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ABSTRACT

This master’s thesis introduces a set of graph-based algorithms for obtaining reduced
transistor count VLSI circuits using simple cells. These algorithms are mainly focused
on minimizing node count in AIG representations and mapping this optimized AIG using
simple cells (NAND2 and NOR2) with a minimal number of inverters. Due to the AIG
node count minimization, the logic sharing is probably highly present in the optimized
AIG, what may derive intermediate circuits containing cells with unfeasible fanout in
current technology nodes. In order to fix these occurrences, this intermediate circuit is
subjected to an algorithm for fanout limitation. The proposed algorithms were applied
over a set of benchmark circuits and the obtained results have shown the usefulness of the
method. The circuits generated by the methods proposed herein have, in average, 32%
less transistor than the previous reference on transistor count using simple cells. Addi-
tionally, when comparing the presented results in terms of transistor count against works
advocating for complex cells, our results have demonstrated that previous approaches are
sometimes far from the minimum transistor count that can be obtained with the effi-
cient use of a reduced cell library composed by only a few number of simple cells. The
simple-cells-based circuits obtained after applying the algorithms proposed herein have
presented a lower transistor count in many cases when compared to previously published
results using complex (static CMOS and PTL) cells.

Keywords: Benchmark circuits. transistor count. logic synthesis. technology mapping.



Algoritmos Baseados em Grafos para Minimização de Transistores em
Ferramentas EDA para Circuitos VLSI

RESUMO

Esta dissertação de mestrado introduz um conjunto de algoritmos baseados em grafos
para a obtenção de circuitos VLSI com um número reduzido de transistores utilziando
células simples. Esses algoritmos têm um foco principal na minimização do número de
nodos em representações AIG e mapear essa estrutura otimizada utilizando células sim-
ples (NAND2 e NOR2) com um número mínimo de inversores. Devido à minimização de
nodos, o AIG tem um alto compartilhamento lógico, o que pode derivar circuitos inter-
mediários contendo células com fanouts infactíveis para os nodos tecnológicos atuais. De
forma a resolver essas ocorrências, o circuito intermediário é submetido a um algoritmo
para limitação de fanout. Os algoritmos propostos foram aplicados num conjunto de cir-
cuitos de benchmark e os resultados obtidos mostram a utilidade do método. Os circuitos
resultantes tiveram, em média, 32% menos transistores do que as referências anteriores
em números de transistores utilizando células simples. Adicionalmente, quando compa-
rando esses resultados com trabalhos que utilizam células complexas, nossos números
demonstraram que abordagens anteriores estão algumas vezes longe do número mínimo
de transistores que pode ser obtido com o uso eficiente de uma biblioteca reduzida de
células, composta por poucas células simples. Os circuitos baseados em células simples
obtidos com a aplicação dos algoritmos proposto neste trabalho apresentam um menor
número de transistores em muitos casos quando comparados aos resultados previamente
publicados utilizando células complexas (CMOS estático e PTL).

Palavras-chave: Circuitos de benchmark, número de transistores, síntese lógica, mape-
amento tecnológico.



LIST OF ABBREVIATIONS AND ACRONYMS

AIG And-Inverter Graph

ASIC Application Specific Integrated Circuit

BDD Binary Decision Diagram

CMOS Complementary Metal-Oxide-Semiconductor

DAG Directed Acyclic Graph

EDA Electrical Design Automation

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

LSI Large Scale Integration

NRE Non-Recurring Engineering

OTR Odd-level Transistor Replacement

PI Primary Input

PLA Programmable Logic Array

PO Primary Output

PTL Pass-Transistor Logic

RTL Register-Transfer Level

SOP Sum-Of-Products

TSBDD Terminal-Suppressed Binary Decision Diagram

VLSI Very-Large Scale Integration



LIST OF FIGURES

Figure 2.1 Conventional VLSI Circuits Design Flow. ....................................................20
Figure 2.2 Logic Synthesis flow for cell-based VLSI circuit designs. .............................22
Figure 2.3 Truth-table (a) and BDD (b) representing the function F = abc+ ab.........25
Figure 2.4 DAG representing the function F = abc+ ab. ..............................................26
Figure 2.5 A combinational circuit (a) and its representation with AND gates and

inverters (b), which derives the AIG representation (c). .........................................27
Figure 2.6 NAND/NOR phase-constraint graph (c), derived from its allowed phase

assignment permutations (a) and respective patterns (b). ......................................29
Figure 2.7 Logic network (a) and the corresponding polarity graph (b). ......................30

Figure 3.1 Different structures of AIG for function f = a ∗ b ∗ c...................................33
Figure 3.2 Examples of AIG rewriting...........................................................................34

Figure 4.1 Proposed flow for obtaining reduced transistor count circuits mapped
using simple cells. ....................................................................................................38

Figure 4.2 Proposed flow for obtaining reduced transistor count circuits mapped
using simple cells. ....................................................................................................39

Figure 4.3 Graph coloring process for inverter minimization on a full adder AIG (a).
The resulting gate representation (d) is derived from the colored polarity graph
(c) after removing nodes n4 and n7 from (b). ........................................................39

Figure 4.4 Example of fanout violation (a) and fanout limiting using an inverter
tree (b). ...................................................................................................................40

Figure 5.1 Deriving an AIG representation (b) from a full adder gate representation
(a) using ABC tool (Berkeley Logic Synthesis and Verification Group, 2013). .......42

Figure 5.2 The optimized AIG (a) which results in the polarity graph (b)...................44
Figure 5.3 The colored polarity graph (b) after removing nodes n4 and n7 from the

uncolorable graph (a). .............................................................................................46
Figure 5.4 The colored polarity graph (a) and the derived intermediate circuit (b). ....49
Figure 5.5 Example of fanout violation (a), substeps to limit fanout (b and c) and

fanout limited using an inverter tree (d). ................................................................54
Figure 5.6 A given AIG (a) and its polarity graph (b). The two possibilities of

graph coloring (c and d) from the uncolored graph (b). .........................................56
Figure 5.7 The two possible intermediate circuits, both derived from the two possi-

bilities of graph coloring in Figure 5.6. ...................................................................56
Figure 5.8 The polarity graph with a PPI node (a) and the obtained colored graph

(b). ..........................................................................................................................57
Figure 5.9 The intermediate circuit derived from the colored graph in Figure 5.8(b). ..57



LIST OF TABLES

Table 5.1 Truth table of the four Boolean functions represented by AIG and the
logic circuits in Figures 5.6(a), 5.7(a), 5.7(b) and 5.9. ..........................................58

Table 6.1 Transistor count benchmark circuits in old reference using simple cells
compared to the reference transistor count obtained by applying the method
proposed herein. ....................................................................................................62

Table 6.2 Review of published results using static complex CMOS cells, considering
the reference start-point circuits proposed herein. ................................................64

Table 6.3 Review of published results using PTL cells, considering the reference
start-point circuits proposed herein.......................................................................64

Table 6.4 Transistor count of benchmark circuits mapped using simple cells obtained
both from ABC and the approach proposed herein...............................................66

Table 6.5 Transistor count increase due to fanout limitation. .......................................67
Table 6.6 Parameters used on best results.....................................................................67
Table 6.7 Transistor count of best BFS and DFS iterations allowing variation of all

other parameters. ..................................................................................................68
Table 6.8 Transistor count of largest percent difference on BFS and DFS iterations

keeping static all other parameters........................................................................69
Table 6.9 Transistor count of best QuickColor and GoodColor iterations allowing

variation of all other parameters. ..........................................................................69
Table 6.10 Transistor count of largest percent difference on QuickColor and Good-

Color iterations keeping static all other parameters. .............................................70
Table 6.11 Best transistor count of forcing input colors and not forcing input colors

iterations allowing variation of all other parameters. ............................................71
Table 6.12 Transistor count of largest percent difference on forcing input colors and

not forcing input colors iterations keeping static all other parameters..................72
Table 6.13 Best transistor count of forcing and not forcing output colors iterations

allowing variation of all other parameters. ............................................................72
Table 6.14 Transistor count of largest percent difference on forcing and not forcing

output colors iterations keeping static all other parameters..................................73
Table 6.15 Best transistor count of not removing and removing specific nodes iter-

ations allowing variation of all other parameters...................................................74
Table 6.16 Transistor count of largest percent difference on removing and not re-

moving polarity don’t care nodes keeping static all other parameters. .................75
Table 6.17 Fanout analysis running ABC......................................................................75
Table 6.18 Fanout analysis running the method proposed herein. ................................76
Table 6.19 Runtime analysis of the proposed approach.................................................77
Table 6.20 Runtime analysis of average runtime comparing against ABC. ...................77
Table 6.21 Runtime analysis of the 32 sub-iterations comparing against ABC. ............78



CONTENTS

1 INTRODUCTION .................................................................................... 14
1.1 VLSI Circuit Design Methods............................................................... 14
1.2 Motivation............................................................................................. 16
1.3 Objective ............................................................................................... 17
1.4 Master’s Thesis Organization ................................................................ 18
2 TECHNICAL BACKGROUND ............................................................... 20
2.1 Integrated Circuits Synthesis ................................................................ 20
2.2 Logic Synthesis Flow ............................................................................. 21
2.2.1 Technology-Independent Optimizations ...............................................................22
2.2.2 Technology Mapping and Technology-Dependent Optimizations .........................22
2.2.2.1 Decomposition ...................................................................................................23
2.2.2.2 Matching............................................................................................................23
2.2.2.3 Covering.............................................................................................................24
2.3 Logic Synthesis Data Structures ........................................................... 24
2.3.1 Binary Decision Diagram......................................................................................24
2.3.2 Directed Acyclic Graph ........................................................................................26
2.3.3 And-Inverter Graph..............................................................................................26
2.4 Polarity Assignment Problem ............................................................... 28
2.4.1 Problem Definition ...............................................................................................28
2.4.2 Phase-Constraint Graph.......................................................................................28
2.4.3 Polarity Graph......................................................................................................29
3 LOGIC SYNTHESIS REVIEW................................................................ 31
3.1 Logic Synthesis Historical Perspective .................................................. 31
3.2 AIG Rewriting ...................................................................................... 32
3.3 Approaches for Standard Cell Technology Mapping ............................. 34
3.4 Approaches for Library-Free Technology Mapping ............................... 36
3.5 Simple Cells and Complex Cells into Standard Cell Libraries .............. 37
4 PROPOSED APPROACH ....................................................................... 38
4.1 Optimizing the Initial Circuit and Minimizing Inverter Count............. 40
4.2 Limiting Fanout with Inverter Trees ..................................................... 40
5 REDUCING TRANSISTOR COUNT IN BENCHMARK CIRCUITS ... 42
5.1 Reducing Node Count in AIGs ............................................................. 42
5.2 Deriving Polarity Graph from AIG....................................................... 43
5.3 Coloring the Obtained Polarity Graph.................................................. 46
5.4 Deriving the Final Circuit..................................................................... 48
5.5 Limiting Fanout with Inverter Trees ..................................................... 50
5.6 Forcing Colors in the Graph Using a Positive Polarity Inducing Node 55
5.7 Removing Polarity Don’t Care Nodes................................................... 59
5.8 Improving the Results with Trade-off Optimizations ............................ 60
5.9 High-level Algorithm............................................................................. 61
6 RESULTS ................................................................................................. 62
6.1 Review of Published Results in terms of Transistor Count................... 62
6.2 Comparing the Proposed Approach with ABC..................................... 65
6.3 Analyzing the Influence of Each Parameter on the Proposed Approach67
6.3.1 Polarity Graph Coloring in Different Orders ........................................................68
6.3.2 QuickColor and GoodColor Heuristics .................................................................69
6.3.3 Forcing Colors on Input Nodes.............................................................................70
6.3.4 Forcing Colors on Output Nodes..........................................................................72



6.3.5 Removing Polarity Don’t Care Nodes ..................................................................73
6.4 Analysis of Fanout................................................................................. 75
6.5 Analysis of Runtime .............................................................................. 76
7 CONCLUSIONS AND FUTURE WORKS.............................................. 79
REFERENCES ............................................................................................ 82



14

1 INTRODUCTION

According to the International Technology Roadmap for Semiconductors, the semi-
conductor industry has achieved a distinctive position among other industries by the speed
of improvements in its products during the last five decades (ITRS, 2012). Many of these
improvements are mainly due to the industry’s ability to exponentially decrease the min-
imum feature sizes used to fabricate integrated circuits (IC). Among the main trends
which confirm this fact, such as microprocessors throughput, mobile devices battery life,
and small and light-weighted products, the most frequently cited trend is the integration
level, which is usually expressed as Moore’s Law (MOORE, 1965). However, all these
trends, sometimes called “scaling”, have impact on the complexity while designing Very-
Large Scale Integration (VLSI) circuits. In this sense, designing integrated circuits is
becoming an increasingly hard task (ITRS, 2012; KAHNG et al., 2011).

The VLSI circuit designs demand the optimization of different (and sometimes
divergent) cost functions. The most frequently cited cost functions entities in the sense
of scaling are chip area, circuit delay, power consumption, testability and time-to-market
(KAHNG et al., 2011; HACHTEL; SOMENZI, 1996; GEREZ, 1999). With high-level
complexity while designing ICs, the use of Electronic Design Automation (EDA) tools be-
come imperative to semiconductor industry. In this sense, The progress achieved on EDA
tools’ algorithms can be stated as another crucial factor to obtain the results achieved
by the semiconductor industry during the last five decades (ITRS, 2012; KAHNG et al.,
2011). Intrinsic optimization tasks of the design flow are modeled as computational prob-
lems, solved by EDA tools, and, due to the use of efficient EDA tools, integrated circuits
with an improved final quality are produced (HACHTEL; SOMENZI, 1996; GEREZ,
1999).

This chapter is organized as follows. We will initially present a brief review of VLSI
circuit design methods, to better explain where our contribution lies. After, we detail our
motivation. Next, we present the objectives of this master’s thesis. This chapter ends by
detailing the organization of this master’s thesis.

1.1 VLSI Circuit Design Methods

Usually, VLSI circuit design methods are classified into three main categories: cus-
tom, semicustom and programmable designs (GEREZ, 1999; MICHELI, 2003; WESTE;
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HARRIS, 2009). In custom designs, both functional and physical designs are “hand-
crafted”. On the other hand, the semicustom design method consists in establishing
design restrictions, such as limiting the number of primitives, when compared against
custom designs. The semicustom design method limits the ability of optimization of a
circuit, but it makes easier the development of EDA tools by the reduction on the solution
space. The more degrees of freedom there are, the bigger the search space for the optimal
design (GEREZ, 1999; MICHELI, 2003; WESTE; HARRIS, 2009).

The most known custom design method is called full-custom design. Full-custom
designers must use graphic editor tools to draw the circuit layout one rectangle/polygon
at time. In this case, the entire system is designed at mask level. A variation of this
full-custom method is called symbolic layout. Rather than dealing with rectangles and
polygons on various mask levels, the primitives are transistors, contacts, wires, and ports
(points of connection) (GEREZ, 1999; WESTE; HARRIS, 2009).

Among the semicustom design methods, the most known is the cell-based design,
in which instances of a standard cell library are used as the basic building block of the
design. The design’s logic structure is mapped into standard cells, which are placed in
appropriate positions. After that, their interconnections are routed. This approach is
classified as semicustom because the library vendors use a custom method to develop the
cell library (GEREZ, 1999; MICHELI, 2003; WESTE; HARRIS, 2009). However, there
are EDA vendors, such as NanGate Inc, that provide solutions for automatic library
generation. There also exist approaches claiming to improve the performance of cell-
based designs by using a library-free methodology (REIS et al., 1995; MARQUES et al.,
2007).

The custom methodology requires highly skilled designers and a great effort in order
to fine-tune features of the circuit. However, this high cost may be compensated by a high
quality design. Cell-based designs can deliver smaller, faster, and lower-power chips than
the programmable logic counterpart, such as Field-Programmable Gate Arrays (FPGA),
but has high non-recurring engineering (NRE) costs to produce the custom mask set.
When compared to full-custom design, cell-based design offers much higher productivity
because it uses predesigned cells with layouts (GEREZ, 1999; MICHELI, 2003; WESTE;
HARRIS, 2009).

Nowadays, the number of cell-based designs outnumbers custom designs. Digital
complementary metal-oxide-semiconductor (CMOS) ICs are made using custom mask
design only for the highest of volume parts, such as microprocessor datapaths. However,
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analog and RF designs, cell libraries, memories, and I/O cells still frequently use custom
design (WESTE; HARRIS, 2009).

Our work will be centered in cell-based semicustom designs, which are the more
used application specific integrated circuit (ASIC) design methodology. One of the focus
is the constitution of a standard cell library. Next section presents a detailed discussion
about the types of cells and how they constitute different kinds of libraries.

1.2 Motivation

In a cell-based VLSI circuit design, it is common to use a cell library that con-
tains simple cells (e.g. AND, OR, NAND and NOR), and also may comprise some more
complex cells (e.g. AOI and OAI cells) (REIS et al., 1995; PIGUET et al., 2001; SEO
et al., 2008; RICCI; MUNARI; CIAMPOLINI, 2007; GAVRILOV et al., 1997). In the
particular case of library-free approaches, the use of complex cells is explored more ex-
tensively (REIS et al., 1995; MARQUES et al., 2007). In such design methods, complex
cells are usually obtained as transistor-level gate networks using series-parallel (REIS et
al., 1995; GAVRILOV et al., 1997) or pass-transistor logic (PTL) topologies (YANBIN;
SAPATNEKAR; BAMJI, 2001; SHELAR; SAPATNEKAR, 2005). Historically, studies
about library-free approach have tried to demonstrate the advantages of using complex
cells when compared to simple cells (REIS et al., 1995; GAVRILOV et al., 1997; YANBIN;
SAPATNEKAR; BAMJI, 2001; SHELAR; SAPATNEKAR, 2005). The main advantage
reported by those works is the reduction in the number of devices needed to implement
digital ICs. Published results using complex cells claim reductions of the order of 40%
in terms of transistor count when compared to simple-cell implementations. The reduced
number of transistors is expected to have a positive impact on design cost functions, such
as area and power consumption. Thus, it is related to the quality of the final circuits,
and justifies the importance of obtaining reduced transistor count circuits.

It is important to remark that logic synthesis has evolved considerably in recent
years. The most recent logic synthesis works are based on a type of data structure
called and-inverter graphs (AIGs) (Berkeley Logic Synthesis and Verification Group, 2013;
MISHCHENKO; CHATTERJEE; BRAYTON, 2006). The AIG data structure can be
viewed as a graph composed of 2-input AND (AND2) nodes, connected by direct or
negated edges (MISHCHENKO; CHATTERJEE; BRAYTON, 2006). State-of-the-art
logic synthesis tools, like ABC (Berkeley Logic Synthesis and Verification Group, 2013),



17

minimize the number of (AND2) nodes in AIGs. This number can be directly correlated
to the number of cells in implementations using 2-input simple cells, such as ANDs, ORs,
NANDs and NORs. These cells are variants of the primitive AND2, obtained by applying
De Morgan’s law and inversions. Notice that De Morgan’s law modifies the polarity of
the input and output signals. AIGs with a minimized number of nodes can be used
almost straightforwardly to generate minimal transistor count circuits based on simple
(2-input) cells. Note also that 2-input NAND (NAND2) and NOR (NOR2) cells require
four transistors in standard static CMOS topology, whereas 2-input AND (AND2) and
OR (OR2) cells require six transistors. Therefore, it is possible to choose the polarity of
internal nodes, such that NAND2 and NOR2 gates are preferred. This way, the transistor
count may be reduced by choosing cells with a low number of transistors, whereas a few
inverters are added.

Our motivation is to verify if the state-of-the-art tools that provide AIG node count
minimization can derive competitive results in terms of transistor count using simple cells
compared to previously published results using complex cells. The obtained circuits could
be used to directly generate final implementations using simple cells, or even they could
be resynthesized using complex cells, since the solution given by logic synthesis tools
depends on the input circuit. For this, we need an efficient polarity assignment approach,
to minimize inverters, such that the implementation from AIGs uses more NAND2 and
NOR2 cells (which have cheaper transistor count costs compared to AND2 and OR2 cells).

1.3 Objective

The objective of this master’s thesis is to introduce a set of algorithms for obtaining
reduced transistor count for semicustom digital VLSI circuits based on simple cells. These
algorithms are mainly focused on starting from minimized node count AIG representa-
tions, obtained through state-of-the-art logic synthesis tools, and mapping this optimized
AIG using simple cells (NAND2 and NOR2) with a minimal number of inverters. This
way, the problem is formulated as a polarity assignment and inverter minimization prob-
lem, in order to map optimized AIGs into NAND2/NOR2/INV implementations with
minimum transistor count. A second aspect that we are addressing is that, due to the
AIG node count minimization, the logic sharing is highly present in the optimized AIG,
sometimes resulting in circuits containing some cells with unfeasible fanout in current
technology nodes. In order to fix these occurrences, we propose an algorithm for fanout
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limitation, which is combined to the inverter minimization procedure. The presented al-
gorithms and approaches are graph-based and they are variations and improvements of
previous techniques of graph coloring for inverter minimization (JAIN; BRYANT, 1993),
combined with current state-of-the-art logic synthesis tools, such as ABC (Berkeley Logic
Synthesis and Verification Group, 2013), for minimizing the node count in the AIG rep-
resentation of the circuit being synthesized.

Applying the proposed algorithms, this work also tries to demonstrate that the
start-points reported by previous works in terms of transistor count using simple cells are
far from optimal, mainly when considering current optimization techniques. We present
better reference start-points and we also demonstrate that the gains obtained by prior
approaches comparing implementations using complex cells against circuits using simple
cells are not so significant (some gains even become losses) when measured against the
start-points presented herein.

1.4 Master’s Thesis Organization

The next chapters are organized as follows:

Chapter 2: Technical Background — reviews all basic and established knowledge that
is needed to understand the concepts presented in this work, such as the integrated
circuit design flow, the logic synthesis flow, common data structures, and the polarity
assignment problem.

Chapter 3: Logic Synthesis Review— traces an evolutionary line over the logic synthesis,
describing some previous and recent works that are connected to the work presented
in this thesis.

Chapter 4: Proposed Approach — presents an overview of the proposed approach, pro-
viding examples and a general point of view in such a way to provide a better
understanding of the proposed synthesis flow.

Chapter 5: Reducing Transistor Count in Benchmark Circuits — provides a detailed
explanation of each step and substep of the proposed approach, as well as presents
pseudocodes of the proposed algorithms.

Chapter 6: Results — presents and discusses the obtained results when running the
proposed technique in a set of benchmark circuits, analyzing the influence of each
proposed parameter in the final result.
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Chapter 7: Conclusions and Future Works — provides the main conclusions, summa-
rizes the contributions of this work and presents the intended future works.
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2 TECHNICAL BACKGROUND

This chapter provides a basic technical background highlighting the concepts nec-
essary to understand this work. Several topics, including the integrated circuit cell-based
design flow, the logic synthesis design flow and its main data structures, and the polarity
assignment problem are reviewed.

2.1 Integrated Circuits Synthesis

Historically, the VLSI circuits design flow is based on synthesis tasks. At the early
steps of this flow, the design description is in a degree of abstraction that is always higher
than the equivalent descriptions at the late stages. The sooner is the step, the greater
the level of abstraction. The later is the step, the lower the level of abstraction (GEREZ,
1999; MICHELI, 2003).

The design of integrated circuits is often split into three major steps: high-level (or
architectural) synthesis, logic synthesis and physical synthesis (GEREZ, 1999; MICHELI,
2003). Figure 2.1 depicts a simplified design flow, omitting some internal sub-tasks and
verification tasks during the flow.

Figure 2.1: Conventional VLSI Circuits Design Flow.
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Source: Author.



21

According to Gerez (1999), Micheli (2003) and Weste and Harris (2009), the high-
level synthesis step transforms the architecture and microarchitecture system descriptions
into an equivalent structural description in Register-Transfer Level (RTL). This RTL
structural description must be synthesized into a netlist through technology-independent
and technology-dependent optimizations, which are performed in the logic synthesis step.
The resulting netlist, a description based on cell instances and their interconnections,
shall be placed and routed in the physical synthesis step. The final product of the design
flow is the circuit layout implementing the initial architectural and behavioral description
of the system, typically represented in a GDSII file.

The work presented in this thesis is concerned to the logic synthesis step, specifi-
cally with the technology-independent optimizations. Our approach takes an and-inverter
graph (AIG) as input, which could be obtained in the early stages of technology-independent
optimizations, and produces an intermediate circuit comprised of simple cells. This in-
termediate circuit (with a minimized number of transistors) can be directly mapped to a
netlist by instantiating cells from a simple standard cell library, or even it could be used
as input of the technology-dependent optimizations. An initial circuit with a minimized
number of transistors is expected to have a positive impact on design cost functions at
later synthesis steps, such as area and power consumption.

2.2 Logic Synthesis Flow

Logic synthesis is the step of integrated circuit design flow that defines the in-
ternal structure of the logic used to implement a design. Current state-of-the-art logic
synthesis tools are commonly described as tools to synthesize multi-level circuits, which
have multiple levels of logic gates on any path between a primary input and a primary
output (HACHTEL; SOMENZI, 1996; MICHELI, 2003). Logic synthesis has two main
goals. The first objective is to perform an automatic translation of an RTL description,
usually in a Hardware Description Language (HDL), into a netlist of interconnected logic
gates instantiated from a library. Second, these tools try to optimize the resulting circuit
in terms of typical cost functions, such as chip area, power consumption, critical path
delay and the degree of testability; while satisfying the design constraints imposed by the
designers. Design constraints can include the desired operation frequency, as well as dif-
ferent time requirements on different input/output paths (HACHTEL; SOMENZI, 1996;
MICHELI, 2003). The logic synthesis step is commonly divided into two major stages: the



22

technology-independent optimizations and the technology-dependent optimizations. Fig-
ure 2.2 depicts the logic synthesis flow for cell-based VLSI circuit designs. The following
subsections detail both technology-independent and technology-dependent optimization
stages

Figure 2.2: Logic Synthesis flow for cell-based VLSI circuit designs.
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Description

Logic Synthesis

Synthesized
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Source: Author.

2.2.1 Technology-Independent Optimizations

The main tasks performed in the technology-independent stage are Boolean min-
imizations, circuit restructuring and local optimizations. The cost functions that are
optimized during this process are technology independent, e.g the number of nodes in an
AIG, or the depth of the AIG in terms of number of nodes.

In this optimization stage, the logic structure is not based on standard cells, com-
monly refered to as a generic circuit. Due to this reason, it is said to be technology-
independent.

2.2.2 Technology Mapping and Technology-Dependent Optimizations

In the technology-dependent stage, the generic circuit resulting is mapped using
the standard cell library into a synthesized netlist. This mapping task is called technology
mapping. During and after mapping, all the information from the characterized cells are
used for obtaining trade-off optimizations, such as gate sizing, delay optimizations on
critical paths, buffer insertion and fanout limiting. During this step, the cost functions
are related to the final technology of fabrication, usually coming from a pre-characterized
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cell library containing detailed information on area, delay and power consumption for
each cell, including the different sizes available in the library.

Technology mapping is the process by which the technology-independent logic cir-
cuit is implemented in terms of the logic elements available in a particular technology
library of standard cells (LAVAGNO; SCHEFFER; MARTIN, 2010; MARQUES et al.,
2009). Each logic element is associated with information about delay, area, and inter-
nal and external capacitances. The optimization problem is to find an implementation
meeting some user defined constraints (as a target frequency) while minimize other cost
functions, such as area and power consumption. This process is frequently described into
three main phases: decomposition, matching and covering (LAVAGNO; SCHEFFER;
MARTIN, 2010; MARQUES et al., 2009; CHATTERJEE, 2007). These phases can be
presented as follows.

2.2.2.1 Decomposition

In this phase, the data structure to be used during the technology mapping is
created. The representation of the initial circuit to be mapped as a data structure is
called subject description. According to the used data structure, the subject description
can be a subject tree or a subject graph. The specification of this new representation
relies strongly on the mapping strategy adopted. Some approaches break the graph into
trees. State-of-the-art technology mapping algorithms work on subject graphs.

An important issue during this phase is to ensure that each node of the subject
description will have at least one match against the cells of the library. This is important
to guarantee that the technology mapping process completes successfully.

2.2.2.2 Matching

In matching phase, the algorithms try to find a set of equivalences between the
functionality in each node of the subject description and the cells in the technology library.
Two main approaches are commonly used, described as follows (LAVAGNO; SCHEFFER;
MARTIN, 2010; MARQUES et al., 2009; CHATTERJEE, 2007):

Pattern (or Structural) matching: identifies common structural patterns between
portions of the subject graph and cells of the library. Most approaches reduce the struc-
tural matching problem to a graph isomorphism problem. Due to the reduced size of both
graphs, the isomorphism problem (commonly intractable) become tractable (BRAYTON
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et al., 1987).
Boolean matching: performs the matching considering Boolean functions of the

same equivalence class. It usually performs the matching using binary decision diagrams
(BDD) by trying different variable orderings, until a matching is found. Boolean matching
is computationally more expensive than structural matching, but it can lead to better
results (MAILHOT; MICHELI, 1993).

2.2.2.3 Covering

Once the whole subject graph has been matched, the final phase of technology
mapping needs to cover the entire logic network choosing among the matches which of
them minimize the objective function. This function is often the total area, the worst
case delay, the power consumption, or a composition of these (LAVAGNO; SCHEFFER;
MARTIN, 2010; MARQUES et al., 2009; CHATTERJEE, 2007).

2.3 Logic Synthesis Data Structures

A logic design may be represented by an assortment of data structures in EDA
tools. Each of them has its particular strengths and weakness, being more or less suit-
able to specific manipulations. The following subsections describe the most known data
structures used in logic synthesis algorithms.

2.3.1 Binary Decision Diagram

A Binary Decision Diagram (BDD) is a graph representation of Boolean functions.
In this sense, a BDD represents a set of binary-valued decisions, culminating in an overall
decision that could be TRUE (1) or FALSE (0). Though BDDs are relatively old (LEE,
1959; AKERS, 1978), they just began attracting the research community’s attention when
Bryant (1986) brought out their advantages as canonical representations (HACHTEL;
SOMENZI, 1996; MICHELI, 2003).

Formally, a BDD is a directed acyclic graph (i.e., a directed graph with no directed
cycles) with two terminal nodes, called 1-terminal and 0-terminal, which denote the
TRUE and FALSE decision, respectively. The nodes of a BDD are partitioned into three
subsets: function nodes Φ, internal nodes V , and the terminal nodes {0, 1}. A function
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node φ ∈ Φ denotes the function being represented, has one outgoing edge and have no
incoming edges. Each internal node v ∈ V has a label l(v) ∈ SF , where SF denotes
the support of a function F , i.e., each label represents a variable on which F actually
depends. The internal nodes have two outgoing edges: the 0-edge, which denotes the
FALSE decision with respect to Source: Autor node of the edge; and the 1-edge, which
denotes the TRUE decision with respect to Source: Autor node of the edge (HACHTEL;
SOMENZI, 1996; MICHELI, 2003; GEREZ, 1999). Figure 2.3 depicts the BDD (2.3(b))
and the truth table (2.3(a)) representing the function F = abc+ ab.

Figure 2.3: Truth-table (a) and BDD (b) representing the function F = abc+ ab.

(a)

bb

ba

bb

bc

1 0

F

Function node

Internal node

Terminal node

1-edge

0-edge

Legend:

(b)

Source: Author.

A serious issue with BDDs is the ordering. To obtains the canonical form of a
BDD, the graph must be reduced and the variables in the support of the function being
represented must be ordered (BRYANT, 1986; HACHTEL; SOMENZI, 1996; MICHELI,
2003; GEREZ, 1999). Unfortunately, the size of the BDD depends critically on the
specific ordering chosen. In some cases, this dependence is so drastic that it is impractical
to build the BDD at all. It is also known that BDD’s size may grows exponentially with
variable count, independent of the order. Considering |SF | as the number of variables in
the support of the function F , the maximum number of nodes |V | of a BDD is given by
Equation 2.1. Thus, the use of BDDs become unpractical in some cases and limited by
the number of variables.

|V | = 2|SF |

|SF |
(2.1)
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2.3.2 Directed Acyclic Graph

In the context of logic synthesis, a data structure named directed acyclic graph
(DAG) is a directed graph with no directed cycles that have three specific types of nodes:
primary input (PI), primary output (PO) and logic operator nodes, such as AND and
OR (HACHTEL; SOMENZI, 1996; MICHELI, 2003). It is important to observe that the
name given to this particular data structure can be misleading, as directed acyclic graph is
a name that can be used for a particular class of graphs with certain properties (WESTE;
HARRIS, 2009; CORMEN et al., 2001). Given a node v, the set of edges arriving in v,
iedge(v), denotes the inputs of v. The set of edges leaving from v, oedge(v), denotes the
outputs of v. An example of DAG representing the function F = abc+ ab can be seen in
Figure 2.4.

Figure 2.4: DAG representing the function F = abc+ ab.
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Source: Author.

Currently, the main application of DAGs in logic synthesis algorithms is on graph
covering of technology mapping. However, due to the growth of the designed circuits
nowadays, the use of DAGs tends to suffer of scalability problems and this data struc-
ture is being replaced AIG-based structures (LAVAGNO; SCHEFFER; MARTIN, 2010;
CHATTERJEE, 2007).

2.3.3 And-Inverter Graph

An and-inverter graph (AIG) is the data structure used in current state-of-the-
art logic synthesis tools, like ABC (Berkeley Logic Synthesis and Verification Group,
2013). The name AIG is relatively recent. However, circuit transformations based on
and-inverter representations are older than its name, including the works of Hellerman
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(HELLERMAN, 1963) and Darringer (DARRINGER et al., 1981). A popular description
format is the AIGER format (BIERE, 2007). AIGs are directed acyclic graphs (DAGs)
with specific types of nodes: 2-input AND (AND2) nodes, primary input (PI) nodes,
and primary output (PO) nodes. Primary input nodes have no incoming edges. AND2
nodes have two incoming edges. Any node of an AIG can be labeled as an output node
(MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

The edges of an AIG have a specific property: they are either in their positive or
complemented form. A Boolean signal arriving at the target node via a positive edge has
the same polarity as the Source: Autor node. The complemented form of an AIG edge
indicates the Boolean inversion operation of its signal (MISHCHENKO; CHATTERJEE;
BRAYTON, 2006). Figure 2.5 shows a possible AIG of the logic function cout = (x⊗

y ·

cin) + (x · y).

Figure 2.5: A combinational circuit (a) and its representation with AND gates and in-
verters (b), which derives the AIG representation (c).
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Source: Author.

Notice that state-of-the-art logic synthesis tools, like ABC (Berkeley Logic Synthe-
sis and Verification Group, 2013), minimize the number of (AND2) nodes in AIGs. By
adequately selecting the polarity of the signals in the inputs and outputs of an AIG node,
it can be transformed into 2-input AND, OR, NAND and NOR cells. These cells are vari-
ants of the primitive AND2 AIG nodes, obtained by applying De Morgan’s law. In order
to obtain an implementation with minimum transistor count, NAND2 and NOR2 gates
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have to be preferred, because they have four transistors, compared to the six transistors
needed for AND2 and OR2 cells.

2.4 Polarity Assignment Problem

2.4.1 Problem Definition

The polarity assignment problem is often referred to as the case in which the
polarity (also called phase) of inputs and outputs (I/Os) of a combinational network can
be changed in such a way that yields the signals and their complements. These changes
are possible without modifying the functionality only when the I/Os starts and ends on
registers or pads. Thus, it may be useful to search for matches with polarity assignments
that reduce the cost of an objective function of interest (MICHELI, 2000).

Jain and Bryant (1993) have proposed a way to perform inverter minimization in
multi-level logic networks composed of simple cells by applying a variation of the polarity
assignment problem. Their approach is based on phase-constraint graphs for allowed
cells in the library and a polarity graph to represent the complete circuit. The approach
proposed in this work applies a variation of the inverter minimization procedure proposed
by Jain and Bryant as a way for obtaining reduced transistor count circuits using simple
cells. In the following, we review the phase-constraint and polarity graphs proposed by
Jain and Bryant.

2.4.2 Phase-Constraint Graph

A phase-constraint graph defines constraints between the inputs and outputs of
a given base function (e.g. NAND). For simplicity, we will refer to these inputs and
outputs as pins. This base function defines how other allowed functions can be obtained
by permuting the phase assignments on its pins. Thus, phase-constraint graphs derive
from a set of allowed phase assignment permutations to input and output pins of their base
functions (JAIN; BRYANT, 1993). Each node in a phase-constraint graph corresponds
to a pin of the base function. Connected nodes imply that the corresponding pins must
have the same phase assignment in all patterns in the set.

Figure 2.6 shows a NAND/NOR phase-constraint graph. In this example, the
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NAND cell is the base function and so, by definition, its pattern has a positive phase
assignment in all pins (JAIN; BRYANT, 1993). The NOR operation can be obtained by
permuting all phase assignments from NAND cell (A+B ≡ A · B ≡ A ·B). This way,
the NOR pattern has a negative phase assignment in all pins. In this case, NAND and
NOR cells define the phase-constraint set. The resulting phase-constraint graph has three
nodes, corresponding to the number of pins in its base function. The edges specify that
all three pins should have the same phase assignment (either all positive or all negative).

Figure 2.6: NAND/NOR phase-constraint graph (c), derived from its allowed phase as-
signment permutations (a) and respective patterns (b).

(a) (b) (c)

Source: Author.

2.4.3 Polarity Graph

The polarity graph states how each gate in a given logic network differs from the
phase-constraint graph of the corresponding base function (JAIN; BRYANT, 1993). For
this, let ni be the ith net on the logic network, and let gk be its kth gate. For every input net
ni of a gate gk, γ(gk, ni) denotes whether the net is in its positive form (γ1(gk, ni1) = +)
or in its complemented form (γ2(gk, ni2) = −). All output nets no have their positive form
with respect to their gate gk, i.e., γ3(gk, no) = + (JAIN; BRYANT, 1993).

Each vertex vi in the polarity graph corresponds to a net in the logic network
(JAIN; BRYANT, 1993). Each edge eij, between vertex vi and vertex vj, implies that
there is a constraint of phase assignment in the phase-constraint graph. All edges have
a label λ(eij) ∈ {+,−}. A positive edge (λ(e1ij

) = +) represents the fact that the nodes
vi and vj are required to have the same phase assignment. A negative edge (λ(e2il

) = −)
specifies that the vertices vi and vl should have opposite phases.

The edge labels in the polarity graph are obtained by applying the times operator,
represented by the symbol •. The times operator must be applied between the polarity of
the nets in the logic network, i.e., over the elements of the set {+,−}. Let γ(gk, ni) and
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γ(gk, nj) be the polarity of nets ni and nj for the gate k. The label of edge eij, denoted
by λ(eij), is defined by operating the times operator, such that:

λ(eij) = γ(gk, ni)•γ(gk, nj) =


+, if γ(gk, ni) and γ(gk, nj) have the same label

−, if γ(gk, ni) and γ(gk, nj) have different labels
(2.2)

This way, according to Equation 2.2, λ(eij) could be:

(+ •+) = (− • −) = + (2.3)

(+ • −) = (− •+) = − (2.4)

Figure 2.7 shows a logic network and its corresponding polarity graph for the
NAND/NOR phase-constraint. In Figure 2.7(b), the positive edge (solid line) between
nodes n1 and n2, introduced due to gate g1, indicates that the vertices should have the
same phase in order to avoid adding explicit inverters. In the same way, the negative edge
(dotted line) between nodes n1 and n4, also introduced due to gate g1, indicates that the
vertices should have opposite phases.

Figure 2.7: Logic network (a) and the corresponding polarity graph (b).
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3 LOGIC SYNTHESIS REVIEW

This chapter traces an evolutionary line over logic synthesis, describing some pre-
vious and recent works that are connected to the work presented in this thesis. First, a
historical perspective is presented. After, AIG rewriting approaches are reviewed. We also
review standard-cell- and library-free-based approaches for technology mapping. Finally,
a discussion around simple and complex cells is presented.

3.1 Logic Synthesis Historical Perspective

The logic synthesis step has had tremendous commercial success and tools for logic
synthesis are effectively used by designers. Historically, logic synthesis started as two-level
synthesis (e.g. ESPRESSO (BRAYTON et al., 1982)), where the goal was to minimize
the number of literals in Sum-Of-Products (SOP) representations. The number of literals
was correlated with the final area of Programmable Logic Array (PLA) implementations,
used as the most common layout for early large scale integration (LSI) physical design
implementations.

The two-level synthesis was forced to evolve into multi-level logic synthesis as the
most common layout implementations moved from PLAs to cell-based layouts relying
on the use of standard cell libraries. The move towards cell-based multi-level layout
implementations led to heuristic logic synthesis tools for multi-level logic implementations.
Examples of multi-level logic synthesis tools include MIS (BRAYTON et al., 1987) and
SIS (SENTOVICH et al., 1992). The multi-level logic synthesis was divided into two main
steps (technology independent and technology dependent) due to the use of a cell library.
Early logic synthesis tools for multi-level networks (BRAYTON et al., 1987) were based
in an internal representation composed of a set of logic nodes, where each node could
contain a fanout free equation. Only the output of logic nodes could have fanout greater
than one. The goal of the technology independent step of these tools was to minimize the
total sum of the literals of the equations in the internal to the nodes. That means that,
from a technology independent point-of-view, literal minimization was still important.

However, the double intent of having a technology independent step, that reduces
literal count, and a technology dependent step, that minimizes the sum of the costs of the
instantiated cells, led to an intent mismatch in the logic synthesis flow. Specifically, min-
imizing the number of literals not necessarily leads to a minimized area after technology



32

mapping. For this reason, the logic synthesis community started to prefer minimizing the
number of nodes of AIG representations instead of the minimization of literals (Berkeley
Logic Synthesis and Verification Group, 2013).

Nowadays, it is well accepted that the total number of nodes in a AIG is a better
area estimator than literal count in a set of interconnected fanout-free equations. Addi-
tionally, it is also well accepted that reducing the structural depth of an AIG tends to
reduce the delay of a circuit after mapping. This way, current logic synthesis tools, such
as ABC (Berkeley Logic Synthesis and Verification Group, 2013), are based in using an
AIG as their data structure representation.

3.2 AIG Rewriting

Logic optimization approaches can be divided into algorithmic-based methods,
which are based on global transformations, and rule-based methods, which are based on
local transformations (BRAYTON et al., 1984). Rule-based methods, also called rewrit-
ing, use a set of rules which are applied when certain patterns are found. The AIG
rewriting is a rule-based greedy algorithm for optimize an objective function, such as
minimizing the number of nodes of the AIG. This approach iteratively selects subgraphs
and replaces them with pre-computed logically equivalent subgraphs (MISHCHENKO;
CHATTERJEE; BRAYTON, 2006).

In 1982, Brayton and McMullen proposed an algorithm for decomposition and
factorization in Boolean expressions (BRAYTON; MCMULLEN, 1982). This algorithm
was implemented in SIS (SENTOVICH et al., 1992). Additionally, an AIG rewriting
method called refactor is implemented in ABC tool. This method chooses large subgraphs
for each AIG node, extracts the Boolean function of this subgraph and performs the
Brayton and McMullen’s factorization algorithm. The result of factorization is converted
back to an AIG and replaces the original subgraph if the number of nodes is reduced
(Berkeley Logic Synthesis and Verification Group, 2013).

Cortadella (2003) proposed an algebraic balancing approach in DAG structures
claiming reductions on logic depth and timing optimizations. This algorithm was adapted
to AIGs and it is also implemented in ABC tool, called balance (Berkeley Logic Synthesis
and Verification Group, 2013). The approach is based on finding the minimum-depth tree
for a Boolean function building the tree from root to leaves by using bi-decomposition
techniques. The depth reduction is achieved by means of rewrite rules that apply the
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associative, commutative and distributive laws of the Boolean algebra.
The most known algorithm for AIG rewriting was proposed by Mishchenko, Chat-

terjee and Brayton (2006) and it is called DAG-Aware AIG Rewriting. It is also imple-
mented in ABC, called rewrite. This method has three steps and it uses a hash table of
pre-computed AIGs for all functions with up to four inputs. In this sense, there are 222
different NPN-equivalent classes of functions up to four variables, i.e., 222 sets of func-
tions which can derive all functions up to four variables by combining three operations:
negation of any variables, permutation of any variables, and/or negation of the function
itself. The first step of this algorithm is pre-compute all AIG subgraphs for every 222
classes of functions. After that, the method traverses the AIG in topological order, from
inputs to outputs. For each node, all possible subgraph up to four inputs are enumerated.
Each of these subgraph is compared with the pre-computed graphs in the hash table.
Those subgraphs that reduce the number of nodes without increasing the height of the
region, or even subgraphs that add shared nodes are considered. After trying all available
subgraphs for a node, the one that leads to the greatest improvement replaces the original
subgraph.

Figure 3.1 depicts three possible AIG representations of function f = a ∗ b ∗ c.
These AIGs must be pre-computed and stored in a hash-table. Figure 3.2 presents two
examples of AIG rewriting. In Figure 3.2(a), Subgraph 1 is replaced by Subgraph 2, which
reduces one node in the AIG. Figure 3.2(b) shows Subgraph 2 been replaced by Subgraph
1, which reduces one node in the graph due to the sharing of nodes.

Figure 3.1: Different structures of AIG for function f = a ∗ b ∗ c.
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Source: Autor: (MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

The second and third steps of the rewrite approach consist in balancing and refac-
toring the AIG using the methods balance and refactor, respectively. The authors suggest
a script that traverses the structure 10 times, as follows: b, rw, rf, b, rw, rwz, b, rfz,
rwz, b. In the abbreviated form, b stands for balancing; rw/rf stand for AIG rewriting
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Figure 3.2: Examples of AIG rewriting.
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Source: Autor: (MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

and refactoring; and rfz/rwz are also rewriting and refactoring, but allowing replacements
with zero improvement. The authors claim that this approach leads to a reduction of area
in the order of 10% and improvements in delay of 5%, whereas the runtime is reduced by
a factor ranging between 7 and ~1000, when comparing with previous approaches.

3.3 Approaches for Standard Cell Technology Mapping

The technology mapping step on first approaches for automatic synthesis of digital
circuits was based on applying a set of rules over a structure that represents the circuit
(DARRINGER et al., 1981; GREGORY et al., 1986). These methods perform local
optimizations, trying to reduce the cost of a region of the circuit, which not necessarily
lead towards global minimals.

The first algorithmic solutions for technology mapping were proposed only in 1987
(KEUTZER, 1987; DETJENS et al., 1987). Keutzer had presented DAGON as a compiler-
based approach. According to Keutzer, search patterns between intermediate represen-
tations of a computer program and a given set of machine instructions is similar to the
pattern matching between cells of a library and subgraphs of a circuit representation.
However, the search space to be explored by mapping become limited by the structural
matching and the initial representation of the circuit, which directly affects the quality of
the mapped circuit. Additionally, DAGON approach requires all isomorphic matches to
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be stored in each node of the tree until the end of covering step. Thus, this work precludes
the use of very large libraries, when the number of patterns found is usually higher.

Detjens et al. (1987) proposed to use trees as the subject graph and to insert
pairs of inverters in this tree. This algorithm increases the solution space. However,
the aimed advantages rely on performing several decompositions for each element of the
library, what also turns unfeasible the use of large libraries. In 1989, Rudell extends
the Detjens approach, in which he proposes two main different improvements: (1) to use
pattern graphs allowing leaf-DAGs nodes, what makes possible non-tree gates (such as
multiplexers and XORs) to be matched; and (2) to replace every wire in the subject graph
by a pair of inverters in series, that makes larger the set of matches. Rudell’s algorithm
became known as “the inverter-pair heuristic”.

The functional verification to identify patterns was introduced only in 1993 (MAIL-
HOT; MICHELI, 1993). This work also had proposed a Boolean matching using BDDs.
In this approach, finding matches did not depend anymore on the structure of these
sub-trees. Nonetheless, this algorithm was computationally expensive. In 1995, Lehman
proposed to integrate the decomposition and the pattern matching phases dynamically
reorganizing the subject graph. Thus, the search space increased due to each node be
associated with subgraphs functionally equivalent but structurally different. Even so, this
approach becomes unpractical for large circuits because the graph grows very fast. Kuki-
moto, Brayton and Sawkar (1998) and Stok, Iyer and Sullivan (1999) have proposed two
approaches to DAG covering ensuring optimality in terms of speed. The main weakness
of these works is on their gain-based load-independent delay models, which means that
they ignore the load of the cell, taking into account only its propagation delay.

Currently, the state-of-the-art in technology mapping for standard cell approaches
is implemented into the ABC tool (Berkeley Logic Synthesis and Verification Group,
2013). It was proposed by Chatterjee et al. (2006) and is based on Kukimoto’s algo-
rithm, with two main differences: (1) Boolean matching instead of structural matching;
and (2) AIG covering instead of DAG covering. The implemented Boolean matching
is an improved version, which extends the Lehman’s approach. Chatterjee proposed to
encode multiple DAGs (without breaking them in trees) in an AIG called “AIG with
choices”, postponing detailed comparisons, what made his algorithm faster than previous
approaches. In this sense, the AIG with choices also prevents memory overload. He also
applied a technique similar to Rudells’s inverter-pair approach to consider matches in
both polarities.
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3.4 Approaches for Library-Free Technology Mapping

Along with the approaches for standard cell technology mapping, algorithms based
on library-free have also been proposed. The first presented method was proposed by
Berkelaar and Jess (1988). Expressions of sums-of-products and product-of-sums with
a prefixed notation are represented as graphs and are traversed from outputs to inputs
partitioning into logic cells. As the cuts are made top-down, the logic depth of what is
below is unknown. So, this greedy algorithm cannot guarantee a solution with minimum
logic depth or with minimum number of cells.

In 1992, two important works were presented. Liem and Lefebvre (1992) have
proposed a constructive matching, in which both the number of inputs and logic depth
of a cell was considered, beyond maximum values for transistor chains. However, the
method is hardly dependent on the initial structure and it is memory greedy, precluding
the method for mapping large circuits. The work of Abouzeid et al. (1992) claimed the
use of a large number of logic cells by partitioning the initial DAG into n-ary trees. This
representation decreases the dependence on the initial graph, allowing change of structure
in a given set of nodes. Although the cuts are generated from inputs to outputs, they are
made in a greedy way, not contemplating logic depth minimization.

Reis et al. (1995) and Reis (1999) proposed to use a dynamic reordering on the
initial representation of the circuit and to represent each logic cone in a different way:
a special type of BDD, called Terminal-Suppressed Binary Decision Diagram (TSBDD).
An interesting property of this structure is the direct association of the arcs of the BDD
to transistors, although it faces the same problems of representation by trees.

Later on, Yanbin, Sapatnekar and Bamji (2001) have proposed the Odd-level Tran-
sistor Replacement (OTR) method, which works directly on an electrical diagram at tran-
sistor level, represented as a graph. The goal of the algorithm is to select which gates
can be collapsed in order to achieve a better performance, but the method also suffers for
depending strongly on the initial decomposition of the circuit.

In 2004, an algorithm proposed by Correia & Reis considers several decompositions
of sub-trees dynamically (at a low computational cost), leading to a minimum coverage
using dynamic programming. However, for using trees, the method cannot provide a
broader view of the circuit. The VIRMA algorithm was presented by Marques et al.
(2007), which performs the library-free mapping over a DAG aiming the reduction of the
circuit delay (SCHNEIDER et al., 2005).
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3.5 Simple Cells and Complex Cells into Standard Cell Libraries

Standard cell libraries are commercially available, optimized to achieve high quality
results in terms of speed, area and power consumption. Such sets usually contain hundreds
of elements, ranging from simple cells (i.e., straightforward implementations of elemen-
tary Boolean functions, as NAND2 and NOR2) to cells of higher complexity. Thus, the
composition of libraries may vary according to the designer requirements and application
constraints. The improvement of libraries may be thought by adding new drive strengths
(DOOD; LEE; ALBERS, 2006), new available functions (GAVRILOV et al., 1997) and
even particular transistor arrangements (MARQUES et al., 2007; SCHNEIDER et al.,
2005; KAGARIS; HANIOTAKIS, 2007).

Some approaches advocate the use of a reduced set of cells. There are works in
which the library was previously reduced by the designer and they claims that the logic
synthesizers work better with a reduced number of gates (PIGUET et al., 2001); others
where only 1 - or 2 -input cells were considered, which claims that the use of larger standard
cells increases the number of long wires and may undermine circuit delay optimization
at 65nm and below (SEO et al., 2008); or even works that reduce the library iteratively
and statistically, claiming that the circuit performance, with respect to full-size library
synthesis, do not appreciably degrades, and in several cases actually improves, whereas
the synthesis time decreases and library maintenance and characterization tasks can thus
be significantly reduced (RICCI; MUNARI; CIAMPOLINI, 2007).

On the other way around, there are approaches considering larger libraries (com-
prising complex gates) as a better choice. Some works claim that libraries with a large
number of cells shall be preferred in order to bring more flexibility (GUAN; SECHEN,
1996); and works reporting that using different simple gate start-points, the gain of remap-
ping the circuit using complex gates can still be obtained (REIS et al., 1995).

The work presented in this master’s thesis partially agrees with works of Piguet et
al. (2001), Ricci, Munari and Ciampolini (2007) and Seo et al. (2008), in the sense that
good quality circuits can be obtained using simple cells. However, we also agree with the
results reported by Reis et al. (1995) with respect to the gain of remapping the circuit
using complex gates can still be obtained. This way, we believe it is possible that the
transistor count of the circuits using simple cells can be further reduced by mapping with
complex gates.
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4 PROPOSED APPROACH

The approach proposed herein is mainly based on two steps, which can be split in
substeps. This chapter presents a brief overview of the proposed approach, focusing on
the adopted flow to achieve our claims. Details of each step and substep are presented on
Chapter 5.

The set of algorithms proposed herein aims to provide reduced transistor count
for digital semicustom VLSI circuits based on simple cells. The resulting circuits can
be used for two main purposes: to implement efficient circuits using simple cells; or to
use the optimized circuit as input of technology-dependent optimizations using complex
cells. The proposed algorithms are mainly focused on starting from minimized node count
AIG representations, obtained through state-of-the-art logic synthesis tools, and mapping
this optimized AIG using simple cells (NAND2 and NOR2) with a minimal number of
inverters.

In order to obtain efficient circuits mapped using simple cells, this work follows
an approach with two major steps, depicted in Figure 4.1. This chapter provides an
overview of the proposed approach. The first step is to optimize the initial circuit in
terms of number of gates and to minimize the number of inverters. After obtaining a
minimal gate count, the intermediate circuit might have cells with fanout larger than the
acceptable. The second step is to verify these occurrences and fix all of them.

Figure 4.1: Proposed flow for obtaining reduced transistor count circuits mapped using
simple cells.
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Figure 4.2: Proposed flow for obtaining reduced transistor count circuits mapped using
simple cells.
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The optimization of number of cells is based on reducing the number of nodes in
its initial AIG representation. To minimize the inverter count, our approach applies a
procedure adapted from the work proposed by Jain and Bryant (1993), which is based
on graph coloring. For obtaining the resulting fanout-limited circuit, we propose a novel
method for fanout limiting using inverter trees. The following sections provide overviews
of these steps.

Figure 4.3: Graph coloring process for inverter minimization on a full adder AIG (a).
The resulting gate representation (d) is derived from the colored polarity graph (c) after
removing nodes n4 and n7 from (b).
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4.1 Optimizing the Initial Circuit and Minimizing Inverter Count

In order to achieve the aims claimed by the Step 1 of the proposed flow, an AIG
representation of the initial circuit is generated. After that, the AIG node count must
be minimized, the polarity graph is derived from the AIG, the obtained polarity graph
needs be colored and the intermediate circuit can be generated. Figure 4.2 depicts the
flow adopted in this step.

Figure 4.3 presents an example of applying the Step 1. The initial circuit is a
full adder implementation, represented in an AIG in Figure 4.3(a). The polarity graph
obtained from the AIG is depicted in Figure 4.3(b). Figure 4.3(d) shows the intermediate
circuit obtained from the colored polarity graph in Figure 4.3(c).

4.2 Limiting Fanout with Inverter Trees

The proposed algorithm for fanout limitation with inverter trees takes into account
the maximum fanout of the source cell, the maximum fanout of inverters, the number
of positive consumer cells (i.e., the output cells driven directly from the source cell),
and the number of negative consumer cells (i.e., the output cells driven from the source
cell through an inverter). Using a mathematical formulation, to be described further,
the proposed method computes the minimal number of inverters to drive both positive
and negative cells, respecting the given maximum fanout limits. Figure 4.4 shows an
example of applying the proposed algorithm in a cell whose maximum fanout limit was
not respected. In the shown example, consider both the maximum fanout of the cell and
the maximum fanout of inverters as 4.

Figure 4.4: Example of fanout violation (a) and fanout limiting using an inverter tree (b).

(a) (b)

Source: Author.
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In Figure 4.4, the gray boxes represents the source cell, the blue boxes represent
the positive consumer cells, and the red boxes represent the negative consumer cells.
Notice that, considering both the maximum fanout of the cell and the maximum fanout
of inverters as 4, Figure 4.4(a) depicts fanout violations because both the source cell and
the inverter have fanout 7. In Figure 4.4(b), these violations were fixed adding two more
inverters and, this way, both the source cell and the three inverters have a maximum
fanout of 4 cells.
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5 REDUCING TRANSISTOR COUNT IN BENCHMARK CIRCUITS

This chapter presents details of steps and substeps proposed herein. From Section
5.1 to Section 5.5, the basis of our approach is presented. Sections 5.6 to 5.8 present
proposed techniques for improving the final results.

5.1 Reducing Node Count in AIGs

The first step in the proposed approach (Step 1.1) is to reduce the node count
in an AIG representation of the initial circuit. To achieve this claim, we propose to
use ABC tool, from the Berkeley Logic Synthesis and Verification Group (2013), to read
the input circuit file and to minimize the node count in its AIG representation. This is
straightforward and we use several different scripts to obtain reduced node count AIGs.
The scripts have to be reiterated until no more gain can be obtained, as the solution given
by logic synthesis tools depends on the input circuit. Figure 5.1 shows a full adder gate
representation and an AIG, obtained after Step 1.1.

Figure 5.1: Deriving an AIG representation (b) from a full adder gate representation (a)
using ABC tool (Berkeley Logic Synthesis and Verification Group, 2013).
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The main ABC scripts applied in this initial process are based on the following
commands (Berkeley Logic Synthesis and Verification Group, 2013):

balance: performs algebraic balancing of the multi-input AND-gates contained in the
original AIG;

rewrite: performs rewriting of the AIG taking into account its DAG features;

refactor: performs iterative collapsing and refactoring of logic cones in the AIG.
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These commands and their variations were combined and interleaved with each
other. The most reiterated ABC scripts were resyn, resyn2. By iterating these scripts,
the AIG size reduces substantially and it tends to reduce its number of AIG levels and
nodes (Berkeley Logic Synthesis and Verification Group, 2013).

Algorithm 5.1 presents a pseudocode that performs the Step 1.1. This method has
only one input: the initial circuit. After deriving an AIG from the initial circuit (line 3 in
Algorithm 5.1), the ABC scripts are invoked repeatedly until saturation, i.e., no more gain
can be obtained in a given number of sequential iterations (called satCount in Algorithm
5.1). The number of sequential iterations used as test for saturation was 10. The final
and optimized AIG is the method return.

Algorithm 5.1: Reducing AIG node count.
1 aig deriveMinimizedNodeCountAig(initialCircuit){
2 aig = deriveAigFromCircuit(initialCircuit);
3 nodeCountBefore = 0, nodeCountAfter = 0, satCount = 0;
4 do
5 nodeCountBefore = aig.getNodeCount();
6 minimizeNodeCountWithABC(aig);
7 nodeCountAfter = aig.getNodeCount();
8 if (nodeCountAfter < nodeCountBefore)then
9 satCount = 0;

10 else
11 satCount+ +;
12 while (satCount < 10);
13 return aig;

5.2 Deriving Polarity Graph from AIG

Once the minimal AIG node count implementation has been obtained, the inverter
minimization step begins and the polarity graph must be derived. The derivation pro-
cedure used herein is a variant of the procedure proposed by (JAIN; BRYANT, 1993),
illustrated in Figure 5.2. In this work, we derive polarity graphs using the NAND2 as
base function and applying NAND2/NOR2 phase constraints.

Figure 5.2(a) shows the AIG representation obtained after Step 1.1. The resulting
polarity graph for NAND2/NOR2 phase constraints is presented in Figure 5.2(b). Each
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Figure 5.2: The optimized AIG (a) which results in the polarity graph (b).
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set of outgoing edges from each node of the AIG corresponds to a net in a circuit and,
so, derives a node in the polarity graph. The AND node g1, shown in Figure 5.2(a),
determines the relationship between the polarities of nodes n1, n2 and n4 in the polarity
graph. The AND node g1 denotes an AND2 operation and so, by the NAND2/NOR2
phase constraints, the polarities between the inputs (n1 and n2 ) and the output (n4 )
of g1 have to be different. Therefore, node n4 is connected to nodes n1 and n2 by
two negative edges (dotted lines). Similarly, the AND node g2, shown in Figure 5.2(a),
determines the relationship between the polarities of nodes n1, n2, and n5 in the polarity
graph. The AND node g2 denotes a NOR2 operation (as De Morgan’s law is applied).
By the NAND2/NOR2 phase constraints, the polarities between the inputs (n1 and n2 )
and the output (n5 ) of g2 have to be the same. This way, node n5 is connected to n1
and n2 by positive edges (solid lines). Applying this process to all gates in the circuit
results in the complete polarity graph shown in Figure 5.2(b).

Algorithm 5.2 presents a pseudocode for Step 1.2. The proposed algorithm has
one input: the optimized AIG. After creating the polarity nodes from the AIG nets (lines
from 2 to 4), the edges between the polarity nodes are created (from line 5 to 31). The
derived polarity graph is the method’s return.
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Algorithm 5.2: Deriving a polarity graph from an AIG.
1 polGraph derivePolGraphFromAig(aig){
2 “create a polarity node for each net on AIG” ;
3 “map each polarity node with the related AIG nodes” ;
4 “add each polarity node to the polarity graph” ;
5 foreach (aigNode ∈ aig)do
6 input1 = aig.getPolNode(aigNode.getInput1);
7 input2 = aig.getPolNode(aigNode.getInput2);
8 output = aig.getPolNode(aigNode);
9 if

(aigNode.isInput1Inverted() == aigNode.IsInput2Inverted())then
10 polGraph.createPositiveEdgeBetween(input1,input2);
11 else
12 polGraph.createNegativeEdgeBetween(input1,input2);
13 if (aigNode.getNOutputs() == 1 &&

aigNode.IsOutputNodePrimaryOutput())then
14 outputNode = aigNode.getOutputNode();
15 if (aigNode.isInput1Inverted()! = outputNode.isInverted())then
16 polGraph.createPositiveEdgeBetween(input1,outputNode);
17 else
18 polGraph.createNegativeEdgeBetween(input1,outputNode);
19 if (aigNode.isInput2Inverted()! = outputNode.isInverted())then
20 polGraph.createPositiveEdgeBetween(input2,outputNode);
21 else
22 polGraph.createNegativeEdgeBetween(input2,outputNode);

23 else
24 if (aigNode.isInput1Inverted())then
25 polGraph.createPositiveEdgeBetween(input1,outputNode);
26 else
27 polGraph.createNegativeEdgeBetween(input1,outputNode);
28 if (aigNode.isInput2Inverted())then
29 polGraph.createPositiveEdgeBetween(input2,outputNode);
30 else
31 polGraph.createNegativeEdgeBetween(input2,outputNode);
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5.3 Coloring the Obtained Polarity Graph

The inverter minimization problem is now reduced to coloring the vertices of the
polarity graph with a unique polarity in {+,−} such that the polarity constraints given
by the edges are satisfied. This task is performed in Step 1.3.

The graph depicted in Figure 5.2(b) cannot be colored in this way due to the
presence of cycles with an odd number of negative edges (called odd cycles hereafter),
e.g. cycle {n2, n4, n5, n2} and cycle {n6, n7, n8, n6} (JAIN; BRYANT, 1993). These
two cycles can be removed by deleting nodes n4 and n7, leading to the graph seen in
Figure 5.3(b), which is colorable. Figure 5.3 shows an example of applying the graph
coloring approach.

Figure 5.3: The colored polarity graph (b) after removing nodes n4 and n7 from the
uncolorable graph (a).
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Each deleted node during the coloring process (i.e., n4 and n7 in Figure 5.2(b))
will derive one inverter in the intermediate circuit. Therefore, minimizing the number of
inverters is equivalent to find a minimum transversal of all cycles with an odd number of
negative edges. This problem is NP-hard, since it is a special case of the minimum odd
cycle transversal problem (LEWIS; YANNAKAKIS, 1980).

Jain and Bryant (1993) propose two heuristics to search for the minimum transver-
sal of all cycles with an odd number of negative edges: the QuickColor and GoodColor
heuristics. Both of them were applied in the work proposed herein. The QuickColor
heuristic picks an arbitrary odd cycle from the graph and then selects the vertex in this
cycle with the maximum double-edge degree, i.e., the vertex with the highest number of
two edges (one positive and one negative) between the same neighbor. If two vertices have
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the same double-edge degree, then QuickColor shall select the one with the maximum
edge degree. After removing the selected vertex and incident edges, attempt recoloring
the remaining graph. Applying this process to all nodes in the polarity graph results in
the colored polarity graph shown in Figure 5.3(b).

Algorithm 5.3 presents a pseudocode of the QuickColor approach. The method
has one input: the polarity graph to be colored. While the polarity graph has cycles with
an odd number of negative edges, the algorithm picks an arbitrary odd cycle and marks a
node as removed. After the required number of iterations, the polarity graph is colorable.
The method return is the graph after colored.

Algorithm 5.3: Polarity graph coloring with the QuickColor Heuristic.
1 polGraph quickColor(polGraph){
2 while (polGraph.hasOddCycle())do
3 oddCycle = polGraph.getOddCycle();
4 nodeToBeRemoved = oddCycle.getNodeToBeRemoved();
5 polGraph.markNodeAsRemoved(nodeToBeRemoved);
6 return polGraph.graphColoring();

Notice that, in fact, no node is removed. Instead, the nodes are marked as removed.
This is because these “removed nodes” will generate inverters in the intermediate circuit.

Different from QuickColor, which takes an arbitrary next odd cycle, the GoodColor
heuristic tries to pick a “good” next odd cycle. This approach picks the smallest cycle in
the graph as the next candidate. Another remarkable feature is that the GoodColor tries
to recover itself from an early “potentially bad” choice. According to Jain and Bryant
(1993), each eliminated odd cycle in the graph is said to be covered by the vertex chosen
to be removed. This way, it is possible to know when the next odd cycle shares vertices
with a previously eliminated cycle. For explaining this approach, let cyclen be the next
odd cycle; cyclep, a previously eliminated cycle, which is covered by vertex vp and shares
vertices with cyclen; and ℵ(vp), be the number of eliminated cycles containing the vertex
vp. If ℵ(vp) = 1, the GoodColor heuristic “undo” the removing of vertex vp and removes
one of the shared vertices covering both cycles, cyclen and cyclep.

Algorithm 5.4 presents a pseudocode of the GoodColor approach. The method also
has only one input: the polarity graph to be colored. While the polarity graph has odd
cycles, the algorithm picks the smallest one and chooses a node to be removed (lines 3 and
4). If any node of the cycle has been previously covered (lines 5 and 6), the method finds
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the cycle breaker of the previously removed cycle (line 7). In case of the ℵ(cycle breaker)
equals to 1, undo this previous removal and selects the shared node to be removed (lines
from 8 to 11). After the required number of iterations, the polarity graph is colorable.
The method’s return is the graph after colored.

Algorithm 5.4: Polarity graph coloring with the GoodColor Heuristic.
1 polGraph goodColor(polGraph){
2 while (polGraph.hasOddCycle())do
3 oddCycle = polGraph.getSmallestOddCycle();
4 nodeToBeRemoved = polGraph.getNodeToBeRemoved();

/* search for previously covered vertices */
5 foreach (cycleNode ∈ oddCycle)do
6 if (ℵ(cycleNode) > 0)then
7 coveringRoot = cycleNode.getCovergingRoot();
8 if (ℵ(coveringRoot) == 1)then
9 polGraph.undoRemoving(coveringRoot);

10 nodeToBeRemoved = cycleNode;
11 break;

/* cover the cycle */
12 foreach (cycleNode ∈ oddCycle)do
13 ℵ(cycleNode) + +;
14 polGraph.markNodeAsRemoved(nodeToBeRemoved);
15 return polGraph.graphColoring();

5.4 Deriving the Final Circuit

Step 1.4 takes the colored graph derived from Step 1.3 and generates the inter-
mediate circuit. Figure 5.4 shows an example of applying the circuit deriving procedure
from a colored polarity graph. The NAND2/NOR2/INV circuit shown in Figure 5.4(d)
can be derived from the colored graph in illustrated Figure 5.4(c).

Using the times operator (•), the final color of each node ni (color(ni)) in the
polarity graph (corresponding to an input net of AND node gk in the AIG), and its initial
γ must lead to a known pattern in the phase-constraint set. By deriving each node ni, the
colored graph produces a final circuit containing only gates in the phase-constraint set.
For instance, the three nodes n1, n2 and n5, depicted in Figure 5.3(b), have + color, as
well as the node n4 should have the − color with respect to nodes n1 and n2. Applying
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Figure 5.4: The colored polarity graph (a) and the derived intermediate circuit (b).
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the • operator between the colored nodes (n1, n2, n4 and n5) and the form γ of these
nest in 5.4(a) produces:

color(n1) • γ(n1, g1) = + •+ = + (5.1)

color(n2) • γ(n2, g1) = + •+ = + (5.2)

color(n4) • γ(n4, g1) = − • − = + (5.3)

color(n1) • γ(n1, g2) = + • − = − (5.4)

color(n2) • γ(n2, g2) = + • − = − (5.5)

color(n5) • γ(n5, g2) = + • − = − (5.6)
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The result of Equations (5.1), (5.2) and (5.3) implies that node g1 is a NAND gate
(g1′ in Figure 5.4(d)). Similarly, the result of Equations (5.4), (5.5) (5.6) implies that
node g2 is a NOR gate (g2′ in Figure 5.4(d)). Applying this process to all nodes in the
colored graph results in the circuit shown in Figure 5.4(d). Notice that the nodes marked
as removed in the polarity graph (n4 and n7 in Figure 5.4(c)) generate inverters in the
nets of the intermediate circuit (nets n4 and n7 in Figure 5.4(d)).

Algorithm 5.5 presents a pseudocode of Step 1.4. The method has only one input:
the colored polarity graph. The proposed algorithm starts by creating the input pins (lines
2 to 4) and the output pins (lines 5 to 6). After creating one inverter for each removed
node, the core of the deriving procedure (from line 7 to line 31) derives the NAND and
NOR gates. Notice that inverters are created on input and output nodes, depending on
the final color and the derived gate. These inverters are created in line 3 and lines 30 to
31, respectively. The method’s return is the circuit after mapped.

5.5 Limiting Fanout with Inverter Trees

The algorithms for reducing node count in AIGs tend to increase the logic sharing
in AIG nodes. At first, this feature may seem a good approach because the greater
is the logic sharing, the smaller tends to be the AIG, mainly when it is result of an
algorithm for minimizing the node count. However, a cell with excessive fanout has
negative impact in the circuit performance for most of current technology fabrication
(RABAEY; CHANDRAKASAN; NIKOLIC, 2002; WESTE; HARRIS, 2009).

In this sense, as the polarity graph is obtained directly from the AIG and the
intermediate circuit, in turn, comes from the polarity graph, the cells of the intermediate
circuit, generated after Step 1.4, tend to have fanout greater than desired. The algorithm
proposed in this section fix any fanout violation inserting inverter trees. This approach
takes into account the maximum fanout for the source cells and maximum fanout for
inverters, both of them given by the algorithm designer. The root of the tree is the source
cell.

The algorithm has two substeps: (1) find the minimum tree height for attending
both the positive consumer cells and the negative consumer cells; and (2) create the
inverter tree. To find the minimum tree height, in Step 2.1, the proposed algorithm has
an exhaustive search approach. It starts with the smallest heights (0 for positive consumer
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Algorithm 5.5: Derive the intermediate circuit from the colored polarity
graph.

1 circuit deriveCircuitFromColoredGraph(polGraph){
2 “create an input pin for each input node” ;
3 “create an inverter for each non-removed, negative-colored input node” ;
4 “mark input nodes as mapped” ;
5 “create an output pin for each output node” ;
6 “insert these output pins into the circuit” ;

// polarity nodes w.r.t. output pins will be mapped further.
7 “create an inverter for each removed node” ;
8 mapped = false;
9 while (!mapped)do

10 mapped = true;
11 foreach (polNode ∈ polGraph.getNoInputNodes())do
12 if (polNode.isNotMapped())then
13 if (polNode.noneInputsWereRemoved())then
14 “map this node according to its inputs’ coloring pattern” ;
15 “NAND patterns derive NAND cells and NOR patterns

derive NOR cells” ;
16 else
17 if (“removed input is already mapped”)then
18 if (polNode.getNonRemovedInputPattern == “NAND

pattern”)then
19 if ((removedInput.isNandCell() &&

correspondingAigNodeIsNotInverted) ||
(removedInput.isNorCell() &&
correspondingAigNodeIsInverted))then

20 nandCell.connectToInvertedInput();
21 else
22 nandCell.connectToDirectedInput();
23 circuit.addNandCell(nandCell);
24 polNode.markNodeAsMapped();
25 else if (polNode.getNonRemovedInputPattern ==

“NOR pattern”)then
26 “do as in lines from 18 to 24, considering the

opposite polarities.

27 else
28 mapped = false;
29 break;

/* the removed inputs shall be mapped first */

30 foreach (nonInvertedOutput ∈ polGraph.getOutputNodes())do
31 “consider inverting this output performing the same tests on lines from

lines 18 to 24” ;
32 return circuit;
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cells and 1 for negative consumer cells) and verifies if the fanout of the cell can be attended
with these levels. Otherwise, the method tries incrementally until find the levels which
do not lead to fanout violations.

LetMFC be the maximum fanout of source cells,MFI be the maximum fanout of
inverters, ip be the index for positive consumers (i.e. the maximum tree level for positive
consumer cells), in be the index for negative consumers (i.e. the maximum tree level for
negative consumer cells), PCC be the number of positive consumers, and NCC be the
number negative consumers. In the base case, when ip = 0, Equation 5.7 and Equation 5.8
define the proposed conditions for verifying the fanout attendance. Otherwise, Equation
5.9 and Equation 5.10 shall be used when in is higher than ip; and Equation 5.11 and
Equation 5.12 should be used in the verification when ip is higher than in.

MFC(ip+1) ≥ PCC (5.7)

(MFC(ip+1) − PCC) ∗MFI ≥ NCC (5.8)

MFI(ip+1) ≥ PCC (5.9)

(MFI(ip+1) − PCC) ∗MFI ≥ NCC (5.10)

MFI(in+1) ≥ NCC (5.11)

(MFI(in+1) −NCC) ∗MFI ≥ PCC (5.12)

Algorithm 5.6 presents a pseudocode of the proposed method for finding the min-
imum tree height. This method has three inputs: the source cell with fanout violation
(cell in Algorithm 5.6); the maximum fanout of inverters (MFI in Algorithm 5.6); and
the maximum fanout of source cells (MFC in Algorithm 5.6). The return informations
are the index of positive consumer cells, the index of negative consumer cells and the tree
height.
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Algorithm 5.6: Finding the minimum tree height.
1 cell, MFI, MFC{
2 PCC = cell.numPosConsumerCells();
3 NCC = cell.numNegConsumerCells();
4 idxPosCells = 0;
5 idxNegCells = 1;
6 if (MFCidxP osCells+1 ≥ PCC &&

(MFCidxP osCells+1 − PCC) ∗MFI ≥ NCC)then
7 done = true;
8 else
9 done = false;

10 for (i = 1; !done; i+ +)do
11 if (i is even)then
12 idxPosCells = i;
13 idxNegCells = i+ 1;
14 if (MFI idxP osCells+1 ≥ PCC &&

(MFI idxP osCells+1 − PCC) ∗MFI ≥ NCC)then
15 done = true;

16 else i is odd
17 idxPosCells = i+ 1;
18 idxNegCells = i;
19 if (MFI idxNegCells+1 ≥ NCC &&

(MFI idxNegCells+1 −NCC) ∗MFI ≥ PCC)then
20 done = true;

21 int [3] treeInfo;
22 treeInfo[0] = idxPosCells;
23 treeInfo[1] = idxNegCells;
24 treeInfo[2] = max(idxPosCells,idxNegCells);
25 return treeInfo;

Once the minimum tree height is known and the indexes of both positive and
negative consumer cells were obtained, Step 2.2 uses this information to create the inverter
tree. The proposed algorithm starts allocating all positive and negative consumer cells
in their respective indexes and propagating the required number of inverters. After that,
it tries to reallocate the cells from higher to lower levels in order to reduce the required
number of inverters at the highest levels.

Figure 5.5 depicts the algorithm of Step 2.2 being applied. In this figure, the gray
boxes denotes the source cell, the blue boxes are the positive consumer cells, and the red
boxes are the negative consumer cells. For this example, consider both the maximum
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fanout of inverters and the maximum fanout of cells as 4. This way, Figure 5.5(a) illus-
trates two fanout violations, since both the source cell and the inverter have fanout 7.
Applying Step 2.1, the minimum tree height is 2, the index of positive cells is 2 and the
index of negative cells is 1. Figure 5.5(b) shows the subcircuit after allocating all positive
and negative consumer cells in their respective indexes and propagate the required num-
ber of inverters. Figure 5.5(c) depicts the subcircuit after removing two positive consumer
cells for further reallocation. Notice that, after propagating the required inverters again,
the number of inverters reduces from 5 to 3. Figure 5.5(d) illustrates the subcircuit after
reallocating the two cells previously removed from level 2, now allocated on level 0.

Figure 5.5: Example of fanout violation (a), substeps to limit fanout (b and c) and fanout
limited using an inverter tree (d).
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Source: Author.

Algorithm 5.7 presents a pseudocode of Step 2.2. This method has three inputs:
the circuit to be analyzed, the maximum fanout of inverters and the maximum fanout of
cells. If a fanout violation is detected (line 5 in Algorithm 5.7), Step 2.1 (line 6) and Step
2.2 (from line 7 to line 19) are applied. After running the required number of iterations,
the fanout of the cell is limited using a inverter tree.
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Algorithm 5.7: Fanout limiting algorithm.
1 void limitFanout(circuit, MFI, MFC){
2 foreach (cell ∈ circuit)do
3 PCC = cell.getNumPosConsumerCells();
4 NCC = cell.getNumNegConsumerCells();
5 if (PCC > MFC || NCC > MFI)then
6 int [ ] treeInfo = findMinimumTreeHeight(cell,MFI,MFC);
7 idxPosCells = treeInfo[0];
8 idxNegCells = treeInfo[1];
9 treeHeight = treeInfo[2];

10 int [treeHeight][2] invAlloc;
11 invAlloc[idxPosCells][1] = PCC ;
12 invAlloc[idxNegCells][1] = NCC ;
13 invAllocation = propagateInvAllocation(invAllocation,MFI);
14 do
15 oldInvAlloc = calcInvAlloc(invAlloc);
16 invAlloc = minPosInvAlloc(invAlloc,idxPosCells,MFI);
17 invAlloc = minNegInvAlloc(invAlloc,idxNegCells,MFI);
18 invAlloc = minBoth(invAlloc,idxPosCells,idxNegCells,MFI);
19 newInvAlloc = calcInvAlloc(invAlloc);
20 while (oldInvAlloc! = newIncAllocs);

5.6 Forcing Colors in the Graph Using a Positive Polarity Inducing Node

The inverter minimization procedure proposed by Jain and Bryant (1993) has a
remarkable feature: it minimizes the number of inverters in the circuit by pulling/pushing
them to input or output pins. This feature become even more clear analyzing the results
presented in the paper (JAIN; BRYANT, 1993), in which the authors do not consider the
inverters on input and output pins. Figure 5.6 and Figure 5.7 depict an example of this
feature.

Consider the AIG presented in Figure 5.6(a) as input of the Jain and Bryant’s
inverter minimization procedure. The derived polarity graph is presented in Figure 5.6(b).
As with any graph coloring approach, the resulting colored polarity graph depends on the
first color chosen and the node by which the algorithm starts. In the particular of polarity
graphs, only two resulting graphs are possible. These two possibilities are presented in
Figure 5.6(c) and in Figure 5.6(d).

As the derived circuit depends directly on the final colors of the colored polarity
graph, the two possibilities of graph coloring derives two different, logically equivalent
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Figure 5.6: A given AIG (a) and its polarity graph (b). The two possibilities of graph
coloring (c and d) from the uncolored graph (b).

A

B

C

D

Out

n1

n2

n3

n4

n5

n6

n7

(a)

n2

n1

n5

n4

n3

n6

n7

(b)

n2

n1

n5

n4

n3

n6

n7

-

-

+

+
+

+

-

(c)

n2

n1

n5

n4

n3

n6

n7

+

+

-

-
-

-

+

(d)

Source: Author.

possibilities of intermediate circuit. Figure 5.7 illustrates the two possible intermediate
circuits, both derived from the two possibilities of graph coloring in Figure 5.6. Notice
that, although there were no removed nodes, the intermediate circuit in Figure 5.7(a) has
three inverters, whereas the intermediate circuit in Figure 5.7(b) has two inverters.

However, it is possible to obtain another circuit, also logically equivalent to those

Figure 5.7: The two possible intermediate circuits, both derived from the two possibilities
of graph coloring in Figure 5.6.
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Figure 5.8: The polarity graph with a PPI node (a) and the obtained colored graph (b).
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depicted in Figures 5.7(a) and 5.7(b), and which has only one inverter. As once more
contribution of this thesis, we propose an algorithm to force colors on strategic nodes in
the way to get better results. The approach to force colors of nodes is based on a positive
polarity inducing (PPI) node. All nodes that receive a positive edge from PPI node must
have a positive color. In the same way, all nodes that receives a negative edge from PPI
node must have a negative color.

Figure 5.8 presents an example of the proposed approach. Notice that, at this
time, the colored polarity graph has one removed node. Nevertheless, the derived circuit
has only one inverter, as Figure 5.9 shows.

Algorithm 5.8 presents a pseudocode for propagating the colors using the super
node. The method has two inputs: the polarity graph to be colored and the super node.
In this approach, the nodes that are neighbors of the super node have their color forced
according to the edges. The method return is the polarity graph after force the colors.

Figure 5.9: The intermediate circuit derived from the colored graph in Figure 5.8(b).
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Algorithm 5.8: Polarity graph coloring using a PPI node.
1 polGraph derivePpiNodeColors(polGraph, PpiNode){
2 foreach (neighborNode ∈ ppiNode.neighbors())do
3 if (“neighborNode is connect to ppiNode throug positive edge”)then
4 neighborNode.forcePositiveColor();
5 else
6 neighborNode.forceNegativeColor();

7 return polGraph;

It is important to remark that all the three circuits presented in Figures 5.7(a),
5.7(b) and 5.9 are logically equivalent. The AIG in Figure 5.6(a) depicts the Boolean
function Out = ABC̄D̄. The logic circuit in Figure 5.7(a) illustrates the Boolean func-
tion Out = (Ā+ B̄)(C +D). The logic circuit in Figure 5.7(b) represents the Boolean
function Out = (AB + C̄D̄). Figure 5.9 presents a logic circuit which depicts the Boolean
function Out = AB + (C +D). Table 5.1 presents a truth-table which demonstrates the
equivalence among the AIG and the logic circuits in Figures 5.7(a), 5.7(b) and 5.9.

Table 5.1: Truth table of the four Boolean functions represented by AIG and the logic
circuits in Figures 5.6(a), 5.7(a), 5.7(b) and 5.9.

A B C D ABC̄D̄ (Ā+ B̄)(C +D) (AB + C̄D̄) AB + (C +D)
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
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5.7 Removing Polarity Don’t Care Nodes

Both QuickColor and GoodColor heuristics for coloring the polarity graph have
a remarkable feature: the order in which the odd cycles are found and, consequently,
the nodes are removed has an important role on the quality of the final result (JAIN;
BRYANT, 1993). If the odd cycles are found in a bad order, then the removed nodes will
also be bad choices. Even GoodColor approach has its resulting colored graph influenced
by the order of coloring. This way, the number of nodes to be removed tends to get higher,
indicating that the number of inverters in the intermediate circuit tends to get farther
than optimal.

In this sense, some specific nodes may have greater significance than other nodes.
Choosing these specific nodes to be removed before starting the search for odd cycles may
increase the quality of the final result. In the work presented in this thesis, one of these
possibilities was verified.

Some nodes may be available in both polarities. This can be due to different
reasons. For instance, a given primary input signal can be available in both polarities
because the input has an external inverter (MACHADO et al., 2012). Similarly, high
fanout nodes will require inverter tree insertion to limit fanout, so the signal will be
available in both polarities anyway, after inverters are inserted. These nodes can be
considered as being available in both polarities and it makes no sense to color these nodes
with a single color to minimize inverters. This way, polarity don’t care nodes can be
removed from the polarity graph. This approach further improves the results because
removing polarity don’t care nodes has the potential to remove some odd cycles before
to start the graph coloring procedure, making the graph coloring instance easier while
placing inverters in nodes where they are already available or where they will be required
to reduce fanout.

Algorithm 5.9 presents a pseudocode for removing specific nodes. The method has
two inputs: the polarity graph and the designer proposed threshold. For each polarity
node in the polarity graph, the algorithm verifies the fanout of the related AIG node. In
case of a fanout greater than threshold, the polarity node is marked as removed. After
iterating over all polarity nodes, the specific nodes according to adopted criterion will be
removed.
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Algorithm 5.9: Removing Polarity Don’t Care Nodes.
1 void removePolDontCareNodes(polGraph, threshold){
2 foreach (polNode ∈ polGraph)do
3 aigNode = polNode.getRelatedAigNode();
4 if (aigNode.getFanout() > threshold)then
5 polNode.markNodeAsRemoved();

5.8 Improving the Results with Trade-off Optimizations

There are no guarantees that neither forcing colors using PPI nodes (Section 5.6)
nor removing polarity don’t care nodes (Section 5.7) will lead to better results. Actually,
forcing wrong colors using PPI nodes or removing wrong nodes could lead to worse results
than if these approaches were not applied. Additionally, it is not possible to predict which
is the best order for coloring the polarity graph.

This Section describes a conservative technique for using the approaches of forcing
colors and removing polarity don’t care nodes, but accept their results only if they are
better then not using them, as well as to coloring the polarity graph using two different
orders: (1) using a breadth-first search (BFS); and (2) using a depth-first search (DFS).
In the way for scientific analysis, this trade-off approach also considers coloring the graph
using two known heuristics: QuickColor and GoodColor.

The developed technique is based on brute-force. All possible parameters are
computed, independently and combined. After that, a trade-off analysis verifies the best
solution. The proposed parameters are five, as following: (1) choose between QuickColor
and GoodColor ; (2) use a BFS or a DFS; (3) use force colors on inputs; (4) force colors
on outputs; and (5) remove specific nodes. Thus, to verify these five binary parameters,
32 iterations (25) are necessary.

Algorithm 5.10 presents a pseudocode for trade-off optimization. The method has
only one input: the polarity graph. The five parameters are combined in all cases. For
each combination, an intermediate circuit is derived. After deriving all possible circuits,
the circuit with best transistor count is the method return.
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Algorithm 5.10: Deriving a circuit with trade-off analysis.
1 circuit deriveCircuitWithTradeOff(polGraph){
2 quickColor = true;
3 bfs = true;
4 ppiOnIns = true;
5 ppiOnOuts = true;
6 PolDCs = true;
7 for (heurist = 0;heurist < 2;heurist+ +, quickColor =!quickColor)do
8 for (order = 0; order < 2; order + +, bfs =!bfs)do
9 for (ins = 0; ins < 2; ins+ +, ppiOnIns =!ppiOnIns)do

10 for (outs = 0; outs < 2; outs+ +, ppiOnOuts =!ppiOnOuts)do
11 for (dc = 0; dc < 2; dc+ +, polDCs =!polDCs)do
12 listiOfCircuits.add(deriveCircuit(polGraph, quickColor,

bfs, ppiOnIns, ppiOnOuts, polDCs));

13 return bestCircuit(listOfCircuits);

5.9 High-level Algorithm

After describing in details all steps and substeps of the proposed flow (Sections 5.1
to 5.8), the overall algorithm for obtaining a circuit with reduced transistor count using
simples gates must be detailed. Algorithm 5.11 presents a pseudocode for the proposed
flow. The method has only one input: the initial circuit. Once the minimized AIG is
obtained (line 2) and the polarity graph is derived (line 3), the steps of graph coloring and
intermediate circuit generation are performed using the trade-off analysis (line 4). After
that, the final circuit is obtained by applying the fanout limiting algorithm (line 5). The
final circuit is the method’s return.

Algorithm 5.11: Obtaining reduced transistor count circuits using simple
cells.

1 circuit reduceTransistorCount(initialCircuit){
/* Step 1.1 (minimize node count in the AIG) */

2 aig = deriveMinimizedNodeCountAig(initialCircuit);
/* Step 1.2 (derive polarity graph) */

3 polGraph = derivePolGraphFromAig(aig);
/* Step 1.3 (graph coloring) and 1.4 (derive intermediate

circuit) using the trade-off analysis */
4 intermediateCircuit = deriveCircuitWithTradeOff(polGraph);

/* Step 2 (limit fanout) */
5 return fanoutLimiting(intermediateCircuit);
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6 RESULTS

This chapter provides the main results obtained by applying the proposed ap-
proach. The method was applied using simple cells (i.e. NAND2, NOR2 and inverters)
over a set of benchmark circuits and a transistor count was performed. After that, the
fanout of both cells and inverters in these optimized circuits was limited up to 4 and
another transistor count was performed. Section 6.1 reviews the published results using
simple cells, and also considering approaches using both CMOS and PTL complex cells.
Section 6.2 presents the obtained results compared against simple-cell implementations
obtained from ABC tool (Berkeley Logic Synthesis and Verification Group, 2013). In
Section 6.3, we present an analysis of how each parameter (presented in Section 5.8)
influences the final results. Section 6.4 and Section 6.5 present a fanout and runtime
analysis, respectively, and compare them to ABC.

6.1 Review of Published Results in terms of Transistor Count

Table 6.1 presents the simple cells reference implementations with minimum tran-
sistor count from prior works (REIS et al., 1995). These numbers are compared to the
novel reference transistor counts introduced by applying the method proposed herein.
The weighted average values were obtained using the number of transistors as weights.

Table 6.1: Transistor count benchmark circuits in old reference using simple cells com-
pared to the reference transistor count obtained by applying the method proposed herein.

OUR
CIRCUIT OLD REF FANOUT UNLIMITED FANOUT LIMITED

XTORS XTORS % XTORS %
C1355 2244 1802 -19.70% 1886 -15.95%
C1908 3146 1628 -48.25% 1690 -46.28%
C2670 4976 2414 -51.49% 2540 -48.95%
C3540 7154 4038 -43.56% 4330 -39.47%
C432 796 596 -25.13% 610 -23.37%
C499 1556 1788 14.91% 1872 20.31%
C5315 10656 5906 -44.58% 6354 -40.37%
C6288 10112 8454 -16.40% 8710 -13.86%
C7552 14376 6406 -55.44% 6588 -54.17%
AVG. - -32.18% - -29.13%
WEIGHTED AVG. - -39.96% - -32.21%
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Notice that, for most benchmark circuits, the number of transistors is reduced.
For the best case, circuit C7552 was reduced in 55.44%, while the average decrease was
32.18% and the weighted average decrease was 39.96%. The only exception, circuit C499,
has specific reasons for the obtained values: its initial circuit is mainly implemented using
XOR cells, which uses 10 transistors with common Static CMOS implementations for
the XOR gate, against 14 transistors for the best case using NAND, NOR and inverters.
However, it is important to remark that circuit C1355 is functionally equivalent to C499,
but it is implemented without using XOR cells. In this case, the transistor count has
been decreased down to 19.70%. After all, notice also that, despite the percent reduction
of circuit C499 be worse than the circuit C1355, the resulting transistor count of circuit
C499 is lower than the circuit C1355.

Table 6.2 and Table 6.3 present reviews of published results using static complex
CMOS cells and PTL topologies, respectively. The aim of presenting the values in these
tables is not to provide a transistor count reduction compared to prior complex-cells-based
results. The main goal is to review the gains provided by complex cells when compared to
a fair minimum transistor count reference implementation introduced herein. The main
contribution of our results is to demonstrate that previous gains were overestimated.

In this sense, Table 6.2 reviews published results using static complex CMOS cells.
For both compared results, SP(4,4) (REIS et al., 1995) and Resynthesis (GAVRILOV
et al., 1997), columns “Old Ref” present the percentage gain when the prior approach
is compared to the old reference transistor count using simple cells; and columns “New
Ref” present the percentage gain when the prior approach is compared to the reference
transistor count obtained by applying the method proposed herein. Notice that SP(4,4)
achieves decreases that range between 7.97% and 45.33% when compared to the old refer-
ence. However, when SP(4,4) results are compared against our approach, the maximum
decrease is 19.91%, but there are increases between 18.14% and 32.31% (gains become
losses). In the same way, Resynthesis report decreases of 15.15% and 46.28%, which be-
come increases of 5.66% and 3.81% when compared against the results presented herein
(gains become losses).

Table 6.3 reviews results from the literature with PTL topologies. As before, for
both compared results, PTLS (SHELAR; SAPATNEKAR, 2005) and OTR (YANBIN;
SAPATNEKAR; BAMJI, 2001), columns “Old Ref” present the percentage gain when
the prior approach is compared to the old reference transistor count using simple cells,
and columns “New Ref” present the percentage gain when the prior approach is compared
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Table 6.2: Review of published results using static complex CMOS cells, considering the
reference start-point circuits proposed herein.

CIRCUIT SP(4.4) Resynthesis
Old Ref New Ref Old Ref New Ref

C1355 -30.48% -13.43% -15.15% 5.66%
C1908 -31.53% 32.31% -46.28% 3.81%
C2670 -42.68% 18.14% N/A N/A
C3540 -43.89% -0.59% N/A N/A
C432 -14.82% 13.76% N/A N/A
C499 -7.97% -19.91% N/A N/A
C5315 -45.33% -1.35% N/A N/A
C6288 -19.94% -4.23% N/A N/A
C7552 -42.01% 30.13% N/A N/A

to the reference transistor count obtained by applying the method proposed herein. Notice
that, when compared to the old reference, PTLS achieves decreases that range between
22.85% and 63.60% and there is one increase of 39.45%. However, when PTLS results are
compared against our approach, the maximum decrease is 44.18%, but there are increases
of 86.24% (gains become losses). In the same way, OTR report decreases that range
between 13.11% and 47.99%. Nonetheless, when OTR results are compared against our
approach, the maximum decrease is 27.64%, but there are increases of 29.53% (gains
become losses).

Table 6.3: Review of published results using PTL cells, considering the reference start-
point circuits proposed herein

CIRCUIT PTLS OTR
Old Ref New Ref Old Ref New Ref

C1355 -53.79% -42.45% -41.89% -27.64%
C1908 -63.60% -29.67% -40.94% 14.13%
C2670 -42.20% 19.14% -42.89% 17.73%
C3540 -33.51% 17.81% -43.92% -0.64%
C432 39.45% 86.24% -16.58% 11.41%
C499 -35.86% -44.18% -13.11% -24.38%
C5315 -22.85% 39.20% -47.99% -6.16%
C6288 -22.92% -7.81% -20.97% -5.46%
C7552 -62.81% -16.53% -42.28% 29.53%
C880 N/A 5.24% N/A N/A
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6.2 Comparing the Proposed Approach with ABC

In the way for validating the method proposed herein, the same set of benchmark
circuits was applied using simple cells on both the proposed approach and ABC tool.
The methodology for this comparison diverges after Step 1.1, i.e., after the AIG with
minimal node count has been obtained. At this moment, the same AIG is used as input
for both approaches. Algorithm 6.1 presents an example of running ABC for obtaining
the necessary data and generate the transistor count using simple cells. After reading the
input AIG (line 3), the library containing only simple cells (described in genlib format) is
read (line 4). Then, the AIG is mapped using the library (line 5) and the final circuit is
generated (line 6). The output messages needed for reports and analysis are printed from
line 7 to line 9.

Algorithm 6.1: Example of obtaining transistor count with ABC using simple
cells.

1 user@computer-description ~ $ ./abc > abc-report.log
2 UC Berkeley, ABC 1.01 (compiled Aug 30 2013 09:30:25)
3 abc 01> read_aig example.aig
4 abc 02> read_library minimal.genlib
5 abc 03> map -v
6 abc 04> write_verilog output-circuit.v
7 abc 05> print_stats
8 abc 06> print_gates
9 abc 07> print_fanio

10 abc 08> quit
11 user@computer-description ~ $

For each input circuit (and, consequently, AIG), two output circuits are generated
using ABC: (1) mapping using “map” command, which tries to minimize the circuit delay
by limiting the fanout of internal nodes; and (2) mapping using “map -a” command,
which ignores the fanout information and performs the mapping optimizing only the area
of the final circuit. In this sense, for each cell in the given genlib, the area information
was changed to the number of transistors. Thus, both ABC and the approach proposed
herein could have the same cost function.

Table 6.4 presents the transistor count of benchmark circuits mapped using simple
cells by running both ABC and the approach proposed herein. In this table, the columns
labeled “UNLIMITED FANOUT” and “LIMITED FANOUT” present, respectively, the
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transistor count first without considering the fanout of nodes and after limiting the fanout
of nodes.

Table 6.4: Transistor count of benchmark circuits mapped using simple cells obtained
both from ABC and the approach proposed herein.

CIRCUIT UNLIMITED FANOUT LIMITED FANOUT
ABC OUR % ABC OUR %

C1355 1876 1802 -3.94% 2724 1886 -30.76%
C1908 1704 1628 -4.46% 2098 1690 -19.45%
C2670 2478 2414 -2.58% 2670 2540 -4.87%
C3540 4260 4038 -5.21% 4724 4330 -8.34%
C432 600 596 -0.67% 896 610 -31.92%
C499 1862 1788 -3.97% 2472 1872 -24.27%
C5315 6098 5906 -3.15% 6388 6354 -0.53%
C6288 8484 8454 -0.35% 12346 8710 -29.45%
C7552 6556 6406 -2.29% 6704 6588 -1.73%
C880 1440 1394 -3.19% 1468 1466 -0.14%
fullAdder 36 32 -11.11% 42 32 -23.81%
i10 8374 8116 -3.08% 8968 8636 -3.70%
AVG. -3.67% -14.91%
WEIGHTED AVG. -2.73% -13.18%

Notice that the method proposed in this work obtained a lower transistor count
for all tested circuits, both before and after limiting fanout. In the first case, before
limiting fanout, the percent difference range between −0.35% and −11.11%, with an
average decrease of 3.67% and a weighted average decrease of 2.73%. In the second case,
after limiting fanout, the percent difference range between −0.14% and −31.92%, with
an average decrease of 14.91% and a weighted average decrease of 13.18%.

Table 6.5 presents the percent increase of transistor count w.r.t. fanout limitation,
both from ABC and the approach proposed herein. Notice that the increase of transistor
count in ABC range between 1.94% and 49.33%, against increases between 0.00% and
7.59%.

This higher increase of transistor count from ABC approach is mainly because ABC
limits fanout by duplicating nodes. This is worse than the approach proposed herein in
two main aspects: (1) each node duplication derives another gate in the final circuit,
which means an increase of four transistors for positive consumers and six transistors
for negative consumers; and (2) primary input nodes cannot have their fanout limited in
ABC approach because there is no way to duplicate primary input nodes.
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Table 6.5: Transistor count increase due to fanout limitation.
CIRCUIT #XTORS INCREASE (%)

OUR ABC
C1355 4.66% 45.20%
C1908 3.81% 23.12%
C2670 5.22% 7.75%
C3540 7.23% 10.89%
C432 2.35% 49.33%
C499 4.70% 32.76%
C5315 7.59% 4.76%
C6288 3.03% 45.52%
C7552 2.84% 2.26%
C880 5.16% 1.94%
fullAdder 0.00% 16.67%
i10 6.41% 7.09%

6.3 Analyzing the Influence of Each Parameter on the Proposed Approach

In this section, all parameters proposed in the approach described in this work are
analyzed in terms of their influence in the final circuit. Table 6.6 shows the parameters
used on best obtained results. The following subsections provide an study of how these
parameters have influence on final results.

Table 6.6: Parameters used on best results.

CIRCUIT GOOD/
QUICK BFS/DFS FORCE

INPUTS
FORCE

OUTPUTS
REMOVE
NODES

C1355 Good BFS Yes Yes Yes
C1908 Good DFS Yes Yes Yes
C2670 Good DFS Yes No Yes
C3540 Quick DFS Yes No No
C432 Good DFS Yes Yes No
C499 Good BFS Yes Yes Yes
C5315 Good DFS Yes No No
C6288 Quick DFS No No Yes
C7552 Good DFS Yes No Yes
C880 Quick DFS Yes No No
fullAdder Good BFS No No No
i10 Good DFS Yes No Yes
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6.3.1 Polarity Graph Coloring in Different Orders

For the sake of analyzing if the order in which the polarity graph is colored really
has influence on the final circuit, Table 6.7 presents the transistor count for both BFS
and DFS best cases, before and after limiting fanout. In this analysis, the variation of
other parameters was allowed, e.g. the comparison between BFS forcing input colors and
DFS not forcing input colors is a valid comparison.

Table 6.7: Transistor count of best BFS and DFS iterations allowing variation of all other
parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

BEST BFS BEST DFS % BEST BFS BEST DFS %
C1355 1802 1804 0.11% 1886 1888 0.11%
C1908 1632 1628 -0.25% 1692 1690 -0.12%
C2670 2442 2414 -1.15% 2568 2540 -1.09%
C3540 4046 4038 -0.20% 4342 4330 -0.28%
C432 620 596 -3.87% 634 610 -3.79%
C499 1788 1792 0.22% 1876 1872 -0.21%
C5315 5936 5906 -0.51% 6370 6354 -0.25%
C6288 8472 8454 -0.21% 8728 8710 -0.21%
C7552 6446 6406 -0.62% 6616 6588 -0.42%
C880 1404 1394 -0.71% 1478 1466 -0.81%
fullAdder 32 32 0.00% 32 32 0.00%
i10 8174 8116 -0.71% 8682 8636 -0.53%

Notice that, for almost all tested cases, the best result using DFS is better than
the best result using BFS. This confirms what can be seen in Table 6.6, where the results
of DFS are better than the results of BFS. However, this does not means that using DFS
is always better than using BFS.

Table 6.8 presents a different analysis of transistor count for both BFS and DFS,
before and after limiting fanout. In this table, the results with largest percent difference
keeping static all other parameters were used, i.e., the comparison between BFS forcing
input colors and DFS not forcing input colors is not a valid comparison in this table.
Notice that, now, it is possible to see that using DFS not always leads to better results.
Examples are circuit C2670, where the DFS result has 4.20% less transistors than the BFS
result, and circuit C432, where the DFS leads to a result with 5.67% more transistors then
the BFS.
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Table 6.8: Transistor count of largest percent difference on BFS and DFS iterations
keeping static all other parameters.

CIRCUIT UNLIMITED FANOUT LIMITED FANOUT
BFS DFS % BFS DFS %

C1355 1860 1842 -0.97% 1992 1964 -1.41%
C1908 1672 1650 -1.32% 1734 1702 -1.85%
C2670 2572 2464 -4.20% 2702 2602 -3.70%
C3540 4056 4098 1.04% 4348 4386 0.87%
C432 600 634 5.67% 616 652 5.84%
C499 1874 1850 -1.28% 1964 1938 -1.32%
C5315 5906 5978 1.22% 6364 6430 1.04%
C6288 8684 8784 1.15% 8940 9040 1.12%
C7552 6406 6460 0.84% 6588 6662 1.12%
C880 1400 1426 1.86% 1472 1496 1.63%
fullAdder 34 32 -5.88% 34 32 -5.88%
i10 8166 8284 1.45% 8636 8740 1.20%

6.3.2 QuickColor and GoodColor Heuristics

Table 6.9 presents the transistor count for both QuickColor and GoodColor best
cases, before and after limiting fanout. These numbers allow us to analyze if changing
the heuristics used for coloring the polarity graph has influence on the final circuit. In
this analysis, the variation of other parameters was allowed, e.g. the comparison be-
tween QuickColor forcing input colors and GoodColor not forcing input colors is a valid
comparison.

Table 6.9: Transistor count of best QuickColor and GoodColor iterations allowing varia-
tion of all other parameters.

CIRCUIT UNLIMITED FANOUT LIMITED FANOUT
BEST
QUICK

BEST
GOOD % BEST

QUICK
BEST
GOOD %

C1355 1848 1802 -2.49% 1934 1886 -2.48%
C1908 1656 1628 -1.69% 1716 1690 -1.52%
C2670 2424 2414 -0.41% 2556 2540 -0.63%
C3540 4038 4050 0.30% 4330 4342 0.28%
C432 608 596 -1.97% 622 610 -1.93%
C499 1840 1788 -2.83% 1930 1872 -3.01%
C5315 5944 5906 -0.64% 6400 6354 -0.72%
C6288 8454 8608 1.82% 8710 8864 1.77%
C7552 6462 6406 -0.87% 6620 6588 -0.48%
C880 1394 1400 0.43% 1466 1468 0.14%
fullAdder 32 32 0.00% 32 32 0.00%
i10 8156 8116 -0.49% 8664 8636 -0.32%
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Notice that, as in previous analysis, for almost all tested cases, the best results
using GoodColor are better than the best results using QuickColor. This also confirms
what can be seen in Table 6.6, where the results of GoodColor are better than the results
of QuickColor. However, this does not means that using GoodColor is always better than
using QuickColor.

Table 6.10 presents a different analysis of transistor count for both QuickColor and
GoodColor, before and after limiting fanout. In this table, the results with largest percent
difference keeping static all other parameters were used, i.e., the comparison between
QuickColor forcing input colors and GoodColor not forcing input colors is not a valid
comparison in this table. Notice that, now, it is possible to see that using GoodColor
not always leads to better results. Examples are circuit C1908, where the GoodColor
result has 3.06% less transistors then the QuickColor result, and circuit C6288, where the
GoodColor leads to a result with 4.63% more transistors then the QuickColor.

Table 6.10: Transistor count of largest percent difference on QuickColor and GoodColor
iterations keeping static all other parameters.

CIRCUIT UNLIMITED FANOUT LIMITED FANOUT
QUICK GOOD % QUICK GOOD %

C1355 1850 1802 -2.59% 1934 1886 -2.48%
C1908 1702 1650 -3.06% 1754 1702 -2.96%
C2670 2464 2534 2.84% 2602 2670 2.61%
C3540 4050 4112 1.53% 4346 4392 1.06%
C432 610 596 -2.30% 624 610 -2.24%
C499 1842 1788 -2.93% 1930 1872 -3.01%
C5315 6062 5962 -1.65% 6498 6408 -1.39%
C6288 8472 8864 4.63% 8728 9120 4.49%
C7552 6576 6498 -1.19% 6666 6588 -1.17%
C880 1414 1446 2.26% 1486 1518 2.15%
fullAdder 32 34 6.25% 32 34 6.25%
i10 8182 8292 1.34% 8694 8822 1.47%

6.3.3 Forcing Colors on Input Nodes

In order to analyze the influence on the final circuit by forcing the colors on input
nodes, Table 6.11 presents the best transistor count for both not forcing and forcing colors
on input nodes, before and after limiting fanout. In this analysis, the variation of other
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parameters was allowed, e.g. the comparison between not forcing input colors using BFS
and forcing input colors using DFS is a valid comparison.

Table 6.11: Best transistor count of forcing input colors and not forcing input colors
iterations allowing variation of all other parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

BEST NOT
FORCING

BEST
FORCING % BEST NOT

FORCING
BEST

FORCING %

C1355 1806 1802 -0.22% 1890 1886 -0.21%
C1908 1634 1628 -0.37% 1690 1692 0.12%
C2670 2432 2414 -0.74% 2576 2540 -1.40%
C3540 4046 4038 -0.20% 4336 4330 -0.14%
C432 600 596 -0.67% 616 610 -0.97%
C499 1794 1788 -0.33% 1872 1872 0.00%
C5315 5944 5906 -0.64% 6370 6354 -0.25%
C6288 8454 8454 0.00% 8710 8710 0.00%
C7552 6498 6406 -1.42% 6694 6588 -1.58%
C880 1398 1394 -0.29% 1468 1466 -0.14%
fullAdder 32 32 0.00% 32 32 0.00%
i10 8174 8116 -0.71% 8682 8636 -0.53%

Notice that, in 96% of tested cases, the best results forcing input colors are better
than or equal to the best results not forcing input colors. Again, this confirms what can be
seen in Table 6.6, where the best results forcing input colors are higher than the number
of best results not forcing input colors. However, this does not means that forcing input
colors always leads to better results than not forcing input colors.

Table 6.12 presents a different analysis of transistor count for both forcing and not
forcing input colors, before and after limiting fanout. In this table, the results with largest
percent difference keeping static all other parameters were used, i.e., the comparison
between not forcing input colors using BFS and forcing input colors using DFS is not a
valid comparison in this table. Notice that, now, it is possible to see that forcing colors
on input nodes not always leads to better results. Examples are circuit C432, where
the result forcing input colors has 3.23% less transistors then the result not forcing input
colors, and circuit C2670, where forcing colors on input nodes leads to a result with 5.97%
more transistors than not forcing input colors.
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Table 6.12: Transistor count of largest percent difference on forcing input colors and not
forcing input colors iterations keeping static all other parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

NOT
FORCING FORCING % NOT

FORCING FORCING %

C1355 1842 1870 1.52% 1928 1958 1.56%
C1908 1650 1682 1.94% 1702 1738 2.12%
C2670 2414 2558 5.97% 2540 2686 5.75%
C3540 4084 4112 0.69% 4370 4342 -0.64%
C432 620 600 -3.23% 636 616 -3.14%
C499 1850 1880 1.62% 1938 1968 1.55%
C5315 5944 6078 2.25% 6402 6514 1.75%
C6288 8608 8824 2.51% 8864 9080 2.44%
C7552 6462 6620 2.45% 6620 6778 2.39%
C880 1400 1446 3.29% 1472 1516 2.99%
fullAdder 34 32 -5.88% 34 32 -5.88%
i10 8116 8220 1.28% 8636 8742 1.23%

6.3.4 Forcing Colors on Output Nodes

In the interest of analyzing if forcing colors on output nodes has influence on the
final circuit, Table 6.13 presents the transistor count for both best cases, before and after
limiting fanout. In this analysis, the variation of other parameters was allowed, e.g. the
comparison between not forcing output colors using BFS and forcing output colors using
DFS is a valid comparison.

Table 6.13: Best transistor count of forcing and not forcing output colors iterations al-
lowing variation of all other parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

BEST NOT
FORCING

BEST
FORCING % BEST NOT

FORCING
BEST

FORCING %

C1355 1832 1802 -1.64% 1916 1886 -1.57%
C1908 1650 1628 -1.33% 1702 1690 -0.71%
C2670 2414 2424 0.41% 2540 2554 0.55%
C3540 4038 4038 0.00% 4340 4330 -0.23%
C432 608 596 -1.97% 620 610 -1.61%
C499 1850 1788 -3.35% 1936 1872 -3.31%
C5315 5906 5924 0.30% 6354 6358 0.06%
C6288 8454 8476 0.26% 8710 8732 0.25%
C7552 6406 6412 0.09% 6588 6616 0.43%
C880 1394 1396 0.14% 1466 1468 0.14%
fullAdder 32 32 0.00% 32 32 0.00%
i10 8116 8156 0.49% 8636 8690 0.63%
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Notice that, in 71% of tested cases, the percent variation of forcing and not forcing
colors on output nodes are less 1% in absolute value. However, in the remaining 29%
where the percent difference are more then 1%, forcing colors on output nodes has lead
to better results.

Table 6.14 presents a different analysis of transistor count for both forcing and
not forcing output colors, before and after limiting fanout. In this table, the results
with largest percent difference keeping static all other parameters were used, i.e., the
comparison between not forcing output colors using BFS and forcing output colors using
DFS is not a valid comparison in this table. Notice that forcing colors on output nodes
may lead to worse results. In the tested benchmark circuits, forcing colors on output
nodes and keeping static the other parameters provides better results only in a third of
cases.

Table 6.14: Transistor count of largest percent difference on forcing and not forcing output
colors iterations keeping static all other parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

NOT
FORCING FORCING % NOT

FORCING FORCING %

C1355 1848 1894 2.49% 1934 1992 3.00%
C1908 1634 1680 2.82% 1690 1730 2.37%
C2670 2438 2572 5.50% 2576 2702 4.89%
C3540 4078 4054 -0.59% 4364 4342 -0.50%
C432 596 608 2.01% 616 628 1.95%
C499 1840 1910 3.80% 1930 2012 4.25%
C5315 5994 6078 1.40% 6424 6514 1.40%
C6288 8608 8864 2.97% 8864 9120 2.89%
C7552 6582 6504 -1.19% 6764 6700 -0.95%
C880 1404 1442 2.71% 1468 1510 2.86%
fullAdder 34 32 -5.88% 34 32 -5.88%
i10 8210 8166 -0.54% 8720 8664 -0.64%

6.3.5 Removing Polarity Don’t Care Nodes

In order to analyze the influence on the final circuit of removing polarity don’t care
nodes, Table 6.15 presents the best transistor count for both not removing and removing
these nodes, before and after limiting fanout. The threshold used was 4. In this analysis,
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Table 6.15: Best transistor count of not removing and removing specific nodes iterations
allowing variation of all other parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

BEST NOT
REMOVING

BEST
REMOVING % BEST NOT

REMOVING
BEST

REMOVING %

C1355 1816 1802 -0.77% 1918 1886 -1.67%
C1908 1648 1628 -1.21% 1702 1690 -0.71%
C2670 2424 2414 -0.41% 2558 2540 -0.70%
C3540 4038 4038 0.00% 4330 4330 0.00%
C432 596 600 0.67% 610 616 0.98%
C499 1806 1788 -1.00% 1892 1872 -1.06%
C5315 5906 5910 0.07% 6364 6354 -0.16%
C6288 8454 8454 0.00% 8710 8710 0.00%
C7552 6414 6406 -0.12% 6610 6588 -0.33%
C880 1394 1394 0.00% 1466 1466 0.00%
fullAdder 32 32 0.00% 32 32 0.00%
i10 8166 8116 -0.61% 8682 8636 -0.53%

the variation of other parameters was allowed, e.g. the comparison between not removing
specific nodes using BFS and removing these nodes using DFS is a valid comparison.

Notice that, in 88% of tested cases, the best results removing polarity don’t care
nodes are better then or equal to the best results not removing these nodes. Once again,
this confirms what can be seen in Table 6.6, where the number of best results removing
these specific nodes is higher than the the number of best results not removing them.
However, this does not means that removing these nodes always leads to better results
than not removing them.

Table 6.16 presents a different analysis of transistor count for both removing and
not removing polarity don’t care nodes, before and after limiting fanout. In this table, the
results with largest percent difference keeping static all other parameters were used, i.e.,
the comparison between not removing polarity don’t care nodes using BFS and removing
these nodes using DFS is not a valid comparison in this table. Notice that, now, it
is possible to see that removing polarity don’t care nodes not always leads to better
results. Examples are circuit 2670, where the result removing these nodes has 4.40% less
transistors than the result not removing them, and circuit 6288, where removing these
specific nodes leads to a result with 2.64% more transistors than removing these nodes.
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Table 6.16: Transistor count of largest percent difference on removing and not removing
polarity don’t care nodes keeping static all other parameters.
CIRCUIT UNLIMITED FANOUT LIMITED FANOUT

NOT
REMOVING REMOVING % NOT

REMOVING REMOVING %

C1355 1836 1870 1.85% 1920 1958 1.98%
C1908 1634 1676 2.57% 1690 1738 2.84%
C2670 2544 2432 -4.40% 2680 2576 -3.88%
C3540 4052 4098 1.14% 4342 4386 1.01%
C432 620 596 -3.87% 636 610 -4.09%
C499 1794 1824 1.67% 1936 1972 1.86%
C5315 5962 6040 1.31% 6424 6480 0.87%
C6288 8636 8864 2.64% 8892 9120 2.56%
C7552 6524 6504 -0.31% 6662 6634 -0.42%
C880 1404 1422 1.28% 1468 1492 1.63%
fullAdder 32 32 0.00% 32 32 0.00%
i10 8216 8284 0.83% 8738 8822 0.96%

6.4 Analysis of Fanout

This section presents an analysis of fanout in the final circuits, both running ABC
and the approach proposed herein. The maximum fanout of both inverters and source
cells that was considered in this analysis is 4. Table 6.17 shows the worst and average
fanout, before and after limiting fanout, in the final circuits obtained running ABC. Table
6.18 shows the same information when running the method proposed in this work. It is
important to remark that ABC values do not consider the fanout of primary input nodes.

Table 6.17: Fanout analysis running ABC.
WORST FANOUT AVERAGE FANOUT

CIRCUIT BEFORE AFTER % BEFORE AFTER %
C1355 7 6 -14.29% 1.68 1.51 -10.12%
C1908 11 6 -45.45% 1.67 1.54 -7.78%
C2670 16 16 0.00% 1.44 1.43 -0.69%
C3540 20 22 10.00% 1.66 1.63 -1.81%
C432 9 11 22.22% 1.46 1.35 -7.53%
C499 7 6 -14.29% 1.69 1.5 -11.24%
C5315 21 19 -9.52% 1.52 1.5 -1.32%
C6288 17 17 0.00% 1.87 1.79 -4.28%
C7552 116 113 -2.59% 1.58 1.57 -0.63%
C880 8 8 0.00% 1.48 1.48 0.00%
fullAdder 2 2 0.00% 1.29 1.27 -1.55%
i10 28 24 -14.29% 1.65 1.63 -1.21%
AVG. -5.68% -4.01%
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Table 6.18: Fanout analysis running the method proposed herein.
WORST FANOUT AVERAGE FANOUT

CIRCUIT BEFORE AFTER % BEFORE AFTER %
C1355 8 4 -50.00% 1.66 1.47 -11.45%
C1908 15 4 -73.33% 1.68 1.54 -8.33%
C2670 22 4 -81.82% 1.36 1.28 -5.88%
C3540 41 4 -90.24% 1.8 1.45 -19.44%
C432 9 4 -55.56% 1.48 1.43 -3.38%
C499 8 4 -50.00% 1.66 1.48 -10.84%
C5315 41 4 -90.24% 1.68 1.42 -15.48%
C6288 17 4 -76.47% 1.79 1.62 -9.50%
C7552 170 4 -97.65% 1.63 1.53 -6.13%
C880 9 4 -55.56% 1.65 1.47 -10.91%
fullAdder 2 2 0.00% 1.5 1.5 0.00%
i10 26 4 -84.62% 1.72 1.48 -13.95%
AVG. -67.12% -9.61%

Notice that, in the resulting circuits obtained with ABC after limiting fanout, the
worst fanout decreases in a range between 2.59% and 45.45%, but there are increases of
22.22%. Even so, the worst fanout decreases in an average of 5.68%. When running the
approach proposed herein, after limiting fanout, the worst fanout decreases in a range
between 50.00% and 97.65%, and the worst fanout decreases in an average of 67.12%.
Another remarkable feature is that the average fanout decreases in a range between 0.69%
and 11.24% after ABC limiting fanout. When running the approach proposed herein, the
average fanout of the circuits decreases in a range between 3.38% and 19.44%.

6.5 Analysis of Runtime

In this section, the runtime for obtaining reduced transistor count in benchmark
circuits using simple cells when running the proposed approach is analyzed. The runtime
information is compared to the runtime for obtaining the circuits using ABC.

Due to the proposed parameters and their variations, one complete iteration of
the proposed approach runs 32 sub-iterations, which derives 32 different circuits. Table
6.19 presents the slower, faster and average runtime of these sub-iterations for each tested
circuit, as well as the runtime of the sub-iteration that derived the best transistor count.
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Table 6.19: Runtime analysis of the proposed approach.

CIRCUIT SLOWER
(ms)

FASTER
(ms) AVG. (ms)

BEST
#XTORS

(ms)
C1355 282.05 20.26 69.17 40.59
C1908 118.45 8.20 23.21 18.90
C2670 89.91 11.99 31.02 17.77
C3540 58.57 19.70 30.77 24.03
C432 7.75 3.85 5.40 5.43
C499 93.99 6.86 14.43 13.94
C5315 88.26 32.57 51.07 60.38
C6288 282.98 62.68 121.23 78.51
C7552 90.85 51.40 64.22 65.49

Table 6.20 shows the runtime for each circuit when running ABC and the average
runtime when running the proposed approach. As the sub-iterations derives different
circuits, this table has a third column that shows how many circuits (in % values) derived
from the 32 sub-iterations have lower transistor count comparing against ABC.

Table 6.20: Runtime analysis of average runtime comparing against ABC.

CIRCUIT ABC
RUNTIME

OUR
RUNTIME

ABC %
LOSSES

C1355 200 ms 69.17 ms 75.00%
C1908 200 ms 23.21 ms 100.00%
C2670 200 ms 31.02 ms 62.50%
C3540 200 ms 30.77 ms 100.00%
C432 <100 ms 5.40 ms 3.13%
C499 200 ms 14.43 ms 56.25%
C5315 200 ms 51.07 ms 100.00%
C6288 700 ms 121.23 ms 50.00%
C7552 400 ms 64.22 ms 65.63%
C880 100 ms 13.34 ms 87.50%
fullAdder <100 ms 6.74 ms 100.00%
i10 500 ms 95.39 ms 100.00%

Table 6.21 shows again ABC runtime and also the runtime of the proposed approach
after the 32 sub-iterations.
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Table 6.21: Runtime analysis of the 32 sub-iterations comparing against ABC.

CIRCUIT ABC
RUNTIME

OUR
RUNTIME

C1355 200 ms 974.86 ms
C1908 200 ms 471.67 ms
C2670 200 ms 723.24 ms
C3540 200 ms 897.88 ms
C432 <100 ms 129.45 ms
C499 200 ms 248.58 ms
C5315 200 ms 1429.55 ms
C6288 700 ms 3222.91 ms
C7552 400 ms 1960.83 ms
C880 100 ms 184.70 ms
fullAdder <100 ms 9.84 ms
i10 500 ms 3047.30 ms
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7 CONCLUSIONS AND FUTURE WORKS

This work is centered on methods to obtain minimum transistor count implemen-
tations of digital VLSI circuits based on simple cells. Thus, we provide three main contri-
butions in the work presented herein: (1) the introduction of a set of efficient algorithms
for obtaining reduced transistor count; (2) a new reference for transistor count in bench-
mark circuits using simple cells; and (3) an analysis of previous works which advocate for
complex cells when comparing them against the new reference proposed herein.

The set of algorithms comprising the first contribution has four main aspects: (i)
the extension of the inverter minimization procedure proposed by Jain and Bryant (1993)
to work over AIGs instead of logic networks; (ii) the improvement of the cited approach
introducing PPI nodes, which makes it possible to force chosen polarities on selected
nodes; (iii) the introduction of an algorithm to remove polarity don’t care nodes; and (iv)
a novel algorithm for limiting fanout by inserting inverter trees. The presented algorithms,
specifically the ones related with the aspects i, ii and iii, obtain reduced transistor count
implementations from AIGs with minimized number of nodes. The proposed approach
was validated by generating benchmark circuits using a simple library containing only
NAND2, NOR2 and inverter as available cells. The obtained results have shown the
usefulness of the method. The circuits generated by our algorithms have, in average,
32.07% less transistor than the previous reference on transistor count using simple cells
(39.92% less transistor in a weighted average). Intrinsically, these numbers comprise the
second contribution of this thesis: a new reference for transistor count in benchmark
circuits using simple cells, which can be used as a fair start-point to compare circuit
implementations using simple gates against circuit implementations using complex cells.
One could argue that, due to the high logic sharing obtained after reducing node count
in AIGs, the generated circuits have cells with unfeasible fanout. This argument leads
to aspect iv of the first contribution: a novel algorithm for limiting fanout by inserting
inverter trees. The presented algorithm is able to provide an output circuit in which no
cell has a fanout larger than a given threshold limit. The proposed algorithm for limiting
fanout was applied over the generated circuits. The obtained results also have shown
the usefulness of the method. The obtained circuits after limiting fanout of their cells
up to 4 still have lower transistor count when compared against the previous reference
implementations using gates (−29.07% in average and −37.19% in weighted average).
Comparing the presented results against ABC tool, our approach was able to fix all
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“fanout violations” with an average transistor count increase of 4.30%, whereas ABC did
not fix all “fanout violations” and has achieved an average transistor count increase of
20.56%.

Additionally, when comparing the presented results in terms of transistor count
against works advocating for complex cells, our results have demonstrated that previous
approaches are sometimes far from the minimum transistor count that can be obtained
with the efficient use of a reduced cell library composed by only a few number of simple
cells. The simple-cells-based circuits obtained after applying the algorithms proposed
herein have presented a lower transistor count in many cases when compared to previously
published results using complex (static CMOS and PTL) cells, which is surprising and
counter-intuitive. These results strongly suggest that the gains in using complex cells were
overestimated by previous publications and this analysis comprises the third contribution
of this work.

There is still much work to be carried on. The impact of all the proposed algorithms
in terms of area, power consumption and delay must be analyzed. It can be argued that the
additional inverters inserted in the circuit to perform fanout limitation may lead to area
and power overheads with respect to minimum transistor count implementations. Even
son, it is not realistic to consider circuits without any fanout restriction. With respect to
delay, we believe that the current circuits could have equivalent results when compared
against the circuits obtained by state-of-the-art tools. Nevertheless, these expectations
need to be evaluated. It is important to highlight that the methods proposed herein are
able to produce high quality subject descriptions for further technology mapping without
restriction to simple cells. This claim is justified as technology mapping usually start
from a description in terms of simple cells, and this step is known to be dependent of the
initial description used. This way, providing a better start point for further technology
mapping is an important contribution.

Another future work is to use the generated circuits as input for a technology
mapping algorithm using complex cells. We agree with the results reported by Reis et al.
(1995) on circuit 9sym, where complex cells can reduce transistor count from a given start
point. Therefore, we believe that using these circuits as start-points for a new synthesis
iteration, now allowing more complex cells, can potentially produce better results for
future approaches, as logic synthesis algorithms depend on the initial circuit.

Nonetheless, even if the presented research opened the way for several future works,
the current results have shown the computational and practical viability of the methods
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presented herein. The proposed algorithms have been proved useful for obtaining bench-
mark circuits with reduced transistor count using simple cells. This usefulness has been
demonstrated both with respect to previously published references with simple cells, as
well as with respect to current state of the art tools, like ABC.
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