  
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The process that leads from the analysis of the state of the system to the metrics 

that express justified trustworthiness is entirely based on our definition of 

trustworthiness benchmarking, and as such is based on the collection of evidence 

to place justified trust instead of on the identification of actual vulnerabilities that 

can be exploited. As discussed in Chapter 3, within our framework actual 

vulnerabilities are considered during the security qualification step. In summary, 

the benchmarking process is based on the following assumptions: 

a) The lack of active security precautions may let the environment derail into 

a configuration state equal or equivalent to pessimistic scenarios. 

b) Assuming the pessimistic scenarios as representative, the only elements 

that prevent the occurrence of attacks are intention (which we assumed that 

exists) and the achievement of some other indeterminate requirements (e.g. 

physical proximity to the server or the opportunity to connect a computer 

to the same network segment of the DBMS server).  

c) As the two requirements mentioned in item b) depend on the environment, 

we assume that there is a non-zero probability of them to happen.  

d) Given an attacker with intention and given the right circumstances, the 

absence of active security measures in place allows actual attacks to happen 

with some undetermined, but non-negligible, probability.  

e) Whenever two different security recommendations are related with the 

same threat vector and/or the same interaction class, and are both not 

enforced, we assume that they can be “accumulated”. The reasoning is that 

they are two independent alternatives for accomplishing the same threat. 

In other words, if an attack related with security recommendation 1 has X 

probability of happening and another attack related with security 

recommendation 2 has Y probability of occurring, and if both attacks can 

take place independently, then we can safely say that the threat may be 

accomplished with a probability Z > X and Z > Y, despite the real values 

for X, Y and Z. For practical reasons, in our benchmark we assume that Z 

= X + Y. 

The proposed security benchmark for transactional systems infrastructures is able 

to compute 13 distinct trustworthiness metrics, namely:  

a) one general metric summarizing the trustworthiness of the whole 

infrastructure.  

b) eight metrics portraying the trustworthiness of the infrastructure in regard 

to the eight threat vectors; 
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c) four additional metrics characterizing the trustworthiness related with each 

interaction class. 

The full algorithm for the computation of these 13 metrics is as follows: 

1. The DBA executes the benchmarking procedure (as discussed in Section 

4.3.4). The result of the application of the evaluation tool is an answer of 

Passed or Failed for each of the 64 security recommendations included in 

the benchmark.  

2. Be Wrt the relative weight of the recommendation r that maps (i.e. has at 

least one identified attack) to the threat vector t. For each threat t compute: 

Wrt(Passed) 

Wrt(Passed) +Wrt(Failed) 

where Wrt(Failed) is the sum of the weights of all recommendations that 

map to the threat t  and that had a Failed as an answer, and Wrt(Passed) 
is the sum of the weights of all the recommendations that map to the threat 

t and had a Passed as an answer. 

3. Be Wri the weight of the recommendation r that maps to the interaction 

class i for any of the threat vectors. For each of the four interaction classes 

compute: 

Wri(Passed) 

Wri(Passed) +Wri(Failed) 

where Wri(Failed) is the sum of the weights of all recommendations that 

map to some threat with interaction class i and that had a Failed as an 

answer, and Wrt(Passed) is the sum of the weights of all the 

recommendations that map to some threat with interaction class i and that 

had a Passed as an answer. 

4. Compute the overall trustworthiness value by dividing the sum of the 

weights of all recommendations that had a Failed as an answer by the sum 

of the weight of all the recommendations. 

A key aspect is that it is possible to increase the level of detail of the benchmark 

characterization by crossing each interaction class with each threat vector 

(computing 32 additional metrics). For example, we could specifically compute the 

trustworthiness related with the OS system users causing a denial of service in the 

infrastructure. This might be of interest in the cases where the administrator wants 

to assess the pros and cons of the trust he actually puts in the people that possess 

userids of each class against the costs of implementing new security precautions 



Chapter 4  Security Benchmarking of Transactional Systems Infrastructures 

114 

(e.g., what is more cost-effective? To disable the operating system userids that were 

given to individuals that may not necessarily need them, or to implement the 

security best practices that raise the trustworthiness in this case).  

Another variation that is semantically interesting is to consider a subset of the threat 

vectors in the computation of the interaction classes’ values instead of all threat 

vectors. In this case, the result is the level of trustworthiness that one can put into 

the fact that some individual of that class may cause some kind of harmful effect. 

For instance, we could compute the metrics for the case of operating systems users 

causing either denial of service, obtaining privileged information through a side 

channel or taking advantage of an authentication weakness. 

The algorithm presented above is based on the notion of (positive) trustworthiness, 

which expresses how much of the evidence gathered by the benchmark user 

supports positively the security of the installation. At the same time, we can easily 

do the inverse reasoning. The inverse of trustworthiness is called 

untrustworthiness, which computed as 1 – trustworthiness. The untrustworthiness 

metrics are exactly the values we would get if, in the algorithm above, we computed 

all the metrics relatively to the failed tests instead of the passed ones. Both 

trustworthiness and untrustworthiness are trust-based metrics in the sense that they 

express relative levels of justified trust (in one way or another).  

It is important to notice that, even though trustworthiness is the numeric 

complement of untrustworthiness, the way security aspects should be reasoned 

about make the distinction of both these concepts quite important, especially when 

non-security experts are using these values to support decisions about their 

infrastructure. In fact, we have to pay attention to the fact that computing 

trustworthiness is based on a summary of the amount of evidences that justify how 

much one should trust the infrastructure. Conversely, if we are computing 

untrustworthiness, we are summarizing the amount of evidences that may lead us 

to not trust the infrastructure. When interpreting these values, however, we again 

face the fundamental assumption over which our benchmark is based on: security 

has much to do with what we don’t know about the system. It is wiser, therefore, to 

interpret the metrics from a pessimistic perspective (as already mentioned several 

times), as the benchmark user has to be aware of the impossibility to always 

consider all aspects that are involved in the security of the system. For this reason, 

we decided that the main metric of our benchmark is the Minimum 

Untrustworthiness, which represents the amount of evidence we have about how 

much we should distrust the system, at least.  
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This definition of Minimum Untrustworthiness helps the benchmark user to 

understand the error that the metrics may have, particularly due to lack of 

information, which will more easily lower the justified trust than increase it. This 

approach looks arbitrary, as a typical standard error is usually considered 

symmetrical (Zwillinger 1995), but this effect comes as a consequence of the 

assumptions we made for our framework.  

Let’s examine in detail one example in which we try to demonstrate why a 

pessimistic view of security is always more correct than an optimistic view. To 

simplify the example, instead of a whole infrastructure, let’s assume that we are 

benchmarking a small piece of software. A trust-based metric gives a certain value 

that represents how much we can trust that the software will not present security 

problems in the future. We also know that, in the context of our benchmarking 

framework, this metric takes into consideration only the characteristics that can be 

found in the software, excluding outside variables.  

Now, let’s assume that there is a very important and influential external variable: 

community support and active development. Assuming that for this particular 

software we do not know if there is an active community supporting development, 

this manifests in the metric as an error (i.e. the value reported will be incorrect 

because this information did not affect the metric). In fact, it is more or less obvious 

that if there is an active community then the trust we can put in the software is 

higher, and if there is no active community, then the trust we can put in the software 

is lower. But consider the following issue: is the error symmetrical? In other words, 

the existence of an active community should increase the metric as much as the 

lack of the community should decrease it?  

The answer is no, and it is quite easy to understand why. The lack of an active 

community assures the following: new software bugs will not be quickly corrected; 

if a user of the software finds out a bug then the rest of the users have no way to be 

quickly warned; and for solving problems raised by a security incident the user will 

not have the help of any other experienced user or developer. The asymmetry of 

the metric comes from the fact that the mere existence of an active community does 

not guarantee an opposite result. The existence of an active community does not 

guarantee that software bugs will be quickly corrected, does not guarantee that 

security information found by users of this community will be quickly 

disseminated, neither guarantees that the users would get any kind of help in 

solving security incidents. In summary, improving security is a lot harder than 

decreasing it, and a trust-based metric should be interpreted considering this 

behavior. 



Chapter 4  Security Benchmarking of Transactional Systems Infrastructures 

116 

We can also use the same reasoning in terms of the trustworthiness benchmark we 

are proposing to justify why Minimum Untrustworthiness provides the best 

semantic meaning. Assuming that the benchmark definition is correct, then an error 

in the metrics computation can essentially be due to two mistakes: a test that should 

have failed is reported as passed, or a test that should have passed is reported as 

failed. Let’s then examine what happens in each case: 

1. If the test was wrongly considered as passed, then the minimum 

untrustworthiness is correct because the real untrustworthiness should have 

been higher; 

2. If certain test was wrongly reported as unknown or failed but the real 

configuration actually should have passed, this indicated that the 

benchmark user does not know or does not understand correctly the exact 

state of the system. Basically, he erroneously perceived one configuration 

as another configuration, and therefore he does not know the answer to the 

test. As unknowns are treated as failed tests, this error does not change the 

value of the metric. In fact, from a trustworthiness perspective, a test 

reported as unknown is always correct, as not knowing the state of a system 

is a lack of control that justifies less trust (even if the security of the system 

is in fact higher).   

4.4 Case Study 

The main goal of a benchmark is to provide information that allows making 

comparisons across different systems or different configurations of the same 

system. When comparing database infrastructures, however, we quickly notice that 

the idea of “selecting” one of a set of infrastructures does not appear to be much 

useful if we take the point of view of the DBA that is in charge of it. Instead, in a 

benchmarking context, his goal would be to evaluate the overall security state of 

his installation, in order to be able to improve it, even if that improvement would 

further imply being able to select alternative components for the system (e.g. the 

DBMS engine or the operating system). For this reason, we focused only on 

trustworthiness benchmarking in our experiments.  

Selecting a secure software component of an infrastructure is an important problem 

that is discussed and addressed in Chapter 6. We point out, however, that this reality 

is changing, and with the appearance of database cloud services (Zhao 2012), 

effectively selecting a secure transactional system infrastructure among several 

alternatives is becoming a relevant problem that can be addressed with our 

methodology. For such cases, the base scenario would have to be adjusted, but the 

overall methodology would hold. 
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A security benchmark is also expected to provide information that helps 

administrators in further improving the evaluated system. This way, to evaluate our 

methodology, we have applied it to four real database installations, and thoroughly 

analyzed and discussed the results in terms of what information would the 

benchmark user really obtain from the benchmark.  

The main input data that required by the benchmark for the computation of the 

metrics are the results of the tests that check whether the installation is in fact 

following consensual security recommendations (or not). Even though the main 

output of the benchmark is the set of trustworthiness metrics, the process of 

applying it already provides extremely useful information. Besides showing the 

validity of our proposal, we also intend to demonstrate this fact in the case study. 

This section is divided in three parts. First, we show the main details of the four 

infrastructures we analyzed. Second, we take the results of raw tests to show that 

the benchmarking process, by itself, allows drawing some conclusions regarding 

the security of the installations (even before computing the benchmarking metrics). 

Finally, we compute the benchmark metrics and directly compare the 

infrastructures from the perspective of the security problems that they might have. 

4.4.1 Systems Under Testing 

The proposed trustworthiness benchmark has been applied to four real DBMS 

installations using four distinct engines. Table 4.10 presents the relevant details 

about each installation, including the DBMS engine used, the operating system 

running on the machine, the number of distinct applications using each database at 

the time of the evaluation, the number of distinct database administrators and the 

number of developers that are not administrators, along with the amount of time 

needed to execute the tests. 

The tests were applied by one DBA of each installation, with the exception of Case 

2 where two DBAs participated in identifying the answers to the tests. Two cases 

were evaluated under the direct supervision of the authors (Case 1 and Case 3) and 

the other two cases were done independently (Case 2 and Case 4). In these two 

cases, the users that performed the evaluation had only as basis a document that 

contained the list of tests (available in Annex A). 

Table 4.10 Infrastructures details 
 Case 1 Case 2 Case 3 Case 4 

DBMS Oracle 10g SQLServer 2005 MySQL 5.0 PostgreSQL 8.1 
OS Windows 2003 Windows 2003 Windows XP Windows 2000 

Applications 3 54 3 2 

DBAs 2 5 2 2 
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Developers 8 39 0 0 
Test Duration 3 hours 1,5 hours 1 hour 1 hour 

 

As we can see in Table 4.10, the scenarios have very different characteristics, which 

help in evaluating the benchmark portability. The differences start with the DBMS 

engines (which is different in all scenarios) and operating systems used (three 

different versions of the same brand). Also, two scenarios are based on free engines 

(cases 3 and 4) and two on commercial engines (cases 1 and 2). Most importantly, 

two scenarios have a fair number of developers, while in the other two the DBAs 

are also the developers. This is an important factor when deciding what threats are 

most relevant in each case as, for instance, we are not concerned with problems 

involving developers in the situations where there are none. All databases are used 

within an academic context in two different universities, being mostly utilized to 

support administrative processes that have university staff, teachers and students as 

end-users. 

Let’s start our discussion by analyzing the time needed to answer all the tests 

defined by the benchmark (i.e. the 64 tests). In the worst case (Case 1) the tests 

took about 3 hours of work, but the average time spent is slightly more than 1 hour 

for all cases. This suggests that the test set is not particularly burdensome and does 

not require too much work for an experienced DBA. Another interesting aspect is 

related to the comparison between the commercial DBMS and the open source 

DBMS. The DBAs evaluating the open source DBMS took much less time to 

answer the tests than the ones evaluating the commercial ones, and this becomes 

even more evident if we remember that in Case 2, which took 1.5 hours, two people 

cooperated in the process. We investigated the reasons for this and found out that 

the smaller set of security mechanisms provided by the open source DBMS allowed 

more easily identifying certain tests as failed (basically because the DBAs knew 

they did not have support for the operations stated in the test). The support offered 

by the security mechanisms available in the DBMS software is an important issue 

that is discussed in more detail in Chapter 6.  

4.4.2 Analysis of the Results of the Tests 

The first analysis we can do is related to the number of passed tests (that identify 

the number of security recommendations that are implemented in the 

infrastructure), the number of failed tests and the number of tests for which the 

DBA does not know the answer, the unknown tests. In this analysis we aggregated 

the results using the recommendations classification proposed in Section 4.3.2.1, 

and computed for each group an Impact Index, which corresponds to the relative 

weight (see Section 4.3.2.2) of all the passed tests of a group over the relative 
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weight of all the tests that are part of each group. This impact index shows how 

much of the security surface of each group is correctly protected considering the 

different impacts of each recommendation. The aggregated results are shown in 

tables 4.11, 4.12, 4.13 and 4.14, one for each infrastructure under testing. The 

analytical results for each test and each infrastructure can be found in Annex A. 

Table 4.11 Case 1, Oracle 10g installation 
 Tests Passed Tests Failed Unknown II 

Environment 6 2 0 83,89% 

Installation setup 4 11 0 27,30% 

Operational Proc. 1 3 0 34,76% 

System level config. 16 8 2 55,53% 

App. level conf./usage 7 4 0 92,07% 

Total 34 28 2 58,44% 

Table 4.12 Case 2, SQLServer 2005 installation 
 Tests Passed Tests Failed Unknown II 

Environment 4 4 0 59,73% 

Installation setup 5 9 1 30,43% 

Operational Proc.s 2 2 0 85,56% 

System level config. 12 13 1 39,20% 

App. level conf./usage 3 8 0 50,84% 

Total 26 36 2 46,63% 

Table 4.13 Case 3, MySQL 5.0 installation 
 Tests Passed Tests Failed Unknown II 

Environment 3 5 0 44,30% 

Installation setup 7 8 0 35,66% 

Operational Proc. 1 3 0 50,80% 

System level config. 12 13 1 38,78% 

App. level conf./usage 4 7 0 65,74% 

Total 27 36 1 43,07% 

Table 4.14 Case 4, PostgreSQL 8.1 installation 
 Tests Passed Tests Failed Unknown II 

Environment 3 5 0 46,53% 

Installation setup 4 11 0 26,02% 

Operational Proc. 1 3 0 34,76% 

System level config. 9 15 2 29,29% 

App. level conf./usage 6 5 0 68,52% 

Total 23 39 2 37,21% 

 

The most important aspect we can observe in the results is that the number of 

unknown answers is very low (always below 2 for the 64 questions in any of the 4 

cases). Test number #27, related to the range of ports that are used to connect to the 

DBMS, was answered as unknown in cases 2, 3 and 4, meaning that maybe it should 

be revised or better explained. However, the rest of the unknown cases are spread 

randomly through the test set, which suggests that they are probably due to either 

lack of experience of the corresponding benchmarking user or some difficulty 

imposed by the software on obtaining the information. Nevertheless, from a high 
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level perspective, the DBAs did not report any difficulties in applying the test set. 

Obviously, it is hard to generally assess the usability of a complex benchmark such 

as this one using only four assessments, but the conclusion we reach within this 

limited set of results is that the tool appears to have a high usability. 

Concerning the analyses of the types of tests that were pass or not, an interesting 

result is the low number of passed tests in the Installation Setup group in all cases 

(always less than 50%). Three factors seem to contribute to these results: the default 

installation settings are kept and used (this may be exploitable as default settings 

are universally known), the inexistence of file system partition planning for logs 

and data (which can lead to Denial of Service by exhaustion of disk space), and the 

use of an operating system that does not provide easy ways to keep track of files 

permissions (that usually force users to use administrative roles for several tasks). 

In terms of the 14 most important database security recommendations presented in 

Section 4.3.2.2, we list in Table 4.15.the critical practices missing for each case. 

Given the impact assigned to these recommendations, implementing them would 

have two immediate consequences: the total impact on the security surface of the 

infrastructure related to the overall set of recommendations implemented would 

raise to more than 50% in all cases; for the same reason, they would boost to the 

overall trustworthiness of the infrastructure.  

Table 4.15 Most important best practices yet to be implemented 
Case Missing critical recommendations # 

1 19, 28, 24, 15, 6 5 

2 3, 19, 28, 35, 6, 2 6 

3 4, 19, 28, 35, 1, 6, 25 7 

4 3, 19, 28, 24, 35, 1, 6, 2 8 

 

As final analysis let’s use the raw results of the benchmark from the point-of-view 

of the tests with unanimous results in all cases, as shown in Table 4.16. The analysis 

of the description of the security recommendations from which we devised these 

tests spots some patterns. For example, it is clear that tests #6, #7, #8, #10, #12, 

#13, #23 and #45 are heavily OS dependent. Thus the same outcome to all of them 

can be explained by the fact that all the infrastructures benchmarked use some 

version of the same operating system; thus it is plausible that by simply changing 

the operating system one could solve most of the issues. Furthermore, the following 

is true for the four infrastructures: 

 Testing is executed directly over critical production data;  

 No auditing is performed (even when provided by the DBMS); 



Security Benchmarking of Transactional Systems 

121 

 There is no policy about backup testing;  

 There is at least a small list of privileges attributed directly to userids 

instead of groups/roles;  

 No host based authentication is used; 

 None of the DBMS engines has file system access functionalities enabled. 

Table 4.16 Tests with unanimous results in all four cases 
 # of tests with unanimous results 

All cases passed 2, 8, 30, 33, 34, 39, 45, 47, 48, 57 

All cases failed 6, 7, 10, 12, 13, 19, 23, 26, 28, 29, 32, 37, 38, 42, 43, 58 

 

4.4.3 Trustworthiness Assessment 

Trust-based metrics only make sense after security qualification, where the obvious 

attack paths are identified and vulnerabilities that can be easily discovered are 

mitigated. Also, the lack of any fundamental security mechanism is already 

accounted for. Security qualification of transactional systems infrastructures is a 

complex problem, as already discussed in Section 4.2, and further revisited in 

Chapter 6.  

In this section we are concerned with understand the relative likelihood of the 

manifestation of harmful effects (the ones defined by the threat vectors) that may 

lead to attacks and vulnerabilities, basically by evaluating how prone certain 

security problems are. At this point, we assume that the security of the installations 

is at least at an acceptable level (i.e. higher than zero), and the goal is to distinguish 

in terms of their ability to prevent future security incidents or having hidden 

security vulnerabilities. 

We start the analysis by inspecting the general values of the minimum 

untrustworthiness metric for each scenario. As presented in Figure 4.1, Case 1 is 

the least untrustworthy, while case 4 is the untrustworthiest. This, in general, means 

that more configuration problems (and more critical ones) are present in Case 4 

than in all other cases. However, to obtain more information about the problems 

we must analyze the results from the point-of-view of the relevant threat vectors. 
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Figure 4.1 General untrustworthiness for each scenario. 

Figure 4.2 presents the results of the minimum untrustworthiness metrics for each 

threat, grouped by case study. From an analytical point-of-view, there are several 

important trends in each scenario. Case 1 appears to be generally the least 

untrustworthy of all, and in particular, Denial of Service (DoS) is a threat that is 

very unlikely to actually be accomplished. 

Legitimate excessive privilege achievement (LegExPrA), on the other hand, is the 

threat against which Case 1 is untrustworthier. Considering the fact that there are 8 

developers in this scenario, they may end up achieving excessive privileges. In 

Case 2, the configuration is very untrustworthy against Communication weaknesses 

(CommW). This may be a serious problem as Case 2 has a very high number of 

developers and applications (that represent a high number of application users), and 

communication weaknesses can be used to eavesdrop data and authentication 

information. Case 3 strikes the eye as being very untrustworthy against Side 

Channel Data Exposure (SCDtEx). This may or may not be a problem, depending 

on the exact characteristics of the environment. In particular, by having no 

developers, this might not be a big concern for the DBA, which can also exclude 

Communications weaknesses (CommW) from his priorities. Audit trails 

weaknesses (AudTW), however, can be a problem, and Denial of Service (DoS) 

surely is. These observations can also be generally visualized in alternative 

presentations, as shown in Figure 4.3. 
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Figure 4.2 Untrustworthiness for each threat, grouped by case 

Figure 4.3presents the same data of Figure 4.2, but in a way that allows easily 

comparing each case against the others when it comes to individual threats. On the 

left graph, the very small untrustworthiness against Denial of Service (DoS) in Case 

1, and the extreme untrustworthiness against Side Channel Data Exposure 

(SCDtEx) in Case 3, are the two aspects that are highlighted. The radar graph 

presented on the right side of Figure 4.3 allows evaluating again the general 

prevalence of untrustworthiness on the different cases. It becomes clear that Case 

1 has, in general, the least untrustworthy configuration, and that cases 3 and 4 have 

the more untrustworthy ones (although it is not obvious that Case 4 is generally 

more untrustworthy than Case 3, as is presented in Figure 4.1). 

 

Figure 4.3 Alternative presentations for untrustworthiness comparison 

between cases 

From an administrator perspective, comparing individual threats against each other 

provide the most useful piece of information of the benchmark, in the sense that it 
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allows focusing in the threats that are the most relevant for a particular environment 

and that have the higher untrustworthiness. One way to approach this analysis is to 

evaluate the list of threats ordered from the least untrustworthy to the 

untrustworthiest, which allows comparing threats two by two. This analysis is 

summarized, for each case, in Figure 4.4. Besides the untrustworthiness associated 

with each threat, the graphs also present visually the standard error associated with 

the results (Zwillinger, 1995).  

 

Figure 4.4 Fine grain analysis of untrustworthiness, for each case 

The untrustworthiness values for Case 1 suggest that the most untrustworthy area 

of configuration are related to the Legitimate excessive privilege achievement 

(LegExPrA) threat. We can see, however, that given a margin of error, Illegitimate 

Privilege Elevation (IllPrEl) should also be a concern in this scenario. We can 

actually see a pattern dividing the threats in three or four distinct groups, with these 

two threats forming the most untrustworthy group, and Denial of Service (DoS) 

being in the least untrustworthy group. Obviously, these observations depend on 

the administrator’s perceptions of what would be the most dangerous threats to his 

system. Along these lines, in Case 2 we can spot 3 different groups with 

Communications Weaknesses (CommW) having the highest untrustworthiness, 

while the four least untrustworthy (SQLIE, AudTW, SCDtEx and DoS) have more 

or less the same values. Case 3 presents at least five clearly distinct groups, with 

Side Channel Data Exposure (SCDtEx) being clearly a very poorly covered threat. 

Case 4, on the other hand, presents three groups of threats, with Communication 
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weaknesses (CommW) and Illegitimate Privilege Elevation (IllPrEl) on the top 

priority. 

The benchmark can also be used to analyze the untrustworthiness from the 

perspective of the interaction classes. Figure 4.5 presents the minimum 

untrustworthiness computation for each interaction class, in each infrastructure. 

This analysis also shows some interesting trends. First, in Case 1, the DBMS users 

are the least untrustworthy and the operating system users are the most. If in this 

installation there are only a few operating system users, this may not be a big 

concern. However, if for example all developers also have an operating system 

account, this may be a wake-up call that some improvement should be done. In 

Cases 2 and 4, application users are the untrustworthiest. Case 4, in particular, is 

highly very untrustworthiness against applications users. In Case 2, on the other 

hand, due to the large number of developers, we might consider DBMS users a 

most relevant threat than application users.  

 

Figure 4.5 Untrustworthiness computation for the interaction classes 

4.5 Conclusion 

This chapter presented the instantiation of the framework proposed in Chapter 3 to 

the case of transactional systems infrastructures. In the first half of the chapter we 

developed a set of strategies and techniques aimed at designing the various 

components of the benchmark. In the second half we actually applied the 

benchmark to four real transactional systems infrastructures, identifying the 

characteristics of the installations and demonstrating the potential of our approach.  

The most important conclusion of this chapter is that our approach is viable and 

can be applied in practice. Nevertheless, we cannot ignore the fact that the process 
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is long and demanding, even considering that the outcome is worth it. A key aspect 

to notice is that the design of the benchmark was, in a very basic level, a process 

that took as input an amount of consolidated security knowledge about a domain 

and converted it into a tool able to provide indications and metrics that can be 

readily interpreted by administrators and higher level business managers that are 

not security experts. No part of the ben benchmarking use adds security information 

to the benchmark, as all the security knowledge that is part of the benchmark, from 

the threat vectors, to the pessimistic scenarios and the security recommendations, 

is external information provided by reliable sources and experts. Another aspect is 

that the framework conducts the benchmark designer to correctly process and 

reason about the security information obtained externally, therefore leading to a 

tool that effectively represents and takes advantage of all the knowledge that is put 

into it.  

Finally, an aspect that was not considered yet is the validation of the tool. 

Intuitively, a validation process for this kind of tool would be as follows: first, we 

would compute the trustworthiness metrics for a set of infrastructures. Then, for a 

certain time, we would analyze the existing security incidents within those 

infrastructures. The validation would consist of crosschecking the benchmark 

metrics with the types of problems observed. However, there is a fundamental 

problem with this approach: the security incidents observed would depend on the 

two main factors that determine the successfulness of a security breach: capabilities 

and intention (also indirectly related to value). Our benchmark, by design, provides 

metrics related only with one of these aspects, which is the capabilities. As 

discussed in Chapter 3, we should not include in the benchmark definition external 

factors such as intention being (see Section 3.2 for a thorough discussion about the 

effects and distortions that external factors may cause in the metrics). As both 

capabilities and intention are independent, the fact that a certain well protected area 

(as indicated by the benchmark) of the system suffers more security incidents than 

another less protected one, does not allow to conclude that the measures are wrong. 

The reality is that effectively validating our benchmark proposal is a complex 

problem that does not have an easy answer, and for that reason we leave it as future 

work.  
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5  
 

Trustworthiness 
Benchmarking of 
Web Applications 

This chapter explores the concept of trustworthiness benchmarking in the context 

of a controlled evaluation target, i.e. business applications, which are the part of the 

system that usually implements the business rules and that provide the interface to 

the end-users. The simplest definition we can give to business applications in the 

context of transactional systems is that they are the software designed to handle 

two main aspects (Yang 2011): 

1. To provide the interface via which the end-users interact with the 

transactional system (e.g. by inputting information, retrieving information, 

and issuing commands); 

2. To implement and enforce the rules of the business domain. 

For a particular domain, a business application should evaluate what information 

requires authentication (or not) to be accessed, and provide the means to perform 

such authentication. Also, the application should define the available commands 

(and to whom they are available), which processes can be executed, and what data 

is required for each process (e.g. the mandatory fields in a data input form).  

Even considering that most transactional systems follow a client-server model 

(Ram 1999), the exact place where the code is executed largely varies from one 

architecture to another. On one side of the business applications spectrum, we have 

thin client architectures, where most of the code executes within the server 

infrastructure (much like the old mainframe architectures) and the clients serve 

mostly for data input and information display. On the other side, we have 
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architectures where all the code of the application runs on the client platform, and 

the communication with the server infrastructure is basically to store and retrieve 

data by issuing database SQL calls (or any other equivalent data driven 

communication protocol). Obviously, a variety of intermediary approaches can also 

be used, including solutions where executable code is present on the client, on a 

server, and also in the database engine (e.g. in the form of stored procedures 

(Eisenberg 1996)).  

One important variation of this distributed approach consists of using application 

servers, which are responsible for hosting the executable code that implements the 

business rules (in this context the clients have no direct connection to the backend 

database). When processing a request, the application server connects to the 

database and submits the required data access operations, in a way that is isolated 

from the clients. One advantage of this architecture is that it allows the database 

infrastructure to be shared by several business applications, remaining at the same 

time as an independent server, which allows it to be isolated from (potentially) 

untrusted computers and networks (the clients communicate only with the 

application server). This approach to transactional systems architecture design is 

frequently referred as three-tier architecture (Cardellini 2002). 

Transactional systems based on web applications can be seen as a specific type of 

three-tier architecture that is becoming more and more popular (Hoffman 2008). A 

web-based application transactional system takes advantage of several standards 

(e.g. HTML for form design, CSS for interface styling, Javascript for interface 

functionalities (Hevery 2009), HTTP and HTTPS for network communications 

(Kaufman 2002)) that ultimately allow the developers to focus on programming the 

business rules, while most of the communication, network and infrastructural 

aspects are automatically handled by a diversity of available solutions. A web 

application is typically built based on the following set of standardized elements:  

a) Web server: being the kernel of the application server, the web server is 

in charge of receiving client requests and sending the responses back. In 

practice, when a request is received, the web server redirects it to the local 

process responsible for processing it, and sends the output of that process 

back to the client. Several implementations, free and proprietary, are 

available out-of-the-box (e.g. Apache HTTP Server, Tomcat, Nginx). 

b) Web browsers: applications that run in the client’s computer and that 

communicate with the web servers using the HTTP and HTTPS protocols 

and primarily display content encoded in HTML. Almost all standard 

browsers support CSS (which is essentially a formatting standard) and 
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JavaScript (that allows including some local processing capabilities) 

languages (Hevery 2009). Standardization makes web applications 

inherently cross-platform, providing usability in a diversity of devices.  

The development of web applications is highly tied with the infrastructure 

restrictions (the database engine and the server application), but it is almost 

independent from the client devices. Nevertheless, a huge variety of 

implementation languages, from compiled languages to interpreted scripting 

languages, can be used for the implementation of web applications (e.g. CGIs, java, 

PHP, .net, aspx, etc.) (Morrison 2002).  

A key aspect is that the application server is a critical element in a three-tier 

architecture, and its security should also be considered in the context of a security 

benchmark. However, being a part of the transactional system infrastructure, we do 

not address it here. In practice, application servers should be benchmarked together 

with the transactional system infrastructure, following an extension of the 

methodology proposed in Chapter 4. Although we did not include the application 

server in the base scenario defined in Chapter 4, we addressed the specific problem 

of web servers’ trustworthiness benchmarking in (Mendes 2008), a joint work that 

followed the framework proposed in Chapter 3. 

Unlike a transactional system infrastructure (typically composed by a variable set 

of diverse devices, network infrastructure and software), what defines the runtime 

behavior of a web application is contained, in one way or another, in its source code 

(possibly along with some small set of configuration files), which makes available 

to a benchmark all the relevant information about the inherent security 

characteristics.  

In the context of our framework (see Chapter 3), a security benchmark for web 

applications includes the processes and the analysis required for security 

qualification and trustworthiness benchmarking. The first should be defined by 

stating the set of tests needed to determine if the web application under evaluation 

fulfills the minimum set of security requirements needed to be acceptable in the 

application domain (a detailed discussion about those requirements is presented in 

Chapter 3). Such requirements are, by definition, primarily domain dependent, and 

therefore we refrain from providing any definitive list, as that is considered out of 

the scope of this chapter. Nevertheless, for illustration purposes, the following 

paragraphs briefly discuss the qualification step. 

The qualification elements that can be expected in a wide range of web applications 

include: a variety of authentication methods, fine grain permissions settings, role 
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based privileges, general encryption capabilities (communication and storage), 

backup support, auditing mechanisms, logging, support from an active community 

or reliable organization, etc. All of these are actual security elements that are greatly 

described in typical security literature (Stallings 2010).   

Another part of qualification would be the actual search for vulnerabilities, which 

can be defined as programming or configuration characteristics that allow the 

application to be attacked. These vulnerabilities can be identified by a variety of 

methods, ranging from automated static code analysis and penetration testing, to 

manual analysis by experts (McGraw 2006). As defined in our security 

benchmarking framework, the result of the qualification step is a set of systems that 

are acceptable for use, and are thus considered reasonably secure (i.e. the result of 

this step should not be used to compare the qualified systems). The benchmark user 

will use the tests and evaluations of the qualification specification in order to sort 

out the candidates that will therefore have their trustworthiness evaluated. 

This chapter discusses and proposes approaches to obtain relative trustworthiness 

metrics for web applications. Section 5.1 presents an analysis of web applications 

from a security perspective Section 5.2 proposes a very simple method that allows 

computing a trustworthiness metric by using only a set of reliable static code 

analysis tools, and this approach is evaluated using several experiments. Knowing 

the limitations of the approach proposed in Section 5.2, Section 5.3 develops a 

theoretical approach to trustworthiness benchmarking of web applications, which 

includes the definition of what would be an “ideal” trustworthiness benchmarking 

metric. Finally, Section 5.4 concludes the chapter. 

5.1 Web Applications from a Security Perspective 

Web applications have several characteristics that make them particularly prone to 

security attacks, being their widespread exposure the most important one (Fonseca 

2008a). This exposure obviously increases the probability of being attacked, 

including the risk of being used to leverage attacks against other applications, 

which forces us to assume the possibility of composite attacks (which makes the 

problem even more complex) (Balzarotti 2007). 

Another key characteristic of web applications is that the base protocol over which 

they are built (HTTP) is essentially stateless, meaning that two distinct interactions 

between the web server and a client are more or less independent (session tokens 

are actually a work-around for this characteristic) (Chen 2009). After a first 

communication between a user’s web browser and an application hosted by a web 

server (potentially including an authentication step), a session token (which is a 

simple global unique identifier) is generated and sent to the end user’s web browser. 
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This token allows the server to keep the track of the actions performed by the user 

that owns it (ownership in this case if defined in terms of knowledge, and an 

attacker would successfully “steal” a session from a legitimate user if he manages 

to discover the value of the session token). From this point on, communication 

consists of stateless requests that usually include the following steps (Balzarotti 

2007): 

− Step 1. The user sends to the server a set of parameters (e.g. key-value 

pairs, which might include the session token) and indicates a target 

resource (e.g. a web page).  

− Step 2. The server processes the code of the target resource using the 

parameters provided by the user. This processing can be extremely 

complex, including, for example, file system calls, database calls, and the 

execution of other services and processes. If a session token is provided, 

then the values stored in the server (and that are associated with that token) 

may also be used as input for this execution (e.g. as the case of session 

variables). 

− Step 3. After finishing processing, the server replies with an output. This 

output is usually a stream of data that can have several formats depending 

on the application context (e.g. html text, file contents, forms). 

Based on this simplified processing model, a typical web application attack consists 

of crafting one or more of the input parameters in a way that at least one of the 

following effects is achieved: 

1. The output on step 3 presents either out-of-format data (e.g. an executable 

script code instead of text information) or confidential data (e.g. 

confidential database records/fields, private/critical files content, internal 

server state information). 

2. Step 2 causes the state of the application to be modified in an unintended 

way (e.g. database or files modification, unexpected services call, 

resources usage). 

In other words, a threat can be defined as a particular set of parameter crafting 

techniques that aims at causing one or more of the previously mentioned effects 

(Jovanovic 2006). For instance, SQL injection (Amirtahmasebi 2009) consists of 

manipulating input parameters in order to cause a semantic change in a specific 

SQL command that is sent to a database. A cross-site-scripting (XSS) attack (CGI 

Security 2010), on the other hand, includes a set of crafting techniques that cause a 

state change, forcing the server to output out-of-format data in a set of subsequent 

requests (e.g. a executable script code that is sent to another user or reflected back 

to the same user). 
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An important characteristic is that an attack that implements such a threat usually 

aims at a specific line of code (or a few strongly coupled lines of code with a single 

semantic goal). For example, an SQL Injection attack typically aims at a single 

database SQL call, and a XSS attack targets the statements in charge of returning 

the output to a user (e.g. a “printf” or “echo” statement). This way, for each threat 

type it is possible to identify a set of code statements that can be the target of such 

a threat. We call these statements hotspots. In practice, even though several 

hotspots may exist for a specific threat, a particular attack is usually aimed at one 

specific hotspot (Integrigy 2007). Therefore, the goal of the attacker is to 

manipulate input variables that influence a particular hotspot in order to cause a 

malicious effect. 

From the developer’s perspective, each hotspot is designed with a particular 

“business activity” in mind, and helps implementing a given functionality (or set 

of functionalities). Usually, a developer defines a set of input values that are 

processed (directly or indirectly) by a particular hotspot, and design that hotspot to 

generate the corresponding output values or actions. The set of input values 

represents the input business domain of the hotspot. Attacks are accomplished by 

using values outside that domain and for which the hotspot may not be correctly 

designed. 

Input business domains are relative to each hotspot. This is important, and means 

that these domains may vary from one hotspot to another, and may also differ from 

the input domain of the whole web application (i.e. the domain of the parameters 

actually provided by the end user). This is a frequently overlooked characteristic 

that makes the task of securing the entire web application considerably more 

difficult. 

The web applications characteristics previously presented suggest two distinct lines 

of defense against threats. The first consists of reducing the input domain of the 

application as a whole, acting directly on the values provided by the end users. The 

idea is to force the input parameters to be within the valid business domains (for 

the whole web application) or to interrupt the execution when a value outside the 

domain is provided (this is frequently called input validation and can be achieved 

by a set of filtering (Liu 2006)). This line of defense, however, is frequently not 

enough, as the input business domain of a hotspot may not coincide with the domain 

of the application. The problem is that the business domain of the application 

corresponds to the composition of the input business domains of all hotspots, which 

makes this reduction extremely complex (or even impossible in some cases). 

Consider, for instance, the classical problem of a string value that contains a single 

quote, which is the character used as a string delimiter in most SQL statements 

(Integrigy 2007). It may not be possible to escape this single quote universally 
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because the string value may be used in other places besides SQL statements (e.g. 

it may be outputted to the user). In this case the developer must either create an 

escaped copy of the value (which may not be practical if the value is further 

processed, creating potential inconsistencies) or delegate the responsibility of 

dealing with this issue to each hotspot. Thus, the actual relation between the input 

parameters and each hotspot may be hidden under the application’s complexity. 

The second line of defense, necessary to complement the limitations of a general 

input validation strategy, is to guarantee that the values actually used in each 

hotspot lie within the input business domain of that hotspot. Several aspects must 

be considered in this case, namely: technical characteristics (e.g. the SQL language 

details for a SQL execution, the file system structure for a file access); context 

characteristics (e.g. the output generated by the hotspot, how the data should be 

interpreted and in what context); and the application’s business rules. These 

aspects strongly define the characteristics that the values used in the hotspot must 

respect in order for the hotspot to always behave in the expected way. In practice, 

this set of characteristics defines what we call the Business Data Type of each 

hotspot. Strong Business Data Typing (in the same sense of traditional strong data 

typing (Tomatis 2004)) is different from a typical data typing because it takes into 

consideration all the aspects related to the use of the value, and not just a 

programming language and codification perspective of data typing (e.g. a numeric 

variable may not contain a string). A key difficulty is that the Business Data Type 

of a hotspot may not be easy to identify, as it is the result of a mixture of business 

rules, and context and technical characteristics. Guaranteeing its correctness is, 

however, the most important part of the defense, as this is where attacks will take 

place in a web application (Monga 2009). 

In summary, coding best practices for secure web applications can be divided into 

two big groups:  

 General Input validation: each input parameter of a web application 

should be validated against a valid business domain. Values outside the 

specified domain should either be replaced by values within the domain, or 

the application must halt indicating an input problem. 

 Business data typing for hotspots: any value used within a hotspot must 

conform to a set of technical, context and business constraints.  

In a defense-in-depth approach, the developer is expected to always consider these 

two types of best practices, even when one of the types seems to be enough to 

protect against a specific threat. 



Chapter 5  Trustworthiness Benchmarking of Web Applications 

134 

5.2 Benchmarking the Trustworthiness of Web 
Applications using Static Code Analysis 

Static code analysis is a well-known white-box technique based on the assessment 

of the source code (or the bytecode in more advanced analyzers) of an application, 

frequently used by developers to discover bugs and security vulnerabilities in web 

applications and components (Chess 2007). The goal of this technique is to identify 

specific code patterns that represent security vulnerabilities. Most analyzers are 

based on expert knowledge (Livshits 2005) that is built directly in the tool and 

several tools implementing such technique are currently available (including free 

and commercial tools) (FindBugs 2011; Yasca 2011; IntelliJ IDEA 2011). 

From a high-level perspective, a Static Code Analyzer (SCA) commits to a certain 

set of patterns that define the types of bugs that it can identify. These patterns are 

necessarily limited within the available expert knowledge, which means that even 

excellent analyzers may miss particular types of bugs (Chess 2007). In practice, 

pattern sets for static code analysis can be classified as loose or tight. A tight pattern 

matches precisely a wide range of code bugs, but allows bugs represented by other 

unpredicted patterns to slip through. On the other hand, a loose pattern is better for 

finding bugs in unpredicted formats, but more easily points portions of code that 

(even though they appear to be) are not bugs, which are known as false positives 

(Chess 2007).  

False positives are usually considered bad as they cost time to analyze without 

bringing useful information to the evaluator (i.e. they point nothing to correct) 

(Nadeem 2012). However, one possibility is that they may carry other kind of 

information. In fact, false positives are usually code patterns that “look as” bugs 

but are not. In other words, they are code patterns that somehow are "close to bugs 

and usually a single detail (either in that portion of the code or in another related 

part) separates them from becoming actual vulnerabilities”. In other words, one 

hypothesis is that this kind of code (i.e. false positives) may also be dangerous, 

meaning that a source code filled with code patterns leading to too many false 

positives may be more untrustworthy and prone to vulnerabilities than one with 

less.  

In this section we present a series of experiments that investigate the possibility of 

combining the output of different SCAs to define metrics for trustworthiness 

benchmarking of web applications. In practice, we try to answer the following 

question: 

Is the combination of state-of-the-art static code analysis tools a potential 

approach towards obtaining metrics for comparing the trustworthiness of web 

applications and components? 
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In this study we define four metrics and investigate their behavior, trying to verify 

their relation with security attributes. In other words, we attempt to provide 

evidence that there is a correlation between these metrics and the security properties 

of the benchmarked code. The metrics are based on the raw number of vulnerability 

warnings reported by a set of static analysis tools. In this scenario, instead of 

formally defining the threat vectors (as in Chapter 4 for transactional systems 

infrastructures), we simply assume that the threat vectors are defined by the 

insecurity characteristics that the tools are designed to detect (in the end, the goal 

is to assess if such threat vectors are representative and correlate with real security 

issues or not).  

To understand the effectiveness of the proposed metrics, we conducted a set of 

controlled experiments. In these experiments, the benchmarking approach was 

applied to the detection of SQL Injection vulnerabilities (which are among the most 

frequent and dangerous vulnerabilities in the web environment (OWASP 2010)) in 

different implementations of the TPC-C, TPC-W, and TPC-App standard 

applications (TPC 2012). Results show that the raw number of vulnerabilities 

detected by static code analyzers allows establishing a rough tanking of 

applications, but the unstable nature of false positives is a problem when 

performing fine grain comparison. To account for this, we then calibrate the metric 

based on false positive rate estimations, which indeed allow improving precision. 

To demonstrate the effectiveness of the calibrated metrics, we present the results 

of the approach applied to a set of real web applications, namely seven distinct web 

forums developed in Java. Results are validated based on an expert analysis, further 

showing the usefulness of the proposed approach. 

5.2.1 Trustworthiness Metrics 

The aggregated total number of security warnings reported by a set of static code 

analyzers is the key for building the proposed trustworthiness metrics, but its raw 

value cannot be used directly for comparison, and we have to make clear why this 

is true before proceeding. In practice, to design a proper metric suitable for 

comparison, two problems have to be accounted for, as discussed next.  

The first problem is related with the applications being compared, which may have 

different sizes. The problem is easy to understand through an example. Suppose 

that we are comparing two applications that use exactly the same coding style, but 

one is twice the size of the other. If they are similar, they have the same type of 

coding patterns, and thus trigger false positives approximately with the same rate. 

In this case, the application with bigger size will be considered untrustworthier, 

which may not be true.  
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In fact, suppose we benchmark two applications, A and B. Application A presents 

2 warnings and has size X. Application B also presents 2 warnings, but its size is 

10X. The idea is to use the raw metric, i.e. the number of warnings, as an estimator 

of the number of lines of code that can be considered bad programming practices. 

We also hypothesize that more examples of bad programming practices will tend 

to lead to a proportionally higher number of real hidden vulnerabilities. Thus, as 

both applications have the same number of warnings, the number of hidden 

vulnerabilities they are assumed to have should be similar. The issue is that finding 

one vulnerability among tens of thousands of source lines of code (SLOC) is harder, 

on average, than finding the same vulnerability among a few thousands of SLOC 

(from an attacker perspective), which means that, for two applications with the 

same number of security warnings, the one with smaller size is more likely to have 

one of its vulnerabilities exposed. This rationale is the extrapolation of the concept 

of “defect density” (Sherriff 2006), which is used as a metric of software quality, 

where it is assumed that software with a higher defect density most frequently 

manifests its defects, as code with defects is executed with a higher frequency 

(therefore, the software with the higher defects density is the one that is classified 

worse, and not the one with the higher absolute number of defects). This way, to 

allow fair comparison, the number of security warnings has to be normalized by 

the size of each application, so that the size does not distort the results. In other 

words, instead of the absolute number of security warnings, what we need is the 

security warnings density of the application.  

The second problem that has to be taken into account when using the results of 

several static code analyzers to build a trustworthiness metric is related to the 

effectiveness of such tools, and has to do with the frequency with which each one 

yields false positives. As static code analyzers are mostly based on search patterns, 

the number of times that these search patterns are triggered is directly related to the 

intrinsic characteristics of each implementation, and varies drastically from one 

analyzer to another. While we want these different patterns to count, we do not 

want one analyzer to be awarded more importance in the results than the others. In 

other words, if one analyzer tends to trigger proportionally much more warnings 

than another one, this would lead the results of this analyzer to have more important 

in the calculation of the final metric. This way, it is necessary to guarantee that all 

analyzers contribute in the same way for the final result.  

The exact number of false positives depends not only on the analyzers, but also on 

the combination of their search patterns and the code being analyzed (Littlewood 

2010). However, as we are designing a procedure that should serve to compare 

different applications, we may not have access to the source code beforehand, 
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therefore the best that we can do is to compute an average estimation of the false 

positives rate for each analyzer. Assuming that a tool implements either a tight 

search pattern (that tries to hit a precise set of known vulnerability types) or a loose 

search pattern (having a more broad, but also more unreliable, search pattern), then 

it will tend to report, respectively, less or more false positives in a consistent 

manner. Obtaining these factors - an average of the false positive rate for each tool 

- allows us to calibrate the number of vulnerabilities reported in a way that all tools 

end up having approximately the same contribution to the final metric. As 

computing these estimates is a difficult problem and should rely on an extensive 

and targeted evaluation, in our experiments we adopted the estimates provided in 

(Antunes and Vieira 2010), where the authors computed such factors in the context 

of web services for the same tools that we use in our experiments (see Section 

5.2.2). However, for other tools, these values have to be estimated, possibly using 

a methodology similar to the one proposed in (Antunes and Vieira 2010). 

Considering the previous discussion, the metrics we propose and analyze are: 

 Raw Number of Vulnerabilities Reported (Raw-NVR). Represents the 

sum of the number of vulnerabilities reported by each of the SCAs 

considered. Obviously, we are expecting that different tools detect different 

vulnerabilities (as is demonstrated in (Littlewood 2010)) and that the union 

of the search patterns of all tools achieves higher coverage than any single 

tool. As explained before, this metric is expected to be biased by the tools 

characteristics, and we do not expect this to be the best metric, even though 

it should also correlate with security aspects. However, it is very easy to 

obtain. 

 Calibrated Number of Vulnerabilities Reported (Cal-NVR). To reduce 

the impact of different false positives rates we evaluate the application of a 

calibration factor, as previously explained. This metric is computed by 

applying a constant factor to the Raw-NVR metric using the estimates 

provided in (Antunes 2010).  

 Normalized Raw Number of Vulnerabilities Reported (Norm-Raw-

NVR). To take into account the size of the application, we also compute 

normalized metrics. In our experiments we define Norm-Raw-NVR as 

Raw-NVR per 100 lines of code. This could be done using any other 

normalization factor relative to size, like the number of classes or the 

number of features; what is important is to allow expressing the warning 

density of the application (Gencel 2008). 

 Normalized Calibrated Number of Vulnerabilities Reported (Norm-

Cal-NVR). This is the normalized version of the Cal-NVR metric, 
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considering again 10k SLOC as the normalization factor. 

The next sections present a detailed analysis of the semantics of these metrics from 

a benchmarking point-of-view, trying to reason about what is exactly the meaning 

of the numbers being reported. 

5.2.1.1 SCAs Reports as a Trustworthiness Metric 

An important assumption of this work is that the aggregated reports of a set of static 

source code analyzers can be considered a fair measure of trustworthiness (i.e. they 

provide enough evidence of security practices to allow comparison from a security 

point-of-view). This assumption has a crucial consequence: as true vulnerabilities 

are not distinguished from false positives, we are effectively giving them the same 

importance. This is extremely important and deserves some justification. 

It is clear that any real vulnerability in a web application is an immediate security 

hazard. If a static code analyzer can find it, then it is likely that some attacker will 

also be able to find it, thus it would be extremely dangerous to use the application 

as is. However, within our framework, the task of distinguishing acceptable 

applications from the unacceptable ones is performed during the security 

qualification step, and not via trustworthiness benchmarking. Because of this, we 

assume that if true vulnerabilities (that can be found by static code analyzers) are 

present during trustworthiness benchmarking, then these vulnerabilities are, from 

an objective perspective, as harmless as false positives. In other words, if those 

vulnerabilities are not harmless, then the application under benchmarking would 

not qualify in the first place. Therefore, our trustworthiness benchmarking 

approach starts from the principle that any security problem in the source code is 

related to hidden and hard to detect vulnerabilities that can only be estimated and 

not actually found. In this sense, the original hypothesis translates into the idea that 

the aggregated results of false positives of several SCAs may help on estimating 

the quality of web application code (from a security point-of-view), which is 

directly affected by the number of hidden vulnerabilities. 

Another assumption we make is that the characterization of the trustworthiness of 

an application must go beyond what is allowed by a simple vulnerability 

identification process. Typical web applications are constantly being upgraded, 

fixed and improved, and these maintenance tasks are often a source of new 

vulnerabilities (Shahzad 2012). Also, it is well known that new features are usually 

developed more or less in the same coding style of the rest of the application. The 

reality is that the probability of new bugs to be added during a source code 

maintenance task has a direct relation with the probability of having vulnerabilities 

introduced due to the coding style being used (Shahzad 2012). This is fairly simple 
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to understand if we consider that most vulnerabilities are simple forgotten details 

(e.g. one parameter among several that is not validated properly). On the other 

hand, if the coding style makes it inherently difficult to disregard such details, then 

the code should be considered trustworthier. 

Considering these aspects (and assuming a benchmarking perspective where the 

goal is to fairly compare applications), metrics based on the number of reports seem 

to be quite reasonable, as long as they do relate to secure or insecure coding styles. 

The reasoning is that if they do correlate with security aspects (and the most they 

correlate, the better) then the proposed metrics are useful. 

5.2.1.2 Combining the Output of Several Tools 

The Number of Vulnerabilities Reported (NVR), which is the simple count of the 

security warnings reported by a tool, can be expressed by three factors: the number 

of True Vulnerabilities in the code analyzed, the number of Missed Vulnerabilities 

(MV), and the number of False Positives (FP). In short, NVR can be defined by the 

following equation: 

NVR = TV – MV + FP 

As mentioned before, different analyzers end up presenting different results 

because they scan for different vulnerability pattern sets. One way to find more 

vulnerabilities and insecure coding patterns is to have a looser pattern set 

(potentially increasing the number of false positives). Another way is to use several 

different tools that implement different and complementary patterns. The 

combination of several SCAs is an easy way to amplify the search pattern, without 

raising the false positives rate significantly. In this case, the aggregated result can 

be expressed as: 

Raw-NVR = TV – MA + FP1 + FP2 + … + FPn 

where FP1 to FPn represent the false positives reported by each tool and MA is the 

number of vulnerabilities missed by ALL scanners. MA will be significantly 

smaller than any individual MV if the search patterns complement each other. 

As we assume that obvious vulnerabilities (detected by SCAs) were previously (i.e. 

before the trustworthiness benchmarking step) fixed by developers or are as 

harmless as false positives, we can consider that only the vulnerabilities missed by 

ALL analyzers remain in the code, and no true vulnerabilities are reported. So, 

Raw-NVR can actually be defined as: 

Raw-NVR = FP1 + FP2 + … + FPn 

We expect this metric to give an insight on the trustworthiness of the benchmarked 

code, based on the number of false positives. In other words, the biggest the Raw-
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NVR, the more untrustworthy is the code and the higher is the number of 

vulnerabilities hidden. If our metric (i.e. the number of false positives) correlates 

to the security of the application, then in some sense false positives must be 

proportional to the number missed/hidden vulnerabilities. In practice, if this 

proportion is equal for all SCAs in all benchmarked applications, then the Raw-

NVR should be the best metric in our set. However, as false positives depend much 

on the patterns of each tool and on the code being benchmarked, it is possible that 

Raw-NVR unrealistically award more importance to the results of the SCA that 

tends to report more false positives, which would not be in the best interest of the 

benchmark. To better understand this case, we should consider calibrated metrics. 

5.2.1.3 Calibrated Number of Reported Vulnerabilities 

In order to reduce the influence of false positives rate of specific SCAs, we propose 

to calibrate the results from the individual tools by applying a factor to the number 

of reported vulnerabilities. Assuming that that rate depends on the pattern of the 

SCA and is proportional (on average) to the number of missed vulnerabilities (MV), 

we conclude that NVR is determined by the following equation, where FPF 

represents the False Positives Factor for a specific tool: 

NVR = MV * FPF 

By dividing the number of vulnerabilities reported by the False Positives Factor, 

we obtain the number of missed vulnerabilities. Thus, if we aggregate several 

calibrated SCAs, we get the following calibrated NVR metric: 

Cal-NVR = NVR1 / FPF1 + …  + NVRn / FPFn  

Cal-NVR = n * (MV1 + … +  MVn) 

Assuming that the vulnerabilities missed are the same for all analyzers (i.e. the 

detected ones were corrected before starting the trustworthiness benchmarking 

step) then Cal-NVR is proportional to the number of hidden vulnerabilities. A key 

aspect is that the False Positives Rate required for each tool corresponds to an 

estimation of the average rate of false positives reported by that tool in a wide range 

of possible source codes. The problem then becomes gathering realistic estimates 

for FPF, which is not a simple task. In our work, we use the estimates presented in 

(Antunes 2010). This work provides an evaluation of the average false positive 

rates for several SCAs in the context of Web Services, which are usually based on 

similar constructions and programming languages as Web Applications in general 

(Almonaies 2011). 
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5.2.1.4 Normalized Metrics 

The proposed normalized metrics are quite easy to compute. Basically, the idea is 

to apply to the previous two metrics a factor that represents the size of the 

application being benchmarked. The metrics present then the following form: 

Norm-Raw-NVR = Raw-NVR / Size_Factor 

Norm-Cal-NVR = Cal-NVR / Size_Factor 

Any factor that represents what the benchmark user understands by “application 

size” can be equally fair. For instance, the number of classes or the number of 

features can be both used (Gencel 2008). However, as vulnerabilities tend to 

manifest in specific lines of code (see discussion in Section 5.1), source lines of 

code (LoC) appear to be the most interesting and adequate size metric. In our 

experimental evaluation, we consider 100 LoC as the size factor for convenience 

and readability, as it has absolutely no effect in the relative values (i.e. they do not 

affect the comparison of tools). 

5.2.2 Empirical Analysis of the Metrics 

To understand the effectiveness and validity of the proposed metrics, we conducted 

a series of experiments under controlled conditions. For these experiments, we 

designed three distinct versions, each one with distinct security qualities, of four of 

the web services specified by the TPC-App standard (tpc 2011), which is widely 

accepted as being representative of web services. Using these implementations, we 

analyzed the behavior the NVR-Raw metric by comparing it to the number of true 

vulnerabilities in each version. This analysis was done for all the applications and 

also at a component level. In a subsequent experiment, we created sixteen versions 

of three completely distinct web services, one from the TPC-App, one from the 

TPC-C (TPC 2005) and another from the TPC-W (TPC 2002) standards. These 

sixteen versions where created by injecting real vulnerabilities in each of the 

versions, creating a progressively worse set of applications. We then computed and 

analyzed the NVR-Raw metric and the calibrated metrics of each of these versions. 

5.2.2.1 Static Code Analyzers and Web Applications Studied 

The experimental setup is based on three well-known SCAs: FindBugs (FindBugs 

2011), Yasca (Yasca 2011), and IntelliJ Idea Analyzer (IntelliJ IDEA 2011). These 

tools are widely used by practitioners and were also applied in several previous 

research works (e.g. (Ayewah 2007, Antunes 2009, Antunes 2010)). The 

experiments focus only on SQL Injection, as this vulnerability is one of the most 

frequent and dangerous in web applications (OWASP 2010), and also because 

(according to the vendors’ web sites) the three tools are able to detect them. Note, 
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however, that any other type of vulnerabilities for which good tools exist could 

have been considered. 

To implement the services, we started by inviting a 3rd year undergrad student. 

During a subsequent security inspection conducted by us, 9 SQL Injection 

vulnerabilities were identified in this first version (referred to as implementation 

V1). Afterwards, we took this implementation and, by performing the minimum 

changes possible, corrected the 9 vulnerabilities, creating an implementation 

similar to V1, but with no SQL Injection vulnerabilities (called V2). Finally, we 

invited an experienced programmer (with more than 3 years of programming 

experience and extensive knowledge of security of web applications) to develop a 

secure version of the same application (named V3), which presented zero 

vulnerabilities during code inspection. In summary, the experiment included 

implementation V1, with 9 vulnerabilities, implementation V2, with 0 

vulnerabilities, but having a coding style very similar to V1, and implementation 

V3, with 0 vulnerabilities and having a coding style completely different from V1 

and V2. All applications have approximately the same size (a few hundreds of lines 

of code), and therefore normalization of the metrics is not necessary. We study 

metrics normalization when comparing real applications in Section 5.2.3. 

5.2.2.2 General and Component Level Analysis of Raw-NVR 

We started the experiments by computing the Raw-NVR metric for the three 

versions. Figure 5.1 presents the results, including the true vulnerabilities (as 

detected in our manual analysis). 

As shown, the metric clearly highlights some differences in the security of the 

applications. The actual Raw-NVR value is very different from the true number of 

vulnerabilities, but the relative values resemble very accurately the security of each 

version. In fact, both V2 and V3, which have no vulnerabilities, scored the same 

value (10), while the implementation with 9 vulnerabilities scored more than the 

double of the others. Even though we expected similar values for V2 and V3, it was 

a surprise that they both scored so equally. To better understand this, Figure 5.2 

Component level evaluation of Raw-NVRbreaks down the metric for the four 

services in each version. As we can see, even though V2 and V3 scored equally in 

total, the distribution of the false positives is quite different in both 

implementations. In V2 they are centered in the NewCustomer service, while in V3 

they are more evenly spread. The higher than average score found in the service in 

V3 calls the attention as this means that this service was built using a programming 

pattern different from the rest. At the same time, we notice that the programming 

style used by the experienced programmer was more consistent, and no module 

stands out from the others. Nevertheless, we cannot forget that this is the Raw 
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metric, and these results are biased by the false positives rates of the tools. 

 

Figure 5.1 Benchmark results of our controlled TPC-App versions 

To more extensively evaluate the problems of the NVR-Raw metric we did another 

experiment using implementations of three different TPC services implemented by 

three distinct developers: NewCustomer service from TPC-App, 

CreateNewCustomer service from TPC-W, and Delivery service from TPC-C, 

having zero known vulnerabilities each (these specific classes were chosen by the 

simple fact that at the time of the experiments they were already implemented for 

other research works, but were exactly what we needed for our experiment, 

therefore we would not have to wait again for new implementations. It is important 

to understand that other classes could also have been chosen).  

Based on these three initial implementations, we created 15 more versions for each 

service by injecting randomly chosen SQL Injection vulnerabilities in the code (the 

vulnerabilities injected are from real samples drawn from vulnerable versions of 

the same applications). The idea was to create different versions of the same 

applications that were progressively worse in terms of security, which would allow 

analyzing the metrics behavior by comparing the values computed for each version. 

The 15 versions of each service were generated as follows: first we created four 

versions with one different vulnerability each; then, we took these four versions 

and by mixing each of the four vulnerabilities we created the remaining 

combinations (6 versions with all combinations of 2 vulnerabilities, 4 versions with 

3 vulnerabilities, and one version with the 4 vulnerabilities).  
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Figure 5.2 Component level evaluation of Raw-NVR 

Figure 5.3 shows the Raw-NVR metric for the 16 versions of each service, ordered 

by version (the version with no vulnerabilities is number 1, the ones with 1 

vulnerability are numbered 2 to 5, and so on). The dotted line in the graph (the 

bottom one) is a baseline representing the true number of vulnerabilities in each 

corresponding service version (i.e. the vulnerabilities injected). 

The data presented in Figure 5.3 clearly shows the imprecise nature of the Raw-

NVR metric when used to compare components that have a very similar (or equal) 

number of true vulnerabilities. We can see that in some cases the metric is more 

influenced by the false positives than in others, yielding a varied number of 

erroneous characterizations. For instance, the profile of the Delivery service metric 

is very similar to the base line (which portrays the true number of vulnerabilities of 

each version), allowing a fair relative comparison. In fact, the metric on this service 

shows an error only in 3 cases: when we compare versions 4 and 5 with versions 6 

to 8, and when we compare versions 11 and 12. On the other hand, for the service 

CreateNewCustomer, the metric leads to several erroneous comparisons, stating, 

for instance, that version 5 is worse than versions 6 to 13, which is not true because 

we know that version 5 has less vulnerabilities than the others. 
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Figure 5.3 Raw-NVR evolution in 16 versions of 3 different services, ranging 

from 0 to 4 vulnerabilities 

An important aspect that can be observed in Figure 5.3 is that the experiment 

confirms our first hypothesis: if there is a significant difference in the number of 

vulnerabilities, the metric actually portrays it. In fact, in all implementations, the 

versions with 0 or 1 vulnerabilities are better scored than versions with 4 

vulnerabilities, despite how erratic the false positives rate. This suggests that using 

the results of several representative SCAs may be a representative way to compare 

the trustworthiness of web applications that have a very distinct security quality, 

but may not be a so good approach to distinguish applications that are too similar 

(in security terms). 

5.2.2.3 Analysis of Cal-NVR 

As mentioned before, to calculate the Cal-NVR metric we adopted the calibration 

factors proposed in (Antunes 2010). The False Positive Factors used are 7% for 

Findbugs, 36% for Yasca, and 67% for IntelliJ Idea. To understand the accuracy of 

this metric we computed it for the 16 versions of the NewCustomer, 

CreateNewCustomer, and Delivery web services mentioned above. The results are 

presented in Figure 5.4. 
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Figure 5.4 Calibrated metric analysis for the 16 versions of each service 

Figure 5.4 shows that the detailed pattern of the curves did not change much (when 

comparing to the Raw-NVR metric shown in Figure 5.3). This was more or less 

expected, as the calibration factor is constant. The other thing that can be observed 

is a really important improvement. While for the Raw-NVR metric the three curves 

almost never intersect (as shown in Figure 5.3), the same does not happen for Cal-

NVR. This suggests that, even though the comparison between versions of the same 

service is roughly accurate when using the Raw-NVR metric, comparisons between 

different services are completely off. The calibrated metric, on the other hand, is 

better than the raw metric when comparing diverse software. This claim, however, 

requires more evidence, as presented in a more broad evaluation in the next section.  

5.2.3 Experimental Evaluation 

In this section we present an experiment conducted to understand the validity of the 

metrics in a scenario more close to a real use case of trustworthiness benchmarking. 

To accomplish this, we used the proposed benchmark to rank seven distinct web 

forums implemented using Java, and having a variety of sizes and features. In order 

to have a baseline for comparison, we invited six experts to rank these same seven 

web forums. Of these six experts, four are PhD students working in the area of web 

applications security, all of them with at least two years of experience in the field. 

The other two are software engineers with more than five years of experience in 

the development of web applications with security requirements. 

The problem we proposed to these volunteers was quite simple and representative, 

and can be summarized as follows:  
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“Suppose your company wants to install a web forum for its employees to 

communicate internally, but the forum will also be accessible through the web. 

Concerning features, usability and performance, it was determined that any of 

these seven web forums can be used. Your job is to provide a ranking among 

these seven web forums concerning security: the ones most secure (in the 

broadest sense of the word) come first. No ties are allowed” 

To conduct this task, we asked the volunteers to consider in the ranking process all 

the aspects they believe to be important from a security point-of-view and also to 

report the overall process and judgments that lead them to their decisions. This 

allowed us to have a rough idea of the most important aspects considered by the 

experts when analyzing the web applications, which we took into consideration in 

our final analysis (see Section 5.2.2.3).  

The web forums benchmarked are the following: Yazd 3, JavaBB v0.99, JForum 

v2.1.9 and v3beta, JGossip v1.1.0, mvnForum 1.2.2 and JSForum 0.0.1 beta 

(Forums Benchmarked, 2011), all available for free download. Most of these are 

extremely popular (e.g. Yazd and mvnForum), others not so much (e.g. JSForum). 

To make the experiment the most representative possible, we used a set of 

representative criteria to select the forums, namely: they have the most common 

features expected in a web forum, they are developed in Java, and the source code 

is publically available. The last two criteria were necessary as the static analyzers 

used target only Java code and require the source code of the application to be 

available (even though FindBugs only requires access to the bytecode). Clearly, 

these constraints may be changed if another set of analyzers is chosen. At the same 

time, it is expected that results provided by different sets of analyzers should not 

be compared (in absolute terms). 

In this experiment we decided to evaluate only the Raw-NVR and Norm-Cal-NVR 

metrics, omitting the intermediary Cal-NVR and Norm-Raw-NVR. We chose to 

not analyze these metrics for two reasons: first, we already established, in the 

controlled experiments, that the calibrated metric is better suited for comparing 

diverse software, which is what we are doing in this experiment; second, we need 

to apply normalization because the forums being compared have very different 

sizes, and as discussed previously, we need to focus on the problem of density. 

We also invert the Norm-Cal-NVR metric in order for it to grow with the 

trustworthiness of the application. This is only a cosmetic decision, and the 

behavior of the metric does not change. However, in order to be consistent, we call 

this inverted metric as Trustworthiness Metric (TM). TM is computed as the inverse 
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of Norm-Cal-NVR, so that it grows with less vulnerability warnings. The exact 

formula for TM is as follows: 

TM = 
No. Lines of Code/100 

F*0.93 + Y*0.64 + I*0.33 
 

where F is the number of security warnings reported by Findbugs, Y is the number 

of warnings reported by Yasca, and I is the number of warnings reported by IntelliJ 

Idea, while the constants are the false positive factors of each tool, as explained 

before. The trustworthiness value is normalized in terms of the size of the target 

application considering blocks of a hundred lines of source code. 

5.2.3.1 Analysis of the Overall Results 

Table 5.1 presents the overall results of the benchmark, where the first column 

presents the rank of each application. We also include the number of Lines of Code 

and the average Cyclomatic Complexity of each application (Lyu, 1996). 

Cyclomatic complexity is a metric that tries to express how complex a certain code 

is by counting the number of linearly independent paths through a program's source 

code. It is speculated that a source code with high cyclomatic complexity could 

induce software bugs due to the difficulties involved in manipulating and testing 

such complex code correctly (Lyu, 1996). If this is the case, then it is possible that 

cyclomatic complexity may also be a good estimator for the trustworthiness of a 

web application, so this comparison is relevant. 

Table 5.1 Web forums ranked by Trustworthiness (TM). 

# Web Forum 
Lines of 

Code 
Avg. CC Raw-NVR 

Trustworthiness 
Metric (TM) 

1 JGossip 1.1.0 34633 1,89 4 138,5 

2 JForum 3 47650 1,43 8 93,4 

3 JForum 2.1.9 61262 2,05 16 64,5 

4 Yazd 3 56255 2,41 58 17,7 

5 JavaBB 0.99 23807 1,49 41 10,2 

6 mvnForum 1.2 76774 2,73 108 10,2 

7 JSForum 0.0.2 1693 2,76 58 0,4 

  

Up to now, we have not yet established the reliability of the proposed metrics, so 

we cannot assure that the order is correct; this will be addressed later in Section 

5.2.3.3. However, we can start analyzing the relationship between the total number 

of security warnings (Raw-NVR), the Trustworthiness Metric (TM), and the 

average Cyclomatic Complexity (CC) of the benchmarked applications. At first 
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glance, the average CC does not appear to correlate well with any of the metrics. 

When it comes to CC and Raw-NVR, JGossip and JForum 3 have inverted 

positions, and JavaBB, which has a small CC, actually has a fair high Raw-NVR. 

The last two positions are also inverted regarding these two metrics. 

When comparing CC with TM, even though the last two positions are the same, 

bigger differences in the metrics are observed. For example, JavaBB and 

mvnForum, while having the same TM values, also have dramatically opposite CC 

(one on the top and other at the bottom). Given these differences, the only 

conclusion possible is that if CC is a good estimator for the trustworthiness of code, 

then our metrics are not, and vice versa. In Section 5.2.3.3 we show that our metric 

has merit to compare applications, suggesting that CC is not a good trustworthiness 

estimator for security aspects. 

Another important analysis is the comparison between Raw-NVR and TM. 

Although they present more or less similar rankings, like, for instance, in the three 

first positions, there are some crucial differences. Take for example the scores for 

JSForum and Yazd3. Even though they have exactly the same Raw-NVR values, 

they present very different trustworthiness values. This is mainly due to their 

relative sizes: Yazd3 is much larger than JSForum. Because they present the same 

number of warnings, JSForum has a higher warning density, which in principle 

may manifest as a high propensity to hidden vulnerabilities. The same rationale 

applies, in a smaller scale, to the differences between JavaBB and Yazd3. An 

interesting aspect is that, even though they have a quite different number of 

warnings, JavaBB and mvnForum ended up having the same trustworthiness. This 

means that, while they have different sizes and warnings, they present 

approximately the same defect density, so they have similar propensity to 

vulnerabilities. 

As TM is essentially designed for comparison, the actual values of the metric are 

not meaningful, so absolute scores of 10 or 100 do not translate semantically into 

anything: what is meaningful are the relative values. If we compare the scores of 

each application with the others, we observe that the applications can be actually 

divided in three big groups: the first group is composed by the top 3 applications 

(JGossip, JForum 3 and 2.1.9), which have very high scores. The second group is 

comprised of the following 3 applications (JavaBB, mvnForum and Yazd3), which 

are separated from the first group by a factor of approximately four (calculated by 

dividing the TM of JForum 2.1.9, which is 64.5, by the TM of Java BB, which is 

17.7). The last group includes only one application, JSForum, with a score of less 

than 1/20 of the worst score of the second group. Even though it is difficult to argue 

that an application within a given group is explicitly better (or worse) than the 
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others on the same group, the difference between each group is significant. The 

question now is whether this difference does map into real evidences; if it does not 

then the metric cannot be considered representative. To actually evaluate this 

aspect, we have compared this ranking with the assessment provided by the six 

security experts. 

5.2.3.2 Benchmark Results vs Experts’ Analysis 

The final output of the assessment performed by each of the six experts was a table 

with their proposed ranking, which consists of a simple ordering accompanied by 

a qualitative description of the process they used to determine it. A key aspect is 

that no single pair of experts proposed the same ranking, which shows that 

individual human analysis may not be a good source for benchmarking, as the 

ultimate result is based on opinion and knowledge that varies from person to 

person, and that is, most likely, not repeatable (unless a detailed process is 

followed, as the one proposed in Chapter 4 for security benchmarking of 

transactional infrastructures).  

In order to compare the experts’ evaluations with the results of the trustworthiness 

metric, we need to have an agreement between the experts. Although several 

options could have been followed to achieve that agreement, we decided to consider 

a simple average between the rankings provided by them (similar to a voting 

scheme). Table 5.2 presents the ranking proposed by each expert, along with the 

average for all experts, and the values for the trustworthiness metric. 

Table 5.2 Experts’ rankings 

Forum Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 
Avg. 
Rank 

TM 

JGossip 1.1.0 3 2 3 2 6 7 3,83 138,5 

JForum 3 1 1 1 1 1 1 1,00 93,4 

JForum 2.1.9 4 3 4 3 2 2 3,00 64,5 

Yazd 3 6 5 2 4 4 5 4,33 17,7 

JavaBB 0.99 2 6 6 5 5 4 4,67 10,2 

mvnForum 1.2 5 4 5 6 3 3 4,33 10,2 

JSForum 0.0.2 7 7 7 7 7 6 6,83 0,4 

 

There are several relevant aspects in this analysis. The most obvious is the 

unanimity regarding the first place, JForum 3, which was actually ranked in second 

by the benchmark. This does not invalidate our benchmark, as the scores of the 

three first positions are proportionally very close. What differs most is the fact that 
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JGossip, the first in the benchmark ranking, came as third in the average of the 

experts, which requires a more thoughtful analysis.  

A close look to the scores provided by the experts shows that the first four put 

JGossip in the top 3 forums (which, in average, would actually put it in the second 

position), while experts Exp5 and Exp6 decided that it should be positioned in the 

bottom of the ranking, along with JSForum. By analyzing the experts’ 

justifications, we can observe that both Exp5 and Exp6 did not take into account 

the source code specificities, which is actually the only aspect that is portrayed by 

our trustworthiness ranking. While experts 1, 2, 3 and 4 mention clearly the fact 

that JGossip is correctly designed, something that our metric expressed quite well, 

the justifications for the Exp5 and Exp6 rankings were threefold: lack of paid 

support, not being actively updated, and inexistence of a community of users 

capable of helping mitigating future security incidents. 

The goal of our trustworthiness benchmark is to provide a metric able to help 

selecting the application that is least likely to have security incidents in the future, 

and not the one with better outside support when incidents occur. Obviously, this 

information cannot be extracted from the source code of the application, and it is 

unlikely that we will ever be able to include it in a security benchmark. While this 

is a complementary aspect that should, of course, be taken into consideration when 

selecting among applications, it does not invalidate the value of our automated 

benchmark.  

Another key observation is that, although ignoring source code aspects, experts 5 

and 6 still considered JForum 3 the best option. Their confidence is justified by the 

existence of an active development community and the offer of paid support. 

Obviously, source code quality cannot be directly related to this, suggesting that 

the experts ranking may be actually a coincidence. In fact, this coincidence is 

confirmed by the scores given to mvnForum, which was ranked in the second half 

of the raking by the first four experts, for reasons like: being “less organized and 

maintainable” and employing “incorrectly prepared statements, using 

concatenations of values instead of parameters”. These characteristics clearly show 

that mvnForum is based on an insecure coding style, where a simple coding error 

may cause the introduction of vulnerabilities. However, experts 5 and 6 ranked it 

quite high based on the argument that an active community supports its 

development. 

If the scores given by the benchmark for JGossip are too high, and should actually 

have been lower because JGossip lacks of an active community and support (which 

is the opinion of experts 5 and 6), than we could also argue that the scores that were 
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given to mvnForum by these same experts are also incorrect as they did not take 

into account the insecure coding style, something which was fairly expressed by 

our automated benchmark. The problem we are considering here is that even though 

we cannot automatize the identification of the fact that certain software does not 

have active community, we can automatize the identification of insecure coding 

patterns in the software. If the information provided by our benchmark was 

available to experts 5 and 6, then they would surely not consider giving mvnForum 

a ranking as good as they did and, at the same time, they would possibly consider 

the fact that JGossip is in fact securely designed. This discussion demonstrates how 

important is the kind of results that our benchmark provides when it comes to 

complement other types of analysis. Should experts 5 and 6 have an automated 

method to accomplish this technical evaluation, they would never fail in this regard. 

Another important aspect that can be observed in Table 5.2 is the unanimous 

ranking given to JSGossip. As pointed by some of the experts (particularly experts 

1 and 2), this application is crawled with vulnerabilities, and should never be 

considered for use because it has “the worst design possible when it comes to 

security precautions”. Being a project abandoned since 2003, experts 5 and 6 also 

assigned low rankings to it. However, if they ever had to choose between JGossip 

and JSForum (both of which do not have active communities), only an automated 

tool like ours could point out how dramatically better-designed JGossip is. In fact, 

we do believe that positioning JGossip after JSGossip, as done by Exp6, is an 

indefensible mistake that should be prevented.  

A key aspect that can also be noticed when analyzing the average rankings of the 

experts is that the three groups of applications suggested by our trustworthiness 

benchmark are exactly the same as the ones we could create based on the experts’ 

rankings (even if we also include the biased evaluations given by experts 5 and 6). 

The top three applications (for both the experts and the benchmark) are JForum 3, 

JForum 2.1.9, and JGossip. The intermediary group is formed by mvnForum, 

JavaBB and Yazd 3. Finally, JSForum is isolated in the last position. 

Looking closely to the rankings of the middle group (Yazd 3, mvnForum, and 

JavaBB), we can see that the experts that did consider source code evidences could 

not reach any kind of consensus regarding their relative ranking. Our benchmark 

could also not differentiate them very much: while all of them are not terribly 

designed, they are not good examples of secure design. In fact, all three present 

coding patterns with a “propensity to the introduction of vulnerabilities”, as stated 

by one of the Exp1. 



Security Benchmarking of Transactional Systems 

153 

In summary, our benchmark ranking matched fairly well the joint opinions of the 

six experts. While one drawback of our method is the inability for evaluating the 

kind of support the users can get from the community, which is indeed an important 

aspect when evaluating some new software, it correctly considered and portrayed 

all source code aspects that our experts took into consideration. Actually, in the 

cases where the experts did not take source code information as basis for the 

ranking, some poor decisions were made. This shows that our proposal can help in 

benchmarking the trustworthiness of applications, by considering technical aspects 

regarding the source code, which may be far from the reach of administrators and 

users with reduced security knowledge. Although characteristics like the existence 

of an active community can be easily assessed by an administrator, technical details 

like the correctness and security of the design of an application begs for the use of 

an automated tool, role that our proposal seems to fulfill in an adequate manner. 

5.2.3.3 Cross Validating based on Source Code Characteristics 

To further understand and cross-validate not only the decisions of the experts, but 

also the behavior of the benchmark metric, we analyzed in detail the source code 

of the applications. The summary of our findings, together with our own qualitative 

ranking is as follows: 

1)  JForum 3. This application has the most secure design. This is mainly due 

the use of the Hibernate persistence framework (Hibernate 2011), which is 

well known for providing high protection against SQL Injection (OWASP 

2010). The use of this framework appears to be correct; thus, it is very 

unlikely that there is a way to break the application. 

2) JForum 2 and JGossip. Both of these applications perform database accesses 

through prepared statements, which are recognized by programmers as an 

effective method for protecting against SQL Injection (Amirtahmasebi 

2009). The security is guaranteed by carefully using only constant SQL 

queries and by correctly passing values via parameters to previously 

prepared commands. No traces of vulnerabilities or bad design could be 

found during our analysis. 

3) Yazd 3. This application also uses prepared statements, but, in various 

locations, external variables are directly concatenated to SQL query strings 

(i.e. system properties are directly appended to the query, without using 

parameters). The main input values, however, are passed through 

parameters. This construction is clearly more error prone than the others, and 

the risk of this design is in accidentally concatenate to a query a variable that 
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the programmer believes is a constant, but that is not, or whose value can be 

influenced by an attacker indirectly. A typical Yazd 3 query is as follows: 

private static final String LOAD_USER_BY_USERNAME = "SELECT * 

FROM " + SystemProperty.getProperty("User.Table")+" WHERE " + 

SystemProperty.getProperty("User.Column.Username")+"=?"; 

4) mvnForum and JavaBB. Both applications concatenate input values directly 

to create SQL statements. Even though mvnForum uses prepared statements, 

the feature is useless due to this construction (i.e. no use of the query 

parameters). The application input parameters appear to be all validated 

before this concatenation, but all it takes to create a vulnerability is failing a 

single input validation, as no extra defenses are in place. Examples of such 

code constructions found in these applications are: 

mvnForum:  

Collection globalPermissions= execSqlQuery("SELECT 

Permission"+” FROM "+MemberPermissionDAO.TABLE_NAME+ 

" WHERE MemberID="+Integer.toString(memberID)); 

JavaBB: 

ResultSet rs = stmt.executeQuery("select downloads from 

jbb_posts_files where file_id=" + fileId); 

5) JSForum. This application has a large number of vulnerabilities, as input 

values are extracted from the HttpServletRequest object and concatenated 

directly, in String format, to the queries being built. No validation is done on 

the inputs. Most database access occurs like the following: 

String RegUser = request.getParameter("user"); 

ResultSet rs=db.selectQuery("SELECT * FROM forum_users "+ 

"WHERE user_name=\""+ RegUser + "\""); 

As can be seen, our evaluation also resembles the ranking provided by the proposed 

benchmark. The reality is that all evidence we gathered regarding our original 

hypothesis of using false positives as a coding quality estimator suggests that our 

original assumption is valid. In fact, the dangerous coding practices that we put 

forth as evidence for security or insecurity of the applications, are exactly what 

shaped the results of the analyzers and, therefore, of our benchmark. 

5.2.4 Lessons Learned 

Several lessons can be deduced from the experiments conducted, some related to 

the strengths of the approach and a lot related to the weaknesses. From the strengths 

of our benchmark, we immediately learned that using static code analysis tools to 
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perform trustworthiness benchmarking automatically guarantees several of the 

properties expected in any benchmark: repeatability, simplicity of use, portability, 

scalability, non-intrusiveness, and representativeness (which were discussed in 

Chapter 2, Section 2.4).  

Repeatability, which is the ability of re-executing a benchmarking campaign and 

obtaining the same results (at least, in statistical terms), is guaranteed by the fact 

that SCAs are deterministic. If ran multiple times with same input, they report the 

same results. 

Simplicity of use is another property expected in a benchmark. Static analyzers are 

applications that take source code as input and automatically provide as output a 

list of potential bugs/vulnerabilities. Because of this simple process, most static 

analyzers are naturally very simple to use. The automated analysis of the reports is 

also simple, as all tools provide them in XML format. This is also required in order 

to provide scalability to the benchmark, or the evaluation of the results would be 

unfeasible for applications with too big pieces of source code. 

Fulfilling two additional properties of benchmarks, SCAs are naturally non-

intrusive, as they perform a passive analysis of the provided source code, and 

portable, as they work over most source codes of a specific programming language 

(i.e. in our case, the approach will work to compare all applications that were 

designed in java, but will not be usable for other programming languages). 

The most important property of all, however, is related to the representativeness 

of the results. Our analysis put forward evidence that a carefully chosen set of SCAs 

provide enough representativeness to be used for benchmarking the trustworthiness 

of real complex web applications. Although the evidence we present demonstrates 

this point specifically to Java, the construction should apply for all programming 

languages that have a good set of tools. 

We also have to evaluate the weaknesses of the approach. The first thing is that we 

must account for the discrepancies in the validation experiment. By design, our 

benchmark can only take into account the characteristics of the software, and 

aspects like community support cannot be part of the benchmark (at least in an 

automated manner). The conclusion we can take from this is that trustworthiness 

benchmarking is actually an excellent tool to help in the decision of what software 

to choose, and in fact provides information that cannot be easily obtained. 

However, it is unlikely that it is possible to conceive an automated benchmarking 

procedure capable of guaranteeing the selection of the best alternative in all 

situations, without taking additional information into consideration.  
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Another important problem that we noticed is that the benchmark can only be used 

to evaluate source code developed without considering the benchmark 

specification, which is a huge problem to benchmark approaches. In section 5.3 we 

discuss why this is true, and why we need an approach that is not dependent on 

tools like static code analyzers.  

Nevertheless, the lasting conclusion of our experiments is that, on average, coding 

styles can be correlated with security attributes by searching for evidences of secure 

coding best practices. Cross-validation and manual analysis suggest that such 

correlation is indeed useful to support the selection of secure web applications, even 

if source code metrics are not enough to account for all important aspects (e.g. 

outside support and active development).  

5.3 Towards a General Approach for Trustworthiness 
Benchmarking of Web Applications 

In the previous section we explored the use of expert analysis tools to build a 

practical and usable trustworthiness benchmark. The assumption is that the false 

positives of a good set of static code analyzers is a good predictor of the quality of 

the source code of a web application, and that too many false positives may be 

related, to a certain extent, to bad programming practices. In our experiments we 

provided evidence that this assumption is sound and that a benchmark built upon it 

could be sufficiently accurate, thus allowing the comparison of the trustworthiness 

of web applications.  

There is, however, a contradictory aspect to that proposal: we exploit the failures 

(in the form of false positives) of otherwise good static analysis tools to obtain 

information that the tools were not designed to provide in the first place. Assuming 

that such a benchmarking approach becomes a common standard, two effects 

should be considered in the future: 

1) As static analysis tools become more precise at their task, which is finding 

actual vulnerabilities while avoiding false positives, they will progressively 

contribute less and less to the benchmark. For instance, an ideal tool able 

to find 100% vulnerabilities and report 0 false positives would not 

contribute to a better benchmark, as detected vulnerabilities would not 

contribute for the calculation of the trustworthiness metrics (real 

vulnerabilities are used only for qualification purposes, as explained in 

Chapter 3).  

2) In order to improve software rankings, the techniques that software 

developers employ would shift to the ones that more efficiently avoid false 
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positives. However, the tendency could be for such coding practices to only 

be better at avoiding false positives, nothing more, and therefore would not 

lead to more secure coding practices. False positives tend to be correlated 

with bad coding practices only if the software is not developed with such a 

benchmarking context in mind, which is a problem in the long run. In 

practice, the benchmark can be gamed, in the sense that developers can 

improve the metrics for a given application without improving its quality 

in the way that the metrics are intended to portray. 

In this section we build upon these aspects and propose a process to design a 

benchmarking tool able to accomplish the specific goal that static code analysis 

tools accomplish only as a side effect: how to evaluate if a web application coding 

style is prone to security vulnerabilities or not. Even though our goal is not build a 

complete ready to use benchmark, we will present the main requirements needed 

for building one. 

5.3.1 Web Applications Code Threat Vectors 

As explained in Section 5.1, a web application threat is a set of parameter crafting 

techniques aimed at leading the application to behave in a malicious way. These 

techniques focus particular types of lines of code, designed for specific purposes, 

which we call hotspots. When subjected to the crafted input data, an insecure 

hotspot behaves in way that does not conform to the application business rules. 

Therefore, threat vectors can be defined as sets of programming practices that either 

facilitate those crafting techniques or that block them. In this initial proposal we 

focus on two of the most important web applications threats, namely: 

#SQL Injection threat 

a) description: crafting techniques aimed at modifying semantically a target SQL 

command that is sent to a backend database. 

b) hotspots: any line of code which submits a SQL command to a database.  

 

#Cross-Site Scripting 

a) description: crafting techniques that lead the application to send executable code 

to a client that expects only textual information. This executable code may 

comprise scripting code or embedded applications (e.g. activeX, flash, etc.). The 

malicious executable code may be stored for later retrieval or be immediately 

reflected back to the client. 

b) hotspots: any line of code that sends an output to the client application.  
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5.3.2 Security Precautions in Web Applications 

A representative trustworthiness benchmark depends of properly identifying the 

source code characteristics that distinguish a secure software from an insecure one, 

and therefore we must understand those characteristics in more detail. The relevant 

security precautions that can be applied in the context of web applications are 

divided in two groups (Liu 2006): general input validation and strong business data 

typing for hotspots. The problem is how to find enough evidence indicating that 

both types of precautions are being applied in a source code (and to what extent 

they are being applied). Our approach consists of looking for code patterns typically 

used to implement these security precautions in order to prevent the considered 

threats. The next sections provide an overview of the patterns being considered in 

our proposal. 

5.3.2.1 General input validation 

General input validation can be done using three major algorithmic approaches: 

accept known good, reject known bad, and transform invalid into valid.  

The accept known good approaches (sometimes called whitelist filtering) include 

any strategy that implements a “if not exists in, then remove/reject” semantic. The 

“remove” part of this approach might be implemented as the complete replacement 

of the value by a known good value, therefore completely ignoring the actual value 

used as input. Implementing this kind of validation usually requires only 

information about the input domain of the application (which the developer is 

expected to know). This is an important strategy that is considered the safest type 

of validation, as it is the one that offers the developer more control over the inputs. 

Several code patterns are associated with this strategy, including: 

 Enforcing strong variable data types 

 Match against a regular expression 

 Algorithms implementing a “if not exists in, then remove/reject” filter 

 Out of range check/set to known good 

 Out of length check/set to known good 

 Empty/null check/set to known good 

The reject known bad approach (or blacklist filtering) is comprised of strategies 

that try to enumerate exhaustively bad values that input parameters can have and 

try to remove/reject these values. Basically, it includes any kind of algorithm 

implementing an “if exists in, then remove/reject” semantic. The main problem is 

that the set of values used to validate the inputs may be extremely difficult to define 
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and maintain. The reason is that inputs considered as acceptable in a certain 

moment might become bad in the future due to technology evolution and context 

modification. Also, bad inputs frequently depend on specific threats and attack 

techniques, meaning that more information besides the business domain of the 

application may be required. However, in some cases this approach may be easier 

to implement than an accept known good, as it may be impossible to specify all the 

“known good” values for a certain input parameter.  

Transforming invalid into valid (also known as massaging the data) is used when 

a combination of the two strategies above is applied. This consists of situations 

where only parts of the data are bad (but not all the data are) and it is not possible 

to simply replace a “contaminated” input with a known good value without losing 

information. This approach is comprised of any “replace x by y within z” algorithm, 

and is based on the ability to separate the bad parts of the input from the good parts. 

This is the technique most difficult to implement due two key aspects:  

1) It may not be easy to identify the bad parts of the input. This issue presents 

the same problems of the “reject known bad approach”, but with an 

additional difficulty: the bad data is mixed with the good data, and 

therefore a simple comparison may be insufficient. 

2) The replacement algorithm may be difficult to implement in a secure way. 

This happens because whenever some bad piece of data (let’s say X) is 

replaced by some good piece of data (let’s say Y), then this good piece may 

lead to the creation of another piece of bad data (i.e. Y might not be 

universally good, and may become bad when included in the context 

previously occupied by a certain X). 

The correct implementation of each of these three input validation approaches 

demands different degrees of control and knowledge from the developer. Accept 

known good algorithms are relatively simple to implement correctly, as most of 

them depend only what the application is expected to do (i.e. the business rules of 

the application). Reject known bad approaches are more difficult to develop and 

maintain correctly, as they depend on knowing what are the bad values, and these 

are related not only with information about threats, but also with the techniques 

used to accomplish such threats (i.e. the real attacks). Transformation techniques 

are the hardest of all to implement securely, as not only they depend also on threat 

information, but also on the context where the bad input values might appear.  

These difficulties require the definition of a hierarchy of what would be the 

preferable ways of implementing the validation of a particular input parameter. 

Therefore, we argue that accept known good approaches are usually better then 



Chapter 5  Trustworthiness Benchmarking of Web Applications 

160 

reject known bad approaches, which are better than transformation approaches. In 

practice, this hierarchy is based on the previously presented characteristics of each 

approach and the control and knowledge required for implementing them.  

However, the possibility of using the best available approach depends on the 

application being developed, as some applications may have input parameters that 

do not have a clearly identifiable “good” form. For instance, arbitrary files and free 

text input frequently have an open form that may be extremely hard to match 

against a “known good” format. Validating these inputs may require the use of the 

other approaches, and therefore knowledge about threats and attack techniques.  

5.3.2.2 Strong Business Data Typing for Hotspots 

As defined before, hotspots are the lines of code in a web application that are the 

target of an attack (Integrigy 2007), and protecting hotspots should be done by 

enforcing a strong business data typing for all variables used as input to the hotspot. 

The main idea is that whenever the values used in a hotspot conform to its 

corresponding business data typing, then the hotspot will behave as expected. 

Reliable protection of hotspots requires the developer to know the business data 

type for each hotspot. If the hotspot is a function call, this requires knowing exactly 

the domains of parameters that are expected by the function is expecting and 

guaranteeing that no value outside those domains is processed. Also, if there are 

business restrictions for such parameters, then should also be considered as part of 

the business data typing for the hotspot. For instance, for most DBMS engines a 

string containing an unescaped single quote is not a valid string in the context of a 

SQL execution call, as it may change the semantics of the command. The same is 

true for a numeric value containing text characters.  

Enforcing strong business data typing can be done in several ways. The input 

validation algorithms presented in the previous section can also be used to validate 

variables of hotspots according to its business data type. However, depending on 

the business data type of the hotspot and on the algorithm used to validate its input, 

threat information may be required to properly design a correct validation 

algorithm.  

Depending on the case, automated methods for enforcement of business rules may 

be available when it comes to the technical aspects of a hotspot. For instance, 

parameterized queries can be used in a SQL command call to guarantee that, 

independently from the input passed to the database, the semantic of the SQL 

command does not change. In this sense, the call itself will force variable data 

typing (accept known good) in such a way that no semantic change of the SQL is 
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possible. Automated enforcement methods should be preferred against the manual 

development of validation algorithms, as the developer has more control over them 

and the probability of error is lower. 

5.3.3 Accounting for Secure Coding Practices 

For each threat vector defined in the benchmark (SQL Injection and Cross Site 

Scripting as described in Section Web Applications Code Threat Vectors), we need 

a set of coding best practices consensually accepted as being able to reduce or 

eliminate the probability of malicious effects of threats. However, in contrast to our 

approach for trustworthiness benchmarking of transactional systems infrastructures 

presented in Chapter 4, we should now look for practices directly related with each 

threat, so the correlation is quite obvious. However, field research is always 

necessary, as explained next. 

In practical terms, the process is based on the analysis of the hotspots and their 

relation with the input variables. For each security recommendation, we provide 

specifications of the preprocessing and post-processing activities that should be 

implemented to each particular value used in the context of the hotspot. We call 

these specifications variable accountability statements, which are aimed at the 

variables that “carry” the values from the input to the hotspots. Based on the 

discussion in Section 5.3.2, three general types of accountability are defined: 

business data typing, automatic enforcement, general input validation. 

Accountability statements can be either positive statements (that, when applied, 

tend to improve the trustworthiness of the code) or negative statements (that, when 

not applied, lower the trustworthiness of the code). Additionally, hierarchies of 

recommendations may generate interrelated accountability statements, which may 

represent positive and negative statements simultaneously. In fact, although using 

lower quality alternatives (i.e. not preferred solutions) is positive (better than not 

using anything), it is also negative due to the existence of better solutions that could 

have been applied (e.g. removing known control characters from a string is a good 

practice, but a better choice would be to allow only known good characters instead 

of removing only the bad ones, therefore this would be a good and bad practice 

simultaneously). 

A bibliography study (including, but not limited to (Cenzi 2009, CGI Security 

2010, Fonseca 2007, Howard 2006, Integrigy 2007, Jovanovic 2006, OIWASP 

2010, Seacord 2006) regarding typical countermeasures against the threats 

considered in this benchmark yielded several recommended security best practices 

(again, we remember that researching for security best practices is an error prone 
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task, and therefore the list should be periodically evaluated and updated for further 

use). In the next paragraphs we present those general recommendations and their 

translation to accountability statements. The accountability statements have the 

weights indicated before their description. Most statements have weight 1 (+1 or -

1), but some negative statements have weight -2 and -3. The reason is that the 

application of these practices only occurs when some other preferred method is 

ignored. For instance, the accountability statement C for Cross-Site Scripting 

(“Variable does not output any of the characters ><()&# as is”) has weight -3. 

Indeed, if the program outputs those characters, then the variable is not being 

addressed by any of the following filters: accept known good (only known good 

values are accepted), reject known bad (known malicious values are rejected), and 

transformation (invalid values are transformed into valid values). The three missing 

alternatives results in a -3 weight. 

#SQL Injection prevention recommendations  

 Use strongly typed parameterized query APIs, either by applying the 

mechanisms provided by the programming language or using stored 

procedures (provided by the database backend). 

 Validate input parameters and enforce correct data types. 

 Properly escape values used in dynamic queries (i.e. query construction 

through concatenation). 

#SQL Injection variable accountability statements 

Strong Business Data Typing 

A) (-1) Business data typing is enforced; strings are escaped according to the 

DBMS characteristics 

Automated Enforcement 

B) (-1) Variable is not concatenated to the SQL statement  

C) (+1) Variable is assigned through a proper parameterized assignment 

function 

General input validation 

D) (+1) Variable has its length/range checked; it is rejected or set to a known 

good value if the length/range checking fails 
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E) (+1) Variable is subjected to a “if not exists in SET, remove/reject” filter 

algorithm or regular expression 

F) (+1) Variable is checked for empty/null values; it is rejected or set to a 

known good value if the empty/null checking fails 

G) (-1) Variable is subjected to at least one accept known good validation 

algorithm (i.e., statements D, E or F)  

H) (+1)(-1) Variable is filtered using reject known bad algorithm 

I) (+1)(-2) Variable is filtered using transformation algorithm 

 

#Cross-Site Scripting prevention recommendations 

 Enforce proper character output encoding (e.g., UTF-8). 

 Validate input parameters, enforcing correct data types. 

 Escape output according to the output context (e.g. HTML section, CSS 

section, script section, etc.). 

 Avoid the output of any of the following characters ><()&# if not as 

HTML entities. 

#Cross-Site Scripting variable accountability 

Strong Business Data Typing 

A) (-1) Business data type is enforced 

B) (-1) Variable is outputted with an enforced fixed character encoding 

C) (-3) Variable does not outputs the characters ><()&# as is 

General input validation 

D) (+1) Variable has its length/range checked; it is rejected or set to a known 

good value if the length/range checking fails 

E) (+1) Variable is subjected to a “if not exists in SET, remove/reject” filter 

algorithm or regular expression 
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F) (+1) Variable is checked for empty/null values; it is rejected or set to a 

known good value if the empty/null checking fails 

G) (-1) Variable is subjected to at least one accept known good validation 

algorithm (i.e., statements D, E or F) 

H) (+1)(-1) Variable is filtered using reject known bad algorithm. 

I) (+1)(-2) Variable is filtered using transformation algorithm. 

Variable accountability statements are as simple as possible, turning the 

verification of their implementation into an easy task. This is aimed towards 

making the benchmark application as easy as possible (and certainly much simpler 

than a deep vulnerability analysis). This simplification however, may have some 

drawbacks. For instance, take as an example the accountability statement C for 

Cross-Site Scripting (i.e. “Variable does not outputs any of the characters ><()&# 

as is”). Actually, depending on the section of HTML code where they are inserted, 

some of these characters may be harmless. But assuming that a certain character is 

harmless in a certain section also assumes that the developer has absolute control 

over where he is outputting them. Verifying if a character is outputted is relatively 

easy, but verifying if it is outputted in a harmless section is significantly more 

difficult. Our benchmark proposal follows a pessimistic approach in these cases, 

assuming that developers may make mistakes. Therefore, they should always avoid 

outputting these characters. If it is impossible to avoid it, then the application is 

penalized. Nevertheless, for the sake of comparison, if it is impossible to not output 

them, then all other equivalent applications will also find it impossible, therefore 

being penalized too. 

5.3.4 Trustworthiness Metrics 

The benchmark defines five complementary metrics that characterize different 

trustworthiness and untrustworthiness aspects of the benchmarked code: 

- Average Code Prudence (ACP): the sum of the average positive 

accountability statements applied to the hotspots. This metric expresses 

how much precaution the developer employed in the hotspots 

benchmarked. 

- Average Code Carelessness (ACC): the sum of the average negative 

accountability statements not applied to the hotspots. This metric 

expresses, on average, how careless the developer was on the hotspots 

benchmarked. 
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- Average Code Quality (ACQ): the sum of the positive aspects of the code 

and the negative aspects of the code, yielding an overall comparison metric 

for the code general quality concerning the threats of the benchmark. This 

metric can also be computed for each hotspot, providing a way to compare 

the hotpots of the same application in a relative way, highlighting the ones 

that have lower quality (thus may deserve more focus in terms of 

improvement efforts). 

- Hotspot Prudence Discrepancy (HPD): this is the standard deviation of 

the ACPs of all accounted hotspots. This metric portrays the consistency 

of the developer (or developers) in his prudence or tendency to harden 

some parts of the code, but not others. 

- Hotspot Carelessness Discrepancy (HCD): this is the standard deviation 

of the ACCs of the hotspots, portraying how much inconsistent the 

developer (or developers) is when considering negative accountability 

statements. 

The algorithm that should be used to compute each of these metrics includes five 

main steps: 

- Step 1. For each threat, scan the applications to identify the lines of code 

that comply with the description of the hotspots. 

- Step 2. For each hotspot, list the variables used. Select all the variables 

whose value depends directly or indirectly on an external source of data. 

External sources are: a) direct input from a user or call, b) values read from 

a database, c) values read from local files. If there is no variable whose 

value depends on any these sources, then discard the hotspot. 

- Step 3. Compute the partial metrics for each variable in the non-discarded 

hotspots by evaluating the path followed by the value from the external 

source to the hotspot. Considering this path, evaluate all the variables 

affected against all the accountability statements of the benchmark. 

Applied positive accountability statements count +1 multiplied by its 

weight; not applied negative accountability statements count -1 multiplied 

by its weight. The metrics for the hotspot are proportional to the number of 

variables involved in the hotspot, which is as follows (for each hotspot and 

each threat): 

Hotspot ACP = (Positive statements)/Number of variables 

Hotspot ACC = (Negative statements)/Number of variables 
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Hotspot ACQ = Hotspot ACP + Hotspot ACC 

- Step 4. Compute the overall code metrics as follows: 

Code ACP = ( Hotspots ACP)/Number of hotspots 

Code ACC = ( Hotspots ACC)/Number of hotspots 

Code ACQ = Code ACP + Code ACC 

− Step 5. The discrepancy metrics are computed as follows: 

HPD = √  (Each Hotspot ACP – Average ACP)2 

Number of hotspots accounted 

HCD = √  (Each Hotspot ACD – Average ACD)2 

Number of hotspots accounted 

For each pair threat/hotspot the metrics should be interpreted as follows: 

- Hotspot ACP: higher values mean that more security precautions against 

the threat are present in a given hotspot. 

- Hotspot ACC: low (negative) values mean that the hotspot has 

characteristics that typically yield vulnerabilities. 

- Hotspot ACQ: higher values denote that more security precautions are 

evident in the hotspot. 

For the overall code, the metrics and their relative interpretations are as follows: 

- Code ACP: higher values show that more security precautions against the 

considered threats are present in the overall benchmarked code.  

- Code ACC: low values suggest insecure coding practices. 

- Code ACQ: higher values show that more evidence of security best 

practices is present in the code. 

- Code HPD: higher values denote a developer that is more inconsistent 

when protecting hotspots. 

- Code HCD: higher values show that the developer is more inconsistent 

when avoiding dangerous coding characteristics. 
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Like the very idea of measuring trust and trustworthiness, these metrics are not 

absolutely precise, meaning that the confidence on the results increase with the 

difference on the scores (e.g. the most distant are the scores of two evaluated pieces 

of software, more confidence we may have that the one with higher score is better 

designed than the one with lower score). It is important to emphasize that the 

overall code metrics are defined in a way that the number of hotspots and the 

number of variables will not influence them. Also, we propose a set of discrepancy 

metrics, in the form of standard deviations, to complement the analysis of the main 

metrics, as simple averages sometimes may hide important irregularities in the 

distribution of the values.  

5.3.5 Preliminary Experimental Evaluation  

To demonstrate the ideas behind the proposed benchmarking approach, we 

compared two distinct implementations of an application in terms of the SQL 

injection threat. The implementations we decided to compare were the ones that 

were developed for the experimental evaluations presented in Section 5.2.2 one 

developed by a graduate student and the other one by an experienced developer, 

both implementations of the TPC-App web services benchmark (TPC 2011). In the 

context of these experiments, the application developed by the experienced 

developer was called V_0 and the other is referred to as V_1. 

As the proposed approach is yet in a preliminary stage (the goal is yet to assess its 

applicability), we did not implement any tool to compute the metrics automatically, 

so we conducted a manual code inspection to execute the benchmark. Even though 

this is not ideal, it is enough to illustrate the concepts.  

The first step of the analysis consisted of finding the hotspots. The two 

implementations use a JDBC connector (Bales 2001) to access the database, 

therefore the analysis started by finding all lines of code that invoked the methods 

executeQuery and executeUpdate (Bales 2001). In version V_1 these methods 

receive a string as parameter, which is traced back to a SQL command with several 

concatenations. In version V_0 no concatenation is found, and the variables are 

passed through parameterized assignment functions. In both applications, there are 

6 hotspots (the number is the same in the two cases, as both versions implement the 

same standard specification), and in both hotspots 2 and 5 could not be traced back 

to any input source (they were constant SQL commands), so these were discarded 

from the analysis. 

We proceeded to examine all variables directly or indirectly related with the 

remaining hotspots concerning the 9 SQL Injection accountability statements 
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presented in Section 5.3.3. For this experiment, the Business Data Typing was 

either numeric or free text for all table fields. Figure 5.5 presents the overall 

benchmarking results. By analyzing the final values, we can see that, for V_1, a 

huge penalization is given to the code, as the ACC score is higher (in absolute 

value) than the ACP score, while we see the inverse for V_0, certainly due to the 

use of parameterized queries. Nevertheless, it is clear that improvements could have 

been done to V_0, as several penalizations are still present (e.g. input values are 

not filtered in any way). 

Overall, version V_0 is better in all metrics: better Average Code Prudence, lower 

Average Code Carelessness, and higher Average Code Quality, meaning that this 

version is trustworthier than V_1. The discrepancy metrics are similar, meaning 

that each developer took more or less the same considerations across all hotspots. 

 

Figure 5.5 Overall benchmark results 

Although further research and validation is needed, this small experiment suggests 

that the proposed benchmarking approach is useful and may be applicable in 

practice. A tool implementing this algorithm would be a reliable replacement for 

the benchmark based on the outputs of static analysis tools presented in Section 

5.2.  

Although the goal of the benchmark is to compare applications that provide similar 

functionalities, its use is not limited to applications that implement the same 

specification. In fact, the metrics simply state how careful, on average, the 

developers were on protecting the hotspots of each application, thus any two 

applications are comparable (obviously, considering the same threats). Given an 

automated tool to compute the values, we could easily see it being used to choose 

between several brands of wikis or forums, for instance. 
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As a final remark, we would like to emphasize that the automation of the tool is a 

technical problem that, although requiring a lot of work, will not pose any 

theoretical difficulties. In practice, parsing the code, identifying the hotspots, and 

tracing the execution path between the hotspots and the entry points (in a similar 

way to what is done by static analyzers (Jovanovic 2003)), would provide the 

required support to build a graph representing the transformations suffered by the 

values of the variables (e.g. filtering, escaping, concatenation, etc.). This graph 

could then be used to find transformation patterns for the accountability statements, 

thus getting the information required to calculate the benchmark metrics. 

Nevertheless, this automation is out of the scope of our thesis, and is proposed as 

future work. 

5.4 Conclusion 

This chapter studied the problem of trustworthiness benchmarking of web 

applications, as a representative use case of transactional system business 

applications. We first investigated the idea of using tools that already exist, in this 

case static code analyzers, to perform automated trustworthiness benchmarking. 

We started from small controlled experiments, and finished with an evaluation of 

the proposal in a representative use case, which was the selection of web forums 

applications. We validated the results by cross-checking them with the manual 

analysis of real security experts, finding out that our automated evaluation resulted 

in an assessment equivalent to that of the experts. A set of limitations that were 

identified on the approach conducted us to the proposal of a general approach for 

the trustworthiness benchmarking, which was tested in small-scale preliminary 

evaluation, nevertheless showing promising results. 

The most important result of this chapter is related to the effective correlation 

between source code characteristics and the security quality of software. Basically, 

our experiments clearly suggested (particularly by the validation done by the 

experts) that the way software is designed allows gathering a trustworthiness 

measure that is related with the presence or the absence of pro-active measures to 

avoid programming vulnerabilities. 

The limitations of a benchmark based on static code analyzers, especially 

considering the effects of the evolution of the tools, should not be taken lightly. An 

inevitable conclusion is that even if this approach works for now, it wont keep 

working forever, particularly if developers notice that their software is being 

evaluated using such metrics. This is why a more generic approach is relevant. We 

believe that the approach proposed for automation of the benchmark would be a 

huge step towards the creation of a sustained solution to the task of trustworthiness 
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benchmarking of web applications. But even if we have sketched the most 

important steps in the design of such tool, we understand that the difficulties in 

doing so are clearly considerable, and therefore the problem is not closed. 

 



 

171 

6  
 

Selecting Software 
for Transactional 

Systems 
Infrastructures 

Chapters 5 and 6 were dedicated to the study of methodologies, approaches and 

actual implementations for trustworthiness benchmarking, in the context of two 

fairly representative scenarios: complex environments, namely, transactional 

system infrastructures, and web-based business applications. In both cases, even 

though we stressed the importance of separating security benchmarking in two parts 

(as a way of coping with the tangible and the intangible aspects of security), we did 

not propose detailed approaches for security qualification, leaving this step open 

for further investigation. The reason for this was already presented in the respective 

chapters, and has mainly to do with the fact that most of the research done 

nowadays on security mechanisms (and also on vulnerability scanning and 

prevention technologies) can be used as part of a security qualification step, which 

lead us to focus on the most promising step: trustworthiness benchmarking. 

There is, however, one aspect of security qualification that calls for further attention 

under the structure of our framework: to implement a transactional system 

infrastructure (i.e. a complex structure with many separate parts and that can 

several distinct configurations) we need to select a DBMS engine, which is in 

charge of providing all the transactional system business capabilities. However, 

this selection step may not be easy due to the complexity of such software.  
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Today, several representative DBMS engines exist, for instance, Oracle, SQL 

Server, PostgreSQL, MySQL, etc., thus the selection of the better one in terms of 

security is a key aspect that should be considered if one aims to have the best 

transactional system infrastructure possible. Theoretically, under the context of the 

framework proposed in Chapter 3, the selection of the specific DBMS engine to be 

used in a infrastructure would call for a security benchmark in the lines of the 

benchmarking approach proposed in Chapter 5, even though the set of threat 

vectors for this case would still have to be studied, as they are clearly not the same 

of that of web applications. This is actually quite obvious, as we certainly do not 

want the engine to present vulnerabilities detectable by automated scanners and, if 

possible, we want it to be developed in a way that has a low probability of 

introducing hidden vulnerabilities.  

At the same time, we should consider the other requirement of security 

qualification, which is to answer the following question: what security mechanisms 

should the engine provide in order to be acceptable as an alternative? We have 

already established in Chapter 3, Section 3.2.1 that the selection of a set of security 

mechanisms for security qualification in any benchmark is primarily domain 

dependent, and therefore changes with each specific business domain. For example, 

in the case of web applications, even though we can define a list of possible security 

mechanisms that can be required from typical web applications, for each security 

mechanisms there is always a situation where it is not necessary.  

The goal of the security mechanisms of a DBMS engine is very clear: to help 

improving the security of the transactional system infrastructure, which is exactly 

what our trustworthiness benchmark measures. Therefore, if we use as reference 

the trustworthiness benchmark for transactional systems infrastructures proposed 

in Chapter 4, then we may extrapolate a list of security mechanisms that would help 

improving the security of a real live installation. Pursuing this path, though, 

requires taking into consideration a few restraining factors, namely: 

1. Alternate layers of security may compensate for any security mechanism 

not provided by a DBMS engine. In the worst case, a software wrapper 

could be placed around the DBMS engine providing the missing 

mechanisms. Therefore, the absence of a mechanism does not imply that 

implementing the corresponding security precautions is impossible. Unless 

otherwise required for a specific domain, a single missing security 

mechanism does not necessarily make a DBMS to fail qualification. 

2. We can, on the other hand, assume that if a mechanism is present, then the 

fact that we do not have to compensate for its absence leads, at the very 
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least, to a decrease in the configuration complexity (which leads to a lower 

probability of introducing interaction vulnerabilities and also 

vulnerabilities on the “compensating” mechanisms). Therefore, having 

mechanisms available directly in the software is better than not having 

them. 

3. The existence of a security mechanism in the software has no relation in 

the final security of the infrastructure as a whole. For the mechanism to 

have any effect after deployment, it has to be used correctly, otherwise it is 

useless and may even decrease the overall security (one classical example 

of this effect is when a software is set to block authentication attempts after 

a certain number of authentication failures - a mechanism that can be used 

for Denial of Service attacks - and the number of allowed attempts is very 

high). In other words, the existence (or not) of a security mechanism in a 

given software product has no effect in the trustworthiness benchmarking 

assessment (thus, it should be considered during the qualification step). 

We also have to take into attention another characteristic of today’s DBMS engines: 

their security is highly tied to the characteristics of the underlying operating system. 

This becomes clear when we look at the security recommendations identified in 

Chapter 4, where several of them are specific to the operating system, even though 

it is a “transactional system security recommendation”. Therefore, instead of 

selecting a DBMS engine, we deal with the selection of an entire software package, 

which in our case is the composition of a DBMS engine and an operating system. 

As it will be made clear in our experimental analysis, the security mechanisms 

available in a specific DBMS engine vary with the underlying operating system 

even for the same engine brand.  

In the following sections we present the methodology used to devise and calibrate 

a list of the security mechanisms that should be implemented by DBMS engines 

for supporting the security practices identified in Section 4.3.2. The methodology 

includes the following general steps: 

 Each security recommendation for a transactional system infrastructure is 

mapped into a desirable system state (System State Goal) that represents 

the state of the system when the recommendation is being correctly applied.  

 That state goal is analyzed in order to identify the series of steps that must 

be used to obtain such goal (the Mechanisms Goals). 

 Each of the steps is analyzed to evaluate which of them can be automated 

and therefore be supported by security mechanisms provided by the 

software.  
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The application of the benchmark results in a metric that represents an estimation 

of the aggregated importance of the mechanisms present and available in the 

package under benchmarking. Additionally, the procedure allows computing a gap 

analysis matrix that can be used to compare the actual security features of a set of 

software packages with the features that would have to be provided to fulfill all the 

security recommendations. 

To demonstrate the approach, we benchmark seven distinct software packages that 

could be considered representative candidates for use in transactional systems 

installations. These packages are based on four different DBMS engines (Oracle 

10g, SQL Server 2005, PostgreSQL 8, and MySQL Community Edition 5) and two 

different operating systems (Windows XP and Red Hat Enterprise Linux 5). We 

evaluate their main characteristics using gap analysis, and draw some general 

conclusions regarding their advantages and deficiencies.  

It is important to emphasize that the results obtained are not supposed to be used 

alone to decide what is the best software package for a database installation, 

especially outside the context of our security benchmarking framework. 

Particularly, what we provide here is a benchmarking tool that can be used for 

security qualification support, and not a trustworthiness benchmarking tool. 

As part of the qualification step, several other factors should also be considered 

(e.g. cost, performance, availability, and familiarity), but those are out of the scope 

of this work. The reason is that, although there are tools to help evaluating several 

of these factors, evaluating the security capabilities og a software package is still 

an open problem.  

This chapter is divided as follows. In Section 6.1 we discuss our methodology that 

we used to identify a list of security mechanisms that could have been implemented 

by the evaluated software packages. Section 6.2 presents a discussion of how to 

establish the potential impact that the identified mechanisms could provide to the 

security of the infrastructure. In Section 6.3 we present the benchmark metrics and 

execution process. In Section 6.4 we present the results of the evaluation of seven 

software packages done using our benchmark, discussing the most important 

conclusions that our tool is capable of. Section 6.5 concludes the chapter. 

6.1 Identifying Security Mechanisms 

The list of security recommendations used as the base for the trustworthiness 

benchmark for transactional systems infrastructures presented in Chapter 4, was 

also used to extrapolate the security mechanisms needed to fulfill those same 
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recommendations. However, this process was not trivial, requiring several steps of 

careful analysis, as detailed in the following paragraphs.  

We started by analyzing the 64 security recommendations (see Table 4.2 and Table 

4.3), where each recommendation was classified in terms of the type of support 

needed for its implementation, namely:  

 Hardware support: recommendations that require either specific hardware 

components or a specific physical setup for the underlying hardware; 

 Network support: recommendations that require the network to have some 

specific setup or characteristic; 

 Plain policies: general guidelines that do not require any mechanism in 

particular, and are just behaviors that should be enforced; 

 OS support: recommendations that require some features of the operating 

system; 

 DBMS support: recommendations that require some specific DBMS 

features; 

 Third party support: recommendations that require complementary 

software not usually found in a basic database software package (DBMS 

and OS).  

Table 6.1 presents the number of best practices that were classified in each class. 

Note that some practices have been classified in more than one class, which 

explains why the second column of the table adds to more than 64 practices. This 

first classification allowed us to focus on the practices that required at least some 

support from the software components (a total of 51 out of 64 security practices), 

which is the focus of our approach. 

The next step consisted of rewriting the recommendations in a way that allowed 

more clearly identifying the security mechanisms needed to support them. The 

original recommendations were stated as actions that should be conducted on the 

system to enhance security. However, these actions may contain several factors that 

may be implicit in their statements such as: what are administrators’ 

responsibilities, what actions require software support, and what the environment 

dependent elements are. This way, instead of trying to identify security mechanisms 

directly from the recommendations, we decided to use two intermediary steps to 

help exposing these implicit factors (obviously, these steps could have been 

bypassed, but the process of explicitly performing them clearly allowed us to 

achieve more effective results).  
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Table 6.1 Classification of databases security best practices in regard to their 

requirements 
Requirements N. of Practices 

Network Requisites 2 

Hardware Requisites 4 

Plain Policies (no software requirement) 10 

OS Support 28 

DBMS Support 38 

Third-Party Support 2 

 

In the first step we restated each of the best practices as a System State Goal 

representing the state of the system in a point in time when the practice is being 

correctly applied. For instance, one of the best practices related to the operating 

system configuration is stated as follows: “Remove from the network stack all 

unused/unauthorized protocols”. A system state goal for this best practice is: “The 

OS network stack has no unused/unauthorized protocol active”. Notice that, 

although obvious in some cases, this rewriting step moves the focus from the action 

to the consequences of the action. This is extremely important to disclose the 

fundamental effects that are expected when applying a best practice. Additionally, 

as several practices can actually be applied in several software components at the 

same time (e.g. password related practices must be applied at both OS and DBMS 

levels), this rephrasing forced the distinction to be made clear, allowing us to 

identify the practices for which more than one System State Goal should be defined 

(i.e. one for each of the components of the software package). 

When analyzing the System State Goals it became easier to start distinguishing the 

effects of the practices that are exclusively administrators’ tasks (e.g. defining what 

are the unauthorized protocols) from the ones that can be fully automated, and 

therefore can be supported by security mechanisms. From a high level perspective, 

any security practice is a policy that requires an action from the administrator (in 

the sense that he can always choose to not implement it), and can typically be 

automated to a certain point. For instance, the administrator may manually check 

if the users’ passwords are strong enough, but a piece of software may also perform 

this check automatically (and also prevent users from choosing weak passwords in 

the first place). Obviously, maintaining the System State Goal in the first case 

(manual verification) is much more difficult than in the second case (when 

automation is present). In fact, it is widely accepted that the least work the 

administrator has to do to enforce security policies, the better is his productivity 

and the higher are the chances that these policies are correctly implemented. Thus, 

to identify the mechanisms needed to support a security practice, first we need to 
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know what are the steps required for achieving the System State Goal, which is 

done on the next step. 

In the second step we rewrote again the System State Goals, but this time in terms 

of what we called Mechanisms Goals. In this additional step we break the System 

State Goals in the list of actions that would lead to the System State Goal. 

Mechanisms Goals can be seen as the functions that make the steps towards the 

accomplishment of the System State Goal as simple as possible (i.e. the complexity 

of the steps becomes hidden behind automation). Continuing the previous example, 

the Mechanisms Goals for the “the OS network stack has no unused/unauthorized 

protocol active” System State Goal can be described as two simple steps: “Identify 

active protocols” and “disable unauthorized/unused protocols”. Note that, defining 

what the unauthorized/unused protocols are is environment dependent and can only 

be done by the system administrator. However, identifying the active ones and 

allowing them to be easily removed from the stack can be done by software 

mechanisms that may help accomplishing the System State Goal. 

The identification of the security mechanisms based on the Mechanisms Goals was 

then quite straightforward, as can be seen in the example above. An important issue 

is that, in some cases, more than one mechanism may be required for the state goal 

to be accomplished. In other cases, different mechanisms may be used to 

accomplish the same goal, possibly with different amounts of automation. 

Alternative ways for performing the same tasks are useful to suit different 

administrators, environments and requirements. Table 6.2 presents a few examples 

of the mapping of security best practices into System State Goal and Mechanisms 

Goals. The complete list can be found in (PhD Thesis Complementary Info 2012). 

 

 

 

Table 6.2 Examples of the mapping between security best practices, system 

state goals and mechanisms goals. 

Security  
Recommendation. 

Component 
System State 

 Goals 
Mechanisms Goals 

Remove from the network 
stack all unauthorized 
protocols  

OS 
The OS network stack has no 
unused/unauthorized protocol active. 

Identify active protocols and 
disable unauthorized/unused 
ones. 

Change default passwords OS No OS userid password is the default.  
Prevent the installation of default 
passwords in the OS or allow 
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identification and removal of 
default passwords. 

DBMS No DBMS userid password is the default. 

Prevent the installation of default 
passwords in the DBMS or allow 
identification and removal of 
default passwords . 

Do not delegate privileges 
assignments 

DBMS 
Privileges a user have should not be 
delegated. 

Prevent users from delegating 
their privileges or identify the use 
of privilege delegation 
operations. 

Keep the software updated 

OS 
No patches provided by the OS vendor are 
unapplied. 

Not allow an available OS patch 
to remain unapplied. 

DBMS 
No patches provided by the DBMS vendor 
are unapplied. 

Not allow an available DBMS 
patch to remain unapplied. 

Restrict database OS userid 
access to everything it does 
not need 

OS 

The database OS userid has access only 
to DBMS software. 

Set privileges to the dedicated 
DBMS userid to access only 
DBMS software. 

The database OS userid has access only 
to designated peripherals. 

Set privileges to the dedicated 
DBMS userid to access only the 
defined peripherals. 

 
Prevent idle connection 
hijacking 

DBMS 
Remote connections drop when unused for 
some period of time. 

Set connections to timeout after 
a period of inactivity. 

Change/remove default 
userids 

OS The OS has no default userid operational. 
Prevent the existence of default 
userids in the OS (during or after 
the installation). 

DBMS 
The DBMS has no default userid 
operational. 

Prevent the existence of default 
userids in the DBMS (during or 
after the installation). 

Make regular backups of the 
data 

DBMS 
There is an up-to-date copy of the DBMS 
data in a safe storage. 

Make updated copies of all 
DBMS data. 

Avoid ANY and ALL 
expressions in privileges 
assignments 

DBMS 
No user has privileges assigned from ANY 
and ALL expressions. 

Prevent or warn the use of ANY 
and ALL expressions on 
privileges assignments. 

Ensure no “side-channel” 
information leak through 
configuration files 

OS 
Configuration files do not contain sensitive 
information. 

Avoid the inclusion of sensitive 
information in configuration files. 

 

The whole process can be summarized as follows: 

1. Rewrite the security recommendations in the form of System State Goals 

that describe the system when the recommendation is correctly being 

applied. In this step it is necessary to clarify to which component of the 

software package (e.g. DBMS or OS) the goal refers to. 

2. Determine the associated Mechanisms Goals, which represent the steps 

required to achieve the System State Goal in terms of functions provided 

by the software. 

3. List exhaustively the mechanisms that can be used to implement (partially 

or fully) the Mechanisms Goals.  

By following this process we have identified the 112 security mechanisms, which 

are presented in Tables 6.5, 6.6 and 6.7. The first column of each table describes 
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the mechanisms that a target software component (second column) is expected to 

facilitate. The mechanisms should be read as “The software provides automated 

support for…”, and are not tied to any specific product, being described in a broad 

way to allow a posterior assessment of their existence in the software packages 

under benchmarking. 

6.2 Establishing the Impact of Security Mechanisms 

After devising the list of expected security mechanisms for a database software 

package, an obvious problem arises: some mechanisms are more relevant than 

others in terms of security. This is the same problem that we had to address when 

developing our trustworthiness benchmark, as explained in Chapter 4. 

One certainty is that the impact of a mechanism is directly related to the security 

recommendations that it allows to implement. This way, our proposal is to inherit 

the impact of the mechanisms from the relative weights computed for the 

corresponding recommendations. The problem, however, is not exactly the same, 

as the role of a mechanism within the context of a security recommendation varies, 

and while a recommendation may be important, a mechanism used to implement it 

may provide only partial support.  

For each mechanism, we identified in which class its security recommendation 

could be found in our relative weight computation, and we assigned values ranging 

from 1 to 4 to each of the classes (first column in Table 4.5, in Chapter 4). It is 

important to emphasize that, although we computed specific weights for all 

recommendations, we used them only as a reference to find the high-level class of 

the mechanisms (ranging from 1 to 4). The reasoning is that the fine-grain 

comparison would not hold for a large number of environments as aspects like the 

usability and reliability of each mechanism in each package could not be measured. 

Furthermore, small differences (e.g. of 0.01%) could hardly mean anything in terms 

of impact and should be discarded. Nevertheless, the high-level class can be used 

as a reference to compare the mechanisms for most of the environments, always 

realizing that mechanisms within the same class are considered to have the same 

relative impact (e.g, the function of “Automated installation of OS pending 

patches” and the ability of “store credential information using a reliable encryption 

scheme” are both considered of the same relative impact because they ended with 

the same impact weight, even though they are completely different and unrelated 

security mechanisms). 

As mentioned above, in some cases, security mechanisms may provide only partial 

support for the security recommendation, and may need to be complemented. This 

should be reflected in the weighting process, and can be solved using two 
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alternative approaches: either we value mechanisms that provide partial support 

only when their complementary counterparts are also present or we count them 

always as providing half of the support (having half the weight of the original 

importance). We opted for the second of the two alternatives due to the simple fact 

that, even though a complementary mechanism might not exist in the package, the 

existence of a partial mechanism may already help the administrator, in the sense 

that usually it can be used for supporting part of the recommendation 

implementation. Notice, however, that counting partial mechanisms as “half” is 

another issue open for discussion. The problem is that determining how much a 

mechanism actually fulfills of the recommendation (e.g. 80% of the practice or 30% 

of the practice) is generally impossible as this depends also on other resources that 

may or may not be available to the administrator (which may vary from case to 

case). We decided that, for the purpose of the benchmark, partial mechanisms 

provide on average half the support, even if under the certain conditions of real 

environments that might not be the case.  

Another problem is that some security mechanisms can be used to support multiple 

best practices. In this case the choice is between emphasizing the importance of 

these mechanisms or not. In other words, we had to decide if the importance of a 

given mechanism should be somewhat accumulated for different practices. For 

instance, should a mechanism required to implement three not very important 

practices be considered more important than another mechanism that can be used 

to support one single very important practice? In this case, we decided that the best 

approach would be that yes, it should. We strongly support the idea that security 

should be exhaustive, meaning that, from a general perspective, in a trade-off 

decision, the higher is the number of security precautions in place the better. We 

are aware that this can be disputed, particularly when considering special situations 

where an excess of security mechanisms may cause more problems than that they 

solve, but the assumption seems to be overall reasonable. Anyway, this decision 

has a small impact on the overall benchmark, as there is a very small set of 

mechanisms that are related to more than one security practice (3 to be exact).  

The impact weight of each mechanism was computed by multiplying the best 

practice importance class (from 1 to 4) by the weight of the support of the 

mechanism (1 or 0.5). The individual weights (i.e. the weights per best practice) 

for the mechanisms that may contribute for the implementation of more than one 

practice were then added, resulting in weights ranging from 0.5 to 5. Table 6.3 

presents the mechanisms with the highest impact. The complete list of mechanisms 

can be found in (PhD Thesis Complementary Info 2012). 

Table 6.3 Most important security mechanisms identified 
Security mechanisms (automated support for…) Target W 
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Disabling access to extended functions. DBMS 5 

Configuring the system to always encrypt a remote 

connection to the DBMS. 

DBMS 4 

Encrypting the connection of native developer applications.  DBMS 4 

Removing systems privileges of DBMS userids DBMS 4 

Restricting read/write privileges of a partition to a specific 

userid. 

OS 4 

Automated installation of DBMS pending patches. DBMS 3 

Automated installation of OS pending patches. OS 3 

Configuring the DBMS to store credential information using 

a reliable encryption scheme. 

DBMS 3 

Configuring the OS to store credential information using a 

reliable encryption scheme. 

OS 3 

Defining all DBMS passwords during the installation phase. DBMS 3 

Defining all DBMS userids in the installation phase. DBMS 3 

Defining all OS passwords during the installation phase. OS 3 

Defining all OS userids during the installation phase. OS 3 

Relying the DBMS on an outside specialized authentication 

mechanism. 

DBMS 3 

Relying the OS on an outside specialized authentication 

mechanism. 

OS 3 

Removing  privileges of users over systems tables. DBMS 3 

Warning DBMS users, in an password change operation, that 

their new passwords are weak and cannot be accepted. 

DBMS 3 

Warning OS users, in an password change operation, that 

their new passwords are weak and cannot be accepted. 

OS 3 

 

6.3 Benchmark Metric and Execution 

The purpose of the proposed benchmark is to allow the comparison among 

alternative software packages in terms of security capability. To this end, the 

benchmark provides two complementary outcomes: a Security Mechanisms 

Compliance metric (SMC) that portrays the level of compliance of the package in 

regard to the set of security mechanisms devised from the established security 

recommendations, and a gap analysis matrix that allows identifying exactly what 

are the mechanisms missing in each package (for implementing a given 

configuration). 

Applying the benchmark is a process that consists of verifying which of the 112 

security mechanisms are included in the software package, build a gap analysis 

matrix, and calculate the security compliance metric. First, the benchmark user 

must check whether each security mechanism is present on the software package 

being analyzed. This provides a list that can be used to build a gap analysis matrix 

that allows visually comparing several alternative packages in term of their overall 

capabilities compliance (in Section 6.4.3 we provide some examples of how to use 

such gap analysis matrix to draw important conclusions about the evaluated 

packages). The security compliance metric SMC is then computed as the sum of 



Chapter 6  Selecting Software for Transactional Systems Infrastructures 

182 

the weights of all the security mechanisms present in the package. Note that this 

number must be interpreted carefully, as a higher value does not necessarily means 

a more secure product: it means that it offers more support for implementing 

security best practices in the context database infrastructures. 

6.4 Experimental Evaluation 

In order to demonstrate the possibilities of our tool, we used it to benchmark a set 

of software packages, and identify their characteristics and capabilities. In the 

following sections we describe the experiments and analyze the results obtained. 

6.4.1 Software Packages Assessed 

For the experimental evaluation we decided to consider a representative set of 

database solutions that can be found in the field. From the DBMS engines 

perspective, we selected two commercial DBMS engines, namely Oracle 10g and 

Microsoft SQL Server 2005, and two open source ones, namely PostgreSQL 8 and 

MySQL Community Edition 5. Oracle and SQL Server are two of the most widely 

used commercial DBMS, and these particular versions account for a representative 

number of installations in the field. PostgresSQL and MySQL account for the 

majority of DBMS installations that use open source software, and are very popular 

alternatives to commercial software. 

From the operating system perspective, we used the same rationale, therefore 

choosing Microsoft Windows XP and Red Hat Enterprise Linux 5. Both operating 

systems are widely representative choices to support the DBMS mentioned above, 

but we are aware that several other alternatives would be interesting as well (e.g. 

Suse Linux and Microsoft Windows Server 2003, among many others).  

Excluding Microsoft SQL Server 2005, that is only available over Windows 

platforms, the other three DBMS could be installed over both operating systems. 

The overall results of the evaluation of the seven different software packages are 

presented in Table 6.4. 

6.4.2 Comparing the Software Packages 

Besides using experts’ knowledge, to apply the benchmark to the software 

packages selected we had to install them and analyze thoroughly their 

corresponding documentation. The goal is basically to evaluate if a given package 

has native support for each of 112 security mechanisms defined by the benchmark.  

A fundamental difficulty was to determine what elements were provided by the 

software package as a whole in contrast to determining the elements provided by 

each product individually. Password policies are one example where the platform 
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influences the capabilities of the DBMS. For SQL Server 2005, password policies 

can be inherited from the operating system only if it is installed over Microsoft 

Windows 2003, and not if the system is based on Windows XP due to the lack of 

interfaces for this system. On the other hand, PostgreSQL can use the Pluggable 

Authentication Module (PAM) features of Linux, which comes in the standard 

installation of the Red Hat Enterprise Linux 5, and therefore is available for the 

package at both the OS and the DBMS levels. This kind of detail can make the 

process to be relatively costly in terms of information gathering, though the 

outcome justifies the work. 

Table 6.4. Overall results of the experimental evaluation of the 7 different 

software packages. 
Package N. DBMS Engine Operating system MP SMC  % 

1 SQL Server 2005 Windows XP 79 131,5 76% 

2 
Oracle 10g 

Red Hat Enterprise Linux  5 74 118,5 68% 

3 Windows XP 73 118 68% 

4 
PostgreSQL 8 

Red Hat Enterprise Linux 5 73 123 71% 

5 Windows XP 68 114,5 66% 

6 
MySQL Community Edition 5 

Red Hat Enterprise Linux  5 66 110 64% 

7 Windows XP 66 110,5 64% 

 

Table 6.4 presents the overall evaluation of the packages. The first and second 

columns identify the components of each package and the third column presents an 

identification number for the package (that will be used later in Table X to refer to 

each package). The fourth column presents the total number of mechanisms present 

(MP) in the package, and the fifth column presents the Security Mechanisms 

Compliance metric (SMC) of the benchmark (sum of the importance of all 

mechanisms present). Finally, the sixth column presents the metric in terms of a 

percentage of the maximum value possible for an ideal package including all the 

mechanisms.  

Among the evaluated packages, the one that includes more security mechanisms is 

Package 1, SQL Server 2005 over Windows XP. This means that it has more native 

support for implementing security best practices for databases. Notice that the plain 

number of mechanisms present does not say much about the importance of such 

mechanisms. For example, Package 4 has a SMC higher than Package 2, even 

though it has less security mechanisms available. This happens because the security 

mechanisms present in Package 4 are generically considered more important than 

the ones present in Package 2.  

Based on the SMC metric, the best package benchmarked is Microsoft SQL Server 

2005 over Windows XP. A key aspect that supports this result is an overall better 
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integration with the operating system (allowing, for instance, using the Windows 

Update mechanism for keeping the DBMS software up to date with little 

intervention). The feature of client application roles (that allows to better support 

the development of applications with the ability to identify the end users behind 

database connections based on database authentication) and some extra backup 

features not present in the other DBMSs also contributed to this result. However, 

the score for all the packages is not that different, which suggests that, in general, 

these packages (operating systems and database engines) tend to implement the 

same type of security features and mechanisms (despite being open source or not). 

The worst scored package was MySQL Community Edition over Red Hat 

Enterprise Linux 5. 

6.4.3 Software Packages Gap Analysis 

This section presents and discusses the results from a gap analysis point-of-view, 

serving as an example of the full potential of the proposed tool. We start with an 

overall analysis of the set of mechanisms available and then move to the analysis 

of the mechanisms present in all packages, the mechanisms not available in any 

package, and, finally, the mechanisms available only in some of the packages. 

6.4.3.1 Overall Analysis of the Mechanisms and Packages 

The first observation regarding the overall analysis is the number of mechanisms 

related to each of the two software components that are part of a software package 

(i.e. the OS and the DBMS). As shown in Figure 6.1, more than a third of the 112 

mechanisms identified are provided by the OS, which confirms what we suggested 

several times before, i.e. despite the DBMS engine being used, security is strongly 

tied to the capabilities of the underlying platform. Even more important is the fact 

that, for several DBMS, the provision of some security mechanisms is highly 

dependent on the operating system being used (e.g. some authentication features of 

PostgreSQL are only natively provided if the operating system has the Pluggable 

Authentication Module (PAM) installed, which is, for instance, available on Red 

Hat Enterprise Linux 5, but not on Windows XP). It is then clear that, from a 

security point of view, the two software components must be selected 

simultaneously.  

The next important global observation is the general availability of the 112 

mechanisms in the analyzed packages. Figure 6.2 presents the percentages of 

mechanisms available in all packages, mechanisms available in none of the 

packages, and mechanisms available in at least one package. As shown, little more 

than half of the mechanisms are supported by all the packages analyzed, which is 

much lower than what one would expect. Worse than that is the fact that 21% of 
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the mechanisms are not provided by any of the packages analyzed. This suggests 

that many security recommendations cannot be easily implemented (or additional 

software has to be acquired for their implementation) due to the inexistence of 

support from the DBMS and/or OS in all the packages analyzed. 

 

Figure 6.1 Mechanisms by component of the analyzed packages. 

Figure 6.3 breaks down the number of mechanisms supported by combinations of 

packages. Interestingly, a very high number of mechanisms appear on a minority 

of the packages (e.g. 20 mechanisms appear on only three or less packages). This 

suggests that these mechanisms, although provided by some packages, are not 

considered universally important (e.g. column level privilege settings). 

 

Figure 6.2. Availability of mechanisms  

The last general observation is related to the total number of mechanisms provided 

by each software package (presented in Table 6.4). Although package number 1 

clearly presents the biggest number of mechanisms, the actual number of 

mechanisms available in the seven packages does not vary considerably (79 in the 
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most and 66 in the least). This suggests that vendors follow some common trends 

when deciding what mechanisms should be made available in their products. 

 

Figure 6.3: Number of mechanisms available across packages. 

6.4.3.2 Mechanisms Available in All Packages 

Table 6.5 presents the list of 59 mechanisms that are provided by all the packages. 

The first observation is that there are 28 DBMS mechanisms and 31 OS 

mechanisms in this group. This fact, together with the total number of mechanisms 

initially identified for the DBMS (70 mechanisms) and the OS (42 mechanisms) 

components, shows that the operating systems analyzed implement a higher 

percentage of the expected security mechanisms than the database engines, 

suggesting that operating systems vendors may be more concerned about helping 

the users in hardening their systems than the DBMS vendors are on helping DBAs 

to harden their database infrastructures. The operating system is in fact a more 

fundamental layer of software than the DBMS, as it is prepared to support a 

diversity of distinct purposes, contrary to the DBMS that serves a particular use. 

On the other hand, this does not justify more concern with security. In fact, although 

operating systems may also host critical information and services, the business 

purpose of DBMSs is specifically aimed at storing user information and data, which 

may be even more critical than a certain service that an operating system may 

provide. In summary, the security of both layers of software is equally important, 

and this disparity cannot be easily justified. 
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Note that mechanisms such as password settings, privilege settings, some 

installations choices, and the definition of some general operational parameters, are 

allowed by all packages, which confirms that these mechanisms are accepted as 

universal requirements for databases. Very few informational mechanisms, 

however, can be found in this group. For example, the easy verification of the 

current working state and configuration of the system is NOT a universal concern 

of DBMS and OS vendors. 

Table 6.5 List of mechanisms available in all packages 

Security Mechanism (The package offers support for...) 

C
o

m
p

o
n

en
t

T
ar

g
et

 

Disabling access to extended stored procedures and functions DB 

Config. the system to always encrypt a remote connection to the DBMS DB 

Encrypting the connection of developer applications DB 

Removing system privileges of DBMS userids DB 

Restricting read/write privileges of a partition to a specific userid OS 

Automated installation of OS pending patches OS 

Configuring the DBMS to store credential information using a reliable encryption scheme DB 

Configuring the OS to store credential information using a reliable encryption scheme OS 

Defining all DBMS passwords during the installation phase DB 

Defining all OS passwords during the installation phase OS 

Relying the OS on an outside specialized authentication mechanism OS 

Warning OS users, in a password change operation, that their new passwords are weak and cannot 
be accepted 

OS 

A DBMS authentication procedure that requests only credential information to the remote users DB 

An OS authentication procedure that requests only credential information to the remote users OS 

Configuring the DBMS so only administrators have access to log information DB 

Denying login into the OS from a credential with more than a specified number of failed authentication 
attempts 

OS 

Forcing the OS users to change their passwords when they're older than a specified time frame OS 

Identifying systems privileges of DBMS userids DB 

Setting read/write/execution privileges over files OS 

Setting that a userid cannot login OS 

Setting who can change configuration files OS 

Setting who can change environment variables OS 

Using custom defined SSL certificates for encrypted connections DB 

Changing OS userids already in use OS 

Changing passwords of DBMS userids already in use DB 

Changing passwords of OS userids already in use OS 

Creating an OS userid with limited privileges OS 

Creating file systems partitions OS 

Identifying users with privileges over systems tables DB 

Making a backup copy of the database DB 

Storing the backup in a custom storage place DB 

Using a privilege limited userid to successfully load a DBMS process. OS 

Warning the administrator that there are OS vendor patches remaining to be applied OS 

Allowing the DBA to not use ANY and ALL expressions DB 

Allowing to explicitly state that a particular privilege cannot be delegated DB 

Changing listening TCP/UDP ports DB 

Changing remote identification information already in use. (e.g., SID) DB 

Configuring the system to always establish connections through the same TCP/UDP ports. DB 

Defining all remote identification information during the installation phase DB 

Disabling the generation of core_dump files OS 



Chapter 6  Selecting Software for Transactional Systems Infrastructures 

188 

Disabling the generation of trace files DB 

Preventing specifying sensitive information in configuration files. (e.g., not require specifying 
password in configuration files, etc.) 

OS 

Preventing the general use of sensitive information in systems variables OS 

Setting and discarding a complex password for a userid OS 

Setting the owner of files OS 

Specifying important events which occur in the OS that should generate a finger print OS 

Specifying privileges in a database level DB 

Specifying privileges in a table level DB 

Warning OS users that their passwords are older than a specified time frame OS 

Writing procedures that generate a trace for data changes DB 

Creating stored procedures DB 

Creating views DB 

Disabling a network protocol OS 

Identifying active protocols in the network stack OS 

Removing a database DB 

Selecting a different partition for OS log information OS 

Selecting a different partition than the main OS partition for DBMS log information DB 

Selecting a different partition than the main OS partition for the data files DB 

Setting/unsetting read/write/execute privileges over files OS 

 

6.4.3.3 Mechanisms Not Available in Any Packages 

Table 6.6 shows the mechanisms that could not be found in any of the packages. 

The vast majority of the mechanisms in this group are specified by the actions of 

Identifying (8), Testing (4), Warning (4) and Blocking (3). 

Identifying mechanisms are expected to easily provide general information about 

the system state and configuration. Not having these mechanisms forces the 

administrator to guess if a given setting is active or not, to create miraculous queries 

over poorly documented system tables, to analyze gigantic and cryptic 

configuration text files, or to read enormous manuals to find the information. 

Obviously, to help DBAs improving security, obtaining this kind of information 

should be as simple and intuitive as possible. 

Testing mechanisms are mechanisms designed to verify either if some important 

operation was carried out successfully or if it will execute successfully when 

attempted (e.g. data backups and software updates, respectively). Testing is crucial 

to guarantee the system availability (either at the moment of execution of such 

maintenance task or in the future), but it is simply disregarded by developers of 

both operating systems and databases. 

Warning mechanisms provide security related notifications. As these warnings may 

be a hindrance when the system is known to be working as expected, it should be 

possible to turn them off. However, when turned on they report information about 

important operations that should not occur normally. Providing such warning 

mechanisms is simply not considered in any of the packages analyzed. (e.g. 
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warning about outdated backups or about the modification of configuration 

parameters). 

Blocking mechanisms are configuration options that result in some operations not 

being allowed. In this case, the blocking mechanisms that were not found in any 

package are related to privilege delegation. We believe that these mechanisms 

(although optional) are important because they allow the DBAs to better track how 

privileges are distributed within the database. For instance, whenever a particular 

user is the owner of some entity, he can decide who can access his entity and how. 

In critical security scenarios, however, the DBA may want to control this kind of 

delegation even about entities not owned by him, and this cannot be done in any of 

the DBMS analyzed unless the DBA owns all objects. 

As can be seen in Table 6.6, most of these mechanisms are security specific and are 

not related to any major functional aspects of databases. As they simply do not 

provide any obvious functional advantage to DBAs that are not security experts, it 

seems that they are not considered as adding a significant Return of Investment 

value to the software. However, the importance of security in databases nowadays 

should be enough for vendors to consider these kinds of features from a perspective 

of not losing credibility in the future. 

 

 

Table 6.6 List of mechanisms not available in any of the packages 

Security Mechanism (The package offers support for...) 
C
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m
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Defining all OS userids during the installation phase OS 

Removing all privileges of users over all systems tables. DB 

Configuring the OS so only admins. have access to log information OS 

Identifying DBMS userids with default passwords DB 

Identifying default DBMS userids DB 

Identifying default OS userids OS 

Identifying OS userids with default passwords OS 

Testing the installation of DBMS new patches DB 

Testing the installation of OS new patches OS 

Warning the administrator that the last OS backup is not up-to-date anymore OS 

Blocking non-DBAs from delegating their privileges DB 

Blocking privileges not inherited from groups/roles DB 

Blocking the usage of ANY and ALL expressions in privileges granting DB 

Encrypting backups with a reliable encryption algorithm OS 

Identifying available functions that interact with the operating system DB 

Warning the administrator if any important configuration or file was modified OS 

Identifying available extended functions in general DB 

Identifying available functions that can be used to perform network operations DB 
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Identifying available functions that can be used to read/write in the file system DB 

Identifying example databases DB 

Testing if a recently created backup correctly restores the database data to its 
corresponding state 

DB 

Testing if a recently created backup correctly restores the system to its 
corresponding state 

OS 

Warning administrators of ANY and ALL expressions used in privileges assignments DB 

Warning admin of users with the power of delegating their privileges DB 

6.4.3.4 Mechanisms Available in Some Packages 

This group includes the mechanisms that exist in at least one package, but not in all 

of them (see Table 6.7). We can divide this group in two subgroups: the 

mechanisms that are present in most of the packages (four or more packages, 

corresponding to a total of 9 mechanisms) and the ones that are present in just a 

few packages (three or less packages, corresponding to a total of 20 mechanisms). 

These two subgroups seem to arise from two distinct situations. 

Most mechanisms of the group present in most packages appear to be widely 

considered as important. In most cases, they are not present in some packages for 

very clear reasons, namely: specific platform migration decisions and feature 

inheritance from old versions. In other cases, vendors opted for excluding some 

mechanisms, but openly admit the lack of support (e.g. inexistence of groups/roles 

in packages 6 and 7). Note that, knowing if a particular mechanism is important for 

a particular environment should influence the decision of what is the best package 

for it. 

Table 6.7 List of mechanisms available in some of the packages (X means 

that the mechanism is available in the corresponding package) 

Security Mechanism (The package offers support for...) 
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Automated installation of DBMS pending patches DB X       

Defining all DBMS userids in the installation phase DB X       

Relying the DBMS on an outside specialized authentication mechanism DB X X X X X   

Warning DBMS users, in a password change operation, that their new passwords are weak 
and cannot be accepted 

DB    X    

An authentication procedure for remote clients that identify individual end users instead of 
individual applications 

DB X       

Configuring the system to drop idle connections after a specific period of inactivity DB  X X X X X X 

Configuring the system to require that remote clients have the correct server certificate 
installed 

DB X   X X X X 

Denying login into the DBMS from a credential with more than a specified number of failed 
authentication attempts 

DB    X    

Forcing the DBMS users to change their passwords when they're older than a specified 
time frame 

DB    X    

Specifying privileges in a row/value level DB  X X     
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Changing DBMS userids already in use DB X   X X X X 

Making a backup copy of the OS which can be used to restore the environment to its current 
state 

OS X  X  X  X 

Using a privilege limited userid to successfully install the DBMS. OS  X  X  X  

Warning the admin that the last data backup is not up-to-date anymore DB X       

Warning the administrator that there are DBMS vendor patches remaining to be applied DB X       

Auditing a variety of important DBMS events DB X X X     

Auditing data changes DB X X X     

Config. the DBMS so only DBAs have access to audited information DB X X X     

Configuring the system to always establish connections through the same TCP/UDP ports 
during the installation phase. 

DB X   X X X X 

Defining listening TCP/UDP ports during the installation phase DB  X X X X  X 

Preventing the installation of a database example during installation  DB  X X X X X X 

Removing quotas over systems areas DB X X X     

Setting privileges to groups or roles DB X X X X X   

Specifying important events which occur in the DBMS that should generate a finger print DB X X X     

Specifying privileges in a column level DB X       

Warning DBMS users that their passwords are older than a specified time frame DB    X    

Identifying users with quotas over systems areas DB X X X     

Selecting a different partition than the main OS partition for auditing info DB X X X     

Setting/unsetting access privileges over peripherals OS  X  X  X  

 

The mechanisms of the group present in just a few packages, on the other hand, do 

not seem to be considered universally important. Take, for instance, setting 

privileges at row level, only available in packages 2 and 3. It seems that it is not 

seen as a relevant feature, as this kind of privilege filter is usually carried out by 

the client applications themselves. However, it might happen that client 

applications do not use this feature exactly because it is not usually available, and 

not the other way around. Using a feature implemented directly by the DBMS is 

often more reliable than implementing them at the application layer. Therefore, 

providing these mechanisms allow the development of systems that are less error 

prone than the ones that have to implement specific tailored solutions. 

In order to understand if there is any pattern behind the distribution of the 

mechanisms provided by a subset of packages, we explicitly analyzed the number 

of common mechanisms in each possible combination between the seven packages. 

This analysis is presented in Table 6.8. When looking to the mechanisms from this 

point of view, the fact that Packages 1, 2 and 3 provide uniquely 7 mechanisms, 

and Package 1 provides uniquely 6 mechanisms stands out. On the first case, most 

of these mechanisms are related to auditing, which is only provided by the 

commercial DBMSs analyzed (Oracle and SQLServer). Open source databases do 

not usually provide these mechanisms. In the second case, SQL Server database 

stands out by providing a few features that no other DBMS provides (e.g. some 

types of backup warnings, more installation options, column level privilege settings 

and a few automatic updates facilities). This helps confirming the fact that this 
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DBMS has most security mechanisms implemented out-of-the-box, as was 

portrayed by the analysis presented in Section 6.4.3.1. 

Table 6.8 Mechanisms available only in specific sets of packages 

Set of packages 
Number of mechanisms provided uniquely by 
this set 

Packages 2,3,4,5,6,7 2 

Packages 1,2,3,4,5 2 

Packages 1,4,5,6,7 3 

Packages 2,3,4,5,7 1 

Packages 1,3,5,7 1 

Packages 2,4,6 2 

Packages 1,2,3 7 

Packages 1,4 1 

Packages 2,3 1 

Package 1 6 

Package 4 3 

 

In summary, all the security mechanisms identified in this work should be seen as 

being important, even if they are not usually used by most applications. Taking into 

account the current situation, where the set of mechanisms implemented by each 

available package is defined by factors not necessarily linked with the requirements 

of the end users, the analysis presented in our work seems to be very useful in 

helping clarifying and deciding which package, or set of packages, are fit for a 

particular target environment. 

6.5 Conclusion 

This chapter revisited the problem of security qualification in transactional systems 

infrastructures, first discussed in the context of the security benchmark for 

transactional systems infrastructures proposed in Chapter 4. The goal here was to 

design a benchmarking tool able to help analyzing and selecting specific software 

components that would help in securing complex infrastructures like transactional 

systems, where the identification of vulnerabilities and actual attack paths is not an 

easy problem. The need for such tool arises from the fact that a transactional system 

infrastructure can only have a proper security assessment after deployment, leaving 

the problem of selecting the components that will be part of this infrastructure 

unsolved.  

The proposed methodology allows assessing the effectiveness of software 

packages, considering the security mechanisms that they make available for the 

administrator to secure the infrastructure, and favoring the ones that help the most 

in such task. We evaluated a set of real software packages regarding their ability 

for helping securing live installations, and were able to put into evidence a very 
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large set of security characteristics that the most representative DBMS engines have 

today. We also found a set of mechanisms that are not included in any of the 

benchmarked engine, demonstrating that our tool is able to provide relevant 

information of the assessed targets (namely, a matrix to support gap-analysis). The 

list of absent mechanisms we identified is particularly interesting, as it shows that 

the set of security mechanisms included in the evaluated software packages vary 

only slightly, being mostly the same in each version. It may be the case that the 

inexistence of procedures like the one we proposed in this chapter makes it difficult 

for software vendors to become aware of which security mechanisms would help 

the administrators in the field. 

It is important to remember, however, that the list of mechanisms presented in this 

chapter was directly derived from the list of security recommendations devised in 

Chapter 4. Therefore, it may also suffer from the deficiencies already pointed out 

in that case (e.g. incompleteness and/or deprecation by change of technologies). As 

a matter of fact, the list of mechanisms brings no additional security information, 

as it is simply another perspective from the same knowledge that we already had in 

the original list of recommendations. We believe that this is one of the great merits 

of this methodology, to demonstrate how to reason about security in a consistent 

and methodical manner, taking security information provided by reliable experts in 

one end and, by assuming that this information is correct and sound, examining all 

the consequences of such information, deriving important conclusions and 

interpretations that allow it to be used in a variety of distinct perspectives. 
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Conclusions and 
Future Work 

The importance of benchmarking of computer systems in general is growing with 

the diversity of solutions and software implementations. This is a natural 

consequence of the importance that computer systems are having in our society, 

given by the boost in efficiency and productivity that they provide to every single 

area of our lives. With our growing dependence on computing systems, the 

necessity of considering their security becomes unavoidable. 

This thesis brings two major contributions to the fields of benchmarking and 

security in general. The first is a generally applicable security benchmarking 

framework suited for the definition of security benchmarks in any application 

domain. The framework is based on the observation that the course that research 

on benchmarking has been taking over the last years does not seem appropriate 

when considering security aspects. In essence, the research on benchmarking had 

its roots on performance of computer systems, where the goal was to have a 

measure of how efficient the system was at executing tasks. The most successful 

general model for performance benchmarking was based on the idea of modeling 

the work and the stress that the system under test would be subjected to in the form 

of a typical workload, and such workload allied with a set of performance metrics 

(e.g. number of tasks execute per amount of time) would allow a fair comparison 

of different systems. TPC and SPEC benchmarks are the most notable 

organizations that provide recognized standard performance benchmarks based this 

approach.  

However, in the last decade, the research community noticed that performance 

benchmarks were not sufficient to realistically compare systems, at least not in a 

variety of practical scenarios. In fact, the results of performance benchmarks are 
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only correct when the system operates under no degradation effects, essentially 

under ideal circumstances. Assuming that systems fail, and that the overall 

execution environment is not ideal, dependability benchmarking appears as an 

approach to evaluate how a system degrades under faults. In other words, 

dependability benchmarking is the idea of measuring the degradation when 

operating under faulty conditions. The general model followed to accomplish this 

goal was based on the adaptation of the performance benchmarking model, by 

adding two elements: a faultload, which represents the set of faults that the system 

would typically suffer during its normal lifetime, and a set of dependability metrics.  

Resilience benchmarking appears today as the last research endeavor in 

benchmarking, advancing the idea of the faultload to a changeload in which the 

assumption is that the problems that systems will face in the field are much more 

broad than typical faults, ranging from physical resources stress and limitations to 

workload fluctuations. Resilience benchmarking research is also starting to deal 

with the fact that computer systems are becoming progressively more self-adaptive, 

and that adaptations mechanisms are designed exactly to deal with the complex 

working conditions in which systems operate. Evaluating the performance and 

effectiveness of these adaptations mechanisms is a very complex problem that is 

still being researched. 

With the success of this benchmarking approach, based on workloads, faultloads, 

and changeloads, one could expect the same idea to also apply to security. In fact, 

the Amber consortium (Assessing, Measuring and Benchmarking Resilience) 

delivered a research roadmap that clearly promoted the idea of identifying 

representative “attackloads” and security metrics, with the goal of defining security 

benchmarking using this approach.  

Throughout this thesis, and particularly in Chapters 2 and 3, we presented several 

reasons that show why the traditional benchmarking approach is not the ideal one 

when it comes to security. The main argument is that the information that we get 

from identifying a vulnerability in a system, and therefore a potential attack, is not 

the same information we get when we subject a system to faults. This comes from 

a fundamental differences between faults and attacks that unavoidably has to be 

taken into account when comparing systems. For example, although the triggering 

of a fault may have a certain distribution probability, the triggering of an attack is 

much more complex to define as it depends on a malicious person that may or may 

not have interest in attacking the system. Accounting for the exploitation of known 

vulnerabilities must be completely different from accounting for the triggering of 

faults.  
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A proper security benchmarking approach must necessarily take into consideration 

a set of aspects that normally are not taken into consideration in other types of 

benchmarks: there are lots of uncertainties about the system, the environment, and 

the attackers. We believe that modeling unknown security problems in the same 

way we model known/detectable vulnerabilities is an error that ultimately leads to 

useless benchmarks or misleading conclusions. From a high-level view, we may 

say that the framework proposed in thesis essentially provides a way for reasoning 

about how to correctly rationalize security aspects when the goal at hand is fair 

comparison.  

The framework itself was built upon two main ideas, and therefore was conceived 

with two main phases: security qualification and trustworthiness benchmarking, 

both deeply discussed in chapter 3. Basically, security qualification deals with the 

actual detectable security problems and results in a binary response, either a system 

under benchmarking is acceptable for use or it is unacceptable. The detectable 

security problems that a system may have, can actually be divided in two groups: 

1) the system should not be obviously insecure, meaning that any severe 

vulnerability that opens the system to attacks renders it unacceptable; and 2) the 

lack of the mechanisms required by the domain for the security tasks (e.g. 

authentication for a withdraw operation in a bank system) also renders it 

unacceptable.  

Trustworthiness benchmarking is the process of distinguishing the systems 

considered acceptable by security qualification. In this case, we examine the system 

under evaluation looking for evidences that show how good the design of the 

system is, therefore allowing to compare the probability of different systems having 

security problems. This is where we account for the uncertainty factors related with 

the security of the systems. The proposal and the extensive study of alternative 

approaches for defining useful trustworthiness benchmarks was actually the second 

major contribution of this thesis. 

Chapters 4 and 5 were dedicated to the study of methodologies, approaches and 

actual implementations of the security benchmarking framework, with emphasis on 

trustworthiness benchmarking, for two fairly representative use cases, as discussed 

next.  

Complex environments, where a diversity of people, hardware, software and 

configuration options interact towards a single goal. We studied this scenario in the 

form of a transactional system infrastructure. In this situation, as the possible 

configurations and circumstances are too many to account for, the most interesting 

usage of trustworthiness benchmarking is to help tracking the state of the system 
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and suggest ways for enhancing its security, basically by addressing the questions 

of what are the most important areas that should be improved and threats that should 

concern the administrators. The assessment of four real database infrastructures 

allowed demonstrating the capabilities of the benchmark. Several analysis and 

discussions about the security properties of the environments become evident, and 

such evidence can clearly be the justification required for systems modifications 

and even more drastic actions. Another lesson we obtained from the application of 

the benchmark was that its mere execution already provides a very significant 

amount of information to the administrator. One aspect demanded by the 

benchmark is the administrator to obtain information about the actual state of his 

infrastructure, which is something that not all administrators are able to do. The 

application of the benchmark also provided a very large amount of information to 

the administrators in the form of what were the configurations and the security 

mechanisms that they were neglecting or were not aware of, and what were the 

potential consequences of the existing configuration state.  

A targeted well-bounded and controlled use-case where the goal is to select the 

most secure software implementation among several alternatives that implement 

the same specification. This scenario is the case of a typical business application 

working upon an already existing transactional system infrastructure. In this case, 

the threats can be more tightly specified and be much more detailed and precise. 

For this scenario, we first studied the design of an automated trustworthiness 

benchmark based on static code analysis tools. Using a series of experiments, we 

found that the metrics that can be designed based on such tools do really correlate 

with the security quality of the targets, and this was a very important result. This 

conclusion was particularly solid, because we evaluated the results against the 

evaluation of six different security experts, which manually reached out the same 

conclusions of our tool. However, we identified a series of limitations of the 

approach, namely that the dependence on tools that were not designed exactly for 

this goal would make the approach loose effectiveness in the future. The solution 

to this problem was to design and propose a general methodology to accomplish 

the exact same thing, but eliminating the problems that the static code analyzers 

had. This general approach was exercised and explained from the start to end, and 

was also partially validated in a small scale experiment that demonstrated that the 

approach is sound and may lead to effective long term solutions to the problem of 

trustworthiness benchmarking of web applications. 

While chapters 4 and 5 focused on trustworthiness benchmarking approaches, in 

Chapter 6 we studied a very specific problem that arise from the combination of 

the two scenarios just described. The problem comes specifically from the fact that 
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such complex infrastructure does not conform easily to a security qualification 

specification. With several complementary systems and configurations, 

pinpointing the security characteristics that necessarily make the infrastructure 

unacceptable is not easy, as an administrator can always compensate single 

vulnerabilities or missing security mechanisms with additional overlapping defense 

systems. At the same time, that does not mean that any set of components within 

this infrastructure can be considered acceptable. Chapter 6 is specifically devoted 

to the development of a process that helps in analyzing the security mechanisms 

that a complex software package, like a DBMS engine plus an operating system, 

can provide to a complex infrastructure. Based on the trustworthiness benchmark 

proposed in Chapter 4, we built an assessment tool that can be used evaluate how 

much a particular software helps securing the infrastructure.  

We evaluated the tool by actively applying it to seven representative software 

packages, which allowed finding several characteristics about the packages. Results 

show that there is a common set of security mechanism that is implemented by most 

packages, while several important mechanisms have no support at all on the 

packages analyzed. The reasons for this are open for debate, but we can conjecture 

that it has to do with a tradition of copying what has already being proposed in the 

field and has proven to work, without rethinking the whole features from scratch. 

When these systems are comprehensively analyzed, the missing features become 

highlighted. We believe that the analysis we did in this experiment is of utmost 

importance for database administrators and could be of great interest for vendors 

to improve the security characteristics of future software products and packages. 

Future Work 

This thesis is far from closing the problem of security benchmarking, and many 

future research topics can be envisaged, including: 

 Implementation of the framework for other domains. This thesis was 

dedicated to the application of the framework specifically for transactional 

systems. One of the lessons of this application is that the two constituting 

parts of a transactional system cannot be trivially benchmarked 

simultaneously because each part has a different set of security goals. We 

believe that the study of the framework in the context of other domains 

would further improve our knowledge on how the different security goals 

of systems can affect the benchmark design. 

 More effective methods of developing and creating the components of a 

benchmark. Most of the work required for the definition of the benchmarks 

demanded a lot of manual inspection and analysis, along with discussions 
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and inputs from security experts. Even though it is impossible to avoid 

completely the security knowledge needed for designing the benchmark 

from coming from security experts, the execution of several processes and 

definitions could be partially automated. Some examples: 

o The description of the security recommendations could be 

formalized, allowing for the automated analysis of the potential 

effects of the pessimistic scenarios whenever these 

recommendations were not being applied. 

o It is possible that the design of the security tests could be made 

automatically if the description of the practices was more formal. 

The automation of a partial set of security tests would already be 

an advancement of the usability of the test set. 

 Devising more effective ways for identifying the impact recommendations 

and security mechanisms. Some of the proposed methods required the 

identification of the security impact of mechanisms and recommendations. 

We solved it by obtaining the consensual judgment of several distinct 

security experts and practitioners. However, opinions can always be 

biased, even for large samples of people. It would be extremely valuable 

to have more impartial and effective ways of determining the security 

impact of such elements. 

 Developing an automated tool capable of performing the benchmark 

proposed in Section 5.3. Our expectation is that this particular tool would 

be much more efficient and precise than the benchmark based on static 

analysis tools. This would be a natural consequence of the fact that this 

new tool would be designed with the exact goal of performing 

trustworthiness benchmarking, while the static code analysis based 

benchmarking is taking advantage of a collateral effect - errors, something 

that should progressively disappear with their improvement.  

 Approaches to properly validate trustworthiness benchmarks. As 

discussed in Section 4.5, validating the trustworthiness benchmark 

proposed in Chapter 4 is a extremely complex problem for which we do 

not have an easy solution. The main problem is that the most obvious 

metrics that could be used to confirm if the results of the benchmark are 

correct suffer from external effects that make them not suitable for 

comparison. In fact, the security incidents that could demonstrate if one 

threat vector is better protected than another one depend not only on the 

capabilities of the attackers, which are considered by the benchmark in the 

form of the security mechanisms in place, but also on the intentions of the 
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attackers, which by design are not considered in the benchmark because 

they are external variables. Therefore, we need to study methods for 

validating the benchmarks results without requiring the systems to be 

effectively attacked. 
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Annex A 
 

Security 
Recommendations 
Tests, Weights and 
Analytical Results  

Table A.1 Security recommendations devised from the analysis of the CIS 

documents 

# SECURITY Recommendation (CIS) 
Recommendations 
in CIS documents 

  M O8 O10 S 

ENVIRONMENT 

1 Use a dedicated machine for the database 1 1 1 28 

2 
Avoid  machines which also run critical network services (naming, 
authentication, etc) 

1 1 1 1 

3 Use Firewalls: on the machine and on the network border 1 3 3 1 

4 
Prevent physical access to the DBMS machine by unauthorized 
people 

   1 

5 Remove from the network stack all unauthorized protocols   1 1 1 

6 Create a specific user to run the DBMS daemons 1 1 1  

7 Restrict DBMS user access to everything he doesn't need 1 4 4 3 

8 Prevent direct login on the DBMS user account 2 1 3 3 

INSTALLATION SETUP 

9 Create a partition for log information 2 1 1 1 

10 Only the DBMS user should read/write in the log partition 1    

11 Create a partition for DB data 1 1 1 2 

12 Only the DBMS user should read/write in the data partition 1    

13 Separate the DBMS software from the OS files 1 2 2 2 

 Remove/Avoid default elements:  

14 »»»Remove example databases 1   1 

15 »»»Change/remove user names/passwords 1 4 4 2 
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16 »»»Change remote identification names (SID, etc...)  3 1  

17 »»»Change TCP/UDP Ports  1 1 1 

18 »»»Do not use default SSL certificates 1    

19 Separate production and development servers  1 1  

20 No developer should have access to the production server   5 5  

21 
Use different network segments for production and development 
servers  

 1 1 1 

 Verify all  the installed DBMS application files:  

22 »»»Check and set the owner of the files 1 2 3  

23 »»»Set read/running permissions only to authorized users 4 18 22 14 

OPERATIONAL PROCEDURES 

24 Keep the DBMS software updated 3  1 1 

25 Make regular backups 1   4 

26 Test the backups 1  1  

SYSTEM LEVEL CONFIGURATION 

27 
Avoid random ports assignment for client connections (firewall 
configuration) 

 1 1  

28 Enforce remote communication encryption with strong algorithms 1 1 11 3 

29 Use server side certificate if possible 1  1  

30 
Use IPs instead of host names to configure access permissions 
(prevents DNS spoofing) 

 1 1  

31 Enforce strong user level authentication 2 6 8 4 

32 Prevent idle connection hijacking  2 2  

33 Ensure no remote parameters are used in authentication  1 2 1  

34 Avoid host based authentication  1 1  

35 Enforce strong password policies 1 2  2 

36 Apply excessive failed logins lock  1 1  

37 Apply password lifetime control  1 1  

38 Deny regular password reuse (force periodic change)  2 2  

39 Use strong encryption in password storage 3    

40 Enforce comprehensive logging 1 2 1  

41 Verify that the log data cannot be lost (replication is used)  2 2 1 

42 Audit sensible information  14 19 25 

43 Verify that the audit data cannot be lost (replication is used)  1  1 

 
Ensure no “side-channel” information leak (don’t create/restrict 
access): 

 

44 »»»From configuration files  2 1  

45 »»»From system variables 1    

46 »»»From core_dump/trace files  8 8 1 

47 »»»From backups of data and configuration files   1 1 4 

 Avoid the interaction between the DBMS users and the OS:  

48 »»»Deny any read/write on file system from DBMS used 2 3 2  

49 
»»»Deny any network operation (sending email, opening sockets, 
etc...) 

 4 3  

50 »»»Deny access to not needed extended libraries and functionalities 1 11 11 54 

51 »»»Deny access to any OS information and commands 2    

APPLICATION LEVEL CONFIGURATION AND USAGE 

52 Remove user rights over system tables 1 23 25 1 

53 Remove user quotas over system areas  3 1  

54 Implement least privilege policy in rights assignments  9 10 6 

55 Avoid ANY and ALL expressions in rights assignments 1 3 3  

56 Do not delegate rights assignments 1 3 3 3 
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57 
No user should have rights to change system properties or 
configurations 

3 4 4 2 

58 Grant privileges to roles/groups instead of users  1 1 3 

59 Do not maintain the DB schema creation SQL files in the DB server  1   

Total number of recomendations 48 166 183 177 

 

Table A.2 Complementary DoD configuration best practices 

# COMPLEMENTARY BEST PRACTICES (DoD) Group 

1A 
Monitor de DBMS application and configuration files for 
modifications 

Operational Procedures 

2A Do not use self signed certificates System Level Config. 

3A Protect/encrypt application code Appl. Level Config./Usage 

4A Audit application code changes Appl. Level Config./Usage 

5A 
Employ stored procedures and views instead of direct table 
access 

Appl. Level Config./Usage 

 

The following table presents the individual weights given by the experts, the 

relative importance to the attack surface and the cumulative importance for each 

best practice. For each contributor, E stands for engineer and A for academic. 

Table A.3 Best Practices Weights 

Best 

Practice 
E1 E2 A3 A4 E5 A6 E7 A8 A9 

Relative 

Weight 

Cumul. 

Weight 

4 4 4 4 4 4 4 4 4 4 5,26% 5,26% 

3 4 4 4 4 4 4 4 3 4 4,73% 9,99% 

19 4 4 4 3 4 4 4 4 3 4,21% 14,19% 

28 3 4 4 3 4 4 4 4 4 4,21% 18,40% 

57 3 4 4 3 4 4 4 4 4 4,21% 22,60% 

2 3 4 3 3 4 4 4 4 4 3,68% 26,28% 

24 3 3 4 4 3 4 4 4 4 3,68% 29,96% 

39 4 3 4 3 3 4 4 4 4 3,68% 33,64% 

35 4 3 4 2 3 4 4 4 4 3,63% 37,27% 

15 4 3 4 4 3 3 3 4 4 3,15% 40,42% 

1 3 4 3 2 4 4 4 3 4 3,10% 43,52% 

6 2 4 4 2 4 4 4 2 3 3,00% 46,52% 

52 2 3 4 3 3 4 3 4 4 2,58% 49,10% 

25 4 4 3 3 1 4 4 3 2 2,52% 51,61% 

20 3 4 3 3 4 3 4 3 3 2,10% 53,72% 

23 3 3 4 3 3 3 4 3 4 2,10% 55,82% 

18 3 3 3 2 3 3 4 4 4 2,05% 57,87% 
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31 4 4 3 2 4 3 3 3 3 2,05% 59,92% 

8 2 3 2 3 3 4 4 3 4 2,00% 61,92% 

29 2 4 3 2 4 3 4 3 3 2,00% 63,91% 

51 2 4 3 2 4 3 3 3 4 2,00% 65,91% 

32 3 4 2 1 4 3 3 4 3 1,99% 67,90% 

36 3 3 3 2 3 3 4 3 4 1,52% 69,43% 

54 3 3 4 3 3 2 3 4 3 1,52% 70,95% 

33 4 3 3 2 3 4 3 2 3 1,47% 72,42% 

37 3 2 3 1 2 3 4 3 4 1,41% 73,84% 

10 2 3 3 1 3 4 4 3 1 1,41% 75,25% 

12 2 3 3 1 3 4 4 3 1 1,41% 76,66% 

42 2 2 3 2 2 4 4 3 3 1,37% 78,02% 

41 3 1 1 1 1 4 4 2 2 1,24% 79,26% 

22 3 3 4 2 3 3 3 3 3 1,00% 80,26% 

34 3 3 4 2 3 3 3 3 3 1,00% 81,26% 

5 3 3 2 2 3 3 4 3 3 0,95% 82,21% 

48 2 3 4 2 3 3 3 3 3 0,95% 83,15% 

21 3 3 2 3 3 3 4 1 3 0,94% 84,09% 

47 2 2 4 3 2 3 3 3 3 0,89% 84,99% 

38 3 2 3 1 2 3 4 3 3 0,89% 85,88% 

55 3 3 4 1 3 1 3 3 2 0,88% 86,76% 

46 2 2 4 3 2 3 3 2 3 0,84% 87,60% 

50 2 2 4 2 2 3 3 3 3 0,84% 88,44% 

7 2 2 3 2 2 3 4 2 3 0,79% 89,23% 

44 2 2 2 3 2 4 3 2 3 0,79% 90,02% 

45 2 2 2 3 2 4 3 2 3 0,79% 90,81% 

49 2 2 4 2 2 3 3 2 3 0,79% 91,59% 

26 3 3 2 2 1 2 4 2 3 0,78% 92,38% 

40 4 1 1 2 1 3 3 3 2 0,77% 93,15% 

43 2 2 3 1 2 3 4 2 2 0,73% 93,88% 

9 3 1 1 2 2 3 4 2 1 0,72% 94,60% 

4A 1 1 4 1 1 3 3 2 2 0,71% 95,32% 

11 2 1 1 2 2 3 4 2 1 0,67% 95,98% 

17 2 1 2 1 1 2 4 2 2 0,62% 96,60% 

13 1 1 1 1 1 2 4 1 2 0,60% 97,20% 

56 3 3 3 2 3 3 3 3 3 0,47% 97,67% 

30 2 3 2 1 3 3 3 3 2 0,31% 97,98% 

1A 2 3 2 2 3 2 3 3 2 0,26% 98,24% 

53 2 2 3 2 2 1 3 3 3 0,26% 98,50% 
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58 3 2 1 3 2 2 3 2 3 0,26% 98,76% 

27 2 3 1 1 1 3 3 1 3 0,24% 99,00% 

2A 2 2 3 1 2 1 3 3 2 0,20% 99,20% 

14 1 1 2 3 1 3 3 2 1 0,19% 99,39% 

5A 2 2 2 3 2 2 3 2 2 0,16% 99,55% 

16 2 2 2 1 2 3 3 2 2 0,15% 99,70% 

59 2 2 1 2 2 3 3 2 2 0,15% 99,85% 

3A 3 2 2 1 2 2 3 1 2 0,15% 100,00% 

 

Table A.4 Complete list of tests. 

# TEST Fail 

ENVIRONMENT 

1 

If the machine is turned off, does any service other than the database become unavailable? Is 

there any process running on the machine which is not demanded by the DBMS, the OS or the 

machine maintenance/security? 

Yes 

2 
If the machine is turned off, does any critical network service, like naming, directory or 

authentication services, becomes unavailable? 
Yes 

3 
Is there a firewall on the network border? Is there a firewall running on the DBMS machine? Are 

both firewalls properly configured by experienced staff with solid network knowledge? [9, 14, 16] 
No 

4 
Is it possible to an unauthorized person to physically access the machine without supervision at 

any given time? 
Yes 

5 
List the protocols available in the network stack in the OS of the DBMS machine. For each 

protocol, is there a clear justification for its availability?  
No 

6 
List the DBMS processes in the OS. For each process, is the user running it used to run any other 

process at any time?  
Yes 

7 

Locate the DBMS processes user. Does that user have administration rights? Does it can run 

applications not DB related? Does it have read rights on any file not necessary to the DBMS 

processes? 

Yes 

8 
Locate the DBMS processes user. Can you login in the OS with it? (assume you know its 

password) 
Yes 

INSTALLATION SETUP 
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9 
Locate the log files of the DBMS and identify their file system partition. Are there any other files in 

this partition besides the logs? 
Yes 

10 
Locate the log files of the DBMS and identify their file system partition. Does that partition have 

exclusive read/write rights for the DBMS user? 
No 

11 
Locate the data files of the DBMS and identify their file system partition. Are there any other files 

in this partition besides the data files? 
Yes 

12 
Locate the data files of the DBMS and identify their file system partition. Does that partition have 

exclusive read/write rights for the DBMS user? 
No 

13 

List all OS users which work only with the DB. List all OS regular users (not DB users). List all 

DBMS applications and OS applications that are necessary for the OS users that work with the 

DB. Does any regular user can access any DBMS application listed? Does any DB user can 

access any application not in one of the lists? 

Yes 

14 

List all DBMS databases. Install a fresh copy of the DBMS in a test machine without any 

customization and then list its DBMS databases.  Is there any database in both lists which isn’t 

required for the DBMS? 

Yes 

15 
List all DBMS accounts. Install a fresh copy of the DBMS in a temporary machine without any 

customization and then list its DBMS accounts. Is there any account in both lists? 
Yes 

16 

List any identification names a remote user must know to connect to the DBMS. Install a fresh 

copy of the DBMS in a temporary machine without any customization and then list the 

identification names a remote user must know to connect to this DBMS instance. Is there any 

name in both lists? 

Yes 

17 

List any TCP/UDP ports a remote user must know to connect to the DBMS. Install a fresh copy of 

the DBMS in a temporary machine without any customization and then list the TCP/UDP ports a 

remote user must know to connect to this DBMS instance. Is there any port in both lists? 

Yes 

18 
List all SSL certificates used with the DBMS. For each one, was it created by experienced staff 

with that specific purpose? [2, 4] 
No 

19 Is there any kind of development or testing being done in the production server? Yes 

20 Does any developer have a valid DBMS account or OS account in the production server? Yes 



Security Benchmarking of Transactional Systems 

227 

21 

List the sub-net mask of the IP address of the production and the development servers. Are they 

the same? Are both servers reachable from one other through a path with only layer 2 network 

equipments (hubs, switches, etc…)? 

Yes 

22 
List all files installed with the DBMS application. For each file, is its owner correctly set as the 

DBMS user?  
No 

23 
List all files installed with the DBMS application. For each file, are its rights correctly configured 

according to its purposes? 
No 

OPERATIONAL PROCEDURES 

24 

Check your DBMS version. Check the latest DBMS version available from the vendor which is an 

update to your version. Are they different? Is there any recommendation from the vendor against 

the use of your version? 

Yes 

25 
Is a carefully thought out, documented backup procedure regularly executed? If the person in 

charge suddenly quit, is it easy for anyone else to resume its task? 
No 

26 
Is the backup data regularly tested after it is generated? Is a recovery procedure regularly fully 

simulated? Is the backup data stored in a secure place other than the DB server? 
No 

1A 
Is there any procedure (like checking the files hashes) employed to regularly identify if any of the 

DBMS application files or configuration files have been change by someone unauthorized?  
No 

SYSTEM LEVEL CONFIGURATION 

27 
During a connection procedure, does the server assign a full range random local port for the 

remote user to connect? 
Yes 

28 

Establish a connection from any remote user to the server, capture the underlying network traffic 

and ask for a security expert to analyze it. Is the connection being secured with a recognized 

encryption protocol like TLS? 

No 

29 Does the user connection require the knowledge of a server certificate? No 

30 List all configuration files/parameters of the DBMS. Is a host name used on any parameter? Yes 

31 

For each registered DBMS user, was it created for a specific application /purpose/person? Is the 

authentication procedure used in the applications recognizably secure? Does it use a standard 

algorithm or protocol? [13, 14] 

No 
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32 
Establish a connection with the DBMS and let it stay idle. Is the connection severed in a 

reasonable amount of time? 
No 

33 
Is any specific information other than a username and password obtained from the client host 

during the authentication procedure? 
Yes 

34 
List all authentication methods used with the DBMS. For each one, does it depend only on the 

host? 
Yes 

35 

Was a clear policy defined (and documented) about how passwords would be changed, when 

they must be changed, how they should be retrieved if lost and what rules they must obey? Does 

it comply with standard recommendations from security experts? [13, 17] 

No 

36 
Try authenticating several times with a wrong password. Is there a try when the account becomes 

permanently locked? 
No 

37 
Advance the server clock an unreasonable number of months. Authenticate to the server. Are you 

forced or recommended to change the password? 
No 

38 Try changing your password to the same password. Did you succeed? Yes 

39 
Locate the table or file where the passwords are stored and ask for a security expert to analyze it. 

Are the passwords stored as some recognizably standard hash algorithm? [13, 14] 
No 

40 
Is logging turned on? Is the log level set to report at least database errors and client connections? 

Is there a clearly justified reason for it not to be set to a higher level? 
No 

41 
Are the logs periodically checked? Are the logs also included in the backup procedures? Is the 

space of the partition where the logs are written monitored? 
No 

42 
Are the following operations traceable: creation and destruction of users, objects and sessions, 

failed and successful logins, rights assignments and data changes on critical tables? 
No 

43 
Is the trace data stored in a different area than the database? Does that area have its read/rights 

permissions correctly set?  Is the space of the partition where it is stored monitored? 
No 

44 For each configuration file, analyze its permissions. Is it readable only by authorized users? No 

45 
For each system variable, does it contain sensitive information (any which should be private) and 

can be seen by all OS users? 
Yes 

46 
Are core_dump or trace files being generated for failed processes and are they generally visible in 

the OS? 
Yes 
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47 
Does the editor used to update configuration files generate backups of the edited files and do they 

remain available for reading afterwards?  
Yes 

48 
For each function and extended functionality available, does it allow a user to access a file on the 

file system? 
Yes 

49 
For each function and extended functionality available, does it allow a user to do any kind of 

network operation? 
Yes 

50 
For each function and extended functionality available, is its availability clearly required? Is it 

impossible to do the same task without it? 
No 

51 
For each function and extended functionality available, does it allow a user to gather any info 

about the OS? Does it allow a user to run any OS command? 
Yes 

2A 
For each certificate used in the servers, is it bought from a trusted company, which has root 

certificate already installed in the most common browsers and operating systems? 
No 

APPLICATION LEVEL CONFIGURATION AND USAGE 

52 

Make a list of all system tables (not created for use with applications). For each one, check if there 

is any user with some permission (read or write) over it. Are those permissions clearly justified and 

necessary? 

No 

53 
Make a list of all system databases. For each element on the list, check if there is any user with 

some permission over it. Is this permission clearly justified and necessary? 
No 

54 
For each non-DBA user, list all its permissions. For each permission, does it have a clear 

justification? Is it impossible for the user to work without it? 
No 

55 
For each non-DBA user, list all its permissions. For each permission, is it of type ANY or ALL, 

which would automatically propagate to other objects of the same type? 
Yes 

56 
For each non-DBA user, list all its permissions. For each permission, does it allow that user to 

grant it to another user? 
Yes 

57 
For each non-DBA user, list all its permissions. For each permission, does it allow that user to 

change some system configuration which is either critical or valid to the whole DB? 
Yes 

58 
For each non-DBA user, list all its permissions. For each permission, does the user inherit it from 

a group or role he is assigned to? 
No 
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59 
List all documents and files that contain any schema information. For each one, is it stored in the 

DB server? 
Yes 

3A 

Is the production application code being stored in a trusted repository (like a Concurrent 

Versioning System), with proper authentication, or being closely controlled and checked against 

malicious modification (e.g. encrypted)?  

No 

4A 
Is it possible to identify unequivocally, at all times, for all application code, who made each 

modification and programming? 
No 

5A 

Are all data modification operations being applied through carefully programmed stored 

procedures instead of direct updates? When reading data from critical tables, are the unnecessary 

data fields being filtered through views or other means? 

No 

 

 

In the following table, P stands for test passed, F for test failed and U for unknown 

(which is treated as failed test). 

Table A.5 Analytical results of the infrastructures evaluated 

Test 
Number Case 1 Case 2 Case 3 Case 4 

1 P P F F 

2 P P P P 

3 P F P F 

4 P P F P 

5 P F F F 

6 F F F F 

7 F F F F 

8 P P P P 

9 F F P F 

10 F F F F 

11 P F P F 

12 F F F F 

13 F F F F 

14 F P P P 

15 F P P P 

16 F P P P 

17 F F P F 
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18 P P F P 

19 F F F F 

20 P F P F 

21 F P F F 

22 P U F F 

23 F F F F 

24 F P P F 

25 P P F P 

26 F F F F 

1A F F F F 

27 P U U U 

28 F F F F 

29 F F F F 

30 P P P P 

31 P F P F 

32 F F F F 

33 P P P P 

34 P P P P 

35 P F F F 

36 P F F F 

37 F F F F 

38 F F F F 

39 P P P P 

40 P F P F 

41 P F P F 

42 F F F F 

43 F F F F 

44 P P F F 

45 P P P P 

46 F P P P 

47 P P P P 

48 P P P P 

49 P P F P 

50 U P F F 

51 U P F U 

2A P F P F 

52 P F P F 

53 P F P P 

54 P F F P 
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55 P P F P 

56 P P F P 

57 P P P P 

58 F F F F 

59 P F P P 

3A F F F F 

4A F F F F 

5A F F F F 
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Annex B 
 

Pessimistic 
Scenarios 

Table B.1 Complete list of pessimistic scenarios 

Recommendations Pessimistic Scenarios 

Use a dedicated platform for the 
database 

The DBMS platform hosts other applications 
which may have security vulnerabilities 

Avoid  platforms which also run critical 
network services (naming, 
authentication, etc) 

The DBMS platform hosts a directory, naming or 
similar high critical network service 

Install and properly configure a firewall 
on the network border 

The network does not have a border firewall, 
leaving all network fully accessible to internet 
traffic 

Install and properly configure a firewall 
on the host OS 

The OS does not have a local firewall leaving any 
listening process fully accessible to the local area 
network 

Prevent physical access to the DBMS 
platform by unauthorized people 

The platform is physically stationed in a place 
where non-authorized personnel have regular 
access 

Remove from the network stack all 
unauthorized protocols  

The OS has several network protocols installed 
which are non-essential and which characteristics 
and consequences are not fully understood 

Create a specific user to run the DBMS 
daemons 

The OS userid used to run the DBMS daemons 
are used for other daemons and tasks as well 

Restrict DBMS user access to 
everything he doesn't need 

The OS userid used to run the DBMS daemons 
has privileges over non-necessary OS parts 
(configuration files, for instance) 

Prevent direct login on the DBMS user 
account 

It is possible to try to login in the OS using the 
userid of the DBMS daemon 

Create a partition for log/auditing 
information 

The log/auditing information is placed in the same 
partition as the OS 

Only the DBMS user should read/write 
in the log/auditing partition 

Any OS userid can read/write in the log/auditing 
information 
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Create a partition for DB data 
The data files are hosted in the same partition as 
the OS 

Only the DBMS user should read/write 
in the data partition 

Any OS userid can read/write the DBMS data 

files 

Remove example databases 
Any potential attacker know the innerworkings 
and exact details of at least one database within 
the DBMS 

Change/remove default user names 
Any potential attacker knows at least one DBMS 
userid that can be used to login in the database 

Change default passwords 
Any potential attacker knows at least one 
userid/password pair that can be used to login in 

the database 

Change default remote identification 
names (SID, etc...) 

Any potential attacker knows the remote 
identification names used by the database 

Change default TCP/UDP Ports 
Any potential attacker knows exactly to what 
ports the DBMS process is listening 

Do not use default SSL certificates 
All attackers have access to the private key of the 
certificate in use 

Separate production and development 
servers 

Developers run untested/developmental code 
over real live production data 

No developer should have access to 
the production server  

Developers have partial or total control and 
access over the production data 

Use different network segments for 
production and development servers  

The developers work and access the server 
though the same local network segment where 
the production server is hosted 

Check and set the owner of all the 
DBMS files 

One or more OS users are owner of the DBMS 
files  

Set read/write/running permissions of 
the DBMS files to authorized users 

All OS users have read/write/running permissions 
over all DBMS files 

Keep the OS software updated 
The OS has known vulnerabilities which are not 
patched with vendor updates 

Keep the DBMS software updated 
The DBMS has known vulnerabilities which are 
not patched with vendor updates 

Make regular backups 
There is no updated copy of the production data 
in a separate storage  

Test the backups 
The backup files might be corrupted or being 
incorrectly generated 

Monitor de DBMS application and 
configuration files for modifications 

It is impossible to know if the configuration files or 
DBMS application files have been tampered with 

Avoid random ports assignment for 
client connections 

DBMS configuration makes it impossible to 
configure the external firewall as to not accept 
external connection requests to a large range of 
unspecified ports 

Enforce remote communication 
encryption with strong algorithms 

Remote clients of the database use exchange 
data in clear 

Use server side certificate 
There is no reliable way for a remote client to be 
sure he is connection to the correct server 
instead of a “rogue” one 

Use IPs instead of host names to 
configure access permissions 

The server automatically accepts connections 
from computers identified by a particular DNS 
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Enforce strong user level 
authentication 

The authentication mechanism used is not well 
understood, may be flawed and does not pinpoint 
the specific person that is connected 

Prevent idle connection hijacking Connections to the server are never terminated 
automatically 

Ensure no remote parameters are 
used in authentication 

It is possible to test the reaction of the system to 
an additional parameter during authentication 

Avoid host based authentication The server automatically accepts connections 
from specific hosts  which are not complete under 
control of the administrator 

Enforce strong password policies DBMS users may choose any password they like, 
no specific rules are enforced 

Apply excessive failed logins lock Anyone may try to login in the DBMS any number 
of times 

Apply password lifetime control with 
forced change 

Users and applications may use the same 
password indefinitely 

Use strong encryption in password 
storage 

Stored password information in the database is 
cleartext 

Enforce comprehensive logging Nothing done in the system and DBMS is 
recorded anywhere 

Verify that the log data cannot be lost 
or tampered with 

The log data is unprotected, unreplicated and 
may be susceptive to unidentified modifications  

Audit sensitive information No operation done over the data within the 
database is recorded anywhere 

Verify that the audit data cannot be lost 
or be tampered with 

The audit data unprotected, unreplicated and 
may be susceptive to unidentified modifications 

Ensure no “side-channel” information 
leak through configuration files 

Configuration files are generally visible and 
contain sensitive information like passwords 

Ensure no “side-channel” information 
leak through system variables 

OS system variables (like the processes list) 
contain sensitive information like passwords 

Ensure no “side-channel” information 
leak through core_dump/trace files 

Core_dumps and trace files from sensitive 
processes are created and kept scattered within 
the file system 

Ensure no “side-channel” information 
leak through backups of data and 
configuration files  

Backups of data and configuration files are kept 
in a location generally visible and unmonitored 

Deny any read/write on file system 
from DBMS used 

Applications regularly create, read and 
manipulate local files though DBMS commands 

Deny any network operation (sending 
email, opening sockets, etc...) 

Applications regularly access the network through 
DBMS commands 

Deny access to not needed DBMS 
extended libraries and functionalities 

It is not known what extended functionalities are 
available  

»»»Deny access to any OS information 
and commands Applications regularly executes OS commands 

Do not use self signed certificates 
Any attacker can create another server certificate 
with the exact same information as the one in use 

Remove users privileges over system 
tables 

DBMS users have knowledge and access to 
internal control information, and may alter the 
DBMS engine behaviour 

Remove user quotas over system 
areas 

DBMS users have the possibility of writing new 
objects in a system area  



Annex B  Pessimistic Scenarios 

236 

Implement least privilege policy in 
privileges assignments 

DBMS users may read and alter critical data 
which they should have access to 

Avoid ANY and ALL expressions in 
privileges assignments 

DBMS users may read and alter critical data 
which they should have access to, and may 
create and modify database elements 

Do not delegate privileges 
assignments 

DBMS users can transfer its own privileges to 
other untrusted users 

No user should have privileges to 
change system properties or 
configurations 

DBMS users can alter or influence the DBMS 
environment and behaviour 

Grant privileges to roles/groups instead 
of users 

DBMS users have specific unknown privileges 
which are not reflected as privileges of any 
defined role 

Do not maintain the DB schema 
creation SQL files in the DB server 

OS users have complete information about the 
database internal structure 

Protect/encrypt application code 

Application code may be altered by unknown 
individuals under certain uncontrolled 
circunstances 

Audit application code changes 

It is generally not possible to know which 
individual made which modifications to 
application code 

Employ stored procedures and views 
instead of direct table access 

DBMS users may read and alter critical data 
which they should not have access to 
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