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Abstract. The exclusive photoproduction of ψ(2S)meson was investigated and the coherent and the incoherent contributions
were evaluated. The light-cone dipole formalism was considered in this analysis and predictions are done for PbPb collisions
at the CERN-LHC energy of 2.76 TeV. A comparison is done to the recent ALICE Collaboration data for the ψ(1S) state
photoproduction with good agreement.
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INTRODUCTION

The exclusive vector meson photoproduction allows to test perturbative Quantum Chromodynamics and it is
expected to probe the nuclear gluon-distribution. The perturbative scale is given by the large mass of quarkonium
components and the scattering process is characterized by the color dipole cross section representing the interaction
of those color dipoles with the target. Dipole sizes of magnitude r ∼ 1/

√
m2
V +Q2 (mV is the vector meson mass)

are probed by the 1S vector meson production amplitude [1]. The 2S excited vector mesons amplitude is suppressed
compared with the 1S state due to the node effect [2]. The ratio σ(ψ(2S))/σ(ψ(1S))� 0.2 at DESY-HERA energies
at Q2 = 0 and the ratio is a Q2-dependent quantity as the electroproduction cross sections are considered [3]. The node
of the radial wavefunction of 2S states and the energy dependence of the dipole cross section, lead to an anomalous
Q2 and energy dependence of diffractive production of 2S vector mesons [4]. That appears also in the t-dependence
of the differential cross section of radially excited 2S light vector mesons [5], which is in contradiction with the usual
monotonical behavior of the corresponding 1S states.
This paper, focuses on the ψ(2S) exclusive photoproduction in heavy ion relativistic collisions, γA→ ψ(2S)X , where
for the coherent scattering one has X = A, whereas for the incoherent case X = A∗ with A∗ being an excited state of
the A-nucleon system. The light-cone dipole formalism is considered. In such framework, the cc̄ fluctuation of the
incoming quasi-real photon interacts with the nucleus target through the dipole cross section and the result is projected
on the wavefunction of the observed hadron. Corrections due to the gluon shadowing was considered, suppressing the
rapidity distribution.
The ALICE Collaboration measures of the diffractive ψ(1S) vector meson production [6, 7] opens the possibility

to investigate small-x physics with heavy nuclei. For nuclear targets, the saturation is enhanced i.e. Qsat ∝ A1/3. The
LHCb Collaboration has also measured the cross section in proton-proton collisions at

√
s = 7 TeV of exclusive

dimuon final states, including the ψ(2S) state [8]. The ratio at forward rapidity 2.0 ≤ ημ± ≤ 4.5 in that case is
σ(ψ(2S))/σ(ψ(1S)) = 0.19± 0.04, which is still consistent to the color dipole approach formalism. Therefore,
investigate the photoproduction of ψ(2S) in PbPb collisions at the LHC can give information about the pomeron
and the supression of the 2S state in relation to the 1S state.

PHOTON-POMERON PROCESS IN RELATIVISTIC AA COLLISIONS

The nucleus-nucleus collisions are dominated by electromagnetic interaction at large impact parameter and at
ultra relativistic energies. In heavy ion colliders, the heavy nuclei give rise to strong electromagnetic fields due to
the coherent action of all protons in the nucleus, which can interact with each other. Thus, the total cross section can
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be factorized in terms of the equivalent flux of photons ( dNγ (ω)
dω ) of the hadron projectile and the photon-photon or

photon-target production cross section [9] excluding the hadronic interaction.
From the relationship with the photon energy ω , i.e. y ∝ ln(2ω/mX), the rapidity distribution y for quarkonium

photoproduction in nucleus-nucleus collisions can be written as, dσ [AA→A⊗ψ(2S)⊗X ]
dy = ω dNγ (ω)

dω σγA→ψ(2S)X (ω) , where
⊗ represents the presence of a rapidity gap. Thus, the rapidity distribution is a direct measure of the photoproduction
cross section for a given energy.
In the light-cone dipole frame the probing projectile fluctuates into a quark-antiquark pair (a dipole) with transverse

separation r long after the interaction, which then scatters off the hadron [1]. In this picture the amplitude for vector
meson production off nucleons reads as (see e.g. Refs. [1, 10]) A (x,Q2,Δ) = ∑h,h̄

∫
dzd2rΨγ

h,h̄Aqq̄ΨV∗h,h̄ , where
Ψγ
h,h̄(z, r,Q

2) and ΨVh,h̄(z, r) are the light-cone wavefunctions of the photon and of the vector meson, respectively,
h and h̄ are the quark and antiquark helicities, r defines the relative transverse separation of the pair (dipole), z (1− z)
is the longitudinal momentum fractions of the quark (antiquark), Δ denotes the transverse momentum lost by the
outgoing proton (t = −Δ2) and x is the Bjorken variable. The corrections due to skewedness effect and real part of
amplitude was considered [11]. The photonwavefunctions are relatively well known [10]. For the meson wave function
the boosted gaussian wavefunction was considered [12]. The exclusive ψ(2S) photoproduction off nuclei for coherent
and incoherent processes can be simply computed in high energies where the large coherence length lc 	 RA is fairly
valid. The coherent and incoherent cross sections are given by [13],

σγA
coh =

∫
d2b |〈ΨV |1− exp

[
−1
2

σdip(x,r)TA(b)
]
|Ψγ〉|2, (1)

σγA
inc =

1
16π BV (s)

∫
d2bTA(b)×|〈ΨV |σdip(x,r)exp

[
−1
2

σdip(x,r)TA(b)
]
|Ψγ〉|2, (2)

where TA(b) =
∫
dzρA(b,z) is the nuclear thickness function given by integration of nuclear density along the trajectory

at a given impact parameter b. In addition, BV is the diffractive slope parameter in the reaction γ∗p→ ψ p. Here, we
consider the energy dependence of the slope using the Regge motivated expression BV (Wγ p) = bVel+2α ′ log W

2
γ p
W2
0
with

α ′ = 0.25 GeV−2 andW0 = 95 GeV. It is used the measured slopes [3] for ψ(1S) and ψ(2S) at Wγ p = 90 GeV, i.e.
bψ(1S)
el = 4.99±0.41 GeV−2 and bψ(2S)

el = 4.31±0.73 GeV−2, respectively.
For the dipole cross section was considered the Color Glass Condensate model [14] for σdip(x,r). This model

has been tested for a long period against DIS, diffractive DIS and exclusive production processes in ep collisions.
Corrections due to gluons shadowing were also considered as the gluon density in nuclei at small-x region is known
to be suppressed compared to a free nucleon. That is, we will take σdip → RG(x,Q2,b)σdip following studies in
Ref. [15]. The factor RG is the nuclear gluon density ratio. In the present investigation we will use the nuclear ratio
from the leading twist theory of nuclear shadowing based on generalization of the Gribov-Glauber multiple scattering
formalism as investigated in Ref. [16]. We used the two models available for RG(x,Q2) in [16], Models 1 and 2, which
correspond to higher nuclear shadowing and lower nuclear shadowing, respectively.

RESULTS AND DISCUSSIONS

The left panel of Fig. 1 presents the rapidity distribution of coherentψ(1S) state within the color dipole formalism,
using distinct scenarios for the nuclear gluon shadowing [17]. The dot-dashed curve represents the result using RG = 1
and it is consistent with previous calculations using the same formalism [11]. The ALICE data is overestimated on
the backward (forward) and mainly in central rapidities. The overestimation in the backward/forward rapidity case is
due to the threshold factor for x→ 1 was not included in the present calculation. In that kinematical region either a
small-x photon scatters off a large-x gluon or vice-versa. For instance, for y � ±3 one gets x large as 0.02. On the
other hand, for central rapidity y = 0 one can be obtained x =MVe±y/

√sNN smaller than 10−3 for the nuclear gluon
distribution. For RG = 1 the ALICE data [7] is overestimated by a factor two, as already noticed in the recent study
of Ref. [18]. Considering the ratio of the gluon density, RG(x,Q2 = m2

V/4) [16], the situation is improved. The long-
dashed (Fig.1) represents Model 1 which corresponds to a strong gluon shadowing and the solid line concerns to small
nuclear shadowing. In this analysis, the small shadowing option is preferred . The theoretical uncertainty related to the
choice of meson wavefunction is relatively large. The values dσ

dy (y = 0) = 4.95, 1.68 and 2.27 mb were obtained for
central rapidity for calculation using RG = 1, Model 1 and Model 2, respectively. RG was considered as independent
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FIGURE 1. (Color online) The rapidity distribution of coherent ψ(1S) meson photoproduction at
√
s = 2.76 TeV in PbPb

collisions at the LHC [17]. The theoretical curves stand for color dipole formalism using RG = 1 (dot-dashed curve) and two
scenarios for the nuclear gluon distribution (solid and long-dashed curves, see text). Data from ALICE collaboration [6, 7].

on the impact parameter. It is known long time ago that a b-dependent ratio could give a smaller suppression compared
to our calculation. For instance, in Ref. [15] the suppression is of order 0.85 for the LHC energy and central rapidity.
The right panel of Fig. 1 shows the first estimate of ψ(2S) coherent photoproduction in nucleus-nucleus collisions

[17]. The theoretical predictions follow the general trend as for the 1S state, where the notation for the curves are the
same as used in Fig. 1 (left). For RG = 1 one obtains dσ

dy (y= 0) = 0.71 mb for central rapidity and dσ
dy (y=±3) = 0.16

mb for the forward/backward region. When the nuclear shadowing suppression was considered in the dipole cross
section, one gets dσ

dy (y= 0) = 0.24 mb and 0.33 mb for Model 1 and Model 2, respectively. At central rapidities, the

meson state ratio gives Ry=0ψ =
σψ(2S)
dy /

dσψ(1S)
dy (y= 0) = 0.14 in case RG = 1 which is consistent with the ratio measured

in CDF, i.e. 0.14±0.05, on the observation of exclusive charmonium production at 1.96 TeV in pp̄ collisions [19]. A
similar ratio is obtained using Model 1 and Model 2 at central rapidity as well. For the planned LHC run in PbPb mode
at 5.5 TeV, the predictions are dσcoh

dy (y = 0) = 1.27 mb and dσinc
dy (y = 0) = 0.27 mb for the coherent and incoherent

ψ(2S) cross sections (upper bound using RG = 1), respectively.
The incoherent contributions to the rapidity distribution for ψ(1S) and ψ(2S) are presented in the Fig. 2 [17], solid

and dashed line, respectively. For the ψ(1S) state, the present calculation can be directly compared with those studies
presented in Ref. [18]. The incoherent cross section dσinc

dy ranges between 0.5 to 0.7 mb (using IIM dipole cross section)
or between 0.7 to 0.9 mb (using fIPsat dipole cross section) at central rapidities, with the uncertainty determined by the
distinct meson wavefunction considered [18]. Here, was obtained dσinc

dy (y = 0) = 1.1 mb using a different expression
for the incoherent amplitude, Eq. (2). The result of 1S state describes the recent ALICE data [7] for the incoherent
cross section at mid-rapidity, dσALICE

inc
dy (−0.9< y< 0.9) = 0.98±0.25 mb. For the ψ(2S) state, was found dσinc

dy = 0.16
mb for central rapidities. In both cases was only computed the case for RG = 1. Therefore, this gives an upper bound
for the incoherent cross section compared to Model 1 and Model 2 calculation. For the incoherent case, the gluon
shadowing is weaker than the coherent case and the reduction is around 20% compared to the case RG = 1. The
incoherent piece is quite smaller compared to the main coherent contribution. As an example of order of magnitude,
the ratio incoherent/coherent is a factor 0.22 for the 1S state and 0.23 for the 2S state at central rapidity.

CONCLUSIONS

The ψ(2S) photoproduction was investigated in PbPb collisions at LHC energies using the light-cone dipole
formalism. The suppression due to the gluon shadowing was also investigated and a small nuclear shadowing
RG(x,Q2 =

m2V
4 ) is preferred in ALICE data description whereas the usual RG = 1 value overestimates the central

rapidity cross section by a factor two for the ψ(1S) state photoproduction. The coherent exclusive photoproduction
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FIGURE 2. (Color online) The rapidity distribution of incoherent ψ(1S) (solid line) and ψ(2S) (dashed line) meson photopro-
duction at

√
s= 2.76 TeV in PbPb collisions at the LHC [17]. Data from ALICE collaboration [7].

of ψ(2S) off nuclei has an upper bound of order 0.71 mb at y = 0 down to 0.10 mb for backward/forward rapidities
y=±3. The incoherent contribution is a factor 0.2 below the coherent one. For the incoherent cross section, the result
describes the ALICE data. Thus, the central rapidity data measured by ALICE Collaboration for the rapidity distribu-
tion of the ψ(1S) state is crucial to constrain the nuclear gluon function. The cross section for exclusive quarkonium
production is proportional to [α(Q2)xgA(x,Q2)]2 in the leading-order pQCD calculations, evaluated at the relevant
scale Q2 ≈ m2

V /4 and at momentum fraction x� 10−3 in central rapidities. The theoretical uncertainty is large and it
has been investigated in several studies [20, 21]. Along these line, the authors of Ref. [22] extract the nuclear suppres-
sion factor, S(x≈ 10−3) = 0.61±0.064, using the ALICE data on coherent ψ(1S) and considering the nuclear gluon
shadowing predicted by nuclear pdf’s and by leading twist nuclear shadowing.
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