

Security

Benchmarking of

Transactional

Systems

Afonso Comba de Araújo Neto

Dissertation submitted to the University of Coimbra

 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

September 2012

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

iii

This research has been developed as part of the requirements of the Doctoral

Program in Information Science and Technology of the Faculty of Sciences and

Technology of the University of Coimbra. The work is within the Dependable

Systems specialization domain and was carried out in the Software and Systems

Engineering Group of the Center for Informatics and Systems of the University of

Coimbra (CISUC).

This work was partially supported by the Programme Alβan, the European Union

Programme of High Level Scholarships for Latin America, scholarship no.

E07D403033BR.

This work has been supervised by Professor Marco Paulo Amorim Vieira,

Assistant Professor of the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

v

Don't you believe in flying saucers, they ask me?

Don't you believe in telepathy? — in ancient astronauts? — in the Bermuda

triangle? — in life after death?

“No”, I reply. “No, no, no, no, and again no.”

One person recently, goaded into desperation by the litany of unrelieved negation,

burst out “Don't you believe in anything?”

“Yes”, I said. “I believe in evidence. I believe in observation, measurement, and

reasoning, confirmed by independent observers. I'll believe anything, no matter

how wild and ridiculous, if there is evidence for it. The wilder and more ridiculous

something is, however, the firmer and more solid the evidence will have to be.”

―Isaac Asimov, The Roving Mind (1997), 43

~…~

http://www.goodreads.com/author/show/16667.Isaac_Asimov

vii

Abstract

Most organizations nowadays depend on some kind of computer infrastructure to

manage business critical activities. This dependence grows as computer systems

become more reliable and useful, but so does the complexity and size of systems.

Transactional systems, which are database-centered applications used by most

organizations to support daily tasks, are no exception. A typical solution to cope

with systems complexity is to delegate the software development task, and to use

existing solutions independently developed and maintained (either proprietary or

open source).

The multiplicity of software and component alternatives available has boosted the

interest in suitable benchmarks, able to assist in the selection of the best candidate

solutions, concerning several attributes. However, the huge success of performance

and dependability benchmarking markedly contrasts with the small advances on

security benchmarking, which has only sparsely been studied in the past.

This thesis discusses the security benchmarking problem and main characteristics,

particularly comparing these with other successful benchmarking initiatives, like

performance and dependability benchmarking. Based on this analysis, a general

framework for security benchmarking is proposed. This framework, suitable for

most types of software systems and application domains, includes two main phases:

security qualification and trustworthiness benchmarking. Security qualification is

a process designed to evaluate the most obvious and identifiable security aspects of

the system, dividing the evaluated targets in acceptable or unacceptable, given the

specific security requirements of the application domain. Trustworthiness

benchmarking, on the other hand, consists of an evaluation process that is applied

over the qualified targets to estimate the probability of the existence of hidden or

hard to detect security issues in a system (the main goal is to cope with the

uncertainties related to security aspects).

The framework is thoroughly demonstrated and evaluated in the context of

transactional systems, which can be divided in two parts: the infrastructure and the

business applications. As these parts have significantly different security goals, the

framework is used to develop methodologies and approaches that fit their specific

characteristics. First, the thesis proposes a security benchmark for transactional

systems infrastructures and describes, discusses and justifies all the steps of the

viii

process. The benchmark is applied to four distinct real infrastructures, and the

results of the assessment are thoroughly analyzed.

Still in the context of transactional systems infrastructures, the thesis also addresses

the problem of the selecting software components. This is complex as evaluating

the security of an infrastructure cannot be done before deployment. The proposed

tool, aimed at helping in the selection of basic software packages to support the

infrastructure, is used to evaluate seven different software packages, representative

alternatives for the deployment of real infrastructures.

Finally, the thesis discusses the problem of designing trustworthiness benchmarks

for business applications, focusing specifically on the case of web applications.

First, a benchmarking approach based on static code analysis tools is proposed.

Several experiments are presented to evaluate the effectiveness of the proposed

metrics, including a representative experiment where the challenge was the

selection of the most secure application among a set of seven web forums. Based

on the analysis of the limitations of such approach, a generic approach for the

definition of trustworthiness benchmarks for web applications is defined.

Keywords: Security, Benchmarking, Transactional Systems, Databases, Security

Metrics, Security Evaluation, Security Benchmarking.

ix

Resumo

A maioria das organizações depende atualmente de algum tipo de infraestrutura

computacional para suportar as atividades críticas para o negócio. Esta dependência

cresce com o aumento da capacidade dos sistemas informáticos e da confiança que

se pode depositar nesses sistemas, ao mesmo tempo que aumenta também o seu

tamanho e complexidade. Os sistemas transacionais, tipicamente centrados em

bases de dados utilizadas para armazenar e gerir a informação de suporte às tarefas

diárias, sofrem naturalmente deste mesmo problema. Assim, uma solução

frequentemente utilizada para amenizar a dificuldade em lidar com a complexidade

dos sistemas passa por delegar sob outras organizações o trabalho de

desenvolvimento, ou mesmo por utilizar soluções já disponíveis no mercado (sejam

elas proprietárias ou abertas).

A diversidade de software e componentes alternativos disponíveis atualmente torna

necessária a existência de testes padronizados que ajudem na seleção da opção mais

adequada entre as alternativas existentes, considerando uma conjunto de diferentes

características. No entanto, o sucesso da investigação em testes padronizados de

desempenho e confiabilidade contrasta radicalmente com os avanços em testes

padronizados de segurança, os quais têm sido pouco investigados, apesar da sua

extrema relevância.

Esta tese discute o problema da definição de testes padronizados de segurança,

comparando-o com outras iniciativas de sucesso, como a definição de testes

padronizados de desempenho e de confiabilidade. Com base nesta análise é

proposta um modelo de base para a definição de testes padronizados de segurança.

Este modelo, aplicável de forma genérica a diversos tipos de sistemas e domínios,

define duas etapas principais: qualificação de segurança e teste padronizado de

confiança. A qualificação de segurança é um processo que permite avaliar um

sistema tendo em conta os aspectos e requisitos de segurança mais evidentes num

determinado domínio de aplicação, dividindo os sistemas avaliados entre aceitáveis

e não aceitáveis. O teste padronizado de confiança, por outro lado, consiste em

avaliar os sistemas considerados aceitáveis de modo a estimar a probabilidade de

existirem problemas de segurança ocultados ou difíceis de detectar (o objetivo do

processo é lidar com as incertezas inerentes aos aspectos de segurança).

x

O modelo proposto é demonstrado e avaliado no contexto de sistemas

transacionais, os quais podem ser divididos em duas partes: a infraestrutura e as

aplicações de negócio. Uma vez que cada uma destas partes possui objetivos de

segurança distintos, o modelo é utilizado no desenvolvimento de metodologias

adequadas para cada uma delas. Primeiro, a tese apresenta um teste padronizado de

segurança para infraestruturas de sistemas transacionais, descrevendo e

justificando todos os passos e decisões tomadas ao longo do seu desenvolvimento.

Este teste foi aplicado a quatro infraestruturas reais, sendo os resultados obtidos

cuidadosamente apresentados e analisados.

Ainda no contexto das infraestruturas de sistemas transacionais, a tese discute o

problema da seleção de componentes de software. Este é um problema complexo

uma vez que a avaliação de segurança destas infraestruturas não é exequível antes

da sua entrada em funcionamento. A ferramenta proposta, que tem por objetivo

ajudar na seleção do software básico para suportar este tipo de infraestrutura, é

aplicada na avaliação e análise de sete pacotes de software distintos, todos

alternativas tipicamente utilizadas em infraestruturas reais.

Finalmente, a tese aborda o problema do desenvolvimento de testes padronizados

de confiança para aplicações de negócio, focando especificamente em aplicações

Web. Primeiro, é proposta uma abordagem baseada no uso de ferramentas de

análise de código, sendo apresentadas as diversas experiências realizadas para

avaliar a validade da proposta, incluindo um cenário representativo de situações

reais, em que o objetivo passa por selecionar o mais seguro de entre sete alternativas

de software para suportar fóruns Web. Com base nas análises realizadas e nas

limitações desta proposta, é de seguida definida uma abordagem genérica para a

definição de testes padronizados de confiança para aplicações Web.

Palavras Chave: Segurança, Testes Padronizados, Sistemas Transacionais, Bases de

dados, Métricas de Segurança, Avaliação de Segurança, Testes Padronizados de

Segurança.

xi

List of Papers

This thesis relies on the published scientific research presented in the following

peer reviewed publications.

Book Chapter:

Afonso Araújo Neto, Marco Vieira. 2012. Assessing the Security of

Software Configurations. In Threats, Countermeasures, and Advances in

Applied Information Security. IGI Global, 2012. Pages 129-157.

Journal Papers:

1. Afonso Araújo Neto, Marco Vieira. 2011. Selecting Secure Web

Applications Using Trustworthiness Benchmarking. International Journal

of Dependable and Trustworthy Information Systems (IJDTIS). Volume

2(2):1-16.

2. Afonso Araújo Neto, Marco Vieira. 2011. Security Gaps in Databases: A

Comparison of Alternative Software Products for Web Applications

Support. International Journal of Secure Software Engineering (IJSSE).

Volume 2(3): 42-62.

3. Afonso Araújo Neto, Marco Vieira. 2010. Benchmarking

Untrustworthiness: An Alternative to Security Measurement. International

Journal of Dependable and Trustworthy Information Systems (IJDTIS).

Volume 1(2): 32-54.

Conference Papers:

1. Afonso Araújo Neto, Marco Vieira. 2011. Trustworthiness Benchmarking

of Web Applications Using Static Code Analysis. Proceedings of the Sixth

International Conference on Availability, Reliability and Security (ARES).

Pages 224-229.

2. Afonso Araújo Neto, Marco Vieira. 2011. Selecting Software Packages for

Secure Database Installations. Proceedings of the Sixth International

Conference on Availability, Reliability and Security (ARES). Pages 67-74.

3. Afonso Araújo Neto, Marco Vieira. 2011. Towards benchmarking the

trustworthiness of web applications code. Proceedings of the 13th

xii

European Workshop on Dependable Computing (EWDC 2011). Pages 29-

34.

4. Afonso Araújo Neto, Marco Vieira: TO BEnchmark or NOT TO

BEnchmark security: That is the question. 2011. Proceedings of the 2011

IEEE/IFIP 41st International Conference on Dependable Systems and

Networks Workshops. (HotDep 2011). Pages 182-187.

5. Afonso Araújo Neto, Marco Vieira. 2009. Untrustworthiness: A trust-

based security metric. Proceedings of the Fourth International Conference

on Risks and Security of Internet and Systems (CRiSIS 2009). Pages 123-

126.

6. Afonso Araújo Neto, Marco Vieira. 2009. Benchmarking

Untrustworthiness in DBMS Configurations. Proceedings of the Fourth

Latin-American Symposium on Dependable Computing (LADC'09). Pages

1-8.

7. Afonso Araújo Neto, Marco Vieira 2009. Appraisals Based on Security

Best Practices for Software Configurations. Proceedings of the Fourth

Latin-American Symposium on Dependable Computing (LADC'09). Pages

57-64.

8. Afonso Araújo Neto, Marco Vieira. 2009. A Trust-Based Benchmark for

DBMS Configurations. Proceedings of the Pacific Rim Dependable

Computing Conference (PRDC 2009). Pages 143-150.

9. Afonso Araújo Neto, Marco Vieira and Henrique Madeira. An Appraisal

to Assess the Security of Database Configurations. 2009. Proceedings of

Second International Conference on Dependability (DEPEND'09). Pages

73-80.

10. Afonso Araújo Neto, Marco Vieira. 2008.Towards assessing the security

of DBMS configurations. Proceedings of the IEEE International

Conference on Dependable Systems and Networks With FTCS and DCC

(DSN 2008). Pages 90-95.

11. Naaliel Mendes, Afonso Araújo Neto, João Durães, Marco Vieira,

Henrique Madeira. 2008. Assessing and Comparing Security of Web

Servers. Proceedings of the Pacific Rim Dependable Computing

Conference (PRDC 2008). Pages 313-322

xiii

Table of Contents

1 Introduction ..1
1.1 Benchmarking Security .. 4
1.2 Main Contributions of the Thesis ... 6
1.3 Structure of the Thesis .. 10

2 Background and Related Work ... 13
2.1 Overview of Computer Security Aspects .. 13
2.2 Security Evaluation ... 19

2.2.1 The Common Criteria ... 20
2.2.2 The OCTAVE method .. 24
2.2.3 The Center for Internet Security benchmarks 26
2.2.4 Additional Security Evaluation and Risk Analysis Methodologies ... 28
2.2.5 Security Characteristics Identification Techniques 29

2.3 Threat Modelling .. 30
2.4 Benchmarking ... 36

2.4.1 Performance Benchmarking .. 37
2.4.2 Dependability and Resilience Benchmarking 38
2.4.3 Security Benchmarking .. 39

2.5 Security Benchmarking as an Open Problem 41
2.5.1 Dependability Benchmarking vs Security Benchmarking 41
2.5.2 Benchmarking Trust ... 45

2.6 Conclusion .. 47

3 A Framework for Security Benchmarking 49
3.1 Threat Vectors as Basis for Benchmarking Security 54
3.2 Security Benchmarking Framework ... 56

3.2.1 Security Qualification ... 60
3.2.2 Trustworthiness Benchmarking ... 64
3.2.3 Instantiating the framework .. 67

3.3 Transactional Systems: the Case Study .. 70
3.3.1 Elements of a Transactional System .. 70
3.3.2 Security Benchmarking of Transactional Systems 72

3.4 Conclusion .. 74

4 Security Benchmarking of Transactional Systems Infrastructures ... 75
4.1 Base Scenario .. 77
4.2 Security Qualification .. 80

xiv

4.3 Trustworthiness Benchmarking .. 81
4.3.1 Threat Vectors ... 84
4.3.2 Security Recommendations ... 91
4.3.3 Pessimistic Scenarios ... 101
4.3.4 Benchmark Procedure ... 108
4.3.5 Benchmark Metrics .. 111

4.4 Case Study ... 116
4.4.1 Systems Under Testing .. 117
4.4.2 Analysis of the Results of the Tests ... 118
4.4.3 Trustworthiness Assessment ... 121

4.5 Conclusion... 125

5 Trustworthiness Benchmarking of Web Applications 127
5.1 Web Applications from a Security Perspective 130
5.2 Benchmarking the Trustworthiness of Web Applications using Static

Code Analysis ... 134
5.2.1 Trustworthiness Metrics .. 135
5.2.2 Empirical Analysis of the Metrics ... 141
5.2.3 Experimental Evaluation .. 146
5.2.4 Lessons Learned ... 154

5.3 Towards a General Approach for Trustworthiness Benchmarking of

Web Applications ... 156
5.3.1 Web Applications Code Threat Vectors ... 157
5.3.2 Security Precautions in Web Applications 158
5.3.3 Accounting for Secure Coding Practices .. 161
5.3.4 Trustworthiness Metrics .. 164
5.3.5 Preliminary Experimental Evaluation .. 167

5.4 Conclusion... 169

6 Selecting Software for Transactional Systems Infrastructures 171
6.1 Identifying Security Mechanisms .. 174
6.2 Establishing the Impact of Security Mechanisms 179
6.3 Benchmark Metric and Execution ... 181
6.4 Experimental Evaluation .. 182

6.4.1 Software Packages Assessed ... 182
6.4.2 Comparing the Software Packages .. 182
6.4.3 Software Packages Gap Analysis.. 184

6.5 Conclusion... 192

7 Conclusions and Future Work .. 195

References .. 203

xv

Annex A Security Recommendations Tests, Weights and Analytical
Results .. 221

Annex B Pessimistic Scenarios ... 233

xvii

List of Figures

FIGURE 2.1 OVERVIEW OF THE OCTAVE METHOD PHASES. 25
FIGURE 2.2 DEPENDABILITY VS PERFORMANCE BENCHMARKING 42
FIGURE 3.1 HIGH LEVEL VISION OF THE BENCHMARKING PROCESS 57
FIGURE 3.2 A TYPICAL TRANSACTIONAL SYSTEM ARCHITECTURE. 71
FIGURE 4.1 GENERAL UNTRUSTWORTHINESS FOR EACH SCENARIO. 122
FIGURE 4.2 UNTRUSTWORTHINESS FOR EACH THREAT, GROUPED BY CASE 123
FIGURE 4.3 ALTERNATIVE PRESENTATIONS FOR UNTRUSTWORTHINESS

COMPARISON BETWEEN CASES ... 123
FIGURE 4.4 FINE GRAIN ANALYSIS OF UNTRUSTWORTHINESS, FOR EACH CASE . 124
FIGURE 4.5 UNTRUSTWORTHINESS COMPUTATION FOR THE INTERACTION

CLASSES ... 125
FIGURE 5.1 BENCHMARK RESULTS OF OUR CONTROLLED TPC-APP VERSIONS . 143
FIGURE 5.2 COMPONENT LEVEL EVALUATION OF RAW-NVR 144
FIGURE 5.3 RAW-NVR EVOLUTION IN 16 VERSIONS OF 3 DIFFERENT SERVICES,

RANGING FROM 0 TO 4 VULNERABILITIES .. 145
FIGURE 5.4 CALIBRATED METRIC ANALYSIS FOR THE 16 VERSIONS OF EACH

SERVICE .. 146
FIGURE 5.5 OVERALL BENCHMARK RESULTS ... 168
FIGURE 6.1: MECHANISMS BY COMPONENT OF THE ANALYZED PACKAGES....... 185
FIGURE 6.2. AVAILABILITY OF MECHANISMS ... 185
FIGURE 6.3: NUMBER OF MECHANISMS AVAILABLE ACROSS PACKAGES. 186

xix

List of Tables

TABLE 4.1 POTENTIAL THREAT VECTORS IN DBMS INFRASTRUCTURES 87

TABLE 4.2 DBMS CONFIGURATION SECURITY BEST PRACTICES DEVISED FROM

THE ANALYSIS OF THE CIS DOCUMENTS .. 93

TABLE 4.3 COMPLEMENTARY DOD BEST PRACTICES .. 98

TABLE 4.4 BEST PRACTICE IMPACT KEY ... 100

TABLE 4.5 BEST PRACTICES ORDERED BY RELATIVE WEIGHTS 100

TABLE 4.6 PESSIMISTIC SCENARIOS ASSOCIATED WITH NOT FOLLOWING

SECURITY RECOMMENDATIONS. .. 106

TABLE 4.7 SET OF ATTACKS CORRELATING THE PESSIMISTIC SCENARIOS AND THE

THREATS ... 106

TABLE 4.8 MAPPING FOR THE FOURTEEN MOST IMPORTANT SECURITY

RECOMMENDATIONS .. 108

TABLE 4.9 BENCHMARK SECURITY TESTS (SAMPLE) .. 109

TABLE 4.10 INFRASTRUCTURES DETAILS ... 117

TABLE 4.11 CASE 1, ORACLE 10G INSTALLATION .. 119

TABLE 4.12 CASE 2, SQLSERVER 2005 INSTALLATION 119

TABLE 4.13 CASE 3, MYSQL 5.0 INSTALLATION ... 119

TABLE 4.14 CASE 4, POSTGRESQL 8.1 INSTALLATION 119

TABLE 4.15 MOST IMPORTANT BEST PRACTICES YET TO BE IMPLEMENTED 120

TABLE 4.16 TESTS WITH UNANIMOUS RESULTS IN ALL FOUR CASES 121

TABLE 5.1 WEB FORUMS RANKED BY TRUSTWORTHINESS (TM)....................... 148

TABLE 5.2 EXPERTS’ RANKINGS ... 150

TABLE 6.1 CLASSIFICATION OF DATABASES SECURITY BEST PRACTICES IN

REGARD TO THEIR REQUIREMENTS .. 176

TABLE 6.2 EXAMPLES OF THE MAPPING BETWEEN SECURITY BEST PRACTICES,

SYSTEM STATE GOALS AND MECHANISMS GOALS. 177

TABLE 6.3 MOST IMPORTANT SECURITY MECHANISMS IDENTIFIED 180

TABLE 6.4. OVERALL RESULTS OF THE EXPERIMENTAL EVALUATION OF THE 7

DIFFERENT SOFTWARE PACKAGES. .. 183

TABLE 6.5 LIST OF MECHANISMS AVAILABLE IN ALL PACKAGES 187

TABLE 6.6 LIST OF MECHANISMS NOT AVAILABLE IN ANY OF THE PACKAGES .. 189

TABLE 6.7 LIST OF MECHANISMS AVAILABLE IN SOME OF THE PACKAGES (X

MEANS THAT THE MECHANISM IS AVAILABLE IN THE CORRESPONDING

PACKAGE) ... 190

TABLE 6.8 MECHANISMS AVAILABLE ONLY IN SPECIFIC SETS OF PACKAGES 192

xx

TABLE A.1 SECURITY RECOMMENDATIONS DEVISED FROM THE ANALYSIS OF THE

CIS DOCUMENTS .. 221

TABLE A.2 COMPLEMENTARY DOD CONFIGURATION BEST PRACTICES 223

TABLE A.3 BEST PRACTICES WEIGHTS .. 223

TABLE A.4 COMPLETE LIST OF TESTS. .. 225

TABLE A.5 ANALYTICAL RESULTS OF THE INFRASTRUCTURES EVALUATED 230

TABLE B.1 COMPLETE LIST OF PESSIMISTIC SCENARIOS 233

1

1

Introduction

There is no disagreement nowadays about the importance of security in computer

systems. The need for considering security as one of the pillars of any software

architecture or implementation fills the pages of many popular newspapers and

magazines, and the extensively documented consequences of security breaches

range from public embarrassment to the loss of time, credibility and money.

Security of computer systems is a flourishing field with several distinct but

complementary branches of research. Starting from pure theoretical aspects, like

cryptography, security considerations are so wide that ultimately reach the

complexity of the human factors that are inherently involved (Patrick 2003). Secure

software design, development and configuration, attack mitigation and tolerance

technologies, vulnerability discovery, analysis and prevention, are just some

examples of research topics that are currently discussed in top security conferences.

All these topics are applicable, generally or specifically, to almost all other

branches of computer science. As a matter of fact, security research can be seen as

a layer of concern that spreads in parallel with applied computer science research.

A key particularity of computer security is the central role played by human factors.

In practice, there are two concepts that are fundamentally important in any security

context: capabilities and intention. When analyzing a computer system from a

security perspective, these concepts lead to questions that in other contexts are not

usually taken into consideration. Take as example the following deliberation about

a given System A: “can any part of System A offer any advantage to any third party

not considered in its specifications?”. The security implications of the potential

answers to this question are clear when we instantiate System A as a system running

in a bank, designed to manage bank accounts, in contrast to instantiating System A

as a simple program that makes calculations (i.e. a software calculator). This

exercise quickly leads to the following conclusion: the reason why the developer

of the calculator program could, to a certain point, disregard security aspects, is that

Chapter 1  Introduction

2

breaking the specifications of the application does not pose any significant

advantage (or disadvantage) to anyone, while that is clearly not the case for the

system running the bank operations, at least in the majority of the contexts where

these systems are used.

Although the intention of breaking a system’s specification is usually related to the

value that this action would provide to a given person/entity (which could, or not,

be the attacker that attempts the breaking), it is important to realize that the

intention is not the only condition to trigger an attack attempt: attacking a system

also requires the attacker to have the means to do it. In that sense, the security of a

system is not related only with the possibility of facing attacks, but also with the

amount of resources – in a very broad sense – that are needed to break the system.

Here, we are talking about the capabilities of the attacker.

In a simplistic view, the amount of effort required to break a system represents its

level of security, which is a property independent from the motivations of the

potential attackers. In fact, the amount of effort is a relationship between the

technical capabilities available to the attackers versus the amount of barriers, or

security mechanisms, which are put in place to disable those capabilities. If the

mechanisms available allow nullifying completely the capabilities of an attacker,

then the system can be classified as secure with respect to this particular attacker.

In practice, when it comes to finding ways to effectively secure a computer system,

the real challenge is answering the following questions:

Is the system already secure?

How far is the system from ideal security?

How do we modify the system in order to make it more secure?

Identifying all the potential attackers of a system is an impossible task, as this

involves knowing exactly the persons to which the system has some kind of value

(and as the system evolves and societies change, this becomes an endless, ever

changing task). Given the pervasive nature and interconnectedness of computer

systems, the only sensible approach is to assume that the system will be (sooner or

later) attacked and that the attackers will have a considerable amount of resources

available to accomplish the task. Due to this lack of precise knowledge, the

approach followed by most organizations nowadays is to implement the highest

number of security mechanisms they can afford, mostly following expert advice

and intuitions about how much these mechanisms actually help.

Security Benchmarking of Transactional Systems

3

An ad hoc approach to security, while usually helping in some way, has several

clear disadvantages. Without a systematic method to properly assess the security of

the system, the blind implementation of security mechanisms ends up being much

more costly and less effective than it should. For instance, after adding a new

security mechanism to the system, the inability to check if the security state really

improved leaves the administrator with no clue whether the mechanism helped in

any way. At the same time, if a highly secure state is achieved, the administrator

cannot appreciate whether implementing any further mechanisms will be a waste

of resources or not. Furthermore, while additional security mechanisms may

effectively help in some way, the system administrators are left with no way to

identify additional problems in the security barrier that may have been introduced

by those same mechanisms. This ad hoc approach also leads to another unfortunate

consequence: having a large number of costly mechanisms in place tends to

transmit an unfounded sense of security. As the mere volume of security

mechanisms never guarantees that all details are accounted for, the system may

potentially be left with problems whereas the administrators think their security

goals have already been accomplished.

Without a deterministic, representative and simple enough approach to evaluate

security, it is utterly impossible for administrators to understand the security impact

of systems’ structural or functional changes. Administrators are also unable to

make informed decisions concerning security aspects when it comes to tasks such

as choosing between alternative software packages during the process of installing

new software systems to support the organization activities. Means for reliably

supporting the evaluation of the security level of computer systems are thus

indisputably important.

The process of comparing systems in a standard, representative and accepted

manner is called benchmarking (Gray 1993). In particular, a security benchmark is

a method that is expected to support, at least, the following two tasks:

a) Compare the level of security of a same computer system in two

distinct points in its lifetime. This process allows understanding how the

security of the system varies when it is subjected to modifications, be these

modifications of the system itself or of the environment where it is

integrated in;

b) Compare the level of security of alternative systems aimed at

implementing the same task. This allows making informed decisions

regarding the selection of alternative software solutions taking into account

existing organizational needs.

Chapter 1  Introduction

4

The computer industry already holds a reputed infrastructure for performance

evaluation, where the Transaction Processing Performance Council (TPC) (TPC

2012) and the Standard Performance Evaluation Consortium (SPEC) (SPEC 2012)

benchmarks are recognized as the two most successful benchmarking initiatives

ever pursued. Furthermore, the concept of dependability benchmarking has gained

ground in the last few years, having already led to the proposal of dependability

benchmarks for several domains, including: operating systems, web servers, and

databases and transactional systems in general (Kanoun and Spainhower 2007).

Security, however, has been largely absent from previous efforts, in a clear

disparity to performance and dependability benchmarking (Kanoun 2001, Vieira

2009). Researching alternative solutions for security benchmarking is precisely the

goal of this thesis.

1.1 Benchmarking Security

Security evaluation methodologies have been proposed in several forms. One of

the most popular security evaluation frameworks available is the Common Criteria

standard (CC 1999) supported by the ISO/IEC group. While marginally allowing

the comparison of systems, the Common Criteria is not considered a much

successful approach due to several reasons, including its high complexity and

emphasis in the analysis of specification documents instead of real implementations

(Jackson 2007). Another important methodology for security evaluation is the

OCTAVE® (Operationally Critical Threat, Asset, and Vulnerability EvaluationSM)

approach (Alberts et al. 2002) from the Software Engineering Institute (SEI) of the

Carnegie Mellon University, which is a risk-based strategic assessment and

planning technique for security. The OCTAVE approach is actually a set of security

evaluation guidelines that support the process of self-evaluation within an

organization. However, it is quite difficult to use this approach to compare different

environments, to understand the impact of security decisions, or to evaluate the

security of software alternatives, as the methodology is designed for the

organization as a whole. Furthermore, risk based approaches require understanding

the potential damage that attackers may cause in the assessed system, which is an

extremely hard task due to the lack of historical data (Jaquith 2007).

Approaches like the ones introduced above can be classified as security evaluation

methodologies, and indeed help organizations improving computer systems

security when applied correctly. However, they are not suitable for supporting the

tasks that a security benchmarking methodology is expected to support, as they are

either too complex to be used by average system administrators or they require

external expert analysis to be carried out (as is the case of Common Criteria).

Expert analysis, in particular, is problematic in benchmarking contexts mainly

Security Benchmarking of Transactional Systems

5

because people change. Being a standard approach, benchmarking requires the

measurements performed in distinct points in time to be done using absolutely the

same criteria, which is difficult to guarantee when we rely on what a person (or

group of people) exactly knows. This nullifies the possibility to accomplish task a)

(self-comparison in two points in time) mentioned previously, as we cannot be

certain whether variations on the metrics are due to system changes or due to

changes in the knowledge of the person running the benchmark. Benchmarking

should rely on metrics that are standard and precise enough, so that evaluations in

different points in time or of distinct targets are as little biased by external variables

as possible (Gray 1993).

When trying to establish the security level of a computer system, in the terms

mentioned previously, we find two distinct key perspectives. The first is related to

actually finding real characteristics that can be exploited by attackers to cause some

damage to the system or its owners. Those characteristics are usually called

vulnerabilities or weaknesses and, depending on the system in question, may come

from different aspects (Lyu 1996). For instance, when evaluating a web page, a

typical vulnerability would be a software bug allowing attackers to apply input

modifications capable of changing the pre-defined behavior of the application.

Another example would be either buffer overflow vulnerabilities, which are coding

mistakes that may allow injection of commands directly on the operating system,

or configuration vulnerabilities, which arise from configuration inconsistencies or

errors that may allow malicious users to obtain privileges they should not have (and

therefore can be abused). Nowadays, the scientific community is putting a very

significant effort in techniques and tools to find all sorts of vulnerabilities in all

kinds of systems (e.g. penetration testing, static analysis, code inspections, etc.)

(Livshits 2005, Long 2007, Antunes 2009). The vulnerabilities detected in a system

may be corrected or not, depending on several contextual factors, but finding them

is the main the goal of evaluation methodologies.

The second perspective for assessing the security level of a system is related to the

fact that the entire set of vulnerability detection methods available nowadays is not

enough to guarantee that systems are secure (as detectors typically suffer from

coverage limitations) (Antunes and Vieira 2010). After trying to actually find

existing vulnerabilities, we must consider the probability of the system still having

hidden, hard to detect vulnerabilities, and that certain characteristics of the system

may be used as leverage to facilitate attacks (e.g. an improper file system

configuration may allow an attacker that has already gained access to the system to

obtain even more information, or the fact that a server is not physically protected

allows for alternate ways of gaining access the system). Such properties are much

Chapter 1  Introduction

6

more complex to find and evaluate as, by definition, they cannot be identified as

vulnerabilities that either exist or not, but rather as characteristics that can raise the

probability of occurrence of security incidents.

The type of analysis involved in comparing alternative systems in terms of their

level of security is much more than simply trying to find actual vulnerabilities

(Bondavalli 2009). In fact, when we are comparing two different systems, it is

important to understand the following: even after applying a large amount of effort

into finding vulnerabilities in two alternative systems, the fact that they both show

zero obvious vulnerabilities does not mean that they are equally secure. This is

mainly due to our inability to assure that no other vulnerabilities exist. This way,

distinguishing the security level of two systems with no obvious vulnerabilities is

still an open problem, which we thoroughly discuss in this work.

In this thesis we propose a security benchmarking framework that takes into

consideration the issues and difficulties just presented. The fundamental

assumption of our proposal is that to achieve fair comparison, security

benchmarking must necessarily consider the two perspectives mentioned

previously: the active search for vulnerabilities and security problems, and the

propensity for other hidden or unidentified problems to exist. This is crucial,

especially because each of these perspectives arise from different systems

characteristics and may lead to different considerations when such information is

used to support decision making processes.

1.2 Main Contributions of the Thesis

In this thesis we study the problems involved in performing security benchmarking,

and show the type of concerns and characteristics that such benchmarks should

have in order to attain their goals (i.e. allow comparing alternative solutions from

a security point-of-view). To the best of our knowledge, we propose the first

generic framework that is designed to support practical, representative, and useful

security benchmarks.

The proposed security benchmarking process is divided in two key steps: security

qualification and trustworthiness benchmarking. The first step is where the System

Under Test (SUT) is evaluated to have a minimum level of security in order to be

considered acceptable for use in a given application domain. The goal of this step

is to actively try to find vulnerabilities in the system and also evaluate the security

mechanisms it provides. A SUT that fails this step is automatically classified as

insecure, with security level equal to zero. In a comparison process, where two or

Security Benchmarking of Transactional Systems

7

more SUTs are being compared, this step is qualificatory, in the sense that the

systems with vulnerabilities are immediately disqualified for practical use.

The second step of the benchmarking process, which makes sense only for systems

that pass the first one (and therefore have no obvious vulnerabilities), is based on

trustworthiness benchmarking concepts. This step is designed to provide, to a

certain extent and given some premises, a relative level of probability that the SUT

may be compromised when facing attacks that try to accomplish certain malicious

effects. In a way, trustworthiness benchmarking provides the level of trust that a

user can justifiably have when it comes to the ability of the system in avoiding a

specific set of threats. In other words, the goal is to identify the system

characteristics that entitle it to be trustworthier in face of uncertainties.

The proposed framework is a guide for the definition of concrete security

benchmarks for specific application domains. In this thesis we present and discuss

thoroughly the framework, devoting particular attention to the reason why a

security benchmarking process should be divided and structured in such a way.

Understanding the motivations for this benchmarking approach allows identifying

its properties and, in particular, its limitations, which are also extremely important.

As a case study and proof of concept, we apply the proposed framework to design

and run security benchmarks in the context of transactional systems, also referred

to as On-Line Transaction Processing (OLTP) systems (Vieira 2003). These

systems are characterized by having a central Database Management System

(DBMS) and several remote clients running one or more applications that define

the business rules of the data that are stored in the database. In this context, we

divide a transactional system in two main parts (the transactional system

infrastructure and the business applications that use the infrastructure) and

proposed a specific benchmark approach for each of them. By applying our

framework to both complex and simple realistic scenarios, we aim to demonstrate

its generality and practical viability.

The focus on transactional systems is justified by the fact that this kind of systems

are used to support the business operations of almost all organizations, making

them a very representative use case (Sawyer 1993). Additionally, managing a

transactional system is a complex task that many times is performed by people with

very little security knowledge. This is a key concern as the security of such systems

is absolutely vital for the success of a company’s business. Therefore, a way to

systematically evaluate and compare the security of transactional systems without

complex trainings or requirements is of utmost importance.

Chapter 1  Introduction

8

In summary, the main contributions of this thesis are:

 A survey on the state of the art on security evaluation and computer systems

benchmarking. The first important contribution of this thesis is the

systematization of the work that has been done in the security evaluation

and benchmarking domains. We discuss some of the existing approaches

and identify the major aspects and difficulties that should be considered

when devising generic security benchmarking approaches.

 A security benchmarking framework composed of two steps (qualification

and trustworthiness benchmarking) based on a reference domain and

representative threat vectors for that domain. Considering the difficulties

identified before, we develop a framework aimed at overcoming those

difficulties. The framework breaks the problem in two parts, each one

providing a particular semantic outcome: the first is related to what we can

clearly evaluate about systems security, and the second is related to the

aspects that we can only estimate. The reasoning behind this approach and

the goals of each step of the benchmarking process are discussed in detail.

 The application of the proposed security benchmarking framework to the

domain of transactional systems, in order to study and understand its

effectiveness and viability. The first consequence of the framework

instantiation is the need for dividing the transactional system in two parts:

the transactional system infrastructure, and the business applications

based on that same infrastructure. This results from the fact that the security

goals of these two parts are essentially different, and the framework

automatically forces the benchmark to have a consistent view of them. The

instantiation of the framework to each of these parts resulted in several

complementary contributions, as presented next.

 A security benchmark for transactional systems infrastructures, which

resulted in the following detailed contributions:

o A representative set of security recommendations for transactional

systems infrastructures, which can be used to support other

assessments and security evaluation methodologies besides the

proposed benchmark.

o A set of representative threats that should be of knowledge of any

database administrator, and a set of security tests that can be used

for understanding the security problems that may arise in

transactional system infrastructures.

Security Benchmarking of Transactional Systems

9

o A complete trustworthiness benchmarking methodology and

implementation for transactional system’s infrastructures, which

allows understanding, from a high level perspective, the biggest

security concerns that may manifest in the infrastructures under

benchmarking. To demonstrate its effectiveness, the proposed

trustworthiness benchmark was applied to four different real

transactional systems infrastructures.

o The development of a tool to assist on the selection of the software

components (e.g.. DBMS engine and operating system) that best

fit the security requirements of the transactional system

infrastructure. This tool was used to assess seven representative

distinct software packages (i.e. a combination of several DBMS

engines and operating systems), which allowed evaluating them

from the point-of-view of the existing security mechanisms.

 A study on the implementation of the framework in the context of web-

based business applications, which resulted in the following contributions:

o A detailed discussion on alternatives for conducting

trustworthiness benchmarking of business applications, taking

into account the security characteristics of the code of the

applications under benchmarking. The study was done focusing on

web technologies, which are the technology of choice nowadays,

and whose security is largely dependent on the correct design.

o A detailed study, including a complete validation cycle, on the use

of static code analyzers as reliable and effective tools for the

automated computation of trustworthiness metrics in web

applications. In detail, we considered a representative use case,

where a user would have to choose the most secure among seven

existing software alternatives (in this case, seven web forums), and

compared the automated benchmark proposal with the evaluation

conducted by six security experts. The comparison of the results

allowed the validation of the effectiveness of our proposal, along

with the identification of its most important advantages and

limitations.

o The proposal of a generic approach for the definition of

trustworthiness benchmarks for web applications, based on the

findings of the previous study. In this case, we focused on the

design of a tool that does not depend on the characteristics of static

code analyzers, which could eventually change due to a diversity

Chapter 1  Introduction

10

of factors. Even though we did not implement a real tool based on

this generic approach, we demonstrate it by manually computing

and interpreting the metrics in a small-scale scenario.

It is important to emphasize that all the studies, proposals and methodologies are

accompanied with detailed justifications and discussions about their limitations,

particularly about why and how they could fail their objectives. In fact, it is

probable that the most important contribution of this thesis are not the tools or

studies presented, but rather a consistent view on how to correctly rationalize

security aspects when the goal is fair comparison.

1.3 Structure of the Thesis

This thesis is divided in seven chapters, as described in the following paragraphs.

Chapter 1 introduces the problem of security benchmarking and describes the main

contributions of the thesis.

Chapter 2 presents the background and existing work related with this thesis.

Section 2.1 presents an introductory view to security of computer systems. Section

2.2 presents several security evaluation frameworks and methodologies, focusing

on the few that are more important in the context of our work. Section 2.3 presents

techniques and approaches for threat modeling, which is an important aspect of

security evaluation. Section 2.4 presents a description of the evolution of

benchmarking, from performance to dependability benchmarking. Section 2.5

presents a discussion about the main difficulties of security benchmarking

(particularly in contrast to the dependability benchmarking model), and presents a

discussion about the idea of benchmarking trust and how the concept could be

related with security benchmarking.

Chapter 3 presents the security benchmarking framework. Section 3.1 discusses the

aspects that have to be considered when benchmarking security. Section 3.2

presents the concept of threat vectors, why they are needed and how to understand

them. Section 3.3 describes the framework, starting with a general view, and then

detailing the qualification and trustworthiness benchmarking phases. Section 3.4

presents a decomposition of transactional systems needed to apply the framework,

justifying why, this has to be done.

Chapter 4 describes the application of the framework to the context of transactional

systems infrastructures. Section 4.1 describes the base scenario used as a frame of

reference for the whole benchmark, justifying its characteristics and

representativeness. Section 4.2 put forward some ideas about the security

Security Benchmarking of Transactional Systems

11

qualification step. Section 4.3 describes our approach for the evaluation of

trustworthiness benchmarking of transactional systems infrastructures, including

the threats vectors, the list of security elements, the pessimistic scenarios, the actual

benchmarking tool, and the metrics. Section 4.4 is about the application of the

benchmark to four distinct real infrastructures.

Chapter 5 presents the study of trustworthiness benchmarking approaches in the

context of business applications, using as case web applications. Section 5.1

presents a general discussion of the security of web applications. Section 5.2

describes the set of experiments we conducted to evaluate the plausibility of using

static code analysis tools to accomplish trustworthiness benchmarking. Section 5.3

draws from the limitations identified in the previous experiments, and proposes a

general targeted approach for trustworthiness benchmarking of web applications.

In both section 5.2 and 5.3, several experiments are presented.

Chapter 6 discusses the problem of security qualification when applied to

transactional systems infrastructures, proposing a tool that can help in the selection

of the software components needed to support that infrastructure. Section 6.1

describes how to identify security mechanisms from a set of security

recommendations. Section 6.2 discusses the identification of the impact of such

mechanisms. Section 6.3 discusses the metrics that are computed by the tool.

Section 6.4 presents an experimental evaluation of the tool, where we used it to

assess seven distinct software packages, consisting of multiple database

management systems and operating systems.

Chapter 7 presents generic conclusions and a general overview of the main lessons

of this thesis, also putting forward future work that is directly related to the

achievements of this thesis.

13

2

Background and
Related Work

This chapter presents the fundamental concepts and overviews the state-of-the-art

on techniques related to security evaluation and benchmarking. We start by revising

the most important concepts regarding security, and then discuss existing

approaches for security evaluation, introduce the concepts behind benchmarking in

general, and discuss the main difficulties related to security benchmarking. Even

though security aspects are vast and can be rationalized from a series of

perspectives (from the technical aspects to the human factors and their relation with

security in general), we introduced these topics from the perspective of their

relevance to the approaches, techniques and tools proposed in the rest of the thesis.

This chapter is organized as follows. Section 2.1 introduces basic computer security

concepts. Section 2.2 presents an overview of relevant security evaluation

methodologies and techniques. Section 2.3 addresses threat modeling and Section

2.4 presents related work on benchmarking in general, and on the approaches that

are being applied for security benchmarking. In Section 2.5, we discuss the main

motivation for this thesis, putting it in contrast to the current state-of-the-art, and

also discuss the idea of benchmarking trust and how this concept can be related

with security attributes. Finally, Section 2.6 concludes the chapter.

2.1 Overview of Computer Security Aspects

Before addressing more specialized topics, it is necessary to define some aspects

and characteristics of the terminology related to computer security. The term

computer security, which is actually the idea of information security applied to

computers, is an integrative concept that includes all aspects related to the

preservation of the several different properties that can be attributed to a specific

information asset (Russell 2011). However, to deeply understand the relevance of

Chapter 2  Background and Related Work

14

these properties, it is necessary to define beforehand the elements over which they

apply.

First of all, security only makes sense when there is something to be secured. It is

important to understand that the goal of computer security has nothing to do with

security of hardware or people, even though it might involve these in certain cases.

What computer security is concerned with is the security of the information that is

generated, accessed and stored by computer systems (Siponen 2007). More

specifically, within a given environment, the information always suffers a set of

actions that might generate more information or trigger more actions. The rules that

define the transformations that can or cannot be applied to the information are

called business rules and represent essentially the principles that the system must

follow to fulfill its objective. Each transformation defines not only the outcome,

but also the allowed executors (usually the persons or other transformations that

are allowed to trigger it). In that sense, computer security is related to ensuring that

the information within the system will follow the business rules despite anything

else, even assuming a very intelligent malicious person (or group of people) with

an unpredictable amount of resources, trying to break any of the rules.

Given a certain system, there is a multitude of ways through which the business

rules can be violated. However, not all of these ways are security concerns, as some

cannot cause any type of damage or loss to any of the people involved or affected

by the system. For example, a typical operator error (like a mistype) is not usually

a security concern but might be an example of a business rule violation. A breach

of a rule that is related to security is usually called a security incident or simply an

attack (Russel 2001). The methods and techniques used to execute the attacks are

referred to as attack vectors or attack methods and the set of all attack vectors

present in a system defines its attack surface.

The issues that historically are considered security concerns are related to the

violation of the following information properties (Parker 2002):

 Confidentiality – property that guarantees that the information is not

accessed, used, copied, or disclosed by anyone except the authorized

individuals.

 Integrity – property that guarantees that the information is not created,

changed, or deleted by individuals without proper authorization.

 Availability – property that guarantees that the information is timely and

correctly available to authorized individuals.

Security Benchmarking of Transactional Systems

15

For a long time, confidentiality, integrity and availability were considered the core

properties of information security. In fact, these three properties were considered

complete enough to be the only properties that the security mechanisms would be

in charge of preserving. However, Donn B. Parker (Parker 2002) pointed out some

small deficiencies in the original set of properties, and showed that some particular

types of very important attacks could not be specified by the loss of any of these

properties. He introduced three other security properties of information:

 Authenticity – this property refers to the guarantee that the information

is correctly labeled and that it is in fact what is said about it. This property

is distinct from integrity because the information might not have been

altered or deleted, but still be understood in a different way from what it

was meant to. Fraudulent information is an example of non-authentic

information that is correct from the point of view of its authorized creator.

The security problem is that this information is not what its creator said it

is.

 Possession or Control – the information can be out of the control of the

rightful owner, possibly being transferred to someone else or used in a

non-authorized way. This property is distinct from confidentiality

because an attacker can violate it without violating confidentiality and

vice versa (e.g. when the attacker takes control of a machine but does

nothing with this control). Another important kind of breach is when one

makes an unauthorized copy of a copyrighted intellectual work (like a

movie). Notice that in this case there is no breach of confidentiality (the

owner is authorized to see the movie), no breach of integrity and the

information is available to its rightful owner.

 Utility – probably the most controversial “complementary property”,

utility is related to guaranteeing that the information can still be used for

its original purpose. The most common example for a breach of utility is

when a user encrypts some data and then loses the encryption key. The

idea is that the data is still confidential, available (it is there), integral (it

is correct), under control and authentic, but cannot be used anymore

because of a transformation that cannot be undone. Unauthorized source

code obfuscation sometimes is also used as an example, as the code still

compiles and generates the corresponding executable code, but can hardly

be modified anymore (without an effort that would not be necessary with

the original code). The critics, on the other hand, say that utility can

always be understood as one of the other properties. In the first example,

the data is actually not available anymore exactly as it would not be in the

case of a hard drive that cannot be turned on (but with no damage to the

magnetic data). In the second example, the source code is not integral

anymore because it has lost the semantics that was present only in the

original source code.

Chapter 2  Background and Related Work

16

Most of the security properties of information are defined in terms of the figure of

an authorized person. Although, usually, most actions in a system are executed by

real people, sometimes the actions might be also triggered by other systems (for

which authorized agent would probably be a more accurate term). Authorization in

this context is directly defined by the business rules of the system and specifies the

set of actions that each agent within the system has the right to execute and the set

of actions that it cannot execute. Usually, there is also a default policy for all actions

not explicitly defined, which could be “all else is authorized” or “all else is denied”,

and also depends on the purpose of the system. The mechanisms through which

authorization is actually implemented in a system might vary a lot (privileges or

access controls lists are two common examples). However, the most complex

security issue involved is related to identifying precisely who should have which

authorization. This is called an authentication procedure (Daswani 2007) and is the

process of assuring, to the desired level of certainty, that someone really is who he

claims to be.

Another security property, which can be considered as a special case of

authenticity, but is, frequently, considered separately, is non-repudiation

(Stallings 2010). This property is related to guaranteeing that if someone performs

an action then that action cannot be denied in a later future. For example, the idea

of digital signatures only works when the system is built with non-repudiation in

its core, meaning that it has the same properties of undeniability of a traditional

signature. Although not necessary in every context, several other scenarios might

require the preservation of this property (possibly not in a so strong form). For

instance, if a legitimate system operator excludes some information then it is

important that the system registers, in a reliable way, who performed the exclusion,

generating evidence that cannot be hidden. This kind of auditing preserves this

property not as strongly as a digital signature (that no one should be able to forge),

as the system administrator may be able to alter the evidence in some way.

However, the property holds because the operator does not have the same privileges

that of the administrator and that is sufficient for this purpose. In this case, the

system administrator is expected to have the power to view or modify data in the

system, and therefore that is not a security breach. The fact is that he is supposed

to do it only according to what are his authorized assignments.

A malicious administrator (which is an example of an insider threat, (Martinez-

Moyano 2006)) eliminating evidence or using its privileges to abuse the system in

some way provides an example of the abuse of trust (Bishop 2008). This is a

problem that circumvents any computer system and does not have a definitive

solution. The biggest difficulty, in this case, is that it is mostly a human aspect and

Security Benchmarking of Transactional Systems

17

not a technical one (Whittaker 2003). In any system, some amount of trust is posed

upon all people involved, being it the administrator who bears a very large amount

of trust, or a simple end user that has a very limited, but non-negligible, amount of

privileges. The problem is inevitable because whenever the system poses any

amount of authorization to a given individual, it is opening the possibility for

someone to find ways to abuse it and break the rules. Actually, it is a known fact

that the most access a person has to the system the higher is the number of

combinations of actions that it can perform. Some of these actions can readily be

used to cause a security breach and avoiding it is, in most scenarios, completely

unfeasible. The principle of least privilege, which is to always place the least

amount of privileges possible to any element within a system, is one of the most

important and recognized principles of authorization distribution. This principle

has been proposed more than 30 years ago, and has been proven right since it was

first discussed in (Denning 1976).

Computer security research is done not only to understand security aspects but also

to develop security mechanisms designed to fulfill several goals. Mechanisms for

the preservation of the security properties, mechanisms to allow reliable

authentication and authorization and mechanisms to lower or eliminate the

possibility of abuses of trust are just some examples. These security mechanisms

are commonly known as security controls and can be classified in several forms.

When a security control is active in a system and a security incident is about to

happen, there are three moments in which the control may act (Bowen 2006):

 It may act before the occurrence of the incident (or its completion),

effectively avoiding its occurrence. In this case it is called a preventive

control. An authentication mechanism is an example of a preventive

control.

 It may act during the incident by trying to identify its occurrence and, when

possible, activate an alert so the person responsible can act accordingly.

This is called a detective control and auditing and logs are examples of this

type of control.

 It may act after the incident, possibly reducing or eliminating the

consequences of the attack. These are called corrective controls. Backups

and redundant servers are examples of it.

Security controls can also be classified in regard to their nature. They may be

classified in one of the following four categories (Bowen 2006):

 Physical controls, e.g. fences, doors, locks and fire extinguishers;

Chapter 2  Background and Related Work

18

 Procedural controls, e.g. incident response processes, management

oversight, security awareness and training;

 Technical controls, e.g. user authentication and access controls, antivirus

software, firewalls;

 Legal and regulatory or compliance controls, e.g. privacy laws, policies

and clauses.

In theory, a system implementation together with its environment and appropriate

security controls are expected to not be susceptible to attacks (as that is the goal of

the security controls). However, in practice, it is impossible to have a completely

secure system, especially if one considers an insider threat. The weaknesses that

the system still presents and can be used as attack vectors, despite the security

controls in place, are called vulnerabilities (McGraw 2006). Examples of classical

vulnerabilities are software bugs or incorrectness (e.g., a buffer overflow and SQL

injection attacks (Daswani 2007)), authentication weaknesses (e.g., the existence

of weak passwords (Blackwell 2000)), configuration problems (e.g., a poorly

configured firewall (Wool 2004)), or even a physical security problem (e.g., leaving

the database server stationed in an uncontrolled room full of unauthorized people).

Instead of being cases of exception, more and more the computer science research

community is learning that vulnerabilities cannot be completely eliminated, despite

all efforts to avoid them (McGraw 2006). As a consequence, two important

guidelines are frequently emphasized as key security practices that should be

applied to any context: security by design and defense-in-depth (Howard 2002).

Security by design means thinking about the security of a system while designing

it, instead of considering security as a new layer of features. This turns out to be a

much more successful approach because of a simple fact: when one adds security

functionalities to an existing system, the number of inconsistencies (i.e.

vulnerabilities) that can emerge from the combination of the original state (without

security controls) with the state with the new functionalities (the security controls)

is much higher than the number of defects in a system that was designed with these

functionalities from scratch. In other words, the attack surface of a system designed

with security in mind is always smaller than the attack surface of a system that has

been secure by the later appliance of security controls.

Defense-in-depth, on the other hand, is the idea of always assuming that the security

controls can be surpassed. In other words, instead of protecting a system with one

huge barrier, always consider that each part of the system must be secured

independently as if all other barriers were already defeated. The principle of least

privilege, for instance, is an example of the application of the principle of defense-

Security Benchmarking of Transactional Systems

19

in-depth. If some attacker takes control of some agent in a system (e.g. a process)

the damage it can do is limited by the original purpose of the agent if this agent

does not have more privileges than the ones it needed in the first place. Securing a

network with a global firewall and still having local firewalls on the operating

systems of the machines on that network is also another example of defense-in-

depth.

2.2 Security Evaluation

Computer security evaluation, in some contexts referred to as risk analysis applied

to computer systems, has been a concern for organizations and systems

administrators for a long time. To decide if the security mechanisms present in an

installation are enough or should be improved, first it is necessary to evaluate them.

Security evaluation is the process of determining how well the security controls of

a given system are working and how effective they are against known attacks and

threats (Bowen 2006).

The challenge faced by systems administrators is that computer security evaluation

is a task that requires a very specialized knowledge. To perform a reliable

evaluation, the analyst must have the capability for understanding all factors at

stake, the nature of the threats involved, and how the security controls in place

work, and these topics are usually not part of the administrators’ training. To solve

this, the choices are either hiring outside help or learning and applying an

appropriate security evaluation methodology.

The urge in proposing security evaluation methodologies was always historically

so strong that several private and governmental organizations have invested a lot

of time and money on it. For example, in the early 80’s, the government of the

United States through its Department of Defense started developing what later

would be called the Rainbow Book Series. This is a series of standards designed for

the evaluation of trusted systems, and describes the process to be used inside the

US government. In particular, the Trusted Computer System Evaluation Criteria

(DoD 1985), also known as the Orange Book, is a standard that sets basic

requirements for assessing the effectiveness of computer security controls built into

a computer system.

In 1999, the concepts in the Orange book were merged together with other related

standards like the Canadian Trusted Computer Product Evaluation Criteria (Mate

Bacic 1990) and the Information Technology Security Evaluation Criteria (Jahl

1991), giving rise to a new international standard that was supposed to be accepted

worldwide. The Common Criteria for Information Technology Security Evaluation

Chapter 2  Background and Related Work

20

(Common Criteria 1999), or simply the Common Criteria, became the standard

ISO/IEC 15408 in a joint action of the International Organization for

Standardization (ISO 2012) with the International Electrotechnical Commission

(IEC 2012).

This section focuses on the main aspects of three of the most representative

approaches: the Common Criteria framework, the OCTAVE method and the Center

for Internet Security benchmarks. These methodologies were chosen because they

provide very distinct approaches to security evaluation, and most others either

resemble one of them or share characteristics. However, additional methodologies

for security evaluation and risk analysis are introduced in Section 2.2.4.

2.2.1 The Common Criteria

The Common Criteria standard (Common Criteria 1999) is a security evaluation

framework that defines a process where a computer system is evaluated against a

set of security requirements. The evaluation results in a level of assurance, or

Evaluation Assurance Level (EAL) and a certification from the Common Criteria.

Essentially, the assurance level expresses the effort that was applied by the

Common Criteria evaluators in order to be certain that the system has the security

requirements that it claims to have. The first draft of the standard was published for

comments in 1993, and finally became an official ISO standard in its version 2.0,

in 1999. The main objective of the standard was to replace the security evaluation

and processes used in different countries by a unified process that would be

accepted by all of them. This would allow product evaluations conducted in one

country to be accepted in other countries.

For a given Target Of Evaluation (TOE), which is the product or system under

assessment, the evaluation within the Common Criteria framework is based on a

fundamental document that describes the characteristics of the TOE: the Security

Target. The security target, on the other hand, may or may not reference another

document called a Protection Profile. Both documents are structurally similar but

have distinct purposes. However, understanding a protection profile allows to more

easily understanding a security target.

The protection profile identifies the security requirements that the particular TOE

must implement in order to be secure against an identified set of threats typically

found in environments surrounding it. In other words, a protection profile is an

implementation independent statement of security requirements that address threats

in a specific environment. The most important elements that are part of a Protection

Profile are:

Security Benchmarking of Transactional Systems

21

 Security Environment definition: a high level description of the

environment where the TOE typically operates.

 Secure Usage Assumptions: definitions about some important

characteristics of fundamental elements of the environment. For example,

some characteristics of the network, considerations about the kind of

physical control that is assumed regarding the TOE or the characteristics

of trustworthiness of the administrators. These assumptions are the basis

over which the evaluation is valid.

 Organizational Security Policies: the policies that the organization must

enforce in order for the product to effectively have the security stated.

 Threats to security: enumeration of the security threats that must be

addressed by the implementation of the TOE in order to be considered

secure in the sense of this Protection Profile.

 Security Functional Requirements: high level security elements that must

be present in the TOE implementation and that should be employed to

avoid the threats identified before. These elements are catalogued by the

standard, and form eleven classes divided in 67 families, 138 components

and 250 elements.

 Security Assurance Requirements: the evaluation requirements to be

performed over the TOE as to be able to certify it with a specific Evaluation

Assurance Level. The possible assurance requirements are also catalogued

by the standard.

A protection profile is a document defined generically, meaning that it is

implementation independent. In practice it defines a class of devices or scenarios

working in a specific environment. For instance, it is possible to define a protection

profile for a firewall in a particular scenario, or a smart card in another scenario.

The definition of different protection profiles for the same class of devices is

possible as well, with different security requisites for each one. Basically, the main

purpose of protection profiles is to provide means for some person or organization

to express the security requisites that are necessary for a given purpose. A

government, for example, might require a particular product to be certified against

a specific protection profile before considering its acquisition.

The security target, on the other hand, specifies the characteristics of the product

or system that will undergo the certification process. It can be seen as an

instantiation of what would be a generic protection profile relatively to a particular

product, and is usually provided by the developer of the product. A security target

typically includes all elements that are part of a traditional protection profile, but

explains how they are applied to the product in question. It also includes a detailed

description of the mechanisms that are implemented to satisfy the security

Chapter 2  Background and Related Work

22

functional requirements. Although not required, usually it also mentions a list of

protection profiles which the TOE might comply with. The TOE is then evaluated

against all of them, and the certification states that.

The most important part of a security target or of a protection profile is the

definition of the security functional requirements expected from the TOE. The

standard defines the following eleven high level classes of functional requisites that

a system or product might have:

 Security Audit – monitor, capture, store, analyze, and report information

related to security event.

 Communication – Assure the identity of originators and recipients of

transmitted information; non-repudiation.

 Cryptographic Support – Management and operational use of

cryptographic keys.

 User Data Protection – Protect user data and the associated security

attributes within a TOE and data that is imported, exported, and stored.

 Identification & Authentication – Ensure unambiguous identification of

authorized users and the correct association of security attributes with users

and subjects.

 Security Management – Management of security attributes, data, and

functions and definitions of security roles.

 Privacy – Protect users against discovery and misuse of their identity.

 Protection of the TOE Security Functions– Maintain the integrity of the

TSF management functions and data.

 Resource Utilization – Ensure availability of system resources through

fault tolerance and the allocation of services by priority.

 TOE Access – Controlling user session establishment.

 Trusted Path Channels– Requirements for trusted paths and trusted

channels.

The assurance requirements defined in the security target will set the level that the

implementation of the TOE will be evaluated. In any certification process, the

evaluation is done by the application of the Common Methodology for Information

Technology Security Evaluation (CEM), also part of the standard. The evaluation

process is done by a third party laboratory complying with the ISO/IEC 17025

(Honsa 2003), which certifies and states management and technical requirements

for testing and calibration laboratories. A successful evaluation provides a

Security Benchmarking of Transactional Systems

23

certification of the TOE within one of the seven possible levels of assurance, with

the following corresponding rigorousness:

 EAL 1 – the TOE is functionally tested and a minimum level of confidence

in the correct operation of the security functions is guaranteed. This EAL

is appropriate for environments where no serious security threats are

anticipated.

 EAL 2 - the TOE is structurally tested, and a low to moderate level of

confidence in the correct operation of the security functions is guaranteed.

This EAL is assigned to systems for which little documentation exists.

 EAL 3 - the TOE is methodically tested and checked and a moderate level

of confidence in the correct operation of the security functions is

guaranteed. EAL 3 represents a thorough investigation of the TOE and its

development, starting at the design phase. Testing and evaluation are

conducted against functions, interfaces, and guidance documents.

 EAL 4 - the TOE is methodically designed, tested, and reviewed and a

moderate to high level of confidence in the correct operation of the security

functions is guaranteed. EAL 4 is the highest level of assurance usually

provided to commercial off-the-shelf software.

 EAL 5 - the TOE is semiformally designed, tested, and reviewed, providing

moderate to high level of confidence in the correct operation of the security

functions. EAL 5 is appropriate in environments where resistance to

attackers with a moderate attack potential is needed.

 EAL 6 - the TOE is semiformally verified design and tested, and provides

a high level of confidence in the correct operation of the security functions.

To be evaluated as EAL 6, the software design requires the use of

systematic security engineering practices and techniques.

 EAL 7 - the TOE is formally verified design and tested, providing a very

high level of confidence in the correct operation of the security functions.

EAL 7 represents complete, independent white-box testing that employs

formal methods, similar to those in use by the safety engineering

community. EAL 7 is intended for use in extremely high-risk environments

that must protect high-value assets.

Despite its popularity, the Common Criteria is not a standard unanimously

accepted. The major criticism against the standard is that it tests almost only the

design of the product, and not the implementation, even at the highest levels of

evaluation. In the words of Alan Paller, director of research at the SANS Institute,

“You are not testing the product at all. You are testing the paperwork” (Jackson

2007). As it is, a certificated product is a long distance from been considered

secure, so the cost of certification (which is very significant) is actually not worth

Chapter 2  Background and Related Work

24

it. One recurring example against the standard is the certification with EAL4 of the

Windows 2000 operating system, which continuously had security corrections long

after the certification (Baumhardt 2006). Jonathan Shapiro, assistant professor at

Johns Hopkins University also puts it as not worth it: “The evidence so far suggests

that it is a waste of time and resources. I would be extremely happy to see evidence

to the contrary, but it doesn’t seem to be out there” (Jackson 2007).

Another criticism against the common criteria is that the certification is valid only

in regard to the security target document (and mentioned protection profiles). A

certification, even with a correct implementation, means that the product is secure

only with the configuration and environment defined in the document. For example,

the configuration and environment defined in the Windows 2000 certification strips

it of so much functionalities (for example, the Internet Explorer browser and the

Internet Information Services) that sometimes it turns out to be almost a useless

shell. In that sense, practically all installations of this operating system running

today invalidate the certification.

2.2.2 The OCTAVE method

The Operationally Critical Threat, Asset, and Vulnerability Evaluation method

(Alberts 2002) was developed in 2003 by the Software Engineering Institute (SEI)

at Carnegie Mellon University on behalf of the Department of Defense of the

United States government. It is a self-directed risk assessment methodology, suited

for small teams of people from the operational and the IT departments of an

organization.

A fundamental difference of the OCTAVE approach comparing to most proposed

risk assessment methodologies, is that it is driven mostly by operational risk and

security practices instead of pure technology considerations. The design of the

approach is aimed at allowing an organization to:

 Perform self assessments without outside requirements;

 Identify risks that are particular to the organization business and

operations;

 Identify and focus on the protection of the most important information

assets of the organization;

 Raise the security awareness at all levels of the staff.

Security Benchmarking of Transactional Systems

25

Figure 2.1 Overview of the OCTAVE method phases.

(Alberts 2002)

Figure 2.1 presents a high level view of the methodology steps. The OCTAVE

method is based on three main phases that are further broken down into processes,

and evolves through a series of workshops carried out by the analysis team. In

Phase 1, the analysis team identifies important information-related assets and the

current protection strategy for those assets. The team then determines which of the

identified assets are most critical to the organization’s success, documents their

security requirements, and identifies threats that can interfere with meeting those

requirements. In Phase 2, the analysis team performs an evaluation of the

information infrastructure to complement the threat analysis performed in Phase 1

and to support mitigation decisions in Phase 3. Phase 3 includes risk identification

activities and the definition of a risk mitigation plan for the critical assets

(Alberts 2002).

All OCTAVE phases are supported by catalogues of information provided by the

method, which are designed for teams without security expertise and without

outside help. The main catalogues are the following:

 Catalogue of practices - a collection of best strategic and operational

security practices;

Chapter 2  Background and Related Work

26

 Threat profile - the range of threats that a typical organization needs to

consider;

 Catalogue of vulnerabilities - a collection of vulnerabilities based on

existing platform and applications, for consultation regarding technical

aspects that should be considered.

The OCTAVE method was designed as a complete process for large organizations.

As is, it is not suitable for small organizations, which created a gap that was covered

later by two other methodologies. These alternative methodologies are the

OCTAVE-S and the OCTAVE Allegro, and are derived from the original

OCTAVE method. While the OCTAVE-S methodology is just an adaptation of the

original OCTAVE to smaller organizations (Alberts 2005), the OCTAVE Allegro

has a slightly different approach, built up from the experience gathered with years

of application of the original method (Caralli 2007).

The idea of the Allegro approach is that when information assets are the focus of

the information security assessment, all other assets can be easily brought into the

process as containers where information assets are stored, transported, or processed

(Stevens 2005). In this sense, a container can be a person (since people can store

information as knowledge, transport information by communicating, or process

information by thinking and acting), an object (e.g. a piece of paper), or a

technology (e.g. a database). Thus, threats to information assets are identified and

examined through the consideration of where they live, which effectively limits the

number and types of assets brought into the process. Moreover, focusing on

information assets effectively limits the amount of information that must be

gathered, processed, organized, analyzed, and understood to perform a risk

assessment.

2.2.3 The Center for Internet Security benchmarks

The Center for Internet Security (CIS) is a non-profit organization formed by

several well-known academic, commercial, and governmental entities that has

created a series of security configuration benchmark documents (CIS 2008). The

documents, which in some cases are accompanied with tools that verify the

compliance with the configurations suggested, cover specific brands of several

kinds of very popular software. Most of the software for which CIS benchmarks

were developed are fundamental pieces of software that are the basis of most

information systems in use today: operating systems, database management

systems and network devices. Although fundamental, it is known that this kind of

basic software is usually complex and does not come with good security

configurations by default (Schweitzer 2006). Building information system’s

infrastructures over insecurely configured software results in systems that are

Security Benchmarking of Transactional Systems

27

insecure in all their levels. Also, by being widespread, they are prime targets for

attacks and knowledge regarding security vulnerabilities (especially coming from

insecure default options) is very likely to spread fast.

These CIS benchmarks are developed and maintained by the public and private

members of the organization. Building from personal experiences, each document

is created through discussions and consensus regarding the most secure

configuration options applicable. They are based on best practices for deployment,

configuration, and operation in networked systems. In essence, each document

contains explicitly all relevant security configuration options that are considered

important in the usual environments that they are found. The configurations are

divided in two different levels of security:

 Level 1 – prudent minimum due care. This is the set of configuration

options that are considered the minimum level of security an organization

should enforce. The suggestions are chosen to be simple, in a way that any

system manager can understand and apply them, and are unlikely to cause

any kind of disruption or degradation of the services they provide.

 Level 2 - prudent security beyond the minimum level. This is the set of

configuration options that are necessary for systems demanding high

security. Also, these configurations might cause impact in the operation of

the system, so a system’s manager with a reasonable level of security

knowledge might be necessary to understand and apply them correctly.

Even though most of the benchmarks do not take into account the actual business

rules of the environment where the software is being used, the approach from CIS

has a significant number of advantages over other security evaluation approaches.

One important characteristic of the approach is that it separates the security

knowledge from the technical knowledge necessary to apply it, making the

suggestions much more accessible than other methodologies. Another relevant

advantage is that it is widely accepted, as the documents are the product of

extensive analysis and consensus of several distinct representatives from public and

private sectors. Also, as they are based in field experience, the threat model that

supports them has the advantage of already being put in practice, being perhaps a

form of validation of the security ideas behind it.

Despite the advantages, the CIS documents also have some noticeable drawbacks:

 The documents are not designed and written in a single standard way, and

are actually overlapping in some areas. This implies that when more than

one document is used in a single installation (e.g. hardening an operating

Chapter 2  Background and Related Work

28

system and then the DBMS installed on it), difficulties might arise if

similar things are stated in different forms in each document.

 Each document focuses specific software of a specific version. New

versions of the software, even similar versions, cannot use the document

without incurring in the risk of existing a significant difference that

hinders the original settings as insecure;

 The documents are focused only on the specific configuration options

available in the particular software being configured. In some cases, this

causes that major security principles are not even mentioned. If the

administrator is not warned that some important security control is missing

from the software he is using, he cannot evaluate if it is important enough

that he replaces it or implement the control in an alternative way;

 Even though some rationale is provided in some cases, the major security

principles behind the choices are frequently not provided. Not mixing the

security justifications with the actual configurations they provide is good

from a practical sense, but the security principles behind them are

necessary for several reasons: a) the administrator should be able to

understand what are the risks he is facing when he is not able to comply

with a recommendation (which might happen frequently in production

environments); b) the administrator should be given the choice of coming

out with alternative solutions to the security concern behind each

suggestion (something he cannot do if he does not know what the

suggestion’s goal is).

Overall, the CIS approach is very interesting, very practical and is important in

several ways. However, it is clear that there is room for improvement. In particular,

because of some of these drawbacks, they cannot actually be considered

representative benchmarks, as is discussed in Section 2.4.

2.2.4 Additional Security Evaluation and Risk Analysis
Methodologies

While the Common Criteria standard presents a product oriented approach for

security evaluation, the OCTAVE method appears as a self-evaluation process that

takes in consideration as much aspects and particularities of the organization as

possible. Even though they present complementary perspectives to security

evaluation, several other frameworks, approaches and methods have been proposed

and lie somewhere in between. Some relevant proposals that can be found in the

literature:

 MEHARI (CLUSIF 2004): a risk management methodology developed by

the CLUSIF (Club de la sécurité de l’Information Français) and built on

Security Benchmarking of Transactional Systems

29

the top of two other methods: MARION and MELISA not maintained

anymore.

 CRAMM (Siemens 2003): the CCTA Risk Analysis and Management

Method is a risk management method from UK originally developed by

CCTA3 in 1985 and currently maintained by Insight Consulting.

 CORAS (Vraalsen 2007): CORAS (Risk Assessment of Security Critical

Systems) was a European project developing a tool-supported framework

based on UML, exploiting methods for risk analysis and risk assessment of

security critical systems.

 ISRAM (Karabacak 2005): methodology developed in December 2003 at

the National Research Institute of Electronics and Cryptology and the

Gebze Institute of Technology in Turkey. It is a survey-based model with

a quantitative approach to risk analysis that allows for the participation of

the manager and staff of the organization.

 NIST SP 800-30 (Stoneburner 2002): The Risk Management Guide for

Information Technology Systems was developed by the National Institute

of Standards and Technology as a recommendation for use by all federal

agencies of the US. The process is subdivided in several steps: system

characterization, threat identification, control analysis, likelihood

determination, impact analysis, risk determination, control

recommendations and result documentation. Like the OCTAVE method, a

small knowledgebase of common threats is provided to help the

assessment.

2.2.5 Security Characteristics Identification Techniques

The security evaluation frameworks previously described are essentially aimed at

evaluating systems security from a high level perspective, including very large

classes of threats simultaneously. However, security evaluation can also be done in

smaller scales, looking for known kinds of security problems which when corrected

may indeed increase the overall level of security, even if they cannot express by

how much.

Static code analysis (Livshits 2005) is a technique where a program is used to

analyze the source code of a program in order to find vulnerabilities in the source

code. They usually are based on the search of coding patterns that normally can be

attributed to vulnerabilities (Chess 2007). Several static code analysis tools are used

in a series of experiments in Chapter 5.

Vulnerability scanners (Shahriar 2012) are programs designed to test systems

against a list of known vulnerabilities, listing the ones that are found and therefore

allowing them to be corrected. They are highly dependent on vulnerability

Chapter 2  Background and Related Work

30

databases, and therefore their effectiveness depends on them being constantly

updated. Vulnerability scanners are tools that can be employed as integrative parts

in the implementation of our benchmarking framework.

Penetration testing tools or fuzzers (McClure 2009) are tools also designed for

searching vulnerabilities. However, instead of being based on databases of known

vulnerabilities, they interact with the system by submitting series of random or

maliciously crafted input values in order to verify if the system has some kind of

input validation failure. Most of these validation failures can be used to attack the

system, and therefore can be considered vulnerabilities. Penetration testing is a

technique that can also be done manually, in which a security expert will study and

try to violate the input validation of the system (Long 2007). In this context, it is

usually called manual code inspection.

A whole set of alternative techniques for identifying vulnerabilities also exist,

ranging from direct attack injection approaches (Fonseca 2009, Antunes et al 2010),

software testing (Antunes and Neves 2012) to robustness testing approaches (Saad-

Khorchef 2007, Oliveira 2011). Most of these tools also can be used as components

in our framework, and security benchmarking would not be possible without such

capabilities. Nevertheless, their results and contributions in the context of

benchmarking and selection have to be considered carefully.

2.3 Threat Modelling

Threat modeling is a technique that naturally appears as part of any kind of security

and risk evaluation process, and started to take a formal shape in the last years. The

idea behind threat modeling is to identify what are the potential threats against a

particular scenario, and based on them determine what are the procedures or

security controls necessary to mitigate these threats (Shahriar 2012). This kind of

technique can be useful in the context of existing environments that must be further

secured, but is especially useful when applied during the design phase of a system.

In most security evaluation methodologies, identifying threats is always posed as

the process of brainstorming about the potential attacks and vulnerabilities that the

system might be susceptible to. Although the formal approach to this task also

requires some inventiveness to try to cover as much threats as possible, threat

modeling is currently evolving in the direction of being a methodology that helps

to exploit the threat space even further.

Formal approaches to threat modeling start to become considerably relevant with

the STRIDE approach proposed in (Howard 2002) and supported by Microsoft

(Swiderski 2004) as an important step to secure software design. STRIDE is

Security Benchmarking of Transactional Systems

31

actually an acronym that stands for a threat classification method based on six

different (possibly overlapping) ways of breaking the information properties. At

the same time that it is used as a threat classification, it also forces the analyst to

think about the ways that an attacker could implement each of the breakings. They

are the following:

 Spoofing – threats that involve an entity using an identity that is not its

own. Examples: stealing and using authentication information, pretending

to be a legitimate part of the system and feed bogus information to another

part.

 Tampering – threats that involve modifying data or another part of the

system. Examples: modifying an unauthorized file or replacing the code of

a particular function that is trusted (e.g. a DLL or an input validation

function).

 Repudiation – threats involving the denial of performing an action.

Examples: the exclusion of data and consequent denial of such action or

denial of performing a digital signature.

 Information disclosure – threats involving the exposition of information

to an unauthorized entity. Examples: reading other system user private

files, eavesdropping the communication of a remote connection or reading

the environment variables values of another operating system process.

 Denial of service – threats involving that a particular service becomes not

available to its legitimate users. Examples: defacement of a remote web

server, exceeding the processing capabilities of an application device or

changing the authorization rights of the users of an application.

 Elevation of privileges – threats involving an entity obtaining more

privileges than it was originally supposed to have. Examples: a regular user

obtaining administrative rights or an application executing operating

system commands.

Threat modeling in the STRIDE approach is performed as follows. First, it is

necessary to identify the assets that must be protected. To protect the information

properties within a system, it is necessary to protect the devices that carry the

information, the mechanisms that transmit the information and the means that are

used to access it (e.g. the network). For these to become more visible to the analysts,

it is suggested that a Data Flow Diagram (Stevens 1974) of the system being

analyzed is drawn (or alternatively an UML deployment diagram (Booch 2005)).

Further documentation about the scenario or application being analyzed is always

welcome, and the most decomposed it is, easier will be the analysis done over it.

Chapter 2  Background and Related Work

32

With all data flows exposed, the analysis proceeds by trying to envision ways that

each of the STRIDE threats can be applied to each of the data flows and elements

involved, even the most improbable ones. When all threats are documented, before

starting to address them, they are usually ranked regarding their overall risk, as to

address first the most relevant ones. To do this, another acronym for five different

aspects that can be related to a threat is used, called the DREAD score, which then

allows computing an overall risk value for the threat. Each of the DREAD

components is assigned a rating value ranging from 1 to 10, which extremes can be

interpreted roughly as follows:

 Damage Potential: if an attack realized this threat, what is the consequent

damage?

o 1 = Disclosure of irrelevant information

o 10 = Complete system and data destruction

 Reliability: does the exploitation of the threat always cause damage?

o 1 = It will cause damage only under the most improbable

conditions

o 10 = It will always cause the most possible damage

 Exploitability: how easy is it for an attacker to exploit it?

o 1 = It requires advanced programming and networking knowledge

and physical access to a protected area of the organization.

o 10 = Just a web browser and internet connection

 Affected Users: How many users potentially can be affected by it?

o 1 = Just one user which mostly does not use the system

o 10 = All users

 Discoverability: how easy is it to discover this threat?

o 1 = Finding out about it requires knowledge of the inner workings

of several closed source components and access to confidential

parts of the system

o 10 = The threat is available in public domain and fairly obvious

The overall risk of a threat is computed as the average of the scores of all

components, and the most risky ones are considered first. After that, it is possible

to analyze each threat and evaluate if there is already a mechanism in the system

that prevents it from occurring or not. Any threat that does not have a mitigation

mechanism is considered a vulnerability of the system, which can be severe or not.

Evaluating if threats are or not already mitigated in a system can be a challenging

task on its own.

Security Benchmarking of Transactional Systems

33

Despite the method of analysis used, techniques that deal with threats usually fall

within one of the following four different categories (Dorfman 2007):

 Avoidance – when a particular method is employed to completely eliminate

the possibility of someone exploring the threat;

 Reduction – when the probability of exploring the threat is diminished

instead of eliminated, what in some cases is the only alternative;

 Transference – when the risk is actually transferred for another party to

solve. For instance, insurance is an example of transference of risk.

 Retention – the idea of simply accepting the risk and deal with the attack if

and when it occurs.

Although the STRIDE approach does not explicitly provide formal ways to

evaluate the threats and their mitigations individually, several alternatives exist in

the literature. One popular method is using attack trees, which was suggested by

Bruce Schneier in (Schneier 1999) and resembles the use of fault trees (Roberts

1981) for the analysis of system dependability.

The process of threat modeling using attack trees starts by the definition of a set of

attack goals, which are considered the final objective of an attacker. An attack goal

could be, for instance, reading an encrypted email, executing software in a

particular remote machine or making a machine become unresponsive. The

instantiation of the threats identified in a STRIDE approach might be considered as

attack goals. The root of an attack tree is the attack goal, and the analysis start by

identifying all methods that can be used by an attacker to accomplish the goal,

which are state as children nodes. There might be several alternative ways of

achieving goals or there may be necessary combined steps, which defines OR and

AND nodes. A goal (or sub-goal in the case of a children node) is achieved if all

AND nodes are achieved or if any OR node is achieved. The process continues

recursively for the sub-goals, expanding the tree until the leafs are steps considered

simple enough to be evaluated.

A complete and correctly designed attack tree can be used for several different

security analyses. It shows all ways that an attack can be accomplished and

particularly any path from the root node to a plausible leaf can be considered a

vulnerability of the system. The tree also helps in the sense that the attack can be

avoided at any step of the path, providing different mitigations strategies. An

advantage of the method is that when a goal depends on an intermediary step that

has several possible ways of being achieved, mitigating this particular intermediary

step avoids several different vulnerabilities simultaneously.

Chapter 2  Background and Related Work

34

Although complete, expressing attacks as trees might not be the most flexible

approach, meaning that a complex attack tree can be very difficult to analyze. One

way to allow the approach to be more flexible is to, instead of trees, use Petri nets

(or place/transition nets) that are directed graphs used to model transitions with pre

and post conditions, as suggested in (McDermott 2000). Coloured Petri nets, which

use coloured nodes as an additional formalization expression, are also proposed as

a way to extend the formalization even further (Helmer 2007).

Misuse cases (Alexander 2003) and abuse cases (McDermott 1999, 2001) are two

other formal ways of expressing threats that can be useful to help understanding

and identifying threats within a system. These methods, which are very similar with

minor distinctions, are based on use cases, which are part of the UML language,

being suitable to complement a system specification that already uses this language.

Diallo in (Diallo 2006) presented and compared misuse and abuse cases with attack

trees and the common criteria specification language, pointing out the advantages

and disadvantages of formalizing threats in each of the approaches. Not

surprisingly, this work shows that they are actually complementary, neither of them

being the optimal solution for all perspectives.

In all approaches for threat modeling, despite the formality of each one, a

significant amount of security knowledge is still required. This happens because it

is always necessary some creativity to be able to identify all the possible ways the

system can be attacked, and the most reliable way to achieve this creativity is

through security experience. To help with this problem, another branch of

investigation is becoming more and more popular, which is the study of attack

patterns (Hoglund 2004). An attack pattern is an abstract mechanism for describing

how a type of observed attack is executed and providing a description of the context

where it is applicable. A formal study of repeating attack patterns used to break

software was first presented in (Hoglund 2004), and clearly is an approach that can

be applied to any kind of attack. Although fairly new, there is already a considerable

amount of investigation regarding ways of expressing attack patterns (Pauli 2008)

and using them (Gegick 2005, Gegick 2007).

The Common Attack Pattern Enumeration and Classification (CAPEC) sponsored

by the Department of Homeland Security of the United States (National Cyber

Security Division 2008) is an initiative that has as goal to try to build together with

the community a comprehensive attack pattern database. The main idea behind the

project is that such a database could be used to support any kind of security analysis

process and evaluation, as it will provide an extensive attacker perspective (Barnum

2007).

Security Benchmarking of Transactional Systems

35

Possibly the most comprehensive threat modeling approach already proposed is the

Trike methodology (Saitta 2005). Trike is a framework for threat modeling built

from the experiences gathered from all other methods that were already proposed.

It is a formal approach designed to be complete and had two main goals as

motivation. First, it is known that extensive threat modeling is a very long process

that demands lots of documentation and careful analysis. Trike is designed to allow

the automation of the biggest most portion of the process possible, meaning that

the analysts can focus where it is really needed. Second, identifying all threats

within a particular system usually demands very extensive security knowledge. By

using a base attack library (provided by the framework), Trike defines a process to

generate all possible threats against the described system in an automated manner,

as to miss the least possible number of threats. To achieve both these goals, the

Trike framework was proposed together with the implementation of a tool that

implements the methodology, but this is still under alpha stage development (Saitta

2007).

Trike differs from other threat modeling technologies from a number of ways.

Instead of using an attacker perspective, Trike models the threats from a defensive

perspective meaning that instead of considering attacks, it considers actions that

should not happen. The basic elements of Trike are actors, assets and actions. The

analyst identifies and models the actions that the actors are supposed to do over the

assets and from these modeling, two types of threats can be exhaustively

enumerated: 1) all actions that are not supposed to happen are considered elevation

of privileges threats and 2) actions prevented from happening are considered denial

of service threats. This automatic threat generation is possible because the

methodology is based on the principle that all actions can be decomposed in smaller

actions that ultimately are “create”, “read”, “update” and “delete” actions over

assets. This way, for a consistent description of the systems intended behavior, the

complementary action space can be systematically identified, which cannot be done

in other more ad hoc methodologies.

Trikes main advantages can also be considered its main disadvantages. To allow

for automatic threat generation, the description of the system must be absolutely

accurate, which can take a lot of work. Any missing details will cause either for the

enumeration of non-existing threats or the failure of identifying important ones.

Another problem is that the number of threats generated tends to grow

exponentially with the number of assets within the system, which causes a serious

scalability problem for analyzing complex systems. Also, threats involving

elements outside the system boundaries are also missed in the algorithms, and must

be considered in a traditional manner. For these and other reasons, the authors state

Chapter 2  Background and Related Work

36

that the framework is still under development and advise care in the application of

the methodology and of the supporting software.

2.4 Benchmarking

A computer benchmark is a standard procedure that allows assessing and

comparing systems or components according to specific characteristics (Grey

1993). Historically, the most common goal of benchmarking of computer systems

was the evaluation of performance. In particular, methods for evaluating the

cost/performance trade-off were much required as new computer architectures and

systems were being designed (Steen 1989). Nevertheless, the idea of assessing

computers, software and processes in a way that allows comparison between

different solutions can be applied to any aspect that can ultimately be labeled as

“good” or “bad”.

A useful characteristic of performance benchmarking is that it is easy to come up

with quantitative metrics capable of expressing the speed in which a system

executes tasks. When this is possible, a good/bad comparison can be trivially done,

only by numbers comparison. However, not all aspects are easily translatable to

quantitative metrics, and security is one example (Torgerson 2007). The problem

is that, even though it is easy to picture a scenario that can be labeled unanimously

as “very good” and another one that can be unanimously labeled “very bad”, the

ones in between are open for subjective interpretation. As an example, it is not rare

to find magazines inventing benchmarks (e.g. performance, usability, security, etc.)

and applying them to off-the-shelf software, authoritatively labeling them as good

or bad. The problem is that this kind of benchmarking depends exclusively on the

opinion of the evaluator and it is fairly easy to disagree with the results.

To be useful, a benchmark must be reliable in a sense that its methodology and

results should not be open for alternative interpretations. In particular, Gray

suggests that a good benchmark must meet four different criteria (Gray 1993):

 Relevance – it must be representative of the most typical operations within

the problem domain. A benchmark that applies only too small subset of the

problem domain is not useful as it allows limited comparison.

 Portability – being portable amplifies the benchmark usefulness by

allowing comparison of a wider range of different systems and

architectures.

 Scalability – the benchmark should be scalable in the sense that it should

not depend on the size of the system being evaluated.

Security Benchmarking of Transactional Systems

37

 Simplicity – the benchmark should be easy to understand, otherwise it will

lack credibility.

Vieira states six properties for a useful benchmark, restating and complementing

the previous four (Vieira 2005a). The rationale is that, if carefully validated, having

these properties will more easily demonstrate the benchmark usefulness and allow

its acceptance by a larger number of users. These properties are representativeness,

portability, repeatability, scalability, non-intrusiveness and simplicity of use.

Portability and scalability bears the same definition as in (Gray 1993) and

representativeness can be understood exactly as relevance.

Repeatability is related to the ability of a benchmark to always produce the same

overall results for the same system (in non deterministic systems, repeatability

should be seen in statistical terms), no matter the number of times it is executed

and by whom. This property is extremely important for the credibility of the

benchmark; otherwise its results could always be disputed.

Non-intrusiveness is related to the quality of requiring minimum changes in the

system being evaluated (or none at all). The reasoning is that if the benchmark

process requires significant changes in the system, then one is not benchmarking

the original system anymore, but rather the modified one. This property is a big

concern for automated benchmarks because they usually imply installing and

executing some benchmarking software. The software will inevitably consume

system resources, and these should be taken into account in the results. The

installation of this software should not require system modifications for the same

reason.

At last, simplicity of use is related not only to the benchmark being easy to

understand, but also easy to apply. A complex benchmark would never appeal to a

large number of users, and therefore its usefulness would be compromised.

2.4.1 Performance Benchmarking

Benchmarking performance was historically so relevant that it is possible to find a

large number of organizations proposing these types of benchmarks for several

distinct domains. The Transaction Processing Performance Council (TPC 2012) is

a consortium of vendors defining benchmarks for transaction processing and

database domains. The System Performance Evaluation Cooperative (SPEC 2012)

is a consortium that defines benchmarks for scientific and workstation domains.

The Perfect Club (Cybenko 1990) is a consortium of vendors and universities that

define benchmarks for the scientific domain, with particular emphasis on parallel

or exotic computer architectures. The EuroBen group (Steen 1993) established a

Chapter 2  Background and Related Work

38

series of benchmarks for the evaluation of high-performance scientific computers.

The Parallel Benchmarking Working Group (Dunlop 1994), today the

PARKBENCH committee, is a joint initiative for benchmarking parallel systems.

Performance benchmarks (including the ones previously mentioned) typically fit in

a general profile that includes three particular components:

 Workload – a representative set of work that must be executed in the system

being evaluated during the benchmark run. Work, in this sense, depends on

what the benchmark is supposed to evaluate. In practice, the workload

represents what would be required from the system in a typical real

scenario, and the most representative it is the better.

 Metrics – a set of performance metrics that must be extracted from the

system as to characterize the effect of the workload on it. The set of

measures will depend on the kind of workload being executed and, most

importantly, on what are the factors that the benchmark is designed to

evaluate.

 Procedures and rules – the rules and procedures defining the steps that

must be followed during the benchmark run. This set of rules establishes

how the workload is executed, how the measures are collected and how the

final benchmark results are computed. They must be clear, complete and

unambiguous in order to allow the benchmark to be repeatable.

2.4.2 Dependability and Resilience Benchmarking

Although most performance benchmarks fit within the profile above,

benchmarking other qualities of a system might require different approaches. The

DBench project (Kanoun 2001; DBench 2000) was an initiative by several

universities and organizations to develop dependability benchmarks. The

justification for such project is that performance benchmarks are significant only

in controlled environments, where the system suffers no adverse effects.

Dependability benchmarks, on the other hand, would provide reliable indicatives

of how a system degrades under the occurrence of faults and how is its capability

to recover from them. Being able to evaluate systems from a dependability point-

of-view is a very important because in the real world, faults are expected. For

example, no one would choose a high performance system that simply crashes in

the event of a simple fault. Thus, a way to reliably identify how different systems

behave under the presence of the most common faults is extremely relevant.

A multitude of dependability benchmarks can be found in the literature for a very

large diversity of domains (see (DBench 2000)), and a key characteristic of

dependability benchmarking is the addition of a faultload, which represents the set

Security Benchmarking of Transactional Systems

39

of typical faults that the systems in a particular domain are subjected to and a set of

a dependability metrics, that aim at evaluating the degradation of the system

performance and the efficiency of the dependability mechanisms. In Section 2.5.1

we present a deeper discussion about the way dependability benchmarking works.

With the evolution of computer systems, the dependability mechanisms they had

also evolved and today we have the emergence of adaptation mechanisms (Almeida

2011). Basically, instead of simply coping with a set of faults, now the systems can

adapt to a wider range of environmental changes in order to keep the performance

as high as possible given any imposed conditions. The evolution of the

dependability mechanisms again created another set of difficulties to benchmarking

of systems in general because now measuring the performance degradation due to

faults is not enough anymore, as the systems adapt to the imposed environmental

stresses of all sorts a wider range of conditions that are not only limited to faults

have to be considered, and particularly the ability of evaluating the overall

efficiency of such adaptation mechanisms becomes a crucial problem, as we have

to account for the degradation imposed by the same additional algorithms and

modules required by them. In the literature, the concept of faultload evolves into

the concept of changeload (Almeida 2012a, Almeida 2012b) that is designed to

model all the stressful conditions that the system being evaluated will be subjected

to under real conditions.

2.4.3 Security Benchmarking

A very initial attempt to devise a security benchmark that could hold up to scientific

standards can be found in (Vieira 2005b). This work proposes a methodology for

benchmarking the security mechanisms of database engines, which is done through

a set of classes. The benchmark defines a set of tests that are used to characterize

the mechanisms, and from the results of these tests a class is assigned to the engine.

The test set is generic in the sense that any relational DBMS can be evaluated, and

the approach is applied to two engines, Oracle 9i e PostgreSQL 7.3. Although very

limited in scope, the approach appears to have everything that is required for a

useful benchmark.

The security benchmarks proposed by CIS (presented in the Section 2.2.3), on the

other hand lack several of the properties that are expected from a benchmark.

Unlike the security benchmark of (Vieira 2005b), they are too specific for each

version of the software for which they are designed. The problem is that, as

benchmarks, their results are unreliable. First, even when a system follows all the

configuration suggestions proposed, stating that it is more secure is problematic

because security depends also on the way the system is used and on the

Chapter 2  Background and Related Work

40

characteristics of the surrounding environment. Also, stating that a system is more

secure because it follows more suggestions might be misleading, because

sometimes some specific suggestions might have no influence on this particular

environment. Moreover, all of these applications have security limitations, and

these are never accounted for. Nevertheless, this is not to say that these suggestions

are not useful, but that certainly means that they are hardly benchmarks.

The recently finished Amber project (Assessing, Measuring and Benchmarking

Resilience) (FP-7 2010), funded by the European Union under the FP7 program,

gathered the experience and expertise in benchmarking from an international group

of researchers, and successfully raised awareness of the lack of security

benchmarks proposals. In the Research Roadmap that resulted from this project

(Bondavalli 2009) the authors identify several research goals and suggest a strategy

aimed at eventually achieving research mass able to accomplish the definition of

security benchmarks. Their proposal is based in the expansion of the extremely

succesful model used for dependability benchmarking, in which fault injection

techniques are used to evaluate the behavior of the system under faults (Bondavalli

2009). Their assumption is that devising a representative attackload and proper

security metrics allow the specification of a security benchmark following the same

approach.

The literature already shows a number of research works based on attackloads. In

most cases, the main approach is to model attacks in a similar way to faults, using

attack injection techniques in an attempt to evaluate security aspects of systems. In

(Friginal 2011) the authors model a few attack techniques in order to complement

the analysis of COTS under the specification of ISO/IEC 25045 standard. In

(Friginal 2009, 2010) we find attack injection techniques being used to assess ad

hoc networks. It is important to emphasize that such approaches are extremely

useful and interesting, but are distant from the goal of a dedicated security

benchmark that is capable of measuring security level of the evaluated system.

Instead, the techniques obtain information about the dependability of the systems,

the impact on performance of the system and of the security mechanisms and are

also able to identify which systems can be breached and which cannot. However,

selecting the most secure system is something that is extremely risky to do using

only the results of such techniques, as we explore in the next section.

A much bolder attempt at actually measuring the security level of systems can be

found in (Mendes 2011), where the authors take a database of known vulnerabilities

and use it to rank the evaluated systems in terms of the risk that these vulnerabilities

incur in the system. Although this approach is useful, and could be an integrative

part of a security benchmark, selecting components based on this approach can also

Security Benchmarking of Transactional Systems

41

be misleading, particularly because vulnerabilities can be patched, and after they

are patched they give no real clue of the real security of the remaining system.

Attack injection (Antunes et al 2012, Fonseca 2009) and vulnerability finding

(Shahriar 2012) are techniques that discover actual attack paths that can be used by

attacker to harm systems, and this is important. However, we have to be extremely

careful when interpreting what an existing vulnerability of attack path means to the

security of a system, or else you incur in the real risk of expressing things that are

actually not true, as we discuss in the next section.

2.5 Security Benchmarking as an Open Problem

Security benchmarking is still an open problem. Even though the community is

clearly trying to move forward in the proposition of alternatives to devise solutions

for this problem, the reality is that the path that security research is taking on this

matter leads to several difficulties that will be extremely hard to overcome, due to

the particularities of security that are not being taken into account. In the next

sections we will discuss such difficulties, and begin the discussion of the

measurement of trust, as an alternative to current approaches.

2.5.1 Dependability Benchmarking vs Security
Benchmarking

The most common dependability benchmarking model in use today (Kanoun 2008),

and which is slowly becoming an accepted standard as part of the TPC benchmarks

(TPC 2012), is based on the definition of the following set of elements:

 A representative workload, which should represent the average stress and

environment conditions that the system under test will be subjected to.

 A representative faultload, which includes typical faults that the system

may face in the field.

 Performance and dependability metrics.

 Guidelines and procedures to run the benchmark and collect the metrics.

The dependability benchmarking model is built upon already established

performance benchmarks, as discussed before. The transition is depicted in Figure

2.2. Typically, the benchmark execution is divided in two experiments: the golden

run, where performance metrics are collected during the application of the

workload, and a subsequent run where the system is subjected to the faultload

concurrently with the workload (Kanoun 2001). Besides collecting dependability

metrics relative to the fault tolerance of the system, the main goal of the second run

is to obtain performance metrics under faulty conditions, which, when compared

Chapter 2  Background and Related Work

42

with the performance during the golden run, allow the evaluation of the overall

system degradation.

Figure 2.2 Dependability vs performance benchmarking

Possibly driven by the undisputed success of the dependability benchmarking

model, the scientific community has shown a general feeling that such model could

be successfully expanded and applied to the security field. For example, the Amber

research roadmap (Bondavalli 2009) makes the following suggestions as short-term

goals (should be accomplished in 3 years’ time frame):

“Reference attackloads and injection tools to be used in the development

of security benchmarks: Finding whether representative types of attack

patterns and security vulnerabilities exist through field studies and

analysis of information available; Definition and validation of reference

attackloads for different security benchmarking domains and classes of

targets; Development of tools to inject reference attackloads in different

classes of benchmark target systems.”(Bondavalli 2009)

It is clear that the Amber consortium feels that the dependability benchmarking

model may work for security benchmarking, as long as representative attackloads

are defined (in the same lines as representative faultloads), and that the community

is able to design a representative set of security metrics that allow characterizing

the system regarding its ability to prevent the attacks (or their effects) contained in

the attackload.

Assuming that there exists a set of security metrics with the above capabilities, the

problem with the approach begins with the definition of what is a representative

attackload. Obtaining a representative faultload is already a very complex problem

(Arlat 2002). For example, should we consider a flooded room as a representative

“fault”? It surely depends on where the system is, and how critical is the service it

provides. But assuredly a faultload that does not include a flood as a potential fault

Security Benchmarking of Transactional Systems

43

(despite the domain benchmarked) will not considerably hinder the benchmark

representativeness. The fact is that every single fault included in the benchmark

cumulatively renders it more representative, and any potential fault to which the

system is tested against provides valuable information to the system owner. We

may say that there is some fuzziness in the border dividing a representative faultload

from an unrepresentative one, and that fuzziness does not have to be fully cleared

for the benchmark to be useful.

In the security domain, things are more complex. Suppose, for instance, that it is

possible to determine a representative attackload for a particular domain. Using the

dependability benchmark model enhanced with an attackload and security metrics,

we apply the benchmark to choose the most secure of two systems. After evaluating

the behavior of the two systems subjected to the attackload, any conceivable set of

security metrics is expected to provide, at the very least, one kind of security

information (even if able to express more): either the systems are completely

immune to the attackload, or the systems are breached. What can we learn from

each of these results? If a system is breached, the disclosure of the report of the

benchmark run would make that information public, and it would become available

to anyone with knowledge of the attackload. No sane person would choose a system

that has a known security vulnerability, particularly because knowing that the

system can be attacked is equivalent of saying that the system is essentially

insecure. If confidentiality was lost, integrity was lost or the system became

unavailable (to limit our discussion to these basic security properties) then the

system was successfully breached and attributing a “level” of security when one

cannot maintain the security properties makes no sense. On the other hand, if the

properties were not breached, then the attack was not successful, and metrics that

represent the degradation of the system due to the interference of the attacks are

either performance or dependability metrics, but they are not security metrics, and

this is true even if what we are measuring is the degradation of the security

mechanisms themselves. In the end, if both systems are vulnerable, the benchmark

user is left with little options, even if one of them is “slightly less attackable”,

whatever that may mean. But then, what if both systems are immune to the

attackload? Are both systems 100% secure, or the attackload is unrepresentative?

Which is more likely? In fact, both answers have limited usefulness.

The previous discussion assumes that it is possible to find a representative

attackload. But when security is the issue, the dimness between a representative

attackload and an unrepresentative one may not be tolerable. A single missed attack

is enough to turn the most secure system in the world into the easiest one to break.

Furthermore, a representative attackload would need to take into consideration the

Chapter 2  Background and Related Work

44

attacker’s perspective, and thus the capabilities of most probable attackers (at least

the technical capabilities, even if we ignore the financial ones), which usually are

impossible to predict beforehand. Predicting how people will think and act in the

future is simply too complex, and odds are that the exact achievement of a

representative attackload automatically renders it unrepresentative.

Perspectives regarding the set of security metrics are also not promising. In

(Littlewood 1993) the authors proposed trying to measure the effort-to-breach a

system, which would appear interesting when allied with a representative

attackload. This kind of metric assumes that there is a value that varies between

zero effort and a full breach effort, and would be somewhat useful to administrators

and developers. The idea was likely borrowed from the cryptographic community,

where encryption algorithms strength is evaluated based on the effort that the

attacker has to do to break it. What is generally missed is that at any time, and given

a particular technological situation, any cryptographic algorithm is assigned by the

research community a binary status: either it is broken or it is not broken. This holds

even for algorithms that have theoretical shortcomings that allow finding its

solution faster than brute force, as the encryption algorithm AES (Nikolić 2009)

(which has some theoretical shortcomings, but is not broken), and the cryptographic

hash function SHA1 (Wang 2005) (which is considered broken even though no real

break was computed yet).

From a benchmarking perspective, the most information you can get from an attack

- and therefore an attackload - is whether it works or not, which amounts to the fact

that the system has a vulnerability that is not covered by a compensating defense

mechanism. In other words, if a target is submitted to an attack that is successful,

the most important usable information that you get is the fact that it is vulnerable

to this attack. In a benchmarking context, whenever a benchmarked target is found

to be susceptible to an attack, the likely procedure will be to correct or compensate

the vulnerability, something that in the end will alter the benchmarked target. So,

any security metric based on the amount of attacks that are successful is misleading

because the actual system that will be used in the field will be the corrected version

of the benchmarked target, and not the flawed one. If we assume that we could fix

one system, then we have to assume that we could fix all benchmarked targets. The

problem is that, now, we end up with a set of systems that is resistant to all attacks

contained in our attackload, and the metric will result in the same value for all these

targets, leaving the problem of security comparison unsolved. Moreover, attack

effects will vary depending on the system usage and goal, and even if we could

measure these, they most likely have no relation to the probability of the system

being vulnerable to that specific attack, so they will not help solving the problem.

Security Benchmarking of Transactional Systems

45

In contrast, this model works for dependability benchmarking because the injection

of faults affords an opportunity to gain knowledge on the behavior of the system if

and when those faults occur in the field and, if faults occur, the metrics will

characterize their overall effects. For instance, the benchmark characterizes what

happens after a disk effectively fails. In security, the goal is more to identify if we

are secure during future attack events, and less to minimize the amount of damage

resulting from a known successful attack. Comparing to dependability

benchmarking, it would be like trying to understand the ability of the system in

never allowing a disk to fail in the future. We know that disks will fail, and there is

no correction/improvement on the system that may prevent, ever, a disk from

failing. Vulnerabilities, on the other hand, when found should be corrected or

circumvented.

In other words, the dependability benchmarking model does not seem to be the

most adequate for security, mostly because the goal of a useful security benchmark

is slightly different from the one of a dependability benchmark. Although the

knowledge of known attacks that are able to breach a given system is extremely

valuable, allowing to correct flawed systems, this information does not help to

select between candidates because if we allow all the candidates to be corrected

according to the knowledge our attacks, we end up with several systems that

measure equally concerning attackload based metrics. In the end, we are still left

with the problem of choosing the system that will behave better when subjected to

active, ingenious and malicious minds that have beforehand the entire knowledge

about any existing security benchmark. To solve this, we need procedures and

metrics that are not based only on known attacks and vulnerabilities, but that relate

to the probability of the existence of unknown vulnerabilities and the ability of the

system to resist to unknown attacks.

2.5.2 Benchmarking Trust

It is interesting that back in 1993, Littlewood (Littlewood 1993) cites the Orange

Book (DoD 1985) levels as “represent(ing) levels of trust, an unquantified belief

about security”, toning it as a downside of the approach, while at the same time

proposing effort-to-breach as a useful quantifiable metric. Although the Orange

Book levels are far away from being useful for benchmarking and comparison,

maybe they were more on the right track than realized.

The security community already noticed that the words trust and security have been

more and more used interchangeably (Marsh 2005), as if a trusted system was a

secure system, and security necessarily implied trust. This is a problem, as this use

Chapter 2  Background and Related Work

46

of terminology is mixing up concepts that are necessarily different and actually

complementary.

A secure state is the state of “not being able to be attacked” or “not being

vulnerable”. Although it is possible to come up with “levels” of how vulnerable the

system is (i.e. levels of security), the definition of each of these levels is likely to

be static, and the state will either be one or the other. The fact that a certain attack

is possible effectively means one is less secure, even though it is hard to include

the notion of future unknown attacks and unknown vulnerabilities in the concept of

a definitive security state.

Trust, which is an assumed reliance on something or someone (McKnight 2006,

Sullivan 2010), on the other hand, can be thought of as a continuous concept, which

can be increased and decreased in a variable amount, depending on the

circumstances and events. This makes it automatically suitable as a metric for

comparison and, therefore, for benchmarking. Also, the work done in trust

quantification is far ahead than the research in security metrics, and approaches for

measuring trust can be already found in the literature (Ray 2004). We believe that

trust is a concept that more naturally accommodates probabilities and uncertainties

related to unknown factors.

Using a real life analogy, we happen to trust more someone the more evidence

he/she provides that he/she can be trusted. Also, the degree of increased trust varies

with each situation. For instance, if you pass by a person in the street and he does

not steal from you, your trust in that person may increase a little bit. If the same

person saves your life from being run over by a car, it may increase more. Both

levels of trust are useful, as in one case it gives you the liberty of not being

particularly afraid in a subsequent encounter, and in the other you may consider

depending your life upon the person. Nevertheless, in neither case this trust

guarantees that the person will not hit you with an axe when you turn your back

away a next time. Notice that trust allows one to make informed decisions, but

without providing any guarantees. This is probably the main concern of

(Littlewood 1993) when considering trust levels as a downside of the Orange Book.

However, the security community is already comfortable with the idea that there is

no 100% secure system, so this may not be an unbearable problem if this issue is

dealt with correctly, which is something that our benchmarking framework does.

Regarding benchmarking, when we shift the focus from measuring security to

measuring trustworthiness, several differences are evident. The most important and

controversial one is exactly the fact that trust does not necessarily imply security,

even though it may suggest it. So how could it be considered an alternative? First,

Security Benchmarking of Transactional Systems

47

it is unlikely that we will ever be able to provide definitive guarantees against future

unknown attacks. Also, vulnerabilities are things that are not definitive, and the

simple advancement of security knowledge creates vulnerabilities where before

there was none. Basically, certain characteristics start being vulnerabilities once

someone finds out how to exploit them in an attack scenario. In this sense, it may

be impossible to have more than trust in our systems. Second, and more important,

aside from guarantees, a trustworthiness benchmark accomplishes all goals that

would be required from a security benchmark in an easier manner. On average, a

more trustworthy system will be more robust to attacks and less likely to be attacked

than a less trustworthy one. Much like in dependability benchmarking, averages are

the best possible predictions we can make about the future conditions under which

the system will operate.

By accepting these fundamental limitations in security evaluation, we find out that

a trustworthiness metric should be based on the amount of evidence available that

the system is secure. More evidence of security mechanisms, processes,

configurations, procedures and behaviors (we may call each of these security

elements) results in a more trustworthy system. Also, the more widespread or more

narrow the protection provided by the existing elements, the more the degree of

trustworthiness varies. In a way, we would be measuring how wide the umbrella of

security elements of the system is, or its defensive surface (in contrast to the attack

surface concept (Manadhata 2007) suggested by an attackload). The larger the

umbrella, the less likely there is a hole somewhere, and more trust one can

justifiably put in the system.

One important characteristic of this approach is that the amount of trustworthiness

of each security element has to be correct only in a relative way (i.e. the exact values

are unimportant). For each security element, trustworthiness may be added to the

system in the amount of known attack paths that it covers. It may also be weighted

by its own constituent trustworthiness (e.g. does the element usually works as

expected and has proven to prevent real attacks?). Here, probability of failure of

security elements may play a part, and a whole lot of ideas can be incorporated to

the concept, which is more deeply discussed in the next chapter.

2.6 Conclusion

This chapter presented an overview of the state of the art of several topics related

with the rest of the thesis, ranging from security evaluation frameworks and

methodologies to the state of the art and the evolution of benchmarking. We

devoted particular attention to the reasons why current approaches to dependability

Chapter 2  Background and Related Work

48

benchmarking do not fit the requirements of security benchmarking, which was the

main motivation for the framework we propose in the next chapter.

The security evaluation techniques covered are closely related with benchmarking,

as they are also methods for assessing high level security aspects, and may be used

in situations where benchmarking is not completely necessary (or not applicable).

The chapter focused on three relevant methodologies, which can be viewed as

complementary ways for evaluating security: the Common Criteria, the OCTAVE

method and the Center for Internet Security Benchmarking approach. Two of those

contributed to some aspects of our benchmark implementations (namely the

Common Criteria and the CIS benchmarks). Other complementary security

evaluation methodologies and frameworks are based on variations of these were

mentioned for completeness. A few specific techniques, also important to our work,

were presented. These techniques are not full security evaluation frameworks, but

are used to evaluate more specific security aspects and play important roles in

security benchmarking, such as vulnerability finding techniques, static code

analysis and penetration testing.

Another key topic covered was threat modeling. Even though we do not apply

directly any specific threat modeling technique in our work, we do partially include

one in the process of creating a list of threats for transactional systems

infrastructures (presented in Chapter 4).

As the goal is to provide a security benchmarking framework, this chapter also

included a detailed discussion on benchmarking topics. We described what is

traditionally expected from a benchmark, including some hints related to the

evolution of the concept over the years. Essentially, benchmarking as a scientific

research topic started with the goal of evaluating and comparing performance.

However, in the last decade, the concept evolved towards the evaluation of

dependability attributes of computer systems. This work appears exactly in a

moment where the research community is beginning to extrapolate the

methodologies, lessons and achievements from dependability benchmarking

research to other aspects, including security. However, as discussed, the problem

of benchmarking security is quite different from benchmarking dependability

attributes. Finally, the chapter discussed the concept of benchmarking trust, namely

on how it can be related with security aspects, which is an idea that we explore

extensively in our framework.

49

3

A Framework for
Security

Benchmarking

The set of metrics is the central and indispensable component of a benchmark.

Conceiving a security benchmark would be a trivial problem if the definition and

collection of security metrics were easy tasks, which is not the case. In fact,

Enterprise-Level Security Metrics were included in the 2005 Hard Problems List

prepared by the INFOSEC Research Council, which identifies key research

problems related to information security (INFOSEC 2005). Although there are

many proposals of security metrics for computer systems, so far no consensual

general security metric has been defined (Jansen 2009).

Ideally, a security metric should portray the degree to which security goals are met

in the System Under Test (SUT) (Payne 2006). The expectation is that the

comparison of the result of measurements performed on two distinct systems – or

the same system in distinct states or circumstances – provides enough security

information to allow the system administrator/owner to make informed decisions

regarding the selection of alternatives or necessary improvements. Furthermore,

although the exact kind of output we expect from a security benchmark depends on

the goals of the SUT and on the context in which it is (or will be) used, that output

should always include information about the kind of security problems the system

may have, and should allow the identification of the parts of the system that are

more prone to security breaches (and therefore deserve more attention).

Chapter 3  A Framework for Security Benchmarking

50

One of the biggest difficulties in designing such a generic security metric is related

to the fact that the security level of a system is highly dependent on what is unknown

about the system (Torgerson 2007). For example, vulnerabilities that exist in an

application, but that nonetheless are not perceived by the developer/administrator,

are the ones that (ideally) should influence the security metric the most; otherwise

the metric will be of reduced usefulness, as decisions based on it will not take those

vulnerabilities into account, thus leading to erroneous or misleading conclusions.

This issue becomes even more challenging when we consider complex scenarios,

with many devices, software and people involved, and where security

vulnerabilities may exist not only because of faulty elements, but also due to the

combination of the characteristics of these elements, including the environment

around and the existing interactions (e.g. a database accessed by several

applications and users). Given these factors, it is extremely hard to devise a numeric

value that correctly expresses the actual security level of a computer system in a

way that allows making meaningful and safe comparisons.

Insecurity metrics based on risk try to cope with the uncertainty associated with

measuring the security level of a system by incorporating the probability of attacks

(Jelen 1998). Risk is usually defined as the product of the likelihood of an attack

and the damage expected if it happens. In principle, this metric can be used to

decide if the hazards to which the system is exposed are acceptable or not, and also

to help selecting the ones that should be mitigated first. The problem with this

approach, in addition to the already hard problem of compiling an exhaustive

enough list of possible attacks, is that it is very easy to underestimate or

overestimate the two values (the probability and the damage), exactly for the same

reasons that a general security metric is hard to define and compute: again, these

values are highly dependent on what is unknown about the system This is,

obviously, a major problem when risks are used for supporting security related

decisions.

An additional problem of risk-based assessments is the fact that they rely too much

on external information. Basically, the probability of attacks is directly related with

“the probability of an external agent having some interest in attacking the system

to begin with”, and the potential damage is biased by the possible interests of the

attacker, which certainly varies wildly. Even if one manages to get accurate values

in a certain point in time, the context evolves and changes depending on factors

that have absolutely nothing to do with the system that is being assessed (Grey

1993).

Security Benchmarking of Transactional Systems

51

In essence, traditional security and insecurity metrics are hard to define and

compute (Torgerson, 2007), as they involve making isolated estimations about the

ability of an unknown individual (e.g. a hacker) to discover and maliciously exploit

an unknown system characteristic (e.g. a vulnerability). Moreover, these metrics

are often expected to depend only on information about the system itself, while at

the same time incorporating the capabilities, behaviors and intentions of potential

attackers, as if the information about the system could be enough to define the

behavior of a potential attacker. In other words, this perspective starts from the

assumption that a security metric can be made universal, in the sense that it will

have the same value when seen from different perspectives (e.g. the administrators’

versus the attackers’ points of view). This will never be true as it is virtually

impossible to know all attackers’ capabilities, and the number of ways a system can

interact with its environment is practically infinite. We start the definition of our

framework by assuming that this approach is unfeasible, and therefore we have to

redefine the whole idea of benchmarking when it comes to security aspects.

When pondering over security benchmarking, we have to be careful to never lose

sight of some fundamental aspects. One of those aspects is that we do not want the

portrayed level of security to vary depending on external variables, or else two

distinct measurements will not be comparable. To illustrate how easy it is to miss

this point let’s discuss the case of two “common” incident metrics found in

organizations, and that are very frequently misinterpreted as “security metrics”.

One we call NVD, the number of viruses detected in all computers of an

organization, and the other is NSD, the number of spams/phishing detected in the

overall bulk of email that circulates in the network (Kumaraguru 2007). Let’s

assume that these numbers are collected with some predefined periodicity that

allows us to compare two measures separated by one period (e.g. one month).

NVD and NSD are interesting administrative metrics that can be used in practice

to help in the security activities of an organization. For instance, if NVD or NSD

numbers are high, this may lead to the decision of buying or implementing more

security precautions against spam and viruses, allocating money for that task. In

this case, such decision is justified by the simple fact that the number of incidents

is high. In general, thresholds can be defined and used to raise awareness within

the organization, in order to improve the attention of the employees to the problem

and help find and mitigate potential causes. For benchmarking purposes, however,

those numbers can be extremely misleading. To understand why, we have to

consider the two main goals of security benchmarking: self-comparison over time

(to evaluate improvement or degradation) and comparison of distinct software (for

selecting the best alternatives).

Chapter 3  A Framework for Security Benchmarking

52

Starting from the self-comparison goal, a key question can be stated as follows: if

NVD and NSD rise dramatically over time, is the security of the organization

getting worse in any sense? The answer is that it depends on why the numbers raise,

which sometimes is not easy to know. In some situations, a simple rule modification

or antivirus definitions update may trigger the detection of several infections that

were already there, but were previously unknown (meaning that the overall security

situation is improving, as the viruses that were there are now being eliminated). It

may also be the case that targeted attacks are occurring at the present moment, and

they are successfully being identified and blocked by the filters and antivirus. In

this case, we may say that the situation is getting worse, in the sense that the

organization is being attacked, but on the other hand it is good to verify that the

tools are working as they are supposed to (even though we have no idea if they are

solving the problem completely).

This reasoning can get even trickier. Suppose that NVD raises and NSD keeps

stable: this would probably turn the administrator attention to the antivirus, trying

to understand why the metric changed. But this would lead nowhere if the case was,

for example, that the users inside the organization were being victims of phishing

attacks (e.g. clicking in malicious links in emails that were not caught by the spam

filter, and infecting the machines with viruses). In such situation the problem would

have nothing to do with the antivirus, but with the spam filter and with the lack of

understanding of the employees about the problem. Alternatively, we may see both

numbers going down. What could be the course of action in that case? Could it be

because the security countermeasures lost effectiveness, or because the number of

attacks just decreased? Should one be concerned or reassured if the number of

viruses detected suddenly decreases by 50%?

The main conclusion that has to be drawn from this illustrative discussion is that

such numbers express information that can never be used to understand the status

of the security level of the organization. Even though they portray some relation

between the security level of the organization and the events that are occurring in

real time (attacks, or lack of attacks), it is not possible to extrapolate the actual

security level from this relation.

Considering now the goal of comparison of software alternatives, the usefulness of

such numbers for ranking is even worse. If an organization changes an antivirus or

anti-spam solution to an alternative one, and the numbers for NSD and NVD go up,

does that mean that the new solution is better? Again, following the same type of

reasoning, we can conclude that those new solutions may very well be worse than

the old ones, and that it is impossible to justifiably and confidently decide either

way based on the values for NVD and NVD. It is important to remember that the

Security Benchmarking of Transactional Systems

53

pattern of change of such numbers strongly depends on external factors that cannot

be controlled. In practice, this kind of metrics cannot be used for benchmarking, as

they can be significantly misleading.

Security benchmarking must be a process that consistently and systematically

identifies the actual security characteristics of the evaluated targets despite

environmental influences, and conclusions must not vary for a single target even

in the presence of new attacks or attackers, or this may invalidate the

measurements. One key mantra that should not be forgotten is that we are

measuring the system, not the attackers. In fact, whenever new attacks become

relevant to the point of making a benchmark invalid, the solution is to define a new

benchmark specification, and deem the old one as obsolete. As far as possible,

under the same benchmarking specification, the security assessment of a target

should be deterministic and not change with time or due to variations on the

attackers’ capabilities. Given all these restrictions, it becomes understandable why

security benchmarking is an extremely hard problem and why no effective model

has been proposed so far.

Another key aspect that needs to be emphasized is that security benchmarking will

never be able to express more about security knowledge than what the current body

of knowledge on security can provide. People should not expect security

benchmarking to miraculously bring forth information that was invisible to

everyone beforehand. In other words, security benchmarking should be perceived

as a procedure able to extract, analyze, organize and summarize information related

to the security level of a benchmarked target in such a way that this information

can be used confidently for relative comparison and decision-making. From this

perspective, the security characteristics of the assessed target are much more

relevant than the capabilities of the attackers, which will serve only as a frame of

reference for the threats that systems are expected to be protected from. One key

idea that we try to convey in this work is that in security benchmarking we should

model the attackers’ capabilities as the effects that they may cause in the

system, independently of their actual capabilities or intents.

The outline of this chapter is as follows. Section 3.1 we discuss the idea o threat

vectors and what they are a good starting point for trustworthiness benchmarking.

Section 3.2 we present our benchmarking framework. Section 3.3 we present the

system that will be used as a case study of our framework. Section 3.4 concludes

the chapter.

Chapter 3  A Framework for Security Benchmarking

54

3.1 Threat Vectors as Basis for Benchmarking
Security

The main reason why computer security is important is the existence of threats. If

there were no threats, we would not have to be concerned with security. Therefore,

in a way, threats are the component that drives almost all security analysis

approaches (Schmidt 2010).

Even though we all understand the idea intuitively, in security research works the

term “threat” (Im 2005) is frequently associated with different formal definitions.

Particularly, the exact concepts that have to be present for a specific threat to be

defined vary from one author to another. A commonly used definition is that a

threat is the specification of whom, how and in what circumstance a given action

will accomplish some undesirable effect (result) (Johnston 2010). For instance, a

threat defined this way could be stated as follows:

Terrorists may detonate a bomb in a bus causing it to explode.

Improving the security of a scenario where this threat is assumed to be possible

would require implementing measures that prevent it from being accomplished

whenever there is an attempt. Notice that the threat specification already contains

a lot of information. For example, the attackers are terrorists, not college students.

They will use a bomb, not a missile or a biological weapon, and the event would

involve a bus. Such definition also allows us to quickly understand the intended

effects of the attack attempt. Even though the immediate effect is that people on the

bus will die or be hurt, the main goal is to cause panic, first in the region where the

explosion happens and then in the general population (relying on the helping hand

of the automatic media exposure). The final goal is to cause general fear and,

ideally, mass panic and a variety of damages in all levels of society.

A way to improve security on this scenario would be to raise the awareness of the

people that use buses for transportation, and to investigate manually suspicious

buses and abandoned packages (if possible, without disregarding the side effects of

such measures, such as the hindrance and delay imposed by such procedures). To

consider a more general approach and broaden the security measures needed, we

can change a few of the elements in the definition: for instance, let’s assume that

also taxis may explode, and that college students and old ladies may also be

recruited by terrorists. This clearly shows that the number of possible threats may

increase exponentially if several such variations of the elements of the initial threat

are considered, making the goal of “preventing all threats” impossible to achieve.

Security Benchmarking of Transactional Systems

55

Computer systems are extremely complex, and exactly due to that, they can be

attacked from an almost infinite number of angles with different approaches,

causing a myriad of distinct effects (Chapman 2011). When we generically talk

about the security of a computer system, we want to be broad, and therefore should

include all those angles simultaneously. However, exactly like in the bombing

threat we discussed previously, it is not feasible to enumerate all the possible threats

we have to take into attention when securing the system, and as the systems evolve,

so do the techniques used to accomplish the attacks. Our goal, however, does not

change: we want to reduce the probability of the system being successfully attacked

considering the set of all possible ways to do that. Theoretically, security

benchmarking should help in driving the system modifications in a way that

improves the probability of successfully stopping any possible attack. The key

question is: how do we even start achieving such goal?

In an evaluation context like security benchmarking, when we look at threats like

the preceding example (i.e. the terrorist attack), it is not hard to notice that too many

elements are fixed, and that this is not an adequate approach if the goal is to be

broad. For instance, if we focus on buses, we are forgetting about trucks and cars.

If we focus on bombs we are not considering biological weapons. If we are going

to vouch that something is more secure than another, we better do it taking the

widest angle possible, or else our assertion may be wrong in a huge number of

scenarios. Furthermore, the “who/how/when” of attacks in computer contexts

varies so much and changes so fast that we believe it makes little sense to try to

focus on specific details of these variables.

Another important aspect that cannot be forgotten is that accomplishing security

benchmarking requires considering only the characteristics of the system in the

assessment, avoiding the dependency on external factors. So, although the

benchmark driver is the concern of preventing external threats, what we should

look at and take into consideration are the characteristics of the system, and not the

characteristics of the attacker or the attack itself. In fact, as these are the elements

over which we can act (we cannot change the attackers; we can only change the

system), we have to consider threats from an alternative perspective.

In this work, threat vectors are defined as sets of characteristics of a system that

are related to threats that accomplish certain specific effects. In the example above,

mass panic would be a threat vector, which would be defined as the set of

characteristics of the environment that lead to an increased probability of the

occurrence of mass panic. In this case, we could extrapolate that certain

agglomerations of people do favor the creation of mass panic, even if this is not the

only requirement. The goal is to help discarding the information regarding specific

Chapter 3  A Framework for Security Benchmarking

56

attackers and attacks and to focus on the characteristics of the system that have

some relation with the probability that certain bad effects may occur. Also, while

focusing on the effects, it becomes easier to identify alternative attack situations

that may not be obvious from the start. For instance, could sound based weapons

be effective to cause mass panic situations? What would be the precautions required

in that case? More importantly, if we are concerned with panic, then we are open

to techniques that act on the people that may suffer from that panic, fighting the

effect instead of the cause.

This definition of threat vector widens the way we look to security aspects, while

at the same time maintains the focus on the system instead of on the attackers. As

we are looking at systems’ characteristics that have to do with the possibility of

certain bad effects, we can then aggregate these characteristics and translate them

into probabilities of the effects being accomplished even without taking into

account the attacker’s related details. Note that, we use the expression bad effects

instead of, alternatively, malicious effects, as the later would usually assume

intentions behind them. As we are focusing on the system, it is not necessary to

consider someone with any kind of intention; what we are concerned with is that

the effects, which by definition are unwanted, do not manifest themselves.

The main challenge, therefore, is to determine, for a given domain, what are the

threat vectors that are important to consider and, more importantly, what are the

systems’ characteristics involved in accomplishing the related effects. In our

framework, this definition is what provides, in the form of trustworthiness

benchmarking metrics, comparison capabilities to a security benchmark.

3.2 Security Benchmarking Framework

The assumption that security has a lot to do with what we do not known about the

system requires us to investigate how to include in a comparison framework (i.e. a

benchmark) information about what we know and about what we do not know

about a system. In the course of our research, we came to the conclusion that the

most effective way to correctly tackle this problem is by explicitly separating the

benchmark in two parts: first, the benchmark should evaluate the explicit security

mechanisms and visible defects that the system has, and second, it should assess

the possibility of the system still having unknown security problems. This way, the

proposed security benchmarking framework requires two distinct evaluations to be

carried out, namely: security qualification and trustworthiness benchmarking (see

Figure 3.1).

Security Benchmarking of Transactional Systems

57

Figure 3.1 High level vision of the benchmarking process

Security qualification is related to the actual, tangible characteristics of the system,

and their effectiveness on complying with a pre-defined level of security specified

for a given application domain (i.e. the domain of the systems to which the

benchmark should apply). Today, most domains have a minimum level of security

that is required so that a system can be considered acceptable. For instance, the

minimum absolute level of security that we would expect for a car is that it must

require a key to be opened and to be turned on, and that the key would be only in

the possession of the owner of the car. A car without a key would not be acceptable

for most people, as that car could be easily vandalized or stolen. The same

reasoning can be made for a bank account that does not require any authentication

protocol for withdrawals. These examples (one car without keys, a bank account

without authentication) are simply not acceptable for use in most domains, and a

security benchmark would fail completely if it did not take into consideration these

types of requirements.

In computer systems, a qualification step of a security benchmark could require the

software being benchmarked to not have any obvious vulnerabilities detectable by

static code analysis tools or penetration testing tools (or both) and/or to have a

certain type of construction pattern (e.g. it could require the application to employ

specific algorithms, libraries or access methods in its programming). Another

possibility for the qualification step would be to require the system to provide

certain configuration options or security mechanisms (e.g. encryption capabilities,

enforcement of certain policies or specific methods of authentication and access

controls). These aspects are domain dependent and qualificatory, in the sense that

a system is not considered acceptable for use if it fails these requirements.

An example of a qualification requirement for an operating system security

benchmark could be as follows: the system is disqualified if it does not ask for

authentication before allowing any kind of user interaction. This requirement is

quite intuitive and it is very easy to imagine situations where this is a fundamental

Chapter 3  A Framework for Security Benchmarking

58

security requirement for an operating system (e.g. the operating system used in

private workstation in an organization). At the same time, we can also find several

other situations where this is clearly not a requirement (e.g. a public kiosk designed

to show repeating slides), and therefore, a security benchmark for such case would

not include a qualification requirement like this. The details and justifications that

lead to the inclusion or not of each requirement are part of the definition of the

domain, which is indeed a crucial part of the benchmark. The issues regarding the

definition of the domain are presented in more detail in Section 3.3.3, when

discussing some aspects related to the instantiation of the framework. For now, we

may understand a domain as a particular use-case of some class of applications

(e.g. operating systems for typical desktop home-users, and operating systems for

web servers are two examples of use-cases for operating systems).

Notice that the simple existence of an authentication mechanism in a qualified

operating system provides very little information on how reliable that mechanism

is; the qualification is simply stating that a system is not acceptable if it does not

have it at all (i.e. at the very least, the mechanism must work and not allow an

unauthenticated person to interact with the operating system easily). Other possible

qualification requirements could be: to require the operating system software to not

present any vulnerability during an automated source code analysis (possibly using

a specific tool defined by the benchmark), or to require the operating system to

employ one of a specific set of authentication protocols.

In a general perspective, security qualification comes from the observation that it

makes little sense to assign a security level to a system that has obvious ways of

being attacked (be it due to the inexistence of a security mechanism or due to the

existence of an obvious vulnerability). The main assumption is that, if one knows

how to successfully attack the system, then the security is defined as zero and the

SUT fails (i.e. is not acceptable for use). Obviously, the details and specificities of

the qualification step depend not only on the particular application domain as

discussed above, but also on how effective the benchmark will require the targets

to be. For instance, the qualification could require the SUT to implement a two-

factor authentication by default, or, alternatively, express the existence of a simple

pre-shared key setting to be enough. A more detailed discussion on security

qualification is presented in Section 3.2.1.

The systems that pass the first step are considered equally secure up to this point,

and are therefore assigned for trustworthiness benchmarking, which is a

quantitative evaluation that allows some kind of security comparison. The

trustworthiness benchmarking step is designed to account for the security

characteristics that cannot be expressed simply as have or don’t have verifications,

Security Benchmarking of Transactional Systems

59

and is therefore intrinsically different from the qualification requirements discussed

before. The main idea is to analyze and express a general level of trust that can be

put on the SUT characteristics according to a set of plausible assumptions (which

are based on the set of threat vectors relevant in the context of the application

domain).

Procedures for accomplishing trustworthiness benchmarking should enumerate and

aggregate the systems characteristics that increase or decrease the probability of the

effects defined by the threat vectors to manifest themselves, based on information

on how this is usually accomplished in the field for each threat. For instance, in the

context of a security benchmark for web applications let’s consider SQL Injection

attacks as a threat vector: a trustworthiness benchmarking algorithm could look for

evidences (e.g. patterns) showing that the code of the application has some

probability of having errors that may lead to SQL Injection vulnerabilities

(Amirtahmasebi 2009).

An important aspect about trustworthiness benchmarking is that this kind of

evaluation should be done only after verifying that no obvious ways of attacking

the system exist. In the web applications security benchmark example, we would

execute trustworthiness benchmarking only after trying to find actual SQL injection

vulnerabilities (e.g. by using automated tools during the qualification step). This is

a critical requirement of the approach, as the trustworthiness benchmarking

algorithm will not look for actual vulnerabilities, but for the preponderance that

hidden vulnerabilities may still exist within the assessed application or system. A

more detailed discussion on the properties and justifications for such definition of

trustworthiness benchmarking are presented in Section 3.2.2.

In summary, the proposed security benchmarking framework includes a two-step

procedure, as depicted in Figure 3.1. First, the systems under testing undertake the

set of tests defined in the qualification step. The result states whether the SUT is

acceptable for use or not (i.e. this step decides if the target has security level zero

or more than zero). Qualified systems are subjected to trustworthiness

benchmarking, which computes a metric (or set of metrics) that represents how

trustworthy the system is in respect to the benchmark threat vectors, while

considering the set of characteristics that increase or decrease the probability of the

occurrence of the corresponding bad effects. By design, this probability does not

take into account the intentions or capabilities of attackers, but only system’s

characteristics, which are the ones that the system administrator is able to influence.

The values are comparable among threat vectors, but not across threat vectors, as

the measurement units may differ. For instance, if we have a SQL Injection threat

Chapter 3  A Framework for Security Benchmarking

60

vector and a Denial of Service threat vector, the comparison of one against the other

may or may not be meaningful depending on the way the values are computed.

3.2.1 Security Qualification

The security qualification step within our framework is related to the identifiable

characteristics and properties that are considered, in a sense or another, security

requirements for the target systems to have a security level higher than zero.

Basically, in a given domain, the framework assumes that a system has security

level zero if it does not comply with one of the following assertions:

1) The system provides the set of mechanisms required for securely

accomplishing tasks in the specified domain;

2) The set of procedures specified by the benchmark are unable to detect a

characteristic (e.g. a vulnerability) that guarantees that a malicious attacker

can accomplish a certain effect that is either unwanted or violates the

business rules of the system.

The first assertion is related to the fact that some security mechanisms are

naturally expected in certain domains. For example, access controls are expected

in database engines, authentication is expected in operating systems, but neither of

those are necessarily required for all types of software systems, and might even be

optional for those same applications in certain specific use cases. The concrete list

of security mechanisms that compose the qualification step definition is highly

dependent on the benchmarking domain and on the list of security tasks and

activities required in that domain (Section 3.2.3 discusses in detail the problem of

the domain definition in the context of the identification of the domain that serves

as the main use case in this thesis).

Another example is disk data encryption, which is not a universally required

security mechanism for database engines, even though for certain usages it could

be a requirement (e.g. databases that hold private medical data) (Weber-Jahnke

2007). Encryption of data in transit, on the other hand, is more frequently

considered a requirement, unless the data that is transmitted is already of public

access (Harbitter 2002). Notice, however, that this assertion is related with the

capabilities of the target systems, and not with how these capabilities are used in

practice. Also, the definition of the set of mechanisms for this step should take into

account the fact that the lack of certain mechanisms may be compensated by the

existence of others (Howard 2002). For instance, although encryption of data on

the disk is not supported by some database engines, that can always be implemented

by encrypting the same data at the application level - even though it could be harder

Security Benchmarking of Transactional Systems

61

to do it correctly and securely. Nevertheless, there are certain mechanisms that are

extremely difficult to compensate for and therefore urge for a qualification step.

One example is the lack of authentication at the operating system level, which

would be an extremely complex security flaw to compensate successfully.

One possible argument against this first assumption is the fact that the security level

of a target is not directly related to the security mechanisms it provides, exactly

because often they can be compensated during use. Our assumption, however, is

that security mechanisms being designed and implemented directly in the target

system are always a better choice than adding them later as additional

complementary procedures. In other words, when security features are considered

from the design of the system instead of being included later as extraneous features,

they are not only more efficient, but also provide more capabilities (McGraw 2006).

As a simple example, suppose that a database engine providing an intrusion

detection system for malicious SQL injection is required for a given scenario. One

could argue that a network sniffing based solution (e.g. the one proposed in

(Fonseca 2008)) using an external software would be more than enough to support

this capability, making it pointless to include the existence if such a mechanisms as

a qualification requirement. However, while a sniffing based solution can provide

detection capabilities, it does not support prevention capabilities - by denying the

execution of a malicious command - which can be certainly done if the intrusion

detection system is designed within the database engine. And even if we could

achieve the exact same capabilities with a network sniffing solution through the use

of a complex set of communication processes and tools, this solution would,

without a doubt, increase considerably the complexity of the architecture, raising

the probability of configuration and interaction vulnerabilities and also the overall

maintenance effort. Nevertheless, requiring the inclusion (or not) of each security

mechanism as part of the qualification step for a given domain should always be

based on appropriate reasoning.

The second assertion is related to the existence of actual security flaws (i.e. failures

of compliance with the defined design) on the SUT that are detectable by current

security analysis methodologies. Nowadays there are several distinct techniques

that can be used to automatically or manually detect different types of

vulnerabilities in all types of systems, and a significant research effort is applied

continuously to improve these capabilities. For instance, the effectiveness of static

code analysis tools and penetration testing tools are already good enough so that

using them to make an initial security evaluation of the target systems is actually

worthwhile (Schulte 2012). Also, we have to consider the fact that using these tools

is so easy that if the users/managers of a system do not take advantage of them, the

Chapter 3  A Framework for Security Benchmarking

62

attackers might. Furthermore, even if the detection of such vulnerabilities depends

partially on obtaining information that is not public (e.g. the source code of the

software might not be open), this does not guarantee that attackers also cannot

obtain it. This leads to the inevitable conclusion that we have to assume that every

security flaw that an automated mechanism can detect should be considered of

public knowledge, and therefore this should be the bare minimum analysis that a

system should pass before being put into operation.

Obviously, it is arguable whether this procedure should be part of a qualification

step or not, in the sense that it may also contribute to the computation of the final

metrics in the trustworthiness benchmarking step conducted later. This is an

important issue that should be clearly examined. The argument boils down to the

fact that the number of flaws detected (by such automated tools) in each system

may differ greatly, and they can, to a certain extent, be translated into different

degrees of security, allowing to compare them instead of simply disqualifying them

as we are proposing.

Let’s analyze this in the context of an example: a campaign for benchmarking two

systems, A and B, and the benchmark specification states that, for qualifying, the

systems should pass a static code analysis with a particular tool. Now, let’s assume

that system A presents one vulnerability and system B presents ten vulnerabilities

during this analysis. Consider the following question: why shouldn’t we define

system A as more secure than system B? The reasons why we should not do so are

actually many, and are summarized in the following points:

 The visibility of a vulnerability has no relation with the total number of

vulnerabilities in the system. It may be easier for attackers to find and

exploit a unique vulnerability in system A than finding any of the ten

vulnerabilities in system B.

 If all vulnerabilities of systems A and B have the same visibility, it may be

the case that the damage an attacker is capable of accomplishing in both

systems (independently of the total number of vulnerabilities in each) is

exactly equal. Therefore, using each system poses the exact same risk to

the user.

 It may be the case that one vulnerability in system A is more dangerous

than all the others in system B, depending on the systems’ internal

architecture.

 More importantly, even if both systems had exactly the same number and

types of vulnerabilities, the actual damage an attacker can cause depends

Security Benchmarking of Transactional Systems

63

on the way the system is used and the value that the system has to the

attacker, which is external information that, by definition, should not be

part of a security benchmark specification, and therefore should not

contribute to the security degree computation.

The worse problem, however, is that the number of vulnerabilities - even a number

weighted considering the severity of different vulnerabilities and their visibility and

whatever else we could think of - is a fundamentally misleading metric, even if we

could circumvent all the problems mentioned above. To understand this

proposition, let’s assume that given any two systems there is an algorithm capable

of determining, beyond any doubts, that the set of vulnerabilities that exist in

system B is more dangerous than the set of vulnerabilities of system A. The key

question is: what happens if we use this information to state that system A is more

secure than B? We believe that the answer is that the benchmark user is encouraged

to choose system A. The real problem arises from the consequence of this

encouragement. Knowing that system A has a certain number of vulnerabilities

(now of public knowledge) would also motivate the user to not put it into production

before correcting those same vulnerabilities, turning system A into a corrected

version, without public vulnerabilities, which we may call system A’. But the same

can also be done for system B, in this case turning system B into the corrected

version B’. Although the initial decision to select system A was based on the fact

that A had less severe vulnerabilities, the decision was misleading because using

the same rationale to compare systems A’ and B’ would result in a different

conclusion: both systems A’ and B’ have zero known vulnerabilities and therefore

have the same degree of security if we rank them from the perspective of the

severity of the known vulnerabilities.

This way, we have to assume that whatever flaws and vulnerabilities the

qualification step of the benchmark discloses, those will not be present during the

use of the system (unless they are harmless, and therefore are not actually

vulnerabilities in the sense that they do not “allow a malicious attacker to

accomplish a certain effect”). The reality is that the benchmark user has two

choices: either he corrects the vulnerabilities (i.e. patches them), generating a

second version of the system, or the vulnerabilities are not corrected and the system

is not put into use (thus disqualified, as it has security equal zero, meaning that at

least one possible way of attacking the system is of public knowledge). Obviously,

in the first case (i.e. if the user patches the target systems), he will end up having a

draw among all the SUTs (i.e. the corrected ones will not have known

vulnerabilities), thus distinguishing the security of those applications cannot be

done using information regarding known vulnerabilities. In our framework, this is

be the task of trustworthiness benchmarking.

Chapter 3  A Framework for Security Benchmarking

64

As a summary, we would emphasize the following:

The actual publicly known flaws or security deficiencies of systems

should never be used as official and standard benchmarking metrics in

any way, because in a real situation they will likely not be present when

the system is put into production. Instead, actual flaws should disqualify

systems for use or point the fixes the system needs in order to be

acceptable for use. Trustworthiness benchmarking, or the task of

evaluating the propensity to unknown or hard to detect security problems,

is the only kind of metric that can put one system before the other when

nothing can be said about the actual existence of security flaws.

We believe that this is one of the most important lessons of our thesis discussion

and our framework is fundamentally based on this idea.

3.2.2 Trustworthiness Benchmarking

Trustworthiness benchmarking is a process ultimately based on a very intuitive

reasoning: the system that should be trusted the most is the one that demonstrates

more evidence of including trustable characteristics. For any particular domain,

trustworthiness benchmarking is the formalization of this intuitive perspective in

the form of algorithms able to compute quantitative attributes representing the

tendency of the system for having good or bad security. As explained before, even

though trustworthiness benchmarking should be applied to systems that do not

present obvious security problems (i.e. that passed the qualification phase), this

does not exempt them from having characteristics that are related with better or

worse security characteristics in general.

Based on the identification of the threat vectors selected for a given domain, the

trustworthiness benchmark should identify and group the set of characteristics of

the system related to each vector, and should allow a quantification of trust based

on their presence, their absence and/or their effectiveness. Although such a

benchmark will depend on the domain specification and on the threat vectors being

considered, it should express how frequently one could find evidences that allow

understanding the probability of the bad effects defined for each vector to manifest.

In other words, given some predefined characteristics related to the threats, the

process computes the prevalence of such characteristics and their manifestation

density, based on a predefined expression of the size of the system under testing.

As an example, consider a coding pattern (i.e. a programming style) that is in

general known to be a bad programming practice in terms of security. A

trustworthiness benchmarking algorithm could be based on counting the number of

Security Benchmarking of Transactional Systems

65

times this pattern appears in the source code of the systems being benchmarked,

normalized by the size of each system, thus providing a manifestation density of

such practice. In a higher-level, where the source code is only a small part of the

problem, the approach would start from a list of security recommendations that are

consensually recommended in the context of the target application domain and

compute a compliance level of the system against that list; the main challenge in

this case is to understand the consequences of implementing or not such

recommendations. In this thesis we explore both these approaches in the context of

transactional systems, investigating both of them from their conceptual and

fundamental propositions up to their application and validation, evaluating at the

same time the limitations of such algorithms and approaches.

A fundamental part of our trustworthiness benchmarking approach is the idea that

the characteristics being evaluated and aggregated must be related to the threat

vectors without actually being vulnerabilities themselves. In other words, those

characteristics can be identified as potentially contributing to security or insecurity

without being decisive to the existence of security flaws, which dictates the main

difference between the qualification and the trustworthiness evaluation. By

definition, the characteristics to be considered in this case are usually not enough

to allow attacks, but instead they are either partially related with known attack

scenarios or they are related with a higher probability of the appearance of

vulnerabilities (even if we cannot be sure that any vulnerability really exists).

Defined in this way, the system with the higher density of characteristics related

with the accomplishment of the effects of threat vectors should be ranked as the

least trustworthy one.

The concept of trustworthiness benchmarking is one of the biggest challenges of

this work and, in our opinion, the second most important contribution, in addition

to the security benchmarking framework as a whole. As explained in the previous

section, the result of the qualification step is a system (or set of systems) that has

no obvious flaws and vulnerabilities - to the extent of the procedures defined in the

benchmark specification - and that are considered acceptable for use. The goal of

trustworthiness benchmarking is then to provide the relative level of confidence

that the benchmark user can justifiably put into each system when it comes to its

ability to avoid the bad effects defined by the threats vectors identified for the

domain. This confidence, or trust, may be interpreted as the relative probability of

attackers to be successful when trying to attack the system, even though this

interpretation is not required. In other words, while the first step of the framework

(qualification) provides some guarantees that the system can be put into work, this

second step (trustworthiness benchmarking) provides an index that distinguishes

Chapter 3  A Framework for Security Benchmarking

66

the qualified systems using an estimative of how robust the systems are expected

to be in the long run.

While there is plenty of information in the literature that can help in the

specification of qualification steps within our security benchmark framework,

trustworthiness benchmarking in this particular form is a new proposal, and very

little work can be found in the literature concerning the concept (Yang 2011, Toma

2010, Gefen 2002). This way, we devote two entire chapters to the concept, in order

to show that the idea of trustworthiness benchmarking is sound and does in fact

correlate with security aspects in practice. However, it is important to understand

that this kind of evaluation can be seen as a generalization of concepts and practical

ideas that are already being used in several areas computer science. Two techniques

that are based on the same premises as our proposal are described next.

A long-standing procedure used in the field of computer systems dependability that

is based on the same principle we are proposing is called defect seeding (Sherriff

2006). Defect seeding is the process of purposefully injecting random bugs in a

piece of source code that will be later submitted to manual review for the

identification of general bugs (i.e. programming errors). After the review, the ratio

between the number of injected bugs that were found and the total number of bugs

injected is used to compute an estimative of the number of real bugs that could not

be found. The procedure takes advantage of the following assumption: if

programming errors are not intentional (and therefore random), they present a

normal distribution, and therefore the difficulty of finding errors will be the same

for the injected errors and the real ones (assuming that the injected ones also have

a normal distribution). This is also true for the distribution of security flaws and

vulnerabilities, exactly because we know that, as general bugs, they are also not

intentional, and can be viewed as a subset all the bugs of an application. This way,

trustworthiness benchmarking will take advantage of the following relation: if a

given characteristic of the system can sometimes lead, or be related to, a certain

security flaw, then the number of hidden security flaws will tend to be proportional

to the number of security characteristics that lead to it. This way, we connect

trustworthiness benchmarking with real security characteristics.

Another interesting work that is based on the exact same assumptions as

trustworthiness benchmarking is the work on attack surface identification from

Pratyusa K. Manadhata (Manadhata 2007). In this work the author demonstrates

that a higher number of alternative entry points in a software system increases the

probability of one of them being found and ultimately exploited by attackers. In

other words, the work demonstrates that the insecurity of software can be correlated

Security Benchmarking of Transactional Systems

67

with a higher or lower number of entry points, which are functions of the system

that are primarily linked with the possibility of attacks.

Trustworthiness benchmarking extrapolates the ideas presented in the examples

above and generally assumes that a system with more evidences for insecurity will

in the long run be less secure (or, from another perspective, the one with more

evidences for security should be the one we trust more). The reasoning in which

we base our approach, however, highlights one important limitation of

trustworthiness benchmarking: evidences for security are no guarantee of security.

For that reason, in our framework, any security guarantees that can be obtained

without any doubt should be obtained in the qualification step, while the second

step only deals with relative probabilities and unknown factors. For example, if a

system has a hidden vulnerability that no static code analyzer, penetration tester or

even manual analysis can detect, it is unrealistic to expect any trustworthiness

benchmarking procedure to take it into account.

What we should expect is that if some hidden vulnerability is the result of detectable

insecurity patterns in the construction or characteristics of the system, then this

system will be ranked lower than another system that do not possess any kind of

insecurity pattern, or at least has less insecurity patterns, correctly inducing the user

to choose the system that is more likely to be secure. For instance, taking the

example of the attack surface concept, if a vulnerability in one entry point is a direct

result of the existence of too many entry points (i.e. more entry points increase the

probability that one of them will have a programming error) then the attack surface

metric will be a probabilistic expression of the hidden vulnerabilities. This is

exactly trustworthiness benchmarking.

3.2.3 Instantiating the framework

The instantiation of the framework into a concrete benchmark instance is not

simple, and several a-priori definitions have to be made. In the following

paragraphs we discuss the main aspects that have to be considered, the reasoning

behind those requirements and why they are important. We finish with a detailed

summary of all the steps involved in the definition of a concrete benchmark.

The actual specification of a benchmark instance starts from the definition and

careful study of the domain in which we want to apply the benchmark. The term

domain usually refers to the specification of some particular application area, like,

for instance, operating systems, web servers, databases, etc. However, as we

discussed before, security aspects have direct relation with value and utility both

for the attacker and for the victim, and applications taken without any context

Chapter 3  A Framework for Security Benchmarking

68

simply cannot have their security correctly evaluated, as one cannot identify the

bad effects that might occur. For example, it is impossible to determine if the lack

of authentication in an operating system is a security problem without any

assumption of where and how it will be used. For this reason, any security

benchmark has to start by assuming some kind of system usage and, depending on

the case, the existence of roles of interaction with different security properties. This

description of application use-case may be very detailed or extremely brief,

depending on the specific situation and the objectives in terms of the

representativeness of the results of the benchmark. In this thesis, we refer to this

use-case as base scenario, which is also the main foundation from where we

identify the threat vectors mentioned earlier. This way, without a precise definition

of the base scenario it is not possible to make any kind of security judgment.

Ideally, the base scenario description should provide information regarding the

expected interactions and roles regarding the potential target systems usage.

However, in a security context, more information is required for defining a

benchmark. In particular, two very important aspects have to be specified carefully:

the benchmark goals and the benchmark user, which actually are definitions that

are basically intertwined. Even though the reasoning behind the need for the base

scenario is quite intuitive, the reasons for these extra definitions have to be carefully

understood.

As already explained, benchmarking can be used to compare alternatives or to

evaluate the evolution of a single system in time. However, these tasks presuppose

that something in the domain has alternatives, or that something in the domain may

evolve. But this may not be true for all systems at all times, and must be clearly

expressed in the benchmark definition. To clarify the difficulties mentioned before,

let’s consider the case of a DBMS, which is the core of most transactional systems,

and let’s assume that we want to build a benchmark to compare alternative DBMS

engines. A benchmark with such goal would be applied before the installation of

the engine, while still being able to point the best engine to use. In this case, there

is no environment to correlate with potential security problems, so the benchmark

must be capable of taking into account, realistically and in a useful way, the

conditions of the future use of the database, and not only the software engine in an

isolated way. After the deployment of a chosen DBMS engine, the situation

becomes considerably different. In this stage, it is not reasonable to assume

anymore that the DBA will keep changing the engine even if a more secure one is

found. In most cases, the step of choosing one DBMS engine is a commitment for

the life of the system, as the effort to change it is quite significant (involving

changing not only the DBMS, but also the applications that use it). Therefore, after

Security Benchmarking of Transactional Systems

69

deployment, what we have is a specific engine operating within an environment

that evolves. The type of benchmarks that make sense at this point is necessarily

different from the ones that were used to select an engine in the first place even if

we consider that the threats might be the same. In this case, what the administrator

needs is a tool that allows understanding the potential security issues of the

environment.

The issues discussed above have direct impact in the utility of a benchmark, or, in

other words, how useful the results of the benchmark will be for its user. Basically

what this means is that certain results are only useful in particular moments of the

lifetime of the target systems, and a security benchmark that does not take this into

consideration might be practically useless despite its correctness. For instance,

stating that a particular software is insecure (or is less secure than an alternative) in

a context where the user is obliged to use it and cannot replace it is not a useful

outcome. On the other hand, stating that one of the characteristics the user has

control over (e.g. the configuration of the software or its environment) should be

changed to a more secure state is a more useful result.

These reasons show why clearly specifying the user of the benchmark is also an

important aspect. In practice, the role of the user of the benchmark defines what

makes sense to express in the benchmark and what does not make sense, which will

influence the base scenario definition, the qualification and the trustworthiness

benchmarking specifications. For instance, a DBA and an application developer are

two distinct roles that have different capabilities and assignments, even under the

same domain, and therefore would require two distinct security benchmarks. While

the first may be interested in securing the DBMS engine against insecure software

that connects to it, the second one should be more interested in making the software

that connects to the DBMS more secure, even if both systems are part of the same

transactional system architecture.

In summary, the definition of a useful benchmark requires the following steps to

be previously conducted:

1. Definition of the high-level application domain (i.e. the base definition of

the potential benchmark target systems).

2. Specification of the application use-case, the base scenario. If applicable,

this includes the specification of the main roles that are expected to exist

in the use-case in terms of their interaction with the system.

3. Specification of the benchmark user, or who will use the results of the

benchmark.

Chapter 3  A Framework for Security Benchmarking

70

4. Definition of what kind of guidance the benchmark user could expect from

the benchmark (i.e. the benchmark goal).

The definitions above allow then the actual development of the benchmark, which

is done by the performing three steps:

1. Identification of the threat vectors relevant to the security of the base

scenario. These threat vectors specification should lead to a strategy for

identifying the characteristics of the architecture that are related with the

unwanted effects being considered.

2. Qualification specification: definition of the set of procedures that allow

identifying the systems that are not acceptable for use in the field (i.e. have

security 0), given the base scenario specifications. Qualification requires

the system under test to meet two requirements:

a. Have the minimum set of security mechanisms needed to carry out

the security tasks identified for the domain and taking into account

the base scenario.

b. Pass the minimum set of evaluations, automated or not, that show

that there are no publicly known ways of attacking the system.

3. Trustworthiness benchmarking specification: definition of the set of

algorithms that compute the index that represents a relative amount of trust

that can be put in systems, in terms of its characteristics to prevent the

manifestation of the undesirable effects determined by the considered

threat vectors.

3.3 Transactional Systems: the Case Study

In the previous sections we described transactional systems from a very high level

perspective, assuming the reader to have a very basic knowledge of the domain.

This section describes in more detail that domain, as it is the focus of the

benchmarks presented in the next chapters. First, we describe what exactly a

transactional system is and what distinct parts it has. Then, we present the parts of

that domain were we made progress and what we actually study in detail throughout

our work. Transactional systems were chosen because not only they are a very

representative system, which is used by almost all organizations today, but also

their complexity is high enough for it to be an interesting evaluation challenge.

3.3.1 Elements of a Transactional System

Transactional systems, as the name suggests, are systems that process data or

perform actions through series of transactions (Reuter 2008). A transaction is

usually defined as a set of elementary steps that should be considered as a unity,

Security Benchmarking of Transactional Systems

71

and should not cause any effects if interrupted during mid-execution; either all of

them are successful or none is to be executed. Another behavior usually expected

from a transaction is that none of its effects are visible during mid-execution to

other transactions (making concurrent transactions to not perceive the effects of

each other before they are completely finished). These expected behaviors are

usually referred to as the ACID properties (Atomicity, Consistency, Isolation and

Durability (Gray 1992)).

The utility of transactions is that they allow defining complex operations based on

more basic commands. Transactions, therefore, endow systems with a trustworthy

mechanism capable of composing simple commands into more complex ones,

allowing for the system state changes to be as complex as required by the domain.

In other words, a set of data can confidently be changed from one consistent state

to another consistent state, even if the transformation from one state to the other

requires several different processing steps that may fail independently (Gray 1992).

A transactional system is usually based on an architecture designed to help and

support some business domain, where a set of users want to use computing

capabilities with the goal of supporting a specific set of business tasks (Zsifkov

2004). The business domain is usually some specification of a real live enterprise

process (or set of processes). In practice, the transactional system helps

accomplishing the goals of the business, and is typically is composed by three

distinct elements namely a database, a Database Management System (DBMS)

engine, and one or more client applications. A general and very common setup is

depicted in Figure 3.2.

Figure 3.2 A typical transactional system architecture.

Chapter 3  A Framework for Security Benchmarking

72

The database is the logical implementation of a data model, which is used to shape,

store and maintain data regarding the business domain that the transactional system

is designed to support (Gray 1992). The DBMS engine, on the other hand, is the

software system that maintains the database and provides interfaces for interacting

with it, allowing for the modification of the data model, as well as the provision of

commands that allow the insertion, modification and removal of data from the

database. In other words, the database data model is the vision that the DBMS

provides to the users of the data they input into it. The DBMS is also responsible

for maintaining and enforcing the series of access rules that ultimately define what

is permitted and what is forbidden within the database (Gray 1992).

The client applications are the software implementation of the rules of the business

domain, even if some part of those rules sometimes are actually implemented inside

the DBMS engine (Eisenberg 1996). For example, a client application may include

the algorithms that decide what different types of data are to be stored together, the

consistency requirements for this data to be valid, the computations that are

permitted over this data, the methods and views through which the data is

accessible and, also, what are the transactions that are required for maintaining the

business rules of the domain. Transactions appear in this context as the sets of

transformations that will keep the database in the consistent states defined by the

business rules.

One important characteristic of transactional systems is that most of them

implement a client server architecture (in a two, three or multitier architectures

(Ram 1999), meaning that the client applications and the DBMS engine

communicate through a network of some sort. This leads to the reality that most

clients applications run in an environment completely different from the DBMS

engine, and, at the very least, the information that the user inputs may come from

insecure environment and devices. This leads to a whole sort of security

complications and characteristics that make transactional systems a very attractive

domain for our study.

3.3.2 Security Benchmarking of Transactional Systems

To consider transactional systems as our case study, we need to examine the

question of what do we expect from a security benchmark in this domain. The first

aspect one notices from the description in the previous section is that even though

we defined a transactional system has having 3 elements (i.e. the database, the

DBMS engine, and the client applications), when we realize that the database itself

is only a piece of data that is inside the scope of the DBMS engine, we conclude

that actually there are preferable two levels of software to be considered: the DBMS

Security Benchmarking of Transactional Systems

73

and the clients. Both of these have not only completely different operational

environments, but also completely different security goals, as we examine next.

The DBMS engine is a piece of software that must ensure the integrity of the

databases it holds (Allard 2010). As being mainly software that receives orders and

commands from the applications, it must provide guarantees to the clients that data

changes do not occur except under authorized conditions. In other words, the

primary goal of the DBMS is not prevent the data it holds from suffering any other

manipulation besides the ones submitted by a correctly authenticated application.

Such guarantees, however, have to take into account all the ways the potential

attackers can use to interact with the database engine, which are not only associated

with the engine itself, but extend also to the underlying operating system, hardware,

network, etc., and all the personnel that is in charge of maintaining the correct

functioning of the system, from the Database Administrators (DBAs), to the

developers that interact directly with the DBMS and the maintenance crew in

charge of backups. All these variables have to be accounted for if one wants to have

some kind of clue about the security level of the DBMS engine.

Throughout this thesis, we will refer to the DBMS engine plus the entire underlying

environment as a transactional system infrastructure, in the sense that it is the part

of the system that gives the fundamental support for the definition and

implementation of end users business rules. Additional security characteristics of

transactional systems infrastructures are discussed in Chapter 4, where we study

the application of our framework to this part of a system and put forward ways for

characterizing in a practical and comparable manner real live installations. It is

important to notice, however, that given such complexity, the selection of the

DBMS engine itself is also a very important, yet very difficult thing to do correctly

from a security perspective. This particular problem is revisited in Chapter 6.

The security goals of the client applications, on the other hand, are somewhat

different. As they are the part of the system that defines and implements the

business rules of the domain, the most important thing that we want to be sure is

that such business rules are correctly implemented and cannot be broken. Usually,

functional testing of the software that is being developed tries to identify if the

defined business rules are correctly implemented, and if the system actually does

correctly what the users require it to do (Zsifkov 2004). However, doing what it

should is not the same thing as not doing what it should not do. Robustness and

security testing (Shahriar 2012) are techniques that can be used to test the system

conformity and correctness from the perspective of either unexpected interactions

or malicious interactions (i.e. interactions where an attacker may use any mean

available to lead the system to break some business rule). In practice, when

Chapter 3  A Framework for Security Benchmarking

74

selecting an application one wants to know how likely it is for an attacker to be

successful if he tries to force the system to execute an illegal action. We discuss

these problems in detail in Chapter 5, where we identify and validate ways for

supporting such selection process under the assumptions of our framework.

3.4 Conclusion

This chapter presented a security benchmarking framework, which is divided in

two parts: security qualification and trustworthiness benchmarking. We thoroughly

discussed the framework and the reasoning behind it. The main idea is that the

correct classification of systems concerning security attributes has to be done by

means of separating the processes used to evaluate the knowable security aspects

of the target (e.g. the search of existing vulnerabilities) from the evaluation of the

aspects we can only estimate (e.g. the probability of a system having hidden

vulnerabilities.).

Security qualification is the process designed to deal with the tangible security

characteristics of the system being evaluated, and the main result of it is the

identification of the systems that are acceptable for the domain. Identifiable

security vulnerabilities and the lack of fundamental security mechanisms necessary

for the accomplishment of the required security tasks in the domain are the primary

reasons for disqualifying alternatives, which are then considered as having security

level equal zero.

Trustworthiness benchmarking should then be applied to the systems that are

considered acceptable. This process, therefore, estimates the amount of trust that

we can justifiably have that the system will not bring security problems in the future

due to undetectable vulnerabilities or the lack of proper security precautions.

The chapter ended with an introduction to the particular domain that will serve as

use case for the instantiation of the framework on concrete benchmarks, i.e.

transactional systems. From a security point-of-view, we divided transactional

systems in two parts, the transactional systems system infrastructure, which is

addressed in Chapter 4, and the business applications, which are studied in Chapter

5.

75

4

Security
Benchmarking of

Transactional
Systems

Infrastructures

Database-centered transactional systems are typically designed following a client-

server architecture (Ram 1999). As such, they can be divided in two main parts: the

database server infrastructure, which is centered on the DBMS engine and its

related software and hardware appliances; and the business applications that

implement the business logic and provide the end user interfaces. Although these

two parts are highly tied, they have completely different characteristics, thus

requiring different approaches in a security benchmarking context.

The database server infrastructure is usually maintained by a small group of

Database Administrators (DBAs). Its security characteristics are strongly

influenced by the large number of configuration alternatives provided both by the

DBMS engine and the network and server configurations that relate with it (for

example, in most cases the operating system configuration directly affects the

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

76

DBMS security features). The problem here is that, for an average DBA1, it is

extremely hard to keep track of all the details that may influence the security of a

database installation. Furthermore, a key aspect regarding the security of the

database infrastructure is that the damage that an attacker can cause strongly varies

depending on the characteristic he exploits. This effect can be clarified by a simple

example: consider an attacker that exploits a weakness in a backup system in order

to obtain confidential information; this form of attack prevents him (on the majority

of the scenarios) from modifying the information, which would otherwise be

possible if he somehow obtained access directly to the DBMS engine.

The business applications, on the other hand, are usually well specified and the

security problems that they may have can be narrowed down to a much smaller list

of possible variations and bad effects, making them much easier to understand

(Russel 1991). In fact, as the goal of these applications is to enforce the business

rules of the service they are built to support, security risks typically consist of

failing in enforcing such rules. This is normally related with programming mistakes

that allow following execution paths that were not originally intended (e.g. a SQL

Injection vulnerability that permits a data change that should not be allowed).

Although such mistakes are hard to detect and prevent during development, once

exposed they are quite easy to analyze and correct (Shahriar 2012).

In this chapter we apply the framework proposed in Chapter 3 to build a security

benchmark for database-centric transactional system infrastructures (security

benchmarking of business applications is addressed in Chapter 5). First, we define

a generic scenario (the Base Scenario), in which we specify the boundaries of what

we are considering to be a transactional system infrastructure. Then we discuss the

approaches for security qualification and trustworthiness benchmarking of DBMS

infrastructures, applying the abstract concepts defined in Chapter 3 to the concrete

base scenario. To demonstrate the proposed benchmark, Section 4.4 presents a case

study, where the benchmark has been applied to compare four real installations

using four distinct DBMS engines. Finally, Section 4.5 concludes the chapter.

1 Defining an “average” DBA is not trivial. In this context, we consider an “average” DBA as someone

that is not an absolute expert in every single system involved in the database installation (or

installations) he is in charge of. Practice shows that most DBAs in small and medium size

organizations are not security experts and do not hold extensive knowledge about all the possible

configuration options of the infrastructure elements, including the OS, network elements, etc.

Security Benchmarking of Transactional Systems

77

4.1 Base Scenario

In order to be able to make decisions regarding the benchmark definition, we need

to make some background assumptions regarding a few characteristics of the

benchmarking domain (i.e. the environment for which the benchmark is being

designed). As explained before, security is both related to value (something that the

attacker may obtain or the victim might lose), and resources or capabilities needed

to gain that value. Both of these require tangible properties to be considered, or else

it is impossible to reason about security aspects in a practical manner. This way,

two key restrictions are considered in this base scenario: first, the scenario is as

generic as possible, to allow the benchmark to be applicable to the largest possible

number of real installations; second, the scenario is specified in order to be

representative of security concerns in real applications.

In fact, even if personal database applications (e.g. an application for storing and

managing personal notes) may have security implications, a security benchmark

for such a domain would clearly have very limited interest. Much more relevant are

situations where critical personal and business data are at stake, and/or where

security problems may affect a very large number of individuals simultaneously.

Furthermore, as we are targeting the transactional system infrastructure, the

particularities of the business applications can be abstracted, focusing only on the

classes of users that interact with the database (i.e. the virtual identities that relate

with the system). The idea is that the database infrastructure should protect itself

against exploitations of characteristics of the environment and vulnerabilities of the

business applications; therefore, benchmarking the security of the infrastructure

should not be constrained by the business applications specificities.

The following points detail the key assumptions and characteristics of the proposed

base scenario (their representativeness is discussed later in this chapter), which

largely shape the benchmarking domain and provide the boundaries for the

definition of the benchmark components:

1. The infrastructure is composed of a relational DBMS engine on top of

an operating system (OS) running on a single physical computer. Although

this is a simple configuration, practice shows that it is representative of the

large majority of database installation in the field.

2. The platform is connected to a local area network (LAN), and the DBMS

may be accessed locally (from the console) or through that network (from

client hosts or application servers). The LAN may have a connection to the

Internet. However, Internet users do not connect directly to the DBMS

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

78

(prevented via common network configurations), but only indirectly

through web applications hosted by application servers.

3. The DBA is the overall administrator of the environment, and either

there is only one DBA or several DBAs that act as a single entity (by

making consensual choices for the system configuration, which is a typical

management approach in the context of complex installations).

4. Threats are always associated to individuals, which might (or might not)

have a legitimate relation with the system. The only trusted individual is

the DBA. All others are assumed to be potentially untrustworthy (i.e. a

pessimistic approach is followed when it comes to security issues), and

thus may try to compromise the system in some way.

5. Individuals always interact with the system through userids, which are

virtual identities assigned to each individual (or set of individuals)

depending on the relation he has with the system. Userids are verified by

an authentication procedure and belong to one of the following interaction

classes:

a. Application userid: users that authenticate and interact with the

database system using a business application (e.g. a web-based

application), and whose actions are restricted by the application’s

rules;

b. Operating System (OS) userid: users that authenticate directly to

the OS and whose actions are restricted by the configuration of the

OS environment;

c. DBMS userid: users that authenticate using the DBMS

authentication mechanisms and whose actions are restricted by the

DBMS configuration and environment.

6. Real individuals have roles that entitle them for one or more userids. For

example, end-users have only an application userid and developers may

have a DBMS userid and also an OS userid. The DBA may hold the three

types of userids, while maintenance staff typically has only an OS userid.

Real individuals that are not users of the system do not have a legitimate

userid, and they may interact with the system only through interfaces that

have an anonymous network access (e.g. an authentication web page that

Security Benchmarking of Transactional Systems

79

may be open to the Internet, or the operating system network layer that

responds to ICMP (Stallings 2010) requests coming from the LAN).

7. Custom business application code (implemented by developers and

restricted by the database administration policies that dictate how

applications may connect to the DBMS) may run on a local web server, on

top of remote application servers, on remote client hosts inside the LAN,

or inside the DBMS as stored procedures.

A key characteristic of the scenario proposed above is related to the interaction

classes (item 5). The definition of interaction classes assumes that a real individual

either has its relation with the system defined by one (or more) of the three

interaction classes (i.e. application, operating system, or DBMS userids) or has no

official relation with the system. Although in practice the relationships may be

much more complex than that, this approach simplifies the analysis of the system

security, as a potential attacker must always act on the system through one of these

classes. Each of the four relationships defines a distinct environment container,

with a predefined set of privileges associated with it, which must be taken into

consideration when analyzing the security of the system. This is particularly

relevant in infrastructures as complex as a database installation, especially when

inside threats are being considered Actually, we should emphasize that in database

environments, inside threats must be seen as as relevant as anonymous Internet

attacks: insiders may even be more hazardous, as they frequently have pre-

established security privileges within the system (Bishop 2008). Thus, small

vulnerabilities may be more risky when facing an insider attack than when facing

an unknown Internet hacker.

In the case of applications that are publicly available to the Internet, we assume that

all users have an application userid that grants them privileges to access the

publicly available parts of the existing business applications. In our benchmark, all

those cases (from the insider threats to the anonymous Internet users) are taken into

account by evaluating each threat from the point of view of all the different

interaction classes.

It is important to realize that the definitions presented above are representative of a

very large number of real DBMS infrastructures. Even though such definitions are

quite complete (i.e. they include the most relevant aspects, from a security point-

of-view), they are at the same time very flexible. For instance, although the scenario

considers the existence of application developers, it is flexible enough to consider

the situations where the DBA is the only developer and also the situations where

there is a software development team (i.e. the number of developers is not a

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

80

constraint). Also, no specific structure is imposed on the local area network, as that

would be extremely complex due to the large number of possible variants; the only

assumption is that any connection to the Internet goes through a specific point of

communication, and direct connections to the DBMS are not possible from outside

the LAN. Obviously, we could also consider other scenarios with alternative

assumptions, including: DBMS replicas, applications using more than one DBMS

engine, three tier architectures, multiple DBAs and operating systems running

inside virtual machines, etc. However, as we will show later, it would be quite

straightforward to consider such cases during the benchmark definition. In practice,

we decided not to overcomplicate the base scenario, as our main goal is to show

the validity of the framework, and not to propose an universal benchmark.

Benchmarking should be a joint initiative, taking input from several parties

(Bondavalli 2009).

A final relevant aspect is that the complexity of the environments that fit the

assumptions above makes them highly prone to the appearance of vulnerabilities

(Russel 1991). The benchmark must help the administrator understanding the

threats to which a configuration is more exposed, allowing him to make educated

decisions and address primarily the most critical problems from his own

perspective.

4.2 Security Qualification

As defined by the base setup presented before, a transactional system infrastructure

(sometimes also referred to as database infrastructure) is a set of network,

hardware and software elements that are configured in a way that provides the

support for the business applications (which in fact implement the end users

solutions). Without considering an enclosing environment, evaluating the security

of a DBMS infrastructure is very hard, as no threats can be assumed beforehand.

This happens because we cannot pinpoint what is valuable and should be protected,

and what is not valuable and would never impose a loss to the system owner. At

the same time, the security of any business application, which is the main reason

for the existence of the infrastructure, depends ultimately on the correct

configuration of the DBMS infrastructure. Therefore, we face the fact that the

choices made before the deployment of a business application do have impact in

the security of all the systems involved.

Security qualification is the step where we identify what is acceptable and what is

not acceptable in terms of security within a domain. As explained in Chapter 3, this

analysis is based on two key aspects: 1) the vulnerabilities that allow someone to

attack the system, and 2) the security mechanisms that are required for a system in

Security Benchmarking of Transactional Systems

81

that domain. The problem is that, without considering the business applications

specificities it is not possible to reliably reason about the vulnerabilities that allow

a transactional system infrastructure to be attacked, making security qualification

based on the analysis of vulnerabilities misleading. This is due to two reasons: first,

one cannot identify what is supposed to be protected (e.g. all resources may be

public, thus some vulnerabilities are irrelevant); second, when protecting a scenario

as complex as a transactional system, the system administrator usually follows a

defense-in-depth approach (Howard 2002), meaning that any single vulnerability

may be mitigated by an alternative security layer (thus, not actually being an

exposed attacker entry point).

The second aspect regarding security qualification (the security mechanisms that

are required for the system to be used in the benchmark domain), can however be

addressed without considering the business applications. In fact, assuming that for

tuning the security configuration of a live infrastructure the administrator

effectively makes use of the set of available mechanisms to maximize the system

defense surface (following a defense-in-depth approach), then it is possible to

qualify the underlying software (i.e. the software elements that will support the

DBMS infrastructure) taking into account the specific configuration the

administrator intends to deploy. In other words, it is possible to qualify final

products (e.g. DBMS engines, OS) in terms of the mechanisms they provide for the

administrator to defend his infrastructure. This can be done by comparing the

intended configuration with the set of mechanisms provided by the benchmarked

software (mechanisms that are required but not provided by a given software

package, may disqualify in the proposed benchmarking process).

This aspect is thoroughly discussed in Chapter 6, in which we propose a

qualification benchmark that can be used by administrators to select software

packages for transactional system infrastructures. Such qualification process is

heavily based on the lessons learned when defining the trustworthiness benchmark

presented in the next sections, and will allow answering a very specific question:

how can a DBA choose a DBMS engine (and the other supporting software) that

ultimately allows easily securing a transactional system infrastructure?

4.3 Trustworthiness Benchmarking

Within the framework proposed in Chapter 3, security comparison is given by

performing trustworthiness benchmarking, where the goal is to provide some kind

of estimation of the proneness of some security premise to be broken. As mentioned

before, given an isolated DBMS infrastructure, it is not possible to reason about its

security in terms of breaches of the business rules, as such rules are not

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

82

implemented yet: they will only exist when business applications are deployed

(when considering a benchmark for a transactional system infrastructure, we are

not considering the businesses applications, but the infrastructure that may be the

backbone of a set of applications; we will discuss the design of such a benchmark

in Chapter 5). However, as those business rules will eventually exist and will have

to be enforced when a business application is deployed on top of the transactional

system infrastructure, trustworthiness benchmarking can be used to:

assess and compare how much control the administrator has over

his infrastructure or, in other words, how much certainty the

administrator can have that his infrastructure will not be used to

break the business rules without his consent.

In practice, the benchmark should allow the administrator (i.e. the DBA, as

specified in the base setup) to assess and compare the effectiveness of different

configurations on preventing attackers from using the infrastructure to break the

restrictions imposed by the business applications. This is the most useful point-of-

view to take when benchmarking the security of a transactional system

infrastructure, and therefore is the one chosen to guide the definition of our

benchmark.

For the actual benchmark definition we propose four key steps. Although these

steps intend to be generic (i.e. applicable for the definition of any trustworthiness

benchmark for transactional systems infrastructures), they are based on the base

setup described before, and may need to be adjusted when considering scenarios

with different characteristics. The steps are as follows:

1) Identify the threat vectors that are relevant in the context of the scenario

(i.e. that are representative of real threats). The first piece of information

needed for defining a trustworthiness benchmark is the definition of what

are the bad, undesirable or harmful effects that are considered to be

relevant security issues. In a transactional system infrastructure, the threat

vectors should be consist of generic effects that may allow or facilitate

attackers to compromise the security of the business applications that run

on top of the infrastructure. For example, Denial of Service prevents the

business applications of obtaining the data they need, even if the

applications themselves are working. Other example would be obtaining

access to private information through means that the business applications

developers are not even aware that exist (Side-Channel Information

Disclosure).

Security Benchmarking of Transactional Systems

83

2) Identify the system elements that influence the probability of one or more

of the threat vectors being instantiated as attacks. After devising the list of

harmful effects, we need to enumerate as thoroughly as possibly the set of

elements related with them. For example, encrypting communication

channels allow preventing obtaining private information, and so does the

encryption of backups. Also, small precautions like having the DBMS

engine daemon with the least amount of privileges also prevent extended

damage in the case of application’s vulnerabilities (i.e. if privileges are

correctly set, one application might not be able to affect another, improving

the overall security of the infrastructure despite the vulnerabilities). Such

elements may be directly extrapolated from the harmful effects, or

identified based on other types of analysis and research, and may consist

of security mechanisms, processes, configurations, procedures and

behaviors associated with security in the benchmarking domain (in this

case, the transactional system infrastructure). This list will serve as the base

for the definition of what should be taken into account when evaluating

trustworthiness aspects.

3) Define how much each element influences the security of the infrastructure

(in average). This is the most difficult and controversial part of the process,

as it may depend on the characteristics of the environment being evaluated,

something that should be avoided in a benchmark for portability reasons.

At the same time, it is unrealistic to assume that all the security elements

provide the same contribution to the security surface of a system, even from

a generic point of view. For example, the security impact of having the

DBMS daemon running with administrative privileges within the operating

system cannot be the same as the impact of a complete lack of auditing or

privilege management capabilities. This way we need to assign a level of

influence to each element, even if in an approximate manner.

4) Identify how the security elements relate with the threat vectors. Even

though it is clear that the security elements identified in step 2 are related

with security, the threat vector (or vectors) they are related with is not

always obvious. The goal of this step is to perform an analysis that allows

such identification. An example is: the execution of the DBMS engine

daemon with excessive privileges may lead to what security problems?

This identification is particularly tricky, especially because the original

security elements cannot be obtained through a methodical and/or formal

method. We thus propose the concept of pessimistic scenarios to make the

correlation between security elements and threat vectors. For example,

obtaining physical access to the DBMS engine server may allow either to

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

84

have access to the operating system or directly obtaining the raw data

stored in the physical hard drives, but such things are only possible

“everything goes bad”, which is more or less the idea of the pessimistic

scenarios.

These four steps allow the design of a benchmarking procedure to guide the

assessment process of any concrete environment that fits our base setup

specification, which should allow the computation of the trustworthiness metrics.

The next sections thoroughly present the actual process we used to define the

benchmark, discuss the difficulties and decisions taken along the process, and the

set of concrete steps that allowed us to build a trustworthiness measurement tool

that can be used by DBAs. As it will become evident, most of the steps takes

advantage of field research and practice in an attempt to make the benchmark as

representative and realistic as possible. Although we realize that work based on

field research has limits (which is why formal methodologies are often preferred),

there are no formal methods available to accomplish our goals (and it seems

extremely hard to even propose one). This way, we are left with the field experience

of professionals. To better understand the problem, we also discuss and analyze the

limitations that such approach imposes on each step of the proposed benchmarking

methodology.

4.3.1 Threat Vectors

In the context of our framework, the first step towards the implementation of a

trustworthiness benchmark is the identification of the effects or circumstances that

are considered security violations, which we define as threat vectors (as proposed

in Chapter 3). In the context of transactional system infrastructures analyzed

without taking into consideration any business applications, the effects that we

want to identify are the ones that are generically associated to security breaches in

the presence of any set of conceivable business applications. In other words, the

goal is to identify the effects or circumstances that may allow (or facilitate)

attackers to circumvent one or more of the rules that the business applications will

be in charge of enforcing.

Lists enumerating typical threats in the transactional systems domain are not

obvious or easy to obtain, and a set based simply on the breach of CIA properties

is too generic to be useful in practice (Parker 2002). A slightly more targeted

approach could be based on the STRIDE threat modeling methodology (see

Chapter 2 for more details), which proposes the following list of security threats:

− Spoofing: threats that involve an entity using another identity that is not

its own;

Security Benchmarking of Transactional Systems

85

− Tampering: threats that involve unauthorized modification of data or

another part of the system;

− Repudiation: threats involving the denial of someone performing an

action;

− Information disclosure: threats involving the exposition of information to

an unauthorized entity;

− Denial of service: threats that may lead a particular service to become

unavailable to its users;

− Elevation of privileges: threats that may allow an entity to obtain more

privileges than it was originally supposed to have.

Although a relevant starting point, STRIDE is also too generic, and the actual

semantics involved in the application of each of these threats in the context of

transactional systems are too open for disagreements. To understand why, take, for

instance, the Information disclosure threat. Whenever an end user provides some

confidential information via a business application, this information immediately

goes through the following workflow (or a variation of it): first it is processed by

the user interface application, then it is transmitted through an arbitrarily complex

network to a server (that may be the DBMS server directly or an intermediary

application server), and finally it may be processed by this server or by the DBMS

engine before being stored in the database files. The information may be

temporarily stored in the server’s memory and written to a permanent storage

device, which may then be copied to another media for backup. This way,

unauthorized access to this information can happen through several distinct means

(Payton 2006), including:

- Physical access to the server: even if logical access to the server is

protected through reliable authentication procedures, the data can be

obtained from the memory footprints of RAM circuits, or even from the

physical hard drives. Alternative system boot from optical or USB drives

are also known to be possible.

- Interception of traffic data: network traffic can be collected not only on

the intermediate network routing equipment, but also at the end-points,

where privileged access to the operating system of the database server or

to the client device would allow reading the information.

- Interception of backup copies: physically and/or logically unprotected

backup devices can also be used to access unauthorized information (even

if backups can hardly be used to modify data).

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

86

- Insider threats: several different persons may work together in the

maintenance and administration of the infrastructure, thus having

legitimate access to the information. Thus, it is important to account for the

possibility of people taking advantage of their privileges in order to obtain

information they should not have access to.

In practice, we need a list of threats like the ones defined by STRIDE, but that takes

into account the characteristics of our base scenario. A possible approach that could

be used to accomplish this would be to collect information concerning real

instances of security breaches (i.e. real cases like the ones proposed above) and

extrapolate the effects involved in each one, grouping them in large categories. The

problem is that details concerning attacks to real installations are extremely hard to

find. This is mainly due to the fact that administrators tend to follow a “security

through obscurity” approach, thus hiding the occurrence of any successful attack

events against their systems (Pavlovic 2011). Their reasoning is that disclosing

such information could draw the attention to the existing weaknesses, opening the

door for more attacks.

Information that can be more easily found is related to implementation bugs in real

DBMS engines that turn out to be security vulnerabilities (Messmer 2012). In

theory, these bugs could be analyzed in terms of the threats to systems in the field

(even if it is not always possible to identify how they can be used to breach business

rules of applications, as this would depend on how these applications are designed).

However, a trustworthiness benchmark for our base scenario cannot be based on

this kind of information (at least not completely), for two reasons: first, because

software bugs do not account for all the security effects in a DBMS installation,

and are not representative of the large number of issues caused by the myriad of

possible configuration errors; second, because fixing software defects in a DBMS

engine is not usually the DBA’s responsibility, and therefore the effects of these

bugs could hardly be avoidable in a real situation. The only measure the DBA can

take is to install, as soon as possible, the existing patches that fix software defects.

In other words, such benchmark would be of reduced usefulness for DBAs, in the

majority of the cases, as it would simply provide information about something that

the DBA is not able to change unless he replaces the whole infrastructure (which is

unrealistic in most scenarios).

To identify the relevant threat vectors for DBMS infrastructures we conducted an

extensive field search. We started from a wild range of documents and papers from

a variety of sources, like white papers, manuals, research papers, etc., and analyzed

them for the kind of information we needed (i.e., what should we prevent from

happening within a transactional system infrastructure). As this specific kind of

Security Benchmarking of Transactional Systems

87

information is too scattered and most documentation we found just touch these

issues superficially (and we need at least some level of justification for each threat),

we finally ended up reducing the initial sample to three main sources of

information: the original six STRIDE threats, two protection profiles for databases

from the Common Criteria evaluation methodology (Common Criteria 1998,

2000), and a popular white paper (Shoulman 2009) that presents a consensual “top

10” of database threats. The reasoning behind this decision is that each of these

sources already includes a summary of the consensual threats identified by the

groups that created them. Thus, the intersection of the four documents provides, in

our opinion, a representative set of the threats.

We then analyzed the information contained in the chosen documents and rewrote

the threat definitions that they present in the form required by our benchmark,

which can be stated as: what effects that we do not want to happen in our base

scenario infrastructure. Our analysis resulted in a set of eight infrastructure threats,

which are representative of all the threat information that could be found in the four

documents. We further validated and refined the list and the definitions regarding

their completeness and correctness, by asking the opinion of a large set of experts,

including database administrators (at least four administrators has more than 3

years of practical experience) and researchers (at scientific conferences). Table 4.1

presents the final threat vectors, their definition and some examples of security

aspects related with each vector.

Orthogonality was a key aspect considered in the definition of the threat vectors.

In fact, the vectors have to be as representative as possible of the real attack threats

and malicious effects that may occur in the context of our generic infrastructure,

but they also have to be as orthogonal as possible among themselves, allowing for

a reduced overlap among different vectors. For instance, the white paper analyzed

(Shoulman 2009) includes platform vulnerabilities as one of the top 10 database

threats. However, from a DBMS configuration point of view, most platform

vulnerabilities (like operating system vulnerabilities) are used as a way for

maliciously obtaining privileges. Thus, such a vector clearly matches a very

important threat defined by STRIDE: privilege elevation. These observations,

together with a careful analysis of the documents mentioned before, allowed us to

define what we believe to be the eight more relevant DBMS infrastructure

configuration threat vectors. Nevertheless, it is important that the threat vectors

provided here are periodically evaluated, and whenever necessary, the list should

be adapted and improved.

Table 4.1 Potential threat vectors in DBMS infrastructures

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

88

Threat Vector Description

Legitimate excessive

privilege achievement

(LegExPrA)

This threat is related to configuration characteristics that

increase the probability of allowing a user to obtain more

privileges than the ones he is supposed to have. These

excessive privileges are a threat because, by definition,

they allow the user to perform unauthorized actions.

Examples of issues that may lead to legitimate excessive

privilege achievement are: granting privileges with using

open ended expressions (e.g. ALL and ANY keywords,

which define the way privileges can be forwarded), not

implementing views to hide unnecessary columns, and

using an administrator OS userid to execute the DBMS

engine daemon

Illegitimate privilege

elevation

(IllPrEl)

This threat is related to configuration characteristics that

increase the probability of allowing a user to obtain an

arbitrary privilege that he should not have in any

circumstances. An attacker usually achieves illegitimate

privileges by actively exploiting vulnerabilities at some

level of the system. Examples of vulnerabilities that may

lead to illegitimate privilege elevation are: not using a

dedicated platform, not patching the DBMS or OS

software, and not disabling unused protocols on the

network stack

Denial of Service (DoS)

This threat is related to configuration characteristics that

increase the probability of a user being denied timely

access to some functionality or resource. Examples of

issues that may lead to DoS are: not making and testing

backups, storing log information in the OS partition, and

not properly setting OS file system privileges of the

DBMS data files

Communication Weakness

(CommW)

This threat is related to configuration characteristics that

increase the probability of a communication channel

between a user and the DBMS to behave in an improper

way. This threat includes sensitive information

disclosure as well as traffic manipulation and diversion,

and may be due to: not encrypting a remote connection,

using a default or self signed certificate for a server, and

placing production and development servers on the same

network segment, etc.

Authentication Weakness

(AuthW)

This threat is related to configuration characteristics that

increase the probability of allowing an individual to

become authenticated to the system as another

individual. Examples of vulnerabilities that may lead to

this are: storing password information in clear text, not

forcing strong password policies, not excluding default

userids, and using host based authentication

Security Benchmarking of Transactional Systems

89

Side-Channel Data

Exposure

(SCDtEx)

This threat is related to configuration characteristics that

increase the probability of sensitive information to be

accessed through an alternative (i.e. illegitimate) access

channel. Vulnerabilies that may lead to side-channel

data exposure are: storing schema creation SQL files in

the DBMS platform, not protecting backup files, not

configuring access permissions of DBMS data files, etc.

Audit Trail Weakness

(AudTW)

This threat is related to configuration characteristics that

may result in a decreased ability to identify unexpected

behavior (including its causes and possible suspects). It

includes not only real audit functionalities, but also

logging mechanisms and other tracking facilities.

Problems include: not auditing sensitive information, not

protecting log files, and not auditing application code

changes

SQL Injection

Enhancement

(SQLI)

This threat is related to configuration characteristics that

increase the probability of an SQL injection

vulnerability to be exposed or enhanced. Examples of

such characteristics are: not disabling DBMS extensions

that allow file system operations, not implementing least

privileges policies, and not protecting application code

The threat vectors (presented in Table 4.1), combined with the interaction classes

defined for the base scenario, will ultimately serve for calculating the

trustworthiness index of the evaluated systems. These two dimensions give the

DBA the flexibility to focus on the areas of the system that are more important

considering the particularities of his particular installation, and allow the use of the

same benchmark in very distinct transactional systems architectures. To exemplify

and demonstrate how a DBA can use these dimensions to tailor the benchmark

results to his environment, lets consider two different, but quite common scenarios:

− Scenario A: in this scenario, the DBMS used is a MySQL engine over a

Linux system. The operating system also hosts an Apache web server,

which runs a single application developed in PHP that connects directly to

the database that runs in the same server. The system is maintained by a

single person that is, at the same time, the DBA and the developer of the

application (i.e. no other person has a valid userid on the DBMS or on the

operating system). All users connect to the system using via a business

application, whose interface runs over a web browser, and that

communicate with the server using the https protocol for security.

− Scenario B: in this scenario, a dedicated machine hosts a SQL Server

DBMS engine over a Windows 2003 operating system. The DBMS is

accessed directly by several stand-alone applications developed using the

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

90

Delphi language. Applications run on client hosts spread over a LAN and

on another server machine that hosts an Internet Information Services web

server and several ASP web applications that are accessed from the

Internet. A large team of developers has DBMS userids with a variety of

roles and privileges, and the maintenance staff executes backup procedures

every night, using operating system and DBMS userids.

Applying the benchmark consists of executing the procedure and computing the

corresponding levels of trustworthiness (as discussed later) for each threat vector

within each interaction class. Tailoring the results consists then of focusing the

analysis on the values that make sense for each scenario. For example, in scenario

A threats related to communications channels are very unlikely to be a concern

because communication with the database occurs only locally from the web server

process, which then communicates with the users using the https protocol, which is

known to be secure. At the same time, the DBA does not have to worry about

regular operating system users causing problems because he is the only one with

an OS userid. This way, he might decide not to spend time fixing privileges on the

file system, something that could be a problem in another context. He should be,

however, very concerned with application bugs (e.g. SQL Injection vulnerabilities)

that would allow for a non-system user to obtain private information. Additionally,

he should also worry about the availability of the database application.

The concerns of the DBA in scenario B are quite different. With so many

developers and applications he must not lose the control of privileges within the

DBMS (which could lead to unintentionally granting someone excessive

privileges). Also, the DBA is demanded to continuously collect and analyze reports

about unusual behaviors and he must be able to pinpoint the suspects and the causes

when attacks happen. At the same time, he should assume that several individuals

that cannot be fully trusted (e.g. the developers) may run commands in the

operating system, and therefore should apply measures to minimize the

consequences in the case of a disgruntled maintenance staff. The DBA should also

realize that the local network is very complex and insecure, and that connections

between the remote clients and the database should be protected.

The dimensions to consider when analyzing the benchmark results are obviously

different for the two scenarios (e.g. threats related to communications channels are

more relevant in scenario B than in scenario A), and should allow the DBA to

prioritize the areas that are of more relevance for security revision (i.e. dimensions

for which the configuration is less trustworthy). This might also help the DBA

justifying the need for replacing specific components of the infrastructure. For

instance, if it is too hard to obtain auditing information in a particular DBMS engine

and that is identified as a high priority for the specific environment (as is the case

Security Benchmarking of Transactional Systems

91

of scenario B), then the DBA may consider replacing his DBMS engine (or add

some external auditing feature that provides the same information). The same

reasoning applies to an operating system that makes it difficult to keep file system

permissions organized, or that has vulnerabilities being frequently disclosed and

reported. Whenever a DBA justifiably distrusts such aspects (being supported by a

systematic evaluation approach, like the proposed benchmark), then there is a good

justification to engage in radical environment modifications like these.

4.3.2 Security Recommendations

Reliably securing a database infrastructure (like the one represented by our base

scenario) requires the administrator to follow a Defense-in-Depth approach

(Howard & LeBlanc, 2002). Defense-in-Depth can be seen as a reasoning

framework in which one always assume that any security mechanism can fail, and

therefore, security depends on several layers of mechanisms that compensate the

failures of each other. For instance, no one would ever test thoroughly an

application and assume that this precaution would compensate the installation of a

database engine with default settings and empty passwords. At the same time, no

one would install a firewall on the network and assume that no outside user would

ever be able to gain control of internal servers.

Any level of acceptable security comes from the combination of several

configurations which, in the end, allow a proper definition of who and when the

access and modification of each piece of information is authorized. To accomplish

such level of security in our base scenario, the DBA is expected to configure the

whole set of existing elements available in the system, having three key goals in

mind (Said 2009): 1) • apply and configure security mechanisms that guarantee that

the existing security policies and rules are enforced to the maximum extent

possible; 2) dissuade attempts to break the rules; and 3) maintain mechanisms that

help identifying potential violations of the rules, including being able to pinpoint

suspects (in order to support punishments and avoid additional attempts).

The challenge is, therefore, to determine the following: 1) what are the security

elements (mechanisms, processes, configurations, procedures and behaviors), in the

form of security recommendations, that have to be put in place to accomplish the

identified goals? and 2) what is the relative impact of each element in terms of

security? The problem is that, as usually happens with security aspects in complex

scenarios, to date there is no known process or methodology to automatically

deduce a complete list of these elements, and therefore field research and practice

is the only option to accomplish the task.

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

92

4.3.2.1 Identification of Security Recommendations

A very important requirement for our benchmark is that it must be independent of

specific components brand (to allow portability); for instance, independent of any

particular DBMS engine or operating system. Therefore, the analyzed security

elements should come from different sources and not be tied with the restrictions

of specific software. At the same time, the list as to include a comprehensive and

realistic set of practical security recommendations, based on existing and

consensually accepted security practices and mechanisms that can be used in real

situations, without the requirement of special conditions (e.g. considerable

additional money or time/effort).

Unlike in the case of security threats, there is an enormous quantity of security

recommendations for databases and infrastructures in the form of books, reports,

papers, manuals, etc. available for free in the literature. However, due to the

complexity and time needed to gather all this information, the collection of

recommendations must be narrowed. In our case, we focused on two reliable

independent sources: the Center for Internet Security (CIS) (CIS 2008) and the

USA Department of Defense (Defense Information Systems Agency 2001). Like

in the case of threat vectors, we consider that these sources provide a representative

list of all the security recommendations that exist for the domain of transaction

systems: CIS documents from a software perspective (drawing from all security

mechanisms available in the most important DBMS engines used nowadays), and

the DoD document from a higher level behavioral perspective. Nevertheless, we

note that the list could be extended easily, although the time to execute the analysis

would grow accordingly.

As mentioned before, CIS has created a series of security configuration (CIS

Benchmarks 2012) documents for several commercial and open source DBMS,

namely: MySQL, SQLServer 2000/2005, and Oracle 8i/9i/10g. These documents

focus on the practical aspects of the configuration of these DBMS and state the

concrete values each configuration option should have in order to enhance the

overall security of real installations. Although CIS documents are indeed very

useful, three key problems have to be noted:

− The goal is to show which values or procedures should be used when

configuring the system and not to provide a way to assess the DBMS

configuration in terms of security. Although CIS refers to these documents

as benchmarks they are not explicitly designed for DBMS configuration

assessment or comparison.

Security Benchmarking of Transactional Systems

93

− Each document targets a specific DBMS version and the configurations

and concepts cannot be easily generalized. Additionally, each document

follows a different approach regarding the way settings are presented. For

example, the level of detail is different from one document to another and

the way recommendations are written also differs.

− Although there is a concise rationale in some cases, the general security

problem that is being addressed by each choice is not clearly presented.

This is a relevant problem as the DBA learns barely anything about what

he is doing, which in the end prevents him from applying his own

alternatives for the same goals. That may also stop the DBA from

understanding the gains and dangers associated to each configuration

option, keeping him from being able to assess configuration alternatives

when new software is available.

The other document we used in our study is the Database Security Technical

Implementation Guide, version 8, release 1 (Defense Information Systems Agency.

2001), developed by the Defense Information Systems Agency for use within the

USA Department of Defense. This document contains a very complete series of

mandatory and recommended requirements that the DoD employees must follow

when installing a database in the department. Although it is a generic document

applicable to any DBMS engine, it enforces a very strict set of requisites that clearly

implement a policy defined by the US government, which therefore may make it

incompatible with the requirements of database installations in general.

Nevertheless, it is a very good and complete source of information on database

security practices.

The first set of security recommendations, presented in Table 4.2 and

interchangeably referred as security best practices, is based on the detailed study

and subsequent generalization of the configuration settings stated in the set of CIS

documents. For each recommended setting, we identified the security property

being targeted and analyzed the value and procedure recommended. This allowed

us, for the majority of the cases, to determine the more general security

recommendation being addressed by each setting. Additionally, we counted the

number of different configuration recommendations that could be classified as

having the same practice as basis.

Table 4.2 DBMS configuration security best practices devised from the

analysis of the CIS documents

SECURITY RECOMMENDATION (CIS)
of Recommendations
in CIS documents

 M O8 O10 S

ENVIRONMENT

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

94

1 Use a dedicated machine for the database 1 1 1 28

2 Avoid machines which also run critical network services (naming, authentication, etc) 1 1 1 1

3 Use Firewalls: on the machine and on the network border 1 3 3 1

4 Prevent physical access to the DBMS machine by unauthorized people 1

5 Remove from the network stack all unauthorized protocols 1 1 1

6 Create a specific user to run the DBMS daemons 1 1 1

7 Restrict DBMS user access to everything he doesn't need 1 4 4 3

8 Prevent direct login on the DBMS user account 2 1 3 3
INSTALLATION SETUP

9 Create a partition for log information 2 1 1 1

10 Only the DBMS user should read/write in the log partition 1

11 Create a partition for DB data 1 1 1 2

12 Only the DBMS user should read/write in the data partition 1

13 Separate the DBMS software from the OS files 1 2 2 2

 Remove/Avoid default elements:

14 »»»Remove example databases 1 1

15 »»»Change/remove user names/passwords 1 4 4 2

16 »»»Change remote identification names (SID, etc...) 3 1

17 »»»Change TCP/UDP Ports 1 1 1

18 »»»Do not use default SSL certificates 1

19 Separate production and development servers 1 1

20 No developer should have access to the production server 5 5

21 Use different network segments for production and development servers 1 1 1

 Verify all the installed DBMS application files:

22 »»»Check and set the owner of the files 1 2 3

23 »»»Set read/running permissions only to authorized users 4 18 22 14
OPERATIONAL PROCEDURES

24 Keep the DBMS software updated 3 1 1

25 Make regular backups 1 4

26 Test the backups 1 1
SYSTEM LEVEL CONFIGURATION

27 Avoid random ports assignment for client connections (firewall configuration) 1 1

28 Enforce remote communication encryption with strong algorithms 1 1 11 3

29 Use server side certificate if possible 1 1

30 Use IPs instead of host names to configure access permissions (prevents DNS spoofing) 1 1

31 Enforce strong user level authentication 2 6 8 4

32 Prevent idle connection hijacking 2 2

33 Ensure no remote parameters are used in authentication 1 2 1

34 Avoid host based authentication 1 1

35 Enforce strong password policies 1 2 2

36 Apply excessive failed logins lock 1 1

37 Apply password lifetime control 1 1

38 Deny regular password reuse (force periodic change) 2 2

39 Use strong encryption in password storage 3

40 Enforce comprehensive logging 1 2 1

41 Verify that the log data cannot be lost (replication is used) 2 2 1

42 Audit sensitive information 14 19 25

43 Verify that the audit data cannot be lost (replication is used) 1 1

 Ensure no “side-channel” information leak (don’t create/restrict access):

44 »»»From configuration files 2 1

45 »»»From system variables 1

46 »»»From core_dump/trace files 8 8 1

47 »»»From backups of data and configuration files 1 1 4

 Avoid the interaction between the DBMS users and the OS:

48 »»»Deny any read/write on file system from DBMS used 2 3 2

49 »»»Deny any network operation (sending email, opening sockets, etc...) 4 3

50 »»»Deny access to not needed extended libraries and functionalities 1 11 11 54

51 »»»Deny access to any OS information and commands 2
APPLICATION LEVEL CONFIGURATION AND USAGE

Security Benchmarking of Transactional Systems

95

52 Remove user rights over system tables 1 23 25 1

53 Remove user quotas over system areas 3 1

54 Implement least privilege policy in rights assignments 9 10 6

55 Avoid ANY and ALL expressions in rights assignments 1 3 3

56 Do not delegate rights assignments 1 3 3 3

57 No user should have rights to change system properties or configurations 3 4 4 2

58 Grant privileges to roles/groups instead of users 1 1 3

59 Do not maintain the DB schema creation SQL files in the DB server 1

Total number of recommendations 48 166 183 177

The first column of Table 4.2 is a number that univocally identifies each security

recommendation and the second is the recommendation description. The last four

columns show the number of specific recommendations from each CIS document

that was associated with each generic recommendation (or best practice). The

column M is for the MySQL Benchmark document, O8 is for the Oracle 8i

Benchmark document, O10 is for the Oracle 9i and 10g Benchmark document, and

S is for the SQLServer 2000 Benchmark document.

There are three key aspects that deserve special attention regarding the procedure

followed to identify the best practices presented in the table. The first is related to

the cases where a given configuration setting can be associated with more than one

general best practice. For example, in the CIS document for Oracle 8i,

recommendation 1.32 states that the “tkprof” utility, used to access trace data,

should either be removed from the system (which can be associated with the

security best practice #50) or have its permissions reviewed in order to be available

only to authorized people (related to security best practice #23). In these cases, field

database administration experience and expert judgment were used to determine

the prevalent best practice. For the previous example (“tkprof”), we have

considered this recommendation to be related with best practice #50.

The second aspect is related to the configuration settings that are not clearly related

to a generic security best practice (e.g. Oracle 10g recommendation 6.03 related to

the Automated Storage Management, and SQL Server 2000 recommendation 5.4

related to the SQL Profiler application). We were able to observe that these

recommendations are typically related to database management and not to security

aspects, and therefore are not exactly suitable for our goal. Also, in many cases,

they are applicable only to a particular DBMS and can hardly be generalized. That

is the reason why the number of items in each column does not match the exact

number of recommendations presented in the CIS documents.

The last noticeable aspect about the definition of the best practices is that some of

them can be seen as special cases of more generic ones. The problem here is to

decide when a specialization of a particular best practice is relevant enough to

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

96

spawn a new one. For example, best practices #48 and #49 may be seen as

specializations of best practice #50. Practical experience on security trade-offs was

then used to evaluate and decide when such separation was important. For the

previous example, it is well known that network operations and access to the file

system are extended functionalities that, although useful to some extent, represent

potential sources of attacks and hence should be explicitly avoided. At the same

time, a more generic practice related to other possible extensions and functionalities

(as in practice #50) is also important. In fact, although in some cases it may not be

possible to decide for sure if a given extension can or cannot be used as an attack

path, the possibility frequently exists.

Table 4.2 is divided in 5 groups of practices that have common characteristics. This

division is useful when it becomes necessary to focus in a given subset of practices

related to a specific configuration step (i.e. installation, operation, application

deployment, etc.). The groups considered are:

− Environment: recommendations related to elements surrounding the

DBMS engine and the machine hosting it;

− Installation setup: recommendations to be considered right before and

after the installation of the DBMS engine;

− Operational procedures: periodic operations related to the DBMS

maintenance;

− System level configuration: the general working parameters

recommended for the DBMS;

− Application level configuration and usage: recommendations that are

application dependent.

In terms of the representativeness of the best practices, a brief analysis of Table 4.2

raises some immediate considerations. The first one is related to the fact that there

are many recommendations that appear only in a subset of the CIS documents. This

is mainly due to two reasons: on one hand, the documents are based on the empirical

experience of different people, which results in different sensibilities of what are

the most important security problems in each DBMS; on the other hand, the

documents are focused on the configuration mechanisms and parameters available

in each DBMS, meaning that whenever a particular feature is absent or not

configurable in a given engine then it is not addressed in the corresponding

document.

The absence of certain best practices in a given document should be considered a

problem, even if they represent minor issues in the context of DBMS targeted by

Security Benchmarking of Transactional Systems

97

the document. By being completely subjective and dependent on the environment,

security assessment should always be an exhaustive task, despite of the DBMS

considered. For example, the precaution related to not storing sensitive information

in system variables is mentioned only in the MySQL document (e.g. best practice

#45). However, this can be clearly a problem in any database environment, and

should not be overlooked. This is one of the reasons why our complete list, which

comes from the aggregation of all documents, represents a better approach than

simply using a specific document to harden a specific engine.

Another case is when a specific feature is not available in a given DBMS. For

instance, MySQL does not have auditing capabilities, so there are no

recommendations related to auditing in the CIS document. However, it is easy to

understand that auditing can be implemented, to a certain extent, using other DBMS

features like triggers (Da-sheng 2010). The important issue to be focused is not to

“have auditing turned on”, but instead to have ways of tracking operations done on

the system (e.g. trigger based auditing).

Another aspect that can be noticed in Table 4.2 is that some recommendations have

a highly variable number of configuration settings across the four documents (e.g.

best practice #1). That is a natural consequence of the fact that different people

designed the documents. Thus, it can be seen as a side effect caused by the

differences of how fine-grained the recommendations are.

The total number of recommendations in each document (last line of the table) also

shows an interesting aspect. Even though the commercial DBMS engines

considered (Oracle and SQLServer) have a quite similar number of

recommendations, the open source one (MySQL) has significantly less. This is

understandable as the number of configuration settings presented in the CIS

documents is obviously related to the number of functionalities and configuration

options available. MySQL is an open source DBMS that provides a reduced set of

functionalities when compared to more complex DBMS like Oracle and Microsoft

SQLServer (this is a result we obtain beyond any doubt in Chapter 6).

After identifying the set of security elements based on the analysis of the CIS

documents, we turned to the second source: the DoD document. As we already had

an initial table of security elements, our goal was then to screen the document

looking for things that were not yet included in the list. After a very careful analysis,

we were able to find only a small number of complementary recommendations that

did not show in any of the CIS documents. All other advices in the DoD document

can be generalized as at least one of the CIS related best practices shown in Table

4.2. The new best practices and corresponding groups are presented in Table 4.3.

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

98

Table 4.3 Complementary DoD best practices
Complementary Best Practices (DoD) Group

1A
Monitor de DBMS application and configuration files
for modifications

Operational Procedures

2A Do not use self signed certificates System Level Config.

3A Protect/encrypt application code Appl. L. Config./Usage

4A Audit application code changes Appl. L. Config./Usage

5A
Employ stored procedures and views instead of
direct table access

Appl. L. Config./Usage

Following a Defense-in-Depth approach, all the 64 security recommendations

presented in Table 4.2 and Table 4.3 were selected as the set of security

recommendations for our base scenario (and will guide the rest of the benchmark

definition). Obviously, we are aware that the process employed to create this set

carries out some limitations namely:

1) It may become outdated when technology advances. This is true for almost

all aspects related to security, and most of all for practical and useful

security tools. As technology advances, attack techniques also change and

a set of recommendations that is enough in one time may become deficient

in the future.

2) It may be incomplete. We tried to the best of our knowledge to identify

additional sources of security information that would provide more security

recommendations for our base scenario, and we are aware that additional

sources of information exist. For example, the documentation of most of

the DBMS engines (usually several hundred pages of technical

documentation) includes security information that is spread within the text

in the form of configuration suggestions. Academic books about database

administration and a very high number of research papers (some not

focused on security) also contain security information that might

complement our practices. However, the process of screening and

evaluating such a high volume of disperse information is beyond the ability

and the goal of a PhD work, being more suitable for a targeted research

effort accomplished by several researchers simultaneously. This way, we

decided to focus on a smaller, but more precise, set of documents, knowing

that this may leave out some important aspects. Nevertheless, the

incompleteness of the list presented in this thesis does not invalidate the

methodology used to create it, nor it diminishes the process used to

conceive and design the proposed trustworthiness benchmarking

procedure.

Security Benchmarking of Transactional Systems

99

4.3.2.2 Impact of Security Recommendations

Although the identification of the security recommendations is the most relevant

part of the process, we need to take into account that some of them are more

effective than others in terms of their contribution to the reduction of the attack

surface of the system. We may see this effectiveness as “how critical” it is to have

the recommendation implemented. Defining this value, however, is not an easy

task, as the security perception regarding the impact of any mechanism not only

varies from one person to another, but also may depend on the target environment

(e.g. the lack of communication encryption with the DBMS is only a concern if the

business application is executing in a remote client, which is not the case if it is

executing within a web server on the same physical machine, in which case the web

server itself would be in charge of encrypting the communication). Additionally,

although security recommendations can be identified from sources like books,

forums, checklists, etc., their impact and contribution to the reduction of the attack

surface is typically not addressed or is unclear. The representativeness of our

benchmark would be compromised if this aspect was not taken into consideration.

The process followed to incorporate the impact of each recommendation into the

benchmark was based on the definition of weights, drawn for the consensual

judgment of several experts. In this sense, the diversity of experiences becomes a

relevant issue, and experts from different fields should be explicitly included (and

not only security experts), including: database administrators, database application

developers, operating systems experts, network specialists, etc. Ideally, this group

should include a large number of both practitioners and academics. The expectation

is that, in average, the most important practices are emphasized, even if there is no

unanimity (this average should be representative of the reality taking into account

a base scenario).

Interviewing experts to obtain the importance of security recommendations is a

complex problem, and there are a few caveats we have to consider. As we want to

capture the most of a person’s experience and knowledge, the scale used for the

classification needs to be well defined, easy to understand, and include a short (but

adequate) number of values. For example, an excessively detailed scale with 20

different values forces the expert to make irrelevant considerations to decide

between close values (e.g. deciding between an 15 and a 16 is very difficult and

may be irrelevant), and makes the weighting process a lot harder without gaining

much from it. On the other hand, a too vague scale (e.g. with 2 values) does not

allow distinguishing and expressing the notion of importance of different

recommendations. In this work, we use a scale with four values (from 1 to 4), with

a very specific semantic for each one (the reason why use an even number of values

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

100

is to avoid falling into the “select the middle-one” syndrome, i.e. when in doubt

select the middle value). The description we created for each value is intended to

induce the interviewee to ask himself the following question: “how preoccupied

would I be if the system I manage did not have this feature/security element

implemented?” The semantics and scores we used are presented in Table 4.4.

Table 4.4 Best practice impact key
Score Importance to the system

4 Critical to the system

3 Important

2 Advisable to implement

1 Not much relevant

Having decided on the scale, we designed a spreadsheet and handed it to the nine

experts we invited to participate in our evaluation. We asked them to assign a score

to each recommendation using the keys presented in Table 4.4. This group of

experts included five people from academia and four engineers from industry. From

the academics, three are professors in a university (two of them teach databases

courses and the third one teaches a security course), and two are PhD students (one

working on intrusion detection and security vulnerabilities emulation and the other

working on security benchmarking for web servers). In the engineers group, we

have three full time database administrators and one technical manager for the

databases area in a medium size company.

The individual weight of each security recommendation is computed as the sum of

all scores assigned by each expert, normalized to a logarithm scale (base 10). This

normalization tries to stress the difference of the scores, highlighting and

distinguishing recommendations found critical even by a small number of experts

(the idea is to differentiate these from the ones that no expert found critical). The

final relative weight (which is a percentage) of each security recommendation is

defined as the individual weight of the recommendation divided by the sum of all

individual weights.

The summarized relative weights are shown in Table 4.5. The recommendations

presented in the second column of each row (see tables 4.3 and 4.4 for the

correspondence between the numbers and the description of the practices) are

ordered by the computed weights, and have a relative importance in the interval

presented in the second column. For example, all the practices presented in the third

row of Table 4.5 (Class 2) have a relative weight between 1% and 2.5%.

Table 4.5 Best practices ordered by relative weights
Class Weight (W) Ordered Recommendations (all 64 practices)

Security Benchmarking of Transactional Systems

101

4 5,26 % > W ≥ 4% 4, 3, 19, 28, 57

3 4 % > W ≥ 2,5% 2, 24, 39, 35, 15, 1, 6, 52, 25

2 2,5% > W ≥ 1% 20, 23, 18, 31, 8, 29, 51, 32, 36, 54, 33, 37, 10, 12, 42, 41

1 1% > W ≥ 0,15% 22, 34, 5, 48, 21, 47, 38, 55, 46, 50, 7, 44, 45, 49, 26, 40, 43, 9, 4A, 11, 17,
13, 56, 30, 1A, 53, 58, 27, 2A, 14, 5A, 16, 59, 3A

From the analysis of the detailed results (which can be found in Annex A) it is clear

that each recommendation typically falls into one of four distinct groups: 1) the

ones that are unanimously critical, 2) the ones that are not critical but are important,

3) the ones that are advisable to implement, and 4) the ones that are unanimously

not relevant. This is very interesting and can be seen as a guide of which best

practices should be implemented in a system according to its criticality. For

example, consider three database infrastructures: one for a business critical

application like a bank, another for an important application like the human

resources database in a small company, and the last one for a non-critical

application like a web portal that disseminates information about cultural events. It

is clear that a database in a bank needs to implement all best practices, including

the less important ones; the human resources database should implement the best

practices in the three first groups (the critical, important and advisable groups) and

may relax the less important ones if their implementation brings unaffordable costs;

and, finally, the less important database needs only to implement the best practices

in the two first groups (the critical and important groups) and may relax the others.

A very important observation is that the 14 most important recommendations

account for exactly 51.61% of the security impact of the whole set of

recommendations, while the other 50 best practices account for less than half that

same impact. This is a major aspect that shows that there is a subset of the best

practices that is unanimously considered as important for any DBMS installation.

These 14 practices are the ones presented in the first and second rows of Table 4.5.

4.3.3 Pessimistic Scenarios

Having established the set of security recommendations (including a consensual

relative impact weight) and the set of threat vectors relevant for our base scenario,

we need to establish a relation between both. This relation specifies the threat

vectors that are affected, directly or indirectly, by the implementation of the

recommendations, and will therefore allow evaluating the relative contribution of

each recommendation in preventing each threat from turning into real attacks.

The key problem in establishing such relation is that, on one side, we have static

configuration characteristics of the environment (i.e. the security

recommendations) and, on the other side, we have the high-level bad, malicious or

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

102

otherwise undesirable effects and circumstances that are considered harmful

whenever they occur in the infrastructure. In other words, the main difficulty of this

analysis arises from the fact that real attacks or events (corresponding to particular

threat vectors), may depend on other conditions that have little to do with the static

characteristics of the environment. For example, how do we evaluate the security

problems that may arise when an infrastructure does not implement

recommendations, such as “separate development and production platforms or use

a dedicated platform for the DBMS engine”, without taking into consideration a

real environment configuration (and therefore no considering attackers or using

business rules to differentiate a security breach from a normal usage of the assets

involved)? At this stage of the benchmark design, we need a methodical reasoning

process that allows identifying the connection between both sets (i.e. threat vectors

and recommendations).

As mentioned before, security recommendations (like the ones proposed in Section

4.3.2.1) are typically provided by security experts and experienced practitioners in

the form of procedures and state configurations that are consensually accepted as

having the ability to make a system or environment more secure. However, this

assumption also implies the opposite consequence: if the recommendations help

making a system more secure, then, by definition, their absence can always be

associated with a particular insecurity circumstance. Therefore, if our list of

security recommendations is complete, then the list of insecurity circumstances

yielded that can be drawn from the pessimistic scenario and the absence of each of

the recommendations will be also complete.

4.3.3.1 Mapping process

Taking advantage of this reasoning, we propose the following methodology for

establishing the relation among threats and security recommendations (to better

understand the process, see example in Section 4.3.3.2):

1. For each security recommendation, identify a situation where not following

the recommendation creates an obvious vulnerability (in practice, a

situation where the recommendation is in fact the last layer of defense, and

where the associated insecurity would not exist if and only if the

recommendation was enforced). In this work, we refer to these situations

as pessimistic scenarios. They are pessimistic, in the following sense:

although neglecting a recommendation may not necessarily lead to attacks,

in this pessimistic circumstance it would certainly do. In other words,

neglecting the security recommendation degrades the security of the

infrastructure in the perspective posed by the pessimistic scenario.

Security Benchmarking of Transactional Systems

103

2. Starting from each pessimistic scenario, identify any concrete attacks that

could exploit the related vulnerability. These attacks should have harmful

effects that may be correlated with the threat vectors. The reasoning is that,

whenever a vulnerability in a pessimistic scenario and a threat vector are

related by an attack that exploits the related vulnerability and instantiates a

threat, a correlation between the original security recommendation and the

threat vector can be established.

3. While evaluating the attacks allowed by the pessimistic scenarios, it is

important to recall that real individuals (and attackers) interact with the

system by using one of the four interaction classes defined by our base

scenario (i.e. application userid, OS userid, DBMS userid, or none). This

is important because, to properly identify the plausible attacks, we need to

know how much access an attacker already has inside the system and that

is defined by the environment where the attacker is contained (i.e. the

interaction class he is using). Different interaction classes may allow

different attacks according to the different privileges associated to each

class.

4. This process, when completed for all pessimistic scenarios, for all

interaction classes, and for all threat vectors, generates a list of attacks that

identifies the trustworthiness relationship between each security

recommendation, each interaction class, and each threat.

It is important to emphasize that pessimistic scenarios are not the simple negation

of a security practice. The absence of a security practice simply shows that the

administrator is not fully aware of the potential system states in terms of security.

A pessimistic scenario, however, is the definition of a system state where

neglecting the associated practice derails into an obviously insecure circumstance

that can easily be associated with actual security attacks (this notion is important

as it supports the specific reasoning step that allows aligning the benchmark being

proposed in this chapter with the definition of trustworthiness benchmarking

presented in Chapter 3). In practice, by neglecting consensually accepted security

recommendations, the administrator of a transactional system infrastructure is

allowing for a certain set of circumstances to become possible, and therefore

increasing the probability of a set of attacks to happen. The harmful effects that

consequentially have their probability raised are defined by the consequences of

each possible attack allowed by a specific pessimistic scenario. How much each

probability is raised is given by the relative weights of the recommendation from

which the pessimistic scenario was identified (which is related with the consensual

impact identified for its implementation, as defined in Section 4.3.2.2).

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

104

We finally point out that, even if these probabilities give no guarantees that the

system can be attacked, they provide necessarily some evidence that the system

cannot be trusted to be secure, which is exactly what we are proposing to measure

(see discussion on metrics in Section4.3.5). In order to better illustrate the process,

next section presents a complete example detailing the reasoning behind each step.

4.3.3.2 Mapping example

Consider the security recommendation “separate development and production

platforms”. In practice, what this recommendation defines is that the database

server used by the developers to develop and test applications should not be the one

that hosts the production data. Elaborating on the opposite of this recommendation

allows us to identify a pessimistic scenario where developers have the ability to

execute untested and under development code on the production database. Note

that if testing and production platforms were in fact independent, then any code

could be tested thoroughly before reaching production data, which may not happen

when both environments coincide (the goal of the recommendation is to prevent

users with access to the development infrastructures from executing malicious or

potentially destructive code in the production environment).

Given the pessimistic scenario “developers can execute code in the production

DBMS engine”, we need to analyze the threat vectors from the point of view of the

3 interaction classes (DBMS userid, OS userid, application userid) and also from

the point of view of non-system users. First consider the Legitimate excessive

privilege achievement vector (see Table 4.1). For each interaction class we should

ask if the scenario enables “an increase of the probability of a user legitimaly

obtaining more privileges than he should have”. Clearly, a malicious code injection

is not a legitimate way for obtaining more privileges, so there is no mapping

between the best practice (“separate development and production platforms”) and

the vector (“Legitimate excessive privilege achievement”).

Let’s now look to the second vector (“Illegitimate privilege elevation”) and assess

if the scenario enables “an increased probability of an user obtaining an arbitrary

privilege that he should not have in any circumstances”. As a relation seems to

exist, each of the four interaction classes should be analyzed individually:

1. From the point of view of non-system users the answer to the question is

yes, as code injection may be used for bypassing authentication, allowing

a non-system user to access private data.

2. From the point of view of an application userid, the answer is also yes, as

the malicious code injected could bypass privilege checks, augmenting the

current userid privileges.

Security Benchmarking of Transactional Systems

105

3. From the point of view of an operating system userid, the answer is no, as

it is not possible to elevate OS privileges by executing code in the

production DBMS engine.

4. For a DBMS userid the answer is yes again, e.g. if code injection is

performed over a stored procedure meant to control operations over tables.

For a particular DBMS userid, the stored procedure could then behave in a

malicious way and allow increasing privileges.

This way, the final mapping of the security recommendation “separate

development and production platforms” into the “Legitimate excessive privilege

achievement” threat vector is not possible, while into the “Illegitimate privilege

elevation” is possible for three interaction classes: application userid, DBMS userid

and non-system users. The same process should be repeated for all remaining threat

vectors and security best practices, resulting in a three dimensions matrix relating

security recommendations, threat vectors, and interaction classes, as discussed in

the next section.

4.3.3.3 Complete mapping

The process of relating the 64 security practices identified in Section 4.3.2 with the

eight threats presented in Section 4.3.1 is extremely complex to be executed

correctly, and actually not suitable to be executed by a small number of researchers.

With the help of several database administrators and security researchers, we

performed the complete process for the fourteen most important practices identified

Table 4.5 (which already account for more than 50% of the identified impact). The

fourteen pessimistic scenarios devised are presented in Table 4.6.

Table 4.7 presents an excerpt of the complete correlation of pessimistic scenarios

with threats (as the complete matrix is too extensive, it is presented in (PhD Thesis

Complementary Info 2012)). The attacks presented in the table are preceded by one

or more of four acronyms, stating that the attack presumes a given interaction class:

A – Application userid; D – DBMS userid; O – Operating system userid; and N –

Non-system user. Recall that these interaction classes do not map directly to real

individuals, and it is expected that some roles need more than one interaction class.

In particular, any real individual (including the ones that have userids) can

accomplish attacks that require no relation with the system (identified by the N

acronym). For instance, the attacks under the pessimistic scenario #1 can be

accomplished by anyone able to achieve a physical proximity with the machine,

and that has the knowledge needed to carry out the actions indicated (e.g. rebooting

the system with a live CD for an illegitimate access to the file system).

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

106

Table 4.6 Pessimistic scenarios associated with not following security

recommendations.

Pessimistic scenarios

1
The platform is physically stationed in a place where people that have nothing to do with the

DBMS have regular unsupervised access

2

a) The platform does not have an operating system firewall, leaving all locally open ports

accessible to the local area network

b) The network does not have a firewall separating the internal network (LAN) from the servers

that provide services to the Internet

c) The network does not have a border firewall, leaving all network fully accessible to internet

traffic

3

a) The development DBMS is installed in the same platform as the production DBMS, but use

different DBMS instances with separate data and configurations

b) The development DBMS and the production DBMS are the same, and are only set apart by

privileges within the database

4
Remote communications with the DBMS can be very easily captured and understood (no

encryption)

5
a) DBMS userids can alter or influence the DBMS environment and behavior

b) OS userids can alter or influence the operating system environment and behavior

6
The DBMS platform also hosts a email, naming or similar critical network service which is

completely open for access from the Internet

7 The DBMS has known critical vulnerabilities which are of public domain knowledge

8 Stored password information in the database is clear text

9
DBMS/applications/OS users may choose any password they like, even the most easy to guess

ones

10
Information of one username/password pair that can be used to login in the database is public

domain

11

a) The operating system of the DBMS loads several unknown default services on the boot

process, which may open listening ports on the server and may contain security vulnerabilities

b) The operating system of the DBMS have several applications and tools installed on the file

system, which may be used by an operating system user as leverage to an attack (like a

compiler, for instance)

12
a) The OS userid used to run the DBMS daemons has administrator’s privileges

b) The OS userid used to run the DBMS daemons is used for other daemons and tasks as well

13
DBMS userids have privileges to access internal control information, and may alter the DBMS

engine behavior

14

a) There is no regularly updated copy of the production data in a separate storage

b) There is no regularly updated copy of platform file system and important configurations in

a separate storage

Table 4.7 Set of attacks correlating the pessimistic scenarios and the threats

Security Benchmarking of Transactional Systems

107

Legitimate Excessive

Privilege Achievement

Illegitimate privilege

achievement

Denial of

service

Communication

Weakness

1

D: User can bypass

application/network level restrictions,

by logging directly to the database, as

long he can login to the OS

N: Boot by a CD/USB pendrive,

copy all file system

N: Disconnect cables,

turn off the server or

simply destroy it

physically. Each of those

actions can be intentional

or not.

N: Install a sniffer physically in the

network adapter

2a
D: User can bypass application level

restrictions and connect directly into

the DB through a DB client

N: A LAN user connects to a

vulnerable local listening service,

causes a buffer overflow allowing

arbitrary code execution

N: A LAN user connects

to a local listening service

and causes it to consume

all CPU resources

2b

 N: An attack on a server with

internet applications may be used to

launch another attack on a private

network host, achieving access to

all computers on the network,

including the DBMS platform

2c

 N: Internet port scans are free to

find servers with vulnerabilities and

which can be used as leverage to

other attacks

N: Internet users may

request all kinds of

connections to any ports

in any network server,

flooding the network and

hogging resources

N: Local network may be flooded

with invalid requests consuming all

Internet bandwidth

3a A, D: Development and testing may

cause effects on the behavior of the

production applications

O: Developers may be able to

eavesdrop production connections

3b

A: Untested applications can mess

with production server resources and

data

D: Execute malicious stored

procedures may read or write over

production data

A, D: Activated

malicious code may erase

information

O: A system command

may consume all CPU

resources

O: Developers may be able to

eavesdrop production connections

4
 N: LAN users may have access to

the data transit

O: OS users may sniff all traffic

from the network interface

 N: LAN users may have access to the

data transit

O: OS users may capture all traffic

from the network interface

5a
 D: DBMS users may

modify the size of

working areas as to not

allow correct operation

5b O: OS users may alter environment

variables that affect the DBMS

startup or behavior

O: OS user may modify

memory configurations

affecting availability

6
 N: Buffer overflow in the offered

service, taking control of the

machine and the DBMS

N: Overuse of the offered

service, causing CPU or

disk exhaustion

N: Buffer overflow in the offered

service, taking control of the

machine installing a packet sniffer

Table 4.8 presents the complete mapping for the fourteen most important security

recommendations. It is important to emphasize that we are aware that this mapping

is most probably incomplete, as it is very hard to envision all the ways security can

be affected in such a complex environment, even when considering a focused

approach with several assumptions (like the ones defined in the beginning of

Section 4.1). The benchmark needs to be completed and perfected in an incremental

way, by integrating knowledge of more and more experts and by incorporating the

new attack information that becomes available. Nevertheless, we believe that even

such an incomplete mapping can be used to implement a fairly representative

benchmark, thus allowing demonstrating the effectiveness of our trustworthiness

benchmarking approach.

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

108

Table 4.8 Mapping for the fourteen most important security

recommendations

L
eg

it
im

a
te

 E
x

c.

p
ri

v
il

eg
e

a
ch

ie
v

em
en

t

Il
le

g
it

im
a

te

p
ri

v
il

eg
e

a
ch

ie
v

em
en

t

D
en

ia
l

o
f

se
rv

ic
e

C
o

m
m

u
n

ic
.

W
ea

k
n

es
s

A
u

th
en

ti
ca

ti
o
n

W
ea

k
n

es
s

S
id

e-
ch

a
n

n
el

 D
a

ta

E
x

p
o

su
re

A
u

d
it

 T
ra

il

W
ea

k
n

es
s

S
Q

L
 I

n
je

ct
io

n

E
n

h
a

n
ce

m
en

t

1 D N N N N N N

2 D N N N N

3 A, D D A, D, O O N, A

4 N, O N, O N N, O N N

5 O D, O O, D

6 N N N N N N N

7 A, D N, D, O

8 O, D N, D, A, O N, D, A, O D, O

9 N N, D, A, O N, D, A, O

10 N, O N, O N N N

11 N, O N, O N, O N, O N, O N, O N, O

12 O N, O O O N, O

13 D A D D, A

14 A, O O, D, A

4.3.4 Benchmark Procedure

In the previous sections we discussed the reasoning and justifications behind the

internal assumptions and the design of the proposed trustworthiness benchmark. A

key aspect that has to be addressed when proposing a benchmarking procedure is

the practical use of the benchmark (i.e. the steps required for executing it). Any

benchmark specification has to include a set of deterministic operations or

procedures that, when carried out by benchmark user (which we assume to be the

administrator of a transactional system infrastructure), allow the computation of the

metrics (Grey 1993).

A key aspect is that a benchmark is expected to be repeatable, at least in a statistical

basis, and should depend the least possible on external variables (Grey 1993).

Typically, a benchmarking process based on the simple execution of a deterministic

software application (or a set of applications) ensures the “ideal” means for

obtaining correct results. Unfortunately, in our case the person that executes the

benchmark is, by definition, an external variable, as the input of the benchmark is

the user perception about the status of the implementation of the security

recommendations (which cannot be obtained in an automated manner). In fact, the

high complexity and variability of the systems and environments targeted by the

Security Benchmarking of Transactional Systems

109

proposed benchmark, allied with the complexity of the semantics of the security

recommendations, makes it unfeasible to create a program able to perform this

assessment automatically for all cases, even if for a small number of

recommendations this could be accomplished. For example, identifying the

privileges of the existing userids is something that is trivial to automate, while at

the same time, identifying if the physical hardware that hosts the database is

adequately protected is not so easy.

In practice, as we cannot avoid having information gathered by a person, at least

should prevent, to a certain extent, the security knowledge and biases of this person

from affect the benchmark results. This can be done by focused only on technical

details and procedures and in the configuration state of the system, as these

elements are usually so evident that, assuming a competent and knowledgeable

benchmark user, their identification would be unambiguous and independent of any

particular previous knowledge.

Taking into account these restrictions, the proposed benchmark is based on a non-

automated process that tries to minimize the human factor. In practice, the

benchmarking tool consists of a list of deterministic tests, in the form of yes or no

questions that depend exclusively on palpable characteristics of the environment

and on the procedures applied to the systems. Examples of the tests are presented

in Table 4.9, while the complete list can be found in the Annex A.

Table 4.9 Benchmark security tests (sample)
Test Fail

1
If the machine is turned off, does any service other than the database become unavailable?
Is there any process running on the machine which is not demanded by the DBMS, the OS

or the machine maintenance/security?

Yes

2
If the machine is turned off, does any critical network service, like naming, directory or
authentication services, becomes unavailable?

Yes

3

Is there a firewall on the network border? Is there a firewall running on the DBMS

machine? Are both firewalls properly configured by experienced staff with solid network

knowledge? (Wool 2004, Kaufman 2002)

No

4
Is it possible to an unauthorized person to physically access the machine without

supervision at any given time?
Yes

5
List the protocols available in the network stack in the OS of the DBMS machine. For each

protocol, is there a clear justification for its availability?
No

19 Is there any kind of development or testing being done in the production server? Yes

25
Is a carefully thought out, documented backup procedure regularly executed? If the person

in charge suddenly quit, is it easy for anyone else to resume its task?
No

32
Establish a connection with the DBMS and let it stay idle. Is the connection severed in a
reasonable amount of time?

No

The benchmark tests should be answered by an experienced DBA with deep

knowledge about the operating system in use, and some knowledge about computer

networks. For some of the tests, however, there are variable parameters that cannot

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

110

be easily predicted, and may require the security knowledge of the user to be

correctly determined. Such parameters are identified using the figures security

expert and experienced staff, the later also assuming deep knowledge about the

usage of the underlying infrastructure. In practice, input coming from professionals

that do understand security is required to pass some of the tests (i.e. to have a yes

answer). In these cases, to simplify the work, we provide references to bibliography

where such security knowledge can be obtained (e.g. in test #3 we provide solid

references to information regarding the correct configuration of firewalls).

Two other figures that appear in the tests, reasonable and regularly, also depend

on bounds that cannot be defined without taking into account the business

applications that are using the database (e.g. in test #32 we have to define a

reasonable time for a timeout, which clearly depend on the application in question).

In these cases, we expect the DBA to either estimate those bounds or to discuss

them with the system analysts and other experts. We could have provided average

values for these cases, but obtaining this information would require detailed field

studies that were not in the scope of this work.

As can be observed in the second column of Table 4.9, the tests typically include

two steps. The initial step, which is not defined for every case, is a procedure to

obtain the particular information necessary to answer the test (e.g. in test #32 we

indicate a procedure that will provide the timeout configuration to the benchmark

user even if he does not know what a timeout is or where this information is

configured). This step is also of optional execution, in the sense that the DBA might

obtain the same information in alternative ways (e.g. technical manuals or previous

experience). The second step is a series of yes/no questions that should be answered

systematically. If, for any of the listed questions, the answer is the one stated in the

rightmost column of Table 4.9, then the test is considered as failed. Also, in some

cases, the benchmark user might not know how to answer a particular question,

which is an “unknown” answer that should be treated as a failed test (we follow a

pessimistic approach, as one cannot trust in if there are some unknown aspects). In

this case, the user is expected to further investigate in order to better understand the

current state of the system.

Although for some recommendations designing the tests is a straightforward task,

for others this brings two key difficulties. The first difficulty is related to knowing

if the test really covers all aspects of the recommendation implementation. This is

tricky due to the specificities of each scenario and is widely dependent on the

generality of the best practice statement. For example, test #25 is designed for a

recommendation that states that regular backups should be made. However,

checking whether the DBA is in fact accomplishing this practice correctly is

Security Benchmarking of Transactional Systems

111

something that cannot be done by means of only two complementary questions. In

this case, we heavily assumed that a backup procedure that is not documented and

that cannot be quickly understood by anyone other than the DBA would not be a

reliable backup procedure, and therefore the test should fail..

The second difficulty is about how easily it will be for the benchmark user to

perform the tests. This problem does not have an obvious solution, and it is possible

that, depending on the case, the administrator might not have enough knowledge to

execute some of the tests. As mentioned above, we suggest these cases to be treated

as failed tests, meaning that if the administrator does not know whether a given

security practice is implemented or not, then he should assume it is not (i.e. should

follow a pessimistic approach). As a matter of fact, this is very much expected to

happen with non-security experts: either they do not understand what they should

do to improve security or they were never called attention to a particular aspect. In

fact, having an administrator that does not know if a certain configuration is in

place or not can already be considered a security risk, even in the cases where the

system is correctly configured. As a consequence, by applying the tool, he will have

the benchmark user attention redirected to the configuration aspects that experts

believe are more important to improve security in such an environment (which will

therefore increase the trust the user can put in the configuration).

4.3.5 Benchmark Metrics

The main goal of a benchmark is to allow comparison, and that requires the

existence of metrics. In the previous sections we discussed and analyzed the steps

required to build a body of knowledge, whose goal is to allow the calculation of a

set of metrics that can be used for comparing the trustworthiness of transactional

systems infrastructures. This section presents a deeper discussion regarding the

benchmark metrics, including the algorithm needed to compute them.

As mentioned before, the metrics are represented as a percentage that should be

interpreted as the relative proneness of the bad or harmful effects of the threat

vectors to manifest. These percentages arise from the analysis of several

characteristics of the system that may allow, given certain events, the emergence

of circumstances equivalent to the pessimistic scenarios identified. The

characteristics we are concerned with are the lack of rigorous enforcement of the

set of security recommendations identified for our base scenario. The main

assumption is that if these recommendations are not enforced, then the system

cannot be trusted as being protected against the bad effects of the threat vectors

effects.

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

112

The process that leads from the analysis of the state of the system to the metrics

that express justified trustworthiness is entirely based on our definition of

trustworthiness benchmarking, and as such is based on the collection of evidence

to place justified trust instead of on the identification of actual vulnerabilities that

can be exploited. As discussed in Chapter 3, within our framework actual

vulnerabilities are considered during the security qualification step. In summary,

the benchmarking process is based on the following assumptions:

a) The lack of active security precautions may let the environment derail into

a configuration state equal or equivalent to pessimistic scenarios.

b) Assuming the pessimistic scenarios as representative, the only elements

that prevent the occurrence of attacks are intention (which we assumed that

exists) and the achievement of some other indeterminate requirements (e.g.

physical proximity to the server or the opportunity to connect a computer

to the same network segment of the DBMS server).

c) As the two requirements mentioned in item b) depend on the environment,

we assume that there is a non-zero probability of them to happen.

d) Given an attacker with intention and given the right circumstances, the

absence of active security measures in place allows actual attacks to happen

with some undetermined, but non-negligible, probability.

e) Whenever two different security recommendations are related with the

same threat vector and/or the same interaction class, and are both not

enforced, we assume that they can be “accumulated”. The reasoning is that

they are two independent alternatives for accomplishing the same threat.

In other words, if an attack related with security recommendation 1 has X

probability of happening and another attack related with security

recommendation 2 has Y probability of occurring, and if both attacks can

take place independently, then we can safely say that the threat may be

accomplished with a probability Z > X and Z > Y, despite the real values

for X, Y and Z. For practical reasons, in our benchmark we assume that Z

= X + Y.

The proposed security benchmark for transactional systems infrastructures is able

to compute 13 distinct trustworthiness metrics, namely:

a) one general metric summarizing the trustworthiness of the whole

infrastructure.

b) eight metrics portraying the trustworthiness of the infrastructure in regard

to the eight threat vectors;

Security Benchmarking of Transactional Systems

113

c) four additional metrics characterizing the trustworthiness related with each

interaction class.

The full algorithm for the computation of these 13 metrics is as follows:

1. The DBA executes the benchmarking procedure (as discussed in Section

4.3.4). The result of the application of the evaluation tool is an answer of

Passed or Failed for each of the 64 security recommendations included in

the benchmark.

2. Be Wrt the relative weight of the recommendation r that maps (i.e. has at

least one identified attack) to the threat vector t. For each threat t compute:

Wrt(Passed)

Wrt(Passed) +Wrt(Failed)

where Wrt(Failed) is the sum of the weights of all recommendations that

map to the threat t and that had a Failed as an answer, and Wrt(Passed)
is the sum of the weights of all the recommendations that map to the threat

t and had a Passed as an answer.

3. Be Wri the weight of the recommendation r that maps to the interaction

class i for any of the threat vectors. For each of the four interaction classes

compute:

Wri(Passed)

Wri(Passed) +Wri(Failed)

where Wri(Failed) is the sum of the weights of all recommendations that

map to some threat with interaction class i and that had a Failed as an

answer, and Wrt(Passed) is the sum of the weights of all the

recommendations that map to some threat with interaction class i and that

had a Passed as an answer.

4. Compute the overall trustworthiness value by dividing the sum of the

weights of all recommendations that had a Failed as an answer by the sum

of the weight of all the recommendations.

A key aspect is that it is possible to increase the level of detail of the benchmark

characterization by crossing each interaction class with each threat vector

(computing 32 additional metrics). For example, we could specifically compute the

trustworthiness related with the OS system users causing a denial of service in the

infrastructure. This might be of interest in the cases where the administrator wants

to assess the pros and cons of the trust he actually puts in the people that possess

userids of each class against the costs of implementing new security precautions

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

114

(e.g., what is more cost-effective? To disable the operating system userids that were

given to individuals that may not necessarily need them, or to implement the

security best practices that raise the trustworthiness in this case).

Another variation that is semantically interesting is to consider a subset of the threat

vectors in the computation of the interaction classes’ values instead of all threat

vectors. In this case, the result is the level of trustworthiness that one can put into

the fact that some individual of that class may cause some kind of harmful effect.

For instance, we could compute the metrics for the case of operating systems users

causing either denial of service, obtaining privileged information through a side

channel or taking advantage of an authentication weakness.

The algorithm presented above is based on the notion of (positive) trustworthiness,

which expresses how much of the evidence gathered by the benchmark user

supports positively the security of the installation. At the same time, we can easily

do the inverse reasoning. The inverse of trustworthiness is called

untrustworthiness, which computed as 1 – trustworthiness. The untrustworthiness

metrics are exactly the values we would get if, in the algorithm above, we computed

all the metrics relatively to the failed tests instead of the passed ones. Both

trustworthiness and untrustworthiness are trust-based metrics in the sense that they

express relative levels of justified trust (in one way or another).

It is important to notice that, even though trustworthiness is the numeric

complement of untrustworthiness, the way security aspects should be reasoned

about make the distinction of both these concepts quite important, especially when

non-security experts are using these values to support decisions about their

infrastructure. In fact, we have to pay attention to the fact that computing

trustworthiness is based on a summary of the amount of evidences that justify how

much one should trust the infrastructure. Conversely, if we are computing

untrustworthiness, we are summarizing the amount of evidences that may lead us

to not trust the infrastructure. When interpreting these values, however, we again

face the fundamental assumption over which our benchmark is based on: security

has much to do with what we don’t know about the system. It is wiser, therefore, to

interpret the metrics from a pessimistic perspective (as already mentioned several

times), as the benchmark user has to be aware of the impossibility to always

consider all aspects that are involved in the security of the system. For this reason,

we decided that the main metric of our benchmark is the Minimum

Untrustworthiness, which represents the amount of evidence we have about how

much we should distrust the system, at least.

Security Benchmarking of Transactional Systems

115

This definition of Minimum Untrustworthiness helps the benchmark user to

understand the error that the metrics may have, particularly due to lack of

information, which will more easily lower the justified trust than increase it. This

approach looks arbitrary, as a typical standard error is usually considered

symmetrical (Zwillinger 1995), but this effect comes as a consequence of the

assumptions we made for our framework.

Let’s examine in detail one example in which we try to demonstrate why a

pessimistic view of security is always more correct than an optimistic view. To

simplify the example, instead of a whole infrastructure, let’s assume that we are

benchmarking a small piece of software. A trust-based metric gives a certain value

that represents how much we can trust that the software will not present security

problems in the future. We also know that, in the context of our benchmarking

framework, this metric takes into consideration only the characteristics that can be

found in the software, excluding outside variables.

Now, let’s assume that there is a very important and influential external variable:

community support and active development. Assuming that for this particular

software we do not know if there is an active community supporting development,

this manifests in the metric as an error (i.e. the value reported will be incorrect

because this information did not affect the metric). In fact, it is more or less obvious

that if there is an active community then the trust we can put in the software is

higher, and if there is no active community, then the trust we can put in the software

is lower. But consider the following issue: is the error symmetrical? In other words,

the existence of an active community should increase the metric as much as the

lack of the community should decrease it?

The answer is no, and it is quite easy to understand why. The lack of an active

community assures the following: new software bugs will not be quickly corrected;

if a user of the software finds out a bug then the rest of the users have no way to be

quickly warned; and for solving problems raised by a security incident the user will

not have the help of any other experienced user or developer. The asymmetry of

the metric comes from the fact that the mere existence of an active community does

not guarantee an opposite result. The existence of an active community does not

guarantee that software bugs will be quickly corrected, does not guarantee that

security information found by users of this community will be quickly

disseminated, neither guarantees that the users would get any kind of help in

solving security incidents. In summary, improving security is a lot harder than

decreasing it, and a trust-based metric should be interpreted considering this

behavior.

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

116

We can also use the same reasoning in terms of the trustworthiness benchmark we

are proposing to justify why Minimum Untrustworthiness provides the best

semantic meaning. Assuming that the benchmark definition is correct, then an error

in the metrics computation can essentially be due to two mistakes: a test that should

have failed is reported as passed, or a test that should have passed is reported as

failed. Let’s then examine what happens in each case:

1. If the test was wrongly considered as passed, then the minimum

untrustworthiness is correct because the real untrustworthiness should have

been higher;

2. If certain test was wrongly reported as unknown or failed but the real

configuration actually should have passed, this indicated that the

benchmark user does not know or does not understand correctly the exact

state of the system. Basically, he erroneously perceived one configuration

as another configuration, and therefore he does not know the answer to the

test. As unknowns are treated as failed tests, this error does not change the

value of the metric. In fact, from a trustworthiness perspective, a test

reported as unknown is always correct, as not knowing the state of a system

is a lack of control that justifies less trust (even if the security of the system

is in fact higher).

4.4 Case Study

The main goal of a benchmark is to provide information that allows making

comparisons across different systems or different configurations of the same

system. When comparing database infrastructures, however, we quickly notice that

the idea of “selecting” one of a set of infrastructures does not appear to be much

useful if we take the point of view of the DBA that is in charge of it. Instead, in a

benchmarking context, his goal would be to evaluate the overall security state of

his installation, in order to be able to improve it, even if that improvement would

further imply being able to select alternative components for the system (e.g. the

DBMS engine or the operating system). For this reason, we focused only on

trustworthiness benchmarking in our experiments.

Selecting a secure software component of an infrastructure is an important problem

that is discussed and addressed in Chapter 6. We point out, however, that this reality

is changing, and with the appearance of database cloud services (Zhao 2012),

effectively selecting a secure transactional system infrastructure among several

alternatives is becoming a relevant problem that can be addressed with our

methodology. For such cases, the base scenario would have to be adjusted, but the

overall methodology would hold.

Security Benchmarking of Transactional Systems

117

A security benchmark is also expected to provide information that helps

administrators in further improving the evaluated system. This way, to evaluate our

methodology, we have applied it to four real database installations, and thoroughly

analyzed and discussed the results in terms of what information would the

benchmark user really obtain from the benchmark.

The main input data that required by the benchmark for the computation of the

metrics are the results of the tests that check whether the installation is in fact

following consensual security recommendations (or not). Even though the main

output of the benchmark is the set of trustworthiness metrics, the process of

applying it already provides extremely useful information. Besides showing the

validity of our proposal, we also intend to demonstrate this fact in the case study.

This section is divided in three parts. First, we show the main details of the four

infrastructures we analyzed. Second, we take the results of raw tests to show that

the benchmarking process, by itself, allows drawing some conclusions regarding

the security of the installations (even before computing the benchmarking metrics).

Finally, we compute the benchmark metrics and directly compare the

infrastructures from the perspective of the security problems that they might have.

4.4.1 Systems Under Testing

The proposed trustworthiness benchmark has been applied to four real DBMS

installations using four distinct engines. Table 4.10 presents the relevant details

about each installation, including the DBMS engine used, the operating system

running on the machine, the number of distinct applications using each database at

the time of the evaluation, the number of distinct database administrators and the

number of developers that are not administrators, along with the amount of time

needed to execute the tests.

The tests were applied by one DBA of each installation, with the exception of Case

2 where two DBAs participated in identifying the answers to the tests. Two cases

were evaluated under the direct supervision of the authors (Case 1 and Case 3) and

the other two cases were done independently (Case 2 and Case 4). In these two

cases, the users that performed the evaluation had only as basis a document that

contained the list of tests (available in Annex A).

Table 4.10 Infrastructures details
 Case 1 Case 2 Case 3 Case 4

DBMS Oracle 10g SQLServer 2005 MySQL 5.0 PostgreSQL 8.1
OS Windows 2003 Windows 2003 Windows XP Windows 2000

Applications 3 54 3 2

DBAs 2 5 2 2

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

118

Developers 8 39 0 0
Test Duration 3 hours 1,5 hours 1 hour 1 hour

As we can see in Table 4.10, the scenarios have very different characteristics, which

help in evaluating the benchmark portability. The differences start with the DBMS

engines (which is different in all scenarios) and operating systems used (three

different versions of the same brand). Also, two scenarios are based on free engines

(cases 3 and 4) and two on commercial engines (cases 1 and 2). Most importantly,

two scenarios have a fair number of developers, while in the other two the DBAs

are also the developers. This is an important factor when deciding what threats are

most relevant in each case as, for instance, we are not concerned with problems

involving developers in the situations where there are none. All databases are used

within an academic context in two different universities, being mostly utilized to

support administrative processes that have university staff, teachers and students as

end-users.

Let’s start our discussion by analyzing the time needed to answer all the tests

defined by the benchmark (i.e. the 64 tests). In the worst case (Case 1) the tests

took about 3 hours of work, but the average time spent is slightly more than 1 hour

for all cases. This suggests that the test set is not particularly burdensome and does

not require too much work for an experienced DBA. Another interesting aspect is

related to the comparison between the commercial DBMS and the open source

DBMS. The DBAs evaluating the open source DBMS took much less time to

answer the tests than the ones evaluating the commercial ones, and this becomes

even more evident if we remember that in Case 2, which took 1.5 hours, two people

cooperated in the process. We investigated the reasons for this and found out that

the smaller set of security mechanisms provided by the open source DBMS allowed

more easily identifying certain tests as failed (basically because the DBAs knew

they did not have support for the operations stated in the test). The support offered

by the security mechanisms available in the DBMS software is an important issue

that is discussed in more detail in Chapter 6.

4.4.2 Analysis of the Results of the Tests

The first analysis we can do is related to the number of passed tests (that identify

the number of security recommendations that are implemented in the

infrastructure), the number of failed tests and the number of tests for which the

DBA does not know the answer, the unknown tests. In this analysis we aggregated

the results using the recommendations classification proposed in Section 4.3.2.1,

and computed for each group an Impact Index, which corresponds to the relative

weight (see Section 4.3.2.2) of all the passed tests of a group over the relative

Security Benchmarking of Transactional Systems

119

weight of all the tests that are part of each group. This impact index shows how

much of the security surface of each group is correctly protected considering the

different impacts of each recommendation. The aggregated results are shown in

tables 4.11, 4.12, 4.13 and 4.14, one for each infrastructure under testing. The

analytical results for each test and each infrastructure can be found in Annex A.

Table 4.11 Case 1, Oracle 10g installation
 Tests Passed Tests Failed Unknown II

Environment 6 2 0 83,89%

Installation setup 4 11 0 27,30%

Operational Proc. 1 3 0 34,76%

System level config. 16 8 2 55,53%

App. level conf./usage 7 4 0 92,07%

Total 34 28 2 58,44%

Table 4.12 Case 2, SQLServer 2005 installation
 Tests Passed Tests Failed Unknown II

Environment 4 4 0 59,73%

Installation setup 5 9 1 30,43%

Operational Proc.s 2 2 0 85,56%

System level config. 12 13 1 39,20%

App. level conf./usage 3 8 0 50,84%

Total 26 36 2 46,63%

Table 4.13 Case 3, MySQL 5.0 installation
 Tests Passed Tests Failed Unknown II

Environment 3 5 0 44,30%

Installation setup 7 8 0 35,66%

Operational Proc. 1 3 0 50,80%

System level config. 12 13 1 38,78%

App. level conf./usage 4 7 0 65,74%

Total 27 36 1 43,07%

Table 4.14 Case 4, PostgreSQL 8.1 installation
 Tests Passed Tests Failed Unknown II

Environment 3 5 0 46,53%

Installation setup 4 11 0 26,02%

Operational Proc. 1 3 0 34,76%

System level config. 9 15 2 29,29%

App. level conf./usage 6 5 0 68,52%

Total 23 39 2 37,21%

The most important aspect we can observe in the results is that the number of

unknown answers is very low (always below 2 for the 64 questions in any of the 4

cases). Test number #27, related to the range of ports that are used to connect to the

DBMS, was answered as unknown in cases 2, 3 and 4, meaning that maybe it should

be revised or better explained. However, the rest of the unknown cases are spread

randomly through the test set, which suggests that they are probably due to either

lack of experience of the corresponding benchmarking user or some difficulty

imposed by the software on obtaining the information. Nevertheless, from a high

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

120

level perspective, the DBAs did not report any difficulties in applying the test set.

Obviously, it is hard to generally assess the usability of a complex benchmark such

as this one using only four assessments, but the conclusion we reach within this

limited set of results is that the tool appears to have a high usability.

Concerning the analyses of the types of tests that were pass or not, an interesting

result is the low number of passed tests in the Installation Setup group in all cases

(always less than 50%). Three factors seem to contribute to these results: the default

installation settings are kept and used (this may be exploitable as default settings

are universally known), the inexistence of file system partition planning for logs

and data (which can lead to Denial of Service by exhaustion of disk space), and the

use of an operating system that does not provide easy ways to keep track of files

permissions (that usually force users to use administrative roles for several tasks).

In terms of the 14 most important database security recommendations presented in

Section 4.3.2.2, we list in Table 4.15.the critical practices missing for each case.

Given the impact assigned to these recommendations, implementing them would

have two immediate consequences: the total impact on the security surface of the

infrastructure related to the overall set of recommendations implemented would

raise to more than 50% in all cases; for the same reason, they would boost to the

overall trustworthiness of the infrastructure.

Table 4.15 Most important best practices yet to be implemented
Case Missing critical recommendations #

1 19, 28, 24, 15, 6 5

2 3, 19, 28, 35, 6, 2 6

3 4, 19, 28, 35, 1, 6, 25 7

4 3, 19, 28, 24, 35, 1, 6, 2 8

As final analysis let’s use the raw results of the benchmark from the point-of-view

of the tests with unanimous results in all cases, as shown in Table 4.16. The analysis

of the description of the security recommendations from which we devised these

tests spots some patterns. For example, it is clear that tests #6, #7, #8, #10, #12,

#13, #23 and #45 are heavily OS dependent. Thus the same outcome to all of them

can be explained by the fact that all the infrastructures benchmarked use some

version of the same operating system; thus it is plausible that by simply changing

the operating system one could solve most of the issues. Furthermore, the following

is true for the four infrastructures:

 Testing is executed directly over critical production data;

 No auditing is performed (even when provided by the DBMS);

Security Benchmarking of Transactional Systems

121

 There is no policy about backup testing;

 There is at least a small list of privileges attributed directly to userids

instead of groups/roles;

 No host based authentication is used;

 None of the DBMS engines has file system access functionalities enabled.

Table 4.16 Tests with unanimous results in all four cases
 # of tests with unanimous results

All cases passed 2, 8, 30, 33, 34, 39, 45, 47, 48, 57

All cases failed 6, 7, 10, 12, 13, 19, 23, 26, 28, 29, 32, 37, 38, 42, 43, 58

4.4.3 Trustworthiness Assessment

Trust-based metrics only make sense after security qualification, where the obvious

attack paths are identified and vulnerabilities that can be easily discovered are

mitigated. Also, the lack of any fundamental security mechanism is already

accounted for. Security qualification of transactional systems infrastructures is a

complex problem, as already discussed in Section 4.2, and further revisited in

Chapter 6.

In this section we are concerned with understand the relative likelihood of the

manifestation of harmful effects (the ones defined by the threat vectors) that may

lead to attacks and vulnerabilities, basically by evaluating how prone certain

security problems are. At this point, we assume that the security of the installations

is at least at an acceptable level (i.e. higher than zero), and the goal is to distinguish

in terms of their ability to prevent future security incidents or having hidden

security vulnerabilities.

We start the analysis by inspecting the general values of the minimum

untrustworthiness metric for each scenario. As presented in Figure 4.1, Case 1 is

the least untrustworthy, while case 4 is the untrustworthiest. This, in general, means

that more configuration problems (and more critical ones) are present in Case 4

than in all other cases. However, to obtain more information about the problems

we must analyze the results from the point-of-view of the relevant threat vectors.

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

122

Figure 4.1 General untrustworthiness for each scenario.

Figure 4.2 presents the results of the minimum untrustworthiness metrics for each

threat, grouped by case study. From an analytical point-of-view, there are several

important trends in each scenario. Case 1 appears to be generally the least

untrustworthy of all, and in particular, Denial of Service (DoS) is a threat that is

very unlikely to actually be accomplished.

Legitimate excessive privilege achievement (LegExPrA), on the other hand, is the

threat against which Case 1 is untrustworthier. Considering the fact that there are 8

developers in this scenario, they may end up achieving excessive privileges. In

Case 2, the configuration is very untrustworthy against Communication weaknesses

(CommW). This may be a serious problem as Case 2 has a very high number of

developers and applications (that represent a high number of application users), and

communication weaknesses can be used to eavesdrop data and authentication

information. Case 3 strikes the eye as being very untrustworthy against Side

Channel Data Exposure (SCDtEx). This may or may not be a problem, depending

on the exact characteristics of the environment. In particular, by having no

developers, this might not be a big concern for the DBA, which can also exclude

Communications weaknesses (CommW) from his priorities. Audit trails

weaknesses (AudTW), however, can be a problem, and Denial of Service (DoS)

surely is. These observations can also be generally visualized in alternative

presentations, as shown in Figure 4.3.

Security Benchmarking of Transactional Systems

123

Figure 4.2 Untrustworthiness for each threat, grouped by case

Figure 4.3presents the same data of Figure 4.2, but in a way that allows easily

comparing each case against the others when it comes to individual threats. On the

left graph, the very small untrustworthiness against Denial of Service (DoS) in Case

1, and the extreme untrustworthiness against Side Channel Data Exposure

(SCDtEx) in Case 3, are the two aspects that are highlighted. The radar graph

presented on the right side of Figure 4.3 allows evaluating again the general

prevalence of untrustworthiness on the different cases. It becomes clear that Case

1 has, in general, the least untrustworthy configuration, and that cases 3 and 4 have

the more untrustworthy ones (although it is not obvious that Case 4 is generally

more untrustworthy than Case 3, as is presented in Figure 4.1).

Figure 4.3 Alternative presentations for untrustworthiness comparison

between cases

From an administrator perspective, comparing individual threats against each other

provide the most useful piece of information of the benchmark, in the sense that it

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

124

allows focusing in the threats that are the most relevant for a particular environment

and that have the higher untrustworthiness. One way to approach this analysis is to

evaluate the list of threats ordered from the least untrustworthy to the

untrustworthiest, which allows comparing threats two by two. This analysis is

summarized, for each case, in Figure 4.4. Besides the untrustworthiness associated

with each threat, the graphs also present visually the standard error associated with

the results (Zwillinger, 1995).

Figure 4.4 Fine grain analysis of untrustworthiness, for each case

The untrustworthiness values for Case 1 suggest that the most untrustworthy area

of configuration are related to the Legitimate excessive privilege achievement

(LegExPrA) threat. We can see, however, that given a margin of error, Illegitimate

Privilege Elevation (IllPrEl) should also be a concern in this scenario. We can

actually see a pattern dividing the threats in three or four distinct groups, with these

two threats forming the most untrustworthy group, and Denial of Service (DoS)

being in the least untrustworthy group. Obviously, these observations depend on

the administrator’s perceptions of what would be the most dangerous threats to his

system. Along these lines, in Case 2 we can spot 3 different groups with

Communications Weaknesses (CommW) having the highest untrustworthiness,

while the four least untrustworthy (SQLIE, AudTW, SCDtEx and DoS) have more

or less the same values. Case 3 presents at least five clearly distinct groups, with

Side Channel Data Exposure (SCDtEx) being clearly a very poorly covered threat.

Case 4, on the other hand, presents three groups of threats, with Communication

Security Benchmarking of Transactional Systems

125

weaknesses (CommW) and Illegitimate Privilege Elevation (IllPrEl) on the top

priority.

The benchmark can also be used to analyze the untrustworthiness from the

perspective of the interaction classes. Figure 4.5 presents the minimum

untrustworthiness computation for each interaction class, in each infrastructure.

This analysis also shows some interesting trends. First, in Case 1, the DBMS users

are the least untrustworthy and the operating system users are the most. If in this

installation there are only a few operating system users, this may not be a big

concern. However, if for example all developers also have an operating system

account, this may be a wake-up call that some improvement should be done. In

Cases 2 and 4, application users are the untrustworthiest. Case 4, in particular, is

highly very untrustworthiness against applications users. In Case 2, on the other

hand, due to the large number of developers, we might consider DBMS users a

most relevant threat than application users.

Figure 4.5 Untrustworthiness computation for the interaction classes

4.5 Conclusion

This chapter presented the instantiation of the framework proposed in Chapter 3 to

the case of transactional systems infrastructures. In the first half of the chapter we

developed a set of strategies and techniques aimed at designing the various

components of the benchmark. In the second half we actually applied the

benchmark to four real transactional systems infrastructures, identifying the

characteristics of the installations and demonstrating the potential of our approach.

The most important conclusion of this chapter is that our approach is viable and

can be applied in practice. Nevertheless, we cannot ignore the fact that the process

Chapter 4  Security Benchmarking of Transactional Systems Infrastructures

126

is long and demanding, even considering that the outcome is worth it. A key aspect

to notice is that the design of the benchmark was, in a very basic level, a process

that took as input an amount of consolidated security knowledge about a domain

and converted it into a tool able to provide indications and metrics that can be

readily interpreted by administrators and higher level business managers that are

not security experts. No part of the ben benchmarking use adds security information

to the benchmark, as all the security knowledge that is part of the benchmark, from

the threat vectors, to the pessimistic scenarios and the security recommendations,

is external information provided by reliable sources and experts. Another aspect is

that the framework conducts the benchmark designer to correctly process and

reason about the security information obtained externally, therefore leading to a

tool that effectively represents and takes advantage of all the knowledge that is put

into it.

Finally, an aspect that was not considered yet is the validation of the tool.

Intuitively, a validation process for this kind of tool would be as follows: first, we

would compute the trustworthiness metrics for a set of infrastructures. Then, for a

certain time, we would analyze the existing security incidents within those

infrastructures. The validation would consist of crosschecking the benchmark

metrics with the types of problems observed. However, there is a fundamental

problem with this approach: the security incidents observed would depend on the

two main factors that determine the successfulness of a security breach: capabilities

and intention (also indirectly related to value). Our benchmark, by design, provides

metrics related only with one of these aspects, which is the capabilities. As

discussed in Chapter 3, we should not include in the benchmark definition external

factors such as intention being (see Section 3.2 for a thorough discussion about the

effects and distortions that external factors may cause in the metrics). As both

capabilities and intention are independent, the fact that a certain well protected area

(as indicated by the benchmark) of the system suffers more security incidents than

another less protected one, does not allow to conclude that the measures are wrong.

The reality is that effectively validating our benchmark proposal is a complex

problem that does not have an easy answer, and for that reason we leave it as future

work.

127

5

Trustworthiness
Benchmarking of
Web Applications

This chapter explores the concept of trustworthiness benchmarking in the context

of a controlled evaluation target, i.e. business applications, which are the part of the

system that usually implements the business rules and that provide the interface to

the end-users. The simplest definition we can give to business applications in the

context of transactional systems is that they are the software designed to handle

two main aspects (Yang 2011):

1. To provide the interface via which the end-users interact with the

transactional system (e.g. by inputting information, retrieving information,

and issuing commands);

2. To implement and enforce the rules of the business domain.

For a particular domain, a business application should evaluate what information

requires authentication (or not) to be accessed, and provide the means to perform

such authentication. Also, the application should define the available commands

(and to whom they are available), which processes can be executed, and what data

is required for each process (e.g. the mandatory fields in a data input form).

Even considering that most transactional systems follow a client-server model

(Ram 1999), the exact place where the code is executed largely varies from one

architecture to another. On one side of the business applications spectrum, we have

thin client architectures, where most of the code executes within the server

infrastructure (much like the old mainframe architectures) and the clients serve

mostly for data input and information display. On the other side, we have

Chapter 5  Trustworthiness Benchmarking of Web Applications

128

architectures where all the code of the application runs on the client platform, and

the communication with the server infrastructure is basically to store and retrieve

data by issuing database SQL calls (or any other equivalent data driven

communication protocol). Obviously, a variety of intermediary approaches can also

be used, including solutions where executable code is present on the client, on a

server, and also in the database engine (e.g. in the form of stored procedures

(Eisenberg 1996)).

One important variation of this distributed approach consists of using application

servers, which are responsible for hosting the executable code that implements the

business rules (in this context the clients have no direct connection to the backend

database). When processing a request, the application server connects to the

database and submits the required data access operations, in a way that is isolated

from the clients. One advantage of this architecture is that it allows the database

infrastructure to be shared by several business applications, remaining at the same

time as an independent server, which allows it to be isolated from (potentially)

untrusted computers and networks (the clients communicate only with the

application server). This approach to transactional systems architecture design is

frequently referred as three-tier architecture (Cardellini 2002).

Transactional systems based on web applications can be seen as a specific type of

three-tier architecture that is becoming more and more popular (Hoffman 2008). A

web-based application transactional system takes advantage of several standards

(e.g. HTML for form design, CSS for interface styling, Javascript for interface

functionalities (Hevery 2009), HTTP and HTTPS for network communications

(Kaufman 2002)) that ultimately allow the developers to focus on programming the

business rules, while most of the communication, network and infrastructural

aspects are automatically handled by a diversity of available solutions. A web

application is typically built based on the following set of standardized elements:

a) Web server: being the kernel of the application server, the web server is

in charge of receiving client requests and sending the responses back. In

practice, when a request is received, the web server redirects it to the local

process responsible for processing it, and sends the output of that process

back to the client. Several implementations, free and proprietary, are

available out-of-the-box (e.g. Apache HTTP Server, Tomcat, Nginx).

b) Web browsers: applications that run in the client’s computer and that

communicate with the web servers using the HTTP and HTTPS protocols

and primarily display content encoded in HTML. Almost all standard

browsers support CSS (which is essentially a formatting standard) and

Security Benchmarking of Transactional Systems

129

JavaScript (that allows including some local processing capabilities)

languages (Hevery 2009). Standardization makes web applications

inherently cross-platform, providing usability in a diversity of devices.

The development of web applications is highly tied with the infrastructure

restrictions (the database engine and the server application), but it is almost

independent from the client devices. Nevertheless, a huge variety of

implementation languages, from compiled languages to interpreted scripting

languages, can be used for the implementation of web applications (e.g. CGIs, java,

PHP, .net, aspx, etc.) (Morrison 2002).

A key aspect is that the application server is a critical element in a three-tier

architecture, and its security should also be considered in the context of a security

benchmark. However, being a part of the transactional system infrastructure, we do

not address it here. In practice, application servers should be benchmarked together

with the transactional system infrastructure, following an extension of the

methodology proposed in Chapter 4. Although we did not include the application

server in the base scenario defined in Chapter 4, we addressed the specific problem

of web servers’ trustworthiness benchmarking in (Mendes 2008), a joint work that

followed the framework proposed in Chapter 3.

Unlike a transactional system infrastructure (typically composed by a variable set

of diverse devices, network infrastructure and software), what defines the runtime

behavior of a web application is contained, in one way or another, in its source code

(possibly along with some small set of configuration files), which makes available

to a benchmark all the relevant information about the inherent security

characteristics.

In the context of our framework (see Chapter 3), a security benchmark for web

applications includes the processes and the analysis required for security

qualification and trustworthiness benchmarking. The first should be defined by

stating the set of tests needed to determine if the web application under evaluation

fulfills the minimum set of security requirements needed to be acceptable in the

application domain (a detailed discussion about those requirements is presented in

Chapter 3). Such requirements are, by definition, primarily domain dependent, and

therefore we refrain from providing any definitive list, as that is considered out of

the scope of this chapter. Nevertheless, for illustration purposes, the following

paragraphs briefly discuss the qualification step.

The qualification elements that can be expected in a wide range of web applications

include: a variety of authentication methods, fine grain permissions settings, role

Chapter 5  Trustworthiness Benchmarking of Web Applications

130

based privileges, general encryption capabilities (communication and storage),

backup support, auditing mechanisms, logging, support from an active community

or reliable organization, etc. All of these are actual security elements that are greatly

described in typical security literature (Stallings 2010).

Another part of qualification would be the actual search for vulnerabilities, which

can be defined as programming or configuration characteristics that allow the

application to be attacked. These vulnerabilities can be identified by a variety of

methods, ranging from automated static code analysis and penetration testing, to

manual analysis by experts (McGraw 2006). As defined in our security

benchmarking framework, the result of the qualification step is a set of systems that

are acceptable for use, and are thus considered reasonably secure (i.e. the result of

this step should not be used to compare the qualified systems). The benchmark user

will use the tests and evaluations of the qualification specification in order to sort

out the candidates that will therefore have their trustworthiness evaluated.

This chapter discusses and proposes approaches to obtain relative trustworthiness

metrics for web applications. Section 5.1 presents an analysis of web applications

from a security perspective Section 5.2 proposes a very simple method that allows

computing a trustworthiness metric by using only a set of reliable static code

analysis tools, and this approach is evaluated using several experiments. Knowing

the limitations of the approach proposed in Section 5.2, Section 5.3 develops a

theoretical approach to trustworthiness benchmarking of web applications, which

includes the definition of what would be an “ideal” trustworthiness benchmarking

metric. Finally, Section 5.4 concludes the chapter.

5.1 Web Applications from a Security Perspective

Web applications have several characteristics that make them particularly prone to

security attacks, being their widespread exposure the most important one (Fonseca

2008a). This exposure obviously increases the probability of being attacked,

including the risk of being used to leverage attacks against other applications,

which forces us to assume the possibility of composite attacks (which makes the

problem even more complex) (Balzarotti 2007).

Another key characteristic of web applications is that the base protocol over which

they are built (HTTP) is essentially stateless, meaning that two distinct interactions

between the web server and a client are more or less independent (session tokens

are actually a work-around for this characteristic) (Chen 2009). After a first

communication between a user’s web browser and an application hosted by a web

server (potentially including an authentication step), a session token (which is a

simple global unique identifier) is generated and sent to the end user’s web browser.

Security Benchmarking of Transactional Systems

131

This token allows the server to keep the track of the actions performed by the user

that owns it (ownership in this case if defined in terms of knowledge, and an

attacker would successfully “steal” a session from a legitimate user if he manages

to discover the value of the session token). From this point on, communication

consists of stateless requests that usually include the following steps (Balzarotti

2007):

− Step 1. The user sends to the server a set of parameters (e.g. key-value

pairs, which might include the session token) and indicates a target

resource (e.g. a web page).

− Step 2. The server processes the code of the target resource using the

parameters provided by the user. This processing can be extremely

complex, including, for example, file system calls, database calls, and the

execution of other services and processes. If a session token is provided,

then the values stored in the server (and that are associated with that token)

may also be used as input for this execution (e.g. as the case of session

variables).

− Step 3. After finishing processing, the server replies with an output. This

output is usually a stream of data that can have several formats depending

on the application context (e.g. html text, file contents, forms).

Based on this simplified processing model, a typical web application attack consists

of crafting one or more of the input parameters in a way that at least one of the

following effects is achieved:

1. The output on step 3 presents either out-of-format data (e.g. an executable

script code instead of text information) or confidential data (e.g.

confidential database records/fields, private/critical files content, internal

server state information).

2. Step 2 causes the state of the application to be modified in an unintended

way (e.g. database or files modification, unexpected services call,

resources usage).

In other words, a threat can be defined as a particular set of parameter crafting

techniques that aims at causing one or more of the previously mentioned effects

(Jovanovic 2006). For instance, SQL injection (Amirtahmasebi 2009) consists of

manipulating input parameters in order to cause a semantic change in a specific

SQL command that is sent to a database. A cross-site-scripting (XSS) attack (CGI

Security 2010), on the other hand, includes a set of crafting techniques that cause a

state change, forcing the server to output out-of-format data in a set of subsequent

requests (e.g. a executable script code that is sent to another user or reflected back

to the same user).

Chapter 5  Trustworthiness Benchmarking of Web Applications

132

An important characteristic is that an attack that implements such a threat usually

aims at a specific line of code (or a few strongly coupled lines of code with a single

semantic goal). For example, an SQL Injection attack typically aims at a single

database SQL call, and a XSS attack targets the statements in charge of returning

the output to a user (e.g. a “printf” or “echo” statement). This way, for each threat

type it is possible to identify a set of code statements that can be the target of such

a threat. We call these statements hotspots. In practice, even though several

hotspots may exist for a specific threat, a particular attack is usually aimed at one

specific hotspot (Integrigy 2007). Therefore, the goal of the attacker is to

manipulate input variables that influence a particular hotspot in order to cause a

malicious effect.

From the developer’s perspective, each hotspot is designed with a particular

“business activity” in mind, and helps implementing a given functionality (or set

of functionalities). Usually, a developer defines a set of input values that are

processed (directly or indirectly) by a particular hotspot, and design that hotspot to

generate the corresponding output values or actions. The set of input values

represents the input business domain of the hotspot. Attacks are accomplished by

using values outside that domain and for which the hotspot may not be correctly

designed.

Input business domains are relative to each hotspot. This is important, and means

that these domains may vary from one hotspot to another, and may also differ from

the input domain of the whole web application (i.e. the domain of the parameters

actually provided by the end user). This is a frequently overlooked characteristic

that makes the task of securing the entire web application considerably more

difficult.

The web applications characteristics previously presented suggest two distinct lines

of defense against threats. The first consists of reducing the input domain of the

application as a whole, acting directly on the values provided by the end users. The

idea is to force the input parameters to be within the valid business domains (for

the whole web application) or to interrupt the execution when a value outside the

domain is provided (this is frequently called input validation and can be achieved

by a set of filtering (Liu 2006)). This line of defense, however, is frequently not

enough, as the input business domain of a hotspot may not coincide with the domain

of the application. The problem is that the business domain of the application

corresponds to the composition of the input business domains of all hotspots, which

makes this reduction extremely complex (or even impossible in some cases).

Consider, for instance, the classical problem of a string value that contains a single

quote, which is the character used as a string delimiter in most SQL statements

(Integrigy 2007). It may not be possible to escape this single quote universally

Security Benchmarking of Transactional Systems

133

because the string value may be used in other places besides SQL statements (e.g.

it may be outputted to the user). In this case the developer must either create an

escaped copy of the value (which may not be practical if the value is further

processed, creating potential inconsistencies) or delegate the responsibility of

dealing with this issue to each hotspot. Thus, the actual relation between the input

parameters and each hotspot may be hidden under the application’s complexity.

The second line of defense, necessary to complement the limitations of a general

input validation strategy, is to guarantee that the values actually used in each

hotspot lie within the input business domain of that hotspot. Several aspects must

be considered in this case, namely: technical characteristics (e.g. the SQL language

details for a SQL execution, the file system structure for a file access); context

characteristics (e.g. the output generated by the hotspot, how the data should be

interpreted and in what context); and the application’s business rules. These

aspects strongly define the characteristics that the values used in the hotspot must

respect in order for the hotspot to always behave in the expected way. In practice,

this set of characteristics defines what we call the Business Data Type of each

hotspot. Strong Business Data Typing (in the same sense of traditional strong data

typing (Tomatis 2004)) is different from a typical data typing because it takes into

consideration all the aspects related to the use of the value, and not just a

programming language and codification perspective of data typing (e.g. a numeric

variable may not contain a string). A key difficulty is that the Business Data Type

of a hotspot may not be easy to identify, as it is the result of a mixture of business

rules, and context and technical characteristics. Guaranteeing its correctness is,

however, the most important part of the defense, as this is where attacks will take

place in a web application (Monga 2009).

In summary, coding best practices for secure web applications can be divided into

two big groups:

 General Input validation: each input parameter of a web application

should be validated against a valid business domain. Values outside the

specified domain should either be replaced by values within the domain, or

the application must halt indicating an input problem.

 Business data typing for hotspots: any value used within a hotspot must

conform to a set of technical, context and business constraints.

In a defense-in-depth approach, the developer is expected to always consider these

two types of best practices, even when one of the types seems to be enough to

protect against a specific threat.

Chapter 5  Trustworthiness Benchmarking of Web Applications

134

5.2 Benchmarking the Trustworthiness of Web
Applications using Static Code Analysis

Static code analysis is a well-known white-box technique based on the assessment

of the source code (or the bytecode in more advanced analyzers) of an application,

frequently used by developers to discover bugs and security vulnerabilities in web

applications and components (Chess 2007). The goal of this technique is to identify

specific code patterns that represent security vulnerabilities. Most analyzers are

based on expert knowledge (Livshits 2005) that is built directly in the tool and

several tools implementing such technique are currently available (including free

and commercial tools) (FindBugs 2011; Yasca 2011; IntelliJ IDEA 2011).

From a high-level perspective, a Static Code Analyzer (SCA) commits to a certain

set of patterns that define the types of bugs that it can identify. These patterns are

necessarily limited within the available expert knowledge, which means that even

excellent analyzers may miss particular types of bugs (Chess 2007). In practice,

pattern sets for static code analysis can be classified as loose or tight. A tight pattern

matches precisely a wide range of code bugs, but allows bugs represented by other

unpredicted patterns to slip through. On the other hand, a loose pattern is better for

finding bugs in unpredicted formats, but more easily points portions of code that

(even though they appear to be) are not bugs, which are known as false positives

(Chess 2007).

False positives are usually considered bad as they cost time to analyze without

bringing useful information to the evaluator (i.e. they point nothing to correct)

(Nadeem 2012). However, one possibility is that they may carry other kind of

information. In fact, false positives are usually code patterns that “look as” bugs

but are not. In other words, they are code patterns that somehow are "close to bugs

and usually a single detail (either in that portion of the code or in another related

part) separates them from becoming actual vulnerabilities”. In other words, one

hypothesis is that this kind of code (i.e. false positives) may also be dangerous,

meaning that a source code filled with code patterns leading to too many false

positives may be more untrustworthy and prone to vulnerabilities than one with

less.

In this section we present a series of experiments that investigate the possibility of

combining the output of different SCAs to define metrics for trustworthiness

benchmarking of web applications. In practice, we try to answer the following

question:

Is the combination of state-of-the-art static code analysis tools a potential

approach towards obtaining metrics for comparing the trustworthiness of web

applications and components?

Security Benchmarking of Transactional Systems

135

In this study we define four metrics and investigate their behavior, trying to verify

their relation with security attributes. In other words, we attempt to provide

evidence that there is a correlation between these metrics and the security properties

of the benchmarked code. The metrics are based on the raw number of vulnerability

warnings reported by a set of static analysis tools. In this scenario, instead of

formally defining the threat vectors (as in Chapter 4 for transactional systems

infrastructures), we simply assume that the threat vectors are defined by the

insecurity characteristics that the tools are designed to detect (in the end, the goal

is to assess if such threat vectors are representative and correlate with real security

issues or not).

To understand the effectiveness of the proposed metrics, we conducted a set of

controlled experiments. In these experiments, the benchmarking approach was

applied to the detection of SQL Injection vulnerabilities (which are among the most

frequent and dangerous vulnerabilities in the web environment (OWASP 2010)) in

different implementations of the TPC-C, TPC-W, and TPC-App standard

applications (TPC 2012). Results show that the raw number of vulnerabilities

detected by static code analyzers allows establishing a rough tanking of

applications, but the unstable nature of false positives is a problem when

performing fine grain comparison. To account for this, we then calibrate the metric

based on false positive rate estimations, which indeed allow improving precision.

To demonstrate the effectiveness of the calibrated metrics, we present the results

of the approach applied to a set of real web applications, namely seven distinct web

forums developed in Java. Results are validated based on an expert analysis, further

showing the usefulness of the proposed approach.

5.2.1 Trustworthiness Metrics

The aggregated total number of security warnings reported by a set of static code

analyzers is the key for building the proposed trustworthiness metrics, but its raw

value cannot be used directly for comparison, and we have to make clear why this

is true before proceeding. In practice, to design a proper metric suitable for

comparison, two problems have to be accounted for, as discussed next.

The first problem is related with the applications being compared, which may have

different sizes. The problem is easy to understand through an example. Suppose

that we are comparing two applications that use exactly the same coding style, but

one is twice the size of the other. If they are similar, they have the same type of

coding patterns, and thus trigger false positives approximately with the same rate.

In this case, the application with bigger size will be considered untrustworthier,

which may not be true.

Chapter 5  Trustworthiness Benchmarking of Web Applications

136

In fact, suppose we benchmark two applications, A and B. Application A presents

2 warnings and has size X. Application B also presents 2 warnings, but its size is

10X. The idea is to use the raw metric, i.e. the number of warnings, as an estimator

of the number of lines of code that can be considered bad programming practices.

We also hypothesize that more examples of bad programming practices will tend

to lead to a proportionally higher number of real hidden vulnerabilities. Thus, as

both applications have the same number of warnings, the number of hidden

vulnerabilities they are assumed to have should be similar. The issue is that finding

one vulnerability among tens of thousands of source lines of code (SLOC) is harder,

on average, than finding the same vulnerability among a few thousands of SLOC

(from an attacker perspective), which means that, for two applications with the

same number of security warnings, the one with smaller size is more likely to have

one of its vulnerabilities exposed. This rationale is the extrapolation of the concept

of “defect density” (Sherriff 2006), which is used as a metric of software quality,

where it is assumed that software with a higher defect density most frequently

manifests its defects, as code with defects is executed with a higher frequency

(therefore, the software with the higher defects density is the one that is classified

worse, and not the one with the higher absolute number of defects). This way, to

allow fair comparison, the number of security warnings has to be normalized by

the size of each application, so that the size does not distort the results. In other

words, instead of the absolute number of security warnings, what we need is the

security warnings density of the application.

The second problem that has to be taken into account when using the results of

several static code analyzers to build a trustworthiness metric is related to the

effectiveness of such tools, and has to do with the frequency with which each one

yields false positives. As static code analyzers are mostly based on search patterns,

the number of times that these search patterns are triggered is directly related to the

intrinsic characteristics of each implementation, and varies drastically from one

analyzer to another. While we want these different patterns to count, we do not

want one analyzer to be awarded more importance in the results than the others. In

other words, if one analyzer tends to trigger proportionally much more warnings

than another one, this would lead the results of this analyzer to have more important

in the calculation of the final metric. This way, it is necessary to guarantee that all

analyzers contribute in the same way for the final result.

The exact number of false positives depends not only on the analyzers, but also on

the combination of their search patterns and the code being analyzed (Littlewood

2010). However, as we are designing a procedure that should serve to compare

different applications, we may not have access to the source code beforehand,

Security Benchmarking of Transactional Systems

137

therefore the best that we can do is to compute an average estimation of the false

positives rate for each analyzer. Assuming that a tool implements either a tight

search pattern (that tries to hit a precise set of known vulnerability types) or a loose

search pattern (having a more broad, but also more unreliable, search pattern), then

it will tend to report, respectively, less or more false positives in a consistent

manner. Obtaining these factors - an average of the false positive rate for each tool

- allows us to calibrate the number of vulnerabilities reported in a way that all tools

end up having approximately the same contribution to the final metric. As

computing these estimates is a difficult problem and should rely on an extensive

and targeted evaluation, in our experiments we adopted the estimates provided in

(Antunes and Vieira 2010), where the authors computed such factors in the context

of web services for the same tools that we use in our experiments (see Section

5.2.2). However, for other tools, these values have to be estimated, possibly using

a methodology similar to the one proposed in (Antunes and Vieira 2010).

Considering the previous discussion, the metrics we propose and analyze are:

 Raw Number of Vulnerabilities Reported (Raw-NVR). Represents the

sum of the number of vulnerabilities reported by each of the SCAs

considered. Obviously, we are expecting that different tools detect different

vulnerabilities (as is demonstrated in (Littlewood 2010)) and that the union

of the search patterns of all tools achieves higher coverage than any single

tool. As explained before, this metric is expected to be biased by the tools

characteristics, and we do not expect this to be the best metric, even though

it should also correlate with security aspects. However, it is very easy to

obtain.

 Calibrated Number of Vulnerabilities Reported (Cal-NVR). To reduce

the impact of different false positives rates we evaluate the application of a

calibration factor, as previously explained. This metric is computed by

applying a constant factor to the Raw-NVR metric using the estimates

provided in (Antunes 2010).

 Normalized Raw Number of Vulnerabilities Reported (Norm-Raw-

NVR). To take into account the size of the application, we also compute

normalized metrics. In our experiments we define Norm-Raw-NVR as

Raw-NVR per 100 lines of code. This could be done using any other

normalization factor relative to size, like the number of classes or the

number of features; what is important is to allow expressing the warning

density of the application (Gencel 2008).

 Normalized Calibrated Number of Vulnerabilities Reported (Norm-

Cal-NVR). This is the normalized version of the Cal-NVR metric,

Chapter 5  Trustworthiness Benchmarking of Web Applications

138

considering again 10k SLOC as the normalization factor.

The next sections present a detailed analysis of the semantics of these metrics from

a benchmarking point-of-view, trying to reason about what is exactly the meaning

of the numbers being reported.

5.2.1.1 SCAs Reports as a Trustworthiness Metric

An important assumption of this work is that the aggregated reports of a set of static

source code analyzers can be considered a fair measure of trustworthiness (i.e. they

provide enough evidence of security practices to allow comparison from a security

point-of-view). This assumption has a crucial consequence: as true vulnerabilities

are not distinguished from false positives, we are effectively giving them the same

importance. This is extremely important and deserves some justification.

It is clear that any real vulnerability in a web application is an immediate security

hazard. If a static code analyzer can find it, then it is likely that some attacker will

also be able to find it, thus it would be extremely dangerous to use the application

as is. However, within our framework, the task of distinguishing acceptable

applications from the unacceptable ones is performed during the security

qualification step, and not via trustworthiness benchmarking. Because of this, we

assume that if true vulnerabilities (that can be found by static code analyzers) are

present during trustworthiness benchmarking, then these vulnerabilities are, from

an objective perspective, as harmless as false positives. In other words, if those

vulnerabilities are not harmless, then the application under benchmarking would

not qualify in the first place. Therefore, our trustworthiness benchmarking

approach starts from the principle that any security problem in the source code is

related to hidden and hard to detect vulnerabilities that can only be estimated and

not actually found. In this sense, the original hypothesis translates into the idea that

the aggregated results of false positives of several SCAs may help on estimating

the quality of web application code (from a security point-of-view), which is

directly affected by the number of hidden vulnerabilities.

Another assumption we make is that the characterization of the trustworthiness of

an application must go beyond what is allowed by a simple vulnerability

identification process. Typical web applications are constantly being upgraded,

fixed and improved, and these maintenance tasks are often a source of new

vulnerabilities (Shahzad 2012). Also, it is well known that new features are usually

developed more or less in the same coding style of the rest of the application. The

reality is that the probability of new bugs to be added during a source code

maintenance task has a direct relation with the probability of having vulnerabilities

introduced due to the coding style being used (Shahzad 2012). This is fairly simple

Security Benchmarking of Transactional Systems

139

to understand if we consider that most vulnerabilities are simple forgotten details

(e.g. one parameter among several that is not validated properly). On the other

hand, if the coding style makes it inherently difficult to disregard such details, then

the code should be considered trustworthier.

Considering these aspects (and assuming a benchmarking perspective where the

goal is to fairly compare applications), metrics based on the number of reports seem

to be quite reasonable, as long as they do relate to secure or insecure coding styles.

The reasoning is that if they do correlate with security aspects (and the most they

correlate, the better) then the proposed metrics are useful.

5.2.1.2 Combining the Output of Several Tools

The Number of Vulnerabilities Reported (NVR), which is the simple count of the

security warnings reported by a tool, can be expressed by three factors: the number

of True Vulnerabilities in the code analyzed, the number of Missed Vulnerabilities

(MV), and the number of False Positives (FP). In short, NVR can be defined by the

following equation:

NVR = TV – MV + FP

As mentioned before, different analyzers end up presenting different results

because they scan for different vulnerability pattern sets. One way to find more

vulnerabilities and insecure coding patterns is to have a looser pattern set

(potentially increasing the number of false positives). Another way is to use several

different tools that implement different and complementary patterns. The

combination of several SCAs is an easy way to amplify the search pattern, without

raising the false positives rate significantly. In this case, the aggregated result can

be expressed as:

Raw-NVR = TV – MA + FP1 + FP2 + … + FPn

where FP1 to FPn represent the false positives reported by each tool and MA is the

number of vulnerabilities missed by ALL scanners. MA will be significantly

smaller than any individual MV if the search patterns complement each other.

As we assume that obvious vulnerabilities (detected by SCAs) were previously (i.e.

before the trustworthiness benchmarking step) fixed by developers or are as

harmless as false positives, we can consider that only the vulnerabilities missed by

ALL analyzers remain in the code, and no true vulnerabilities are reported. So,

Raw-NVR can actually be defined as:

Raw-NVR = FP1 + FP2 + … + FPn

We expect this metric to give an insight on the trustworthiness of the benchmarked

code, based on the number of false positives. In other words, the biggest the Raw-

Chapter 5  Trustworthiness Benchmarking of Web Applications

140

NVR, the more untrustworthy is the code and the higher is the number of

vulnerabilities hidden. If our metric (i.e. the number of false positives) correlates

to the security of the application, then in some sense false positives must be

proportional to the number missed/hidden vulnerabilities. In practice, if this

proportion is equal for all SCAs in all benchmarked applications, then the Raw-

NVR should be the best metric in our set. However, as false positives depend much

on the patterns of each tool and on the code being benchmarked, it is possible that

Raw-NVR unrealistically award more importance to the results of the SCA that

tends to report more false positives, which would not be in the best interest of the

benchmark. To better understand this case, we should consider calibrated metrics.

5.2.1.3 Calibrated Number of Reported Vulnerabilities

In order to reduce the influence of false positives rate of specific SCAs, we propose

to calibrate the results from the individual tools by applying a factor to the number

of reported vulnerabilities. Assuming that that rate depends on the pattern of the

SCA and is proportional (on average) to the number of missed vulnerabilities (MV),

we conclude that NVR is determined by the following equation, where FPF

represents the False Positives Factor for a specific tool:

NVR = MV * FPF

By dividing the number of vulnerabilities reported by the False Positives Factor,

we obtain the number of missed vulnerabilities. Thus, if we aggregate several

calibrated SCAs, we get the following calibrated NVR metric:

Cal-NVR = NVR1 / FPF1 + … + NVRn / FPFn

Cal-NVR = n * (MV1 + … + MVn)

Assuming that the vulnerabilities missed are the same for all analyzers (i.e. the

detected ones were corrected before starting the trustworthiness benchmarking

step) then Cal-NVR is proportional to the number of hidden vulnerabilities. A key

aspect is that the False Positives Rate required for each tool corresponds to an

estimation of the average rate of false positives reported by that tool in a wide range

of possible source codes. The problem then becomes gathering realistic estimates

for FPF, which is not a simple task. In our work, we use the estimates presented in

(Antunes 2010). This work provides an evaluation of the average false positive

rates for several SCAs in the context of Web Services, which are usually based on

similar constructions and programming languages as Web Applications in general

(Almonaies 2011).

Security Benchmarking of Transactional Systems

141

5.2.1.4 Normalized Metrics

The proposed normalized metrics are quite easy to compute. Basically, the idea is

to apply to the previous two metrics a factor that represents the size of the

application being benchmarked. The metrics present then the following form:

Norm-Raw-NVR = Raw-NVR / Size_Factor

Norm-Cal-NVR = Cal-NVR / Size_Factor

Any factor that represents what the benchmark user understands by “application

size” can be equally fair. For instance, the number of classes or the number of

features can be both used (Gencel 2008). However, as vulnerabilities tend to

manifest in specific lines of code (see discussion in Section 5.1), source lines of

code (LoC) appear to be the most interesting and adequate size metric. In our

experimental evaluation, we consider 100 LoC as the size factor for convenience

and readability, as it has absolutely no effect in the relative values (i.e. they do not

affect the comparison of tools).

5.2.2 Empirical Analysis of the Metrics

To understand the effectiveness and validity of the proposed metrics, we conducted

a series of experiments under controlled conditions. For these experiments, we

designed three distinct versions, each one with distinct security qualities, of four of

the web services specified by the TPC-App standard (tpc 2011), which is widely

accepted as being representative of web services. Using these implementations, we

analyzed the behavior the NVR-Raw metric by comparing it to the number of true

vulnerabilities in each version. This analysis was done for all the applications and

also at a component level. In a subsequent experiment, we created sixteen versions

of three completely distinct web services, one from the TPC-App, one from the

TPC-C (TPC 2005) and another from the TPC-W (TPC 2002) standards. These

sixteen versions where created by injecting real vulnerabilities in each of the

versions, creating a progressively worse set of applications. We then computed and

analyzed the NVR-Raw metric and the calibrated metrics of each of these versions.

5.2.2.1 Static Code Analyzers and Web Applications Studied

The experimental setup is based on three well-known SCAs: FindBugs (FindBugs

2011), Yasca (Yasca 2011), and IntelliJ Idea Analyzer (IntelliJ IDEA 2011). These

tools are widely used by practitioners and were also applied in several previous

research works (e.g. (Ayewah 2007, Antunes 2009, Antunes 2010)). The

experiments focus only on SQL Injection, as this vulnerability is one of the most

frequent and dangerous in web applications (OWASP 2010), and also because

(according to the vendors’ web sites) the three tools are able to detect them. Note,

Chapter 5  Trustworthiness Benchmarking of Web Applications

142

however, that any other type of vulnerabilities for which good tools exist could

have been considered.

To implement the services, we started by inviting a 3rd year undergrad student.

During a subsequent security inspection conducted by us, 9 SQL Injection

vulnerabilities were identified in this first version (referred to as implementation

V1). Afterwards, we took this implementation and, by performing the minimum

changes possible, corrected the 9 vulnerabilities, creating an implementation

similar to V1, but with no SQL Injection vulnerabilities (called V2). Finally, we

invited an experienced programmer (with more than 3 years of programming

experience and extensive knowledge of security of web applications) to develop a

secure version of the same application (named V3), which presented zero

vulnerabilities during code inspection. In summary, the experiment included

implementation V1, with 9 vulnerabilities, implementation V2, with 0

vulnerabilities, but having a coding style very similar to V1, and implementation

V3, with 0 vulnerabilities and having a coding style completely different from V1

and V2. All applications have approximately the same size (a few hundreds of lines

of code), and therefore normalization of the metrics is not necessary. We study

metrics normalization when comparing real applications in Section 5.2.3.

5.2.2.2 General and Component Level Analysis of Raw-NVR

We started the experiments by computing the Raw-NVR metric for the three

versions. Figure 5.1 presents the results, including the true vulnerabilities (as

detected in our manual analysis).

As shown, the metric clearly highlights some differences in the security of the

applications. The actual Raw-NVR value is very different from the true number of

vulnerabilities, but the relative values resemble very accurately the security of each

version. In fact, both V2 and V3, which have no vulnerabilities, scored the same

value (10), while the implementation with 9 vulnerabilities scored more than the

double of the others. Even though we expected similar values for V2 and V3, it was

a surprise that they both scored so equally. To better understand this, Figure 5.2

Component level evaluation of Raw-NVRbreaks down the metric for the four

services in each version. As we can see, even though V2 and V3 scored equally in

total, the distribution of the false positives is quite different in both

implementations. In V2 they are centered in the NewCustomer service, while in V3

they are more evenly spread. The higher than average score found in the service in

V3 calls the attention as this means that this service was built using a programming

pattern different from the rest. At the same time, we notice that the programming

style used by the experienced programmer was more consistent, and no module

stands out from the others. Nevertheless, we cannot forget that this is the Raw

Security Benchmarking of Transactional Systems

143

metric, and these results are biased by the false positives rates of the tools.

Figure 5.1 Benchmark results of our controlled TPC-App versions

To more extensively evaluate the problems of the NVR-Raw metric we did another

experiment using implementations of three different TPC services implemented by

three distinct developers: NewCustomer service from TPC-App,

CreateNewCustomer service from TPC-W, and Delivery service from TPC-C,

having zero known vulnerabilities each (these specific classes were chosen by the

simple fact that at the time of the experiments they were already implemented for

other research works, but were exactly what we needed for our experiment,

therefore we would not have to wait again for new implementations. It is important

to understand that other classes could also have been chosen).

Based on these three initial implementations, we created 15 more versions for each

service by injecting randomly chosen SQL Injection vulnerabilities in the code (the

vulnerabilities injected are from real samples drawn from vulnerable versions of

the same applications). The idea was to create different versions of the same

applications that were progressively worse in terms of security, which would allow

analyzing the metrics behavior by comparing the values computed for each version.

The 15 versions of each service were generated as follows: first we created four

versions with one different vulnerability each; then, we took these four versions

and by mixing each of the four vulnerabilities we created the remaining

combinations (6 versions with all combinations of 2 vulnerabilities, 4 versions with

3 vulnerabilities, and one version with the 4 vulnerabilities).

Chapter 5  Trustworthiness Benchmarking of Web Applications

144

Figure 5.2 Component level evaluation of Raw-NVR

Figure 5.3 shows the Raw-NVR metric for the 16 versions of each service, ordered

by version (the version with no vulnerabilities is number 1, the ones with 1

vulnerability are numbered 2 to 5, and so on). The dotted line in the graph (the

bottom one) is a baseline representing the true number of vulnerabilities in each

corresponding service version (i.e. the vulnerabilities injected).

The data presented in Figure 5.3 clearly shows the imprecise nature of the Raw-

NVR metric when used to compare components that have a very similar (or equal)

number of true vulnerabilities. We can see that in some cases the metric is more

influenced by the false positives than in others, yielding a varied number of

erroneous characterizations. For instance, the profile of the Delivery service metric

is very similar to the base line (which portrays the true number of vulnerabilities of

each version), allowing a fair relative comparison. In fact, the metric on this service

shows an error only in 3 cases: when we compare versions 4 and 5 with versions 6

to 8, and when we compare versions 11 and 12. On the other hand, for the service

CreateNewCustomer, the metric leads to several erroneous comparisons, stating,

for instance, that version 5 is worse than versions 6 to 13, which is not true because

we know that version 5 has less vulnerabilities than the others.

Security Benchmarking of Transactional Systems

145

Figure 5.3 Raw-NVR evolution in 16 versions of 3 different services, ranging

from 0 to 4 vulnerabilities

An important aspect that can be observed in Figure 5.3 is that the experiment

confirms our first hypothesis: if there is a significant difference in the number of

vulnerabilities, the metric actually portrays it. In fact, in all implementations, the

versions with 0 or 1 vulnerabilities are better scored than versions with 4

vulnerabilities, despite how erratic the false positives rate. This suggests that using

the results of several representative SCAs may be a representative way to compare

the trustworthiness of web applications that have a very distinct security quality,

but may not be a so good approach to distinguish applications that are too similar

(in security terms).

5.2.2.3 Analysis of Cal-NVR

As mentioned before, to calculate the Cal-NVR metric we adopted the calibration

factors proposed in (Antunes 2010). The False Positive Factors used are 7% for

Findbugs, 36% for Yasca, and 67% for IntelliJ Idea. To understand the accuracy of

this metric we computed it for the 16 versions of the NewCustomer,

CreateNewCustomer, and Delivery web services mentioned above. The results are

presented in Figure 5.4.

Chapter 5  Trustworthiness Benchmarking of Web Applications

146

Figure 5.4 Calibrated metric analysis for the 16 versions of each service

Figure 5.4 shows that the detailed pattern of the curves did not change much (when

comparing to the Raw-NVR metric shown in Figure 5.3). This was more or less

expected, as the calibration factor is constant. The other thing that can be observed

is a really important improvement. While for the Raw-NVR metric the three curves

almost never intersect (as shown in Figure 5.3), the same does not happen for Cal-

NVR. This suggests that, even though the comparison between versions of the same

service is roughly accurate when using the Raw-NVR metric, comparisons between

different services are completely off. The calibrated metric, on the other hand, is

better than the raw metric when comparing diverse software. This claim, however,

requires more evidence, as presented in a more broad evaluation in the next section.

5.2.3 Experimental Evaluation

In this section we present an experiment conducted to understand the validity of the

metrics in a scenario more close to a real use case of trustworthiness benchmarking.

To accomplish this, we used the proposed benchmark to rank seven distinct web

forums implemented using Java, and having a variety of sizes and features. In order

to have a baseline for comparison, we invited six experts to rank these same seven

web forums. Of these six experts, four are PhD students working in the area of web

applications security, all of them with at least two years of experience in the field.

The other two are software engineers with more than five years of experience in

the development of web applications with security requirements.

The problem we proposed to these volunteers was quite simple and representative,

and can be summarized as follows:

Security Benchmarking of Transactional Systems

147

“Suppose your company wants to install a web forum for its employees to

communicate internally, but the forum will also be accessible through the web.

Concerning features, usability and performance, it was determined that any of

these seven web forums can be used. Your job is to provide a ranking among

these seven web forums concerning security: the ones most secure (in the

broadest sense of the word) come first. No ties are allowed”

To conduct this task, we asked the volunteers to consider in the ranking process all

the aspects they believe to be important from a security point-of-view and also to

report the overall process and judgments that lead them to their decisions. This

allowed us to have a rough idea of the most important aspects considered by the

experts when analyzing the web applications, which we took into consideration in

our final analysis (see Section 5.2.2.3).

The web forums benchmarked are the following: Yazd 3, JavaBB v0.99, JForum

v2.1.9 and v3beta, JGossip v1.1.0, mvnForum 1.2.2 and JSForum 0.0.1 beta

(Forums Benchmarked, 2011), all available for free download. Most of these are

extremely popular (e.g. Yazd and mvnForum), others not so much (e.g. JSForum).

To make the experiment the most representative possible, we used a set of

representative criteria to select the forums, namely: they have the most common

features expected in a web forum, they are developed in Java, and the source code

is publically available. The last two criteria were necessary as the static analyzers

used target only Java code and require the source code of the application to be

available (even though FindBugs only requires access to the bytecode). Clearly,

these constraints may be changed if another set of analyzers is chosen. At the same

time, it is expected that results provided by different sets of analyzers should not

be compared (in absolute terms).

In this experiment we decided to evaluate only the Raw-NVR and Norm-Cal-NVR

metrics, omitting the intermediary Cal-NVR and Norm-Raw-NVR. We chose to

not analyze these metrics for two reasons: first, we already established, in the

controlled experiments, that the calibrated metric is better suited for comparing

diverse software, which is what we are doing in this experiment; second, we need

to apply normalization because the forums being compared have very different

sizes, and as discussed previously, we need to focus on the problem of density.

We also invert the Norm-Cal-NVR metric in order for it to grow with the

trustworthiness of the application. This is only a cosmetic decision, and the

behavior of the metric does not change. However, in order to be consistent, we call

this inverted metric as Trustworthiness Metric (TM). TM is computed as the inverse

Chapter 5  Trustworthiness Benchmarking of Web Applications

148

of Norm-Cal-NVR, so that it grows with less vulnerability warnings. The exact

formula for TM is as follows:

TM =
No. Lines of Code/100

F*0.93 + Y*0.64 + I*0.33

where F is the number of security warnings reported by Findbugs, Y is the number

of warnings reported by Yasca, and I is the number of warnings reported by IntelliJ

Idea, while the constants are the false positive factors of each tool, as explained

before. The trustworthiness value is normalized in terms of the size of the target

application considering blocks of a hundred lines of source code.

5.2.3.1 Analysis of the Overall Results

Table 5.1 presents the overall results of the benchmark, where the first column

presents the rank of each application. We also include the number of Lines of Code

and the average Cyclomatic Complexity of each application (Lyu, 1996).

Cyclomatic complexity is a metric that tries to express how complex a certain code

is by counting the number of linearly independent paths through a program's source

code. It is speculated that a source code with high cyclomatic complexity could

induce software bugs due to the difficulties involved in manipulating and testing

such complex code correctly (Lyu, 1996). If this is the case, then it is possible that

cyclomatic complexity may also be a good estimator for the trustworthiness of a

web application, so this comparison is relevant.

Table 5.1 Web forums ranked by Trustworthiness (TM).

Web Forum
Lines of

Code
Avg. CC Raw-NVR

Trustworthiness
Metric (TM)

1 JGossip 1.1.0 34633 1,89 4 138,5

2 JForum 3 47650 1,43 8 93,4

3 JForum 2.1.9 61262 2,05 16 64,5

4 Yazd 3 56255 2,41 58 17,7

5 JavaBB 0.99 23807 1,49 41 10,2

6 mvnForum 1.2 76774 2,73 108 10,2

7 JSForum 0.0.2 1693 2,76 58 0,4

Up to now, we have not yet established the reliability of the proposed metrics, so

we cannot assure that the order is correct; this will be addressed later in Section

5.2.3.3. However, we can start analyzing the relationship between the total number

of security warnings (Raw-NVR), the Trustworthiness Metric (TM), and the

average Cyclomatic Complexity (CC) of the benchmarked applications. At first

Security Benchmarking of Transactional Systems

149

glance, the average CC does not appear to correlate well with any of the metrics.

When it comes to CC and Raw-NVR, JGossip and JForum 3 have inverted

positions, and JavaBB, which has a small CC, actually has a fair high Raw-NVR.

The last two positions are also inverted regarding these two metrics.

When comparing CC with TM, even though the last two positions are the same,

bigger differences in the metrics are observed. For example, JavaBB and

mvnForum, while having the same TM values, also have dramatically opposite CC

(one on the top and other at the bottom). Given these differences, the only

conclusion possible is that if CC is a good estimator for the trustworthiness of code,

then our metrics are not, and vice versa. In Section 5.2.3.3 we show that our metric

has merit to compare applications, suggesting that CC is not a good trustworthiness

estimator for security aspects.

Another important analysis is the comparison between Raw-NVR and TM.

Although they present more or less similar rankings, like, for instance, in the three

first positions, there are some crucial differences. Take for example the scores for

JSForum and Yazd3. Even though they have exactly the same Raw-NVR values,

they present very different trustworthiness values. This is mainly due to their

relative sizes: Yazd3 is much larger than JSForum. Because they present the same

number of warnings, JSForum has a higher warning density, which in principle

may manifest as a high propensity to hidden vulnerabilities. The same rationale

applies, in a smaller scale, to the differences between JavaBB and Yazd3. An

interesting aspect is that, even though they have a quite different number of

warnings, JavaBB and mvnForum ended up having the same trustworthiness. This

means that, while they have different sizes and warnings, they present

approximately the same defect density, so they have similar propensity to

vulnerabilities.

As TM is essentially designed for comparison, the actual values of the metric are

not meaningful, so absolute scores of 10 or 100 do not translate semantically into

anything: what is meaningful are the relative values. If we compare the scores of

each application with the others, we observe that the applications can be actually

divided in three big groups: the first group is composed by the top 3 applications

(JGossip, JForum 3 and 2.1.9), which have very high scores. The second group is

comprised of the following 3 applications (JavaBB, mvnForum and Yazd3), which

are separated from the first group by a factor of approximately four (calculated by

dividing the TM of JForum 2.1.9, which is 64.5, by the TM of Java BB, which is

17.7). The last group includes only one application, JSForum, with a score of less

than 1/20 of the worst score of the second group. Even though it is difficult to argue

that an application within a given group is explicitly better (or worse) than the

Chapter 5  Trustworthiness Benchmarking of Web Applications

150

others on the same group, the difference between each group is significant. The

question now is whether this difference does map into real evidences; if it does not

then the metric cannot be considered representative. To actually evaluate this

aspect, we have compared this ranking with the assessment provided by the six

security experts.

5.2.3.2 Benchmark Results vs Experts’ Analysis

The final output of the assessment performed by each of the six experts was a table

with their proposed ranking, which consists of a simple ordering accompanied by

a qualitative description of the process they used to determine it. A key aspect is

that no single pair of experts proposed the same ranking, which shows that

individual human analysis may not be a good source for benchmarking, as the

ultimate result is based on opinion and knowledge that varies from person to

person, and that is, most likely, not repeatable (unless a detailed process is

followed, as the one proposed in Chapter 4 for security benchmarking of

transactional infrastructures).

In order to compare the experts’ evaluations with the results of the trustworthiness

metric, we need to have an agreement between the experts. Although several

options could have been followed to achieve that agreement, we decided to consider

a simple average between the rankings provided by them (similar to a voting

scheme). Table 5.2 presents the ranking proposed by each expert, along with the

average for all experts, and the values for the trustworthiness metric.

Table 5.2 Experts’ rankings

Forum Exp1 Exp2 Exp3 Exp4 Exp5 Exp6
Avg.
Rank

TM

JGossip 1.1.0 3 2 3 2 6 7 3,83 138,5

JForum 3 1 1 1 1 1 1 1,00 93,4

JForum 2.1.9 4 3 4 3 2 2 3,00 64,5

Yazd 3 6 5 2 4 4 5 4,33 17,7

JavaBB 0.99 2 6 6 5 5 4 4,67 10,2

mvnForum 1.2 5 4 5 6 3 3 4,33 10,2

JSForum 0.0.2 7 7 7 7 7 6 6,83 0,4

There are several relevant aspects in this analysis. The most obvious is the

unanimity regarding the first place, JForum 3, which was actually ranked in second

by the benchmark. This does not invalidate our benchmark, as the scores of the

three first positions are proportionally very close. What differs most is the fact that

Security Benchmarking of Transactional Systems

151

JGossip, the first in the benchmark ranking, came as third in the average of the

experts, which requires a more thoughtful analysis.

A close look to the scores provided by the experts shows that the first four put

JGossip in the top 3 forums (which, in average, would actually put it in the second

position), while experts Exp5 and Exp6 decided that it should be positioned in the

bottom of the ranking, along with JSForum. By analyzing the experts’

justifications, we can observe that both Exp5 and Exp6 did not take into account

the source code specificities, which is actually the only aspect that is portrayed by

our trustworthiness ranking. While experts 1, 2, 3 and 4 mention clearly the fact

that JGossip is correctly designed, something that our metric expressed quite well,

the justifications for the Exp5 and Exp6 rankings were threefold: lack of paid

support, not being actively updated, and inexistence of a community of users

capable of helping mitigating future security incidents.

The goal of our trustworthiness benchmark is to provide a metric able to help

selecting the application that is least likely to have security incidents in the future,

and not the one with better outside support when incidents occur. Obviously, this

information cannot be extracted from the source code of the application, and it is

unlikely that we will ever be able to include it in a security benchmark. While this

is a complementary aspect that should, of course, be taken into consideration when

selecting among applications, it does not invalidate the value of our automated

benchmark.

Another key observation is that, although ignoring source code aspects, experts 5

and 6 still considered JForum 3 the best option. Their confidence is justified by the

existence of an active development community and the offer of paid support.

Obviously, source code quality cannot be directly related to this, suggesting that

the experts ranking may be actually a coincidence. In fact, this coincidence is

confirmed by the scores given to mvnForum, which was ranked in the second half

of the raking by the first four experts, for reasons like: being “less organized and

maintainable” and employing “incorrectly prepared statements, using

concatenations of values instead of parameters”. These characteristics clearly show

that mvnForum is based on an insecure coding style, where a simple coding error

may cause the introduction of vulnerabilities. However, experts 5 and 6 ranked it

quite high based on the argument that an active community supports its

development.

If the scores given by the benchmark for JGossip are too high, and should actually

have been lower because JGossip lacks of an active community and support (which

is the opinion of experts 5 and 6), than we could also argue that the scores that were

Chapter 5  Trustworthiness Benchmarking of Web Applications

152

given to mvnForum by these same experts are also incorrect as they did not take

into account the insecure coding style, something which was fairly expressed by

our automated benchmark. The problem we are considering here is that even though

we cannot automatize the identification of the fact that certain software does not

have active community, we can automatize the identification of insecure coding

patterns in the software. If the information provided by our benchmark was

available to experts 5 and 6, then they would surely not consider giving mvnForum

a ranking as good as they did and, at the same time, they would possibly consider

the fact that JGossip is in fact securely designed. This discussion demonstrates how

important is the kind of results that our benchmark provides when it comes to

complement other types of analysis. Should experts 5 and 6 have an automated

method to accomplish this technical evaluation, they would never fail in this regard.

Another important aspect that can be observed in Table 5.2 is the unanimous

ranking given to JSGossip. As pointed by some of the experts (particularly experts

1 and 2), this application is crawled with vulnerabilities, and should never be

considered for use because it has “the worst design possible when it comes to

security precautions”. Being a project abandoned since 2003, experts 5 and 6 also

assigned low rankings to it. However, if they ever had to choose between JGossip

and JSForum (both of which do not have active communities), only an automated

tool like ours could point out how dramatically better-designed JGossip is. In fact,

we do believe that positioning JGossip after JSGossip, as done by Exp6, is an

indefensible mistake that should be prevented.

A key aspect that can also be noticed when analyzing the average rankings of the

experts is that the three groups of applications suggested by our trustworthiness

benchmark are exactly the same as the ones we could create based on the experts’

rankings (even if we also include the biased evaluations given by experts 5 and 6).

The top three applications (for both the experts and the benchmark) are JForum 3,

JForum 2.1.9, and JGossip. The intermediary group is formed by mvnForum,

JavaBB and Yazd 3. Finally, JSForum is isolated in the last position.

Looking closely to the rankings of the middle group (Yazd 3, mvnForum, and

JavaBB), we can see that the experts that did consider source code evidences could

not reach any kind of consensus regarding their relative ranking. Our benchmark

could also not differentiate them very much: while all of them are not terribly

designed, they are not good examples of secure design. In fact, all three present

coding patterns with a “propensity to the introduction of vulnerabilities”, as stated

by one of the Exp1.

Security Benchmarking of Transactional Systems

153

In summary, our benchmark ranking matched fairly well the joint opinions of the

six experts. While one drawback of our method is the inability for evaluating the

kind of support the users can get from the community, which is indeed an important

aspect when evaluating some new software, it correctly considered and portrayed

all source code aspects that our experts took into consideration. Actually, in the

cases where the experts did not take source code information as basis for the

ranking, some poor decisions were made. This shows that our proposal can help in

benchmarking the trustworthiness of applications, by considering technical aspects

regarding the source code, which may be far from the reach of administrators and

users with reduced security knowledge. Although characteristics like the existence

of an active community can be easily assessed by an administrator, technical details

like the correctness and security of the design of an application begs for the use of

an automated tool, role that our proposal seems to fulfill in an adequate manner.

5.2.3.3 Cross Validating based on Source Code Characteristics

To further understand and cross-validate not only the decisions of the experts, but

also the behavior of the benchmark metric, we analyzed in detail the source code

of the applications. The summary of our findings, together with our own qualitative

ranking is as follows:

1) JForum 3. This application has the most secure design. This is mainly due

the use of the Hibernate persistence framework (Hibernate 2011), which is

well known for providing high protection against SQL Injection (OWASP

2010). The use of this framework appears to be correct; thus, it is very

unlikely that there is a way to break the application.

2) JForum 2 and JGossip. Both of these applications perform database accesses

through prepared statements, which are recognized by programmers as an

effective method for protecting against SQL Injection (Amirtahmasebi

2009). The security is guaranteed by carefully using only constant SQL

queries and by correctly passing values via parameters to previously

prepared commands. No traces of vulnerabilities or bad design could be

found during our analysis.

3) Yazd 3. This application also uses prepared statements, but, in various

locations, external variables are directly concatenated to SQL query strings

(i.e. system properties are directly appended to the query, without using

parameters). The main input values, however, are passed through

parameters. This construction is clearly more error prone than the others, and

the risk of this design is in accidentally concatenate to a query a variable that

Chapter 5  Trustworthiness Benchmarking of Web Applications

154

the programmer believes is a constant, but that is not, or whose value can be

influenced by an attacker indirectly. A typical Yazd 3 query is as follows:

private static final String LOAD_USER_BY_USERNAME = "SELECT *

FROM " + SystemProperty.getProperty("User.Table")+" WHERE " +

SystemProperty.getProperty("User.Column.Username")+"=?";

4) mvnForum and JavaBB. Both applications concatenate input values directly

to create SQL statements. Even though mvnForum uses prepared statements,

the feature is useless due to this construction (i.e. no use of the query

parameters). The application input parameters appear to be all validated

before this concatenation, but all it takes to create a vulnerability is failing a

single input validation, as no extra defenses are in place. Examples of such

code constructions found in these applications are:

mvnForum:

Collection globalPermissions= execSqlQuery("SELECT

Permission"+” FROM "+MemberPermissionDAO.TABLE_NAME+

" WHERE MemberID="+Integer.toString(memberID));

JavaBB:

ResultSet rs = stmt.executeQuery("select downloads from

jbb_posts_files where file_id=" + fileId);

5) JSForum. This application has a large number of vulnerabilities, as input

values are extracted from the HttpServletRequest object and concatenated

directly, in String format, to the queries being built. No validation is done on

the inputs. Most database access occurs like the following:

String RegUser = request.getParameter("user");

ResultSet rs=db.selectQuery("SELECT * FROM forum_users "+

"WHERE user_name=\""+ RegUser + "\"");

As can be seen, our evaluation also resembles the ranking provided by the proposed

benchmark. The reality is that all evidence we gathered regarding our original

hypothesis of using false positives as a coding quality estimator suggests that our

original assumption is valid. In fact, the dangerous coding practices that we put

forth as evidence for security or insecurity of the applications, are exactly what

shaped the results of the analyzers and, therefore, of our benchmark.

5.2.4 Lessons Learned

Several lessons can be deduced from the experiments conducted, some related to

the strengths of the approach and a lot related to the weaknesses. From the strengths

of our benchmark, we immediately learned that using static code analysis tools to

Security Benchmarking of Transactional Systems

155

perform trustworthiness benchmarking automatically guarantees several of the

properties expected in any benchmark: repeatability, simplicity of use, portability,

scalability, non-intrusiveness, and representativeness (which were discussed in

Chapter 2, Section 2.4).

Repeatability, which is the ability of re-executing a benchmarking campaign and

obtaining the same results (at least, in statistical terms), is guaranteed by the fact

that SCAs are deterministic. If ran multiple times with same input, they report the

same results.

Simplicity of use is another property expected in a benchmark. Static analyzers are

applications that take source code as input and automatically provide as output a

list of potential bugs/vulnerabilities. Because of this simple process, most static

analyzers are naturally very simple to use. The automated analysis of the reports is

also simple, as all tools provide them in XML format. This is also required in order

to provide scalability to the benchmark, or the evaluation of the results would be

unfeasible for applications with too big pieces of source code.

Fulfilling two additional properties of benchmarks, SCAs are naturally non-

intrusive, as they perform a passive analysis of the provided source code, and

portable, as they work over most source codes of a specific programming language

(i.e. in our case, the approach will work to compare all applications that were

designed in java, but will not be usable for other programming languages).

The most important property of all, however, is related to the representativeness

of the results. Our analysis put forward evidence that a carefully chosen set of SCAs

provide enough representativeness to be used for benchmarking the trustworthiness

of real complex web applications. Although the evidence we present demonstrates

this point specifically to Java, the construction should apply for all programming

languages that have a good set of tools.

We also have to evaluate the weaknesses of the approach. The first thing is that we

must account for the discrepancies in the validation experiment. By design, our

benchmark can only take into account the characteristics of the software, and

aspects like community support cannot be part of the benchmark (at least in an

automated manner). The conclusion we can take from this is that trustworthiness

benchmarking is actually an excellent tool to help in the decision of what software

to choose, and in fact provides information that cannot be easily obtained.

However, it is unlikely that it is possible to conceive an automated benchmarking

procedure capable of guaranteeing the selection of the best alternative in all

situations, without taking additional information into consideration.

Chapter 5  Trustworthiness Benchmarking of Web Applications

156

Another important problem that we noticed is that the benchmark can only be used

to evaluate source code developed without considering the benchmark

specification, which is a huge problem to benchmark approaches. In section 5.3 we

discuss why this is true, and why we need an approach that is not dependent on

tools like static code analyzers.

Nevertheless, the lasting conclusion of our experiments is that, on average, coding

styles can be correlated with security attributes by searching for evidences of secure

coding best practices. Cross-validation and manual analysis suggest that such

correlation is indeed useful to support the selection of secure web applications, even

if source code metrics are not enough to account for all important aspects (e.g.

outside support and active development).

5.3 Towards a General Approach for Trustworthiness
Benchmarking of Web Applications

In the previous section we explored the use of expert analysis tools to build a

practical and usable trustworthiness benchmark. The assumption is that the false

positives of a good set of static code analyzers is a good predictor of the quality of

the source code of a web application, and that too many false positives may be

related, to a certain extent, to bad programming practices. In our experiments we

provided evidence that this assumption is sound and that a benchmark built upon it

could be sufficiently accurate, thus allowing the comparison of the trustworthiness

of web applications.

There is, however, a contradictory aspect to that proposal: we exploit the failures

(in the form of false positives) of otherwise good static analysis tools to obtain

information that the tools were not designed to provide in the first place. Assuming

that such a benchmarking approach becomes a common standard, two effects

should be considered in the future:

1) As static analysis tools become more precise at their task, which is finding

actual vulnerabilities while avoiding false positives, they will progressively

contribute less and less to the benchmark. For instance, an ideal tool able

to find 100% vulnerabilities and report 0 false positives would not

contribute to a better benchmark, as detected vulnerabilities would not

contribute for the calculation of the trustworthiness metrics (real

vulnerabilities are used only for qualification purposes, as explained in

Chapter 3).

2) In order to improve software rankings, the techniques that software

developers employ would shift to the ones that more efficiently avoid false

Security Benchmarking of Transactional Systems

157

positives. However, the tendency could be for such coding practices to only

be better at avoiding false positives, nothing more, and therefore would not

lead to more secure coding practices. False positives tend to be correlated

with bad coding practices only if the software is not developed with such a

benchmarking context in mind, which is a problem in the long run. In

practice, the benchmark can be gamed, in the sense that developers can

improve the metrics for a given application without improving its quality

in the way that the metrics are intended to portray.

In this section we build upon these aspects and propose a process to design a

benchmarking tool able to accomplish the specific goal that static code analysis

tools accomplish only as a side effect: how to evaluate if a web application coding

style is prone to security vulnerabilities or not. Even though our goal is not build a

complete ready to use benchmark, we will present the main requirements needed

for building one.

5.3.1 Web Applications Code Threat Vectors

As explained in Section 5.1, a web application threat is a set of parameter crafting

techniques aimed at leading the application to behave in a malicious way. These

techniques focus particular types of lines of code, designed for specific purposes,

which we call hotspots. When subjected to the crafted input data, an insecure

hotspot behaves in way that does not conform to the application business rules.

Therefore, threat vectors can be defined as sets of programming practices that either

facilitate those crafting techniques or that block them. In this initial proposal we

focus on two of the most important web applications threats, namely:

#SQL Injection threat

a) description: crafting techniques aimed at modifying semantically a target SQL

command that is sent to a backend database.

b) hotspots: any line of code which submits a SQL command to a database.

#Cross-Site Scripting

a) description: crafting techniques that lead the application to send executable code

to a client that expects only textual information. This executable code may

comprise scripting code or embedded applications (e.g. activeX, flash, etc.). The

malicious executable code may be stored for later retrieval or be immediately

reflected back to the client.

b) hotspots: any line of code that sends an output to the client application.

Chapter 5  Trustworthiness Benchmarking of Web Applications

158

5.3.2 Security Precautions in Web Applications

A representative trustworthiness benchmark depends of properly identifying the

source code characteristics that distinguish a secure software from an insecure one,

and therefore we must understand those characteristics in more detail. The relevant

security precautions that can be applied in the context of web applications are

divided in two groups (Liu 2006): general input validation and strong business data

typing for hotspots. The problem is how to find enough evidence indicating that

both types of precautions are being applied in a source code (and to what extent

they are being applied). Our approach consists of looking for code patterns typically

used to implement these security precautions in order to prevent the considered

threats. The next sections provide an overview of the patterns being considered in

our proposal.

5.3.2.1 General input validation

General input validation can be done using three major algorithmic approaches:

accept known good, reject known bad, and transform invalid into valid.

The accept known good approaches (sometimes called whitelist filtering) include

any strategy that implements a “if not exists in, then remove/reject” semantic. The

“remove” part of this approach might be implemented as the complete replacement

of the value by a known good value, therefore completely ignoring the actual value

used as input. Implementing this kind of validation usually requires only

information about the input domain of the application (which the developer is

expected to know). This is an important strategy that is considered the safest type

of validation, as it is the one that offers the developer more control over the inputs.

Several code patterns are associated with this strategy, including:

 Enforcing strong variable data types

 Match against a regular expression

 Algorithms implementing a “if not exists in, then remove/reject” filter

 Out of range check/set to known good

 Out of length check/set to known good

 Empty/null check/set to known good

The reject known bad approach (or blacklist filtering) is comprised of strategies

that try to enumerate exhaustively bad values that input parameters can have and

try to remove/reject these values. Basically, it includes any kind of algorithm

implementing an “if exists in, then remove/reject” semantic. The main problem is

that the set of values used to validate the inputs may be extremely difficult to define

Security Benchmarking of Transactional Systems

159

and maintain. The reason is that inputs considered as acceptable in a certain

moment might become bad in the future due to technology evolution and context

modification. Also, bad inputs frequently depend on specific threats and attack

techniques, meaning that more information besides the business domain of the

application may be required. However, in some cases this approach may be easier

to implement than an accept known good, as it may be impossible to specify all the

“known good” values for a certain input parameter.

Transforming invalid into valid (also known as massaging the data) is used when

a combination of the two strategies above is applied. This consists of situations

where only parts of the data are bad (but not all the data are) and it is not possible

to simply replace a “contaminated” input with a known good value without losing

information. This approach is comprised of any “replace x by y within z” algorithm,

and is based on the ability to separate the bad parts of the input from the good parts.

This is the technique most difficult to implement due two key aspects:

1) It may not be easy to identify the bad parts of the input. This issue presents

the same problems of the “reject known bad approach”, but with an

additional difficulty: the bad data is mixed with the good data, and

therefore a simple comparison may be insufficient.

2) The replacement algorithm may be difficult to implement in a secure way.

This happens because whenever some bad piece of data (let’s say X) is

replaced by some good piece of data (let’s say Y), then this good piece may

lead to the creation of another piece of bad data (i.e. Y might not be

universally good, and may become bad when included in the context

previously occupied by a certain X).

The correct implementation of each of these three input validation approaches

demands different degrees of control and knowledge from the developer. Accept

known good algorithms are relatively simple to implement correctly, as most of

them depend only what the application is expected to do (i.e. the business rules of

the application). Reject known bad approaches are more difficult to develop and

maintain correctly, as they depend on knowing what are the bad values, and these

are related not only with information about threats, but also with the techniques

used to accomplish such threats (i.e. the real attacks). Transformation techniques

are the hardest of all to implement securely, as not only they depend also on threat

information, but also on the context where the bad input values might appear.

These difficulties require the definition of a hierarchy of what would be the

preferable ways of implementing the validation of a particular input parameter.

Therefore, we argue that accept known good approaches are usually better then

Chapter 5  Trustworthiness Benchmarking of Web Applications

160

reject known bad approaches, which are better than transformation approaches. In

practice, this hierarchy is based on the previously presented characteristics of each

approach and the control and knowledge required for implementing them.

However, the possibility of using the best available approach depends on the

application being developed, as some applications may have input parameters that

do not have a clearly identifiable “good” form. For instance, arbitrary files and free

text input frequently have an open form that may be extremely hard to match

against a “known good” format. Validating these inputs may require the use of the

other approaches, and therefore knowledge about threats and attack techniques.

5.3.2.2 Strong Business Data Typing for Hotspots

As defined before, hotspots are the lines of code in a web application that are the

target of an attack (Integrigy 2007), and protecting hotspots should be done by

enforcing a strong business data typing for all variables used as input to the hotspot.

The main idea is that whenever the values used in a hotspot conform to its

corresponding business data typing, then the hotspot will behave as expected.

Reliable protection of hotspots requires the developer to know the business data

type for each hotspot. If the hotspot is a function call, this requires knowing exactly

the domains of parameters that are expected by the function is expecting and

guaranteeing that no value outside those domains is processed. Also, if there are

business restrictions for such parameters, then should also be considered as part of

the business data typing for the hotspot. For instance, for most DBMS engines a

string containing an unescaped single quote is not a valid string in the context of a

SQL execution call, as it may change the semantics of the command. The same is

true for a numeric value containing text characters.

Enforcing strong business data typing can be done in several ways. The input

validation algorithms presented in the previous section can also be used to validate

variables of hotspots according to its business data type. However, depending on

the business data type of the hotspot and on the algorithm used to validate its input,

threat information may be required to properly design a correct validation

algorithm.

Depending on the case, automated methods for enforcement of business rules may

be available when it comes to the technical aspects of a hotspot. For instance,

parameterized queries can be used in a SQL command call to guarantee that,

independently from the input passed to the database, the semantic of the SQL

command does not change. In this sense, the call itself will force variable data

typing (accept known good) in such a way that no semantic change of the SQL is

Security Benchmarking of Transactional Systems

161

possible. Automated enforcement methods should be preferred against the manual

development of validation algorithms, as the developer has more control over them

and the probability of error is lower.

5.3.3 Accounting for Secure Coding Practices

For each threat vector defined in the benchmark (SQL Injection and Cross Site

Scripting as described in Section Web Applications Code Threat Vectors), we need

a set of coding best practices consensually accepted as being able to reduce or

eliminate the probability of malicious effects of threats. However, in contrast to our

approach for trustworthiness benchmarking of transactional systems infrastructures

presented in Chapter 4, we should now look for practices directly related with each

threat, so the correlation is quite obvious. However, field research is always

necessary, as explained next.

In practical terms, the process is based on the analysis of the hotspots and their

relation with the input variables. For each security recommendation, we provide

specifications of the preprocessing and post-processing activities that should be

implemented to each particular value used in the context of the hotspot. We call

these specifications variable accountability statements, which are aimed at the

variables that “carry” the values from the input to the hotspots. Based on the

discussion in Section 5.3.2, three general types of accountability are defined:

business data typing, automatic enforcement, general input validation.

Accountability statements can be either positive statements (that, when applied,

tend to improve the trustworthiness of the code) or negative statements (that, when

not applied, lower the trustworthiness of the code). Additionally, hierarchies of

recommendations may generate interrelated accountability statements, which may

represent positive and negative statements simultaneously. In fact, although using

lower quality alternatives (i.e. not preferred solutions) is positive (better than not

using anything), it is also negative due to the existence of better solutions that could

have been applied (e.g. removing known control characters from a string is a good

practice, but a better choice would be to allow only known good characters instead

of removing only the bad ones, therefore this would be a good and bad practice

simultaneously).

A bibliography study (including, but not limited to (Cenzi 2009, CGI Security

2010, Fonseca 2007, Howard 2006, Integrigy 2007, Jovanovic 2006, OIWASP

2010, Seacord 2006) regarding typical countermeasures against the threats

considered in this benchmark yielded several recommended security best practices

(again, we remember that researching for security best practices is an error prone

Chapter 5  Trustworthiness Benchmarking of Web Applications

162

task, and therefore the list should be periodically evaluated and updated for further

use). In the next paragraphs we present those general recommendations and their

translation to accountability statements. The accountability statements have the

weights indicated before their description. Most statements have weight 1 (+1 or -

1), but some negative statements have weight -2 and -3. The reason is that the

application of these practices only occurs when some other preferred method is

ignored. For instance, the accountability statement C for Cross-Site Scripting

(“Variable does not output any of the characters ><()&# as is”) has weight -3.

Indeed, if the program outputs those characters, then the variable is not being

addressed by any of the following filters: accept known good (only known good

values are accepted), reject known bad (known malicious values are rejected), and

transformation (invalid values are transformed into valid values). The three missing

alternatives results in a -3 weight.

#SQL Injection prevention recommendations

 Use strongly typed parameterized query APIs, either by applying the

mechanisms provided by the programming language or using stored

procedures (provided by the database backend).

 Validate input parameters and enforce correct data types.

 Properly escape values used in dynamic queries (i.e. query construction

through concatenation).

#SQL Injection variable accountability statements

Strong Business Data Typing

A) (-1) Business data typing is enforced; strings are escaped according to the

DBMS characteristics

Automated Enforcement

B) (-1) Variable is not concatenated to the SQL statement

C) (+1) Variable is assigned through a proper parameterized assignment

function

General input validation

D) (+1) Variable has its length/range checked; it is rejected or set to a known

good value if the length/range checking fails

Security Benchmarking of Transactional Systems

163

E) (+1) Variable is subjected to a “if not exists in SET, remove/reject” filter

algorithm or regular expression

F) (+1) Variable is checked for empty/null values; it is rejected or set to a

known good value if the empty/null checking fails

G) (-1) Variable is subjected to at least one accept known good validation

algorithm (i.e., statements D, E or F)

H) (+1)(-1) Variable is filtered using reject known bad algorithm

I) (+1)(-2) Variable is filtered using transformation algorithm

#Cross-Site Scripting prevention recommendations

 Enforce proper character output encoding (e.g., UTF-8).

 Validate input parameters, enforcing correct data types.

 Escape output according to the output context (e.g. HTML section, CSS

section, script section, etc.).

 Avoid the output of any of the following characters ><()&# if not as

HTML entities.

#Cross-Site Scripting variable accountability

Strong Business Data Typing

A) (-1) Business data type is enforced

B) (-1) Variable is outputted with an enforced fixed character encoding

C) (-3) Variable does not outputs the characters ><()&# as is

General input validation

D) (+1) Variable has its length/range checked; it is rejected or set to a known

good value if the length/range checking fails

E) (+1) Variable is subjected to a “if not exists in SET, remove/reject” filter

algorithm or regular expression

Chapter 5  Trustworthiness Benchmarking of Web Applications

164

F) (+1) Variable is checked for empty/null values; it is rejected or set to a

known good value if the empty/null checking fails

G) (-1) Variable is subjected to at least one accept known good validation

algorithm (i.e., statements D, E or F)

H) (+1)(-1) Variable is filtered using reject known bad algorithm.

I) (+1)(-2) Variable is filtered using transformation algorithm.

Variable accountability statements are as simple as possible, turning the

verification of their implementation into an easy task. This is aimed towards

making the benchmark application as easy as possible (and certainly much simpler

than a deep vulnerability analysis). This simplification however, may have some

drawbacks. For instance, take as an example the accountability statement C for

Cross-Site Scripting (i.e. “Variable does not outputs any of the characters ><()&#

as is”). Actually, depending on the section of HTML code where they are inserted,

some of these characters may be harmless. But assuming that a certain character is

harmless in a certain section also assumes that the developer has absolute control

over where he is outputting them. Verifying if a character is outputted is relatively

easy, but verifying if it is outputted in a harmless section is significantly more

difficult. Our benchmark proposal follows a pessimistic approach in these cases,

assuming that developers may make mistakes. Therefore, they should always avoid

outputting these characters. If it is impossible to avoid it, then the application is

penalized. Nevertheless, for the sake of comparison, if it is impossible to not output

them, then all other equivalent applications will also find it impossible, therefore

being penalized too.

5.3.4 Trustworthiness Metrics

The benchmark defines five complementary metrics that characterize different

trustworthiness and untrustworthiness aspects of the benchmarked code:

- Average Code Prudence (ACP): the sum of the average positive

accountability statements applied to the hotspots. This metric expresses

how much precaution the developer employed in the hotspots

benchmarked.

- Average Code Carelessness (ACC): the sum of the average negative

accountability statements not applied to the hotspots. This metric

expresses, on average, how careless the developer was on the hotspots

benchmarked.

Security Benchmarking of Transactional Systems

165

- Average Code Quality (ACQ): the sum of the positive aspects of the code

and the negative aspects of the code, yielding an overall comparison metric

for the code general quality concerning the threats of the benchmark. This

metric can also be computed for each hotspot, providing a way to compare

the hotpots of the same application in a relative way, highlighting the ones

that have lower quality (thus may deserve more focus in terms of

improvement efforts).

- Hotspot Prudence Discrepancy (HPD): this is the standard deviation of

the ACPs of all accounted hotspots. This metric portrays the consistency

of the developer (or developers) in his prudence or tendency to harden

some parts of the code, but not others.

- Hotspot Carelessness Discrepancy (HCD): this is the standard deviation

of the ACCs of the hotspots, portraying how much inconsistent the

developer (or developers) is when considering negative accountability

statements.

The algorithm that should be used to compute each of these metrics includes five

main steps:

- Step 1. For each threat, scan the applications to identify the lines of code

that comply with the description of the hotspots.

- Step 2. For each hotspot, list the variables used. Select all the variables

whose value depends directly or indirectly on an external source of data.

External sources are: a) direct input from a user or call, b) values read from

a database, c) values read from local files. If there is no variable whose

value depends on any these sources, then discard the hotspot.

- Step 3. Compute the partial metrics for each variable in the non-discarded

hotspots by evaluating the path followed by the value from the external

source to the hotspot. Considering this path, evaluate all the variables

affected against all the accountability statements of the benchmark.

Applied positive accountability statements count +1 multiplied by its

weight; not applied negative accountability statements count -1 multiplied

by its weight. The metrics for the hotspot are proportional to the number of

variables involved in the hotspot, which is as follows (for each hotspot and

each threat):

Hotspot ACP = (Positive statements)/Number of variables

Hotspot ACC = (Negative statements)/Number of variables

Chapter 5  Trustworthiness Benchmarking of Web Applications

166

Hotspot ACQ = Hotspot ACP + Hotspot ACC

- Step 4. Compute the overall code metrics as follows:

Code ACP = ( Hotspots ACP)/Number of hotspots

Code ACC = ( Hotspots ACC)/Number of hotspots

Code ACQ = Code ACP + Code ACC

− Step 5. The discrepancy metrics are computed as follows:

HPD = √  (Each Hotspot ACP – Average ACP)2

Number of hotspots accounted

HCD = √  (Each Hotspot ACD – Average ACD)2

Number of hotspots accounted

For each pair threat/hotspot the metrics should be interpreted as follows:

- Hotspot ACP: higher values mean that more security precautions against

the threat are present in a given hotspot.

- Hotspot ACC: low (negative) values mean that the hotspot has

characteristics that typically yield vulnerabilities.

- Hotspot ACQ: higher values denote that more security precautions are

evident in the hotspot.

For the overall code, the metrics and their relative interpretations are as follows:

- Code ACP: higher values show that more security precautions against the

considered threats are present in the overall benchmarked code.

- Code ACC: low values suggest insecure coding practices.

- Code ACQ: higher values show that more evidence of security best

practices is present in the code.

- Code HPD: higher values denote a developer that is more inconsistent

when protecting hotspots.

- Code HCD: higher values show that the developer is more inconsistent

when avoiding dangerous coding characteristics.

Security Benchmarking of Transactional Systems

167

Like the very idea of measuring trust and trustworthiness, these metrics are not

absolutely precise, meaning that the confidence on the results increase with the

difference on the scores (e.g. the most distant are the scores of two evaluated pieces

of software, more confidence we may have that the one with higher score is better

designed than the one with lower score). It is important to emphasize that the

overall code metrics are defined in a way that the number of hotspots and the

number of variables will not influence them. Also, we propose a set of discrepancy

metrics, in the form of standard deviations, to complement the analysis of the main

metrics, as simple averages sometimes may hide important irregularities in the

distribution of the values.

5.3.5 Preliminary Experimental Evaluation

To demonstrate the ideas behind the proposed benchmarking approach, we

compared two distinct implementations of an application in terms of the SQL

injection threat. The implementations we decided to compare were the ones that

were developed for the experimental evaluations presented in Section 5.2.2 one

developed by a graduate student and the other one by an experienced developer,

both implementations of the TPC-App web services benchmark (TPC 2011). In the

context of these experiments, the application developed by the experienced

developer was called V_0 and the other is referred to as V_1.

As the proposed approach is yet in a preliminary stage (the goal is yet to assess its

applicability), we did not implement any tool to compute the metrics automatically,

so we conducted a manual code inspection to execute the benchmark. Even though

this is not ideal, it is enough to illustrate the concepts.

The first step of the analysis consisted of finding the hotspots. The two

implementations use a JDBC connector (Bales 2001) to access the database,

therefore the analysis started by finding all lines of code that invoked the methods

executeQuery and executeUpdate (Bales 2001). In version V_1 these methods

receive a string as parameter, which is traced back to a SQL command with several

concatenations. In version V_0 no concatenation is found, and the variables are

passed through parameterized assignment functions. In both applications, there are

6 hotspots (the number is the same in the two cases, as both versions implement the

same standard specification), and in both hotspots 2 and 5 could not be traced back

to any input source (they were constant SQL commands), so these were discarded

from the analysis.

We proceeded to examine all variables directly or indirectly related with the

remaining hotspots concerning the 9 SQL Injection accountability statements

Chapter 5  Trustworthiness Benchmarking of Web Applications

168

presented in Section 5.3.3. For this experiment, the Business Data Typing was

either numeric or free text for all table fields. Figure 5.5 presents the overall

benchmarking results. By analyzing the final values, we can see that, for V_1, a

huge penalization is given to the code, as the ACC score is higher (in absolute

value) than the ACP score, while we see the inverse for V_0, certainly due to the

use of parameterized queries. Nevertheless, it is clear that improvements could have

been done to V_0, as several penalizations are still present (e.g. input values are

not filtered in any way).

Overall, version V_0 is better in all metrics: better Average Code Prudence, lower

Average Code Carelessness, and higher Average Code Quality, meaning that this

version is trustworthier than V_1. The discrepancy metrics are similar, meaning

that each developer took more or less the same considerations across all hotspots.

Figure 5.5 Overall benchmark results

Although further research and validation is needed, this small experiment suggests

that the proposed benchmarking approach is useful and may be applicable in

practice. A tool implementing this algorithm would be a reliable replacement for

the benchmark based on the outputs of static analysis tools presented in Section

5.2.

Although the goal of the benchmark is to compare applications that provide similar

functionalities, its use is not limited to applications that implement the same

specification. In fact, the metrics simply state how careful, on average, the

developers were on protecting the hotspots of each application, thus any two

applications are comparable (obviously, considering the same threats). Given an

automated tool to compute the values, we could easily see it being used to choose

between several brands of wikis or forums, for instance.

Security Benchmarking of Transactional Systems

169

As a final remark, we would like to emphasize that the automation of the tool is a

technical problem that, although requiring a lot of work, will not pose any

theoretical difficulties. In practice, parsing the code, identifying the hotspots, and

tracing the execution path between the hotspots and the entry points (in a similar

way to what is done by static analyzers (Jovanovic 2003)), would provide the

required support to build a graph representing the transformations suffered by the

values of the variables (e.g. filtering, escaping, concatenation, etc.). This graph

could then be used to find transformation patterns for the accountability statements,

thus getting the information required to calculate the benchmark metrics.

Nevertheless, this automation is out of the scope of our thesis, and is proposed as

future work.

5.4 Conclusion

This chapter studied the problem of trustworthiness benchmarking of web

applications, as a representative use case of transactional system business

applications. We first investigated the idea of using tools that already exist, in this

case static code analyzers, to perform automated trustworthiness benchmarking.

We started from small controlled experiments, and finished with an evaluation of

the proposal in a representative use case, which was the selection of web forums

applications. We validated the results by cross-checking them with the manual

analysis of real security experts, finding out that our automated evaluation resulted

in an assessment equivalent to that of the experts. A set of limitations that were

identified on the approach conducted us to the proposal of a general approach for

the trustworthiness benchmarking, which was tested in small-scale preliminary

evaluation, nevertheless showing promising results.

The most important result of this chapter is related to the effective correlation

between source code characteristics and the security quality of software. Basically,

our experiments clearly suggested (particularly by the validation done by the

experts) that the way software is designed allows gathering a trustworthiness

measure that is related with the presence or the absence of pro-active measures to

avoid programming vulnerabilities.

The limitations of a benchmark based on static code analyzers, especially

considering the effects of the evolution of the tools, should not be taken lightly. An

inevitable conclusion is that even if this approach works for now, it wont keep

working forever, particularly if developers notice that their software is being

evaluated using such metrics. This is why a more generic approach is relevant. We

believe that the approach proposed for automation of the benchmark would be a

huge step towards the creation of a sustained solution to the task of trustworthiness

Chapter 5  Trustworthiness Benchmarking of Web Applications

170

benchmarking of web applications. But even if we have sketched the most

important steps in the design of such tool, we understand that the difficulties in

doing so are clearly considerable, and therefore the problem is not closed.

171

6

Selecting Software
for Transactional

Systems
Infrastructures

Chapters 5 and 6 were dedicated to the study of methodologies, approaches and

actual implementations for trustworthiness benchmarking, in the context of two

fairly representative scenarios: complex environments, namely, transactional

system infrastructures, and web-based business applications. In both cases, even

though we stressed the importance of separating security benchmarking in two parts

(as a way of coping with the tangible and the intangible aspects of security), we did

not propose detailed approaches for security qualification, leaving this step open

for further investigation. The reason for this was already presented in the respective

chapters, and has mainly to do with the fact that most of the research done

nowadays on security mechanisms (and also on vulnerability scanning and

prevention technologies) can be used as part of a security qualification step, which

lead us to focus on the most promising step: trustworthiness benchmarking.

There is, however, one aspect of security qualification that calls for further attention

under the structure of our framework: to implement a transactional system

infrastructure (i.e. a complex structure with many separate parts and that can

several distinct configurations) we need to select a DBMS engine, which is in

charge of providing all the transactional system business capabilities. However,

this selection step may not be easy due to the complexity of such software.

Chapter 6  Selecting Software for Transactional Systems Infrastructures

172

Today, several representative DBMS engines exist, for instance, Oracle, SQL

Server, PostgreSQL, MySQL, etc., thus the selection of the better one in terms of

security is a key aspect that should be considered if one aims to have the best

transactional system infrastructure possible. Theoretically, under the context of the

framework proposed in Chapter 3, the selection of the specific DBMS engine to be

used in a infrastructure would call for a security benchmark in the lines of the

benchmarking approach proposed in Chapter 5, even though the set of threat

vectors for this case would still have to be studied, as they are clearly not the same

of that of web applications. This is actually quite obvious, as we certainly do not

want the engine to present vulnerabilities detectable by automated scanners and, if

possible, we want it to be developed in a way that has a low probability of

introducing hidden vulnerabilities.

At the same time, we should consider the other requirement of security

qualification, which is to answer the following question: what security mechanisms

should the engine provide in order to be acceptable as an alternative? We have

already established in Chapter 3, Section 3.2.1 that the selection of a set of security

mechanisms for security qualification in any benchmark is primarily domain

dependent, and therefore changes with each specific business domain. For example,

in the case of web applications, even though we can define a list of possible security

mechanisms that can be required from typical web applications, for each security

mechanisms there is always a situation where it is not necessary.

The goal of the security mechanisms of a DBMS engine is very clear: to help

improving the security of the transactional system infrastructure, which is exactly

what our trustworthiness benchmark measures. Therefore, if we use as reference

the trustworthiness benchmark for transactional systems infrastructures proposed

in Chapter 4, then we may extrapolate a list of security mechanisms that would help

improving the security of a real live installation. Pursuing this path, though,

requires taking into consideration a few restraining factors, namely:

1. Alternate layers of security may compensate for any security mechanism

not provided by a DBMS engine. In the worst case, a software wrapper

could be placed around the DBMS engine providing the missing

mechanisms. Therefore, the absence of a mechanism does not imply that

implementing the corresponding security precautions is impossible. Unless

otherwise required for a specific domain, a single missing security

mechanism does not necessarily make a DBMS to fail qualification.

2. We can, on the other hand, assume that if a mechanism is present, then the

fact that we do not have to compensate for its absence leads, at the very

Security Benchmarking of Transactional Systems

173

least, to a decrease in the configuration complexity (which leads to a lower

probability of introducing interaction vulnerabilities and also

vulnerabilities on the “compensating” mechanisms). Therefore, having

mechanisms available directly in the software is better than not having

them.

3. The existence of a security mechanism in the software has no relation in

the final security of the infrastructure as a whole. For the mechanism to

have any effect after deployment, it has to be used correctly, otherwise it is

useless and may even decrease the overall security (one classical example

of this effect is when a software is set to block authentication attempts after

a certain number of authentication failures - a mechanism that can be used

for Denial of Service attacks - and the number of allowed attempts is very

high). In other words, the existence (or not) of a security mechanism in a

given software product has no effect in the trustworthiness benchmarking

assessment (thus, it should be considered during the qualification step).

We also have to take into attention another characteristic of today’s DBMS engines:

their security is highly tied to the characteristics of the underlying operating system.

This becomes clear when we look at the security recommendations identified in

Chapter 4, where several of them are specific to the operating system, even though

it is a “transactional system security recommendation”. Therefore, instead of

selecting a DBMS engine, we deal with the selection of an entire software package,

which in our case is the composition of a DBMS engine and an operating system.

As it will be made clear in our experimental analysis, the security mechanisms

available in a specific DBMS engine vary with the underlying operating system

even for the same engine brand.

In the following sections we present the methodology used to devise and calibrate

a list of the security mechanisms that should be implemented by DBMS engines

for supporting the security practices identified in Section 4.3.2. The methodology

includes the following general steps:

 Each security recommendation for a transactional system infrastructure is

mapped into a desirable system state (System State Goal) that represents

the state of the system when the recommendation is being correctly applied.

 That state goal is analyzed in order to identify the series of steps that must

be used to obtain such goal (the Mechanisms Goals).

 Each of the steps is analyzed to evaluate which of them can be automated

and therefore be supported by security mechanisms provided by the

software.

Chapter 6  Selecting Software for Transactional Systems Infrastructures

174

The application of the benchmark results in a metric that represents an estimation

of the aggregated importance of the mechanisms present and available in the

package under benchmarking. Additionally, the procedure allows computing a gap

analysis matrix that can be used to compare the actual security features of a set of

software packages with the features that would have to be provided to fulfill all the

security recommendations.

To demonstrate the approach, we benchmark seven distinct software packages that

could be considered representative candidates for use in transactional systems

installations. These packages are based on four different DBMS engines (Oracle

10g, SQL Server 2005, PostgreSQL 8, and MySQL Community Edition 5) and two

different operating systems (Windows XP and Red Hat Enterprise Linux 5). We

evaluate their main characteristics using gap analysis, and draw some general

conclusions regarding their advantages and deficiencies.

It is important to emphasize that the results obtained are not supposed to be used

alone to decide what is the best software package for a database installation,

especially outside the context of our security benchmarking framework.

Particularly, what we provide here is a benchmarking tool that can be used for

security qualification support, and not a trustworthiness benchmarking tool.

As part of the qualification step, several other factors should also be considered

(e.g. cost, performance, availability, and familiarity), but those are out of the scope

of this work. The reason is that, although there are tools to help evaluating several

of these factors, evaluating the security capabilities og a software package is still

an open problem.

This chapter is divided as follows. In Section 6.1 we discuss our methodology that

we used to identify a list of security mechanisms that could have been implemented

by the evaluated software packages. Section 6.2 presents a discussion of how to

establish the potential impact that the identified mechanisms could provide to the

security of the infrastructure. In Section 6.3 we present the benchmark metrics and

execution process. In Section 6.4 we present the results of the evaluation of seven

software packages done using our benchmark, discussing the most important

conclusions that our tool is capable of. Section 6.5 concludes the chapter.

6.1 Identifying Security Mechanisms

The list of security recommendations used as the base for the trustworthiness

benchmark for transactional systems infrastructures presented in Chapter 4, was

also used to extrapolate the security mechanisms needed to fulfill those same

Security Benchmarking of Transactional Systems

175

recommendations. However, this process was not trivial, requiring several steps of

careful analysis, as detailed in the following paragraphs.

We started by analyzing the 64 security recommendations (see Table 4.2 and Table

4.3), where each recommendation was classified in terms of the type of support

needed for its implementation, namely:

 Hardware support: recommendations that require either specific hardware

components or a specific physical setup for the underlying hardware;

 Network support: recommendations that require the network to have some

specific setup or characteristic;

 Plain policies: general guidelines that do not require any mechanism in

particular, and are just behaviors that should be enforced;

 OS support: recommendations that require some features of the operating

system;

 DBMS support: recommendations that require some specific DBMS

features;

 Third party support: recommendations that require complementary

software not usually found in a basic database software package (DBMS

and OS).

Table 6.1 presents the number of best practices that were classified in each class.

Note that some practices have been classified in more than one class, which

explains why the second column of the table adds to more than 64 practices. This

first classification allowed us to focus on the practices that required at least some

support from the software components (a total of 51 out of 64 security practices),

which is the focus of our approach.

The next step consisted of rewriting the recommendations in a way that allowed

more clearly identifying the security mechanisms needed to support them. The

original recommendations were stated as actions that should be conducted on the

system to enhance security. However, these actions may contain several factors that

may be implicit in their statements such as: what are administrators’

responsibilities, what actions require software support, and what the environment

dependent elements are. This way, instead of trying to identify security mechanisms

directly from the recommendations, we decided to use two intermediary steps to

help exposing these implicit factors (obviously, these steps could have been

bypassed, but the process of explicitly performing them clearly allowed us to

achieve more effective results).

Chapter 6  Selecting Software for Transactional Systems Infrastructures

176

Table 6.1 Classification of databases security best practices in regard to their

requirements
Requirements N. of Practices

Network Requisites 2

Hardware Requisites 4

Plain Policies (no software requirement) 10

OS Support 28

DBMS Support 38

Third-Party Support 2

In the first step we restated each of the best practices as a System State Goal

representing the state of the system in a point in time when the practice is being

correctly applied. For instance, one of the best practices related to the operating

system configuration is stated as follows: “Remove from the network stack all

unused/unauthorized protocols”. A system state goal for this best practice is: “The

OS network stack has no unused/unauthorized protocol active”. Notice that,

although obvious in some cases, this rewriting step moves the focus from the action

to the consequences of the action. This is extremely important to disclose the

fundamental effects that are expected when applying a best practice. Additionally,

as several practices can actually be applied in several software components at the

same time (e.g. password related practices must be applied at both OS and DBMS

levels), this rephrasing forced the distinction to be made clear, allowing us to

identify the practices for which more than one System State Goal should be defined

(i.e. one for each of the components of the software package).

When analyzing the System State Goals it became easier to start distinguishing the

effects of the practices that are exclusively administrators’ tasks (e.g. defining what

are the unauthorized protocols) from the ones that can be fully automated, and

therefore can be supported by security mechanisms. From a high level perspective,

any security practice is a policy that requires an action from the administrator (in

the sense that he can always choose to not implement it), and can typically be

automated to a certain point. For instance, the administrator may manually check

if the users’ passwords are strong enough, but a piece of software may also perform

this check automatically (and also prevent users from choosing weak passwords in

the first place). Obviously, maintaining the System State Goal in the first case

(manual verification) is much more difficult than in the second case (when

automation is present). In fact, it is widely accepted that the least work the

administrator has to do to enforce security policies, the better is his productivity

and the higher are the chances that these policies are correctly implemented. Thus,

to identify the mechanisms needed to support a security practice, first we need to

Security Benchmarking of Transactional Systems

177

know what are the steps required for achieving the System State Goal, which is

done on the next step.

In the second step we rewrote again the System State Goals, but this time in terms

of what we called Mechanisms Goals. In this additional step we break the System

State Goals in the list of actions that would lead to the System State Goal.

Mechanisms Goals can be seen as the functions that make the steps towards the

accomplishment of the System State Goal as simple as possible (i.e. the complexity

of the steps becomes hidden behind automation). Continuing the previous example,

the Mechanisms Goals for the “the OS network stack has no unused/unauthorized

protocol active” System State Goal can be described as two simple steps: “Identify

active protocols” and “disable unauthorized/unused protocols”. Note that, defining

what the unauthorized/unused protocols are is environment dependent and can only

be done by the system administrator. However, identifying the active ones and

allowing them to be easily removed from the stack can be done by software

mechanisms that may help accomplishing the System State Goal.

The identification of the security mechanisms based on the Mechanisms Goals was

then quite straightforward, as can be seen in the example above. An important issue

is that, in some cases, more than one mechanism may be required for the state goal

to be accomplished. In other cases, different mechanisms may be used to

accomplish the same goal, possibly with different amounts of automation.

Alternative ways for performing the same tasks are useful to suit different

administrators, environments and requirements. Table 6.2 presents a few examples

of the mapping of security best practices into System State Goal and Mechanisms

Goals. The complete list can be found in (PhD Thesis Complementary Info 2012).

Table 6.2 Examples of the mapping between security best practices, system

state goals and mechanisms goals.

Security
Recommendation.

Component
System State

 Goals
Mechanisms Goals

Remove from the network
stack all unauthorized
protocols

OS
The OS network stack has no
unused/unauthorized protocol active.

Identify active protocols and
disable unauthorized/unused
ones.

Change default passwords OS No OS userid password is the default.
Prevent the installation of default
passwords in the OS or allow

Chapter 6  Selecting Software for Transactional Systems Infrastructures

178

identification and removal of
default passwords.

DBMS No DBMS userid password is the default.

Prevent the installation of default
passwords in the DBMS or allow
identification and removal of
default passwords .

Do not delegate privileges
assignments

DBMS
Privileges a user have should not be
delegated.

Prevent users from delegating
their privileges or identify the use
of privilege delegation
operations.

Keep the software updated

OS
No patches provided by the OS vendor are
unapplied.

Not allow an available OS patch
to remain unapplied.

DBMS
No patches provided by the DBMS vendor
are unapplied.

Not allow an available DBMS
patch to remain unapplied.

Restrict database OS userid
access to everything it does
not need

OS

The database OS userid has access only
to DBMS software.

Set privileges to the dedicated
DBMS userid to access only
DBMS software.

The database OS userid has access only
to designated peripherals.

Set privileges to the dedicated
DBMS userid to access only the
defined peripherals.

Prevent idle connection
hijacking

DBMS
Remote connections drop when unused for
some period of time.

Set connections to timeout after
a period of inactivity.

Change/remove default
userids

OS The OS has no default userid operational.
Prevent the existence of default
userids in the OS (during or after
the installation).

DBMS
The DBMS has no default userid
operational.

Prevent the existence of default
userids in the DBMS (during or
after the installation).

Make regular backups of the
data

DBMS
There is an up-to-date copy of the DBMS
data in a safe storage.

Make updated copies of all
DBMS data.

Avoid ANY and ALL
expressions in privileges
assignments

DBMS
No user has privileges assigned from ANY
and ALL expressions.

Prevent or warn the use of ANY
and ALL expressions on
privileges assignments.

Ensure no “side-channel”
information leak through
configuration files

OS
Configuration files do not contain sensitive
information.

Avoid the inclusion of sensitive
information in configuration files.

The whole process can be summarized as follows:

1. Rewrite the security recommendations in the form of System State Goals

that describe the system when the recommendation is correctly being

applied. In this step it is necessary to clarify to which component of the

software package (e.g. DBMS or OS) the goal refers to.

2. Determine the associated Mechanisms Goals, which represent the steps

required to achieve the System State Goal in terms of functions provided

by the software.

3. List exhaustively the mechanisms that can be used to implement (partially

or fully) the Mechanisms Goals.

By following this process we have identified the 112 security mechanisms, which

are presented in Tables 6.5, 6.6 and 6.7. The first column of each table describes

Security Benchmarking of Transactional Systems

179

the mechanisms that a target software component (second column) is expected to

facilitate. The mechanisms should be read as “The software provides automated

support for…”, and are not tied to any specific product, being described in a broad

way to allow a posterior assessment of their existence in the software packages

under benchmarking.

6.2 Establishing the Impact of Security Mechanisms

After devising the list of expected security mechanisms for a database software

package, an obvious problem arises: some mechanisms are more relevant than

others in terms of security. This is the same problem that we had to address when

developing our trustworthiness benchmark, as explained in Chapter 4.

One certainty is that the impact of a mechanism is directly related to the security

recommendations that it allows to implement. This way, our proposal is to inherit

the impact of the mechanisms from the relative weights computed for the

corresponding recommendations. The problem, however, is not exactly the same,

as the role of a mechanism within the context of a security recommendation varies,

and while a recommendation may be important, a mechanism used to implement it

may provide only partial support.

For each mechanism, we identified in which class its security recommendation

could be found in our relative weight computation, and we assigned values ranging

from 1 to 4 to each of the classes (first column in Table 4.5, in Chapter 4). It is

important to emphasize that, although we computed specific weights for all

recommendations, we used them only as a reference to find the high-level class of

the mechanisms (ranging from 1 to 4). The reasoning is that the fine-grain

comparison would not hold for a large number of environments as aspects like the

usability and reliability of each mechanism in each package could not be measured.

Furthermore, small differences (e.g. of 0.01%) could hardly mean anything in terms

of impact and should be discarded. Nevertheless, the high-level class can be used

as a reference to compare the mechanisms for most of the environments, always

realizing that mechanisms within the same class are considered to have the same

relative impact (e.g, the function of “Automated installation of OS pending

patches” and the ability of “store credential information using a reliable encryption

scheme” are both considered of the same relative impact because they ended with

the same impact weight, even though they are completely different and unrelated

security mechanisms).

As mentioned above, in some cases, security mechanisms may provide only partial

support for the security recommendation, and may need to be complemented. This

should be reflected in the weighting process, and can be solved using two

Chapter 6  Selecting Software for Transactional Systems Infrastructures

180

alternative approaches: either we value mechanisms that provide partial support

only when their complementary counterparts are also present or we count them

always as providing half of the support (having half the weight of the original

importance). We opted for the second of the two alternatives due to the simple fact

that, even though a complementary mechanism might not exist in the package, the

existence of a partial mechanism may already help the administrator, in the sense

that usually it can be used for supporting part of the recommendation

implementation. Notice, however, that counting partial mechanisms as “half” is

another issue open for discussion. The problem is that determining how much a

mechanism actually fulfills of the recommendation (e.g. 80% of the practice or 30%

of the practice) is generally impossible as this depends also on other resources that

may or may not be available to the administrator (which may vary from case to

case). We decided that, for the purpose of the benchmark, partial mechanisms

provide on average half the support, even if under the certain conditions of real

environments that might not be the case.

Another problem is that some security mechanisms can be used to support multiple

best practices. In this case the choice is between emphasizing the importance of

these mechanisms or not. In other words, we had to decide if the importance of a

given mechanism should be somewhat accumulated for different practices. For

instance, should a mechanism required to implement three not very important

practices be considered more important than another mechanism that can be used

to support one single very important practice? In this case, we decided that the best

approach would be that yes, it should. We strongly support the idea that security

should be exhaustive, meaning that, from a general perspective, in a trade-off

decision, the higher is the number of security precautions in place the better. We

are aware that this can be disputed, particularly when considering special situations

where an excess of security mechanisms may cause more problems than that they

solve, but the assumption seems to be overall reasonable. Anyway, this decision

has a small impact on the overall benchmark, as there is a very small set of

mechanisms that are related to more than one security practice (3 to be exact).

The impact weight of each mechanism was computed by multiplying the best

practice importance class (from 1 to 4) by the weight of the support of the

mechanism (1 or 0.5). The individual weights (i.e. the weights per best practice)

for the mechanisms that may contribute for the implementation of more than one

practice were then added, resulting in weights ranging from 0.5 to 5. Table 6.3

presents the mechanisms with the highest impact. The complete list of mechanisms

can be found in (PhD Thesis Complementary Info 2012).

Table 6.3 Most important security mechanisms identified
Security mechanisms (automated support for…) Target W

Security Benchmarking of Transactional Systems

181

Disabling access to extended functions. DBMS 5

Configuring the system to always encrypt a remote

connection to the DBMS.

DBMS 4

Encrypting the connection of native developer applications. DBMS 4

Removing systems privileges of DBMS userids DBMS 4

Restricting read/write privileges of a partition to a specific

userid.

OS 4

Automated installation of DBMS pending patches. DBMS 3

Automated installation of OS pending patches. OS 3

Configuring the DBMS to store credential information using

a reliable encryption scheme.

DBMS 3

Configuring the OS to store credential information using a

reliable encryption scheme.

OS 3

Defining all DBMS passwords during the installation phase. DBMS 3

Defining all DBMS userids in the installation phase. DBMS 3

Defining all OS passwords during the installation phase. OS 3

Defining all OS userids during the installation phase. OS 3

Relying the DBMS on an outside specialized authentication

mechanism.

DBMS 3

Relying the OS on an outside specialized authentication

mechanism.

OS 3

Removing privileges of users over systems tables. DBMS 3

Warning DBMS users, in an password change operation, that

their new passwords are weak and cannot be accepted.

DBMS 3

Warning OS users, in an password change operation, that

their new passwords are weak and cannot be accepted.

OS 3

6.3 Benchmark Metric and Execution

The purpose of the proposed benchmark is to allow the comparison among

alternative software packages in terms of security capability. To this end, the

benchmark provides two complementary outcomes: a Security Mechanisms

Compliance metric (SMC) that portrays the level of compliance of the package in

regard to the set of security mechanisms devised from the established security

recommendations, and a gap analysis matrix that allows identifying exactly what

are the mechanisms missing in each package (for implementing a given

configuration).

Applying the benchmark is a process that consists of verifying which of the 112

security mechanisms are included in the software package, build a gap analysis

matrix, and calculate the security compliance metric. First, the benchmark user

must check whether each security mechanism is present on the software package

being analyzed. This provides a list that can be used to build a gap analysis matrix

that allows visually comparing several alternative packages in term of their overall

capabilities compliance (in Section 6.4.3 we provide some examples of how to use

such gap analysis matrix to draw important conclusions about the evaluated

packages). The security compliance metric SMC is then computed as the sum of

Chapter 6  Selecting Software for Transactional Systems Infrastructures

182

the weights of all the security mechanisms present in the package. Note that this

number must be interpreted carefully, as a higher value does not necessarily means

a more secure product: it means that it offers more support for implementing

security best practices in the context database infrastructures.

6.4 Experimental Evaluation

In order to demonstrate the possibilities of our tool, we used it to benchmark a set

of software packages, and identify their characteristics and capabilities. In the

following sections we describe the experiments and analyze the results obtained.

6.4.1 Software Packages Assessed

For the experimental evaluation we decided to consider a representative set of

database solutions that can be found in the field. From the DBMS engines

perspective, we selected two commercial DBMS engines, namely Oracle 10g and

Microsoft SQL Server 2005, and two open source ones, namely PostgreSQL 8 and

MySQL Community Edition 5. Oracle and SQL Server are two of the most widely

used commercial DBMS, and these particular versions account for a representative

number of installations in the field. PostgresSQL and MySQL account for the

majority of DBMS installations that use open source software, and are very popular

alternatives to commercial software.

From the operating system perspective, we used the same rationale, therefore

choosing Microsoft Windows XP and Red Hat Enterprise Linux 5. Both operating

systems are widely representative choices to support the DBMS mentioned above,

but we are aware that several other alternatives would be interesting as well (e.g.

Suse Linux and Microsoft Windows Server 2003, among many others).

Excluding Microsoft SQL Server 2005, that is only available over Windows

platforms, the other three DBMS could be installed over both operating systems.

The overall results of the evaluation of the seven different software packages are

presented in Table 6.4.

6.4.2 Comparing the Software Packages

Besides using experts’ knowledge, to apply the benchmark to the software

packages selected we had to install them and analyze thoroughly their

corresponding documentation. The goal is basically to evaluate if a given package

has native support for each of 112 security mechanisms defined by the benchmark.

A fundamental difficulty was to determine what elements were provided by the

software package as a whole in contrast to determining the elements provided by

each product individually. Password policies are one example where the platform

Security Benchmarking of Transactional Systems

183

influences the capabilities of the DBMS. For SQL Server 2005, password policies

can be inherited from the operating system only if it is installed over Microsoft

Windows 2003, and not if the system is based on Windows XP due to the lack of

interfaces for this system. On the other hand, PostgreSQL can use the Pluggable

Authentication Module (PAM) features of Linux, which comes in the standard

installation of the Red Hat Enterprise Linux 5, and therefore is available for the

package at both the OS and the DBMS levels. This kind of detail can make the

process to be relatively costly in terms of information gathering, though the

outcome justifies the work.

Table 6.4. Overall results of the experimental evaluation of the 7 different

software packages.
Package N. DBMS Engine Operating system MP SMC %

1 SQL Server 2005 Windows XP 79 131,5 76%

2
Oracle 10g

Red Hat Enterprise Linux 5 74 118,5 68%

3 Windows XP 73 118 68%

4
PostgreSQL 8

Red Hat Enterprise Linux 5 73 123 71%

5 Windows XP 68 114,5 66%

6
MySQL Community Edition 5

Red Hat Enterprise Linux 5 66 110 64%

7 Windows XP 66 110,5 64%

Table 6.4 presents the overall evaluation of the packages. The first and second

columns identify the components of each package and the third column presents an

identification number for the package (that will be used later in Table X to refer to

each package). The fourth column presents the total number of mechanisms present

(MP) in the package, and the fifth column presents the Security Mechanisms

Compliance metric (SMC) of the benchmark (sum of the importance of all

mechanisms present). Finally, the sixth column presents the metric in terms of a

percentage of the maximum value possible for an ideal package including all the

mechanisms.

Among the evaluated packages, the one that includes more security mechanisms is

Package 1, SQL Server 2005 over Windows XP. This means that it has more native

support for implementing security best practices for databases. Notice that the plain

number of mechanisms present does not say much about the importance of such

mechanisms. For example, Package 4 has a SMC higher than Package 2, even

though it has less security mechanisms available. This happens because the security

mechanisms present in Package 4 are generically considered more important than

the ones present in Package 2.

Based on the SMC metric, the best package benchmarked is Microsoft SQL Server

2005 over Windows XP. A key aspect that supports this result is an overall better

Chapter 6  Selecting Software for Transactional Systems Infrastructures

184

integration with the operating system (allowing, for instance, using the Windows

Update mechanism for keeping the DBMS software up to date with little

intervention). The feature of client application roles (that allows to better support

the development of applications with the ability to identify the end users behind

database connections based on database authentication) and some extra backup

features not present in the other DBMSs also contributed to this result. However,

the score for all the packages is not that different, which suggests that, in general,

these packages (operating systems and database engines) tend to implement the

same type of security features and mechanisms (despite being open source or not).

The worst scored package was MySQL Community Edition over Red Hat

Enterprise Linux 5.

6.4.3 Software Packages Gap Analysis

This section presents and discusses the results from a gap analysis point-of-view,

serving as an example of the full potential of the proposed tool. We start with an

overall analysis of the set of mechanisms available and then move to the analysis

of the mechanisms present in all packages, the mechanisms not available in any

package, and, finally, the mechanisms available only in some of the packages.

6.4.3.1 Overall Analysis of the Mechanisms and Packages

The first observation regarding the overall analysis is the number of mechanisms

related to each of the two software components that are part of a software package

(i.e. the OS and the DBMS). As shown in Figure 6.1, more than a third of the 112

mechanisms identified are provided by the OS, which confirms what we suggested

several times before, i.e. despite the DBMS engine being used, security is strongly

tied to the capabilities of the underlying platform. Even more important is the fact

that, for several DBMS, the provision of some security mechanisms is highly

dependent on the operating system being used (e.g. some authentication features of

PostgreSQL are only natively provided if the operating system has the Pluggable

Authentication Module (PAM) installed, which is, for instance, available on Red

Hat Enterprise Linux 5, but not on Windows XP). It is then clear that, from a

security point of view, the two software components must be selected

simultaneously.

The next important global observation is the general availability of the 112

mechanisms in the analyzed packages. Figure 6.2 presents the percentages of

mechanisms available in all packages, mechanisms available in none of the

packages, and mechanisms available in at least one package. As shown, little more

than half of the mechanisms are supported by all the packages analyzed, which is

much lower than what one would expect. Worse than that is the fact that 21% of

Security Benchmarking of Transactional Systems

185

the mechanisms are not provided by any of the packages analyzed. This suggests

that many security recommendations cannot be easily implemented (or additional

software has to be acquired for their implementation) due to the inexistence of

support from the DBMS and/or OS in all the packages analyzed.

Figure 6.1 Mechanisms by component of the analyzed packages.

Figure 6.3 breaks down the number of mechanisms supported by combinations of

packages. Interestingly, a very high number of mechanisms appear on a minority

of the packages (e.g. 20 mechanisms appear on only three or less packages). This

suggests that these mechanisms, although provided by some packages, are not

considered universally important (e.g. column level privilege settings).

Figure 6.2. Availability of mechanisms

The last general observation is related to the total number of mechanisms provided

by each software package (presented in Table 6.4). Although package number 1

clearly presents the biggest number of mechanisms, the actual number of

mechanisms available in the seven packages does not vary considerably (79 in the

OS; 42;
37%DBMS; 70;

63%

Mechanism Type

Present in all
packages

53%Present in at
least 1

package
26%

Not present
in any

packages
21%

Availability of the 112
Mechanisms

Chapter 6  Selecting Software for Transactional Systems Infrastructures

186

most and 66 in the least). This suggests that vendors follow some common trends

when deciding what mechanisms should be made available in their products.

Figure 6.3: Number of mechanisms available across packages.

6.4.3.2 Mechanisms Available in All Packages

Table 6.5 presents the list of 59 mechanisms that are provided by all the packages.

The first observation is that there are 28 DBMS mechanisms and 31 OS

mechanisms in this group. This fact, together with the total number of mechanisms

initially identified for the DBMS (70 mechanisms) and the OS (42 mechanisms)

components, shows that the operating systems analyzed implement a higher

percentage of the expected security mechanisms than the database engines,

suggesting that operating systems vendors may be more concerned about helping

the users in hardening their systems than the DBMS vendors are on helping DBAs

to harden their database infrastructures. The operating system is in fact a more

fundamental layer of software than the DBMS, as it is prepared to support a

diversity of distinct purposes, contrary to the DBMS that serves a particular use.

On the other hand, this does not justify more concern with security. In fact, although

operating systems may also host critical information and services, the business

purpose of DBMSs is specifically aimed at storing user information and data, which

may be even more critical than a certain service that an operating system may

provide. In summary, the security of both layers of software is equally important,

and this disparity cannot be easily justified.

In all
packages

In six
packages

In five
packages

In four
packages

In three
packages

In two
packages

In one
package

In no
packages

Mechanisms Present 59 2 6 1 9 2 9 24

0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f
M

ec
h

an
is

m
s

Mechanisms Present

Security Benchmarking of Transactional Systems

187

Note that mechanisms such as password settings, privilege settings, some

installations choices, and the definition of some general operational parameters, are

allowed by all packages, which confirms that these mechanisms are accepted as

universal requirements for databases. Very few informational mechanisms,

however, can be found in this group. For example, the easy verification of the

current working state and configuration of the system is NOT a universal concern

of DBMS and OS vendors.

Table 6.5 List of mechanisms available in all packages

Security Mechanism (The package offers support for...)

C
o

m
p

o
n

en
t

T
ar

g
et

Disabling access to extended stored procedures and functions DB

Config. the system to always encrypt a remote connection to the DBMS DB

Encrypting the connection of developer applications DB

Removing system privileges of DBMS userids DB

Restricting read/write privileges of a partition to a specific userid OS

Automated installation of OS pending patches OS

Configuring the DBMS to store credential information using a reliable encryption scheme DB

Configuring the OS to store credential information using a reliable encryption scheme OS

Defining all DBMS passwords during the installation phase DB

Defining all OS passwords during the installation phase OS

Relying the OS on an outside specialized authentication mechanism OS

Warning OS users, in a password change operation, that their new passwords are weak and cannot
be accepted

OS

A DBMS authentication procedure that requests only credential information to the remote users DB

An OS authentication procedure that requests only credential information to the remote users OS

Configuring the DBMS so only administrators have access to log information DB

Denying login into the OS from a credential with more than a specified number of failed authentication
attempts

OS

Forcing the OS users to change their passwords when they're older than a specified time frame OS

Identifying systems privileges of DBMS userids DB

Setting read/write/execution privileges over files OS

Setting that a userid cannot login OS

Setting who can change configuration files OS

Setting who can change environment variables OS

Using custom defined SSL certificates for encrypted connections DB

Changing OS userids already in use OS

Changing passwords of DBMS userids already in use DB

Changing passwords of OS userids already in use OS

Creating an OS userid with limited privileges OS

Creating file systems partitions OS

Identifying users with privileges over systems tables DB

Making a backup copy of the database DB

Storing the backup in a custom storage place DB

Using a privilege limited userid to successfully load a DBMS process. OS

Warning the administrator that there are OS vendor patches remaining to be applied OS

Allowing the DBA to not use ANY and ALL expressions DB

Allowing to explicitly state that a particular privilege cannot be delegated DB

Changing listening TCP/UDP ports DB

Changing remote identification information already in use. (e.g., SID) DB

Configuring the system to always establish connections through the same TCP/UDP ports. DB

Defining all remote identification information during the installation phase DB

Disabling the generation of core_dump files OS

Chapter 6  Selecting Software for Transactional Systems Infrastructures

188

Disabling the generation of trace files DB

Preventing specifying sensitive information in configuration files. (e.g., not require specifying
password in configuration files, etc.)

OS

Preventing the general use of sensitive information in systems variables OS

Setting and discarding a complex password for a userid OS

Setting the owner of files OS

Specifying important events which occur in the OS that should generate a finger print OS

Specifying privileges in a database level DB

Specifying privileges in a table level DB

Warning OS users that their passwords are older than a specified time frame OS

Writing procedures that generate a trace for data changes DB

Creating stored procedures DB

Creating views DB

Disabling a network protocol OS

Identifying active protocols in the network stack OS

Removing a database DB

Selecting a different partition for OS log information OS

Selecting a different partition than the main OS partition for DBMS log information DB

Selecting a different partition than the main OS partition for the data files DB

Setting/unsetting read/write/execute privileges over files OS

6.4.3.3 Mechanisms Not Available in Any Packages

Table 6.6 shows the mechanisms that could not be found in any of the packages.

The vast majority of the mechanisms in this group are specified by the actions of

Identifying (8), Testing (4), Warning (4) and Blocking (3).

Identifying mechanisms are expected to easily provide general information about

the system state and configuration. Not having these mechanisms forces the

administrator to guess if a given setting is active or not, to create miraculous queries

over poorly documented system tables, to analyze gigantic and cryptic

configuration text files, or to read enormous manuals to find the information.

Obviously, to help DBAs improving security, obtaining this kind of information

should be as simple and intuitive as possible.

Testing mechanisms are mechanisms designed to verify either if some important

operation was carried out successfully or if it will execute successfully when

attempted (e.g. data backups and software updates, respectively). Testing is crucial

to guarantee the system availability (either at the moment of execution of such

maintenance task or in the future), but it is simply disregarded by developers of

both operating systems and databases.

Warning mechanisms provide security related notifications. As these warnings may

be a hindrance when the system is known to be working as expected, it should be

possible to turn them off. However, when turned on they report information about

important operations that should not occur normally. Providing such warning

mechanisms is simply not considered in any of the packages analyzed. (e.g.

Security Benchmarking of Transactional Systems

189

warning about outdated backups or about the modification of configuration

parameters).

Blocking mechanisms are configuration options that result in some operations not

being allowed. In this case, the blocking mechanisms that were not found in any

package are related to privilege delegation. We believe that these mechanisms

(although optional) are important because they allow the DBAs to better track how

privileges are distributed within the database. For instance, whenever a particular

user is the owner of some entity, he can decide who can access his entity and how.

In critical security scenarios, however, the DBA may want to control this kind of

delegation even about entities not owned by him, and this cannot be done in any of

the DBMS analyzed unless the DBA owns all objects.

As can be seen in Table 6.6, most of these mechanisms are security specific and are

not related to any major functional aspects of databases. As they simply do not

provide any obvious functional advantage to DBAs that are not security experts, it

seems that they are not considered as adding a significant Return of Investment

value to the software. However, the importance of security in databases nowadays

should be enough for vendors to consider these kinds of features from a perspective

of not losing credibility in the future.

Table 6.6 List of mechanisms not available in any of the packages

Security Mechanism (The package offers support for...)
C

o
m

p
o

n
en

t

T
ar

g
et

Defining all OS userids during the installation phase OS

Removing all privileges of users over all systems tables. DB

Configuring the OS so only admins. have access to log information OS

Identifying DBMS userids with default passwords DB

Identifying default DBMS userids DB

Identifying default OS userids OS

Identifying OS userids with default passwords OS

Testing the installation of DBMS new patches DB

Testing the installation of OS new patches OS

Warning the administrator that the last OS backup is not up-to-date anymore OS

Blocking non-DBAs from delegating their privileges DB

Blocking privileges not inherited from groups/roles DB

Blocking the usage of ANY and ALL expressions in privileges granting DB

Encrypting backups with a reliable encryption algorithm OS

Identifying available functions that interact with the operating system DB

Warning the administrator if any important configuration or file was modified OS

Identifying available extended functions in general DB

Identifying available functions that can be used to perform network operations DB

Chapter 6  Selecting Software for Transactional Systems Infrastructures

190

Identifying available functions that can be used to read/write in the file system DB

Identifying example databases DB

Testing if a recently created backup correctly restores the database data to its
corresponding state

DB

Testing if a recently created backup correctly restores the system to its
corresponding state

OS

Warning administrators of ANY and ALL expressions used in privileges assignments DB

Warning admin of users with the power of delegating their privileges DB

6.4.3.4 Mechanisms Available in Some Packages

This group includes the mechanisms that exist in at least one package, but not in all

of them (see Table 6.7). We can divide this group in two subgroups: the

mechanisms that are present in most of the packages (four or more packages,

corresponding to a total of 9 mechanisms) and the ones that are present in just a

few packages (three or less packages, corresponding to a total of 20 mechanisms).

These two subgroups seem to arise from two distinct situations.

Most mechanisms of the group present in most packages appear to be widely

considered as important. In most cases, they are not present in some packages for

very clear reasons, namely: specific platform migration decisions and feature

inheritance from old versions. In other cases, vendors opted for excluding some

mechanisms, but openly admit the lack of support (e.g. inexistence of groups/roles

in packages 6 and 7). Note that, knowing if a particular mechanism is important for

a particular environment should influence the decision of what is the best package

for it.

Table 6.7 List of mechanisms available in some of the packages (X means

that the mechanism is available in the corresponding package)

Security Mechanism (The package offers support for...)

C
o

m
p

o
n

en
t

T
ar

g
et

P
ac

ka
g

e
1

P
ac

ka
g

e
2

P
ac

ka
g

e
3

P
ac

ka
g

e
4

P
ac

ka
g

e
5

P
ac

ka
g

e
6

P
ac

ka
g

e
7

Automated installation of DBMS pending patches DB X

Defining all DBMS userids in the installation phase DB X

Relying the DBMS on an outside specialized authentication mechanism DB X X X X X

Warning DBMS users, in a password change operation, that their new passwords are weak
and cannot be accepted

DB X

An authentication procedure for remote clients that identify individual end users instead of
individual applications

DB X

Configuring the system to drop idle connections after a specific period of inactivity DB X X X X X X

Configuring the system to require that remote clients have the correct server certificate
installed

DB X X X X X

Denying login into the DBMS from a credential with more than a specified number of failed
authentication attempts

DB X

Forcing the DBMS users to change their passwords when they're older than a specified
time frame

DB X

Specifying privileges in a row/value level DB X X

Security Benchmarking of Transactional Systems

191

Changing DBMS userids already in use DB X X X X X

Making a backup copy of the OS which can be used to restore the environment to its current
state

OS X X X X

Using a privilege limited userid to successfully install the DBMS. OS X X X

Warning the admin that the last data backup is not up-to-date anymore DB X

Warning the administrator that there are DBMS vendor patches remaining to be applied DB X

Auditing a variety of important DBMS events DB X X X

Auditing data changes DB X X X

Config. the DBMS so only DBAs have access to audited information DB X X X

Configuring the system to always establish connections through the same TCP/UDP ports
during the installation phase.

DB X X X X X

Defining listening TCP/UDP ports during the installation phase DB X X X X X

Preventing the installation of a database example during installation DB X X X X X X

Removing quotas over systems areas DB X X X

Setting privileges to groups or roles DB X X X X X

Specifying important events which occur in the DBMS that should generate a finger print DB X X X

Specifying privileges in a column level DB X

Warning DBMS users that their passwords are older than a specified time frame DB X

Identifying users with quotas over systems areas DB X X X

Selecting a different partition than the main OS partition for auditing info DB X X X

Setting/unsetting access privileges over peripherals OS X X X

The mechanisms of the group present in just a few packages, on the other hand, do

not seem to be considered universally important. Take, for instance, setting

privileges at row level, only available in packages 2 and 3. It seems that it is not

seen as a relevant feature, as this kind of privilege filter is usually carried out by

the client applications themselves. However, it might happen that client

applications do not use this feature exactly because it is not usually available, and

not the other way around. Using a feature implemented directly by the DBMS is

often more reliable than implementing them at the application layer. Therefore,

providing these mechanisms allow the development of systems that are less error

prone than the ones that have to implement specific tailored solutions.

In order to understand if there is any pattern behind the distribution of the

mechanisms provided by a subset of packages, we explicitly analyzed the number

of common mechanisms in each possible combination between the seven packages.

This analysis is presented in Table 6.8. When looking to the mechanisms from this

point of view, the fact that Packages 1, 2 and 3 provide uniquely 7 mechanisms,

and Package 1 provides uniquely 6 mechanisms stands out. On the first case, most

of these mechanisms are related to auditing, which is only provided by the

commercial DBMSs analyzed (Oracle and SQLServer). Open source databases do

not usually provide these mechanisms. In the second case, SQL Server database

stands out by providing a few features that no other DBMS provides (e.g. some

types of backup warnings, more installation options, column level privilege settings

and a few automatic updates facilities). This helps confirming the fact that this

Chapter 6  Selecting Software for Transactional Systems Infrastructures

192

DBMS has most security mechanisms implemented out-of-the-box, as was

portrayed by the analysis presented in Section 6.4.3.1.

Table 6.8 Mechanisms available only in specific sets of packages

Set of packages
Number of mechanisms provided uniquely by
this set

Packages 2,3,4,5,6,7 2

Packages 1,2,3,4,5 2

Packages 1,4,5,6,7 3

Packages 2,3,4,5,7 1

Packages 1,3,5,7 1

Packages 2,4,6 2

Packages 1,2,3 7

Packages 1,4 1

Packages 2,3 1

Package 1 6

Package 4 3

In summary, all the security mechanisms identified in this work should be seen as

being important, even if they are not usually used by most applications. Taking into

account the current situation, where the set of mechanisms implemented by each

available package is defined by factors not necessarily linked with the requirements

of the end users, the analysis presented in our work seems to be very useful in

helping clarifying and deciding which package, or set of packages, are fit for a

particular target environment.

6.5 Conclusion

This chapter revisited the problem of security qualification in transactional systems

infrastructures, first discussed in the context of the security benchmark for

transactional systems infrastructures proposed in Chapter 4. The goal here was to

design a benchmarking tool able to help analyzing and selecting specific software

components that would help in securing complex infrastructures like transactional

systems, where the identification of vulnerabilities and actual attack paths is not an

easy problem. The need for such tool arises from the fact that a transactional system

infrastructure can only have a proper security assessment after deployment, leaving

the problem of selecting the components that will be part of this infrastructure

unsolved.

The proposed methodology allows assessing the effectiveness of software

packages, considering the security mechanisms that they make available for the

administrator to secure the infrastructure, and favoring the ones that help the most

in such task. We evaluated a set of real software packages regarding their ability

for helping securing live installations, and were able to put into evidence a very

Security Benchmarking of Transactional Systems

193

large set of security characteristics that the most representative DBMS engines have

today. We also found a set of mechanisms that are not included in any of the

benchmarked engine, demonstrating that our tool is able to provide relevant

information of the assessed targets (namely, a matrix to support gap-analysis). The

list of absent mechanisms we identified is particularly interesting, as it shows that

the set of security mechanisms included in the evaluated software packages vary

only slightly, being mostly the same in each version. It may be the case that the

inexistence of procedures like the one we proposed in this chapter makes it difficult

for software vendors to become aware of which security mechanisms would help

the administrators in the field.

It is important to remember, however, that the list of mechanisms presented in this

chapter was directly derived from the list of security recommendations devised in

Chapter 4. Therefore, it may also suffer from the deficiencies already pointed out

in that case (e.g. incompleteness and/or deprecation by change of technologies). As

a matter of fact, the list of mechanisms brings no additional security information,

as it is simply another perspective from the same knowledge that we already had in

the original list of recommendations. We believe that this is one of the great merits

of this methodology, to demonstrate how to reason about security in a consistent

and methodical manner, taking security information provided by reliable experts in

one end and, by assuming that this information is correct and sound, examining all

the consequences of such information, deriving important conclusions and

interpretations that allow it to be used in a variety of distinct perspectives.

195

7

Conclusions and
Future Work

The importance of benchmarking of computer systems in general is growing with

the diversity of solutions and software implementations. This is a natural

consequence of the importance that computer systems are having in our society,

given by the boost in efficiency and productivity that they provide to every single

area of our lives. With our growing dependence on computing systems, the

necessity of considering their security becomes unavoidable.

This thesis brings two major contributions to the fields of benchmarking and

security in general. The first is a generally applicable security benchmarking

framework suited for the definition of security benchmarks in any application

domain. The framework is based on the observation that the course that research

on benchmarking has been taking over the last years does not seem appropriate

when considering security aspects. In essence, the research on benchmarking had

its roots on performance of computer systems, where the goal was to have a

measure of how efficient the system was at executing tasks. The most successful

general model for performance benchmarking was based on the idea of modeling

the work and the stress that the system under test would be subjected to in the form

of a typical workload, and such workload allied with a set of performance metrics

(e.g. number of tasks execute per amount of time) would allow a fair comparison

of different systems. TPC and SPEC benchmarks are the most notable

organizations that provide recognized standard performance benchmarks based this

approach.

However, in the last decade, the research community noticed that performance

benchmarks were not sufficient to realistically compare systems, at least not in a

variety of practical scenarios. In fact, the results of performance benchmarks are

Chapter 8  Conclusions and Future Work

196

only correct when the system operates under no degradation effects, essentially

under ideal circumstances. Assuming that systems fail, and that the overall

execution environment is not ideal, dependability benchmarking appears as an

approach to evaluate how a system degrades under faults. In other words,

dependability benchmarking is the idea of measuring the degradation when

operating under faulty conditions. The general model followed to accomplish this

goal was based on the adaptation of the performance benchmarking model, by

adding two elements: a faultload, which represents the set of faults that the system

would typically suffer during its normal lifetime, and a set of dependability metrics.

Resilience benchmarking appears today as the last research endeavor in

benchmarking, advancing the idea of the faultload to a changeload in which the

assumption is that the problems that systems will face in the field are much more

broad than typical faults, ranging from physical resources stress and limitations to

workload fluctuations. Resilience benchmarking research is also starting to deal

with the fact that computer systems are becoming progressively more self-adaptive,

and that adaptations mechanisms are designed exactly to deal with the complex

working conditions in which systems operate. Evaluating the performance and

effectiveness of these adaptations mechanisms is a very complex problem that is

still being researched.

With the success of this benchmarking approach, based on workloads, faultloads,

and changeloads, one could expect the same idea to also apply to security. In fact,

the Amber consortium (Assessing, Measuring and Benchmarking Resilience)

delivered a research roadmap that clearly promoted the idea of identifying

representative “attackloads” and security metrics, with the goal of defining security

benchmarking using this approach.

Throughout this thesis, and particularly in Chapters 2 and 3, we presented several

reasons that show why the traditional benchmarking approach is not the ideal one

when it comes to security. The main argument is that the information that we get

from identifying a vulnerability in a system, and therefore a potential attack, is not

the same information we get when we subject a system to faults. This comes from

a fundamental differences between faults and attacks that unavoidably has to be

taken into account when comparing systems. For example, although the triggering

of a fault may have a certain distribution probability, the triggering of an attack is

much more complex to define as it depends on a malicious person that may or may

not have interest in attacking the system. Accounting for the exploitation of known

vulnerabilities must be completely different from accounting for the triggering of

faults.

Security Benchmarking of Transactional Systems

197

A proper security benchmarking approach must necessarily take into consideration

a set of aspects that normally are not taken into consideration in other types of

benchmarks: there are lots of uncertainties about the system, the environment, and

the attackers. We believe that modeling unknown security problems in the same

way we model known/detectable vulnerabilities is an error that ultimately leads to

useless benchmarks or misleading conclusions. From a high-level view, we may

say that the framework proposed in thesis essentially provides a way for reasoning

about how to correctly rationalize security aspects when the goal at hand is fair

comparison.

The framework itself was built upon two main ideas, and therefore was conceived

with two main phases: security qualification and trustworthiness benchmarking,

both deeply discussed in chapter 3. Basically, security qualification deals with the

actual detectable security problems and results in a binary response, either a system

under benchmarking is acceptable for use or it is unacceptable. The detectable

security problems that a system may have, can actually be divided in two groups:

1) the system should not be obviously insecure, meaning that any severe

vulnerability that opens the system to attacks renders it unacceptable; and 2) the

lack of the mechanisms required by the domain for the security tasks (e.g.

authentication for a withdraw operation in a bank system) also renders it

unacceptable.

Trustworthiness benchmarking is the process of distinguishing the systems

considered acceptable by security qualification. In this case, we examine the system

under evaluation looking for evidences that show how good the design of the

system is, therefore allowing to compare the probability of different systems having

security problems. This is where we account for the uncertainty factors related with

the security of the systems. The proposal and the extensive study of alternative

approaches for defining useful trustworthiness benchmarks was actually the second

major contribution of this thesis.

Chapters 4 and 5 were dedicated to the study of methodologies, approaches and

actual implementations of the security benchmarking framework, with emphasis on

trustworthiness benchmarking, for two fairly representative use cases, as discussed

next.

Complex environments, where a diversity of people, hardware, software and

configuration options interact towards a single goal. We studied this scenario in the

form of a transactional system infrastructure. In this situation, as the possible

configurations and circumstances are too many to account for, the most interesting

usage of trustworthiness benchmarking is to help tracking the state of the system

Chapter 8  Conclusions and Future Work

198

and suggest ways for enhancing its security, basically by addressing the questions

of what are the most important areas that should be improved and threats that should

concern the administrators. The assessment of four real database infrastructures

allowed demonstrating the capabilities of the benchmark. Several analysis and

discussions about the security properties of the environments become evident, and

such evidence can clearly be the justification required for systems modifications

and even more drastic actions. Another lesson we obtained from the application of

the benchmark was that its mere execution already provides a very significant

amount of information to the administrator. One aspect demanded by the

benchmark is the administrator to obtain information about the actual state of his

infrastructure, which is something that not all administrators are able to do. The

application of the benchmark also provided a very large amount of information to

the administrators in the form of what were the configurations and the security

mechanisms that they were neglecting or were not aware of, and what were the

potential consequences of the existing configuration state.

A targeted well-bounded and controlled use-case where the goal is to select the

most secure software implementation among several alternatives that implement

the same specification. This scenario is the case of a typical business application

working upon an already existing transactional system infrastructure. In this case,

the threats can be more tightly specified and be much more detailed and precise.

For this scenario, we first studied the design of an automated trustworthiness

benchmark based on static code analysis tools. Using a series of experiments, we

found that the metrics that can be designed based on such tools do really correlate

with the security quality of the targets, and this was a very important result. This

conclusion was particularly solid, because we evaluated the results against the

evaluation of six different security experts, which manually reached out the same

conclusions of our tool. However, we identified a series of limitations of the

approach, namely that the dependence on tools that were not designed exactly for

this goal would make the approach loose effectiveness in the future. The solution

to this problem was to design and propose a general methodology to accomplish

the exact same thing, but eliminating the problems that the static code analyzers

had. This general approach was exercised and explained from the start to end, and

was also partially validated in a small scale experiment that demonstrated that the

approach is sound and may lead to effective long term solutions to the problem of

trustworthiness benchmarking of web applications.

While chapters 4 and 5 focused on trustworthiness benchmarking approaches, in

Chapter 6 we studied a very specific problem that arise from the combination of

the two scenarios just described. The problem comes specifically from the fact that

Security Benchmarking of Transactional Systems

199

such complex infrastructure does not conform easily to a security qualification

specification. With several complementary systems and configurations,

pinpointing the security characteristics that necessarily make the infrastructure

unacceptable is not easy, as an administrator can always compensate single

vulnerabilities or missing security mechanisms with additional overlapping defense

systems. At the same time, that does not mean that any set of components within

this infrastructure can be considered acceptable. Chapter 6 is specifically devoted

to the development of a process that helps in analyzing the security mechanisms

that a complex software package, like a DBMS engine plus an operating system,

can provide to a complex infrastructure. Based on the trustworthiness benchmark

proposed in Chapter 4, we built an assessment tool that can be used evaluate how

much a particular software helps securing the infrastructure.

We evaluated the tool by actively applying it to seven representative software

packages, which allowed finding several characteristics about the packages. Results

show that there is a common set of security mechanism that is implemented by most

packages, while several important mechanisms have no support at all on the

packages analyzed. The reasons for this are open for debate, but we can conjecture

that it has to do with a tradition of copying what has already being proposed in the

field and has proven to work, without rethinking the whole features from scratch.

When these systems are comprehensively analyzed, the missing features become

highlighted. We believe that the analysis we did in this experiment is of utmost

importance for database administrators and could be of great interest for vendors

to improve the security characteristics of future software products and packages.

Future Work

This thesis is far from closing the problem of security benchmarking, and many

future research topics can be envisaged, including:

 Implementation of the framework for other domains. This thesis was

dedicated to the application of the framework specifically for transactional

systems. One of the lessons of this application is that the two constituting

parts of a transactional system cannot be trivially benchmarked

simultaneously because each part has a different set of security goals. We

believe that the study of the framework in the context of other domains

would further improve our knowledge on how the different security goals

of systems can affect the benchmark design.

 More effective methods of developing and creating the components of a

benchmark. Most of the work required for the definition of the benchmarks

demanded a lot of manual inspection and analysis, along with discussions

Chapter 8  Conclusions and Future Work

200

and inputs from security experts. Even though it is impossible to avoid

completely the security knowledge needed for designing the benchmark

from coming from security experts, the execution of several processes and

definitions could be partially automated. Some examples:

o The description of the security recommendations could be

formalized, allowing for the automated analysis of the potential

effects of the pessimistic scenarios whenever these

recommendations were not being applied.

o It is possible that the design of the security tests could be made

automatically if the description of the practices was more formal.

The automation of a partial set of security tests would already be

an advancement of the usability of the test set.

 Devising more effective ways for identifying the impact recommendations

and security mechanisms. Some of the proposed methods required the

identification of the security impact of mechanisms and recommendations.

We solved it by obtaining the consensual judgment of several distinct

security experts and practitioners. However, opinions can always be

biased, even for large samples of people. It would be extremely valuable

to have more impartial and effective ways of determining the security

impact of such elements.

 Developing an automated tool capable of performing the benchmark

proposed in Section 5.3. Our expectation is that this particular tool would

be much more efficient and precise than the benchmark based on static

analysis tools. This would be a natural consequence of the fact that this

new tool would be designed with the exact goal of performing

trustworthiness benchmarking, while the static code analysis based

benchmarking is taking advantage of a collateral effect - errors, something

that should progressively disappear with their improvement.

 Approaches to properly validate trustworthiness benchmarks. As

discussed in Section 4.5, validating the trustworthiness benchmark

proposed in Chapter 4 is a extremely complex problem for which we do

not have an easy solution. The main problem is that the most obvious

metrics that could be used to confirm if the results of the benchmark are

correct suffer from external effects that make them not suitable for

comparison. In fact, the security incidents that could demonstrate if one

threat vector is better protected than another one depend not only on the

capabilities of the attackers, which are considered by the benchmark in the

form of the security mechanisms in place, but also on the intentions of the

Security Benchmarking of Transactional Systems

201

attackers, which by design are not considered in the benchmark because

they are external variables. Therefore, we need to study methods for

validating the benchmarks results without requiring the systems to be

effectively attacked.

203

References

Alberts, C. and Dorofee, A. 2002. Managing Information Security Risks: The

OCTAVE Approach. Boston, MA: Addison-Wesley.

Alberts, C., Dorofee, A., Stevens, J. and Woody, C. 2005. OCTAVE-S

Implementation Guide, Version 1.0. Retrieved sept. 2012 from

http://www.cert.org/octave/octaves.html

Alexander, I. 2003. Misuse Cases: Use Cases with Hostile Intent. IEEE

Software, vol. 20, no. 1, pp. 58–66.

Allard, T., Anciaux, N., Bouganim, L., Guo, Y., Folgoc,L.L., Nguyen, B.

Pucheral, P. Ray, I., Ray,I. and Yin, S. 2010. Secure personal data servers: a

vision paper. Proc. VLDB Endow. 3, 1-2 (September 2010), 25-35.

Almeida, R. and Vieira, M. 2011. Benchmarking the resilience of self-adaptive

software systems: perspectives and challenges, 6th International Symposium

on Software Engineering for Adaptive and Self-managing Systems

(SEAMS'11), Waikiki, Honolulu , HI, USA, Pages 190-195

Almeida, R. and Vieira, M. 2012a. Changeloads for Resilience Benchmarking

of Self-Adaptive Systems: A Risk-Based Approach, 9th European

Dependable Computing Conference (EDCC'12), Sibiu, Romania, Pages 173-

184.

Almeida, R. and Vieira, M. 2012b. Changeloads: a Fundamental Piece on the

SASO Systems Benchmarking Puzzle, 1st International Workshop on

Evaluation for Self-Adaptive and Self-Organizing Systems (Eval4SASO),

Lyon, France.

Almonaies, A.A., Alalfi, M.H., Cordy, J.R. and Dean, T.R. 2011. Towards a

framework for migrating web applications to web services. In Proceedings

of the 2011 Conference of the Center for Advanced Studies on Collaborative

Research (CASCON '11). IBM Corp., Riverton, NJ, USA, 229-241.

Amirtahmasebi, K., Jalalinia, S.R. & Khadem, S. 2009. A survey of SQL

injection defense mechanisms. ICITST 2009. London, UK.

References

204

Antunes, J. and Neves, N. F. 2012. Recycling Test Cases to Detect Security

Vulnerabilities, Proceedings of the 23nd Annual International Symposium

on Software Reliability Engineering (ISSRE), Dallas, USA.

Antunes, J., Neves, N. F., Correia, M., Veríssimo, P. and Neves, R. 2010.

Vulnerability Discovery with Attack Injection, IEEE Transactions on

Software Engineering, Vol. 36, No. 3, pages 357-370, May/June 2010.

Antunes, N. and Vieira, M. 2010. Benchmarking Vulnerability Detection Tools

for Web Services. ICWS 2010. Miami, USA.

Antunes, N. and Vieira, M. 2009. Comparing the Effectiveness of Penetration

Testing and Static Code Analysis on the Detection of SQL Injection

Vulnerabilities in Web Services, PRDC’09. China.

Arlat, J. and Crouzet, Y. .2002. Faultload Representativeness for Dependability

Benchmarking, DSN 2002, Washington, DC, US.

Ayewah, N., Pugh, W. , Morgenthaler, J., Penix, J. and Zhou, Y. 2007.

Evaluating static analysis defect warnings on production software. ACM

SIGPLAN-SIGSOFT 2007 . California, USA.

Bales, D. 2001. Java Programming with Oracle JDBC. O'Reilly Media; 1st

edition.

Balzarotti, D., Cova, M., Felmetsger, V. V. and Vigna, G. 2007. Multi-module

vulnerability analysis of web-based applications. In Proceedings of the 14th

ACM conference on Computer and communications security (CCS '07).

ACM, New York, NY, USA, 25-35.

Barbacci, M. et al. 2003. Quality Attribute Workshops (QAWs), Third Edition,

CMU/SEI-2003-TR-016.

Barnum, S. 2007. An Introduction to Attack Patterns as a Software Assurance

Knowledge Resource, OMG Software Assurance Workshop.

Baumhardt, F. 2006. Common Criteria - It Security Certification, Or Shiny

Sales Sticker ?, (IN)SECURITY ARCHITECTURE. Last Access: Sept

2008. URL http://blogs.technet.com/fred/archive/2006/03/02/421014.aspx

Security Benchmarking of Transactional Systems

205

Bellovin, S. and Bush, R. 2009. Configuration management and

security. Selected Areas in Communications, IEEE Journal on, 27(3), 268-

274.

Bertino, E., Jajodia, S. and Samarati, P. 1995. Database security: Research and

practice. Information Systems Journal, Volume 20, Number 7.

Bishop, M. and Gates, C. 2008. Defining the Insider Threat. Proceedings of the

Cyber Security and Information Intelligence Research Workshop, Oak

Ridge, Tennessee, EUA.

Bondavalli, A. et al. 2009. D3.2: Final Research Roadmap, formal deliverable

AMBER Project – Assessing, Measuring and Benchmarking Resilience, IST

– 216295 AMBER, EU FP7 program.

Booch, G., Rumbaugh, J. and Jacobson, B. 2005. Unified Modeling Language

User Guide, The (2nd Edition) (The Addison-Wesley Object Technology

Series). Addison-Wesley Professional, May 2005.

Bowen, P., Hash, J. and Wilson, M. 2006. Information Security Handbook: A

Guide for Managers, NIST Special Publication 800-100. National Institute

of Standards and Technology, U.S. Dept of Commerce.

Caralli, R. A., Stevens, J. F., Young, L. R. and Wilson, W. R. 2007. The

OCTAVE Allegro Guidebook, v1.0, Software Engineering Institute,

Carnegie Mellon, May 2007, available at

http://www.cert.org/octave/allegro.html, October 2010.

Cardellini, V., Casalicchio, E., Colajanni, M. and Yu, P.S.. 2002. The state of

the art in locally distributed Web-server systems. ACM Comput. Surv. 34, 2

(June 2002), 263-311.

Castano, S., Fugini, M. G., Martella, G. and Samarati, P. 1994. Database

Security. ACM Press Books, Addison-Wesley Professional.

Cenzic. 2009. Application security trends report Q3-Q4 2009.

http://www.cenzic.com.

CGI Security. 2010. The Cross-Site Scripting (XSS) FAQ.

http://www.cgisecurity.com/xss-faq.html.

References

206

Chapman, I., Sylvain, M., Leblanc, P. and Partington, A. 2011. Taxonomy of

cyber attacks and simulation of their effects. In Proceedings of the 2011

Military Modeling & Simulation Symposium (MMS '11). Society for

Computer Simulation International, San Diego, CA, USA, 73-80.

Chen, L., Feng, D., Shi; Z., Zhou; F. 2009. Using Session Identifiers as

Authentication Tokens. Communications 2009. ICC '09. IEEE International

Conference on , vol., no., pp.1-5, 14-18.

Chess, B and West, J. 2007. Secure Programming with Static Analysis.

Addison-Wesley. ISBN 978-0-321-42477-8.

CIS Benchmarks. 2012. Center for Internet Security Configuratioin

Benchmarks. Retrieved in sept. 2012 from

https://benchmarks.cisecurity.org/en-us/?route=downloads.multiform.

CLUSIF. 2004. MEHARI (Information risk analysis and management

methodology) V3, Concepts and Mechanisms.

Commission of the European Communities. 1993. Information Technology

Security Eval. Manual (ITSEM).

Common Criteria. 1998. Commercial Database Management System Protection

Profile (C.DBMS PP), Issue 1.

Common Criteria. 1999. Common Criteria for Information Technology Security

Evaluation: User Guide.

Common Criteria. 2000. Database Management System Protection Profile

(DBMS PP), Issue 2.1.

Computer Internet Security (CIS), 2008 “Benchmark/Tools”,

www.cisecurity.org Last Access: Sept 2012

Cybenko, G., Kipp, L., Pointer, L. and Kuck, D. 1990. Supercomputer

performance evaluation and the Perfect Benchmarks. SIGARCH Comput.

Archit. News 18, 3b (June 1990), 254-266.

Da-sheng; W., Sheng-yu; W. 2010. Dynamically maintain the teaching

examples of triggers and stored procedures about the course of database

application. Education Technology and Computer (ICETC), 2010 2nd

Security Benchmarking of Transactional Systems

207

International Conference on , vol.1, no., pp.V1-525-V1-527, 22-24 June

2010

Daswani, N. Kern, C. and Kesavan, A. 2007. Foundations of Security: What

Every Programmer Needs to Know, Apress, Berkely, CA.

DBench. 2000. Dependability Benchmarking Project. http://spiderman-

2.laas.fr/DBench/

Defense Information Systems Agency. 2001. Database - Security Tech. Implem.

Guide, V8, R1.

Denning, P. J. 1976. Fault tolerant operating systems. ACM Computing Surveys

(CSUR) 8 (4): 359–389. doi:10.1145/356678.356680. ISSN 0360-0300.

Department of Defense. 1985. Trusted Computer System Evaluation Criteria.

Dept. of Defense Standard. 1985. Department of Defense Trusted Computer

System Evaluation Criteria, DOD 5200.28-STD.

Diallo, M. H., J. Romero-Mariona, et al. 2006. A Comparative Evaluation of

Three Approaches to Specifying Security Requirements. REFSQ'06,

Luxembourg

Dorfman, M. S. 2007. Introduction to Risk Management and Insurance (9th

Edition). Englewood Cliffs, N.J: Prentice Hall.

Dunlop, A.N. 1994. The Status of Parkbench, In Proceedings of the 6th RAPS

Workshop, CERFACS, Toulouse.

Eisenberg, A. 1996. New standard for stored procedures in SQL. SIGMOD Rec.

25, 4 (December 1996), 81-88.

FindBugs. 2011. Java static code analisys tool. Retrieved April 2011 from

http://findbugs.sourceforge.net/

Fonseca, J. and Vieira, M. 2008a. Mapping Software Faults with Web Security

Vulnerabilities. IEEE/IFIP International Conf. on Dependable Systems and

Networks (DSN 2008), USA.

References

208

Fonseca, J. Vieira, M. and Madeira, H. 2008b. Online detection of malicious

data access using DBMS auditing. Proceedings of the 2008 ACM

Symposium on Applied Computing (SAC). Brazil.

Fonseca, J. Vieira, M. and Madeira, H. 2009. Vulnerability & attack injection

for web applications. IEEE/IFIP International Conf. on Dependable Systems

and Networks (DSN 2009). Portugal.

Fonseca, J., Vieira, M. and Madeira, H. 2007. Testing and comparing web

vulnerability scanning tools for SQL injection and XSS attacks. 13th IEEE

Pacific Rim Dependable Computing Conference (PRDC 2007), Melbourne,

Victoria, Australia.

Forums Benchmarked. 2011 JavaBB. www.javabb.org, JForum. jforum.net,

JGossip. jgossip.dev.java.net, JSForum. jsforum.sourceforge.net,

mvnForum. mvnforum.com, Yazd forum. www.forumsoftware.ca

FP7 – 216295. 2010. AMBER - Assessing, Measuring, and Benchmarking

Resilience. http://www.amber-project.eu

Friginal, J, de David, A., Ruiz, J-C. and Gil, P. 2009. Attack Injection for

Performance and Dependability Assessment of Ad-Hoc Networks, 12th

European Workshop on Dependable Computing, 2009, Toulouse (France).

Friginal, J, de David, A., Ruiz, J-C. and Gil, P. 2010. Attack Injection to Support

the Evaluation of Ad Hoc Networks, 29th International Symposium on

Reliable Distributed Systems (SRDS), New Delhi (India), Pages 21-29.

Friginal, J, de David, A., Ruiz, J-C. and Moraes, R. 2011. Using Dependability

Benchmarking to Support ISO/IEC SQuaRE, 17th IEEE Pacific Rim

International Symposium on Dependable Computing (PRDC), Pasadena

(USA), Pages 28-37.

Gefen, D. 2002. Reflections on the dimensions of trust and trustworthiness

among online consumers. SIGMIS Database 33, 3 (August 2002), 38-53

Gegick, M. and Williams, L. 2005. Matching attack patterns to security

vulnerabilities in software-intensive system designs. SIGSOFT Softw. Eng.

Notes 30, 4 (Jul. 2005)

Security Benchmarking of Transactional Systems

209

Gegick, M. and Williams, L. 2007. On the design of more secure software-

intensive systems by use of attack patterns. Inf. Softw. Technol. 49, 4 (Apr.

2007), 381-397

Gencel, C. and Demirors, O. 2008. Functional size measurement revisited.

ACM Trans. Softw. Eng. Methodol. 17, 3, Article 15 (June 2008), 36 pages.

Gray, J. 1993. Database and Transaction Processing Performance Handbook.

The Benchmark Handbook for Database and Transaction Systems (2nd

Edition), Morgan Kaufmann.

Gray, J. and Reuter A. 1992. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann. First edition.

Gray, Jim. 1993. “Database and Transaction Processing Performance

Handbook.” The Benchmark Handbook for Database and Transaction

Systems (2nd Edition), Morgan Kaufmann, 1993.

Harbitter, A and Menasc, D. 2002. A methodology for analyzing the

performance of authentication protocols. ACM Trans. Inf. Syst. Secur. 5, 4

(November 2002), 458-491.

Helmer, G., Wong, G. 2007. Software fault tree and coloured Petri net based

specification, design and implementation of agent-based intrusion detection

systems, International Journal of Information and Computer Security, v.1

n.1/2, p.109-142.

 Hevery, M. and Abrons, A. 2009. Declarative web-applications without server:

demonstration of how a fully functional web-application can be built in an

hour with only HTML, CSS & Javascript Library. In Proceedings of the 24th

ACM SIGPLAN conference companion on Object oriented programming

systems languages and applications (OOPSLA '09). ACM, New York, NY,

USA, 801-802.

Hibernate. 2011. Hibernate persistence framework. Retrieved April 2011 from

www.hibernate.org.

Hoffman, I. 2008. Rising Popularity of Web Application Development.

Articlesbase. Retrieved Sept 2012 from

http://www.articlesbase.com/software-articles/rising-popularity-of-web-

application-development-512839.html

References

210

Hoglund, G. and McGraw, G. 2004. Exploiting Software: How to Break Code.

Boston, MA: Addison-Wesley.

Honsa, J. D. and McIntyre, D.A. 2003. ISO 17025: Practical Benefits of

Implementing a Quality System. Journal of AOAC International 86 (5):

1038–1044.

Howard, M. and LeBlanc, D. 2002. Writing Secure Code. Second Edition,

Microsoft press.

Howard, M. and Leblanc, D. E. 2002. Writing Secure Code. 2nd. Microsoft

Press.

IEC. 2012. International Electrotechnical Commission. www.iec.ch

Im, G. P. and Baskerville, R. 2005. A longitudinal study of information system

threat categories: the enduring problem of human error. SIGMIS Database

36, 4 (October 2005), 68-79.

INFOSEC Research Council. 2005. Hard Problem List. Retrieved march, 2012

from http://www.cyber.st.dhs.gov/docs/IRC_Hard_Problem_List.pdf

Integrigy. 2007. An Introduction to SQL Injection Attacks for Oracle

Developers. White paper. http://www.integrigy.com /security-

resources/whitepapers/ Integrigy_Oracle_SQL_Injection_Attacks.pdf

IntelliJ IDEA. 2011. Retrieved April 2011 from http://www.jetbrains.com/idea

ISO. 2012. International Organization for Standardization. www.iso.org

Jackson, W. 2007. Under attack: Common Criteria has loads of critics, but is it

getting a bum rap?. Government Computer News. Last Access: Sept. 2008.

URL http://www.gcn.com/print/26_21/44857-1.html

Jahl, C. 1991. The information technology security evaluation criteria. In

Proceedings of the 13th international conference on Software engineering

(ICSE '91). IEEE Computer Society Press, Los Alamitos, CA, USA, 306-

312.

Jansen, W. 2009. Directions in Security Metrics Research. NISTIR 7564.

Retrieved march 2012 from http://csrc.nist.gov/publications/drafts/nistir-

7564/Draft-NISTIR-7564.pdf

Security Benchmarking of Transactional Systems

211

Jaquith, A. 2007. .Security Metrics: Replacing Fear,. Uncertainty, and Doubt.

Addison Wesley.

Jelen, G. and Williams J. 1998. A Practical Approach to Measuring Assurance.

14th Annual Computer Security Applications Conference, Phoenix, USA.

Johnston, R.G. 2010. Being Vulnerable to the Threat of Confusing Threats with

Vulnerabilities. Journal of Physical Security. Volume 4, Issue 2.

Jovanovic, N., Kruegel, C. and Kirda, E. 2006. Precise alias analysis for static

detection of web application vulnerabilities. Proceedings of the 2006 ACM

SIGPLAN PLAS 2006, Ottawa, Ontario, Canada.

Kanoun, K. and Spainhower, L. 2008. Dependability Benchmarking for

Computer Systems. Wiley-IEEE Computer Society Press.

Kanoun, K., Arlat, J., Costa, D. J.G. , DalCin, M. , Gil, P. Laprie, J.-C., Madeira

H. and Suri, N. 2001. DBench (Dependability Benchmarking)", in

Supplement of the Int. Conference on Dependable Systems and Networks

(DSN-2001), (Göteborg, Sweden), DEPPY Workshop, pp. D.12-15,

Chalmers University of Technology, Göteborg, Sweden.

Karabacak, B. and Sogukpinar, I. 2005. ISRAM: information security risk

analysis method, Computers & Security 24 (2) 147-159.

Kaufman, C., Perlman, R. and Speciner, M. 2002. Network Security: Private

Communication in a Public World (2nd Edition). Prentice Hall PTR

Kumaraguru, P. et al. 2007. Getting users to pay attention to anti-phishing

education: evaluation of retention and transfer. In Proceedings of the anti-

phishing working groups 2nd annual eCrime researchers summit (eCrime

'07). ACM, New York, NY, USA, 70-81.

Littlewood, B. et al. 1993. Towards Operational Measures of Computer

Security. Journal of Computer Security. v2. pp.211-229.

Littlewood, B., Popov, P., Strigini, L. and Shryane, N. 2010. Modeling the

Effects of Combining Diverse Software Fault Detection Techniques. IEEE

Trans. Software Eng. 26(12).

References

212

Liu, H. and Tan, H.B.K. 2006. An Approach to Aid the Understanding and

Maintenance of Input Validation. Software Maintenance, 2006. ICSM '06.

22nd IEEE International Conference on , vol., no., pp.370-379, 24-27

Livshits, V. and Lam, M. 2005. Finding security vulnerabilities in java

applications with static analysis. 14th USENIX Security Symposium,

Baltimore, MD, USA.

Long, J. 2007. Google Hacking for Penetration Testers. Syngress. ISBN 978-1-

59749-176-1

Lyu, M. 1996. Handbook of Software Reliability Engineering. IEEE Comp.

Society Press, McGraw-Hill.

Manadhata, P. K, Tan, K. M. C., Maxion, R. A. and Wing, J. M. 2007. An

approach to Measuring a System's Attack Surface. Carnegie Mellon

University, Technical Report CMU-CS-07-146, August 2007.

Marsh, S., Dibben, M. .2005. Trust, Untrust, Distrust and Mistrust – An

Exploration of the Dark(er) Side”. iTrust 2005, Paris, France.

Martinez-Moyano, I. J., Rich, E., Conrad, S. H. , Andersen, D. F. 2006.

Modeling the Emergence of Insider Threat Vulnerabilities. Informs Winter

Simulation Conference, Monterey, CA.

Mate Bacic, E. 1990. The Canadian trusted computer product evaluation

criteria. Computer Security Applications Conference. Proceedings of the

Sixth Annual. pp.188-196, 3-7.

McClure, S. 2009. Hacking Exposed: Network Security Secrets and Solutions.

McGraw-Hill. ISBN 978-0-07-161374-3

McDermott, J. 2000. Attack Net Penetration Testing. In The 2000 New Security

Paradigms Workshop (Ballycotton, County Cork, Ireland, Sept. 2000), ACM

SIGSAC, ACM Press, pp. 15-22.

McDermott, J. 2001. Abuse-Case-Based Assurance Arguments. In: Proc. 17 th

Annual Computer Security Applications Conference (ACSAC’01), IEEE

Computer Society Press.

Security Benchmarking of Transactional Systems

213

McDermott, J., Fox, C. 1999. Using Abuse Case Models for Security

Requirements Analysis. In: Proc. 15th Annual Computer Security

Applications Conference (ACSAC’99), IEEE Computer Society Press.

McGraw, G. 2006. Software Security: Building Security In. Addison-Wesley

Professional.

McKnight, D. H. and Chervany, N. L. 2006. The meanings of trust. TR,

University of Minnesota, Carlson School of Management, 1996.

Mendes, N., Araújo Neto, A., Durães, J., Vieira, M. and Madeira, H. 2008.

Assessing and Comparing Security of Web Servers. Proceedings of the

Pacific Rim Dependable Computing Conference (PRDC 2008). Pages 313-

322

Mendes, N., Durães, J. and Madeira, H. 2012. Benchmarking the Security of

Web Serving Systems Based on Known Vulnerabilities. LADC 2011: 55-64.

Messmer, E. 2012. Black Hat: Oracle database vulnerabilities exposed again.

Computer World UK Magazine. Retrieved in September 2012 in

http://www.computerworlduk.com/news/security/3372534/black-hat-

oracle-database-vulnerabilities-exposed-again/

Microsoft Corporation. 2011a. Microsoft SQL Server 2005. Retrieved august,

2011, from http://www.microsoft.com/sqlserver/en/us/default.aspx

Microsoft Corporation. 2011b. Microsoft Windows XP. Retrieved august, 2011,

from http://windows.microsoft.com/en-US/windows/products/windows-xp

 Monga, M. Paleari, R. and Passerini, E. 2009. A hybrid analysis framework for

detecting web application vulnerabilities. 2009 ICSE SESS.

Morrison, M., Morrison, J. and Keys, A. 2002. Integrating web sites and

databases. Commun. ACM 45, 9 (September 2002), 81-86.

Nadeem, M., Williams, B. J. and Allen, E. B. 2012. High false positive

detection of security vulnerabilities: a case study. In Proceedings of the 50th

Annual Southeast Regional Conference (ACM-SE '12). ACM, New York,

NY, USA, 359-360.

References

214

National Cyber Security Division (NCSD), 2008. Common Attack Pattern

Enumeration and Classification, http://capec.mitre.org/ Last Access: Sept

2008

Nikolić, I. 2009. Distinguisher and Related-Key Attack on the Full AES-256.

CRYPTO 2009. Santa Barbara, California, USA.

Oliveira, R., Laranjeiro, N, and Vieira. M. 2011. A Composed Approach for

Automatic Classification of Web Services Robustness. In Proceedings of the

2011 IEEE International Conference on Services Computing (SCC '11).

IEEE Computer Society, Washington, DC, USA, 176-183

Open Web Application Security Project (OWASP). 2007. OWASP top 10.

Retrieved august, 2012 from

http://www.owasp.org/index.php/Top_10_2007

Oracle Corporation. 2011a. MySQL Community Edition 5. Retrieved august,

2011, from http://www.oracle.com/technetwork/database/express-

edition/overview/index.html

Oracle Corporation. 2011b. Oracle 10g Express Edition. Retrieved august,

2011, from http://www.oracle.com/technetwork/database/express-

edition/overview/index.html

OWASP. 2010. SQL Injection prevention Cheat Sheet,

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Parker, D. B. 2002. Toward a New Framework for Information Security. In The

Computer Security Handbook, 4th ed., New York, NY: John Wiley & Sons.

Patrick, A. S., Long, A. C., and Flinn, S. 2003. Human factors of security

systems: A brief review.

Pauli, J. J. and Engebretson, P. H. 2008. Hierarchy-Driven Approach for Attack

Patterns in Software Security Education. In Proceedings of the Fifth

international Conference on information Technology: New Generations

(April 07 - 09, 2008). ITNG. IEEE Computer Society, Washington, DC,

1156-1157

Pavlovic, D. 2011. Gaming security by obscurity. In Proceedings of the 2011

workshop on New security paradigms workshop (NSPW '11). ACM, New

York, NY, USA, 125-140.

Security Benchmarking of Transactional Systems

215

Payne, S. C. 2006. A Guide to Security Metrics. SANS Institute Information

Security Reading Room.

Payton, A. M. 2006. Data security breach: seeking a prescription for adequate

remedy. In Proceedings of the 3rd annual conference on Information security

curriculum development (InfoSecCD '06). ACM, New York, NY, USA, 162-

167.

Pernul, G. and Luef, G. 1992. Bibliography on database security. ACM

SIGMOD Rec., Volume 21, Issue 1.

PhD Thesis Complementary Info. 2012. Available at

http://eden.dei.uc.pt/~mvieira/ThesisComplAfonso.zip

PostgreSQL Global Development Group. 2011. PostgreSQL 8. Retrieved

august, 2011, from http://www.postgresql.org

Ram, P., Do, L. and Drew, P. 1999. Distributed transactions in practice.

SIGMOD Rec. 28, 3 (September 1999), 49-55.

Ray, I. and Chakraborty, S. 2004. A Vector Model of Trust for Developing

Trustworthy Systems. ESORICS 2004. France.

Red Hat. 2011. Red Hat Enterprise Linux 5. Retrieved august, 2011, from

http://www.redhat.com/rhel/

Reuter, A. 2008. Is there life outside transactions?: writing the transaction

processing book. SIGMOD Rec. 37, 2.

Roberts, N. H., Vesely, W.E., Haasl, D.F., and Golberg, F.F. 1981. Fault Tree

Handbook, U.S. Nuclear Regulatory Comission, NUREG-0492. Washigton,

D.C

Russell, D. and Gangemi, G.T. 1991. Computer Security Basics. O'Reilly

Media. First edition.

Saad-Khorchef, F. Rollet, A. and Castanet, R. 2007. A framework and a tool for

robustness testing of communicating software. In Proceedings of the 2007

ACM symposium on Applied computing (SAC '07). ACM, New York, NY,

USA, 1461-1466.

References

216

Said, H. E., Guimaraes, M. A., Maamar, Z. and Jololian, L. 2009. Database and

database application security. In Proceedings of the 14th annual ACM

SIGCSE conference on Innovation and technology in computer science

education (ITiCSE '09). ACM, New York, NY, USA, 90-93.

Saitta, P., Larcom, B. and Eddington, M., 2008. Trike threat modelling tool”,

URL: http://www.octotrike.org,. Last Access: Sept 2008

Saitta, P., Larcom, B. and Eddington, M. 2005. Trike v.1 Methodology

Document [draft], http://dymaxion.org/trike/ Last Access: Sept 2008

Sandia National Laboratories. 2010. The Information Design Assurance Red

Team. Retrieved august 2010 from http://idart.sandia.gov

Sawyer, Tom. 1993. Doing Your Own Benchmark. The Benchmark Handbook

for Database and Transaction Systems (2nd Edition), Morgan Kaufmann.

Schell, R. & Heckman, M. 1987. Views for multilevel database security. IEEE

Trans. on Software Engineering.

Schell, R. and Heckman, M. 1987. Views for multilevel database security. IEEE

Trans. on Software Engineering.

Schmidt, H. 2010. Threat- and Risk-Analysis During Early Security

Requirements Engineering. Availability, Reliability, and Security. ARES '10

International Conference on, vol., no., pp.188-195, 15-18

Schneier, B., 1999. Attack Trees. Dr Dobbs Journal of Software Tools 24. URL:

http://www.schneier.com/paper-attacktrees-ddj-ft.html Last access: Sept.

2008.

Schulte, W. 2012. Ten years of automated code analysis at Microsoft (invited

industrial talk). In Proceedings of the 2012 International Conference on

Software Engineering (ICSE 2012). IEEE Press, Piscataway, NJ, USA,

1001-1001.

Schweitzer, D. 2006. Factory Settings -- Insecure by Default. COmputerWorld

Magazine. Retrieved Sept 2012 from

http://www.computerworld.com/s/article/110699/Factory_Settings_Insecur

e_by_Default

Security Benchmarking of Transactional Systems

217

Seacord, R. 2006. Secure Coding in C and C++. Upper Saddle River, NJ:

Addison-Wesley.

Shahriar, H and Zulkernine, M. 2012. Mitigating program security

vulnerabilities: Approaches and challenges. ACM Comput. Surv. 44, 3,

Article 11 (June 2012), 46 pages.

Shahzad, M., Shafiq, M. Z. and Liu, A. X. 2012. A large scale exploratory

analysis of software vulnerability life cycles. In Proceedings of the 2012

International Conference on Software Engineering (ICSE 2012). IEEE Press,

Piscataway, NJ, USA, 771-781.

Sherriff, M. and Williams, L. 2006. Defect Density Estimation Through

Verification and Validation. The 6th Annual High Confidence Software and

Systems Conference, Lithicum Heights, MD, pp. 111-117.

Shoulman, A. 2009. Top Ten Database Security Threats. Imperva, white paper.

Retrieved august 2010 from http://www.imperva.com/go/wp10/

SIEMENS. 2003. CRAMM - CCTA Risk Analysis and Management Method -

User Guide version 5.0, Insight Consulting.

Siponen, M. T. and Oinas-Kukkonen, H. 2007. A review of information security

issues and respective research contributions. SIGMIS Database 38, 1

(February 2007), 60-80

SPEC. 2012. Standard Performance Evaluation Corporation. Retrieved Sept

2012 from http://www.spec.org.

Stallings, W. 2010. Cryptography and Network Security: Principles and

Practice. Prentice Hall. 5th Edition.

Stevens, J. 2005. Information Asset Profiling. Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University. Retrieved Sept 2012

from

http://www.sei.cmu.edu/publications/documents/05.reports/05tn021.html

Stevens, W. Myers, G. Constantine, L. 1974. Structured Design. IBM Systems

Journal, 13 (2), 115-139.

References

218

Stoneburner, G., Goguen, A. and Feringa, A. 2002. Risk management guide for

information technology systems. Last Access: Sept 2008 URL:

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf.

Sullivan, K., Clarke J. and Mulcahy B. P. 2010. Trust-terms Ontology for

Defining Security Requirements and Metrics. 4th European Conference on

Software Architecture (ECSA 2010). Copenhagen, Denmark.

Swiderski, F. and Snyder, W. 2004. Threat Modeling, Microsoft Press,

Redmond, WA.

Toma, C.L. 2010. Perceptions of trustworthiness online: the role of visual and

textual information. In Proceedings of the 2010 ACM conference on

Computer supported cooperative work (CSCW '10). ACM, New York, NY,

USA, 13-22.

Tomatis, N., Brega, R., Rivera, G., Siegwart, R. 2004. “May you have a strong

(-typed) foundation” why strong-typed programming languages do matter.

Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE

International Conference on , vol.4, no., pp. 3429- 3434 Vol.4

Torgerson, M. 2007. Security Metrics for Communication Systems. 12th

International Command and Control Research and Technology Symposium,

Newport, Rhode Island.

Transaction Processing Performance Council. 2012. Retrieved Sept 2012 from

http://www.tpc.org

Transaction Processing Performance Council. 2002. TPC Benchmark W,

Standard Specification, Version 1.8, 2002, available at:

http://www.tpc.org/tpcw/.

Transaction Processing Performance Council. 2005. TPC Benchmark C,

Standard Specification, Version 5.4. available at: http://www.tpc.org/tpcc/.

Transaction Processing Performance Council. 2011. TPC Benchmark App,

Standard Specification, Version 1.3, 2011, available at:

http://www.tpc.org/tpc_app/.

van der Steen, A. J. 1989. Proposals for standard benchmark programs for

supercomputers. In Proceedings of the Conference on CONPAR 88

Security Benchmarking of Transactional Systems

219

(UMIST, Manchester, United Kingdom). C. R. Jesshop and K. D. Reimartz,

Eds. Cambridge University Press, New York, NY, 621-634.

van der Steen, A. J. 1993. The benchmark of the EuroBen group. In Computer

Benchmarks, J. J. Dongarra and W. Gentzsch, Eds. Elsevier Advances In

Parallel Computing Series, vol. 8. Elsevier Science Publishers B. V.,

Amsterdam, The Netherlands, 165-175.

Verendel,V. 2009. Quantified security is a weak hypothesis: a critical survey of

results and assumptions. In Proceedings of the 2009 workshop on New

security paradigms workshop (NSPW '09). ACM, New York, NY, USA, 37-

50.

Vieira, M. 2005a. Dependability benchmark for Transactional Systems. PhD

Thesis. University of Coimbra.

Vieira, M. and Madeira, H. 2003. A Dependability Benchmark for OLTP

Application Environments. 29th International Conference on Very Large

Data Bases, VLDB2003, Berlin, Germany.

Vieira, M. and Madeira, H. 2005b . Towards a security benchmark for Database

Management Systems. Proceedings of the IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN2005, Yokohama,

Japan.

Vieira, M. and Madeira, H. 2009. From Performance To Dependability

Benchmarking: A Mandatory Path. Performance Evaluation and

Benchmarking: Transaction Processing Performance Council Technology

Conference (TPCTC).

Vraalsen, F., Mahler, T., Lund, M. S., Hogganvik, I., den Braber, F. and Stølen,

K. 2007. Assessing Enterprise Risk Level: The CORAS Approach. In

Advances in Enterprise Information Technology Security, D. Khadraoui and

Francine Herrmann, Idea Group Reference.

Wang, X. et al .2005. Finding Collisions in the Full SHA-1, CRYPTO 2005.

Santa Barbara, California, USA.

Weber-Jahnke, J. H. and Price, M. 2007. Engineering Medical Information

Systems: Architecture, Data and Usability & Security. In Companion to the

proceedings of the 29th International Conference on Software Engineering

References

220

(ICSE COMPANION '07). IEEE Computer Society, Washington, DC, USA,

188-189.

Whittaker, J. 2003. Why secure applications are difficult to write. In Security &

Privacy, IEEE , vol.1, no.2, pp. 81-83.

Wool, A. 2004. A quantitative study of firewall configuration errors. Computer,

vol. 37, pp. 62-67.

Yan, J., Blackwell, A., Anderson, R. and Grant, A. 2000. The Memorability and

Security of Passwords -- Some Empirical Results. Tech. Report 500,

Computer Lab, Cambridge.

Yang; J. 2011. A classification evaluation model for software trustworthiness

based on trustworthiness evolution. Business Management and Electronic

Information (BMEI), 2011 International Conference on , vol.1, no., pp.222-

227.

Yasca. 2011. Retrieved april 2011 from http://www.scovetta.com/yasca.html

Zanero, S., Carettoni, L. and Zanchetta, M. 2005. Automatic Detection of Web

Application Security Flaws, Black Hat Briefings.

Zhao, L., Sakr, S., Zhu, L., Xu, X. and Liu, A. 2012. An architecture framework

for application-managed scaling of cloud-hosted relational databases. In

Proceedings of the WICSA/ECSA 2012 Companion Volume

(WICSA/ECSA '12). ACM, New York, NY, USA, 21-28.

Zsifkov, N. and Campeanu, R. 2004. Business rules domains and business rules

modeling. In Proceedings of the 2004 international symposium on

Information and communication technologies (ISICT '04).

Zwillinger, D. 1995. Standard Mathematical Tables and Formulae,

Chapman&Hall/CRC. ISBN 0849324793.

221

Annex A

Security
Recommendations
Tests, Weights and
Analytical Results

Table A.1 Security recommendations devised from the analysis of the CIS

documents

SECURITY Recommendation (CIS)
Recommendations
in CIS documents

 M O8 O10 S

ENVIRONMENT

1 Use a dedicated machine for the database 1 1 1 28

2
Avoid machines which also run critical network services (naming,
authentication, etc)

1 1 1 1

3 Use Firewalls: on the machine and on the network border 1 3 3 1

4
Prevent physical access to the DBMS machine by unauthorized
people

 1

5 Remove from the network stack all unauthorized protocols 1 1 1

6 Create a specific user to run the DBMS daemons 1 1 1

7 Restrict DBMS user access to everything he doesn't need 1 4 4 3

8 Prevent direct login on the DBMS user account 2 1 3 3

INSTALLATION SETUP

9 Create a partition for log information 2 1 1 1

10 Only the DBMS user should read/write in the log partition 1

11 Create a partition for DB data 1 1 1 2

12 Only the DBMS user should read/write in the data partition 1

13 Separate the DBMS software from the OS files 1 2 2 2

 Remove/Avoid default elements:

14 »»»Remove example databases 1 1

15 »»»Change/remove user names/passwords 1 4 4 2

Annex A  Security Recommendations Tests, Weights and Analytical Results

222

16 »»»Change remote identification names (SID, etc...) 3 1

17 »»»Change TCP/UDP Ports 1 1 1

18 »»»Do not use default SSL certificates 1

19 Separate production and development servers 1 1

20 No developer should have access to the production server 5 5

21
Use different network segments for production and development
servers

 1 1 1

 Verify all the installed DBMS application files:

22 »»»Check and set the owner of the files 1 2 3

23 »»»Set read/running permissions only to authorized users 4 18 22 14

OPERATIONAL PROCEDURES

24 Keep the DBMS software updated 3 1 1

25 Make regular backups 1 4

26 Test the backups 1 1

SYSTEM LEVEL CONFIGURATION

27
Avoid random ports assignment for client connections (firewall
configuration)

 1 1

28 Enforce remote communication encryption with strong algorithms 1 1 11 3

29 Use server side certificate if possible 1 1

30
Use IPs instead of host names to configure access permissions
(prevents DNS spoofing)

 1 1

31 Enforce strong user level authentication 2 6 8 4

32 Prevent idle connection hijacking 2 2

33 Ensure no remote parameters are used in authentication 1 2 1

34 Avoid host based authentication 1 1

35 Enforce strong password policies 1 2 2

36 Apply excessive failed logins lock 1 1

37 Apply password lifetime control 1 1

38 Deny regular password reuse (force periodic change) 2 2

39 Use strong encryption in password storage 3

40 Enforce comprehensive logging 1 2 1

41 Verify that the log data cannot be lost (replication is used) 2 2 1

42 Audit sensible information 14 19 25

43 Verify that the audit data cannot be lost (replication is used) 1 1

Ensure no “side-channel” information leak (don’t create/restrict
access):

44 »»»From configuration files 2 1

45 »»»From system variables 1

46 »»»From core_dump/trace files 8 8 1

47 »»»From backups of data and configuration files 1 1 4

 Avoid the interaction between the DBMS users and the OS:

48 »»»Deny any read/write on file system from DBMS used 2 3 2

49
»»»Deny any network operation (sending email, opening sockets,
etc...)

 4 3

50 »»»Deny access to not needed extended libraries and functionalities 1 11 11 54

51 »»»Deny access to any OS information and commands 2

APPLICATION LEVEL CONFIGURATION AND USAGE

52 Remove user rights over system tables 1 23 25 1

53 Remove user quotas over system areas 3 1

54 Implement least privilege policy in rights assignments 9 10 6

55 Avoid ANY and ALL expressions in rights assignments 1 3 3

56 Do not delegate rights assignments 1 3 3 3

Security Benchmarking of Transactional Systems

223

57
No user should have rights to change system properties or
configurations

3 4 4 2

58 Grant privileges to roles/groups instead of users 1 1 3

59 Do not maintain the DB schema creation SQL files in the DB server 1

Total number of recomendations 48 166 183 177

Table A.2 Complementary DoD configuration best practices

COMPLEMENTARY BEST PRACTICES (DoD) Group

1A
Monitor de DBMS application and configuration files for
modifications

Operational Procedures

2A Do not use self signed certificates System Level Config.

3A Protect/encrypt application code Appl. Level Config./Usage

4A Audit application code changes Appl. Level Config./Usage

5A
Employ stored procedures and views instead of direct table
access

Appl. Level Config./Usage

The following table presents the individual weights given by the experts, the

relative importance to the attack surface and the cumulative importance for each

best practice. For each contributor, E stands for engineer and A for academic.

Table A.3 Best Practices Weights

Best

Practice
E1 E2 A3 A4 E5 A6 E7 A8 A9

Relative

Weight

Cumul.

Weight

4 4 4 4 4 4 4 4 4 4 5,26% 5,26%

3 4 4 4 4 4 4 4 3 4 4,73% 9,99%

19 4 4 4 3 4 4 4 4 3 4,21% 14,19%

28 3 4 4 3 4 4 4 4 4 4,21% 18,40%

57 3 4 4 3 4 4 4 4 4 4,21% 22,60%

2 3 4 3 3 4 4 4 4 4 3,68% 26,28%

24 3 3 4 4 3 4 4 4 4 3,68% 29,96%

39 4 3 4 3 3 4 4 4 4 3,68% 33,64%

35 4 3 4 2 3 4 4 4 4 3,63% 37,27%

15 4 3 4 4 3 3 3 4 4 3,15% 40,42%

1 3 4 3 2 4 4 4 3 4 3,10% 43,52%

6 2 4 4 2 4 4 4 2 3 3,00% 46,52%

52 2 3 4 3 3 4 3 4 4 2,58% 49,10%

25 4 4 3 3 1 4 4 3 2 2,52% 51,61%

20 3 4 3 3 4 3 4 3 3 2,10% 53,72%

23 3 3 4 3 3 3 4 3 4 2,10% 55,82%

18 3 3 3 2 3 3 4 4 4 2,05% 57,87%

Annex A  Security Recommendations Tests, Weights and Analytical Results

224

31 4 4 3 2 4 3 3 3 3 2,05% 59,92%

8 2 3 2 3 3 4 4 3 4 2,00% 61,92%

29 2 4 3 2 4 3 4 3 3 2,00% 63,91%

51 2 4 3 2 4 3 3 3 4 2,00% 65,91%

32 3 4 2 1 4 3 3 4 3 1,99% 67,90%

36 3 3 3 2 3 3 4 3 4 1,52% 69,43%

54 3 3 4 3 3 2 3 4 3 1,52% 70,95%

33 4 3 3 2 3 4 3 2 3 1,47% 72,42%

37 3 2 3 1 2 3 4 3 4 1,41% 73,84%

10 2 3 3 1 3 4 4 3 1 1,41% 75,25%

12 2 3 3 1 3 4 4 3 1 1,41% 76,66%

42 2 2 3 2 2 4 4 3 3 1,37% 78,02%

41 3 1 1 1 1 4 4 2 2 1,24% 79,26%

22 3 3 4 2 3 3 3 3 3 1,00% 80,26%

34 3 3 4 2 3 3 3 3 3 1,00% 81,26%

5 3 3 2 2 3 3 4 3 3 0,95% 82,21%

48 2 3 4 2 3 3 3 3 3 0,95% 83,15%

21 3 3 2 3 3 3 4 1 3 0,94% 84,09%

47 2 2 4 3 2 3 3 3 3 0,89% 84,99%

38 3 2 3 1 2 3 4 3 3 0,89% 85,88%

55 3 3 4 1 3 1 3 3 2 0,88% 86,76%

46 2 2 4 3 2 3 3 2 3 0,84% 87,60%

50 2 2 4 2 2 3 3 3 3 0,84% 88,44%

7 2 2 3 2 2 3 4 2 3 0,79% 89,23%

44 2 2 2 3 2 4 3 2 3 0,79% 90,02%

45 2 2 2 3 2 4 3 2 3 0,79% 90,81%

49 2 2 4 2 2 3 3 2 3 0,79% 91,59%

26 3 3 2 2 1 2 4 2 3 0,78% 92,38%

40 4 1 1 2 1 3 3 3 2 0,77% 93,15%

43 2 2 3 1 2 3 4 2 2 0,73% 93,88%

9 3 1 1 2 2 3 4 2 1 0,72% 94,60%

4A 1 1 4 1 1 3 3 2 2 0,71% 95,32%

11 2 1 1 2 2 3 4 2 1 0,67% 95,98%

17 2 1 2 1 1 2 4 2 2 0,62% 96,60%

13 1 1 1 1 1 2 4 1 2 0,60% 97,20%

56 3 3 3 2 3 3 3 3 3 0,47% 97,67%

30 2 3 2 1 3 3 3 3 2 0,31% 97,98%

1A 2 3 2 2 3 2 3 3 2 0,26% 98,24%

53 2 2 3 2 2 1 3 3 3 0,26% 98,50%

Security Benchmarking of Transactional Systems

225

58 3 2 1 3 2 2 3 2 3 0,26% 98,76%

27 2 3 1 1 1 3 3 1 3 0,24% 99,00%

2A 2 2 3 1 2 1 3 3 2 0,20% 99,20%

14 1 1 2 3 1 3 3 2 1 0,19% 99,39%

5A 2 2 2 3 2 2 3 2 2 0,16% 99,55%

16 2 2 2 1 2 3 3 2 2 0,15% 99,70%

59 2 2 1 2 2 3 3 2 2 0,15% 99,85%

3A 3 2 2 1 2 2 3 1 2 0,15% 100,00%

Table A.4 Complete list of tests.

TEST Fail

ENVIRONMENT

1

If the machine is turned off, does any service other than the database become unavailable? Is

there any process running on the machine which is not demanded by the DBMS, the OS or the

machine maintenance/security?

Yes

2
If the machine is turned off, does any critical network service, like naming, directory or

authentication services, becomes unavailable?
Yes

3
Is there a firewall on the network border? Is there a firewall running on the DBMS machine? Are

both firewalls properly configured by experienced staff with solid network knowledge? [9, 14, 16]
No

4
Is it possible to an unauthorized person to physically access the machine without supervision at

any given time?
Yes

5
List the protocols available in the network stack in the OS of the DBMS machine. For each

protocol, is there a clear justification for its availability?
No

6
List the DBMS processes in the OS. For each process, is the user running it used to run any other

process at any time?
Yes

7

Locate the DBMS processes user. Does that user have administration rights? Does it can run

applications not DB related? Does it have read rights on any file not necessary to the DBMS

processes?

Yes

8
Locate the DBMS processes user. Can you login in the OS with it? (assume you know its

password)
Yes

INSTALLATION SETUP

Annex A  Security Recommendations Tests, Weights and Analytical Results

226

9
Locate the log files of the DBMS and identify their file system partition. Are there any other files in

this partition besides the logs?
Yes

10
Locate the log files of the DBMS and identify their file system partition. Does that partition have

exclusive read/write rights for the DBMS user?
No

11
Locate the data files of the DBMS and identify their file system partition. Are there any other files

in this partition besides the data files?
Yes

12
Locate the data files of the DBMS and identify their file system partition. Does that partition have

exclusive read/write rights for the DBMS user?
No

13

List all OS users which work only with the DB. List all OS regular users (not DB users). List all

DBMS applications and OS applications that are necessary for the OS users that work with the

DB. Does any regular user can access any DBMS application listed? Does any DB user can

access any application not in one of the lists?

Yes

14

List all DBMS databases. Install a fresh copy of the DBMS in a test machine without any

customization and then list its DBMS databases. Is there any database in both lists which isn’t

required for the DBMS?

Yes

15
List all DBMS accounts. Install a fresh copy of the DBMS in a temporary machine without any

customization and then list its DBMS accounts. Is there any account in both lists?
Yes

16

List any identification names a remote user must know to connect to the DBMS. Install a fresh

copy of the DBMS in a temporary machine without any customization and then list the

identification names a remote user must know to connect to this DBMS instance. Is there any

name in both lists?

Yes

17

List any TCP/UDP ports a remote user must know to connect to the DBMS. Install a fresh copy of

the DBMS in a temporary machine without any customization and then list the TCP/UDP ports a

remote user must know to connect to this DBMS instance. Is there any port in both lists?

Yes

18
List all SSL certificates used with the DBMS. For each one, was it created by experienced staff

with that specific purpose? [2, 4]
No

19 Is there any kind of development or testing being done in the production server? Yes

20 Does any developer have a valid DBMS account or OS account in the production server? Yes

Security Benchmarking of Transactional Systems

227

21

List the sub-net mask of the IP address of the production and the development servers. Are they

the same? Are both servers reachable from one other through a path with only layer 2 network

equipments (hubs, switches, etc…)?

Yes

22
List all files installed with the DBMS application. For each file, is its owner correctly set as the

DBMS user?
No

23
List all files installed with the DBMS application. For each file, are its rights correctly configured

according to its purposes?
No

OPERATIONAL PROCEDURES

24

Check your DBMS version. Check the latest DBMS version available from the vendor which is an

update to your version. Are they different? Is there any recommendation from the vendor against

the use of your version?

Yes

25
Is a carefully thought out, documented backup procedure regularly executed? If the person in

charge suddenly quit, is it easy for anyone else to resume its task?
No

26
Is the backup data regularly tested after it is generated? Is a recovery procedure regularly fully

simulated? Is the backup data stored in a secure place other than the DB server?
No

1A
Is there any procedure (like checking the files hashes) employed to regularly identify if any of the

DBMS application files or configuration files have been change by someone unauthorized?
No

SYSTEM LEVEL CONFIGURATION

27
During a connection procedure, does the server assign a full range random local port for the

remote user to connect?
Yes

28

Establish a connection from any remote user to the server, capture the underlying network traffic

and ask for a security expert to analyze it. Is the connection being secured with a recognized

encryption protocol like TLS?

No

29 Does the user connection require the knowledge of a server certificate? No

30 List all configuration files/parameters of the DBMS. Is a host name used on any parameter? Yes

31

For each registered DBMS user, was it created for a specific application /purpose/person? Is the

authentication procedure used in the applications recognizably secure? Does it use a standard

algorithm or protocol? [13, 14]

No

Annex A  Security Recommendations Tests, Weights and Analytical Results

228

32
Establish a connection with the DBMS and let it stay idle. Is the connection severed in a

reasonable amount of time?
No

33
Is any specific information other than a username and password obtained from the client host

during the authentication procedure?
Yes

34
List all authentication methods used with the DBMS. For each one, does it depend only on the

host?
Yes

35

Was a clear policy defined (and documented) about how passwords would be changed, when

they must be changed, how they should be retrieved if lost and what rules they must obey? Does

it comply with standard recommendations from security experts? [13, 17]

No

36
Try authenticating several times with a wrong password. Is there a try when the account becomes

permanently locked?
No

37
Advance the server clock an unreasonable number of months. Authenticate to the server. Are you

forced or recommended to change the password?
No

38 Try changing your password to the same password. Did you succeed? Yes

39
Locate the table or file where the passwords are stored and ask for a security expert to analyze it.

Are the passwords stored as some recognizably standard hash algorithm? [13, 14]
No

40
Is logging turned on? Is the log level set to report at least database errors and client connections?

Is there a clearly justified reason for it not to be set to a higher level?
No

41
Are the logs periodically checked? Are the logs also included in the backup procedures? Is the

space of the partition where the logs are written monitored?
No

42
Are the following operations traceable: creation and destruction of users, objects and sessions,

failed and successful logins, rights assignments and data changes on critical tables?
No

43
Is the trace data stored in a different area than the database? Does that area have its read/rights

permissions correctly set? Is the space of the partition where it is stored monitored?
No

44 For each configuration file, analyze its permissions. Is it readable only by authorized users? No

45
For each system variable, does it contain sensitive information (any which should be private) and

can be seen by all OS users?
Yes

46
Are core_dump or trace files being generated for failed processes and are they generally visible in

the OS?
Yes

Security Benchmarking of Transactional Systems

229

47
Does the editor used to update configuration files generate backups of the edited files and do they

remain available for reading afterwards?
Yes

48
For each function and extended functionality available, does it allow a user to access a file on the

file system?
Yes

49
For each function and extended functionality available, does it allow a user to do any kind of

network operation?
Yes

50
For each function and extended functionality available, is its availability clearly required? Is it

impossible to do the same task without it?
No

51
For each function and extended functionality available, does it allow a user to gather any info

about the OS? Does it allow a user to run any OS command?
Yes

2A
For each certificate used in the servers, is it bought from a trusted company, which has root

certificate already installed in the most common browsers and operating systems?
No

APPLICATION LEVEL CONFIGURATION AND USAGE

52

Make a list of all system tables (not created for use with applications). For each one, check if there

is any user with some permission (read or write) over it. Are those permissions clearly justified and

necessary?

No

53
Make a list of all system databases. For each element on the list, check if there is any user with

some permission over it. Is this permission clearly justified and necessary?
No

54
For each non-DBA user, list all its permissions. For each permission, does it have a clear

justification? Is it impossible for the user to work without it?
No

55
For each non-DBA user, list all its permissions. For each permission, is it of type ANY or ALL,

which would automatically propagate to other objects of the same type?
Yes

56
For each non-DBA user, list all its permissions. For each permission, does it allow that user to

grant it to another user?
Yes

57
For each non-DBA user, list all its permissions. For each permission, does it allow that user to

change some system configuration which is either critical or valid to the whole DB?
Yes

58
For each non-DBA user, list all its permissions. For each permission, does the user inherit it from

a group or role he is assigned to?
No

Annex A  Security Recommendations Tests, Weights and Analytical Results

230

59
List all documents and files that contain any schema information. For each one, is it stored in the

DB server?
Yes

3A

Is the production application code being stored in a trusted repository (like a Concurrent

Versioning System), with proper authentication, or being closely controlled and checked against

malicious modification (e.g. encrypted)?

No

4A
Is it possible to identify unequivocally, at all times, for all application code, who made each

modification and programming?
No

5A

Are all data modification operations being applied through carefully programmed stored

procedures instead of direct updates? When reading data from critical tables, are the unnecessary

data fields being filtered through views or other means?

No

In the following table, P stands for test passed, F for test failed and U for unknown

(which is treated as failed test).

Table A.5 Analytical results of the infrastructures evaluated

Test
Number Case 1 Case 2 Case 3 Case 4

1 P P F F

2 P P P P

3 P F P F

4 P P F P

5 P F F F

6 F F F F

7 F F F F

8 P P P P

9 F F P F

10 F F F F

11 P F P F

12 F F F F

13 F F F F

14 F P P P

15 F P P P

16 F P P P

17 F F P F

Security Benchmarking of Transactional Systems

231

18 P P F P

19 F F F F

20 P F P F

21 F P F F

22 P U F F

23 F F F F

24 F P P F

25 P P F P

26 F F F F

1A F F F F

27 P U U U

28 F F F F

29 F F F F

30 P P P P

31 P F P F

32 F F F F

33 P P P P

34 P P P P

35 P F F F

36 P F F F

37 F F F F

38 F F F F

39 P P P P

40 P F P F

41 P F P F

42 F F F F

43 F F F F

44 P P F F

45 P P P P

46 F P P P

47 P P P P

48 P P P P

49 P P F P

50 U P F F

51 U P F U

2A P F P F

52 P F P F

53 P F P P

54 P F F P

Annex A  Security Recommendations Tests, Weights and Analytical Results

232

55 P P F P

56 P P F P

57 P P P P

58 F F F F

59 P F P P

3A F F F F

4A F F F F

5A F F F F

233

Annex B

Pessimistic
Scenarios

Table B.1 Complete list of pessimistic scenarios

Recommendations Pessimistic Scenarios

Use a dedicated platform for the
database

The DBMS platform hosts other applications
which may have security vulnerabilities

Avoid platforms which also run critical
network services (naming,
authentication, etc)

The DBMS platform hosts a directory, naming or
similar high critical network service

Install and properly configure a firewall
on the network border

The network does not have a border firewall,
leaving all network fully accessible to internet
traffic

Install and properly configure a firewall
on the host OS

The OS does not have a local firewall leaving any
listening process fully accessible to the local area
network

Prevent physical access to the DBMS
platform by unauthorized people

The platform is physically stationed in a place
where non-authorized personnel have regular
access

Remove from the network stack all
unauthorized protocols

The OS has several network protocols installed
which are non-essential and which characteristics
and consequences are not fully understood

Create a specific user to run the DBMS
daemons

The OS userid used to run the DBMS daemons
are used for other daemons and tasks as well

Restrict DBMS user access to
everything he doesn't need

The OS userid used to run the DBMS daemons
has privileges over non-necessary OS parts
(configuration files, for instance)

Prevent direct login on the DBMS user
account

It is possible to try to login in the OS using the
userid of the DBMS daemon

Create a partition for log/auditing
information

The log/auditing information is placed in the same
partition as the OS

Only the DBMS user should read/write
in the log/auditing partition

Any OS userid can read/write in the log/auditing
information

Annex B  Pessimistic Scenarios

234

Create a partition for DB data
The data files are hosted in the same partition as
the OS

Only the DBMS user should read/write
in the data partition

Any OS userid can read/write the DBMS data

files

Remove example databases
Any potential attacker know the innerworkings
and exact details of at least one database within
the DBMS

Change/remove default user names
Any potential attacker knows at least one DBMS
userid that can be used to login in the database

Change default passwords
Any potential attacker knows at least one
userid/password pair that can be used to login in

the database

Change default remote identification
names (SID, etc...)

Any potential attacker knows the remote
identification names used by the database

Change default TCP/UDP Ports
Any potential attacker knows exactly to what
ports the DBMS process is listening

Do not use default SSL certificates
All attackers have access to the private key of the
certificate in use

Separate production and development
servers

Developers run untested/developmental code
over real live production data

No developer should have access to
the production server

Developers have partial or total control and
access over the production data

Use different network segments for
production and development servers

The developers work and access the server
though the same local network segment where
the production server is hosted

Check and set the owner of all the
DBMS files

One or more OS users are owner of the DBMS
files

Set read/write/running permissions of
the DBMS files to authorized users

All OS users have read/write/running permissions
over all DBMS files

Keep the OS software updated
The OS has known vulnerabilities which are not
patched with vendor updates

Keep the DBMS software updated
The DBMS has known vulnerabilities which are
not patched with vendor updates

Make regular backups
There is no updated copy of the production data
in a separate storage

Test the backups
The backup files might be corrupted or being
incorrectly generated

Monitor de DBMS application and
configuration files for modifications

It is impossible to know if the configuration files or
DBMS application files have been tampered with

Avoid random ports assignment for
client connections

DBMS configuration makes it impossible to
configure the external firewall as to not accept
external connection requests to a large range of
unspecified ports

Enforce remote communication
encryption with strong algorithms

Remote clients of the database use exchange
data in clear

Use server side certificate
There is no reliable way for a remote client to be
sure he is connection to the correct server
instead of a “rogue” one

Use IPs instead of host names to
configure access permissions

The server automatically accepts connections
from computers identified by a particular DNS

Security Benchmarking of Transactional Systems

235

Enforce strong user level
authentication

The authentication mechanism used is not well
understood, may be flawed and does not pinpoint
the specific person that is connected

Prevent idle connection hijacking Connections to the server are never terminated
automatically

Ensure no remote parameters are
used in authentication

It is possible to test the reaction of the system to
an additional parameter during authentication

Avoid host based authentication The server automatically accepts connections
from specific hosts which are not complete under
control of the administrator

Enforce strong password policies DBMS users may choose any password they like,
no specific rules are enforced

Apply excessive failed logins lock Anyone may try to login in the DBMS any number
of times

Apply password lifetime control with
forced change

Users and applications may use the same
password indefinitely

Use strong encryption in password
storage

Stored password information in the database is
cleartext

Enforce comprehensive logging Nothing done in the system and DBMS is
recorded anywhere

Verify that the log data cannot be lost
or tampered with

The log data is unprotected, unreplicated and
may be susceptive to unidentified modifications

Audit sensitive information No operation done over the data within the
database is recorded anywhere

Verify that the audit data cannot be lost
or be tampered with

The audit data unprotected, unreplicated and
may be susceptive to unidentified modifications

Ensure no “side-channel” information
leak through configuration files

Configuration files are generally visible and
contain sensitive information like passwords

Ensure no “side-channel” information
leak through system variables

OS system variables (like the processes list)
contain sensitive information like passwords

Ensure no “side-channel” information
leak through core_dump/trace files

Core_dumps and trace files from sensitive
processes are created and kept scattered within
the file system

Ensure no “side-channel” information
leak through backups of data and
configuration files

Backups of data and configuration files are kept
in a location generally visible and unmonitored

Deny any read/write on file system
from DBMS used

Applications regularly create, read and
manipulate local files though DBMS commands

Deny any network operation (sending
email, opening sockets, etc...)

Applications regularly access the network through
DBMS commands

Deny access to not needed DBMS
extended libraries and functionalities

It is not known what extended functionalities are
available

»»»Deny access to any OS information
and commands Applications regularly executes OS commands

Do not use self signed certificates
Any attacker can create another server certificate
with the exact same information as the one in use

Remove users privileges over system
tables

DBMS users have knowledge and access to
internal control information, and may alter the
DBMS engine behaviour

Remove user quotas over system
areas

DBMS users have the possibility of writing new
objects in a system area

Annex B  Pessimistic Scenarios

236

Implement least privilege policy in
privileges assignments

DBMS users may read and alter critical data
which they should have access to

Avoid ANY and ALL expressions in
privileges assignments

DBMS users may read and alter critical data
which they should have access to, and may
create and modify database elements

Do not delegate privileges
assignments

DBMS users can transfer its own privileges to
other untrusted users

No user should have privileges to
change system properties or
configurations

DBMS users can alter or influence the DBMS
environment and behaviour

Grant privileges to roles/groups instead
of users

DBMS users have specific unknown privileges
which are not reflected as privileges of any
defined role

Do not maintain the DB schema
creation SQL files in the DB server

OS users have complete information about the
database internal structure

Protect/encrypt application code

Application code may be altered by unknown
individuals under certain uncontrolled
circunstances

Audit application code changes

It is generally not possible to know which
individual made which modifications to
application code

Employ stored procedures and views
instead of direct table access

DBMS users may read and alter critical data
which they should not have access to

237

