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ABSTRACT 

This work investigates the application of extended behavior networks to the 
computer game domain. We use as our test bed the game Unreal Tournament.  

Extended Behavior Networks (EBNs) are a class of action selection architectures 
capable of selecting a good set of actions for complex agents situated in continuous and 
dynamic environments. They have been successfully applied to the Robocup, but never 
before used in computer games. 

PHISH-Nets, a behavior network model capable of selecting just single actions, was 
applied to character modeling with promising results. Although extended behavior 
networks are applicable to a larger domain, they had not been used to character 
modeling before. 

We present how to design an agent with extended behavior networks, fuzzy sensors 
and finite-state machine based behaviors. 

We investigate the quality of the action selection mechanism and its correctness in a 
series of experiments.  

The performance is assessed comparing the scores of an agent using an extended 
behavior network against a plain reactive agent with identical sensory-motor apparatus 
and against a totally different agent built around finite-state machines.  

We investigate how EBNs fare on agent personality modeling via the design and 
analysis of five stereotypes in Unreal Tournament. We discuss three ways to build 
character personas and situate our work within other approaches.  

We conclude that extended behavior networks are a good action selection 
architecture for the computer game domain and an interesting mechanism to build 
agents with simple personalities. 

 

 

 

Keywords: behavior networks, computer games, character modeling, autonomous 
agents, planning, action selection, personality, Unreal Tournament. 



Construção de Agentes Autônomos para Jogos de Computador com 
Redes de Comportamentos Estendidas: Uma investigação de seleção de 

ações, performance de agentes e modelagem de personagens no jogo 
Unreal Tournament. 

RESUMO 

Este trabalho investiga a aplicação de rede de comportamentos estendidas ao 
domínio de jogos de computador. 

Redes de comportamentos estendidas (RCE) são uma classe de arquiteturas para 
seleção de ações capazes de selecionar bons conjuntos de ações para agentes complexos 
situados em ambientes contínuos e dinâmicos. Foram aplicadas com sucesso na 
Robocup, mas nunca foram aplicadas a jogos. 

PHISH-Nets, um modelo de redes de comportamentos capaz de selecionar apenas 
uma ação por vez, foi aplicado à modelagem de personagens, com bons resultados. 
Apesar de RCEs serem aplicáveis a um conjunto de domínios maior, nunca foram 
usadas para modelagem de personagens. 

Apresenta-se como projetar um agente controlado por uma rede de comportamentos 
para o domínio do Unreal Tournament e como integrar a rede de comportamentos a 
sensores nebulosos e comportamentos baseados em máquinas de estado-finito 
aumentadas. 

Investiga-se a qualidade da seleção de ações e a correção do mecanismo em uma 
série de experimentos. 

A performance é medida através da comparação das pontuações de um agente 
baseado em redes de comportamentos com outros dois agentes. Um dos agentes foi 
implementado por outro grupo e usava sensores, efetores e comportamentos diferentes. 
O outro agente era idêntico ao agente baseado em RCEs, exceto pelo mecanismo de 
controle empregado.   

A modelagem de personalidade é investigada através do projeto e análise de cinco 
estereótipos: Samurai, Veterano, Berserker, Novato e Covarde. Apresenta-se três 
maneiras de construir personalidades e situa-se este trabalho dentro de outras 
abordagems de projeto de personalidades. 

Conclui-se que a rede de comportamentos estendida é um bom mecanismo de 
seleção de ações para o domínio de jogos de computador e um mecanismo interessante 
para a construção de agentes com personalidades simples. 

Palavras-Chave: redes de comportamentos, jogos de computador, modelagem de 
personagens, agentes autônomos, seleção de ações, personalidade, Unreal Tournament.



1 INTRODUCTION 

In the design of a game robot one of the key concerns is how it selects its actions so 
as to exhibit a goal-oriented behavior. When the robot has many possibly conflicting 
goals this task gets more complicated. If the robot is also in a fast changing environment 
and has to consider many factors at each instant we have a hard problem to tackle. 
Search-based approaches turn impractical due to the large search space and traditional 
planning is made much harder as the environment may have changed when the agent 
finishes planning. 

Behavior Networks (MAES, 1989) were proposed as an action selection mechanism 
to select good actions in complex and dynamic environments. They favor actions that 
contribute to more than one goal and those that are part of an ongoing plan. They 
gracefully treat conflicts among the goals and are fast, robust and reactive. 

Extended Behavior Networks (DORER,1999-a) are an extension for continuous 
domains capable of selecting actions concurrently and specifying situation-dependent 
goals. They were applied to the Robocup1 with very good results and to the game 
Unreal Tournament (PINTO et al., 2005-a)2, again with encouraging findings. 

Good action selection is important, but how the agent selects its actions and how it 
affects its personality is also a concern in a computer game. Wouldn’t it be interesting if 
while building an agent towards proper goal-oriented behavior we could take into 
consideration personality traits? Behavior Networks enable one to do just that. Rhodes 
(1996) has applied a behavior network model, PHISH-NET, to the design of character 
personalities and Pinto (2005-b) has applied extended behavior networks to the design 
of stereotypes. 

Unreal Tournament is a modern 3D action game. In this game genre we have the 
agent situated in a 3D continuous virtual environment, interacting in many ways with 
several entities in real-time. The scenarios an agent may face are varied and complex. 
The agent has many weapons available, each with certain properties and several items to 
use. It moves over different landscapes and interacts with several other agents, both 
opponents and teammates. The action repertory is large (run, walk, turn, crawl, shoot, 
change weapons, jump, strafe, pickup item and use item among others) and an agent 

                                                 
1 See (DORER, 1999) and (DORER, 2004). The Magma-Freiburg team, built using 
extended behavior networks, was the vice-champion of Robocup-1999. 
2 We must clarify that extended behavior networks were used in the game Unreal 
Tournament in our research, not by the developers of the game. The game Unreal 
Tournament makes no use of Extended Behavior Networks as far as we know.  
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may carry out more than one action simultaneously, such as shooting while jumping. 
Also, the agent has many possibly conflicting goals, such as fighting and keeping its 
safety. 

We see that this domain provides a challenging scenario for an action selection 
mechanism. An agent has to deal with continuous measures, the combination of actions 
grows exponentially and planning has to deal with fast changes in its conditions. 

In fact, modern computer games in general, and 3D action games in particular, offer 
an interesting research domain for artificial intelligence. Laird (2000) goes so far as to 
regard computer games as the contemporary “AI killer application”. 

  Figure 1.1 shows game genres and the AI problems they pose.  

 

Figure 1.1: Game Genres, AI Roles and Research Problems. Reproduced from (LAIRD, 
2000). 

We see that these games provide domains to investigate difficult AI problems, such 
as reasoning with limited resources and spatial reasoning, for a very low price. The 
extensive testing of the games and their huge user base turn computer games into an 
interesting test bed for AI techniques and theories.  

A word of caution is due: As Nareyek (2004) points out, many of the built-in AI 
interfaces for these games do not provide the necessary flexibility to do some kinds of 
research. Nonetheless there are many investigations possible with the current games and 
interfaces, such as the present work. 

From an engineer’s point of view these games have become an important application 
in itself. The computer game industry has beaten the movies industry in the USA, 
regarding revenue, for 2 consecutive years (ESA, 2005). The governments of Australia, 
Brazil and South Korea have special programs supporting the research and development 
of computer games (ABRAGAMES, 2004). Added to this hype is the opportunity - 
many problems posed by computer games resemble the problems faced in robotics and 
other artificial intelligence fields a decade ago. It is time to not only design new 
solutions, but to see if old solutions apply to these new but similar problems and adapt 
them to these new domains. 
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Nareyek (2004) points that most games made use of few AI paradigms and 
techniques well established in academia, with a predominance of finite-state machines, 
A* and scripting. One reason is that only recently game developers have enough 
processing power for sophisticated techniques, as graphics cards carry most of the 
graphic processing load, freeing up memory for AI.  The other is that if graphics were 
the main competitive aspect of a game back in the 90’s, nowadays AI has become one 
of the great divides. Good graphics are assumed as certain, while good AI still amazes a 
player. 

In the last few years, interest in the application of sophisticated AI to games has 
increased, with a boom in game AI literature from 2002 on, as evidenced by (RABIN, 
2002), (BUCKLAND, 2002), (RABIN, 2003) and (CHAMPANDARD, 2004). Games 
such as Black and White

3  not only employed adaptive AI but also based a great deal of 
its marketing on the intelligence of its game creatures. 

The similarity of robotics and the action game domain has been explored in 
(CHAMPANDARD, 2004) and (YISKIS, 2003). The first presents a framework 
(FEAR, 2005) and an overview of techniques for building reactive agents with learning 
capabilities in the game Quake II. The later describes how to apply the subsumption 
architecture (BROOKS, 1986) on games, focusing on its integration with character 
animation. 

Now we clearly see the contribution of the present work to the game AI engineering 
community – extended behavior networks are a well-tested, well-understood, simple 
and successful technique from robotics that can be applied with good results in the game 
domain4.  

In this thesis we investigate the design of agents with personality for the game 
Unreal Tournament. We evaluate the quality of the action selection and the performance 
of the agents in the game, and investigate ways to endow them with different 
personalities using three different approaches.   

From a purely scientific stance, our investigation of extended behavior networks in 
the game domain adds to the understanding of various issues: How extended behavior 
networks fare in the computer game domain? Are EBNs generally a good action 
selection mechanism for complex and dynamic environments with continuous 
properties? Do the properties observed in the Robocup domain show up in other 
scenarios? How to evaluate the behavior and performance of a complex agent? How to 
integrate sensors, behaviors and decision making into a complete agent? How to build a 
behavior-network based agent? 

These questions will be addressed in the following chapters, particularly chapter 5. 

Chapter two gives a detailed exposition of the extended behavior network model and 
the game Unreal Tournament.  

In chapter three we see in detail the architecture of the agent used in most 
experiments. We show the rationale behind our design decisions, how we built the 

                                                 
3 EIDOS Interactive. 
4 As shown by (PINTO and ALVARES, 2005a) and (PINTO and ALVARES, 2005b) 
and the rest of this thesis. 
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behavior network, the agent’s sensors and the behavior modules, how the sensory-motor 
apparatus is integrated to the network and how our agent is coupled to the game. 

Chapter four presents the experiments carried out to assess action selection quality, 
agent performance and personality modeling. 

In the fifth chapter we discuss the results of the experiments and contextualize them 
with a body of related work, when relevant. Also, we point extensions to our work and 
discuss the applicability and scope of this thesis. 

Chapter six presents our conclusions and future work. 
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2 BACKGROUND 

This chapter presents the fundamental background for the rest of this work. 

The first section presents the extended behavior network architecture in detail, its 
structure and action selection algorithm.  

The game Unreal Tournament and the add-on we used to build our agent are 
presented and discussed in the second section.  

2.1 Extended Behavior Networks 

Behavior Networks are a class of action selection architectures for selecting good 
enough actions5 in dynamic and complex environments. They combine properties of 
traditional planners (chaining of actions based on preconditions and effects) and 
connectionist systems (activation spreading). They are defined by a static structure and 
an action selection algorithm. 

The structure of a behavior network is composed of a set of behavior modules, a set 
of goals, a set of links that join modules to goals and other modules and a set of control 
parameters. A behavior module resembles a STRIPS6 operator, having lists with both 
the expected effects of its action execution and preconditions for it becoming active. 
The links are made based on the effects of the modules and the conditions of modules 
and goals. 

 Action selection is based in the mutual excitation and inhibition among the network 
nodes, via activation spreading. 

Behavior Networks have been constantly evolving since their first appearance 
(MAES, 1989), as shown by (TYRRELL, 1993), (RHODES, 1996), (GOETZ, 1997), 
(DORER, 1999-a) and (NEBEL and BABOVICH, 2003). They have been applied to 
animal simulation (TYRRELL, 1993), interactive storytelling (RHODES, 1996) and the 
Robocup (MÜLLER, 2001). 

                                                 
5 Maes (1989) defined a good enough action selection policy as one that has the 
following characteristics: favors actions that contribute to the agent’s goals (specially 
several goals at once), favors actions that contribute to ongoing plans, exploit 
opportunities, is fast, is robust and avoids conflicts among objectives.    
6 See (NILSSON, 1971). 
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Maes’ (1989) behavior network was capable of selecting just one action at each 
cycle and its conditions and effects were boolean-valued. Tyrrell (1993) discovered 
many problems in the activation spreading of this model, which were addressed in 
subsequent architectures. The PHISH-Net of Rhodes (1996) and the Extended Behavior 
Network of Dorer (2004) are the current state-of-art of behavior network architecture 
(PINTO, 2004). 

The PHISH-Net was made focusing on the control of characters in interactive 
storytelling environments. Its distinguishing features are its use of variables and its 
mechanisms to treat action failures, loops and impossible-to-satisfy modules. Like 
Maes’ model, PHISH nets also have boolean-valued conditions and effects and select 
only one action at each cycle. 

The Extended Behavior Network was designed with the goal of controlling agents in 
the Robocup (DORER, 2004). It uses real-valued propositions for effects and 
conditions, allows the specification of situation-dependent goals and selects actions 
concurrently. This last feature is what makes extended behavior networks suit to our 
domain of concern and what precludes other models of immediate applicability. 
Concurrent action selection is a must for most contemporary computer games.         

2.1.1 Structure 

An extended behavior network (EBN) is defined by a set of behavior modules (M), a 
set of goals (G), a set of sensors (S), a set of resources (R) and a set of control 
parameters (C). Figure 2.1 shows the specification of part of a behavior network used in 
our experiments and figure 2.2 the network built from this specification. 

   Module 

   precondition EnemyInSight 

   action ShootEnemy 

   effects EnemyHurt 0.6 LowAmmo 0.1 

   using Hands 2 Head 1  endModule 

   Resource  

   name Legs 

   amount 2 endResource 

   Resource  

   name Head 

   amount 1 endResource 

   Resource 

   name Hands 

   amount 2 endResource 

Goal 

condition EnemyHurt 

strength 0.8 

context endGoal 

Goal  

condition Not LowAmmo 

strength 0.6 

context  LowAmmo endGoal 

Parameters 

name ActivationInfluence value 1.0 

name InhibitionInfluence value 0.9 

name Inertia value 0.5  

name GlobalThreshold value 0.6 

   name ThresholdDecay value 0.1 

   endParameters 

Figure  2.1: Specification of a simple behavior network. 

A goal i is defined by a proposition that must be met (Gi), a strength value (Sti) and 
a disjunction of propositions that provide the context for that goal, called the relevance 
condition (Li). The strength provides the static, context-independent importance of the 
goal and the relevance condition the dynamic, context-dependent one.  
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The use of two kinds of conditions in the goals enables us to express goals that 
become more or less important depending on the situation the agent is in.  

Maintenance goals are those that preserve some state of the agent, and become ever 
more important as the current state diverges from the goal. The trivial condition for a 
maintenance goal is the negation of the goal condition. Goal Not LowAmmo in figures 
2.1 and 2.2 is an example. The importance of not being low in ammunition increases as 
the agent’s ammo drops. 

Achievement goals represent the increasing motivation to reach a certain state, 
becoming more relevant the more the current state approaches the goal. The trivial 
condition for this kind of goal is the condition of the goal itself.  

A context independent goal is modeled leaving it without relevance conditions. Goal 
EnemyHurt in figure 2.1 is an example of such a goal. Note that a goal without 
relevance conditions amounts to a goal that is always relevant, i.e., its relevance is 
always maximal. 

 

Figure  2.2: Simple Behavior Network Diagram. The goals are represented by round 
cornered rectangles, the behaviors by sharp cornered rectangles and the resource nodes 
by octagons. Straight lines represent predecessor links, dashed lines conflict links and 
pointed lines resource links. The directions of the arrows indicate the activation flow, 
for predecessor and conflict links. In resource links they indicate the module’s 
dependence on the resource. 

Each behavior module is specified by a conditions list, an action, an effects list and a 
resources list. The first list is a conjunction of real valued propositions that represent the 
needed conditions for the module to execute. The effects list is a conjunction of 
propositions (each possibly negated) whose values are the values that we expect them to 
have after the module’s action execution. The resources list is made of pairs (resource, 
amount), each indicating the expected amount of a resource an agent uses to perform the 
action. Let us examine behavior ShootEnemy in figure 2.1. We see that the precondition 
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is that there is an enemy in sight {EnemyInSight}. The expected effects are that the 
enemy will become hurt with 60% chance (or, conversely, that EnemyHurt verity will 
be 0.6) and that the agent will be with low ammo with 10% chance {EnemyHurt 0.6, 
LowAmmo 0.1}. It needs both hands and its head to perform the behavior {Hands 2, 
Head 1}.  

Goals and modules are linked with two kinds of links. Predecessor links go from a 
module or goal B to a module A, for each proposition in the condition list of B that is in 
the effects list of A such that the proposition has the same sign (true + and false -) in 
both ends of the link. The link from goal EnemyHurt to module ShootEnemy in figure 
2.1 is an example. Conflict links go from a module or goal B to a module A, for each 
proposition in the condition list of B that is in the effects list of A such that the 
proposition has opposite signs at either end of the link. In figure 2.1, the link from Not 

LowAmmo to ShootEnemy is a conflict link. Conflict links take energy away from their 
targets and predecessor links input energy to their targets. This way a module or goal 
tries to inhibit modules whose execution would undo some of its conditions and 
attempts to bring into execution modules whose actions would satisfy any of its 
conditions.  

 Each resource is represented by a resource node and defined by a function f(s) that 
specifies the expected amount of the resource available in each situation s. In addition to 
f(s),  each node has a variable bound that keeps track of the amount of bound resources 
and a resource activation threshold ( ]θθ ..0

Re
∈

s
, where θ  is the global activation 

threshold. In figure 2.1 we see that the expected used amount of each resource is 
constant for all situations. This is not surprising as our agent has the same number of 
body parts available in any situation (the game does not account for limb loss or similar 
gruesome events). 

The modules are linked to the resource nodes through resource links. For each 
resource type in the resources list of a module there is a link from the module to the 
corresponding resource node. 

The control parameters are used to fine tune the network and have values in the 
range [0, 1]. The activation influence parameter γ controls the activation from 
predecessor links. Inhibition influence, δ, the negative activation from conflict links. 
The inertia β, the global threshold θ  and the threshold decay θ∆  have their 
straightforward meanings. Their function will become clearer in the next subsection. 
These parameters enable us to influence the degree of persistence of the agent (the 
higher the inertia the greater the persistence) and how reactive it is (the greater the 
global threshold the longer the sequence of actions considered when selecting a module 
for execution), among other properties. Default parameters that work well under various 
circumstances for the Robocup domain are shown in (DORER, 1999-c).    

2.1.2 Action Selection Algorithm  

The modules to be executed at each cycle are selected in the following way: 

1) The activation a of each module is calculated. 
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2) The executability e of each module is calculated using some triangular norm 
operation7 over its condition list. 

3) The execution-value h(a,e) is calculated by multiplying a and e. Note that this 
value combines the utility of executing a behavior (activation) and the probability of 
executing it successfully (executability). This way even modules with conditions not 
much satisfied may execute if they have high activation.  

4) For each resource used by a module, starting by the last non-available resource, 
the module checks if it has exceeded the resource threshold and if there is enough of 
that resource for its execution. If so, it binds the resource. 

5) If a module has bound all of its needed resources it executes and resets the 
resources thresholds to the value of the global threshold. 

6) Each module unbinds the resources it used. 

The thresholds of the resources linearly decay over time, ensuring that eventually a 
behavior will be able to bind its needed resources and that the most active behavior gets 
priority.  

The formulae of Figure 2.3 detail the activation spreading process. 

 

Figure  2.3: Activation Spreading Formulae (DORER, 1999-b). 

Formula (1) shows the activation that goes from a goal i to a module k through a 
predecessor link at instant t. Function f8

 is a triangular norm that combines the strength 

(l gi
) and the dynamic relevance of a goal (r

t

gi
). The term ex j

 is the value of the effect 

proposition that is the target of a link. 

Formula (2) shows the activation that goes from a goal i to a module k through a 
conflict link at an instant t. 

                                                 
7 A mapping T: [ ] [ ] [ ]1,01,01,0 →×  is a triangular norm (t-norm) if and only if it is 
symmetric, associative, non-decreasing in each argument and T (k,1) = k for all k in 
[0,1]. In (DORER, 2004) and (PINTO, 2005a) the t-norm used was multiplication. 
8 In (DORER, 2004) and (PINTO, 2005a) the t-norm used was multiplication too. 
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Formula (3) shows the activation spreading from a module succ to a module k at an 

instant t through a predecessor link. p
succ

is the proposition of the successor module and 

asucc
the activation of the successor module. ( )sp

succ
,τ  is the value of p

succ
in situation 

s. We see that the activation spreading increases as the proposition at the start of a 
predecessor link becomes less satisfied. Thus, we can see unsatisfied conditions as 
increasingly demanding sub-goals of the network. Function σ9, shown below, is used to 
make the behavior modules strong attractors with a high probability. This reduces 
unnecessary behavior switches, as small changes in the percepts will be less likely to 
disrupt an ongoing behavior. Goetz (1997) shows that using formula (7) we do not have 
to normalize the total network activation, as was needed in Maes (1989). 

 (7) 

Formula (4) describes the activation spread from a module through a conflict 

link.aconf
and p

conf
stand for the activation and proposition of the module that is the 

source of the conflict link, respectively. 

Formula (6) shows that the activation of a module k at an instant t is its activation in 
the previous time step t-1 weighted by the inertia constant β plus the sum of the 
activations retained of each goal i. 

Formula (5) shows that a module retains just the activation of greatest absolute value 
from each goal. It amounts to keeping only the strongest path from a module to each 
goal, if we pay attention to the whole network. 

2.1.3 Example 

In this subsection we provide a step-by-step exposition of activation flow and action 
selection. We make a simplification to allow the reader to easily follow the values in the 
activation flux: instead of using the transfer function (7) when transmitting activation 
between modules we pass the activation unmodified, that is, we use the identity 
function.  

Suppose we have the network of figure 2.4 with initial state and parameters as 
shown in figure 2.5.  

                                                 
9 The use of this function in the activation spreading of behavior networks was first 
proposed by Goetz (1997). The details of the motivation for its use, based on dynamic 
systems theory and an analogy with Hopfield networks, is beyond the scope of our 
work. The interested reader is referred to (GOETZ, 1997), which offers a detailed and 
didactic explanation. 
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Figure  2.4: Example Behavior Network. Resource nodes are omitted for clarity. 

 

Figure  2.5: Initial state propositions and control parameters of example behavior 
network 

These values lead to the goal importances shown in figure 2.6. 

 

Figure  2.6: Example Goal Importances. The values in the right-hand side of the 
equations of Not LowAmmo and Not IAmBeingShot correspond the dynamic and static 
importances of each goal, respectivelly. 
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In figure 2.7 we see the first step of activation spreading. 

 

Figure  2.7: First step of activation spreading. The numbers in parenthesis indicate the 
formula used to calculate the activation value. Brackets indicate that more than one 
value is possible. 

AEnemyHurt, ANotLowAmmo and ANotIAmBeingShot keep the activations 
relative to goals EnemyHurt, Not LowAmmo and Not IAmBeingShot, respectively. Note 
that Explore receives activation from both GoToEnemy and ShootEnemy. The first value 
in AEnemyHurt is from ShootEnemy, the second comes from GoToEnemy. The 
parenthesis at the right of a value illustrates the value used to achieve that value. Note 
that 1.0*0.9*0.8, in AEnemyHurt of behavior FinalizeWithHammer, corresponds to (1), 
the formula governing activation spreading from goals to modules. In behavior 
GoToEnemy, at its AEnemyHurt field, we see that the product in its parenthesis 
illustrate the values used with formula (3) to calculate the activation received from 
module FinalizeWithHammer.  

We can see examples of other formulae in use. In behavior ShootEnemy we see that 
the execution-value is obtained multiplying its executability and activation. 

Examining the execution-values we see that no module is allowed to bind a resource 
at this step, as no execution-value has exceeded a resource threshold. Thus we proceed 
to the next spreading step, illustrated in figure 2.8 
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Figure  2.8: Second step of activation spreading. Bold is used to highlight the fact that 
the activation values used received by a module are those of the source module’s 
previous step.  

We see that now ShootEnemy has exceeded the thresholds of the Head and Hands 
resources, so it binds them. The activation received by a module is that of the source 
module’s previous step. Examples are GoToEnemy, that receives activation from 
FinalizeWithHammer and Dodge(in fact it receives zero activation from Dodge at this 
step), and Explore, that receives activation from ShootEnemy and GoToEnemy. Note 
that activations relative to different goals are always kept separate, at all modules, at all 
steps.  

At this step only ShootEnemy binds, resets the thresholds of the resources it uses and 
executes. Figure 2.9 illustrates the next step. 
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Figure  2.9: Third activation spreading step. 

At this step behavior GoToEnemy surpassed the threshold of the Legs resource, so it 
binds them. ShootEnemy was able to bind and execute again, and once more it resets the 
thresholds of the resources it used. Now both GoToEnemy and ShootEnemy will be 
executing concurrently as they are not dependent on the same resources. 

Explore is not receiving activation from the modules it is linked to as EnemyInSight 
has verity 1.0. Remember that we spread activation through a predecessor link as much 
as the source condition is not satisfied. As EnemyInSight is totally satisfied no energy is 
spread through the predecessor links.  

Thus we came to the end of our exposition of extended behavior networks. In the 
third chapter we show how the network’s propositions get their values, how the 
behaviors of the network are built, and how sensors, behaviors and the network are 
combined into an agent for Unreal Tournament. The next section presents a detailed 
overview of Unreal Tournament. 

2.2 Unreal Tournament and Gamebots 

Unreal Tournament is a top-selling 3D real-time action game. In the game mode we 
used, Death Match, the agent is an armed warrior who must kill all other warriors in an 
arena.  The agent has many weapons available, each with certain properties (beat, pierce 
or explode) and several items to use. It moves over different landscapes and interacts 
with several other agents. The action repertory is large (run, walk, turn, crawl, shoot, 
change weapons, jump, strafe, pickup item and use item among others) and an agent 
may carry out more than one action simultaneously, such as dodging while shooting. 
The scenarios are 3 dimensional continuous spaces and the action happens in real-time, 
so the agent has to decide quickly what to do at each time step. 
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As the game properties determine in a large extent what kinds of agents we may 
design and how we design and implement them, an exposition of some game details is 
due. 

Under normal game rules, a player starts with a health of 100 and dies when its 
health reaches zero or it falls into a pit.  With special items (health vials) it may reach a 
health value of 200. A player is able to replenish its health by picking up medical kits 
(“medboxes” and “medkits”) and health vials. 

When a player dies it automatically is “resurrected” in another spot of the game 
level. Its score is diminished by one and the killer’s score is augmented by the same 
amount. If the player kills himself, for instance, by walking into a pit, his score is 
decreased by one. The winner in a DeathMatch game is the player who first achieves a 
certain number of killings (a killing is called a frag in the game). 

A player may pickup several items of armor (thigh pads, breastplate) that add up to 
its armor score (default max is 200). The higher this score, the more damage is absorbed 
from shots and explosions. Though the armors have names which make one associate 
them with body parts, the game does not take this into account – a thigh pad incredibly 
protects one from a head shot! As the player receives shots its armor score is lowered 
and its armor becomes less effective in absorbing damage. 

 

Figure  2.10: An Unreal Tournament GOTY Screenshot (UNREALTOURNAMENT, 
2005). At the upper right corner we see that the player has 150 units of armor and 100 
units of health. In the bottom of the screen we see that its ammo for weapon number 0 
(Sniper Rifle) is 46 units. 

The player may walk or run. In addition to walking forward or backward a player 
may walk sideways (like a crab). Also, he may combine these moving modes with 
crawling – i.e. crawling sideways. The player is able to jump, either on spot or while 
moving. 
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The weapons inflict basically 4 types of damage: concussion, piercing, explosion 
and splash. The later two affect a player if it is within a certain radius of the place of 
impact of the shot. There is specific ammunition for each weapon type, and the 
maximum ammunition for each weapon is different. 

The agent is able to look and shoot in all directions. 

The game uses a client-server architecture. The players and bots send messages 
requesting sensory information or the execution of an action to a central server. The 
server processes the messages, synchronizes, handles events and informs the players the 
current game state. 

We used a package that provides a clear set of messages for interacting with the 
game using sockets, simplifying the low-level aspects of agent design and 
programming. This package is called Gamebots (KAMINKA et al, 2002). 

An agent receives both synchronous and asynchronous messages through Gamebots. 
Each synchronous message received is in fact a batch of messages of same timestamp, 
representing general information about the player and the game, such as game score, 
player health, player position, player rotation, whether the player is walking or running, 
etc. 

Asynchronous messages report non-periodic events in the game, such as the picking 
up of a certain item, being shot or falling into a hole. 

The complete set of messages of the package is included in Appendix A. It has 
minor differences from the documentation provided in (PLANETUNREAL, 2005) as 
we discovered minor errors in the description of the message formats and corrected 
them in the appendix. 

 

Figure  2.11: Another Unreal Tournament GOTY Screenshot 
(UNREALTOURNAMENT, 2005). At the upper right corner we see that the player has 
150 units of armor and 100 units of health. In the bottom of the screen we see that its 
ammo for weapon number 2 (Double Enforcer) is 199 units.  
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3 AGENT ARCHITECTURE AND DESIGN 

Extended Behavior Networks were designed as a control mechanism for situated 
agents. From an engineering perspective this means that the abstractions used by the 
agent’s “cognitive” system, such as propositions and representations of entities, are 
made relative to the tasks the agent performs, the environment he is embedded in and its 
goals. 

The environment of the agent is defined not only by the game features and game 
rules but also by the primitive sensory-motor messages available to the agent for 
interacting with the game. Thus, when designing sensors, goals and behavior modules 
we take into account the Gamebots package messages and commands. The game mode 
used and the levels into which the agent interacts also provide additional constraints and 
needs upon the agent’s design. 

When we design an agent for a game we need to tackle at least three issues: How it 
will perceive its environment, how it will decide what to do at each time step and what 
basic behaviors will be available to it. 

Each of these factors restricts and influences each other. An agent is able to make 
decisions based on its knowledge and perception of the environment. Conversely, the 
perception of the agent is influenced by its goals and beliefs, its interests in the moment 
and the actions it is carrying out, i.e., they are deeply tied to its cognitive apparatus and 
activity. 

 The behaviors of the agent must be appropriate to the decision mechanism 
employed so as to be properly selected and coordinated. We say that a behavior is 
appropriate to an action selection mechanism (ASM) when it can be easily modeled 
according to the expected ASM conventions and its granularity is properly dealt with at 
the level of the ASM. 

How behaviors are executed is affected by perception and action selection. For 
instance, “attack weakest enemy” will be influenced by our perception of who among 
the enemies is the weakest. The “decidedness” to carry out an action is an example of 
influence from the action selection mechanism - strong volition to open a door usually 
leads to greater speed and force in its opening10. 

                                                 
10 Dorer (2004) describes variations of the behavior network model used in this work 
that parameterize the execution-values and use these values to influence the amount of 
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The real-valued propositions of the extended behavior network model may be 
realized by means of fuzzy sensors. Fuzzy sensors have been successfully applied to 
various domains in which we have continuous properties and arbitrary categories. For a 
game they are specially suited to establish the verities of propositions such as “enemy is 
near” and “enemy is strong”. 

Behavior network modules are also called “competences”11. This gives us a hint of 
the granularity we should use when designing modules for a behavior network. We want 
to make behaviors such as “Go To Enemy”, “Shoot Enemy” and “Dodge Shot”, which 
resemble us of an ability or competence of the agent. Consider behavior “Shoot 
Enemy”. The subtasks involved, such as “get current position of enemy K”, “estimate 
position of K at shoot time” and “shoot at position X, Y, Z” should not be visible to the 
behavior network. Instead of considering each of these small steps in the decision 
making process, we make each behavior a finite-state machine in which the states 
correspond to the behavior’s low-level subtasks. Each behavior module is also 
responsible to monitor its own states, restarting and finishing when necessary.   

We must note that our methodology for designing behaviors is not rigid and that 
what should be a complete module or just a state in the finite-state machine of a more 
complex module has a blurred boundary.  

3.1 Behavior Network 

In this section we present a behavior network that was the basis of the agents built in 
our experiments. We present the network as we have built it, step by step, showing the 
rationale behind each choice. 

As mentioned earlier, our agent was designed to play in DeathMatch mode. This 
means that its basic concerns are killing as many enemies as possible and avoiding 
death. It must be able to detect, chase and shoot enemies, to avoid being shot, and to 
replenish its health. 

We start by defining the agent’s goals. From the game rules, we see that it has to kill 
enemies and stay alive. To kill an enemy it has to hurt him until he dies and to stay alive 
the agent has to maintain its health and restore it when it is depleted. To fulfill the need 
to kill enemies we give the agent the goal of hurting enemies (EnemyHurt). For its self -
preservation we add the goals of avoiding being shot (Not IAmBeingShot) and having a 
high health (HaveHighHealth). 

Now we must design the behaviors that will achieve these goals. To hurt an enemy 
our agent must attack it. A sensible candidate would be behavior “AttackEnemy” with 
precondition EnemyInSight and effect EnemyHurt. The problem with such a general 
behavior is that if we attack with a shooting weapon, we have to specify the additional 
effect of ammo decrease. If we attack with a contact weapon (Impact Hammer or 
Chainsaw) we need to be near to the enemy and behavior execution will have no effect 
upon the ammunition. Thus, we create two attacking behaviors instead of just one: 
FinalizeWithHammer and ShootEnemy. Figure 3.1 shows these behaviors linked to goal 

                                                                                                                                               

resources spent in behavior execution. In chapter 5 we discuss our reason for not using 
this variation. 
11 See (MAES,1989) for an example. 
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EnemyHurt. Note that they use exactly the same resources, which makes them mutually 
exclusive (unless we use this network with a four armed, two headed agent). 

 

Figure  3.1: Goal EnemyHurt and its satisfying modules. 

Now we need modules that make true EnemyNear and EnemyInSight. As the only 
sensing ability of the agent is vision, for it to tell if an enemy is near it must first have 
perceived an enemy in sight. We have three ways to make EnemyInSight true: stand still 
and wait for an enemy to appear in front of us, stay were we are and look for an enemy 
around us or actively explore the level to find an enemy. These three possibilities are 
reflected in behaviors Stand, StandLookout and Explore, respectively. To stand in place 
there are no preconditions, but we wish to explore or look out for an enemy only if there 
are no enemies in sight. If we are shot we must stop exploring and find what is shooting 
us, so we add the precondition Not IAmBeingShot to behavior Explore. A module that 
has EnemyNear as an effect is what is left to complete the paths to the goal. A trivial 
solution is module GoToEnemy that has as precondition EnemyInSight and as effects 
EnemyNear and IAmBeingShot. We add IAmBeingShot as an effect because going 
towards an enemy makes it likely to be shot. Figure 3.2 shows the network built so far, 
with only goal EnemyHurt included. 
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Figure  3.2: Behavior Network for goal EnemyHurt. 

Now let us make modules to satisfy goal Not IAmBeingShot. The most basic way to 
avoid being shot, besides not fighting at all, is dodging the bullets. We create behavior 
Dodge with precondition IAmBeingShot and effects Not IAmBeingShot. The agent needs 
to use only its legs to dodge. The network now is as shown in figure 3.3.  
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Figure  3.3: Behavior Network for goal EnemyHurt and Not IAmBeingShot. 

Now lets see how to achieve goal HaveHighHealth. Health vials and medical kits, in 
Unreal Tournament, have fixed locations. With the game options we used in our tests, 
these kits, if taken, disappear for some time and then “magically” re-appear at the same 
location. Thus, health items have fixed locations within a level, enabling us to store 
their locations and just go to a known medical item whenever we need one. A module 
“Get Known Medical Kit” with precondition “Know Medical Kit Location” and effect 
HaveHighHealth would be our first solution. The problem with this module is that it is 
specified at a too high level of abstraction: getting a known medical kit a hundred steps 
afar is treated in the same module as getting a health vial in the immediate vicinity. 
Also, this module will have to contain checks to see if there is a way to get a medical kit 
(i.e. if it is reachable) as well as deciding which of the known kits to get. May this 
module be made simpler by exploiting environmental or sensory information?  

Examining the Gamebots messages and protocol we see that the robot receives as 
primitive information about an item in sight its position, its location and whether it is 
reachable, i.e., if there is a straight path to the item. If we exploit this information we 
can then make three modules instead: GetReachableMedKit, GoToMedKitInSight and 
GoToKnownMedKit. The first has as precondition there being a reachable medical kit 
and as an effect HaveHighHealth. The second may make a medical kit in sight a 
reachable medical kit. The last can make MedKitInSight true by going to a known 
medical kit location. We see that the precondition of GoToKnownMedKit may be 
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satisfied by either StandLookout or Explore, as both tend to lead to a known medical kit 
location.  Figure 3.4 shows these modules incorporated in the network. 

 

Figure  3.4: Behavior Network with health-related modules (white background) added. 

Our network seems ready, but we haven’t mentioned a particularity of Unreal 
Tournament that makes additional modules needed. Whenever we tell the game to shoot 
a certain agent or position (command SHOOT) it will keep shooting until we tell it to 
stop (command STOPSHOOT). We could well treat this inside a module, but as the 
need to stop shooting in fact is embedded in the aim of not wasting ammo, we create a 
goal for it, Not LowAmmo. Stopping to shot may be an independent, complete 
competence module, StopShoot, with preconditions Not EnemyInSight and effect Not 

LowAmmo. Figure 3.5 shows our complete network. We added the context condition 
LowAmmo to goal Not LowAmmo as we want the agent to “worry” about being with low 
ammunition the more it is actually with low ammo.  
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Figure  3.5: Complete Behavior Network 

Having our network ready we are left with three questions: How will the network 
propositions be verified? How will each of the behavior actions be carried out? How 
will it all function together? In the next subsection we address the first question and 
provide a through overview of the agent’s sensing mechanism. 

3.2 Sensors 

Before venturing into the exposition and discussion of our network’s sensors lets us 
clarify of what kind of sensors we are talking about. In the beginning of this chapter we 
have pointed that agent perception is influenced by its internal state, its beliefs and its 
current activity. We also remember that primitive sensory information is defined by the 
messages of the Gamebots package. This information includes robot position, robot 
velocity, robot rotation, robot ammo, robot health, enemies in sight and items seen. The 
behavior network operates upon propositions, whose value attribution comprises a form 
of high-level perception. It is this high-level perception that is done by the sensors 
discussed in this section. Our sensors act upon the Gamebots messages and the 
knowledge of the agent to create the necessary information for action selection and 
behavior execution. 

Each condition of the behavior network has a sensor associated to it. Each sensor has 
a membership function P and an internal state function I. Function P takes the current 
perceived state of the agent and returns a fuzzy proposition, corresponding to the 
condition, with value between [0..1]. Function I updates the internal state of the agent. 
Note that this functioning implies that the order in which the sensors are activated 



 

 

36 

 

matters – the internal state of the agent may be altered by each sensing. Figures 3.6 to 
3.9 illustrate in a high-level how sensor SensorEnemyInSight operates. 

 

Figure  3.6: Agent internal state and propositions just before receiving Gamebots 
messages. 

 

Figure  3.7: Internal state and propositions after receiving Gamebots messages SFL e 
PLR. Fields in bold signal what was changed by these messages. 
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Figure  3.8: Sensor SensorEnemyInSight reads in the internal state of the agent. Both 
functions l and P receive the same input. The data in bold shows what is actually used 
by this sensor. 

 

Figure  3.9: Sensor SensorEnemyInSight updates the internal state and the behavior 
network propositions. Function l sets the enemy target to Id20 and P sets the verity of 
EnemyInSight. In bold is what the sensor has changed. 

The cautious reader may now be asking himself why we keep only true propositions. 
Two reasons: simplicity and storage saving. The operator we use for negating a 
proposition p is N(p) = 1- p. (8), so we can always make a straightforward conversion 
between the value of a proposition and its negation.  

To finish our exposition of sensors, let us proceed to examining how sensor 
SensorEnemyNear operates, as it provides a good example of the importance of sensor 
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ordering. As Figure 3.10 and Figure 3.11 show, SensorEnemyNear gets the target set by 
SensorEnemyInSight, the robot’s own position and the target position and sets the verity 
of proposition EnemyNear. This sensor alters the propositions but leaves the internal 
state untouched. Note that it is crucial that SensorEnemyInSight operates first, because 
the assessment of nearness is done relative to the target set by this sensor. Figure 3.12 
shows how P establishes the truth-value of EnemyNear. 

 

Figure  3.10: Sensor SensorEnemyNear reading internal state data. 

 

Figure  3.11: Sensor SensorEnemyNear updating proposition EnemyNear value. 
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Figure  3.12: Truth-value formula of SensorEnemyNear. ONE_THRESHOLD is the 
distance less than which we consider the enemy surely near. ZERO_TRESHOLD is the 
distance such that for distances grater than it the enemy is surely not near.  

Having seen the subtleties of agent sensing and how the network’s propositions get 
their values, we are ready to examine the behavior modules. 

3.3 Behaviors Modules 

From chapter 2, we recapitulate that a behavior module is made up of a list of 
conditions, a list of effects and an action. We have seen how the conditions are set in the 
previous section, so now we are ready to see how behavior actions are constructed. 

The actions of the behavior modules are built around augmented finite-state 
machines. When selected for execution each behavior action has a certain amount of 
time to execute. The module is responsible for monitoring its own action execution and 
start, resume and interrupt each state as necessary. 

A behavior action may issue one or more primitive commands to the game when 
executing. All behaviors have access to the internal state of the agent. 

Figure 3.13 shows the sequence diagram of behavior GoToEnemy. 

We see that the behavior is fairly complex, even though the high-level action is 
simple. The agent has to discover a path to the enemy, deal with obstacles that may 
appear in its way and give up whenever it concludes that the target enemy is 
unreachable. 

Let us follow some paths in the diagram to illustrate how the behavior relates to the 
perception and internal state of the agent and how the behavior action relates to the 
primitive actions of the Gamebots package.  
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Figure  3.13: Sequence diagram of behavior GoToEnemy. Null(X), IsReachable(X), 
Reached(X) and Empty(x) are predicates. Stuck and Bumped are boolean flags. Target, 
TimeElapsed, PathPoints and PathPoint are variables. TIME_TO_AVOID, 
TIME_WAIT_FOR_PATH and TIME_RESTART are constants used for the behavior 
self-monitoring. States START, FINISHED and GIVE UP are terminal states. 
FINISHED is successful reaching of the target, GIVE UP is a desistence. 

Let us start at state START. The variable target is the one set by sensor 
SensorEnemyInSight, as described in the previous section. If there is no target set 
(Null(target)), the agent does nothing. If the target is not immediately reachable the 
module requests a path to it and enters WAIT FOR PATH.  Upon receiving the path to 
the target the agent starts moving (MOVING THROUGH PATH).  

In state WAIT FOR PATH the module sends a GetPath command to the game and 
waits for the corresponding path message (PTH). If the time of wait (timeElapsed) goes 
beyond the maximum allowed (TIME_WAIT_FOR_PATH) the agent gives up going to 
that target (state GIVE UP).    

But what are these paths all about? Unreal Tournament levels are covered by graphs 
that span most of the level area. Each node of the graph is a possible destination and is 
called a navigation point (NavPoint). A navigation point may be the place of an item, a 
weapon or just a point where the agent may move. We are able to give specific 3D 
coordinates for the agent to move, but more often we provide just a NavPoint id. The 
game provides the facility to get a path to any point, using the GetPath command. The 
response to this command provides a list of NavPoints to the target if there is a path to it 
or Null is there is no path. 
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Let us continue following the diagram from MOVING THROUGH PATH. When 
the agent has no more points in its path it goes to state FINISH and ends the behavior 
successfully. If there is a point to go it enters state GOING TO PATH POINT.  If it 
encounters an obstacle while going to the desired NavPoint, it goes to state AVOID 
OBSTACLE. If after a certain time the agent has not managed to avoid the obstacle it 
goes to state JITTERING. In this state the agent tries some random action just to get 
away from where it is. It is a primitive heuristic to deal with occasions when the agent is 
stuck. A better implementation would make an internal map of the level and perform 
some reasoning on the possible stuck cases (crates that leave a space too narrow for the 
agent to go through, holes, jumpable obstacles, etc). After jittering the agent always 
gives up (state GIVE UP). We decided to take this course of action because we consider 
that whenever the agent has failed to avoid an obstacle there has probably been too 
much time since we started moving towards the target, and it is better to restart from 
state START. 

The cautious reader by now may be wondering: How does the behavior actually 
executes? Does it go from state from state until reaching a terminal node? Can it be 
interrupted in the middle of a state? 

Remember from the beginning of this section that we said that each behavior kept 
track of its own state and was responsible for making the state transitions, interruptions, 
etc. All modules have a single method available to the agent, called perform. This 
method receives as parameter the internal state of the agent. So, we see that the agent 
never interrupts a behavior, only the module itself may do it. 

 The case of interruption common to all behaviors is when it is in a non-terminal 
state and too much time has elapse since it was last executed. In this case it is re-set and 
starts from state START. Each call of the execute method make at most one state 
transition. This was made to allow a great deal of flexibility on how behaviors would be 
executed, scheduled, etc. 

Now that we have seem how the network, the sensors and behaviors were 
constructed it is time to put it all together. The next section describes how our agent is 
integrated into the game. 

3.4 Integration  

In this section, in addition to showing how the agent is integrated into the game, we 
provide some final remarks on how the behavior network, the behavior modules and the 
sensors are combined. Figure 3.14 illustrates the communication between the agent, 
Gamebots and Unreal Tournament server. 
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Figure  3.14: Integration of the Behavior Network Agent with the Gamebots package 
and Unreal Tournament server. 

Unreal Tournament server sends game messages to Gamebots. In turn Gamebots 
sends its own messages to our agent. The agent’s sensors process these messages and 
update the values of the conditions of the behavior network and the internal state of the 
agent. Action selection takes place and the appropriate actions are carried out by 
sending commands to Gamebots that in turn send low-level Unreal Tournament 
commands to the server. 

Well, but when specifically action selection happens? From chapter two we 
remember that messages in Gamebots can be synchronous or asynchronous. 
Synchronous messages come in batches at short intervals, usually each 50 milliseconds 
(we may configure the game to make synchronous updates less or more often). 
Whenever we receive an asynchronous message we treat it as if it had arrived at the 
time of the most recent synchronous batch, i.e., we update the network propositions 
only at the ending of a synchronous batch processing. This has no significant impact on 
performance as even the biggest possible delay in the agent’s response due to this 
modification is not noticeable to a human. 

Action selection takes place right after sensor updating. The selected behaviors are 
activated via calls to their execute methods. We see that the agent performs a full action 
selection cycle many times each second, leading to a fast response to changes and 
events in the environment. 
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4 EXPERIMENTS 

In this section we describe the experiments to assess action selection quality, to 
measure agent performance and to bring forth character personality in the domain of 
Unreal Tournament. 

In the first section, by means of analysis of the actions selected at each turn and of 
direct observation of the agent behavior in the game, we verify if the extended behavior 
network exhibit the properties of a good enough action selection mechanism: chaining 
of actions, good balance between reactivity and persistence, proper resolution of 
conflicts and preference for actions to contribute to more than one goal. Also, we verify 
one additional property essential to our domain: proper combination of concurrent 
actions. 

The second section presents two experiments designed to asses the performance of 
an agent using extended behavior networks in this domain. In the first experiment we 
used a totally different agent, built by another group, to play against our extended 
behavior network agent. In the second experiment we used a robot identical to ours 
except for the action selection mechanism employed. The first experiment prevented 
bias on our part on the opponent’s design. The second enabled us to verify if the action 
selection mechanism employed did make a great difference in the overall performance 
of our agent. 

In the third section we show how to design stereotypes using extended behavior 
networks and how to tune the network so as to achieve different personality traits. This 
section also presents an investigation of the effects of different parameter settings in the 
overall behavior of the agent. 

4.1 Action Selection Quality 

Our first series of experiments were designed to asses the quality of action selection, 
using the behavior network of figure 4.1. We give a high-level description of the 
perceived state of the agent, the actions it executed and the values of the control 
parameters of the network during the experiment. The default configuration for the 
network was: γ (ActivationInfluence) = 1.0, δ (InhibitionInfluence) = 0.9, β (Inertia) = 
0.5, θ  (Global threshold) = 0.6. These parameters worked well in most cases. In a few 
experiments we tried extreme values for some parameters, specially the inertia β and the 
global threshold θ . 
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Each of the discussions below was based in log analysis and direct observation of 
agent behavior (Unreal Tournament allows one to log as “spectator” and just watch the 
game without interfering). 

 

Figure  4.1: Behavior network used in the investigation of action selection quality. 

  

4.1.1 Overall Behavior 

The agent exhibited an intelligent behavior. It started exploring the level and kept 
wandering until it found an enemy (Explore). Upon finding and enemy it started 
shooting (ShootEnemy). If not being shot back it usually approached the enemy 
(GoToEnemy). Upon reaching the enemy it switched weapons and used the more 
powerful weapon Impact Hammer (FinalizeWithHammer). After the enemy died, it 
stopped shooting (StopShoot) and started wandering again. When shot repeatedly it kept 
shooting and after a while stopped going to the enemy and started dodging subsequent 
shots. If the enemy stopped shooting it would go towards it again. When the agent was 
hurt in combat, if it knew the location of a medical kit (GoToKnownMedkit had a high 
truth value), it would go to it and restore its health after a while. 

4.1.2 Chaining of Actions 

Three common action sequences were observed. The sequence {StopShooting and 
Explore, GoToEnemy and ShootEnemy, FinalizeWithHammer} was the usual attack 
sequence of the agent and {GoToKnownMedkit, GoToMedkitInSight, 
GetReachableMedkit} the one that was carried out when it had no enemies in sight and 
was not with high health. The long sequence {Explore, GoToEnemy and ShootEnemy, 
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FinalizeWithHammer, StopShooting and GoToKnownMedKit, GoToMedkitInSight, 

GetReachableMedKit}, that is basically the two previous ones one after the other, was 
the most common overall behavior of the agent.  We see that the agent makes 
reasonably long consistent chains of actions even though the agent makes no formal 
planning. 

4.1.3 Reactivity and Persistence 

We can see the sequence of actions {Explore, GoToEnemy, FinalizeWithHammer} 
as a plan to fulfill the goal EnemyHurt. If while going to the enemy the agent was shot, 
it stopped behavior GoToEnemy, executed BehaviorDodge and, having evaded the shot, 
resumed GoToEnemy. We see that the agent reacted to an event in the environment and 
then got back to our perceived “plan”. It exhibited a good compromise between 
reactivity and persistence. For large values of β, the inertia, the agent took some time to 
dodge after perceiving a shot and only dodged when a sequence of shots happened. 

4.1.4 Resolution of conflicts 

Let us take a look at figure 4.1 again. We see that goal EnemyHurt tries to make 
behavior ShootEnemy execute and goal Not LowAmmo tries to prevent ShootEnemy 
from executing. The goal Not LowAmmo has little influence until the agent starts to be 
with very low ammunition. When this happens, the conflicting influence of Not 

LowAmmo makes the agent switch to the hammer weapon (FinalizeWithHammer), 
because it does not need ammunition. It is an unusual though sensible approach to 
ammunition saving that emerged by the interaction of the goals (note that the 
“designed” way to save ammo is using behavior StopShooting). 

Another case of conflict resolution happens at behavior GoToEnemy. To better 
fulfill EnemyHurt the agent has to get near, but to satisfy Not IAmBeingShot it better 
not. In 4.1.1 and 4.1.3 we saw that the network deals with this conflict well, dodging 
when appropriate and resuming the going to the enemy after avoiding the shot. 

4.1.5 Preference for actions that contribute to several goals 

The network always preferred StandLookout and Explore to Stand when they had 
equal executability, even when we used larger expected values for the EnemyInSight 

effect of Stand. The reason is simple: both StandLookout and Explore contribute to 
EnemyHurt and HaveHighHealth, while Stand just contributes to EnemyHurt (In fact it 
contributes to ShootEnemy that in turn contributes to EnemyHurt). The modules that 
contribute to more goals are able to accumulate more activation, being selected more 
often. 

4.1.6 Proper combination of concurrent actions 

We see that the agent makes good use of its resources and combines the actions 
properly. It shoots while dodging a bullet or running towards the enemy, it stops 
shooting while exploring or getting a medical kit and even continues to shoot while 
getting a medical kit. All combinations of actions are reasonable and the good action 
combinations we could conceive were observed, as the previous analysis attests. 
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4.2 Agent Performance 

To asses the performance of an agent built around extended behavior networks we 
designed two experiments. In the first we tested our agent (EBN_Bot) against a totally 
different agent built by another group. This provided us with a baseline comparison and 
prevented the possibility of ourselves cheating on the robot opponent. The second 
experiment used a robot that had identical sensors and behaviors but a different action 
selection algorithm. This second experiment was made to detect with more precision the 
contribution of the extended behavior network to the agent’s performance. If we got a 
better result than a robot that used a different sensory-motor apparatus, it could be due 
to the apparatus, not the action selection mechanism. 

4.2.1 First Experiment: The Behavior Network Agent Compared to a Totally 
Different Agent Built Around Finite-State Machines.  

In our first experiment we used Carnagie Mellon’s CMU_JBot, a Java agent based 
on finite-state machines that comes with the Javabots package (JAVABOTS, 2005). Our 
robot used the network presented in the previous section. 

 We made a series of 10 games of 1 minute.  For each game we recorded the number 
of times the agent hit the opponent, the number of times the agent was hit, the number 
of times the agent was killed and the number of times the agent killed he opponent. The 
total score was got by giving 0.1 to each time the agent hit the opponent and 1 to each 
time the agent killed the opponent. Table 1 summarizes our results. The rightmost 
column presents the difference between the score of the agent using the extended 
behavior network (EBN_Bot) and the score of CMU_JBot. 

Table 4.1: Results of Death Match between CMU_JBOt and EBN_Bot 

Experiment 

# 

EBNBot Hit EBNBot 
Kill 

CMU JBot 
Hit 

CMU JBot 
Kill 

Difference 

1 0.7 0 0.2 0 0.5 

2 0.1 0 0.0 0 0.1 

3 0.3 1 0 0 1.3 

4 0.7 0 0.1 0 0.7 

5 0.9 0 0 0 0.9 

6 0.4 1 0.1 0 1.3 

7 0.6 0 0 0 0.6 

8 0.7 1 0.0 0 1.7 

9 0.9 0 0.1 0 0.8 

10 0.2 1 0.2 0 1.0 

Mean 0.55 0.4 0.06 0 0.8 

 

We see that our agent scored much higher than the agent that used finite state 
machines. The low number of killings, even when many hits happened, is due to the 
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absence of a chasing mechanism in both agents. The agents wandered through the 
environment, shot each other and then separated, several times. 

This experiment adds evidence to the suitability of behavior networks as an action 
selection mechanism for Unreal Tournament agents, but a doubt remains: Is the better 
performance due to our sensors and behaviors or due to the action selection mechanism 
used? The next experiment sheds light on this issue. 

4.2.2 Second Experiment: The Behavior Network Agent Compared to a Plain 
Reactive Agent that Uses the Same Sensory-Motor Apparatus 

In the second experiment we compared the EBN agent to an agent that has exactly 
the same sensors and behaviors, but uses a different action selection strategy: At each 
time step we disregard activation spreading for action selection and take into account 
only the executability of each module. Using only the executability results in a totally 
reactive agent with fuzzy sensors in which the modules that have the most satisfied pre-
conditions execute. Note that the concurrent action selection is properly carried in this 
agent too. 

Now that we do not have activation we are faced frequently with situations in which 
two modules have the same execution-value. Let us consider for instance 
FinalizeWithHammer and ShootEnemy. When we have EnemyNear = 1.0 we necessarily 
will have EnemyInSight=1.0 (remember from chapter 3 that the sensor for EnemyNear 
uses information created by the sensor for EnemyInSight). So, both will have identical 
execution-values, creating the need to hard code some priority rules or insert additional 
conditions to decide which one to launch when appropriate. We have opted for the first 
approach in most cases, to differ as little as possible from the original behavior network. 

Behavior Dodge has priority over GoToEnemy, behavior GoToReachableMedkit has 
priority over both GoToMedkitInSight and GoToKnownMedkit, and behavior 
GoToMedkitInSight has priority over behavior GoToKnownMedkit. We incorporate one 
subtle but important rule: FinalizeWithHammer gets priority over ShootEnemy, because 
we want the robot to hammer if the enemy is near. We changed module Explore to have 
the condition Not IAmBeingShot, both in the behavior network agent and in the plain 
reactive agent. This was made to separate the case when it is better to wander (Explore) 
and the case when it is better to stay on lookout (StandLookout). 

To overcome the low number of killings we implemented a chasing behavior 
(identical) in both agents. Table 2 summarizes our results for 10 games of 30 seconds 
each. 
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Table 4.2: Death Match of EBN_Bot and the Reactive Agent. 

# EBNBot 
Hit 

EBNBot Kill ReactiveBot 
Hit 

ReactiveBot 
Kill 

Difference  

(EBN-Reactive) 

1 0.7 0 0.9 1 -1.2 

2 0.1 1 0.1 0 1.0 

3 0.3 1 0.2 0 1.1 

4 0.2 0 0.3 1 -1.2 

5 0.9 1 0.3 0 1.6 

6 0.4 1 0.1 0 1.4 

7 0.0 0 0.1 0 -0.1 

8 0.7 1 0.9 0 0.8 

9 0.6 0 0.6 1 -1.3 

10 0.2 1 0.3 0 0.9 

Mean 0.44 0.6 0.34 0.3 0.3 

 

Our robot had significantly bigger overall scores, as in the previous experiment. One 
interesting point is that our robot had 100% more killings but just a little over 30% more 
hits. This is due to the quality of its action chains. It stopped to heal itself when very 
hurt and dodged bullets when taking many consecutive shots.  

Another point that catches attention is that the mean difference in total score was 
much smaller in this experiment. It is evidence that the quality of sensors and behaviors 
was in great part responsible for the superior performance of our agent against 
CMU_JBot. 

These two experiments together show that extended behavior networks are a good 
action selection mechanism for agents in action games and that indeed the high action 
selection quality is responsible for a great part of the agent performance. 

 

4.3 Character Design 

We have designed five stereotypical personalities suited to the combat scenario of 
Unreal Tournament: The Veteran, The Novice, The Coward, The Samurai and The 
Berserker. For each, we used one or more of the following approaches: changing the 
global parameters, changing the goal strengths and changing the network topology 
itself. Besides illustrating personality design, this section explores in greater detail the 
configurations of the parameters. 

The Veteran is calm and rational, trying to maximize all its goals in the long run. He 
has great self-control and persistence and wants to kill as many enemies as possible, but 
never at the expense of his life. 
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The Novice aspires to be like the veteran, has similar values, but still lacks the 
endurance and discipline to act properly. He is impulsive and frequently does not take 
the best action for a circumstance  

The Coward’s main goal is getting out of the combat alive and unhurt. He will avoid 
direct confrontation and will attack only when no other good option exists, always 
prioritizing maintaining and restoring its bodily integrity. 

The Samurai is cold, persistent and aggressive. To die in battle is his highest honor. 
Killing his opponent is his stronger goal and he will try to achieve it even at the expense 
of his life. When in a fight with an enemy it won’t stop to attack another agent, nor will 
be stopped by pain or danger.  

The Berserker is aggressive, undisciplined and non-persistent. Once in the arena he 
will attack fiercely its opponents, in a mad frenzy. He is insensitive to pain, and most 
times will not stop attacking to heal itself or even to dodge bullets.  

In the following subsections we describe the design of each character. We start with 
the Veteran and proceed by showing the modifications made upon its design to achieve 
the different personas. 

4.3.1 The Veteran 

The personality requirements for the veteran are very similar to the requirements for 
an agent that wants to maximize its score over a series of games. This was the case of 
the agent presented at the experiments of section 4.2, so we use it as a basis for the 
Veteran. Figure 4.2 shows the Behavior Network and the control parameters used for 
this character. 

The overall behavior of the agent could be described as follows: It started exploring 
the level and kept wandering until it found an enemy (Explore). Upon finding an enemy 
it started shooting (ShootEnemy) and approaching the enemy (GoToEnemy). Upon 
finding the enemy it switched weapons and used the more powerful weapon Impact 
Hammer (FinalizeWithHammer). After the enemy died, it stopped shooting (StopShoot) 
and started wandering again. When shot repeatedly it kept shooting and after a while 
stopped going to the enemy and started dodging subsequent shots. If the enemy stopped 
shooting it would go towards it again. When the agent was hurt in combat, if it knew the 
location of a medkit (GoToKnownMedkit had a high truth value), it would go to it and 
restore its health after a while. If when approaching the enemy the agent became with 
very low health, if there was a reachable medical kit (MedKitReachable), the agent 
would stop going to the enemy and go to the medkit while keeping shooting, unless it 
was close to the enemy, in which case it attempted a killing with the hammer 
(FinalizeWithHammer). 

We see that this behavior matches the personality of an archetypical combat veteran: 
The agent is persistent when killing, heals itself when it is safe to do so and has the 
endurance to keep fighting even when being shot back, without panicking. 
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Figure  4.2: Veteran Behavior Network and Global Parameters. The predecessor link 
from GoToKnownMedKit to StandLookout is suppressed for clarity. 

4.3.2 The Novice 

As exposed in the beginning of this section, the novice lacks endurance, is less 
disciplined and more impulsive than the Veteran, but has similar goals. To achieve this 
lower discipline and greater impulsiveness we investigated lowering two global 
parameters, the inertia β and the global thresholdθ . 

We lowered the inertia to 0.1. This way the agent would be far more reactive. The 
agent, when shot, immediately attempted to dodge. Also, if while pursuing an enemy 
the agent became with very low health, upon spotting a reachable medkit the agent 
would immediately go to it. This resulted in poorer behavior – often the enemy was as 
hurt as the agent and an attack with the hammer would deliver victory. The same could 
be said of the pursuit – dodging is good, but only to prevent being extremely damaged. 
As dodging is not totally guaranteed to succeed it is usually a bad tactic to be away from 
the enemy and not approach it ever, specially in case of more than one enemy in the 
scene.  

To augment the number of mistakes of the novice, we lowered the global threshold. 
This way we decreased the quality of action selection, as many modules surpassed the 
threshold simultaneously, and among modules that are above the threshold no one has 
priority over others. Now, often the agent shot the enemy even when it was very near 
and could hammer. For the extremely low value of 0.1, the agent also often just stood 
still (Stand) instead of exploring the level (Explore).  
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The best parameters we found to bring forth the character of the Novice were γ = 
1.0, δ = 0.9, β = 0.1, θ = 0.25 and θ∆ = 0.l. 

4.3.3 The Coward 

To bring forth the Coward working on the global parameters would be of little use, 
as he is as persistent as the Veteran and we have no reason to believe him to make 
decisions less thoughtfully. Instead, we worked on the goal strengths. We lowered 
EnemyHurt and raised HaveHighHealth. We left the global constants untouched. 

The behavior of the coward could be thus described: It started exploring the level 
until he found an enemy. With an enemy in sight he started shooting .When shot back, if 
the enemy missed him, he would start dodging after a little while, for all subsequent 
shots. If actually hit he would go get the medkit immediately if there was one reachable. 
If there was none he would keep dodging and fighting until it had a low health. When it 
happened he would flee combat and go restore its health, even if he had to go all the 
way to a far known medkit.  

We see that even though the agent is far more concerned with its health and could 
not be described as brave anymore a key point of its specification is missing: its active 
avoidance of engagement. To achieve this we implemented a new module for the 
network: GoAwayFromEnemy. With this module added, when the Coward spotted an 
enemy, he would go away from him while shooting (GoAwayFromEnemy and 
ShootEnemy were executed concurrently). Figure 4.3 shows the full network of the 
Coward character. Note that adding a new behavior was a simple modular operation, 
dispensing adjustments. 

 

Figure  4.3: Coward Behavior Network 

4.3.4 The Samurai 

To transform the Veteran into a Samurai we worked on the goals strengths. We set 
EnemyHurt to 1.0, NotIAmBeignShot to 0.6, NotLowHealth to 0.5 and HaveHighHealth 
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to 0.4. With these strengths the agent will always approach the enemy instead of 
dodging bullets and will not stop to get medkits if in a fight. We verified that whenever 
he found an enemy it went towards it shooting and then attacked with the hammer 
(FinalizeWithHammer) if the enemy had not died yet. If there was no enemy in sight the 
Samurai would go after medkits to restore its health.  For a gamer the Samurai displayed 
the exact behavior we desired: He was never disturbed by pain (shoots) or danger (low 
health) in his pursuit of an enemy and employed good tactics (shooting from afar and 
hammering when near). 

4.3.5 The Berserker 

To bring into being the mad berserker we started from the Samurai. We lowered 
even more its sensibility to pain by decreasing the importance of goal LowHealth and to 
bring forth his frenzy we diminished both its inertia and its global threshold. Lowering β 
made the agent very reactive and lowering θ  made the agent take insane actions, such 
as shooting instead of hammering at close quarters. 

The overall behavior of the berserker was as intended – he would not stop to dodge 
or heal while in combat and he fought madly, hammering and shooting everything that 
went into his path. 
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5 DISCUSSION 

In this chapter we discuss the results of the experiments of the previous chapter, 
contextualize our work within a body of related work and point extensions to our work. 
We point extensions to enable the agent to play in other game modes, ways to 
incorporate learning capabilities and strategies for deeper personality modeling. 

5.1 Agent Performance and Action Selection Quality 

When compared to another robot built around finite-state machines that used 
different sensors and behaviors but the same low-level commands, our robot performed 
very well. This opponent being of another group prevented bias of our part on this first 
test. However, the question of whether this superior performance was due only to a 
better sensory-motor apparatus remained. 

 We decided to make another experiment, this time with an agent with identical 
sensory-motor abilities that used a different action selection algorithm. This way we 
could isolate the contribution of the extended behavior network to the agent’s 
performance. 

Our robot had significantly better scores in this second experiment. 

This better score in itself is positive evidence of the importance of the extended 
behavior network for the agent’s performance, as the sensors and behaviors in both 
agents were identical. 

We may also regard as positive evidence the fact that our robot had a slightly higher 
hit rate (30%) but a much higher killing rate (100%). This was due to proper action 
selections – its sequences of actions made it die less and kill more. Searching the action 
log we found out that it stopped to heal itself only when necessary and was not easily 
disturbed while fighting. It engaged the enemy more often to deliver the deadly hammer 
blow. 

When we compared the mean of the differences of the scores of our robot in the first 
and second experiments we saw that the difference was much smaller in the second one. 
We regard it as evidence that indeed a good part of the better score in the first 
experiment was due to better sensors and behaviors. 

These two experiments, taken together, show that action selection quality plays an 
important role in agent performance and are evidence of the viability of extended 
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behavior networks as an action selection mechanism for complex agents with 
concurrent behaviors in complex, dynamic and continuous environments. 

The experiments of section 4.1 enabled us to verify the properties of a “good 
enough” action selection mechanism in the 3D action game domain, namely, 
persistence, exploitation of opportunities, preference for actions that satisfy multiple 
goals, proper resolution of conflicts, performing of actions in sequences to achieve goals 
and sensible selection of concurrent actions. These experiments are additional evidence 
of the suitability of extended behavior networks for complex and dynamic environments 
in general, and for the 3D game domain in particular.    

5.2 Personality Design and Global Parameter Setting 

For an agent controlled by a behavior network, we illustrated three approaches to 
build its personality: changing the global parameters, changing the goal strengths and 
changing the network topology itself. 

Changing the global parameters allowed us to control two key personality 
characteristics: Thoughtfulness (through the activation thresholdθ ) and persistence 
(through the inertia β). 

A high activation threshold θ  lead to better action selection as only actions that had 
a high activation could execute, that is, it required on average more activation spreading 
cycles to decide what to do next and also required higher executability of the modules. 
For an external observer it amounts to a thoughtful behavior, as an agent does mostly 
what seems effective and proper to its goals. We saw a thoughtful behavior typical of an 
experienced soldier in the Veteran and the thoughtless behavior of a madman in the 
Berserker. We should be cautious with putting θ  at a too high value – for some agents it 
may make them too slow.   

A high β leads to a persistent behavior: An agent only changes its behavior if there is 
a large or long change in its sensory information. This was the case of the Veteran 
taking some time to start dodging bullets. A single shot was not enough to make he 
interrupt his course of action. Symmetrically, the Novice changed actions due to slight 
changes in its sensors.  

 The predecessor link activation constant γ, the conflict link activation constant δ 
and the threshold decrease θ∆ were not used to design agent personality. Rhodes(1996) 
points that δ > γ may lead to an overall behavior were the character is seen as stubborn -  
once a goal was satisfied or a behavior was executing it would be too hard to make the 
agent change its course of action so as to do any action that would undo the 
precondition of the goal or module that was the source of the conflict link.   

Changing the goal strengths was our first try when changing the global constants 
could not lead to the desired behavior. This is somewhat harder because the strength of 
a goal must be set in relation to the other goals of the agent – what maters is their 
relative magnitude when compared to each other. Altering the goal strengths is the 
default way to alter deep personality characteristics, the very motivations and values of 
a character. This was the solution needed to implement both the Samurai and the 
Coward. 

Finally for some cases we may have to add a whole new module. Adding a module 
to a behavior network is a straightforward operation – the network itself takes care of its 
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integration, with the automatic creation of predecessor and conflict links. It may be a 
time consuming option due to subtleties that may arise in the actual implementation of 
the module, if one does not exists yet. If we have a library of behavior modules, then 
this option is also easy.  

Summing all up, we could make the reverse question: how do we build agents with 
different personalities from scratch? First we define the agent’s goals and their relative 
importance. Next we assemble a set of modules capable of achieving these goals. Next 
we tune the global parameters to achieve the subtleties of the personality. Having one 
working agent, making others with radically different personalities is simple.  

5.3 Comparison with Other Approaches to Personality Design 

The design of agents with personality has a long tradition. Sophisticated models, 
with a focus on agent personality and interaction, have been developed over the last 
decade and the present. Usually they address the question “What is the best way to 
design an agent with personality and emotional traits capable of carrying out 
sophisticated interactions with humans and other agents?” They have shown promising 
results in the domains where applied, such as embodied conversational characters 
(CASSELL, 2000) and interactive drama (RAYES-ROTH, 1996). 

Our work answers a different question: “Given that I have to design several complex 
agents capable of having good performance (or scores) in a real-time continuous and 
complex game environment in a short time span, how may I make them with different 
personalities?” This precludes solutions that require long processing or very complex 
design and favors solutions that produce a fast acceptable result. Sophisticated 
interaction with humans are not a concern as the interactions are quite simple and do not 
involve mood detection, gesture recognition or the exchange of roles. 

The only previous application of behavior networks to character design that we are 
aware of is (RHODES, 1996). In this work, a behavior network model called PHISH-
Nets was used to design the Big Bad Wolf and the Three Little Pigs of the famous kid’s 
tale in a simple 3D environment. There was no pressure for the actions to be carried in 
real time. Most experiments investigated how the agent handled action failures and its 
capability to improvise. Despite its interesting results for character modeling we could 
not use this model to answer our question, unless it was drastically modified, as for 
complex real-time games we need to select several actions concurrently and deal with 
continuous quantities. 

Isla and Blumberg’s work on synthetic characters, particularly the architecture 
described in (ISLA et al, 2001), seems potentially fit to address the problem we pointed. 
It integrates learning capabilities and allows deeper emotional modeling, being more 
sophisticated and somewhat more complicate.    

Other architectures have been proposed to the modern game environment domain. 
Of immediate interest is an implementation (HAWES, 2002) of the Cog-Aff 
architecture (SCHEUTZ and SLOMAN, 2002) that used an anytime planner 
(ZILBERSTEIN, 1996), A-UMCP. It was deployed in the Unreal Tournament domain, 
though for the game mode Capture the Flag. Although the Cog-Aff architecture 
explicitly takes into account agent personality into its design, it was not mentioned in 
(HAWES, 2002). 
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Finally we may cite the applications of the Soar (NEWELL, 1990) architecture to 
computer games (MAGERKO et al, 2004). Soar stands in a different stratum: It is a 
sophisticated cognitive architecture aimed at human-level intelligence, with a 
considerable learning curve. Usually the foci of these works revolved around cognitive 
plausibility and depth of the agent models (LAIRD, 2000-b). Soar seems a good choice 
when one’s focus is fidelity and depth, but overkill for creating agents with simple 
personas.   

5.4 Other architectures for computer game agents 

In this section we present a brief overview of other architectures for game agents. 
Comparisons of architectures and the review of the whole pool of techniques employed 
in the development of game agents are outside the scope of our work.  

For review of techniques we recommend (VAN WAVEREN, 2001) and (WOOD, 
2004). The first illustrates in detail the building of a robot for a scenario similar to our 
own, using a combination of traditional game AI techniques. The second investigates 
the effects of several different technologies in the playability and perceived intelligence 
of games, using a Space Invaders clone as test-bed. 

So, let us get back to the overview of game agent architectures.   

The Excalibur architecture (NAREYEK, 2001) is proposed as a generic architecture 
for autonomous agents in complex game environments. Its distinctive feature is its 
ability to incorporate resources in its planning process in a sophisticated manner. This 
makes it interesting for most modern computer games, as hit points, ammunition, armor 
and other game features are as important to consider in planning as plan length. 

Excalibur defines its planning task as a constraint-satisfaction problem and uses 
local search to guide the solution of the problem. The architecture provides a 
straightforward way to interleave sensing, acting and planning. Though suit to the action 
game domain, we know of no application of Excalibur to such a computer game genre. 

FEAR stands for Flexible Embodied Animat aRchitecture (CHAMPANDARD, 
2005). It is a framework for building learning reactive agents for games, with direct 
support for the game Quake II. This game is similar to Unreal Tournament – you are a 
warrior who must kill your enemies with several weapons. Agents in this framework are 
based in the Animat model (WILSON, 1991).  

 Champandard (2003) presents two agents built using this framework: An agent 
controlled by a subsumption architecture and another one that learned how to behave 
via reinforcement learning. Unfortunately, no account of the performance of the agents 
was found. As in our agent, most behaviors were built around finite-state machines. 
However the behaviors implemented were much more sophisticated and elaborate than 
the ones we used in our experiments. 

 We see that FEAR is better seen as a framework capable of supporting different 
architectures. One could use an extended behavior network to control the basic 
behaviors that come with the framework. The trickiest part of such an endeavor would 
be adapting the sensors (or creating additional sensors) to output proposition values to 
feed the behavior network.  

Let us revisit Soar (NEWELL, 1990). Soar is a cognitive architecture based on 
production systems. All its procedural knowledge is encoded as goals and its learning 
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mechanism is chunking. It was applied to Quake II, where an agent built a model of its 
opponent and anticipated his opponent’s actions based on this model (LAIRD, 2002-c). 
The authors report that the agent had a good overall performance, beating novice 
players and being challenging to the average human. However no comparison with 
other agents was presented.  

Hundreds of rules were needed to bring about the Soar agent for Quake II. The 
following seems the general procedure to build a Soar game agent: Define the interface 
with the game, define new goals and operators for the Soar system and design hundreds 
of production rules. The interesting feature of Soar is that a major part of these 
production rules are domain-independent, making reuse of the knowledge base possible. 
Soar, though far heavier than most behavior-based systems, including extended 
behavior networks, is able to deal with 6-10 agents in Quake II (VAN LENT, 1999). 
Thus, Soar is an interesting option to build sophisticated agents for computer games. 

Van Waveren (2001) describes the implementation of a Quake III Arena robot. 
Quake III Arena is yet another action game in the vein of Unreal Tournament. The robot 
used fuzzy sensors for some tasks and a network that resembled a hierarchical finite-
state machine as its central decision making mechanism. This work shows how to apply 
and integrate a plethora of techniques to solve common problem faced by an action 
game agent. 

 

5.5 Extensions 

This section discusses some interesting extensions to the agents and behavior 
networks discussed in this work. The first subsection presents extensions to the network 
of chapter 3 to allow an agent to play in the game modes Capture-the-Flag and 
Domination. The second subsection discusses interesting uses of learning in extended 
behavior networks. In the third subsection we discuss extensions to allow deeper 
personality modeling. 

5.5.1 Other Game Modes 

There are two other game modes in Unreal Tournament: Capture-the-Flag and 
Domination. 

In the capture-the-flag game, a team of agents need to take the flag of an opponent 
team and bring it to its base. While doing so they must prevent the enemies from getting 
their flag and carrying it to their home base. 

 For this game mode we need to coordinate our agents and make them able to 
communicate for a good strategy. As agent coordination and multi-agent strategy is 
beyond the scope of our work we point only the modifications necessary to the behavior 
network itself and its related sensors. However with just these modifications we would 
be not surprised if our agents performed decently. 

We would need to add goals TeamHasEnemyFlag, TeamHasOwnFlag, 
EnemyFlagInHomeBase and OwnFlagInHomeBase. TeamHasEnemyFlag would have 
as context its negation. The same would apply to EnemyFlagInHomeBase. 

The new modules would be GoToReachableEnemyFlag, GoToEnemyFlagInSight 
and CarryFlagToHomeBase. 
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Sensors for detecting an enemy flag (SensorEnemyFlagInSight, 

SensorEnemyFlagReachable), for knowing if our team is with the enemy flag 
(SensorTeamEnemyFlag) and if it holds its own flag (SensorTeamOwnFlag) would also 
be needed, as well as a sensor to know if the flag is in the base(SensorFlagInBase). 

In domination games a team of agents must reach and remain at certain map 
locations for a certain time, that is, the whole group must secure a set of locations for a 
given duration. 

The added goal would be BeInDominationPoint, the goal of reaching and staying at 
a domination point. 

The new module would be GoToFreeDominationPoint, the module of going to a 
non-occupied domination point. Surely, we could break it in three modules to better 
explore game information, just as we did with the medical kit modules in chapter 3. The 
precondition of the module would be FreeDominationPointInSight, a domination point 
not occupied by a robot of the agent’s team inside the field of view.  

To detect if a domination point was occupied, we disregard enemies in it – this leads 
to our agent killing the enemy in the point and just seeking another point if a friendly 
bot is in it. We would call this sensor SensorFreeDominationPoint. 

To make domination work well the agents would have to communicate and 
coordinate, even though we see that if the agents explored the entire level eventually 
every agent would reach a domination point, making the team succeed.   

5.5.2 Learning and Adaptation 

Learning can be very useful for a behavior network agent. We could use learning to 
improve the expected effects of our actions and to tune the global parameters of the 
network. 

The expected values of the propositions in the effects list of the modules, both in our 
work and in Dorer’s (DORER, 1999-c), were guessed and intuitively tuned. As the 
agent always has access to the value of these propositions before and after action 
execution, we could use learning techniques to enable to agent to make better 
predictions. We could use a reinforcement learning approach to correct our estimates or 
use a neural network to make a prediction based on a given window of past percepts. 
This would enable an agent to adapt to different opponents and environments. If the 
agent’s aiming was bad or the opponent was very good on dodging bullets the 
expectation of EnemyHurt after ShootEnemy would decrease with time, probably 
favoring the selection of FinalizeWithHammer. A network augmented with such 
learning capabilities would probably have better action selection. 

The global parameters, in (MAES, 1989), (TYRRELL, 1993), (RHODES, 1996), 
(GOETZ, 1997), (DORER, 1999-c) and (PINTO, 2005-a) were set by experimentation. 
Dorer(1999-b) set the parameters using a brute force approach. He found the best value 
for a parameter while maintaining the others fixed. As the parameters are dependent 
upon one another, he repeated this procedure for each one in a round-robin fashion until 
the improvement in the overall score was very low.  

This setting of parameters seems amenable to a treatment with genetic algorithms, 
specially if we have only performance in mind. We could use the total score of the 
agent, as computed in the experiments of the previous chapter, as the fitness function.   
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Darran Singleton (2002) used a genetic algorithm to set the global parameters of a 
variation if Maes (1989) behavior network. However, the modifications to the original 
behavior network model were so radical that the resulting network ended up being a 
quite different model. In Singleton’s network, instead of having only the global 
parameters described in chapter 2, each behavior had its own threshold and each link 
had its own activation influence constant. The genetic algorithm found values for all 
these parameters. In this work, Singleton shows that the algorithm converged. As 
generations went on, the performance of the agent got better, in an environment similar 
to Tyrrell’s(1993).  

 

5.5.3 Deeper personality 

One interesting extension for an extended behavior network would be the adaptive 
tuning of its global parameters so as to achieve different personality traits. Our focus 
here would be not performance, but personality depth and fun. 

 An easy approach is examining a given amount of the percept history of the agent 
and increasing or decreasing each of the global parameters. For instance, if the agent 
was safe we could increase its global threshold, so as to make it more deliberative. If the 
agent was attacked constantly in the last 3 minutes we could decrease its inertia, making 
it more reactive. This way, agent personality would vary smoothly at least among the 
dimensions of reactivity and thoughtfulness.  

 Another approach would be selecting between pre-defined sets of parameters, 
where each set corresponded to a given personality or mood. This would be the case of 
an agent changing from a Veteran to a Berserker. We could allow the values of the 
goals to be changed too, so deep personality changes could happen – our agent could 
change between all the five stereotypes discussed in the previous chapter. In fact, if 
needed one could design a sophisticated emotional module and use it to tune the goal 
strengths and global parameters. The “mood” and personality of the agent would be able 
to change its very core values, at least for some time.  

However, if such deep personality modeling is needed, one could as well seek other 
models. Extended Behavior Networks are a competitive model for action selection and 
performance in dynamic and complex environments. Their strength, regarding agent 
personality, lies in their simplicity and flexibility. For agents with deep personalities, 
other models are probably better, such as (CASSELL, 2000), (LAIRD, 1999-b) and 
(RAYES-ROTH, 1996).  
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6 CONCLUSION 

We have seen that the extended behavior network is a good action selection 
mechanism for a complex game agent with complex goals and actions situated in a 
dynamic and continuous environment. 

We verified the properties of a good enough action selection mechanism in the 3D 
action game domain, namely, persistence, exploitation of opportunities, preference for 
actions that satisfy multiple goals, proper resolution of conflicts, performing of actions 
in sequences to achieve goals and sensible selection of concurrent actions. 

We have seen positive evidence that extended behavior networks are a good action 
selection mechanism for continuous and dynamic environment and that good action 
selection is crucial for agent performance. Our agent had better scores than an agent that 
was identical to it, except for the decision mechanism. It also performed better than a 
totally different agent. The smaller difference in scores in the first experiment 
remembers us that for this game genre the sensory-motor apparatus is also very 
important, so we have to be cautious when attributing credit to each component of an 
agent.  

From an agent design perspective the strong points of extended behavior networks 
are its modularity and easy integration of new goals and behaviors. One may add a new 
module and the network takes care of its interaction with other modules. This enables 
the designer to develop one module at a time, and maintain a library of basic behaviors. 

To build an agent one starts by setting goals that reflect the character values and 
motivations. Next, one proceeds by assembling a set of modules capable of achieving 
those goals (modules that have the goal conditions as effects). Finally, by adjusting the 
goal strengths and global parameters one tunes the overall behavior of the agent. 

 We have used an approach of empirical investigation and informed guessing of the 
parameters to achieve good agent performance. However we believe that a genetic 
algorithm could be applied at this phase.  

When our focus is agent personality we may tune the network parameters, 
particularly the inertia and the activation threshold, to achieve different personalities. 
The limitation is that personalities built in this way are static and simple, allowing us to 
achieve only stereotypes. 

Our experiments in stereotype design show that for simple personas extended 
behavior networks are a competitive solution, as they are simple and enable us to make 
very different agents by the mere adjusting of constant values.  
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In section 5.5 we have seen ways to achieve deeper personality modeling, namely 
the dynamic adjusting of global parameters and stereotype selection based on the recent 
percept history. 

We see that extended behavior networks are complementary to other common game 
AI techniques, such as finite-state machines, reinforcement learning, neural networks 
and genetic algorithms. The EBN is responsible to selecting what actions execute at 
each instant, but the internals of each behavior are better grasped with other approaches. 
Learning and optimization techniques may be applied to improve the basic behaviors 
and the behavior network itself. 

Our next steps are incorporating learning so as to enable the agent to adjust the 
expected values of the action effects and investigating the use of genetic algorithms to 
set the global parameters. Once we have these improvements done we intend to extend 
the network to enable our agent to play in Domination and Capture-the-Flag modes.  
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APPENDIX A GAMEBOTS MESSAGES 

The text and messages below are reproduced and adapted from (GAMEBOTS, 2005) 

 Messages from the server are always of the form "MSGTYPE {arg1 arg1val} {arg2 
arg2val}..." (Real message of course won't have the quotes on either end. You can write 
a parser based on the following assumptions (it won't choke on anything you are sent, 
but may require additional parsing of some messages):  

• All characters up to, but not including the first space are the message type. (All 
message types are currently 3 characters long, but best not to live by that 
assumption).  

• Everything else in the message will be in the form of attr/val pairs enclosed by 
"{}"  

• The attribute name in a attr/val pair consists of every character up to, but not 
including, the first space.  

• The value includes all characters after the space terminating the attr up to the "}" 
and may include spaces.  

Thus a correct parsing of "MSG {Id Player-1} {String Attack the base!} {Location 
12,23,34}" would be: 
  Message type = "MSG" 
  Attr1Type = "Id" 
  Attr1Value = "Player-1" 
  Attr2Type = "String" 
  Attr2Value = "Attack the base!" 
  Attr3Type = "Location" 
  Attr3Value = "12,23,34" 

  Commands that your client sends to the server should follow the same basic format. A 
message type, followed by a space, followed by attr/val pairs enclosed in "{}". Each attr 
in a attr/val pair should be space terminated.  

Data types notes: 

  Most measurements of rotation and location sent to your bot will be in absolute terms 
using UT's measurements. For this reason, it is helpful to know a little about some 
Unreal Tournament data types and measurements before you read the Network API. 
  Location is described in UT units. They have no direct scale correspondence to the real 
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world, but as an idea, a character in the game has a collision cylinder (a cylinder tightly 
bounding the graphical model that defines how close something has to be before it 
collides with the character) 17 units in radius and 39 units tall. Location is always 
passed in "x,y,z" order and format (values separated by commas. 
  Rotation is also defined by three ordered values, "Pitch,Yaw,Roll". Yaw is side to side, 
pitch up and down, and Roll the equivalent of doing a cartwheel. You probably won't 
need Roll, so don't sweat it. A full rotation using UT's measurements is 65535. To 
convert the values you are sent to radians, divide by 65535 and multiply by 2 * pi.  

Sensory Messages: 

  The sensory messages sent to your client from the game consist of two types, 
synchronous and asynchronous. In the lists below, each message type is listed, along 
with current argument types. 
  Synchronous messages will come to your client in a batch at a configurable interval. 
They include things like a visual update of what the bot sees and a status report of the 
bot itself. At the start of a batch, the server transmits a "BEG" message marked with a 
timestamp. All messages received until an "END" message with the same timestamp are 
part of the synchronous batch. They are all sent at the same instant of gametime and 
thus refer to a single discrete state of the game. 
  Asynchronous messages on the other hand come as events happen in the game. 
(Although they will never appear between a "BEG" and its associated "END"). They 
represent things that may happen at any point in the game at random, less frequent 
intervals such as taking damage, a message broadcast by another player, or running into 
a wall. You can always be sure that event triggering an asynchronous message occurred 
in game time between the synchronous batches before and after it, but there is no 
guarantee that an asynchronous message refers to the same discrete state of the game 
that any other message does.  

Synchronous Messages:  

• BEG - begin of a synchronous batch  

o Time - timestamp from the game 

• SLF - information about your bot's state.  

o Id - a unique id, assigned by the game  

o Rotation - which direction the player is facing in absolute terms  

o Location - an absolute location  

o Velocity - absolute velocity in UT units  

o Name - players human readable name  

o Team - what team the player is on. 255 is no team. 0-3 are red, blue, 
green, gold in that order  

o Health - how much health the bot has left. Starts at 100, ranges from 0 to 
200.  



 

 

68 

 

o Weapon - weapon the player is holding. Weapon strings to look for 
include: "ImpactHammer", "Enforcer", "Translocator", "GESBioRifle", 
"ShockRifle", "PulseGun", "Minigun2", "UT_FlakCannon", 
"UT_Eightball", "WarheadLauncher"  

o CurrentAmmo - How much ammo the bot has left for current weapon  

o Armor - how much armor the bot is wearing. Starts at 0, can range up to 
200.  

• GAM - information about the game  

o PlayerScores - player score will have a list of values - one for each player 
in the game. Each value will be a list with two values. The first is the id 
of the player and the second that player's score. ( e.g. "GAM 
{PlayerScore {player1 2} {player2 5}..." )  

o TeamScores - like PlayerScore, but for teams. Team is identified by the 
team index (same number used to describe team for PLR and SLF 
messages. Not sent in normal deathmatch.  

o DomPoints - like the previous two, this is a multivalued message. This 
will have one item for each domination point in a Domination game. 
First value will be Id of the DOM point, the second will be the index of 
the team that owns the domination point.  

o HaveFlag - sent in CTF games if the bot is carrying an enemy's flag. 
Value is the team number of whose flag you have.  

o EnemyHasFlag - sent in CTF games if the bot's team's flag has been 
stolen. Value is meaningless.  

• PLR - Another character (bot or human) in the game. Only reports those players 
that are visible. (within field of view and not occluded).  

o Id - a unique id for this player, assigned by the game  

o Rotation - which direction the player is facing in absolute terms  

o Location - an absolute location for the player  

o Velocity - absolute velocity in UT units  

o Team - what team the player is on.  

o Reachable - true if the bot can run to this other player directly, false 
otherwise. Possible reasons for false: pit or obstacle between the two 
characters  

o Weapon - what class of weapon the character is holding.  

• NAV - a path node in the game. Pathnodes are invisible (at least to humans) 
objects placed around a level to define paths for the built in bots to follow. They 
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provide a totally connecteed graph that spans almost all of the level. Note the 
Mutator called "Path Markers" that, when added to a game makes the path nodes 
visible to human players as a debugging aid.  

o Id - a unique id for this pathnode, assigned by the game  

o Location - an absolute location  

o Reachable - true if the bot can run here directly, false otherwise  

• MOV - a "mover". These can be doors, elevators, or any other chunk of 
architecture that can move. They generally need to be either run into, or 
activated by shooting or pressing a button. We are working on ways to provide 
bots with more of the information they need to deal with movers appropriately.  

o Id - a unique id for this mover, assigned by the game  

o Location - an absolute location  

o Reachable - true if the bot can run here mover, false otherwise  

o DamageTrig - true if the mover needs to be shot to activated.  

o Class - Class of the mover.  

• DOM - identical attributes to NAV above except for Controller (see below). A 
domination point in a domination game.  

o Controller - which team controls this point  

• FLG - a flag. (Only for CTF games).  

o Id - a unique id for this flag, assigned by the game  

o Location - an absolute location of the flag  

o Holder - the identity of player/bot holding the flag (only sent if flag is 
being carried).  

o Team - the team whose flag this is  

o Reachable - true if the bot can run here directly, false otherwise  

o State - whether the flag is "Held" "Droped" or "Home"  

• INV - an object on the ground that can be picked up  

o Id - a unique id for this inventory item, assigned by the game.  

o Location - an absolute location  

o Reachable - true if the bot can run here directly, false otherwise  

o Class - a string representing type of object  
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• END - end of a synchronous batch  

o Time - timestamp from the game 

Asynchronous Messages:  

• NFO - helpful info about the game provided right after connection made to 
server. Your client should wait for this message BEFORE trying to send "init" 
back to the server.  

o Gametype - What you are playing (BotDeathMatchPlus, BotTeamGame, 
BotDomination)  

o Level - name of map in play  

o TimeLimit - maximum time game will last (if tied at end, goes into 
sudden death overtime)  

o FragLimit - number of kills needed to win game (BotDeathMatchPlus 
only)  

o GoalTeamScore - number of points a team needs to win game 
(BotTeamGame, BotDomination)  

o MaxTeams - max number of teams. valid team range will be 0 to 
(MaxTeams - 1) (BotTeamGame, BotDomination)  

o MaxTeamSize - Max number of players per side (BotTeamGame, 
BotDomination)  

• AIN - added inventory. Bot got new inventory item  

o Id - a unique id for this inventory item, assigned by the game. Unique, 
but based on a string describing the item type.  

o Class - a string representing type of object  

• VMS - recieved message from global chat channel  

o String - a human readable message sent by another player in the game on 
the global channel 

• VMT - recieved message from global chat channel  

o String - a human readable message sent by a team mate in the game on 
the private team channel 

• VMG - recieved tokenized message from another player. If you want to use 
these, enter the game as a player and use the voice menu (by default press the 
key "V" while playing). Send the messages you want to use to use and have a 
client log the incoming messages to figure out Types and Ids.  

o Sender - unique id of player who sent message  



 

 

71 

 

o Type - type of message (e.g. Command, Taunt, etc...)  

o Id - message id. specifies which message is being sent  

• ZCF - foot changed zones. Feet of bot changed from one artificial area in the 
game to another (can tell you when entered water or lava or some such)  

o Id - unique id of zone entered 

• ZCH - head changed zones. Its ok if feet are under water, but having your head 
under can mean trouble...  

o Id - unique id of zone entered 

• ZCB - bot changed zones. Entire bot now in new zone  

o Id - unique id of zone entered 

• CWP - bot changed weapons. Possibly as a result of a command sent by you, 
maybe just because it ran out of ammo in its old gun. (bots autoswitch when 
empty, just like human players)  

o Id - unique id of new weapon, based on the weapon's name  

o Class - a string representing type of weapon  

• WAL - collided with a wall. Note it is common to get a bunch of these when you 
try to run through a wall (or are pushed into one by gunfire or something).  

o Id - unique id of wall hit  

o Normal - normal of the angle bot colided at.  

o Location - absolute location of bot at time of impact  

• FAL - bot just hit a ledge. If walking, will not fall. If running, you are already 
falling by the time you get this.  

o Fell - True if you fell. False if you stopped at edge.  

o Location - absolute location of bot  

• BMP - bumped another actor  

o Id - unique id of actor (actors include other players and other physical 
objects that can block your path.)  

o Location - location of thing you rammed  

• HRP - hear pickup. You head someone pick up an object from the ground  

o Player - unique ID of player how picked up the object 

• HRN - hear noise. Maybe another player walking or shooting, maybe a bullet 
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hitting the floor, or just a nearby lift going up or down.  

o Source - unique ID of actor making the noise 

• SEE - see player. A message generated by the engine periodically (on the order 
of 1 or 2 times a second) when another player is visible by you. Possibly usefull 
if you have the delay between synchronous updates very long. In that case, this 
can prevent someone from walking by unseen. May be depricated.  

o Id - a unique id for this player, assigned by the game  

o Rotation - which direction the player is facing in absolute terms  

o Location - an absolute location for the player  

o Velocity - absolute velocity in UT units  

o Team - what team the player is on.  

o Reachable - true if the bot can run to this other player directly, false 
otherwise. Possible reasons for false: pit or obstacle between the two 
characters  

o Weapon - what weapon the character is holding.  

• PRJ - incoming projectile likely to hit you. May give you a chance to dodge.  

o Time - estimated time till impact  

o Direction - rotation value that the projectile is coming from. Best chance 
to dodge is to probably head off at a rotation normal to this one (add ~ 
16000 to the yaw value)  

• KIL - some other player died  

o Id - unique ID of player  

o Killer - unique ID of player that killed them if any (may have walked off 
a ledge)  

o DamageType - a string describing what kind of damage killed them  

• DIE - this bot died  

o Killer - unique ID of player that killed them if any (may have walked off 
a ledge)  

o DamageType - a string describing what kind of damage killed them  

• DAM - took damage  

o Damage - amount of damage taken  

o DamageType - a string describing what kind of damage  
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• HIT - hurt another player. Hit them with a shot.  

o Id - unique ID of player hit  

o Damage - amount of damage done  

o DamageType - a string describing what kind of damage  

• PTH - a series of pathnodes in response to a getpath call from client  

o Id - an id matching the one sent by client. Allows bot to match answer 
with right querry.  

o Multiple pathnodes: A variable number of attr items will be returned, one 
for each pathnode that needs to be taken. They will be listed in the order 
in which they should be travled to. Each one is of form "{0 id 3,4,5}", 
with the number of the node (starting with 0) followed by a space, then a 
unique id for the node (will never have a space) then a location of that 
node.  

• RCH - a boolean result of a checkreach call.  

o Id - an id matching the one sent by client. Allows bot to match answer 
with right querry.  

o Reachable - true if the bot can run here directly, false otherwise  

o From - exact location of bot at time of check  

• FIN - no attributes. Sent when game is over.  

Commands: 

  Your bot takes action in the world by transmitting commands to the server. They are 
formated like the server messages - a command name, followed by zero or more 
arguments with values, each surrounded by "{}" and seperated by spaces. For example 
the message to initialize your bot with a name of MYBOT on team 1 would look like 
this (sans quotes): 
"init {Team 1} {Name MYBOT}" 
  Parsing at the server is case insenstive. It should not matter what case you send 
commands, argument names, and their values in. Arguments may also be suplied in any 
order. The above example could have passed the name before the team and the 
command would have been the same. There are however some commands that have 
multiple options for how to specify a desired value. A good example is the runto 
command, which can take the id of an object or player, or a location in the world. You 
can send either or both, but the server will only use the first one it parses (order for each 
command type is listed below). 
  Note that most commands have persistant effects. Movement and rotation, once 
started, will continue until you reach your destination. Start shooting and you will keep 
shooting. There is NO advantage to sending commands repeatedly. It is quite likely that 
some kind of filter will be put in to discourage spamming the server.  
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• INIT - message you send to spawn a bot in the game world. You must send this 
message before you have a character to play in the game. DO NOT SEND 
UNTIL YOU RECIEVE NFO MESSAGE FROM SERVER.  

o Name - Desired name. If in use already or argument not provided, one 
will be provided for you.  

o Team - Prefered team. If illegal or no team provided, one will be 
provided for you. Normally a team game has team 0 and team 1. In 
BotDeathMatchPlus, team is meaningless, but this will still set you skin 
color to match what you select.  

• SETWALK - set whether you are walking or running (default is run). Note that 
walking only applies to RUNTO command. STRAFETO always moves at run 
speed.  

o Walk - Send "True" to go into walk mode - you move at about 1/3 
normal speed, make less noise, and won;t fall off ledges. Send anything 
else to run.  

• STOP - stop all movement/rotation  

• JUMP - causes bot to jump. Not very useful yet, working on this one.  

• RUNTO - turn towards and move directly to your destination. May specify 
destination via either Target or Location argument, will be parsed in that order. 
(i.e. if Target provided, Location will be ignored). If you select an impossible 
place to head to, you will start off directly towards it until you hit a wall, fall off 
a cliff, or otherwise discover the offending obstacle.  

o Target - the unique id of a player/object/nav point/whatever. The object 
must be visible to you when the command is recieved or your bot will do 
nothing. Note that something that was just visible may not be when the 
command is recieved, therefore it is recomended you supply a Location 
instead of a Target.  

o Location - Location you want to go to. May be provided as space or 
comma delimeted. ("40 50 45" or "40,50,45"). May also be provided as 
three seperate arguement value pairs, one each for X Y and Z ("{X 40} 
{Y 50} {Z 45}").  

• STRAFE - like RUNTO, but you move towards a destination while facing 
another point/object.  

o Location - Location you want to go to. May be provided as space or 
comma delimeted. ("40 50 45" or "40,50,45"). May also be provided as 
three seperate arguement value pairs, one each for X Y and Z ("{X 40} 
{Y 50} {Z 45}").  

o Target - the unique id of a player/object/nav point/whatever that you 
want to face while moving. Must be visible to you currently.  
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o Focus - a location value of where to face while moving. Follows same 
rules as location for what to send. Used only if no Target.  

• TURNTO - specify a point, rotation value or object to turn towards.  

o Target - the unique id of a player/object/nav point/whatever that you 
want to face. Must be visible.  

o Rotation - Rotation you want to spin to. May be provided as space or 
comma delimeted. ("0 50000 0" or "0,50000,0") and should be in 
absolute terms and in UT units (2pi = 65535 units). May also be 
provided as three seperate arguement value pairs, one each for Pitch Yaw 
and Roll ("{Pitch 0} {Yaw 50000} {Roll 0}"). Used only if no target 
provided.  

o Location - Location you want to face. Normal rules for location. Only 
used if no Target or Rotation.  

• ROTATE - turn a specified amount.  

o Amount - amount in UT units to rotate. May be negative to rotate counter 
clockwise.  

o Axis - if provided as Vertical, rotation will be done to Pitch. Any other 
value, or not provided, and rotation will be to Yaw.  

• SHOOT - start firing your weapon  

o Location - Location you want to shoot at. Normal rules for a location 
specification.  

o Target - the unique id of your target. If you specify a target, and it is 
visible to you, the server will provide aim correction and target leading 
for you. If not you just shoot at the location specified. Note you still must 
provide location.  

o Alt - If you send True to this you will alt fire instead of normal fire. For 
normal fire you don't need to send this argument at all.  

• CHANGEWEAPON - start firing your weapon  

o Id - Unique Id of weapon to switch to. If you just send "Best" as Id, the 
server will pick your best weapon that still has ammo for you. Obtain 
Unique Id's from AIN events.  

• STOPSHOOT - stop firing your weapon  

• CHECKREACH - check to see if you can move directly to a destination without 
hitting an obstruction, falling in a pit, etc...  

o Target - the unique id of a player/object/nav point/whatever. Must be 
visible.  
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o Location - Location you want to go to. Normal location rules. Only used 
if no Target is sent.  

o Id - message id made up by you and echoed in response so you can 
match up response with query  

o From - exact location of bot at time of check  

• GETPATH - get a path to a specified location. An ordered list of path nodes will 
be returned to you.  

o Location - Location you want to go to. Normal location rules.  

o Id - message id made up by you and echoed in response so you can 
match up response with query  

• MESSAGE - send a message to the world or just your team. This will likely 
have some restrictions placed on it soon.  

o String - string to send.  

o Global - If True it is sent to everyone. Otherwise (or if not specified), just 
your team.  

• PING - if for some reason 10 updates a second or whatever your default is isn't 
frequent enough connection detection for your tastes, use PING. Server will 
return "PONG".  
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APPENDIX B CONTRIBUIÇÕES 

No projeto de um agente de um jogo uma das preocupações centrais é como fazer a 
seleção de ações de modo que o agente exiba um comportamento orientado aos 
objetivos. 

 Se o agente tiver muitos objetivos, alguns deles conflitantes, nossa tarefa  se torna 
mais complicada. Se, além de ter muitos objetivos, o agente tiver que considerar muitos 
fatores ao mesmo tempo e estiver em um ambiente dinâmico, nós teremos um problema 
difícil de ser tratado. 

 Abordagens baseadas em busca se tornam impraticáveis devido ao tamanho do 
espaço de busca e planejamento tradicional se torna muito mais difícil,dado que o 
ambiente pode ter mudado quando nosso plano estiver concluído. 

Redes de comportamentos (MAES, 1989) foram propostas como um mecanismo de 
seleção de ações para selecionar ações boas o suficiente em ambientes dinâmicos e 
complexos. Elas favorecem ações que contribuem para mais de um objetivo e ações que 
façam parte de uma seqüência em execução. As redes de comportamentos são rápidas, 
robustas e reativas. 

As redes de comportamentos estendidas (DORER, 1999a) são uma extensão para 
ambientes contínuos capaz de selecionar ações de maneira concorrente e especificar 
objetivos dependentes de contexto. Foram aplicadas com sucesso na Robocup12. Nosso 
trabalho foi a primeira aplicação deste modelo em jogos de computador (PINTO, 2005-
a). 

PHISH-Nets (RHODES, 1996), um modelo de redes de comportamentos capaz de 
selecionar apenas uma ação por vez, foi aplicado à modelagem de personagens, com 
bons resultados. Apesar das redes de comportamentos estendidas serem aplicáveis a um 
conjunto de domínios maior, nunca foram usadas para modelagem de personagens antes 
de nosso trabalho (PINTO, 2005-b). 

Unreal Tournament é um jogo de ação tridimensional. Neste jogo, no modo Death 
Match, o agente é um guerreiro que deve eliminar os oponente em uma arena. O agente 
interage com várias entidades em tempo real, aliados e inimigos, em diferentes cenários. 
Existem várias armas e itens disponíveis. O repertório de ações é grande (pular, andar, 

                                                 
12 See (DORER, 1999) and (DORER, 2004). The Magma-Freiburg team, built using 
extended behavior networks, was the vice-champion of Robocup-1999. 
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correr, virar, agachar, atirar, pegar item,etc) e o agente pode executar mais de uma ação 
ao mesmo tempo, como atirar enquanto pula.O agente tem objetivos conflitantes -  lutar 
e manter sua integridade física, por exemplo. 

Jogos de computador se tornaram uma aplicação importante, ultrapassando o 
faturamento da indústria de cinema nos EUA por 2 anos consecutivos (ESA, 2005). Os 
governos da Austrália, Coréia do Sul e  Brasil têm programas especiais de apoio à 
pesquisa e desenvolvimento de jogos (ABRAGAMES, 2004). O avanço da capacidade 
das placas gráficas dos PCs e consoles liberou poder de processamento para os jogos, 
que passaram a ter na inteligência artificial um de seus principais fatores competitivos 
(NAREYEK, 2004). 

Isso levou a um aumento do interesse na aplicação de técnicas avançadas de 
inteligência artificial em jogos de computador. A pesquisa em IA pra jogos teve um 
aumento súbito, como mostram (VAN WAVEREN, 2001), (RABIN, 2002), 
(BUCKLAND, 2002), (RABIN, 2003), (CHAMPANDARD, 2004) e (WOOD, 2004). 
Estes trabalhos buscaram não só desenvolver novas técnicas, mas também aplicar e 
adaptar técnicas conhecidas ao domínio dos jogos. 

Uma de nossas contribuições se insere neste último caso:  aplicamos uma técnica de 
sucesso no domínio de futebol de robôs  ao domínio dos jogos. 

Esta contribuição pode ser dividida em três partes: 

1) Esboçamos uma metodologia de projeto de agentes baseada em redes de 
comportamentos e sensores nebulosos (Cap. 3 deste trabalho). 

2) Demonstramos a aplicabilidade e a adequação das redes de comportamentos 
estendidas aos jogos de computador. Verificamos a qualidade da seleção de açõe através 
da observação do agente ao longo de vários jogos e da análise dos registros das ações 
selecioandas. Sua performance foi analisada medindo seu placar e o placar de outros 
dois agentes. Um agente era totalmente diferente e baseado em máquinas de estado 
finito. O outro tinha comportamentos e sensores idênticos, mas era plenamente reativo. 
Ver (PINTO e ALVARES, 2005-a) e os capítulos 4 e 5 da dissertação para maiores 
detalhes.  

3) Delineamos uma metodologia do projeto de estereótipos e a ilustramos com cinco 
casos (PINTO e ALVARES, 2005-b). Comparamos com outras abordagens e 
delimitamos sua aplicabilidade. Concluímos que é no projeto de personalidades simples 
para agentes complexos que as redes de comportamento se destacam.  

As contribuições teóricas são mais modestas, mas importantes. Os resultados dos 
experimentos para averiguação da aplicabilidade contribuem para validar as redes de 
comportamento como um mecanismo de seleção de ações adequado para agentes 
situados em ambientes complexos, contínuos e dinâmicos em geral. 

Como contribuições secundárias cabe citar a comparação com outras abordagens 
para projeto de personagens, o esboço de redes para permitir que o agente jogue em 
outros modos de jogo e as sugestões para incorporação de aprendizado à rede de 
comportamentos estendida. 

 

 


