

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VINICIUS CALLEGARO

On the optimal minimization of special classes of Boolean functions

Dissertation presented in partial fulfillment

of the requirements for the degree of

Doctor of Computer Science

Prof. Dr. André Inácio Reis

Advisor

Porto Alegre, July 2016

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Callegaro, Vinicius

On the optimal minimization of special classes of Boolean

functions / Vinicius Callegaro. – 2016.

130 f.:il.

Orientador: André Inácio Reis.

Tese (Doutorado) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação. Porto Alegre, BR – RS,

2016.

1. Introduction. 2. Background 3. Classes of Boolean functions. 4.

Read-Once Functions. 5. Disjoint-Support Decomposable Functions.

6. Read-Polarity-Once functions. 7. Conclusions. I. Reis, André

Inácio. II. Ribas, Renato Perez. On the optimal minimization of

special classes of Boolean functions.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb

Coordenador do PPGC: Prof. Luigi Carro

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

I would like to dedicate this dissertation to my wife Monica, my parents Aldo and Marta,

and to my sister Thalita who were essential to me during the doctoral years.

I am grateful to my advisor Professor Andre Inácio Reis and my co-advisor Professor

Renato Perez Ribas for their knowledge and effort to make this dissertation possible. I also

would like to thank Professor Marek Perkowski for his valuable suggestions and for advising

me during my internship at Portland State University, Portland OR – US.

Special thanks go to my colleagues in the Logic Circuit Synthesis (LogiCS) lab who

helped me with discussions, ideas, and fun.

I would like to thank the members of my thesis committee: Professors Marek Perkowski,

Sérgio Bampi, and Marcelo de Oliveira Johann for their constructive comments which helped

to improve this work.

The research presented in the dissertation was supported by Brazilian funding agencies

CAPES, CNPq, and FAPERGS, under grant 11/2053-9 (Pronem).

ABSTRACT

The problem of factoring and decomposing Boolean functions is ∑ -complete𝑃
2 for general

functions. Efficient and exact algorithms can be created for an existing class of functions

known as read-once, disjoint-support decomposable and read-polarity-once functions.

A factored form is called read-once (RO) if each variable appears only once. A Boolean

function is RO if it can be represented by an RO form. For example, the function represented

by 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 is a RO function, since it can be factored into 𝐹 = 𝑥1(𝑥2 +

𝑥3(𝑥4 + 𝑥5)).

A Boolean function f(X) can be decomposed using simpler subfunctions g and h, such that

𝑓(𝑋) = ℎ(𝑔(𝑋1), 𝑋2) being X1, X2 ≠ ∅, and X1 ∪ X2 = X. A disjoint-support decomposition

(DSD) is a special case of functional decomposition, where the input sets X1 and X2 do not

share any element, i.e., X1 ∩ X2 = ∅. Roughly speaking, DSD functions can be represented by

a read-once expression where the exclusive-or operator (⊕) can also be used as base

operation. For example, 𝐹 = 𝑥1(𝑥2 ⊕ (𝑥4 + 𝑥5)).

A read-polarity-once (RPO) form is a factored form where each polarity (positive or

negative) of a variable appears at most once. A Boolean function is RPO if it can be

represented by an RPO factored form. For example the function 𝐹 = 𝑥1̅̅̅𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥3

is RPO, since it can factored into 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2).

This dissertation presents four new algorithms for synthesis of Boolean functions. The

first contribution is a synthesis method for read-once functions based on a divide-and-conquer

strategy. The second and third contributions are two algorithms for synthesis of DSD

functions: a top-down approach that checks if there is an OR, AND or XOR decomposition

based on sum-of-products, product-of-sums and exclusive-sum-of-products inputs,

respectively; and a method that runs in a bottom-up fashion and is based on Boolean

difference and cofactor analysis. The last contribution is a new method to synthesize RPO

functions which is based on the analysis of positive and negative transition sets. Results show

the efficacy and efficiency of the four proposed methods.

Keywords: Logic Synthesis, Factoring, Decomposition, Read-Once, Disjoint-Support

Decomposition, Read-Polarity-Once.

Minimização ótima de classes especiais de funções Booleanas

RESUMO

O problema de fatorar e decompor funções Booleanas é ∑ -completo𝑃
2 para funções

gerais. Algoritmos eficientes e exatos podem ser criados para classes de funções existentes

como funções read-once, disjoint-support decomposable e read-polarity-once.

Uma forma fatorada é chamada de read-once (RO) se cada variável aparece uma única

vez. Uma função Booleana é RO se existe uma forma fatorada RO que a representa. Por

exemplo, a função representada por 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 é uma função RO, pois

pode ser fatorada em 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

Uma função Booleana f(X) pode ser decomposta usando funções mais simples g e h de

forma que 𝑓(𝑋) = ℎ(𝑔(𝑋1), 𝑋2) sendo X1, X2 ≠ ∅, e X1 ∪ X2 = X. Uma decomposição disjunta

de suporte (disjoint-support decomposition – DSD) é um caso especial de decomposição

funcional, onde o conjunto de entradas X1 e X2 não compartilham elementos, i.e., X1 ∩ X2 = ∅.

Por exemplo, a função 𝐹 = 𝑥1𝑥2̅̅ ̅𝑥3 + 𝑥1𝑥2𝑥3̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥1𝑥2̅̅ ̅𝑥4 é DSD, pois existe uma

decomposição tal que 𝐹 = 𝑥1(𝑥2 ⊕ (𝑥3 + 𝑥4)).

Uma forma read-polarity-once (RPO) é uma forma fatorada onde cada polaridade

(positiva ou negativa) de uma variável aparece no máximo uma vez. Uma função Booleana é

RPO se existe uma forma fatorada RPO que a representa. Por exemplo, a função 𝐹 =

𝑥1̅̅̅𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥3 é RPO, pois pode ser fatorada em 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2).

Esta tese apresenta quarto novos algoritmos para síntese de funções Booleanas. A primeira

contribuição é um método de síntese para funções read-once baseado em uma estratégia de

divisão-e-conquista. A segunda contribuição é um algoritmo top-down para síntese de funções

DSD baseado em soma-de-produtos, produto-de-somas e soma-exclusiva-de-produtos. A

terceira contribuição é um método bottom-up para síntese de funções DSD baseado em

diferença Booleana e cofatores. A última contribuição é um novo método para síntese de

funções RPO que é baseado na análise de transições positivas e negativas.

Palavras-chave: Síntese Lógica, Fatoração, Decomposição, Read-Once, Disjoint-Support

Decomposition, Read-Polarity-Once.

FIGURES

Figure 1 – Example of an arbitrary Boolean function using truth table (left) and Karnaugh map (right)

representations. The same Boolean function can be represented by the bit stream

f(x1, x2, x3) = 110010012. .. 7

Figure 2 – Binary decision diagram (BDD) representation of a Boolean function. 8

Figure 3 – A reduced and ordered binary decision diagram (ROBDD) of a Boolean function. 8

Figure 4 – Example of And-Inverter-Graph (AIG). Complemented edges are denoted by small dots.

Notice that primary input nodes {x1, x2, x3} have no incoming edges. Although beeing structurally

distinct, both AIGs represent the same function. ... 9

Figure 5 – Karnaugh-map and covering example for 3213221 xxxxxxxF 15

Figure 6 – Karnaugh-map and a minimum covering example for function

4313214324212 xxxxxxxxxxxxF  . ..16

Figure 7 – ESOP covering resulting 312 xxxF 17

Figure 8 – Examples of switch networks: a) a switch controlled by the variable x1 b) a series

association representing x1 ∙ x2 c) a parallel association representing x1 + x2 d) a series-parallel

network, created by series and parallel associations representing x1 ∙ (x2 + x3) and e) a non-series-

parallel network representing (x1 ∙ x2 + x1 ∙ x3 ∙ x5 + x4 ∙ x3 ∙ x2 + x4 ∙ x5).19

Figure 9 – A rooted tree (a) and its respective series-parallel switch network (b) representing the RO

function F = x1x2 + x3x4 + x5. ..23

Figure 10 – Rooted tree (a) and its respective series-parallel switch (b) network representing the RPO

function F = x1x4 + x3x1 + x2. ...24

Figure 11 – Schematic of (a) disjoint and (b) non-disjoint decompositions. SOURCE: (SASAO;

BUTLER, 1997). ..25

Figure 12 – Schematic examples of (a) disjoint, (b) strong and (c) weak bi-decompositions. SOURCE:

(MISHCHENKO; STEINBACH; PERKOWSKI, 2001). ...26

Figure 13 – Comparison of unate, read-once (RO), full disjoint-support bi-decomposition (DSD) and

read-polarity-once (RPO) classes. As can be seen, the class of RO functions is a subset of both DSD

and RPO classes. ...27

Figure 14 – Example of a non-collapsed tree (left) and the resulting tree after the collapse operation

(right). ..31

Figure 15 – Example of sorting trees. Original tree (left) and sorted tree with input order Y =

[x1, x2, x3, x4, x5, x6] (right). ..31

Figure 16 – Example explicitly showing the hidden part from 13-20 (Table 7). The top part (cloud) of

the tree is hidden without lack of generality and just for presentation sake. ..33

Figure 17 – Two examples of the RO_BY_COFACTOR algorithm using the input function F =

 x1x2 + x1x3. A full BDD (left) and an ROBDD (right) representing f are shown.41

Figure 18 – Lowest common ancestor (LCA) example: The complete LCA for the variable set

 x1, x2, x4 is node n2. Node n4 is the LCA for x4, x5, x6. For this example, there is not a complete LCA

for x4, x5, x6. ..42

Figure 19 – Step by step example of removing variables Δ = {x2, x3, x6, x7} from a read-once tree

T = x2 + x3 + x4x5 + x6x7. (a) Original tree. (b) Node x2 removed. (c) Node x3 removed. (d) Node

x6 removed. (e) Node x7 removed. (f) Operator node “∙” simplified. (g) Operator node “+”simplified.

 ...47

Figure 20 – Runtime analysis of the RO_COMPOSITION method. The number of inputs are in

thousands. Results support the claim that the RO_COMPOSITION runs in O(n).53

Figure 21 – ROBDD representing a non-read-once function F1 = x1x3x4x5x6 + x2x3x4x5x6 +

x1x2x5x6 + x2x3 x5 x6 + x1x3x5x6 + x1x2x3x4x5 + x1 x2 x4x6 + x1 x2x3x4x5 + x1x3 x5 x6 +

x1x2x3 x5 + x2x3x4 x5x6 + x1 x2 x3 x4 + x1x2x4x5x6 + x1x2x4x5 x6 + x1x3x4x5 +

x1x2x3x4 x6. Nodes in green represent read-once functions. ..54

Figure 22 – A variable intersection graph obtained from an (a) ISOP

F = (!a∙!b∙c∙d+a∙!d+b∙!c+a∙!c+b∙!d) and (b) from ESOP form H = 1⊕ (!a∙!b) ⊕ (c∙d).59

Figure 23 – A generic DSD tree (a) and its corresponding disconnected VIG (b).61

Figure 24 – A complete execution tree of the proposed algorithm. ...64

Figure 25 – Illustration of F(X) = H(G(X1), X2). Functions G and H are called composition and

decomposition functions of F, respectively. The variable set X1 and X2 are named bound and free sets,

respectively. ..70

Figure 26 – Two examples of partial-DSD functions. A top-down approach can find the XOR

decomposition on top of (a), while a bottom-up approach could not. In (b), a bottom-up approach

identifies the AND, OR and XOR compositions, while a top-down approach finds nothing.70

Figure 27 – Two examples of full-DSD functions when considering AND, XOR and MUX as basis.

The example shown in (a) is the implementation of the output 04 of the shift circuit, taken from the

(ESPRESSO BOOK EXAMPLES). The circuit depicted in (b) is the implementation of the mux

circuit, present in the ACM/SIGDA (MCNC) benchmark (IWLS, 2005). ..71

Figure 28 – A full-tree model, representing the worst-case of a full-DSD function.80

Figure 29 – Comparison of the state-of-the-art algorithms available in ABC tool on a full-DSD

benchmark. ...82

Figure 30 – Example a read-polarity-once function f = (! a*d + c)*(a + b).86

Figure 31 – Example of an RPO function. ...88

Figure 32 – Step by step example of the proposed factoring algorithm for RPO functions. The initial

graph (a) contains the relationship between literals, where solid edges represent AND grouping while

dashed edges represent OR grouping. The algorithm proceeds and chooses the solid edge between “!a”

and “d”, leading to the graph shown in (b). The algorithm continues with (c) and (d) steps, reaching

the optimal solution in (e). ..90

Figura 1 – Análise de tempo de execução do método RO_COMPOSITION. Os resultados mostram

que o método roda em O(n). ... 114

Figura 2 – ROBDD representando uma função não-read-once F1 = x1x3x4x5x6 + x2x3x4x5x6 +

x1x2x5x6 + x2x3 x5 x6 + x1x3x5x6 + x1x2x3x4x5 + x1 x2 x4x6 + x1 x2x3x4x5 + x1x3 x5 x6 +

x1x2x3 x5 + x2x3x4 x5x6 + x1 x2 x3 x4 + x1x2x4x5x6 + x1x2x4x5 x6 + x1x3x4x5 +

x1x2x3x4 x6. Nodos em verde representam funções read-once. .. 115

Figura 3 – Um grafo de interseção de variáveis (VIG) obtido de uma (a) ISOP

F = (!a∙!b∙c∙d+a∙!d+b∙!c+a∙!c+b∙!d) e (b) de uma forma ESOP H = 1⊕ (!a∙!b) ⊕ (c∙d). 117

Figura 4 – Uma árvore de execução completa do algoritmo proposto. .. 119

Figura 5 - Comparação entre o método proposto e os métodos estado-da-arte para decomposição DSD

disponíveis na ferramenta ABC. O tempo de execução do método proposto é representado por

triângulos azuis. .. 124

TABLES

Table 1 – Fundamental operations over sets. The gray area represents the result of the operation. 5

Table 2– Truth table representing the complement operation. ..10

Table 3 – Truth table representing sum, product and exclusive-sum operations over two Boolean

functions f and g. ..10

Table 4 – Truth table representing every negative and positive cofactor for each input variable. The

last column shows the cube-cofactor of f w.r.t the input variables x1 and x2.11

Table 5 – Example of minterms and maxterms enumeration of a function f(X) (same presented in

Figure 1) depending of three input variable X = {x1, x2, x3}. ...14

Table 6 – Enumeration of classes of functions: read-once (RO), full disjoint-support bi-decomposition

(DSD) and read-polarity-once (RPO). ...28

Table 7 – Enumeration of all possible read-once trees regarding variable xi’s position. For each case, a

read-once tree is depicted in column F, and negative and positive cofactors w.r.t input xi are shown in

column Fxi = 0 and Fxi = 1 , respectively. Nodes depicted by triangles denote read-once subtrees.

Cases 1-13 represent the complete read-once tree. In cases 13-20, part of the read-once tree is hiden,

without lack of generalization. The table shows 20 cases of interest...34

Table 8 – Enumeration of all possible read-once trees considering the complete lower common

ancestor node nCLCA. Nodes depicted by triangles denote read-once subtrees. Filled triangles

represent those subtrees Ti where all support variables are missing, i.e. sup (Ti) ⊆ ∆.50

Table 9 – Runtime results after running RO_BY_COFACTOR over ROBDDs representing read-once

functions. The ROBDDs were constructed using a random variable order..55

Table 10 – Results for a benchmark composed of all DSD functions up to 6 inputs, grouped by

equivalence through input permutation (P-classes). ...65

Table 11 – Results of decompositions over ESPRESSO book PLA benchmark.66

Table 12 – Comparison of DSD methods considering two sets of full-DSD functions.81

Table 13 – Comparison between different factoring approaches...85

Table 14 – Summary of components used in the proposed decomposition.The negative (positive)

cofator w.r.t xi is represented by fxi = 0 (fxi = 1). ..92

Table 15 – Total number of literals and runtime obtained when factoring 1,462 RPO functions using

different approaches. ...94

Table 16 – Decomposition of circuits into k-cuts, with k=6, k=8 and k=10. The number of read-once

(RO), disjoint support decomposition (DSD) and read-polarity-once (RPO) functions is presented. ...96

Table 17 – Results on the analysis of non-RPO functions over a set of benchmark functions. Column

RPO show the number of RPO functions. The number of functions that have 1-dist Shannon, Davio or

Quantifier-Based expansions are shown in columns Shannon, Davio and Quantifier-Based,

respectively. Column 1-dist RPO shows the number of functions that have at least one of the previous

decompositions. Finally, column RPO + 1-dist RPO represent the number of functions that are RPO or

have 1-dist decomposition. ..97

Tabela 1 – Tempo de execução do método RO_BY_COFACTOR sobre ROBDDs representando

funções read-once. Os ROBDDs foram construídos utilizando uma ordem randômica de variáveis. 116

Tabela 2 – Resultados para um conjunto de funções composto de funções DSD de até 6 variáveis,

agrupado por equivalência através de permutação de entrada (classes-P). .. 120

Tabela 3 – Circuitos selecionados do benchmark (ESPRESSO BOOK). .. 121

Tabela 4 – Comparação de métodos de decomposição DSD considerando dois conjuntos de funções

full-DSD. .. 124

Tabela 5 – Enumeração de classes de funções Booleanas: read-once (RO), decomposição disjunta de

suporte (DSD) e read-polarity-once (RPO). .. 125

Tabela 6 – Número total de literais e tempo de execução para obter formas fatoradas para 1,462

funções RPO utilizando diferentes abordagens. ... 126

Tabela 7 – Decomposição de circuitos em funções de até K entradas, com K variando de 6 a 10. O

número de funções read-once (RO), decomposição disjunta de suporte (DSD) e read-polarity-once

(RPO) é apresentado. .. 128

Tabela 8 – Análise de funções RPO e não-RPO. As colunas Shannon, Davio e Quantifier-Based

mostram o número de funções dos respectivos benchmarks que tem decomposição 1-dist RPO usando

as expansões de Shannon, Davio e Quantifier-Based, respectivamente. A coluna 1-dist RPO mostra o

número de funções que tem ao menos uma das decomposições anteriores. Finalmente, a coluna RPO +

1-dist RPO representa o número de funções que são RPO ou tem uma decomposição 1-dist RPO. ... 129

LIST OF ABBREVIATIONS AND ACRONYMS

AIG And-Inverter-Graph

ASIC Application-Specific Integrated Circuit

BDD Binary Decision Diagram

CMOS Complementary Metal Oxide Semiconductor

DSD Disjoint-Support Decomposition

EDA Electronic Design Automation

ESOP Exclusive-Sum-Of-Products

FPGA Field-Programmable Gate Array

GF Good Factor

HDL Hardware Description Language

IC Integrated Circuit

LCA Lowest Common Ancestor

LCI Literal Cluster Intersection

MDC Minimum Decision Chain

NPN Negation-Permutation-Negation

NSP Non-Series-Parallel

PLA Programmable Logic Array

POS Product-of-sums

QF Quick Factor

RO Read-Once

ROBDD Reduced and Ordered Binary Decision Diagram

RPO Read-Polarity-Once

RTL Register Transfer Level

SOP Sum-Of-Products

SP Series-Parallel

VIG Variable Intersection Graph

VLSI Very-Large-Scale Integration

SUMMARY

ACKNOWLEDGEMENTS .. 11

ABSTRACT ... 12

RESUMO ... 13

FIGURES ... 14

1 INTRODUCTION .. 1

1.1 Motivation and challenges .. 2

1.2 Objective ... 3

1.3 Text organization ... 4

2 BACKGROUND ... 5

2.1 Set theory .. 5

2.2 Boolean functions ... 6

2.2.1 Representing Boolean functions .. 6

2.2.2 Basic operations over Boolean functions .. 9

2.2.3 Unateness analysis ...12

2.2.4 Shannon expansion...12

2.3 Boolean expressions ...13

2.3.1 Canonical sum-of-products and product-of-sums ..13

2.3.2 Two-level minimization ...14

2.3.3 Factored forms ...17

2.4 Switch networks ..18

3 CLASSES OF BOOLEAN FUNCTIONS .. 20

3.1 Unate classes of functions ..20

3.2 Symmetric Boolean functions ..21

3.3 Read-Once Boolean functions ...21

3.4 Read-Polarity-Once Boolean functions ...23

3.5 Boolean decomposition ..24

3.6 Comparison of Boolean function classes ...26

4 READ-ONCE FUNCTIONS .. 29

4.1 Previous work ..29

4.2 Proposed method for Read-Once synthesis ...30

4.2.1 Notation and definitions ...30

4.2.2 Read-once by cofactor composition ..32

4.2.3 Composing read-once cofactor trees ...42

4.3 Results ...53

4.4 Conclusions ..56

5 DISJOINT-SUPPORT DECOMPOSABLE FUNCTIONS 57

5.1 Previous work ..58

5.2 Top-down decomposition based on SOP, POS and ESOP forms ...58

5.2.1 Definitions and notation ...59

5.2.2 Proposed method ..60

5.2.3 A complete example of the proposed approach ...63

5.2.4 Experimental results ...64

5.2.5 Conclusions ...67

5.3 Bottom-up decomposition based on Boolean difference and cofactor analysis67

5.3.1 Definitions and notation ...67

5.3.2 Bottom-Up Decomposition Properties ..70

5.3.3 AND decomposition ...72

5.3.4 XOR decomposition ...72

5.3.5 MUX decomposition ..73

5.3.6 Proposed full-DSD synthesis method ..76

5.3.7 Experimental Results..80

5.3.8 Conclusions ...82

6 READ-POLARITY-ONCE FUNCTIONS ... 83

6.1 Boolean function representation ...84

6.2 Definition and properties of read-polarity-once functions ...85

6.3 Proposed method for synthesis of RPO functions ...86

6.3.1 Positive and negative transitions of a variable ...87

6.3.2 Intuition for grouping variables by transition test ..87

6.3.3 Literals and grouping definition ..89

6.3.4 Literal cluster intersection graph ...89

6.4 Decomposing non-RPO functions ...90

6.4.1 Proposed decompositions ...92

6.5 Experimental results ...93

6.6 Conclusions ..95

7 CONCLUSIONS ... 98

REFERENCES ... 100

1 INTRODUCTION

The circuit synthesis design flow is usually divided into three major steps: architectural

synthesis, logic synthesis and physical synthesis. Architectural synthesis, often called high-

level synthesis, consists of transforming an algorithmic description of the desired behavior

into a hardware format that implements that behavior, as in RTL (Register Transfer Level)

format. Usually, those algorithmic descriptions are represented in a C-like format (e.g. System

C) or a behavioral Hardware Description Language (HDL), e.g. VHDL or Verilog format.

The logic synthesis process has been one of the most commercially successful areas of

electronic design automation (EDA). Most digital devices that we use in our day-to-day life

have been designed by a set of logic synthesis tools. The logic synthesis task consists of

several steps. These steps may differ according to the nature of the circuit, e.g. sequential or

combinational. The main goal of logic synthesis is to determine the primitive structure of a

circuit, i.e. its gate-level representation. It is typically divided into three phases: technology

independent optimizations, technology mapping and technology dependent optimizations

(MICHELI, 1994). The first one applies transformations that do not depend on the

technology, but on the functional behavior of a Boolean network, e.g. factorization and

decomposition algorithms. The technology mapping phase matches portions of the circuit to a

cell with technology information. The technology dependent phase applies optimizations in

the mapped circuit, such as cell resizing and logic duplication.

Physical synthesis, or geometrical level synthesis, consists mainly of two major tasks.

Block placement physically distributes the cells. Wire routing connects the signals.

(ALPERT; MEHTA; SAPATNEKAR, 2008).

This work addresses synthesis of Boolean functions in the scope of a digital circuit design

flow, more precisely in the logic synthesis phase. It may also have broader scope since this

work proposes algorithms for classes of Boolean functions that may have application in

2

different areas other than circuit synthesis, for example learning theory (ANGLUIN;

HELLERSTEIN; KARPINSKI, 1993; BSHOUTY; HANCOCK; HELLERSTEIN, 1995) and

databases (SEN; DESHPANDE; GETOOR, 2010) (KANAGAL; LI; DESHPANDE, 2011).

1.1 Motivation and challenges

The process of factoring Boolean functions is a fundamental operation in algorithmic logic

synthesis (BRAYTON, 1987; HACHTEL; SOMENZI, 2006). Factoring is the process of

deriving a parenthesized algebraic equation, or factored form, representing a given logic

function. For instance, 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 can be factored into the logically

equivalent equation 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

Any given logic function can be represented by distinct factored expressions. The task of

factoring Boolean functions into shorter, more compact logically equivalent formulae is one

of the basic operations at the early stages of algorithmic logic synthesis (HACHTEL;

SOMENZI, 2006). In most design styles, like conventional CMOS gates, the device count for

realizing a Boolean function corresponds almost directly to its factored equation in terms of

literal count. Generating an optimum factored form, i.e. the shortest length equation, is a

∑ -complete𝑃
2 problem (GOLUMBIC; MINTZ, 1999). Hence, heuristic algorithms have been

developed in order to obtain good factored solutions (BRAYTON, 1987; STANION;

SECHEN, 1994; MINTZ; GOLUMBIC, 2005; HACHTEL; SOMENZI, 2006; YOSHIDA;

FUJITA, 2011). Some well-known heuristic algorithms include X-Factor (MINTZ;

GOLUMBIC, 2005), which provides good results but does not guarantee the minimal

equations. In (LAWLER, 1964), the author claims to provide the exact factoring. However,

Lawler’s method is not scalable and becomes impractical even for some functions with only

four inputs. Recently, new approaches have improved the factoring process for exact

solutions, but the scalability and runtime still remain the main bottlenecks (YOSHIDA;

IKEDA; ASADA, 2006; YOSHIDA; FUJITA, 2011; MARTINS ET AL., 2012).

Since optimal factoring and decomposition for general functions is a ∑ -complete𝑃
2

problem (BUCHFUHRER; UMANS, 2011), a good strategy is to identify classes of Boolean

functions that are easier to synthesize. This is the case of read-once, disjoint-support

decomposition and read-polarity-once classes of functions.

A factored form is called read-once (RO) if each variable appears only once. A Boolean

function is RO if it can be represented by an RO form (HAYES, 1975). For example, the

Boolean function represented by 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 is a RO function, since it can

be factored into 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

A Boolean function f(X) can be decomposed using simpler subfunctions g and h, such that

𝑓(𝑋) = ℎ(𝑔(𝑋1), 𝑋2) being X1, X2 ≠ ∅, and X1 ∪ X2 = X (ASHENHURST, 1957), (CURTIS,

1962). A disjoint-support decomposition (DSD) is a special case of functional decomposition,

where the input sets X1 and X2 do not share any element, i.e., X1 ∩ X2 = ∅. Roughly speaking,

DSD functions can be represented by a read-once expression where the exclusive-or operator

(⊕) can also be used as base operation. For example, 𝐹 = 𝑥1(𝑥2 ⊕ (𝑥4 + 𝑥5)).

A read-polarity-once (RPO) form is a factored form where each polarity (positive or

negative) of a variable appears at most once. A Boolean function is RPO if it can be

represented by an RPO factored form (CALLEGARO ET AL, 2012) For example the

function 𝐹 = 𝑥1̅̅̅𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥3 is RPO, since it can factored into 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 +

𝑥2).

The motivation of researching these special classes of functions is that, besides being

simpler to synthesize, such classes are of special interest in the context of digital circuit

design, since they are extremely frequent in circuit applications (PEER; PINTER, 1995),

(MISHCHENKO, BRAYTON, 2013) (CALLEGARO ET AL, 2014). The challenge is,

therefore, to create efficient and exact methods that can handle these function classes.

1.2 Objective

This dissertation introduces four new algorithms for synthesis of Boolean functions. The

first contribution is a synthesis method that finds a read-once realization for a target function.

The method was designed based on a divide-and-conquer strategy. Finding a read-once tree

for a target function consists of obtaining read-once trees for simpler sub-problems: negative

and positive cofactors (division phase). These solutions are then composed (conquer phase),

resulting in a read-once solution for the original problem (target function). The method is

independent of the Boolean function’s data structure representation. It relies only on cofactor

operation and equivalence checking regarding constants.

The second and third methods are algorithms for synthesis of DSD functions

(CALLEGARO ET AL, 2015a). A top-down approach checks if there is an OR, AND, or

XOR decomposition based on sum-of-products, product-of-sums and exclusive-sum-of-

4

products inputs, respectively. The another method runs in a bottom-up fashion and is based on

Boolean difference and cofactor analysis (CALLEGARO ET AL, 2015b). Two simple tests

provide sufficient and necessary conditions to identify AND and exclusive-OR (XOR)

decompositions.

The last contribution is a new method to synthesize RPO functions (CALLEGARO ET

AL, 2013). The method is based on the concept of positive and negative transition sets

possible for each variable. The method is able to detect if two literals must be grouped

through an AND or OR logic operation by examining transition sets.

1.3 Text organization

Chapter 2 – Background – Provides to the reader basic and consolidated knowledge for

full understanding of the contributions presented in this work.

Chapter 3 – Classes of Boolean functions – Presents and overviews definitions and

comparison of the main classes of functions that are discussed in this work.

Chapter 4 – Read-Once Functions – Presents a synthesis method that finds a read-once

realization for a target function. The method was designed based on a divide-and-conquer

strategy. Finding a read-once tree for a target function consists of obtaining read-once trees

for simpler sub-problems: negative and positive cofactors. These solutions are then composed

(conquer phase), resulting in a read-once solution for the original problem (target function).

Results show the scalability of the proposed method.

Chapter 5 – Disjoint-Support Decomposable Functions – Two algorithms for synthesis of

DSD functions are discussed. A top-down approach checks if there is an OR, AND, or XOR

decomposition based on sum-of-products, product-of-sums and exclusive-sum-of-products

inputs, respectively. The second method runs in a bottom-up fashion and is based on Boolean

difference and cofactor analysis. Two simple tests provide sufficient and necessary conditions

to identify AND and exclusive-OR (XOR) decompositions. Comparison with the state-of-the-

art methods is performed, showing the efficiency of the proposed methods.

Chapter 6 – Read-Polarity-Once functions – A method based on the concept of positive

and negative transition sets possible for each variable is presented. The method is able to

detect if two literals must be grouped through an AND or OR logic operation by computing

transition sets. Results of several experiments are also presented and discussed.

Chapter 7 – Conclusions – Summarizes the major contributions of this work.

2 BACKGROUND

This chapter introduces notation and preliminaries necessary to the understanding of this

work. It gives to the reader a brief description of Boolean algebra and switching theory

domain.

2.1 Set theory

This section presents basic concepts of set theory. This includes concepts of membership,

sets, subsets and associated operations.

Set: a collection of distinct elements. The usual way of describing a set is by defining the

characteristics of the elements belonging to it. For instance, if the set A is defined as the set of

all positive even elements, the set A is completely defined. However, it is not possible to

explicitly list all the elements in this set, as the number of elements is infinite. The set A could

be described as A = {2, 4, 6, 8, 10, …}.

Membership: If an element a is member of the set A, write a  A., For example, let B be a

binary set such that B = {0, 1} which means that 0  B and 1  B.

Subset: Let A and B be two sets. We say B ⊆ A if all elements in B are also in the set A. In

this case, we say that B is a subset of A, or equivalently A is a superset of B.

Table 1 presents some fundamental operations over sets and their respective Venn

diagrams. The goal of this review is to present some very basic definitions and operations. For

more information or formalism, (HALMOS, 1960) is suggested.

Table 1 – Fundamental operations over sets. The gray area represents the result of the operation.

Operation Venn Diagram

Set difference: A ∖ B results in the elements that are in A but not in B (in

that order). Set difference is also known as A butNot B.

6

Operation Venn Diagram

Complement: If a universe U is defined, A
c
 results in a set that contains all

elements of a universe U that are not in A: U ∖ A.

Union: A ∪ B results in a set that contains all elements that are member of

either A or B.

Intersection: A ∩ B results in a set that contains all elements that are

members of both A and B.

Symmetric difference: A ∆ B results in a set that contains all elements

which are in either of the sets but not in their intersection, or more formally

(A ∪ B) ∖ (A ∩ B).

2.2 Boolean functions

An n-input Boolean function f(X) defined by the variable (support) set },,{ 10  nxxX  is

a mapping

 𝑓(𝑋): 𝐵𝑛 → 𝐵, (1)

where B = {0, 1}. An element m  B
n
, i.e. an n-bit vector, is called minterm. There are 2

n

minterms in B
n
. The on-set of function f comprises all minterms m such that f(m) = 1 and is

denoted ON-SET(f). Conversely, the set representing all minterms such that f(m) = 0 is called

the off-set and is denoted OFF-SET(f). Notice that a Boolean function can be uniquely

represented by its on-set or off-set. A constant function 1 has an empty off-set, while the

constant function 0 contains no element in the on-set. In this work, function and Boolean

function are used interchangeably unless otherwise stated.

2.2.1 Representing Boolean functions

There are several ways to represent Boolean functions. One concern is regarding space

complexity (memory consumption). Another concert is canonicity. A representation is said to

be canonical if every function has a unique representation (BRYANT, 1986). Examples of

canonical forms are truth-tables, ordered Karnaugh maps and Reduced and Ordered Binary

Decision Diagrams (ROBDD). Among non-canonical data structures are Karnaugh maps

(without ordering), Binary Decision Diagrams (BDD) (with no fixed order) and And-Inverter-

Graphs (AIG).

2.2.1.1 Truth-table

The most straightforward way to representing functions is the truth table. In this

representation, the output value of a function is specified for each possible input vector. For

example, let the function f(x1, x2, x3) be represented by the truth table shown in Figure 1 (left).

The minterms {000, 011, 110, 111} are in the on-set of f while {001, 010, 100, 101} are in the

off-set.

2.2.1.2 Karnaugh map

Another well-known approach of representing Boolean functions is the Karnaugh map (K-

map) (KARNAUGH, 1953). The cells in the K-map are ordered using the Gray code (GRAY,

1953) such that the position of neighbor cells differs by exactly one bit. The function

represented by Figure 1 (left) can be represented by the K-map depicted in Figure 1 (right).

It is also possible to represent the same function as a bit string, where the most significant

bit (minterm 111) is on the left and the least significant bit (minterm 000) is on the right side,

e.g. F(x1, x2, x3) = 110010012.

x1 x2 x3 f

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Figure 1 – Example of an arbitrary Boolean function using truth table (left) and Karnaugh map (right)

representations. The same Boolean function can be represented by the bit stream

f(x1, x2, x3) = 110010012.

Although being a very simple way of representing Boolean functions, the truth table data

structure is not scalable in practice, since it always uses 2
n
 bits to store the information. For

functions with more than 20 input variables, representing Boolean functions using a truth

table data structure starts to be infeasible. In order to overcome this limitation, Akers

proposed the concept of decision diagrams.

8

2.2.1.3 Binary decision diagrams

A Binary Decision Diagram (BDD) is a rooted, directed graph with vertex set V

containing two types of vertices. A nonterminal vertex v has as attributes an input variable xi

and two children low(v), high(v) ∈ V. Each nonterminal vertex v behaves like an if-then-else

operator, i.e. if xi = 1 then go to high(v) else go low(v). A terminal vertex v has as attribute a

value c ∈ {0, 1} (AKERS, 1978). The same function represented in Figure 1 could be

represented by a BDD as depicted in Figure 2. The dashed edges represent the low child

nodes, while the non-dashed lines are the high child nodes.

Figure 2 – Binary decision diagram (BDD) representation of a Boolean function.

In order to make the BDD a canonical data structure, Bryant (BRYANT, 1986) proposed a

reduced and ordered binary decision diagram (ROBDD). ROBDDs are similar to the

representation introduced by (AKERS, 1978), but with a fixed ordering of the decision

variables in the graph.Non-terminal nodes controlled by the same variable and pointing for

the same left and right child (i.e. low(v) = high(v) are removed. Nodes controlled by the same

variable and pointing to the same left child and right child are merged (i.e. low(vi) = low(vj)

and high(vi) = high (vj). An ROBDD representing the same function of the BDD of Figure 2 is

shown in Figure 3. Notice that ROBDD is also a more compact way of representing BDDs.

Figure 3 – A reduced and ordered binary decision diagram (ROBDD) of a Boolean function.

2.2.1.4 And-Inverter Graphs

An And-Inverter graph (AIG) is a directed acyclic graph in which each node has zero or

two in-degree (incoming edges). Nodes with no incoming edges are primary inputs while the

nodes with two incoming edges represent product (AND) operations. Edges in an AIG can be

complemented, meaning the AND operator will use the complemented (inverted) function

from such an edge. Notice that nodes can be marked to denote primary outputs

(MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

AIG is a very simple and powerfull data structure. Currently is the state-of-the-art data

structure for representing large Boolean functions, i.e. functions with few hundred or

thousand inputs. Although being a very compact data structure, it lacks canonicity. Figure 4

shows two AIGs that are structurally distinct but represent the same function. Efforts have

been made in order to create methods canonize AIGs (MISHCHENKO ET AL, 2013). So

far, good heuristic approaches were proposed for canonizing AIGs, but the problem of finding

a unique, canonical representation for general AIGs is still open.

Figure 4 – Example of And-Inverter-Graph (AIG). Complemented edges are denoted by small dots.

Notice that primary input nodes {x1, x2, x3} have no incoming edges. Although beeing structurally

distinct, both AIGs represent the same function.

2.2.2 Basic operations over Boolean functions

The complement (negation, NOT) of a Boolean function f is a unary operation denoted by

f such that)(SET-OFF)(SET-ON ff  . A truth table representing the complement

operation is presented in Table 2.

10

Table 2– Truth table representing the complement operation.

f f

0 1

1 0

The sum (union, OR) is a binary operation between two Boolean functions f and g denoted

by f + g such that ON-SET(f + g) = ON-SET(f) ∪ ON-SET(g).

The product (intersection, AND) is a binary operation between two Boolean functions f

and g denoted by f ∙ g such that ON-SET(f ∙ g) = ON-SET(f) ∩ ON-SET(g). The product

operation will be also represented by juxtaposition, e.g. f g.

The exclusive-sum (difference, exclusive-OR, XOR) is a binary operation between two

Boolean functions f and g denoted by f ⊕ g such that ON-SET(f ⊕ g) = ON-

SET(f + g) \ ON-SET(f ∙ g).

Table 3 summarizes sum, product and exclusive-sum binary operations presented above.

Table 3 – Truth table representing sum, product and exclusive-sum operations over two Boolean

functions f and g.

f g f + g f ∙ g f ⊕ g

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Given a function f(X), the cofactor operation (also known as restrict operation) consists of

assigning a constant value ci ∈ {0, 1} to an input variable xi ∈ X, and is denoted
icixf 

(BOOLE, 1854). The negative (positive) cofactor with respect to (w.r.t) a variable xi is

denoted by 0ixf (1ixf) or for simplicity
ix

f (
ixf). In this work the notation

f (x0, …, xi = ci, …, xn-1) is also used to represent a cofactor operation in xi. A cube-cofactor

operation consists of applying cofactors recursively. A cube-cofactor of f(X) w.r.t the input

variables xi, xj ∈ X is denoted by
jcjxicixjcjxicix ff   ,)(. Table 4 shows some cofactors and

cube-cofactor examples.

Two distinct input variables 𝑥𝑖, 𝑥𝑗 ∈ 𝑋 are symmetric in f(X) if f(x1, …, xi, …, xj, …, xn) =

f(x1, …, xj, …, xi, …, xn). More formally, two input variables are symmetric if and only if

𝑓𝑥𝑖̅𝑥𝑗
= 𝑓𝑥𝑖𝑥𝑗̅̅ ̅. In other words, the function f is unchanged by permuting variable xi and xj.

Table 4 – Truth table representing every negative and positive cofactor for each input variable. The

last column shows the cube-cofactor of f w.r.t the input variables x1 and x2.

x1 x2 x3 f
1x

f
1x

f
2x

f
2xf

3x
f

3xf
21xxf

0 0 0 1 1 0 1 0 1 0 1

0 0 1 0 0 0 0 1 1 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 1 1 1 1 0 1 0 1 1

1 0 0 0 1 0 0 1 0 0 1

1 0 1 0 0 0 0 1 0 0 1

1 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1

Some cofactors and cube-cofactors identities are presented as follows. Let f(X) and g(X)

are two Boolean functions and xi, xj ∈ X.

icixicix ff  )()((2)

 icixicixicix gfgf  )((3)

 icixicixicix gfgf  )((4)

 icixicixicix gfgf  )((5)

icixjcjxjcjxicix ff   ,, (6)

ijxi xx )((7)

The Boolean difference of a function f w.r.t a variable xi is given by the exclusive-sum of

its cofactors:

𝜕𝑓

𝜕𝑥𝑖
= 𝑓𝑥1̅̅̅̅ ⊕ 𝑓𝑥1

 (8)

12

2.2.3 Unateness analysis

The unateness analysis reveals important information regarding a given Boolean function.

It provides details where a Boolean function 1) depends on the information of a particular

variable and 2) if it depends on which positive, negative or both polarities is required. The

unateness analysis relies on the examination of variable cofactors and their relationship.

We say that a variable xi  X is redundant in f(X) when 0
)(






ix

Xf
, which means that the

value xi does not care when computing f. Conversely, a variable xi belongs to the support of f

when its Boolean difference is not zero, i.e. 0
)(






ix

Xf
. For support (non-redundant)

variables, the unateness behavior can be described as follows. The function f is positive unate

in xi if
ixix

ix
fff  . When

ixix
ix

fff  , f is negative unate in xi. We say f is binate in xi

when
ixix

ixix
ffff  .

When a function f is either positive or negative unate in all its support variables, we say f

is a unate function. More specifically, if f is positive (negative) unate in all its support

variables, we say f is a positive (negative) unate function. In the case when at least one

variable is binate, the Boolean function is considered binate.

2.2.4 Shannon expansion

A Boolean function can be represented through simpler functions. One example is the

Shannon expansion (also known as Shannon decomposition and Boole's expansion).The

Shannon expansion of f (X) w.r.t a variable xi  X is defined as follows (SHANNON, 1949):

 𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝑛) = 𝑥𝑖̅ ∙ 𝑓𝑥𝑖̅
+ 𝑥𝑖 ∙ 𝑓𝑥𝑖

 (9)

Eq. 9 presents a sum of simpler functions. We say these functions are simpler since they

depend on fewer variables then f. Notice that a Shannon expansion can also be represented by

a product of simpler functions as shown in Eq. 10:

 𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝑛) = (𝑥𝑖̅ + 𝑓𝑥𝑖
) ∙ (𝑥𝑖 + 𝑓𝑥𝑖̅

) (10)

2.3 Boolean expressions

While algebraic expressions denote mainly numbers, Boolean expressions denote constant

truth values false and true, often encoded 0 and 1 respectively. Boolean expressions can be

defined recursively as a constant 0 or 1, a variable (e.g. ix), or a product, sum or complement

of Boolean expressions.

2.3.1 Canonical sum-of-products and product-of-sums

The product comprising all support variables of a given Boolean function is called

minterm. Conversely, the sum of all variables is called maxterm. Given a Boolean function

f(X) depending on n input variables (i.e. |X| = n) there are 2𝑛 minterms and, consequently, 2𝑛

maxterms. Table 5 shows, as an example, minterms and maxterms for an arbitrary function

depending on three input variables.

A Boolean function f can be canonically represented by the sum of all minterms mi  2
n

such that f(mi) = 1. For example, the function f presented in Figure 1 has its canonical sum-of-

products equal to 321321321321 xxxxxxxxxxxxF  or alternatively

),,,(7630 mmmmF . Besides, a function can also be represented by the product of its

maxterms mi  2
n

 such that f(mi) = 0. The above-mentioned function f can be represented by a

canonical product-of-sums)()()()(321321321321 xxxxxxxxxxxxF  or

otherwise as ),,,(5421 mmmmF .

Notice that a function can be represented by several distinct logic expressions. Usually,

some representations are considered better than others. For example, one may need the sum-

of-products with the smallest number of cubes (products) as possible. Minimization of

Boolean expressions is discussed as follows.

14

Table 5 – Example of minterms and maxterms enumeration of a function f(X) (same presented in

Figure 1) depending of three input variable X = {x1, x2, x3}.

mi  2
3
 x1 x2 x3 f minterm maxterm

m0 0 0 0 1
321 xxx  321 xxx 

m1 0 0 1 0
321 xxx  321 xxx 

m2 0 1 0 0
321 xxx  321 xxx 

m3 0 1 1 1
321 xxx  321 xxx 

m4 1 0 0 0
321 xxx  321 xxx 

m5 1 0 1 0
321 xxx  321 xxx 

m6 1 1 0 1
321 xxx  321 xxx 

m7 1 1 1 1 321 xxx  321 xxx 

2.3.2 Two-level minimization

Two-level forms are expressions that can be seen as a rooted tree where leaf nodes are

variables (or their complement) and the intermediate nodes represent a Boolean operation

distinct from the operation performed on the root node. Sum-of-products (SOP) is an example

of a two-level form where intermediate nodes represent AND operations while the root node

represents an OR operation. Product-of-sums (POS) is a two-level form with OR as

intermediate operations and AND as root operation. The Exclusive-sum-of-products (ESOP)

has, as root, the XOR operator and AND as intermediate operators.

2.3.2.1 Prime, essential prime and irredundant sum-of-products

When minimizing an SOP, the challenge is to reduce the number of product terms used to

represent a given Boolean function. Conversely, for POS minimization, the goal is to reduce

the total number of sum terms. Since SOP and POS minimization problems are dual, we will

discuss only SOP minimization (BRAYTON ET AL, 1984).

A cube is a product of disjoint and possibly complemented variables. A cube containing

all input variables },...,{ 10 nxx represents a minterm of f(X). A cube p composed of variables

},...,{ 10 nxx is an implicant of f(X) if fp  , i.e. each assignment that makes p evaluate to 1

also maps f to 1. Prime implicant is an implicant which is not contained in any other

implicant. For the sake of simplicity, let prime refer to prime implicant in this dissertation. A

prime implicant is an essential prime implicant if there is at least one minterm that is covered

by that prime, but another prime implicant.

A set of cubes S is a cover for f if the union (sum) of all cubes in S represents the function

f. A minimum cover is a cover with the minimum number of cubes. A prime cover is a cover

that consists only of prime implicants. An irredundant sum-of-products (ISOP) is a prime

cover for f such that no prime p in S can be removed without changing the function the cover

represents, i.e. fcS }{\ . A given function f can be represented by several distinct ISOPs

(SASAO; BUTLER, 2001). By definition, essential primes of a function f will be always

present in all possible ISOPs of f.

Consider as an example the function f presented in Figure 1. Its canonical sum-of-products

321321321321 xxxxxxxxxxxxF  contains four cubes. We can try to expand the cube

321 xxx by removing the variable x1, generating the cube 32 xx . Notice that 32 xx is a prime

implicant of f, since both 321 xxx and 321 xxx results 1 in f and there is no other cube implicant

that contains it. By repeating this process, one can enumerate all primes for

f: },,{ 3213221 xxxxxxx . Notice that all three primes are essential, and consequently the

minimum cover for f. For this example, the only ISOP representing f is

3213221 xxxxxxxF  . The IPOS representing the same function is

)()()(3213221 xxxxxxxF  .

 Minterms

Primes 000 011 110 111

321 xxx X

21xx

X X

32 xx

X

X

Figure 5 – Karnaugh-map and covering example for 3213221 xxxxxxxF  .

There are cases where no essential primes exist for a given function. Consider, for

example, the function shown in the Karnaugh-map in Figure 6(left):

432143214321432143214321432143212 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxF 

. Such function contains eight primes

16

},,,,,,,{ 321431321432432421431421 xxxxxxxxxxxxxxxxxxxxxxxx . All primes and their

respective covered minterms are presented in Figure 6 (right). Notice that all primes are non-

essential, i.e. there is no minterm that is covered by one prime only. The minimum covering

for such function consists of four primes. The resulting ISOP is

4313214324212 xxxxxxxxxxxxF  . Notice that more than one minimum solution can

be obtained for this example.

 Minterms

Primes 0101 0110 0111 1001 1010 1011 1101 1110

421 xxx X X

431 xxx X X

421 xxx X X

432 xxx X X

432 xxx X X

321 xxx X X

431 xxx X X

321 xxx X X

Figure 6 – Karnaugh-map and a minimum covering example for function

4313214324212 xxxxxxxxxxxxF  .

The Two-level SOP minimization problem started to receive attention after the seminal

work from Quine (QUINE, 1952), (QUINE, 1955) and McCluskey (MCCLUSKEY, 1956).

After that, several minimizer tools were proposed. A non-exhaustive list can include MINI

(HONG; CAIN; OSTAPKO, 1974), ESPRESSO (BRAYTON ET AL, 1984), Presto-II

(BARTHOLOMEUS; MAN, 1985), PALMINI (NGUYEN; PERKOWSKI; GOLDSTEIN,

1987), ESPRESSO-SIGNATURE (MCGEER; SANGHAVI; BRAYTON; VINCENTELLI,

1993), Scherzo (COUDERT, 1994), and BOOM (HLAVICKA; FISER, 2001).

2.3.2.2Exclusive-sum of products

Another well-known canonical representation for Boolean functions is the canonical

exclusive-sum-of-products. It can be represented by the exclusive-sum of all minterms mi  2
n

such that f(mi) = 1, i.e. the same minterms used to compose the canonical sum-of-products.

Considering as an example the function presented in Figure 5, the canonical exclusive-sum-

of-products for it is 321321321321 xxxxxxxxxxxxF  .

The goal of ESOP minimization is to find the ESOP with the minimum number of cubes.

For example, the minimum ESOP for the function presented in Figure 5 is 312 xxxF  .

The resulting cover is shown in Figure 7. Notice that, for the same function, the minimum

ISOP contains three cubes (Figure 5) while the minimum ESOP contains two cubes. As

already stated by Sasao (SASAO, 1993), ESOPs require, in general, fewer cubes to represent

the same function compare to ISOPs forms.

The problem of finding the minimum ESOP is more difficult than finding the minimum

ISOP. When minimizing an ISOP, one can use only primes, which are cube implicants. In

ESOP minimization, not only cubes implicants but also non-implicant cubes can be used to

compose the minimum ESOP. Moreover, in SOP, each minterm must be covered at least

once; in ESOP each minterm must be covered an odd number of times. Until nowadays, no

efficient method is known to obtain a minimum ESOP except for functions with a small

number of inputs (i.e. 8 inputs). There are several heuristic tools to perform ESOP

minimization, and among them, we can highlight EXMIN2 (SASAO, 1993), MINT

(KOZLOWSKI, 1996) and EXORCISM-4 (MISHCHENKO; PERKOWSKI, 2001).

Figure 7 – ESOP covering resulting 312 xxxF  .

2.3.3 Factored forms

Examples of two-level forms include SOP, POS, and ESOP. Multi-level forms are

expressions with an unbounded number of levels. Clearly, multi-level forms are a super-set of

the two-level ones. Factored forms are a subset of multi-level forms. A factored form is either

a literal or a product or a sum of factored forms, where a literal is a variable or its

complement (e.g. ix or ix) (BRAYTON, 1987). For example,)(321 xxx  is a factored form,

while)(321 xxx  is not; it is, however, a multi-level form.

The goal of factoring algorithms is to provide a minimal literal count expression

representing a given Boolean function as input. For example, given 𝐹1 = 𝑥0𝑥2 + 𝑥0𝑥3 +

18

 𝑥1𝑥2 + 𝑥1𝑥3, a good factoring algorithm should return 𝐹1′ = (𝑥0 + 𝑥1) ∙ (𝑥2 + 𝑥3).

Unfortunately, generating minimum literal factored forms an NP-hard problem (BRAYTON,

1987). Hence, heuristic algorithms have been developed in order to obtain good factored

solutions (SENTOVICH ET AL, 1992), (YOSHIDA; FUJITA, 2011), (MARTINS ET AL,

2012), (MINTZ; GOLUMBIC, 2005). Yet, the quality of the results degrades even for

Boolean functions with a small number of inputs, e.g. eight inputs (CALLEGARO, 2012).

2.4 Switch networks

A switch is a device composed of one control terminal and two contact terminals, where

the control terminal determines if there is a connection between the contact terminals. Figure

8(a) depicts a switch controlled by the variable x1. Switches can be connected, composing a

switch network. The function represented by a switch network corresponds to the sum of all

simple paths (products) between the contact terminals (SASAO, 1999). A series association

of switches, as shown in Figure 8(b), represents a conjunction (product, AND) operation, e.g.

𝑥1 ∙ 𝑥2 A parallel association corresponds to a disjunction (sum, OR) operation, e.g. 𝑥1 + 𝑥2,

as depicted in Figure 8(c).

A series-parallel switch network (SP) is obtained by iteratively connecting contact

terminals in series and/or in parallel. An example of SP network is illustrated in Figure 8 (d),

which represents the function 𝑥1 ∙ (𝑥2 + 𝑥3). Notice that it is possible to represent a SP switch

network by a factored form where the number of literals on it equal to the number of switches

on the network. In this sense, a SP switch network can be transformed directly into a factored

form, and vice-versa.

A non-series-parallel (NSP) switch network is an arrangement that cannot be achieved by

connecting terminal contacts only in series and/or in parallel. An example of an NSP switch

network is presented in Figure 8(e), which represents the function (𝑥1 ∙ 𝑥2 + 𝑥1 ∙ 𝑥3 ∙ 𝑥5 + 𝑥4 ∙

𝑥3 ∙ 𝑥2 + 𝑥4 ∙ 𝑥5). Notice that we cannot generate a factored form directly from a NSP switch

network. In fact, a minimum factored (and consequently a minimum switch-count SP

network) form representing the same function expressed in Figure 8(e) is 𝑥1 ∙ (𝑥2 + 𝑥3 ∙ 𝑥5) +

𝑥4(𝑥3 ∙ 𝑥2 + 𝑥5), which contains 8 literals (switches).

When constructing switch networks, the goal is to represent a target function using the

minimum number of switches. Several methods have been presented in the literature for

generating switch networks. Most traditional solutions are based on factoring Boolean

functions, and then using resulting factored forms to directly create series-parallel networks

(MINTZ; GOLUMBIC, 2008) (SENTOVICH ET AL, 1992) (MARTINS ET AL, 2012)

(MARTINS ET AL, 2010). On the other hand, there are graph-based methods that are able to

find both SP and NSP arrangements. Methods that explore NSP arrangements are superior to

the ones that create SP only, since they potentially use fewer switches to represent the same

functions (ZHU; ABD-EL-BARR, 1993), (KAGARIS; HANIOTAKIS, 2007), (DA ROSA

ETL AL, 2007), (POSSANI ET AL, 2012), (POSSANI ET AL, 2016).

Another important concern when generating switch networks is the maximum number of

switches in series. In some design styles, like CMOS, the rule-of-thumb is that there should be

at most four transistors in series per logic gate (single stage). Some Boolean functions cannot

be implemented with such a restriction, e.g. and NAND gate with 5 inputs. The Minimum

Decision Chain (MDC) is a property of a Boolean function that results the maximum number

of switches in series that is necessary to implement such a function (MARTINS ET AL,

2011). In order to achieve high-performance design, switch networks should not have more

transistors in series than the MDC of the function they implement.

(a) (b) (c) (d) (e)

Figure 8 – Examples of switch networks: a) a switch controlled by the variable x1 b) a series

association representing 𝑥1 ∙ 𝑥2 c) a parallel association representing 𝑥1 + 𝑥2 d) a series-parallel

network, created by series and parallel associations representing 𝑥1 ∙ (𝑥2 + 𝑥3) and e) a non-series-

parallel network representing (𝑥1 ∙ 𝑥2 + 𝑥1 ∙ 𝑥3 ∙ 𝑥5 + 𝑥4 ∙ 𝑥3 ∙ 𝑥2 + 𝑥4 ∙ 𝑥5).

20

3 CLASSES OF BOOLEAN FUNCTIONS

There are several ways of classifying Boolean functions. Indeed, there are an unlimited

number of possible distinct classes. However, one can create a class of Boolean functions in

order to explore some intrinsic and interesting propriety of such a class. Usually, the goal is to

take advantage of such properties in order to optimize some arbitrary cost. Some useful

classes of Boolean functions are presented as follows.

3.1 Unate classes of functions

As presented in Section 2.2.3 – Unateness analysis – an input variable can be redundant,

positive unate, negative unate or binate in f. A function is constant if all its inputs are

redundant. A function f is considered unate if all its input variables are unate in f. When at

least one variable is binate, the function is considered binate.

The properties of unate functions were explored in several scenarios. For example, if a

function f is unate, a resulting ISOP representing f will have each positive (negative) unate

variable appearing exclusively as a positive (negative) literal. Moreover, in unate functions all

primes are essential, meaning that the solution for the minimum set covering step is trivial

(MCCLUSKEY, 1956). Furthermore, given a unate SOP with m cubes as input of a two-level

minimizer, the prime enumeration and set covering steps are not necessary; the single cube

containment method is enough to obtain the minimum ISOP in a time complexity of O(m
2
)

(BRAYTON ET AL, 1984).

Another important property of unate functions can be explored in the Boolean

satisfiability problem (SAT). The SAT problem is to determine if there exists an interpretation

that satisfies a Boolean formula. In other words, is there a variable assignment such that the

formula evaluates to 1. SAT is one of the first problems to be proved NP-Complete

(COOK, 1971). However, the problem of satisfying a formula F is trivial if f is a unate

function. Each positive (negative) variable in f must be assigned to 1 (0) in order to make the

formula evaluates to 1.

3.2 Symmetric Boolean functions

Two distinct input variables 𝑥𝑖, 𝑥𝑗 ∈ 𝑋 are symmetric in f(X) if f(x1, …, xi, …, xj, …, xn) =

f(x1, …, xj, …, xi, …, xn). In other words, the function f is unchanged by permuting variable xi

and xj. A function is totally symmetric if is invariant under any permutation of its variables

(CHRZANOWSKA-JESKE, 1999). Examples of totally symmetric functions are sum,

product, exclusive-sum, majority (voter) functions, etc. Well-known examples of non-

symmetric functions include the multiplexer 𝐹 = 𝑥1̅̅̅ ∙ 𝑥2 + 𝑥1 ∙ 𝑥3, implication 𝐹 = 𝑥1̅̅̅ + 𝑥2

and sharp (inhibition) 𝐹 = 𝑥1̅̅̅ ∙ 𝑥2 functions.

A totally symmetric function f can be canonically identified by its Shannon set. Let f

depend on n input variables. A Shannon set 𝑆𝑎1,⋯,𝑎𝑘
(𝑥1, … , 𝑥𝑛) comprises a set of integers

{𝑎1, … , 𝑎𝑘}, where 0 ≤ 𝑎𝑖 ≤ 𝑛, such that f = 1 when and only when ai of the variables have a

value of 1 (SHANNON, 1938). For example, 𝑆1,2(𝑥1, 𝑥2) represents an OR function of two

inputs, where at least one or both variables should be equal 1 to make the OR function

evaluate to 1. An AND function of two inputs is represented by 𝑆2(𝑥1, 𝑥2) , while an XOR as

is denoted by 𝑆1(𝑥1, 𝑥2) and the majority function depending on three inputs is represented

by 𝑆2,3(𝑥1, 𝑥2, 𝑥3). By representing a function by its Shannon sets, properties like small

memory consumption for representation and function’s periodicity are explored in the context

of cryptographic analysis (CANTEAUT; VIDEAU, 2005).

Totally symmetric functions have several important properties. For example, Shannon in

(SHANNON 1938) showed that totally symmetric functions have circuit complexity of at

most n
2
. Bryant in (BRYANT, 1986) revealed that BDDs representing totally symmetric

functions has at most n
2
 nodes. For more information about symmetric functions, (ZHANG

ET AL, 2016) is suggested.

3.3 Read-Once Boolean functions

A factored form is called read-once (RO) if each variable appears only once. A Boolean

function is RO if it can be represented by an RO form (HAYES, 1975). For example, the

22

Boolean function represented by 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 is a RO function, since it can

be factored into 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

If a given function f can be factored into an RO form, then all input variables are either

positive or negative unate in f (HAYES, 1975). This is a necessary but not sufficient condition

since there are unate functions that cannot be factored into an RO form. For example, the

unate function 𝐹 = 𝑥1 ∙ 𝑥2 + 𝑥1 ∙ 𝑥3 + 𝑥2 ∙ 𝑥3 has 𝐹 = 𝑥1 ∙ (𝑥2 + 𝑥3) + 𝑥2 ∙ 𝑥3 as the

minimal solution, in which variables x2 and x3 appear more than once. Functions with binate

variables are not RO functions since both positive and negative literals of binate variables

should appear in the minimum factored form, i.e. each binate variable will appear at least

twice.

The classes of read-once functions have interesting special properties (KARCHMER ET

AL., 1993; BOROS; GURVICH; HAMMER, 1994; BOROS; IBARAKI; MAKINO, 1998;

GOLUMBIC, 2004). The class of read-once functions is of special interest in several areas,

including learning theory (ANGLUIN; HELLERSTEIN; KARPINSKI, 1993; BSHOUTY;

HANCOCK; HELLERSTEIN, 1995), databases (SEN; DESHPANDE; GETOOR, 2010)

(KANAGAL; LI; DESHPANDE, 2011), digital circuit design (HAYES, 1975), (PEER;

PINTER, 1995) and test (HAYES, 1971).

Read-once functions can be implemented using a linear number of AND and OR gates,

while most of Boolean functions require an exponential number of gates regarding number of

inputs to be implemented (SHANNON, 1949). Besides, RO functions of n inputs can be

implemented by series-parallel switch networks depending on n switches. The network can be

obtained by applying series and parallel expansions for each AND and OR operations on the

RO factored form, respectively. For example, the rooted tree and its respective switch

network representing 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)) is presented in Figure 9.

(a) (b)

Figure 9 – A rooted tree (a) and its respective series-parallel switch network (b) representing the RO

function 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

3.4 Read-Polarity-Once Boolean functions

A read-polarity-once (RPO) form is a factored form where each polarity (positive or

negative) of a variable appears at most once. A Boolean function is RPO if it can be

represented by an RPO factored form (CALLEGARO ET AL, 2012), (CALLEGARO ET AL,

2014). For example the function 𝐹 = 𝑥1̅̅̅𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥3 is RPO, since it can factored into

𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2).

Although the definition of RPO is similar to the read-once forms, the number of functions

that arise in the RPO class is much higher than RO. Indeed, by definition, the set of read-once

functions is a subset of the RPOs. Unlike read-once, RPO functions can represent not only

unate but also binate functions. Among all 2-input functions, only the XOR (𝑥1̅̅̅𝑥2 + 𝑥1𝑥2̅̅ ̅)

and XNOR (𝑥1𝑥2 + 𝑥1̅̅̅ 𝑥2̅̅ ̅) functions are not read-once but are RPO.

An RPO expression representing a function f can be proved as minimum literal form if

each unate variable in f contributes exactly one literal and each binate variable in f contributes

exactly two literals (one positive and one negative) in the RPO form. Let f be a Boolean

function defined by 𝐹 = 𝑥1̅̅̅𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥3. The variable ‘x1’ is binate in f, while

variables {x2, x3, x4} are positive unate. The RPO factored form 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2)

can be proved as minimum factored, since the binate variable ‘x1’ appears twice (once as

24

positive and once as negative literal), whereas each unate variable {x2, x3, x4} appears only

once.

Similarly to read-once, RPO functions can be implemented using a linear number of AND

and OR gates.RPO functions of n inputs can be implemented by series-parallel switch

networks depending on at most 2n switches. Indeed, the number of switches can be calculated

as follows. Let f be an RPO function depending on n-inputs, where α of these inputs are unate

and β are binate variables (i.e. α + β = n). The number of switches necessary to represent an

RPO function is α + 2β. For example, 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2) is an RPO function with α =

3 and β = 1 and can be implemented using 5 switches. The rooted tree and its respective

switch network representing F is presented in Figure 10.

(a) (b)

Figure 10 – Rooted tree (a) and its respective series-parallel switch (b) network representing the RPO

function 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2).

3.5 Boolean decomposition

Decomposition is the task of representing complex Boolean functions through simpler

subfunctions (ASHENHURST, 1957), (CURTIS, 1962). A Boolean function f(X) can be

expressed through subfunctions g and h, such that:

 𝑓(𝑋) = ℎ(𝑔(𝑋1), 𝑋2) (11)

where X1, X2 ≠ ∅, and X1 ∪ X2 = X. If such a representation exists, it is considered a

functional decomposition of f. Functions g and h are named predecessor and successor

functions, X1 and X2 are called bound-set and free-set, respectively (ASHENHURST, 1957),

(CURTIS, 1962).

There are several classifications regarding decomposition types. For example, in

Ashenhurst decomposition, each block (subfunction) must have one single output; while in

Curtis decomposition blocks can have multiple outputs. A disjoint-support decomposition

(DSD) is a special case of functional decomposition, where the input sets X1 and X2 do not

share any element, i.e., X1 ∩ X2 = ∅. When blocks share inputs then the decomposition is

named non-disjoint.

(a) (b)

Figure 11 – Schematic of (a) disjoint and (b) non-disjoint decompositions.

SOURCE: (SASAO; BUTLER, 1997).

In general, the worst case number of transistors needed to implement a function depending

on n input variables is 2𝑛

𝑛⁄ (SHANNON, 1949). In this sense, disjoint-support

decompositions play a major role on gate minimization since they greatly reduce the number

of inputs of each block. For example, suppose that an n-input function f can be decomposed as

depicted in Figure 11 (a). Let n1 = |X1| and n2 = |X2|, such that n = n1 + n2. Therefore, blocks g

and h can be implemented using at most 2
𝑛1

𝑛1
⁄ and 2

𝑛2+1

(𝑛2 + 1)⁄ gates, respectively. For a

large number of inputs, 2
𝑛

𝑛⁄ ≫ 2𝑛1

𝑛1
⁄ + 2𝑛2+1

(𝑛2 + 1)⁄ (SASAO, 1998).

Decompositions where each block has two or fewer inputs are called bi-decomposition.

Let f be bi-decomposed as 𝑓(𝑋) = ℎ(𝑔1(𝑋1 ∪ 𝑋3), 𝑔2(𝑋2 ∪ 𝑋3)) and X1, X2 and X3 be

disjoint. If X3 is empty, the decomposition is disjoint. When X1, X2 and X3 are non-empty, the

decomposition is called strong. When X1 or X2 is empty the decomposition is called weak

(SASAO; BUTLER, 1997). Figure 12 depicts the schematic for (a) disjoint, (b) strong and (c)

weak bi-decompositions.

26

A full disjoint-support bi-decomposition is a decomposition tree where all blocks from the

output to the primary inputs are disjoint-support bi-decompositions. Full disjoint-support bi-

decompositions are of special interest since the number of gates necessary to implement them

grows linearly with the number of inputs (BERTACCO; DAMIANI, 1997). Disjoint-support

decompositions have been applied to different IC design domains including ASIC and FPGA

design, synthesis, placement, routing, and verification (KARPLUS, 1990), (SASAO, 1981),

(MURGAI ET AL, 1990), (KUTZSCHEBAUCH; STOK, 2002), (BERTACCO;

OLUKOTUN, 2002), (PLAZA; BERTACCO, 2005).

(a) (b) (c)

Figure 12 – Schematic examples of (a) disjoint, (b) strong and (c) weak bi-decompositions.

SOURCE: (MISHCHENKO; STEINBACH; PERKOWSKI, 2001).

3.6 Comparison of Boolean function classes

This section presents some classes of Boolean functions that are related to the subject of

this dissertation. In the following, a comparison about RO, DSD and RPO will be performed.

These three classes are closely related since RO class is a subset of both DSD and RPO

classes. Figure 13 depicts the relationship among unate, RO, DSD and RPO classes. Notice

that all functions that are DSD and unate are also RO. The same property is observed for RPO

functions. Besides, there are several functions that are classified both DSD and RPO.

Figure 13 – Comparison of unate, read-once (RO), full disjoint-support bi-decomposition (DSD) and

read-polarity-once (RPO) classes. As can be seen, the class of RO functions is a subset of both DSD

and RPO classes.

In (HAYES, 1976), an enumeration of all RO functions up to 8 inputs was carried out.

Results of this evaluation are shown in Table 6, second column. In (BUTLER, 1975), an

enumeration of DSD functions up to 15 inputs was performed. The DSD data (limited herein

to 8 inputs) is presented in Table 6, third column. In (KODANDAPANI; SETH, 1978), an

enumeration of both RO and DSD functions up to 7 inputs was performed. Both numbers of

RO and DSD match with Hayes’ and Butler’s results.

In (CALLEGARO ET AL, 2012), an enumeration of RPO functions up to 5 inputs was

carried out. The same authors recently extended the enumeration for functions with up to 6

inputs. The number of RPO functions is shown in Table 6, fourth column. The fifth column

shows the number of functions that belong to both DSD and RPO classes of functions. Each

line in Table 6 represents the total number of functions per class with up to n inputs, where

2 ≤ n ≤ 8. The number of all possible functions with n inputs is 22𝑛
.

28

Table 6 – Enumeration of classes of functions: read-once (RO), full disjoint-support bi-decomposition

(DSD) and read-polarity-once (RPO).

Inputs RO DSD RPO DSD ∩ RPO
𝐷𝑆𝐷 ∩ 𝑅𝑃𝑂

𝐷𝑆𝐷

2 12 14 14 14 100%

3 94 150 228 148 99%

4 1,144 2,678 20,748 2,492 93%

5 19,994 68,966 6,814,286 57,894 84%

6 456,774 2,311,640 3,934,102,220 1,699,626 74%

7 12,851,768 95,193,064 - - -

8 429,005,426 4,645,069,336 - - -

4 READ-ONCE FUNCTIONS

The class of read-once functions has interesting special properties (KARCHMER ET AL.,

1993; BOROS; GURVICH; HAMMER, 1994; BOROS; IBARAKI; MAKINO, 1998;

GOLUMBIC, 2004). The class of read-once functions is of special interest in several areas,

including learning theory (ANGLUIN; HELLERSTEIN; KARPINSKI, 1993; BSHOUTY;

HANCOCK; HELLERSTEIN, 1995), databases (SEN; DESHPANDE; GETOOR, 2010)

(KANAGAL; LI; DESHPANDE, 2011) and digital circuit design (PEER; PINTER, 1995).

In this chapter, a synthesis method that finds, whenever it is possible, a read-once

realization for a target function is presented. The method relies on the fact that the class of RO

functions is closed under cofactor operations, i.e. a cofactor of an RO function is an RO

function (HAYES, 1975). Given a function f (X) depending on n inputs and a variable xi  X,

the idea is to obtain recursively read-once trees for negative and positive cofactors w.r.t.

variable xi and, based on these two trees, decide where to insert xi in one of these trees.

4.1 Previous work

The class of read-once (RO) Boolean functions has been known for a long time: it was

first introduced by Hayes (HAYES, 1975) who called them fanout-free functions. The method

proposed by Hayes suffers from high complexity since the algorithm makes intensive calls to

a procedure to perform equivalence checking of cofactors.

Peer and Pinter (PEER; PINTER, 1995) also proposed an algorithm to synthesize non-

repeating literal trees, another name to read-once functions. The main drawback of their

method is that it runs in non-polynomial time. The main reason is that their method requires

intensive SOP to POS (and POS to SOP) conversions which require an exponential time to

run, making the method very costly in runtime.

30

More recent work was proposed in order to overcome the limitations of Hayes’ and Peer

and Pinter’s methods. Golumbic (GOLUMBIC; MINTZ; ROTICS, 2001) was the first to

propose a polynomial time factoring algorithm for RO functions, called IROF. His method is

based on Gurvich’s work (GURVICH, 1991). Another recent work was proposed by Lee

(LEE; WANG, 2007) and is based on Hayes’ work. His method replaced the equivalence

checking of cofactors by a property called disappearance, turning the algorithm feasible in

polynomial time.

4.2 Proposed method for Read-Once synthesis

A synthesis method that finds, whenever it is possible, a read-once realization for a target

function is proposed. The method was designed based on a divide-and-conquer strategy.

Finding a read-once tree for a target function consists of obtaining read-once trees for simpler

sub-problems: negative and positive cofactors (division phase). These solutions are then

composed (conquer phase), resulting in a read-once solution for the original problem (target

function). The method is independent of the Boolean function’s data structure representation.

It relies only on cofactor operation and equivalence checking regarding constants.

4.2.1 Notation and definitions

Definition 1: A read-once tree is a constant node (0 or 1), a literal (𝑥𝑖 or 𝑥𝑖̅) node or a

sum (+) or product (∙) node of (non-constant) read-once trees with disjoint support.

Definition 2: An operator node ni can be either a sum or a product node, and op(ni) is a

function that returns “+” or “∙” if ni is a sum or a product node, respectively.

Definition 3: The function neighbor N(ni) can be applied over operator nodes and returns

a list of ni adjacent (child) nodes.

Definition 4: A read-once tree is said to be collapsed if there is no sum (product) node

containing a sum (product) node as child, respectively.

Definition 5: A collapse operation over a tree T consists of finding an operator node ni

that has an operator child nj such that op(ni) = op(nj), and adding all N(nj) into the ni child

node list, i.e. N(ni) = N(ni) ∪ N(nj). After that, node nj is deleted. The collapse operation runs

until no more non-collapsed nodes are found, resulting in a collapsed tree. Figure 14 (left)

shows a non-collapsed tree and its collapsed version (right).

Figure 14 – Example of a non-collapsed tree (left) and the resulting tree after the collapse operation

(right).

Definition 6: A sort operation over a tree T, given an input order

𝑌 = [𝑦1, … , 𝑦𝑖 , 𝑦𝑖+1, … , 𝑦𝑛], where 𝑦𝑖 ∈ 𝑋, orders subtrees of T regarding their priority on Y.

Constant nodes have priority over all other nodes, i.e. 0 ≤ 1 ≤ 𝑌. Each subtree has priority

equal to the highest priority of its subtrees. Consider the tree depicted in Figure 15 (left). A

sorted tree with an input order 𝑌 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] is presented in Figure 15 (right).

Figure 15 – Example of sorting trees. Original tree (left) and sorted tree with input order 𝑌 =

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] (right).

Theorem 1: Given a fixed input order, i.e. 𝑌 = [𝑥1, … , 𝑥𝑛], collapsed and sorted read-

once trees are canonical representations.

Proof: (MISHCHENKO; BRAYTON, 2013) ■

32

Definition 7: The support of a tree sup(T) is a set containing all variables appearing on T.

For example, let 𝑇 = 𝑥1 + 𝑥2̅̅ ̅(𝑥3 + 𝑥4̅̅ ̅), then sup(𝑓) = {𝑥1, 𝑥2, 𝑥3, 𝑥4}. Notice that the

support of a tree representing a constant node is empty, i.e. sup(0) = sup(1) = ∅.

Definition 8: Matching between trees can be recursively defined as follows. Two trees T1

and T2 are considered a match if both trees represent the same constant or represent the same

literal or both T1 and T2 are operator nodes such that op(T1) = op(T2), |N(T1)| = |N(T2)| = m and

all descendants from T1 match, in order, descendants from T2, i.e. match(N(T1)i, N(T2)i), for

1 ≤ 𝑖 ≤ 𝑚.

Theorem 2: Two canonical (collapsed and sorted) read-once trees represent the same

Boolean function if and only if the trees match.

Proof: Straightforward from Theorem 1 and definition 8. ■

4.2.2 Read-once by cofactor composition

A method for synthesis of read-once functions is proposed. The method relies on the fact

that the class of RO functions is closed under cofactor operations, i.e. a cofactor of an RO

function is an RO function. For example, Table 7 shows an enumeration of all possible read-

once trees regarding an arbitrary variable xi’s position. For each case, a read-once tree is

depicted in column F, negative and positive cofactors w.r.t input xi are shown in column

𝐹𝑥𝑖=0 and 𝐹𝑥𝑖=1, respectively. Nodes depicted by triangles denote read-once subtrees.

In total, 20 cases of interest are shown in Table 7. A target variable xi can be redundant in

the tree T, i.e. 𝑥𝑖 ∉ sup (𝑇), represented by the cases 1 and 2. Cases 3 and 4 represent the

case where T is composed by a literal of variable xi. Cases 5-12 show examples where

variable xi is a child of an operator node, which is positioned in the root of T. Cases 13-20

represent the trees where xi is a child of an operator node that is not the root node. In this

sense, Table 7 virtually enumerates all possibilities of read-once trees regarding the

observation of an arbitrary variable xi. Notice that, in cases 13-20, part of the read-once tree

is hiden, without lack of generality and just for presentation sake, as detailed in Figure 16.

Figure 16 – Example explicitly showing the hidden part from 13-20 (Table 7). The top part (cloud) of

the tree is hidden without lack of generality and just for presentation sake.

34

Table 7 – Enumeration of all possible read-once trees regarding variable xi’s position. For each case, a read-once tree is depicted in column F, and negative

and positive cofactors w.r.t input xi are shown in column 𝐹𝑥𝑖=0 and 𝐹𝑥𝑖=1 , respectively. Nodes depicted by triangles denote read-once subtrees. Cases 1-13

represent the complete read-once tree. In cases 13-20, part of the read-once tree is hiden, without lack of generalization. The table shows 20 cases of interest.

Case

ID 𝐹 𝐹𝑥𝑖=0 𝐹𝑥𝑖=1

1

2

3

4

5

6

Case

ID 𝐹 𝐹𝑥𝑖=0 𝐹𝑥𝑖=1

7

8

9

10

11

36

Case

ID 𝐹 𝐹𝑥𝑖=0 𝐹𝑥𝑖=1

12

13

14

Case

ID 𝐹 𝐹𝑥𝑖=0 𝐹𝑥𝑖=1

15

16

38

Case

ID 𝐹 𝐹𝑥𝑖=0 𝐹𝑥𝑖=1

17

18

19

Case

ID 𝐹 𝐹𝑥𝑖=0 𝐹𝑥𝑖=1

20

40

Given a function f (X) depending on n inputs and a variable xi  X, the idea is to obtain

recursively read-once trees for negative and positive cofactors w.r.t. xi and based on these two

trees, decide whenever possible insert xi in the one of these trees. As shown in Table 7, if f is a

read-once function, both negative and positive cofactors xi should also be read-once functions.

This is the working principle of the proposed RO_BY_COFACTOR method. Algorithm 1

shows a pseudo code for the RO_BY_COFACTOR method.

Algorithm 1

Description Pseudocode for the read-once by cofactor composition.

Input A Boolean function f(X).

Output A read-once tree representing f or 𝐍𝐔𝐋𝐋 if it is not possible.

RO_BY_COFACTOR(Input: 𝑓(𝑋))

begin

 1: if (𝑓 ≡ 𝟎) return 0

 2: if (𝑓 ≡ 𝟏) return 1

 3: 𝑥𝑖 ≔ get_next_var(𝑋)

 4: 𝑇𝑛𝑒𝑔 ≔ RO_BY_COFACTOR(𝑓𝑥𝑖=0)

 5: 𝑇𝑝𝑜𝑠 ≔ RO_BY_COFACTOR(𝑓𝑥𝑖=1)

 6: 𝑇 ≔ RO_COMPOSITION(𝑥𝑖, 𝑇𝑛𝑒𝑔, 𝑇𝑝𝑜𝑠)

 7: return T

end

Since constant functions are read-once by definition, line 1 in Algorithm 1 checks if the

target function is equivalent to constant 0. If it is the case, then a read-once tree with the

constant zero node is returned. Line 2 tests if the target function is a constant 1 and returns the

appropriate read-once tree if it is the case. In line 3, a next variable is chosen for cofactoring.

For the method’s point of view, an arbitrary choice can be performed.

The get_next_var step can take advantage of the structural information present on the

data structure used to represent the target function f. For example, in a BDD representation,

the best variable to be cofactored is the variable on the top of the BDD. When the target

function is represented by an SOP, then the most binate variable should be selected

(BRAYTON ET AL, 1984). When representing f as a truth-table, the most significant variable

should be selected, i.e. the variable with the lowest frequency.

Lines 4 and 5 in Algorithm 1 first obtain a negative and positive cofactor of target variable

xi and, recursively, find a read-once representation for them. Finally, in line 6, the

RO_COMPOSITION method is performed. This method uses only information of both

negative and positive read-once trees and decides, whenever possible, which is the insertion

point for xi in the larger tree. The RO_COMPOSITION method will be explained in the next

section.

In the following, an example of the RO_BY_COFACTOR method presented in

Algorithm 1 will be discussed. Let f be an input function for the RO_BY_COFACTOR

method, represented by a BDD realizing the function 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3. Since f is not

constant, the method is called recursively with the negative and positive cofactors w.r.t.

variable x1. The variable x1 was first selected because is the variable that is on top of the

BDD. The method runs until reaching some constant node, and then recursively returns

composing the found read-once trees. Two examples are depicted in Figure 17. A full BDD is

used as input example in Figure 17 (left) and a ROBDD is used as example in Figure 17

(right). The read-once expressions found are annotated near to each BDD node. Notice that

both BDDs represent the same functions.

Given a BDD with m nodes and n inputs, the RO_BY_COFACTOR method (Algorithm

1) needs to visit each BDD node only once. For each node, one call to RO_COMPOSITION

is performed. As will be discussed in the next section, RO_COMPOSITION runs in 𝑂(𝑛).

Consequently, the RO_BY_COFACTOR has a worst-case performance of 𝑂(𝑚𝑛).

Figure 17 – Two examples of the RO_BY_COFACTOR algorithm using the input function 𝐹 =

 𝑥1𝑥2 + 𝑥1𝑥3. A full BDD (left) and an ROBDD (right) representing f are shown.

42

4.2.3 Composing read-once cofactor trees

A cofactor operation over a read-once function results in a read-once function. This

property is explored in the RO_BY_COFACTOR by composing read-once trees from

cofactors. The method that composes, whenever possible, read-once cofactor trees into a read-

once form is presented in the following.

Definition 9: The arg_max function operating on trees T1, T2 returns the larger tree

regarding support count, i.e. T1 is returned if |sup (𝑇1)| ≥ |sup (𝑇2)| or T2 is returned

otherwise. Ties are broken by returning tree T1.

Definition 10: The lowest common ancestor (LCA) of a set of variable nodes 𝛥 in a

rooted tree T, LCA(𝑇, ∆), is the lowest (deepest, farthest from the root node) node ni such that

∆ ⊆ sup(𝑛𝑖).

Definition 11: An LCA node ni of a set of variable nodes 𝛥 is considered complete if, for

each child node 𝑛𝑗 ∈ 𝑁(𝑛𝑖), the support of nj is either a subset of 𝛥 or a disjoint set from 𝛥,

i.e. sup (𝑛𝑗) ⊆ ∆ or sup(𝑛𝑗) ∩ ∆= ∅.

Let a read-once function 𝐹 = (𝑥1 𝑥2 + 𝑥3 + 𝑥4) (𝑥5 + 𝑥6) be represented by the tree T

shown in Figure 18. Node n2 is a complete LCA for the variable set {𝑥1, 𝑥2, 𝑥4}, i.e.

complete_LCA(𝑇, {𝑥1, 𝑥2, 𝑥4}) = 𝑛2. Node n4 is the LCA for {𝑥4, 𝑥5, 𝑥6}, but is not a

complete LCA, since sup (𝑛2) ⊈ {𝑥4, 𝑥5, 𝑥6} and sup (𝑛2) ∩ {𝑥4, 𝑥5, 𝑥6} ≠ ∅. Indeed, there is

not a complete LCA for {𝑥4, 𝑥5, 𝑥6} for the given tree T, i.e. complete_LCA(𝑇, {𝑥4, 𝑥5, 𝑥6}) =

∅.

Figure 18 – Lowest common ancestor (LCA) example: The complete LCA for the variable set

 {𝑥1, 𝑥2, 𝑥4} is node n2. Node n4 is the LCA for {𝑥4, 𝑥5, 𝑥6}. For this example, there is not a complete

LCA for {𝑥4, 𝑥5, 𝑥6}.

n1

n2 n3

n4

Let f(X) be a Boolean function depending on n inputs, i.e. n = |X|, and xi  X. The method

RO_COMPOSITION receives as input a target variable xi and two read-once trees 𝑇𝑛𝑒𝑔 and

𝑇𝑝𝑜𝑠. It is assumed that trees 𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 are in canonical form (collapsed and sorted) and

represent negative (𝑓𝑥𝑖=0) and positive (𝑓𝑥𝑖=1) cofactors w.r.t. variable xi, respectively. Notice

that one or both trees could be ∅ (NULL), meaning that is not possible to represent one or

both xi’s cofactors as a read-once realization. By definition, if at least one cofactor w.r.t some

input variable xi is not read-once, the target function is not read-once.

Algorithm 2 shows a pseudo code for the RO_COMPOSITION method. Line 1 checks if

at least one of the trees is ∅ (𝐍𝐔𝐋𝐋) and returns ∅ if it is the case. Lines 2 and 3 check if both

trees represent the same constant function and return the appropriate result. This covers cases

1 and 2 from Table 7. Cases 3 and 4 from Table 7 are covered by lines 4 and 5. Line 6 covers

cases 5 and 6, while line 7 covers cases 11 and 12. Cases 7 and 8 are covered by line 8, and

line 9 covers cases 9 and 10. In summary, cases 1-12 from Table 7 are covered by lines 1-9 in

Algorithm 2.

Line 10 covers the cases where both trees represent the same function, meaning that

variable xi is redundant so either 𝑇𝑛𝑒𝑔 or 𝑇𝑝𝑜𝑠 can be returned. This can be shown as follows.

Let f be represented by the Shannon expansion w.r.t xi: 𝑓 = 𝑥𝑖̅ ∙ 𝑓𝑥𝑖̅
+ 𝑥𝑖 ∙ 𝑓𝑥𝑖

. If the trees

match, i.e. represent the same function, then 𝑓𝑥𝑖̅
≡ 𝑓𝑥𝑖

≡ 𝑓. By substitution, 𝑓 = 𝑥𝑖̅ ∙ 𝑓 + 𝑥𝑖 ∙ 𝑓

which is equivalent to 𝑓 = 𝑓(𝑥𝑖̅ + 𝑥𝑖) ≡ 𝑓(1) ≡ 𝑓. Cases 13-20 are covered by lines 11-20

and require a more detailed explanation.

Lemma 1: Let f(X) be an n-input function depending on two or more inputs, i.e. 𝑛 > 1.

Let xi represent an arbitrary variable in X, and let n0 (n1) denote the number of variables that

the negative (positive) cofactor of xi in f depends on. If f is a read-once function, then

𝑛0 = (𝑛 − 1) with 𝑛1 < 𝑛0 or 𝑛1 = (𝑛 − 1) with 𝑛0 < 𝑛1.

Proof: Let T be a read-once tree representing an n-input read-once function f. Since 𝑛 >

1, the parent node of xi in T must be an operator node. Let nj be this operator node. When xi is

cofactored, the assigned value is propagated over the tree T, reaching node nj. If nj is an AND

(OR) operator, a 0 (1) value will be propagated to nj’s parent node making all children nodes

from nj redundant (don’t care). After the propagation operation, it is easy to see that xi and

variables in the support of its sibling’s nodes will be redundant. Conversely, when the value

reaching nj is not a dominating, i.e. value 1 (0) for an AND (OR) operator, then the AND

44

(OR) of all children from nj besides xi will be propagated to nj’s parent node. This is the case

where just xi will be redundant after the cofactor operation. ■

Example: Let 𝑇 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)) represent a 5-input read-once function f. Let

𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 represent negative and positive cofactors w.r.t. x3 in f, such that 𝑇𝑛𝑒𝑔 = 𝑥1𝑥2

and 𝑇𝑝𝑜𝑠 = 𝑥1(𝑥2 + 𝑥4 + 𝑥5). Let 𝑛0 = |sup (𝑇𝑛𝑒𝑔)| = 2 and 𝑛1 = |sup (𝑇𝑝𝑜𝑠)| = 4. Since

𝑛 = 5, 𝑛1 = (𝑛 − 1) and 𝑛0 < 𝑛1, Lemma 1 holds. More examples are shown in cases 5-20

in Table 7. Notice that Lemma 1 is a necessary but not sufficient condition for identifying

read-once functions.

Lemma 2: Let f(X) be a read-once function, 𝑥𝑖 ∈ 𝑋, 𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 represent read-once

trees realizing 𝑓𝑥𝑖=0 and 𝑓𝑥𝑖=1, respectively. According to Lemma 1, one of the cofactors must

have more inputs in the support. Let 𝑇𝑙𝑎𝑟𝑔𝑒𝑟be the larger (in support count) tree and 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟

be the other tree. Then the support set of the smaller tree should be a proper subset of the

support set of the larger tree, i.e. sup(𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟) ⊂ sup (𝑇𝑙𝑎𝑟𝑔𝑒𝑟).

Proof: Straightforward from Lemma 1 and its proof. ■

Lines 11 – 13 of Algorithm 2 store in 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 and 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 the larger and smaller cofactor

trees, respectively, and check if Lemma 1 Lemma 2 holds. If it is not the case, then the

function is not read-once and ∅ (𝐍𝐔𝐋𝐋) is returned.

Theorem 3: Let f(X) be a non-trivial read-once function, i.e. the both cofactors regarding

𝑥𝑖 ∈ 𝑋 are not constant functions. Let 𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 represent read-once trees realizing 𝑓𝑥𝑖=0

and 𝑓𝑥𝑖=1, respectively. If f is a read-once function, then according to Lemma 1, one cofactor

tree is larger than the other regarding support count. Let 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 be the larger tree, 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 be

the smaller tree and 𝛥 represent the missing variables in 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 but present in 𝑇𝑙𝑎𝑟𝑔𝑒𝑟, i.e.

 𝛥 ≔ sup (𝑇𝑙𝑎𝑟𝑔𝑒𝑟) ∖ sup (𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟). If f(X) is a non-trivial read-once function, a complete

lowest common ancestor (CLCA) node 𝑛𝐶𝐿𝐶𝐴 from 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 for the set of variables ∆ must

exist, i.e. (𝑛𝐶𝐿𝐶𝐴 ≠ ∅).

Proof (by contradiction): Let us assume that f is a non-trivial read-once and no complete-

LCA node is found for ∆. However, by definition at least one non-complete LCA node ni

must exist in 𝑇𝑙𝑎𝑟𝑔𝑒𝑟. Since node ni is a LCA but is not complete, there must exist at least one

child node of ni, 𝑛𝑗 ∈ 𝑁(𝑛𝑖), such that or 1) sup (𝑛𝑗) ⊈ ∆ and sup(𝑛𝑗) ∩ ∆ ≠ ∅ or 2)

sup (𝑛𝑗) ⊆ ∆ and sup(𝑛𝑗) ∩ ∆ = ∅ holds. By simplification, only sup(𝑛𝑗) ∩ ∆ ≠ ∅ rule

remains in case 1. Let ℵ = sup(𝑛𝑗) ∩ ∆ . This means that by cofactoring xi, some variables in

ℵ are missing and some variables are present in 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 . However, since f is read-once, after

cofactoring xi each group of variables that is missing must belong to the same sub-tree which

becomes redundant after cofactoring. This contradicts case 1 since some variables are missing

and some are not. Case 2 is a contradiction since the only case where both conditions evaluate

to true is the case where both sup(𝑛𝑗) and ∆ are empty, i.e. sup(𝑛𝑗) = ∆ = ∅, which

contradicts the fact that at least one element must be in ∆, i.e. the tree 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 must have at

least one variable more than 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 . ■

After checking if both Lemma 1 and Lemma 2 holds, the algorithm stores in ∆ the set of

variables that are missing in 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 but are present in 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 and obtain 𝑛𝐶𝐿𝐶𝐴 , a complete

lowest common ancestor (CLCA) node from 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 for the set of variables ∆. If there is not a

CLCA node for the set ∆, Theorem 3 does not hold and no read-once realization can be

obtained for the given input and ∅ (𝐍𝐔𝐋𝐋) is returned.

Definition 12: Let T represent a read-once tree and 𝛥 be a set of variables. The removal of

variables 𝛥 in T, denoted 𝑇\𝛥, consists of two steps: 1) leaf nodes contained in 𝛥 are deleted

from T and 2) the resulting tree is canonized (collapsed and sorted).

Figure 19 depicts a step by step example of the removal operation. Let the initial read-

once tree be represented by 𝑇 = 𝑥2 + 𝑥3 + 𝑥4𝑥5 + 𝑥6𝑥7, as shown in (a), and 𝛥 =

{𝑥2, 𝑥3, 𝑥6, 𝑥7}. Nodes are first deleted (b)-(d) and the resultant tree is collapsed and ordered

(e)-(g). The resulting tree is canonical.

Definition 13: A non-controlling value related to an input xi of an AND (OR) operation is

an input assignment such that a value 1 (0) is propagated to an AND (OR) input.

Lemma 3: Let ni be a child node of an operator node nj in a read-once tree, i.e. 𝑛𝑖 ∈

𝑁(𝑛𝑗). Deleting a node ni from nj, i.e. 𝑛𝑗 ∖ 𝑛𝑖, is equivalent to assigning a value 𝛼𝑖 to node ni

such that a non-controlling value is propagated to the input of node nj.

46

Algorithm 2

Description Pseudocode for the read-once composition method.

Input An input variable xi and two canonized trees Tneg and Tpos representing

negative and positive cofactors w.r.t input xi, respectively.

Output A read-once tree by inserting xi in the larger tree or ∅ (𝐍𝐔𝐋𝐋) if it is not

possible.

RO_COMPOSITION(Input: 𝑥𝑖, 𝑇𝑛𝑒𝑔, 𝑇𝑝𝑜𝑠)

begin

 1: if (𝑇𝑛𝑒𝑔 = ∅ ∨ 𝑇𝑝𝑜𝑠 = ∅) return ∅

 2: if (𝑇𝑛𝑒𝑔 = 0 ∧ 𝑇𝑝𝑜𝑠 = 0) return 0

 3: if (𝑇𝑛𝑒𝑔 = 1 ∧ 𝑇𝑝𝑜𝑠 = 1) return 1

 4: if (𝑇𝑛𝑒𝑔 = 0 ∧ 𝑇𝑝𝑜𝑠 = 1) return 𝑥𝑖

 5: if (𝑇𝑛𝑒𝑔 = 1 ∧ 𝑇𝑝𝑜𝑠 = 0) return 𝑥𝑖̅

 6: if (𝑇𝑛𝑒𝑔 = 0) return CANONIZE(𝑥𝑖 ∙ 𝑇𝑝𝑜𝑠)

 7: if (𝑇𝑛𝑒𝑔 = 1) return CANONIZE(𝑥𝑖̅ + 𝑇𝑝𝑜𝑠)

 8: if (𝑇𝑝𝑜𝑠 = 0) return CANONIZE(𝑥𝑖̅ ∙ 𝑇𝑛𝑒𝑔)

 9: if (𝑇𝑝𝑜𝑠 = 1) return CANONIZE(𝑥𝑖 + 𝑇𝑛𝑒𝑔)

10: if 𝐌𝐀𝐓𝐂𝐇(𝑇𝑛𝑒𝑔, 𝑇𝑝𝑜𝑠) return 𝑇𝑛𝑒𝑔

11: 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 ≔ 𝐀𝐑𝐆_𝐌𝐀𝐗(𝑇𝑛𝑒𝑔, 𝑇𝑝𝑜𝑠)

12: 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 ≔ {
𝑇𝑛𝑒𝑔, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠 , otherwise

13: if (sup (𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟) ⊄ sup(𝑇𝑙𝑎𝑟𝑔𝑒𝑟)) return ∅

14: 𝛥 ≔ sup (𝑇𝑙𝑎𝑟𝑔𝑒𝑟) ∖ sup (𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟)

15: 𝑛𝐶𝐿𝐶𝐴 ≔ 𝐂𝐎𝐌𝐏𝐋𝐄𝐓𝐄_𝐋𝐂𝐀(𝑇𝑙𝑎𝑟𝑔𝑒𝑟 , 𝛥)

16: if (𝑛𝐶𝐿𝐶𝐴 = ∅) return ∅

17: 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 ≔ CANONIZE(𝑇𝑙𝑎𝑟𝑔𝑒𝑟 ∖ 𝛥)

18: if not 𝐌𝐀𝐓𝐂𝐇(𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 , 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟) return ∅

19: 𝑇 ≔ COMPOSE(𝑥𝑖, 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 , 𝑛𝐶𝐿𝐶𝐴, 𝛥)

20: return T

end

Let the read-once tree T in Figure 19 (a) represent a function f. Node x2 was removed from

T in (b), leading to a new read-once tree T1. The removal operation is equivalent to

propagating a non-controlling value 0 to the input of the OR operator, i.e. 𝑓𝛼2
= 𝑓1 with

𝛼2 = {𝑥2 = 1}. The same process is repeated in (c). Let tree T3 be equivalent to the tree

shown in (c) and represent function 𝑓3. The removal of the node 𝑥6 from tree T3 result in tree

T4 (d) and is equivalent to propagating a non-controlling value 1 to the input of the AND

(right) operator, i.e. 𝑓3𝛼6
= 𝑓4 with 𝛼6 = {𝑥6 = 1}.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 19 – Step by step example of removing variables 𝛥 = {𝑥2, 𝑥3, 𝑥6, 𝑥7} from a read-once tree

𝑇 = 𝑥2 + 𝑥3 + 𝑥4𝑥5 + 𝑥6𝑥7. (a) Original tree. (b) Node 𝑥2 removed. (c) Node 𝑥3 removed. (d) Node

𝑥6 removed. (e) Node 𝑥7 removed. (f) Operator node “∙” simplified. (g) Operator node “+”simplified.

Lemma 4: Let 𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 represent two non-constant read-once trees realizing 𝑓𝑥𝑖=0

and 𝑓𝑥𝑖=1, respectively. Let 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 be the larger tree, 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 be the smaller tree and 𝛥

48

represent the missing variables in 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 that are present in 𝑇𝑙𝑎𝑟𝑔𝑒𝑟. Let 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 represent

the tree after the removal operation of ∆ from 𝑇𝑙𝑎𝑟𝑔𝑒𝑟, i.e. 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 ≔ 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 ∖ ∆. Let 𝛼 be a

cube-cofactor representing the assignment of variables applied to variable set ∆ during the

removal from 𝑇𝑙𝑎𝑟𝑔𝑒𝑟. If f is a read-once function, 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 must match 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 .

Proof: Straightforward from Lemma 3 and Theorem 1. ■

Corollary: If 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 and 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 match, then 𝑓𝑥𝑖=1,𝛼 ≡ 𝑓𝑥𝑖=0 if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑝𝑜𝑠. If

𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑛𝑒𝑔 , then 𝑓𝑥𝑖=0,𝛼 ≡ 𝑓𝑥𝑖=1.

Line 17 from Algorithm 2 shows the process of obtaining a modified tree 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 ,

obtained after the removal of ∆ from 𝑇𝑙𝑎𝑟𝑔𝑒𝑟. In line 18, the algorithm tests if Lemma 4 holds,

and returns NULL if it is not the case. If it is the case that 𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 matches 𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟 , we can

guarantee that there exists a read-once realization for the target function. Line 19 then

performs the COMPOSE method, which based the CLCA node 𝑛𝐶𝐿𝐶𝐴 , the variable set ∆, and

the information if the 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 is the negative or positive cofactor, modify 𝑛𝐶𝐿𝐶𝐴 and insert the

target variable xi.

Table 8 presents all possible rules for composition of the target variable xi by modifying

node 𝑛𝐶𝐿𝐶𝐴 . The first column shows the original CLCA nodes. The second column depicts the

state of the tree after the insertion of the target variable xi. The last column presents the test in

order to properly assign the polarity of the inserted literal. Nodes depicted by triangles denote

read-once subtrees. Filled triangles represent those subtrees 𝑇𝑖 where all support variables are

missing, i.e. sup (𝑇𝑖) ⊆ ∆. First two rows show the case when all children of the 𝑛𝐶𝐿𝐶𝐴 are

missing. This is the case when the variable must be inserted directly as a new child of 𝑛𝐶𝐿𝐶𝐴 .

The third and fourth rows of Table 8 show the cases where exactly one child of 𝑛𝐶𝐿𝐶𝐴 , say

𝑇1, has support variables missing. In this case, a new operator node nj, with functionality

opposed from the 𝑛𝐶𝐿𝐶𝐴 node, must be created. Subtree 𝑇1 is removed from 𝑛𝐶𝐿𝐶𝐴 and added

as a child of node nj together with the target variable xi. Finally node nj is added to 𝑛𝐶𝐿𝐶𝐴 .

The last two rows presented in Table 8 show cases when at least two subtrees, say 𝑇1, 𝑇2,

are missing but some other subtrees are not. Then a new operator node nk, with the same

functionality of the 𝑛𝐶𝐿𝐶𝐴 node is created. Subtrees 𝑇1, 𝑇2 are removed from 𝑛𝐶𝐿𝐶𝐴 and added

as child of node nk. Then a new operator node nj, with functionality opposed from the 𝑛𝐶𝐿𝐶𝐴

node, must be created. Both nodes nk and the target variable are added as child nodes of nj.

Finally node nj is added to 𝑛𝐶𝐿𝐶𝐴 .

Let n be the number of inputs of the larger tree used as input of the RO_COMPOSE

method. In composing two read-once trees with at most n inputs, RO_COMPOSE

(Algorithm 2) has a worst-case performance of 𝑂(𝑛). Testing where input trees are constants

takes 𝑂(1). The MATCH method compares the structure of each tree such that each node in

the tree is visited once, which takes in the worst-case 𝑂(𝑛). The CANONIZE method first

collapses the input tree which takes 𝑂(𝑛) and then the resulting tree is sorted, which takes

𝑂(𝑛 log 𝑛). However, the RO_COMPOSE method assumes that the input trees are already in

canonical form. This is a fair assumption since the method is bottom-up and canonizes trees

by composition. In this sense, since trees are already sorted, CANONIZE can run in linear

time w.r.t the number of inputs 𝑂(𝑛). This can be achieved by propagating the information of

the new inserted node, and updating the parent node’s children ordering. Finding the complete

LCA node runs in 𝑂(𝑛). The last procedure RO_COMPOSE also runs in 𝑂(𝑛).

50

Table 8 – Enumeration of all possible read-once trees considering the complete lower common ancestor node 𝑛𝐶𝐿𝐶𝐴. Nodes depicted by triangles denote read-

once subtrees. Filled triangles represent those subtrees 𝑇𝑖 where all support variables are missing, i.e. sup (𝑇𝑖) ⊆ ∆.

𝑛𝐶𝐿𝐶𝐴 𝑛𝐶𝐿𝐶𝐴 after x insertion Assignment of xi polarity

𝑥 = {
𝑥𝑖, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑝𝑜𝑠

𝑥𝑖̅, otherwise

𝑥 = {
𝑥𝑖, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑛𝑒𝑔

𝑥𝑖̅, otherwise

𝑥 = {
𝑥𝑖, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑛𝑒𝑔

𝑥𝑖̅, otherwise

𝑥 = {
𝑥𝑖, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑝𝑜𝑠

𝑥𝑖̅, otherwise

𝑥 = {
𝑥𝑖, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑛𝑒𝑔

𝑥𝑖̅, otherwise

52

𝑥 = {
𝑥𝑖, if 𝑇𝑙𝑎𝑟𝑔𝑒𝑟 = 𝑇𝑝𝑜𝑠

𝑥𝑖̅, otherwise

4.3 Results

We implemented the proposed method using ROBDDs as a basic data structure. Notice

that the method does not depend on a specific type of data structure. However, BDDs are a

natural candidate since cofactors are conveniently already evaluated. The platform used to

perform these results was a Linux system with Intel Core i5 2400 processor and 4GB main

memory.

The first experiment consists of the isolated analysis of the RO_COMPOSITION

method. The method receives two canonical read-once trees and, based on this information,

composes a new read-once tree for the target function. Figure 20 shows that

RO_COMPOSITION runs linearly with the number of inputs.

Figure 20 – Runtime analysis of the RO_COMPOSITION method. The number of inputs are in

thousands. Results support the claim that the RO_COMPOSITION runs in 𝑂(𝑛).

The second experiment consists of obtaining ROBDDs for read-once functions. The

variable order chosen to create the ROBDDs was completely random. Notice the generated

ROBDDs could result in fewer nodes by using a dynamic variable ordering (RUDELL, 1993).

However, our idea is to show how the method performs even when the number of BDD nodes

is very large. Results by running RO_BY_COFACTOR on these BDDs are shown in Table

9. Since we used a random variable order, the largest BDD with 637,185 nodes was the one

representing a read-once function with 51 inputs and took 8.76 seconds to complete. In all

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

R
u

n
ti

m
e

(s
)

number of inputs (thousands)

Runtime for the RO_COMPOSITION method

54

cases, read-once solutions were found for each BDD node. In total, 1,709,418 BDD nodes

were evaluated, taking 20.47 seconds to complete.

In the third experiment, we tested the method over non-read-once functions. Since we

know in advance that the BDD does not represent a read-once function, no read-once solution

should be found for the top node. However, there must be some read-once realization for

some BDD nodes, at least for the nodes representing constants and input variables.

Let a random, non-read-once function be represented by 𝐹1 = 𝑥1̅̅̅𝑥3𝑥4̅̅ ̅𝑥5𝑥6 +

𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅𝑥6 + 𝑥1𝑥2̅̅ ̅𝑥5𝑥6 + 𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3𝑥5𝑥6 + 𝑥1̅̅̅𝑥2𝑥3𝑥4𝑥5 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥4̅̅ ̅𝑥6 +

𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅ + 𝑥1𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ + 𝑥2𝑥3𝑥4̅̅ ̅ 𝑥5̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥1𝑥2𝑥4̅̅ ̅𝑥5𝑥6̅̅ ̅ +

𝑥1𝑥2𝑥4𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3̅̅ ̅𝑥4𝑥5 + 𝑥1̅̅̅𝑥2𝑥3𝑥4̅̅ ̅ 𝑥6̅̅ ̅. The resulting BDD is shown in Figure 21. Nodes in

green represent read-once functions.

Figure 21 – ROBDD representing a non-read-once function 𝐹1 = 𝑥1̅̅̅𝑥3𝑥4̅̅ ̅𝑥5𝑥6 + 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅𝑥6 +

𝑥1𝑥2̅̅ ̅𝑥5𝑥6 + 𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3𝑥5𝑥6 + 𝑥1̅̅̅𝑥2𝑥3𝑥4𝑥5 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥4̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅ + 𝑥1𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ +

𝑥1𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ + 𝑥2𝑥3𝑥4̅̅ ̅ 𝑥5̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥1𝑥2𝑥4̅̅ ̅𝑥5𝑥6̅̅ ̅ + 𝑥1𝑥2𝑥4𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3̅̅ ̅𝑥4𝑥5 + 𝑥1̅̅̅𝑥2𝑥3𝑥4̅̅ ̅ 𝑥6̅̅ ̅.

Nodes in green represent read-once functions.

Table 9 – Runtime results after running RO_BY_COFACTOR over ROBDDs representing read-once

functions. The ROBDDs were constructed using a random variable order.

Inputs BDD nodes Runtime (sec) Inputs BDD nodes Runtime (sec)

2 4 0.02 27 1,146 0.01

3 5 0.00 28 2,402 0.05

4 8 0.00 29 3,808 0.05

5 9 0.00 30 3,604 0.04

6 10 0.00 31 3,948 0.04

7 11 0.00 32 4,104 0.06

8 20 0.00 33 7,882 0.10

9 28 0.00 34 1,133 0.01

10 34 0.00 35 7,052 0.06

11 44 0.00 36 3,614 0.03

12 42 0.00 37 18,674 0.15

13 68 0.00 38 31,516 0.26

14 51 0.00 39 14,344 0.12

15 114 0.00 40 5,794 0.04

16 80 0.01 41 21,920 0.23

17 92 0.00 42 33,238 0.28

18 353 0.01 43 22,868 0.16

19 368 0.01 44 130,210 1.26

20 718 0.02 45 61,361 0.61

21 412 0.00 46 152,138 1.79

22 389 0.01 47 134,976 1.49

23 685 0.01 48 50,636 0.54

24 1,079 0.01 49 284,700 3.62

25 851 0.01 50 65,116 0.61

26 574 0.00 51 637,185 8.76

Total BDD nodes: 1,709,418

Total Runtime: 20.47 sec

56

4.4 Conclusions

A synthesis method that finds, whenever it is possible, a read-once realization for a target

function was proposed. The method was designed based on a divide-and-conquer strategy.

Finding a read-once tree for a target function consists of obtaining read-once trees for simpler

sub-problems: negative and positive cofactors. These solutions are then composed (conquer

phase), resulting in a read-once solution for the original problem (target function). The

method is independent of the Boolean function’s data structure representation. It relies only

on cofactor operation and equivalence checking regarding constants.

Given a BDD with m nodes and n inputs, the RO_BY_COFACTOR method (Algorithm

1) needs to visit each BDD node only once. For each node, one call to RO_COMPOSITION

is performed. As discussed in the section 4.2.3, RO_COMPOSITION runs in 𝑂(𝑛).

Consequently, the RO_BY_COFACTOR has a worst-case performance of 𝑂(𝑚𝑛).

As future work, we will investigate how to modify this presented method to handle not

only read-once but also disjoint-support decomposable functions.

5 DISJOINT-SUPPORT DECOMPOSABLE FUNCTIONS

The representation of complex Boolean functions through simpler subfunctions is one of

the main tasks comprising the logic synthesis process. In general, both the number of gates

and the execution time tend to increase exponentially with the number of inputs of the target

function.

A Boolean function F(X) can be expressed through subfunctions G and H, such that:

 𝑓(𝑋) = ℎ(𝑔(𝑋1), 𝑋2) (12)

where X1and X2 ≠ ∅, and X1 ∪ X2 = X. If such a representation exists, it is considered a

functional decomposition of f, where g and h are called composition and decomposition

functions, respectively. A simple disjoint-support decomposition (DSD) is a special case of

functional decomposition, where the input sets X1 and X2 do not share any element, i.e.,

X1 ∩ X2 = ∅ (ASHENHURST, 1957), (CURTIS, 1962). The interest in these functions is due

to low implementation cost, since optimal DSD implementations grow linearly with the

number of inputs. DSD functions have been applied to different IC design domains including

ASIC design, FPGA design, and digital circuit verification.

This chapter presents two approaches for synthesis of DSD functions. A top-down

approach checks if there is an OR, AND, or XOR decomposition based on sum-of-products

(SOP), product-of-sums (POS) and exclusive-sum-of-products (ESOP) inputs, respectively

(CALLEGARO ET AL, 2015). This method is presented in Section 5.2. The second method

runs in a bottom-up fashion and is based on Boolean difference and cofactor analysis

(CALLEGARO ET AL, 2015b). Two simple tests provide sufficient and necessary conditions

to identify AND and exclusive-OR (XOR) decompositions. This approach is presented in

Section 5.3.

58

5.1 Previous work

Ashenhurst (ASHENHURST, 1957) was one of the first authors to point out the

importance of the functional decomposition process. His method was based on decomposition

charts, which is not practical for large circuit design. In order to reduce complexity, in

(ROTH; KARP, 1962), Roth and Karp introduced a method to represent decomposition charts

through a set of cubes. However, the problem was shifted to finding a good variable

partitioning in an efficient way. A survey on functional decomposition methods proposed up

until 1995 is presented in (PERKOWSKI, 1995).

In (BERTACCO; DAMIANI, 1997), Bertacco and Damiani proposed an approach based

on binary decision diagrams (BDD) that performs DSD by traversing the BDD without the aid

of a decomposition chart. Matsunaga, in (MATSUNAGA, 2002), presented a new method

based on (BERTACCO; DAMIANI, 1997) that performs variable splitting step in a modified

way. In (PLAZA; BERTACCO, 2005), Plaza and Bertacco created a framework called

Staccato that performs DSD based on BDDs and symbolic kernel manipulation.

In (MINATO; DE MICHELI, 1998), Minato and De Micheli proposed an algorithm based

on irredundant sum-of-products (ISOP) and factorization. Their algorithm requires a Minato-

Morreale ISOP, which means that distinct heuristic methods to improve the ISOP runtime

generation like MINI (HONG; CAIN; OSTAPKO, 1974), ESPRESSO (BRAYTON ET AL,

1984), Presto-II (BARTHOLOMEUS; MAN, 1985), PALMINI (NGUYEN; PERKOWSKI;

GOLDSTEIN, 1987), ESPRESSO-SIGNATURE (MCGEER; SANGHAVI; BRAYTON;

VINCENTELLI, 1993), Scherzo (COUDERT, 1994), and BOOM (HLAVICKA; FISER,

2001) could not be used.

Recently, in (MISHCHENKO; BRAYTON, 2013) and (MISHCHENKO, 2014),

Mishchenko created a DSD-based framework to perform LUT structure mapping more

efficiently. The Mishchenko’s decomposition considers 2-to-1 multiplexer (MUX) as a basic

type of decomposition.

5.2 Top-down decomposition based on SOP, POS and ESOP forms

This section presents an algorithm for synthesis of simple disjoint-support decompositions

(CALLEGARO ET AL, 2015). It is based on a variable intersection graph which is directly

obtained from a set of Boolean terms representing a Boolean function f (GOLUMBIC, 2004),

(MINTZ, GOLUMBIC, 2005). If such a graph is disconnected into m connected components,

the function f can be decomposed into m subfunctions h0(X0), …, hm-1(Xm-1).

A decomposition operator ○  {AND, OR, XOR} is determined such that the DSD

implementation of f is obtained by 𝑓 = ○ (ℎ0(𝑋0), … , ℎ𝑚−1(𝑋𝑚−1)), where X0, ..., Xm-1 are

mutually disjoint. The decomposition operator ○ is an OR operator if the Boolean terms were

obtained from cubes of an ISOP description of f. The decomposition operator ○ is an AND

operator if the Boolean terms were sums from an irredundant product-of-sums (IPOS)

description. And finally ○ is an XOR operator when the Boolean terms come from products

of an exclusive sum-of-products (ESOP) description of f

From our experiments, it has successfully synthesized all possible DSD functions when

tested over the set of all DSD functions up to 6 inputs as well as over a selection of PLA

benchmarks.

5.2.1 Definitions and notation

Let F be a Boolean formula in SOP, POS or ESOP form representing a function f(X).

Definition 14: A variable intersection graph (VIG) GF = (X, E) is an undirected graph

where vertices correspond to variables of F, and there is an edge between (xi, xj)  E, xi, xj 

X if and only if xi and xj are present in the same Boolean term (GOLUMBIC, 2004), (MINTZ,

GOLUMBIC, 2005).

Let f = (a+b) ⊕ (c∙d) be represented by the ISOP form 𝐹 = (! 𝑎! 𝑏𝑐𝑑 + 𝑎! 𝑑 + 𝑏! 𝑐 +

𝑎! 𝑐 + 𝑏! 𝑑) and by the ESOP form H = 1⊕ (!a∙!b) ⊕ (c∙d). The VIG GF and GH are shown

in Figure 22 (a) and Figure 22 (b), respectively.

(a) (b)

Figure 22 – A variable intersection graph obtained from an (a) ISOP

F = (!a∙!b∙c∙d+a∙!d+b∙!c+a∙!c+b∙!d) and (b) from ESOP form H = 1⊕ (!a∙!b) ⊕ (c∙d).

In graph theory, a connected component of an undirected graph is a subgraph in which 1)

any two vertices are connected to each other by paths, and 2) is connected to no additional

vertices in the supergraph (HOPCROFT, 1973). For example, the graph GF presented in Fig.

60

2(a) is connected, i.e. contains exactly one connected component {a, b, c, d}.The graph GH,

shown in Fig. 2(b), is disconnected and contains two connected components {a, b} and {c, d}.

The problem of finding connected components in undirected graphs is well-known in

graph theory and was efficiently solved first by Hopcroft and Tarjan (HOPCROFT, 1973).

Currently, the union–find algorithm that uses a disjoint-set data structure is the most efficient

way to find connected components (CORMEN ET AL, 2001).

5.2.2 Proposed method

Consider a Boolean function f(X) decomposed into two subfunctions f1(X1) and f2(X2) such

that

 𝑓(𝑋) = 𝑓1(𝑋1) ∘ 𝐹2(𝑋2) (13)

where X1 ∪ X2 = X, X1 ∩ X2 = ∅ and ○  {∙, +, ⊕}.

Theorem 4: If f is decomposed as in Eq. (13) and such decomposition is realized by an

OR operator, i.e. (○ = +), an ISOP representing f (denoted ISOPf) can be determined as:

 𝐼𝑆𝑂𝑃𝑓 = 𝐼𝑆𝑂𝑃𝑓1
+ 𝐼𝑆𝑂𝑃𝑓2

 (14)

Proof: 𝐼𝑆𝑂𝑃𝑓1
 (by itself) cannot have any literal or cube removed; otherwise it would not

be an ISOP. The same can be applied to 𝐼𝑆𝑂𝑃𝑓2
. As f1 and f2 have disjoint supports, the cubes

from f1 cannot cover cubes from f2 and vice versa. Thus, the sum (OR) of the ISOPs of f1 and

f2 is still an ISOP of f. ■

Theorem 5: If an ISOP representing f was obtained as in Eq. (13), the resulting VIG from

𝐼𝑆𝑂𝑃𝑓is disconnected into two connected components X1 and X2.

Proof: Since the cubes of 𝐼𝑆𝑂𝑃𝑓1 contain no input variables in X2 and vice-versa, there is

no edge connecting any element from X1 to X2, resulting in a graph partition of two connected

components X1 and X2. ■

Figure 23 depicts an example that summarizes Theorem 4 and Theorem 5. A generic

decomposition tree and its corresponding VIG are presented in Figure 23 (a) and Figure

23 (b), respectively.

(a) (b)

Figure 23 – A generic DSD tree (a) and its corresponding disconnected VIG (b).

By a generalization of Theorem 4 and Theorem 5, if f is decomposed as in Eq. (13) and is

realized through an AND (XOR) operator, i.e. ○ = ∙ (○ = ⊕), the resulting VIG obtained from

an IPOS (ESOP) will be disconnected. The analysis of connected components of VIGs reveals

information about which kind of decomposition strategy must be applied in order to obtain

DSD realizations.

Given a VIG G, if G is disconnected into m connected components, the function f can be

decomposed into m subfunctions h0(X0), …, hm-1(Xm-1), where X0 ... Xm-1 represent mutually

disjoint input sets. Notice that there may be cases such that a subfunction hi is realized by a

literal function, e.g. hi(x) = x. A decomposition operator ○  {AND, OR, XOR} is

determined such that the DSD implementation of f is obtained by f(○(h0(X0), …, hm-1(Xm-1))).

If the function f can be realized by a DSD structure, applying this procedure recursively to

subfunctions h0, …, hm-1 will result into a DSD realization of f. The pseudo-code for the

procedure that performs this task is presented in Algorithm 3.

62

Algorithm 3

Description Procedure that receives a set of terms as input, creates and analyze VI graphs.

Input Fi: A set of terms representing f.

 ○: an operator (AND, OR or XOR)

Output A disjoint-decomposition tree representing f or 𝐍𝐔𝐋𝐋 if it is not possible.

ANALYSE_BOOLEAN_TERMS(𝐹𝑖,○)

begin

 1: if (Fi contains only one term 𝑡𝑖) return 𝑡𝑖

 2: 𝐺 ∶= 𝐂𝐑𝐄𝐀𝐓𝐄_𝐕𝐈_𝐆𝐑𝐀𝐏𝐇(𝐹𝑖)

 3: if (G is not disconnected)

 4: return NULL

 5: 𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ≔ ∅

 6: for each (connected component 𝑋𝑖)

 7: 𝐻𝑖 ≔ SELECT_TERMS(𝐹𝑖, 𝑋𝑖)

 8: 𝐷𝑆𝐷𝑖 ∶= REC_DSC(𝐻𝑖)

 9: if (𝐷𝑆𝐷𝑖 ≠ NULL)

10: 𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ≔ 𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ 𝐷𝑆𝐷𝑖

11: else

12: return NULL

13: return CREATE_OPERATOR_NODE(○,𝑡𝑜𝑝𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

end

The main flow of the proposed algorithm is presented in Algorithm 4. Given an input

function f, the possibility of decomposing f by an OR decomposition (line 2) is analyzed. If an

OR decomposition does not exist, then a possible AND realization is examined (line 5). If

neither OR nor AND decompositions efforts are successful, an attempt to decompose f

through an XOR decomposition is performed (line 8). If none of the above decompositions

returned a successful result, it means f cannot be realized through a DSD structure.

Algorithm 4

Description Procedure that decomposes F based on its ISOP, IPOS or ESOP forms.

Input F: A set of terms representing f.

Output A disjoint-decomposition tree representing f or 𝐍𝐔𝐋𝐋 if it is not possible.

REC_DSD(𝑓)

begin

 1: 𝐹𝐼𝑆𝑂𝑃 ≔ OBTAIN_ISOP(𝑓)

 2: 𝐷𝑆𝐷𝑂𝑅 ≔ ANALYSE_BOOLEAN_TERMS(𝐹𝐼𝑆𝑂𝑃 , +)

 3: if (𝐷𝑆𝐷𝑂𝑅 ≠ NULL) return 𝐷𝑆𝐷𝑂𝑅

 4: 𝐹𝐼𝑃𝑂𝑆 ≔ OBTAIN_IPOS(𝑓)

 5: 𝐷𝑆𝐷𝐴𝑁𝐷 ≔ ANALYSE_BOOLEAN_TERMS(𝐹𝐼𝑃𝑂𝑆 ,∙)

 6: if (𝐷𝑆𝐷𝐴𝑁𝐷 ≠ NULL) return 𝐷𝑆𝐷𝐴𝑁𝐷

 7: 𝐹𝐸𝑆𝑂𝑃 ≔ OBTAIN_ESOP(𝑓)

 8: 𝐷𝑆𝐷𝑋𝑂𝑅 ≔ ANALYSE_BOOLEAN_TERMS(𝐹𝐸𝑆𝑂𝑃 ,⊕)

 9: if (𝐷𝑆𝐷𝑋𝑂𝑅 ≠ NULL) return 𝐷𝑆𝐷𝑋𝑂𝑅

10: return NULL

end

5.2.3 A complete example of the proposed approach

The proposed method presented in Algorithm 4 will now be described through a complete

example. Let a Boolean function f be defined as following:

f(a, b, c, d, e) = !a!bc!de + !a!bcd!e + !a!bcde + !ab!c!de + !ab!cd!e + !ab!cde + a!b!c!de

 + a!b!cd!e + a!b!cde+ a!bc!de + a!bcd!e + a!bcde + ab!c!de + ab!cd!e

 + ab!cde + abc!de + abcd!e + abcde.

A complete execution tree of the proposed algorithm is depicted in Figure 24, where solid

edges denote recursive calls and dotted edges represent the information returned by the

successful recursion calls.

64

Figure 24 – A complete execution tree of the proposed algorithm.

5.2.4 Experimental results

A framework for synthesis of DSD functions is presented. The proposed framework uses

ESPRESSO (BRAYTON ET AL, 1984) and EXORCISM-4 (MISHCHENKO; PERKOWSKI,

2001) tools in order to provide ISOP, IPOS and ESOP forms, respectively. The platform used

to perform these results was a Linux system with Intel Core i5 2400 processor and 4GB main

memory.

In order to demonstrate the efficiency and accuracy of the proposed approach, two

experiments were carried out. The first used all DSD functions with up to 6-inputs. The

second experiment was performed over a selection of PLA benchmarks (ESPRESSO BOOK

EXAMPLES). In all these experiments we are taking into account all the runtime spent

reading and writing files as well as the context switching between calling ESPRESSO and

EXORCISM-4 tools.

We grouped all DSD functions with up to 6-inputs into classes by equivalence through

input permutation (P-classes). Results comprising the decompositions of all these functions

are presented in Table 10. The CPU column shows the time in seconds taken for the

decomposition of all functions. Our method successfully decomposed all tested functions.

Table 10 – Results for a benchmark composed of all DSD functions up to 6 inputs, grouped by

equivalence through input permutation (P-classes).

Inputs P classes CPU (s) Worst CPU (s) Avg. CPU (s)

2 8 0.2 0.06 0.02

3 36 1.5 0.11 0.04

4 206 13 0.18 0.06

5 1,259 107 0.27 0.09

6 8,448 909 0.31 0.11

A second experiment was performed over a selection of ESPRESSO book examples.

Results are shown in Table 11, where the second and third columns denote the number of

primary inputs and the number of primary outputs, respectively. “Decomposed outputs”

report the number of outputs that were successfully realized through DSD structures. The

column “CPU” reports the time in seconds taken for decompositions.

66

Table 11 – Results of decompositions over ESPRESSO book PLA benchmark.

Circuit Primary inputs Primary outputs Decomposed outputs CPU (s)

5xp1 7 10 4 0.97
9sym 9 1 0 0.07
alu4 14 8 0 0.71

apex1 45 45 12 3.37
apex2 39 3 0 3.09
apex3 54 50 18 3.31
apex4 9 19 1 1.21

apex5 117 88 9 7.13
b12 15 9 2 0.52
bw 5 28 7 1.51
clip 9 5 0 0.24
con1 7 2 0 0.08

cordic 23 2 0 5.05
cps 24 109 51 9.02

duke2 22 29 8 2.08

e64 65 65 65 0.88
ex1010 10 10 0 0.77

ex4 128 28 14 1.36
ex5 8 63 35 1.91
inc 7 9 2 0.57

misex1 8 7 0 0.35
misex2 25 18 12 0.7
misex3 14 14 0 1.02

misex3c 14 14 0 0.8
mytest 2 1 1 0.01

pdc 16 40 12 2.48
rd53 5 3 1 0.13
rd73 7 3 1 0.14
rd84 8 4 2 0.17
sao2 10 4 0 0.4
seq 41 35 2 5.03
spla 16 46 12 3.76

squar5 5 8 3 0.41
t481 16 1 1 0.48

table3 14 14 0 1.09
table5 17 15 0 1.62
xor5 5 1 1 0.04

Z5xp1 7 10 4 0.83
Z9sym 9 1 0 0.05
ex1010 10 10 0 1.06

ex4 128 28 14 1.47
ibm 48 17 0 0.82
jbp 36 57 31 3.71

mainpla 27 54 0 5.43
misg 56 23 22 0.35
mish 94 43 43 0.89
misj 35 14 14 0.37
pdc 16 40 12 2.5

shift 19 16 1 0.69
signet 39 8 4 7.6
soar 83 94 47 7.19
test2 11 35 0 5.17
test3 10 35 0 2.52

ti 47 72 21 5.34
ts10 22 16 0 0.72
x7dn 66 15 0 1.27

xparc 41 73 11 13.87

5.2.5 Conclusions

This section presented a top-down algorithm for synthesis of simple disjoint-support

decompositions (DSD). The algorithm is based on variable intersection graphs which are

directly obtained from ISOP, IPOS or from ESOP forms. From our experiments, our approach

has successfully synthesized all known DSD functions when tested over the set of all DSD

functions with up to 6 inputs as well as over a selection of PLA benchmarks. As future work,

the dependency of minimization tools on ESPRESSO and EXORCISM could be removed.

Simpler methods can be focused only on the identification and minimization of DSD

functions by taking advantage of intrinsic characteristics of DSD functions.

5.3 Bottom-up decomposition based on Boolean difference and cofactor

analysis

This section presented a new approach to Boolean decomposition based on the Boolean

difference and cofactor analysis (CALLEGARO ET AL, 2015b). Two simple tests provide

sufficient and necessary conditions to identify AND and exclusive-OR (XOR)

decompositions. Such tests were proposed by Kodandapandi, in (KODANDAPANDI; SETH,

1978), in the context of decomposition charts. We revisit such tests, providing a new and

efficient cofactor-based approach to obtain decomposition functions more efficiently.

Moreover, we extend the decomposition types by providing sufficient and necessary

conditions to obtain MUX decompositions with an arbitrary number of inputs. Finally, we

present an algorithm that needs O(n · log n) cofactor and O(n) equivalence test operations to

perform AND and XOR decomposition. Experimental results have demonstrated the

efficiency of the proposed method when compared to the state-of-the-art decomposition

strategies.

5.3.1 Definitions and notation

Upper case letters F, G, H are used to represent functions while variable sets are

represented by X, D and S. A multiplexer (MUX) with s selectors and d data inputs (d = 2
s
) is

denoted by:

)1()1(0

0)1(0),(









dDsss

Dsss

xxx

xxxDSMUX




 (15)

68

where S represents the set of MUX selectors, D represents the set of MUX data inputs,

each xSi ∈ S and each xDj ∈ D.

Given a function F(X), the cofactor operation consists of assigning a value ci ∈ B to an

input variable xi ∈ X, which is denoted by i
c

i
x

F


. In this section, we also use the notation

F(x0, …, ci, …, xn-1) to represent a cofactor operation in xi. The negative (positive) cofactor

with respect to (w.r.t) a variable xi is denoted by
0ix

F (
1ix

F). A cube-cofactor operation

consists of applying cofactors recursively, denoted by jjiijjii
cxcxcxcx

FF



,

)(. We also

represent a cube-cofactor operation as F(x0, …, ci, …, cj, …, xn-1). Some cofactors and cube-

cofactors identities are presented as follows:

iijjjjii cxcxcxcx
FF




,,
 (16)

iiiiii cxcxcx
GFGF


)((17)

iiiiii cxcxcx
GFGF


)((18)

i

cx

i xx ij 
 (19)

For presentation sake, the notation described in (20) will be used to represent positive and

negative literals w.r.t a variable xi. By using these notations, we express both positive and

negative literals as well as cofactors and cube-cofactors by assigning values to ci. When the

value of ci is known, we use ix and ix to express positive and negative literals, respectively.












1 if ,

0 if ,

ii

iic

i
cx

cx
x i (20)

The Boolean difference of F w.r.t a variable xi, is denoted by ixF
 and defined as follows:

10 
 ii

i

xx

x FFF . (21)

Given a function F, it is said that F is dependent on a variable xi iff Fxi ≠ 0. Otherwise, F is

independent of xi. Constants functions (0 or 1) are independent of any variables. Without loss

of generality, we consider that all functions are dependent on all its input variables.

Given a function F(X) = H(G(X1), X2), where X1 ∩ X2 = ∅, the Boolean difference w.r.t a

variable xi ∈ X1 can be obtained through the Boolean chain rule formulation:

ii xGx GHH  , (22)

where HG is the Boolean difference of H w.r.t to the subfunction G.

A Boolean function can be represented by its Shannon expansion w.r.t. a variable xi as

follows:

10
)(


 ii x

i

x

i FxFxXF . (23)

The Shannon expansion could be written without defining the polarity applied to both

variables and cofactors:

iiiiii cxc

i

cxc

i FxFxXF


)(. (24)

Notice that equation (24) reduces to equation (23) for any ci.

A Boolean function can also be expressed through its Davio expansion (DAVIO;

DESCHAMPS; THAYSE, 1978). The positive Davio expansion w.r.t a variable xi is defined

as:

i

i
xi

x
FxFXF 

0
)(. (25)

Below we present some identities regarding Boolean differential analysis (AKERS, 1959).

ii xx FF)( (26)

0)1()0(
ii xx

 (27)

0)(
jxix (28)

ijji xxxx FF  (29)

0
ii xxF (30)

cx

xx

cx i

jj

i FF


)()((31)

iii xxx GFGF )((32)

)()()()(
iiiii xxxxx GFGFGFGF  (33)

The representation of a function into subfunctions is called functional decomposition. A

DSD function can be represented by F(X) = H(G(X1), X2) such that X1 ∩ X2 = ∅, where G and

H are called composition and decomposition functions of F, respectively. The variable set X1

and X2 are named bound and free sets, respectively. A pictorial representation of DSD is

shown in Figure 25. Notice that, by definition, constants and input variables (and its

complement) are DSD.

70

Figure 25 – Illustration of F(X) = H(G(X1), X2). Functions G and H are called composition and

decomposition functions of F, respectively. The variable set X1 and X2 are named bound and free sets,

respectively.

A full-DSD function is a constant, a variable (or its complement), or a composition of full-

DSD functions with disjoint support. A function is partial-DSD if either its decomposition or

its composition function is full-DSD, but not both. A non-DSD function is neither a full-DSD

nor a partial-DSD function. For instance, the majority (MAJ) function, also known as voter, is

non-DSD.

The decomposition can be performed on the outputs to the inputs (top-down) or from the

inputs to the outputs (bottom-up). Both strategies can synthesize full-DSD functions. For

partial-DSD functions, both strategies can be combined. Top-down approaches can identify

DSD decomposition functions, as shown in Figure 26 (a), while bottom-up approaches are

suitable for identifying composition functions, as depicted in Figure 26 (b).

(a) (b)

Figure 26 – Two examples of partial-DSD functions. A top-down approach can find the XOR

decomposition on top of (a), while a bottom-up approach could not. In (b), a bottom-up approach

identifies the AND, OR and XOR compositions, while a top-down approach finds nothing.

5.3.2 Bottom-Up Decomposition Properties

Most DSD methods consider only AND and XOR as basic gates. This interest is because

all Boolean functions with up to two inputs are DSD considering such a base. For instance,

the OR operation can be performed by using only AND and complement. Moreover, AND

(XOR) functions with an arbitrary number of inputs can be obtained by DSD representations

of two inputs ANDs (XORs).

Some recently proposed decomposition approaches also consider 2-to-1-MUXes as basic

gate (MISHCHENKO; BRAYTON, 2013), (MISHCHENKO, 2014). However, DSD

representations of MUXes with an arbitrary number of inputs cannot be achieved with AND,

XOR, and 2-to-1 MUX as basis. For example, the circuit depicted in Figure 27 (a) is not full-

DSD when considering AND, XOR, and 2-to-1 MUX as basis. The circuit depicted in Figure

27 (b) is partial-DSD for top-down decompositions since the AND decomposition is

identified in the output. However, the 16-to-1 MUX is not found. Both circuits are full-DSD

when considering as basis, AND, XOR and MUX with an arbitrary number of inputs.

(a) (b)

Figure 27 – Two examples of full-DSD functions when considering AND, XOR and MUX as basis.

The example shown in (a) is the implementation of the output 04 of the shift circuit, taken from the

(ESPRESSO BOOK EXAMPLES). The circuit depicted in (b) is the implementation of the mux

circuit, present in the ACM/SIGDA (MCNC) benchmark (IWLS, 2005).

In (KODANDAPANDI; SETH, 1978), necessary and sufficient conditions to perform

AND and XOR bottom-up decompositions were presented. The authors proposed a strategy to

obtain decomposition functions through the analysis of decomposition charts. We revisit such

conditions, providing a faster method based on cofactors to obtain such decomposition

functions. This strategy is presented in Corollary 1 and 2. Furthermore, we extend the

decomposition types by providing sufficient and necessary conditions to obtain MUX

decompositions with an arbitrary number of inputs. These conditions are presented in

72

Theorems 8 and 4. The decomposition functions for MUX decomposition are presented in

Corollaries 3 and 4.

5.3.3 AND decomposition

Theorem 6. Let F(X1, X2) be a Boolean function with X1 = {xi, xj}, X1 ∩ X2 = ∅. There

exists a function H(z1, X2), where z1 = G(X1) = xi
ci
 ∙ xj

cj
, such that F(X1, X2) = H(G(X1), X2), if

and only if:

jjii
cxcx

FF


 . (34)

Proof. See (KODANDAPANDI; SETH, 1978) ■

Corollary 1. If there exists a function H(z1, X2), where z1 = G(X1) = xi
ci
 ∙ xj

cj
 such that

F(X1, X2) = H(G, X2), then the decomposition function H(z1, X2) can be obtained as follows:

jjiiii
cxcxcx

FzFzXzH



,

1121),((35)

Proof. By definition, F(xi, xj, X2) = H(G, X2). Then

),,(),0()0()(22 XxcFXHGcx ji

cx

ii
ii 

 and

),,(),1()1(),(22

,
XccFXHGcxcx ji

cxcx

jjii
jjii 

 . By applying the Shannon

expansion (23) in H(z1, X2), we obtain:

 1

1

0

121
11),(



zz

HzHzXzH (36)

By substitution of),,(),0(22

01 XxcFXHH ji

z


 and),,(),1(22

11 XccFXHH ji

z


 in (36),

(35) is found. Notice that since jjii
cxcx

FF


 (35) could be written using xj and cj in

place of xi and ci. ■

5.3.4 XOR decomposition

Theorem 7. Let F(X1, X2) be a Boolean function with X1 = {xi, xj}, X1 ∩ X2 = ∅. There

exists a function H(z1, X2), where z1 = G(X1) = xi ⊕ xj, such that F(X1, X2) = H(G(X1), X2), if

and only if:

 ji xx FF  (37)

Proof. See (KODANDAPANDI; SETH, 1978). ■

Corollary 2. If there exists a function H(z1, X2), where z1 = G(X1) = xi ⊕ xj such that

F(X1, X2) = H(G, X2), then the decomposition function H(z1, X2) can be obtained as follows:

i

ji

x

xx
FzFXzH 



1

0,0

21),((38)

Proof. By applying the positive Davio expansion (25) of H in z1, we obtain:

1

1

1

0

21),(z

z
HzHXzH 

 (39)

The value of H
z1=0

 is obtained by finding an assignment for xi and xj such that G(xi, xj) =

0, e.g. 0
1,10,0


 jiji xxxx
GG . Since by definition F(xi, xj, X2) = H(G, X2), we then consider

0,001


 ji xxz
FH . The value for Hz1 is obtained as follows.

By applying the Boolean difference (21) of G in xi, we obtain:

10

)()(


 ii

i

x

ji

x

jix xxxxG (40)

and by simplification,

 1 jjx xxG
i

 (41)

is obtained. The same can be found for xj, i.e
1

jxG
. Through the Boolean chain rule

formulation (22), the Boolean difference of H in xi is
ii xGx GHH  . As shown in (41),

1
ixG and through simplification,

ixGz HHH 
1

. Since F(xi, xj, X2) = H(G, X2), then

ii xxz FHH 
1

 (the same can be obtained for xj). By substitution of
0,001


 ji xxz

FH and

ixz FH 
1

 into (39), (38) is then found. ■

5.3.5 MUX decomposition

Below sufficient and necessary conditions to obtain 2-to-1 MUX decomposition is

presented. Without loss of generality, we consider that all MUX input variables are positive.

Theorem 8. Let F(X1, X2) be a Boolean function with X1 = S ∪ D, S = {xs}, D = {xi, xj},

S ∩ D = ∅, X1 ∩ X2 = ∅. There exists a function H(z1, X2), where

z1 = G(X1) = MUX(S, D) =
jsis xxxx  , such that F(X1, X2) = H(G(X1), X2), if and only if:

ji xx FF 
(42)

74

0
ji xxF

(43)

0)(
1


s

i

x

xF (44)

0)(
0


s

j

x

xF
(45)

0)(
0,0




s

ji

x

xx
F (46)

0)(
1,1




s

ji

x

xx
F (47)

Proof. (if part). By applying the positive Davio expansion (25) of F in xi and xj we obtain:

))((

)()(

0

000,0

ji
j

i

j

i

jji

xxix
x

j

x

x

x

i

xx

FxFx

FxFXF









.
(48)

By simplifying (48) using (19), (43), (33) and (28), we obtain:

ji

ji

xjxi

xx
FxFxFXF 

 0,0
)(.

(49)

We then apply the Shannon expansion (24) of (49) in xs, and by using (19), (45), (44), (48)

and simplifications, we obtain:

100,0
)(


 ss

i

ji x

xjjs

x

xis

xx
FxxFxxFXF .

(50)

By using the equivalence of (46) and (47):

s

ji

s

ji

x

xx

x

xx
FF)()(

1,10,0 
 , (51)

and simplifications using (44) and (45), we show that:

10 
 ss

i

x

xj

x

x FF
(52)

Then, by substitution of (52) in (50), and using 0s

i

x

xF as reference, we obtain:

)()(
00,0

jsis

x

x

xx
xxxxFFXF s

i

ji 
 .

(53)

Since both
0,0  ji xx

F and
0k

i

x
xF

 are independent of xi, xj, xs, it follows

G(X1) = MUX(S, D) =
jsis xxxx  is a subfunction of F and F(X1, X2) = H(G(X1), X2).

(only if part): Consider F(X1, X2) = H(G(X1), X2), where

G(X1) = MUX(S, D) =
jsis xxxx  . The Boolean difference of F concerning xi, xj can be

obtained by the Boolean chain rule formulation (22):

ii xGx GFF  and
jj xGx GFF  ,

(54)

where
sx xG

i
 and sx xG

j
 . Clearly,

ji xx FF  (42). The Boolean difference of
ixF

w.r.t. xj is)()()(
jijxijxjiji xxGxGxxGxx GFGFGFF  , where 0

ji xxG and 0
jxGF since

both functions do not depend on xj. Then, 0
ji xxF (43). In order to obtain the positive

cofactor of ixF
 w.r.t xs, (17) is applied in (54), resulting 111

)()()(


 k

i

ss

i

x

x

x

G

x

x GFF . Since

0)(
1


s

i

x

xG 0)(
1


s

i

x

xF (44). The same can be obtained for 0)(
0


s

j

x

xF (45). Since

)(jix xxG
s

 ,)(jiGx xxFF
s

 . Then, it follows that 0)()(
1,10,0


 ji

s

ji

s

xx

x

xx

x FF . By

(31), it is clear that 0)(
0,0




s

ji

x

xx
F (46) and 0)(

1,1




s

ji

x

xx
F (47). ■

Corollary 3. If there exists a function H(z1, X2), where

z1 = G(X1) = MUX(S, D) = jsis xxxx 
 such that F(X1, X2) = H(G, X2), X1 = S ∪ D, S = {xs},

D = {xi, xj}, S ∩ D = ∅, X1 ∩ X2 = ∅ then the decomposition function H(z1, X2) can be

obtained as follows:

0

1

0,0

21),(


 s

i

ji x

x

xx
FzFXzH (55)

Proof. By applying the positive Davio expansion (25) of H in z1, we obtain:

1

1

1

0

21),(z

z
HzHXzH 

 . (56)

The value for H
z1=0

 can be obtained by finding an assignment for xi and xj such that G(xi,

xj) = 0, e.g. 0
0,0


 ji xx
G . Then it follows that

0,0

2

0
),0(1


 ji xxz

FXHH . Since by definition

F(X1, X2) = H(G(xi, xj), X2), we can obtain the Boolean difference of F w.r.t xi using the

Boolean chain rule ii xGx GFF 
, where sx xG

i


. Then, it follows from (17) that

000
)(


 sss

i

x

s

x

G

x

x xFF and therefore
G

x

x FF s

i


0
, since FG does not depend on xs. Since

F(X1, X2) = H(z1, X2), where z1 = G, FG = Hz1 and therefore (55) holds. ■

We now extend Theorem 8, presenting a small set of tests that provide necessary and

sufficient conditions to obtain MUX decompositions with an arbitrary number of inputs.

Theorem 9. Let F(X) be a Boolean function and S, D and X2 be proper disjoint subsets of

X such that S ∪ D ∪ X2 = X, where |D| = 2
|S|

, S = {xs0, …, xs|S|-1}, D = {xd0, …, xd|D|-1}.There

76

exists a function H(z1, X2), where z1 = G(X1) = MUX(S, D), such that

F(X1, X2) = H(G(X1), X2), if and only if:

))())(((, djdidjdi xxdjdixx FFxxD 
(57)

)0)((, 
djdidjdi xxxx FD

(58)

)0(|)!)()((
 ijsj

disjdi

cx

xxx FBcSD (59)

))0)((

)0)(((

|),,,)((

1||1||1100

1||1||1100

,,,

,,,

||

1||10

















s

DdDddddd

s

DdDddddd

x

cxcxcx

x

cxcxcx

D

Dddds

F

F

BcccSx







(60)

Proof sketch (if and only if): This theorem is a generalization of Theorem 8 for

multiplexers with an arbitrary number of inputs, and therefore, having a similar proof. Notice

that (57) to (60) generalize (42) to (47). In order to obtain such proof, apply the positive

Davio expansion (25) for each element in D then apply the Shannon expansion (24) for all

elements in S. Finally, use (57) to (60) to simplify the equation. ■

Corollary 4 . If there exists a function H(z1, X2), where z1 = G(X1) = MUX(S, D) ,

F(X1, X2) = H(G, X2) such that X1 = S ∪ D, X1 ∪ X2 = X, X1 ∩ X2 = ∅, |D| = 2
|S|

,

S = {xs0, …, xs|S|-1}, D = {xd0, …, xd|D|-1}, S ∩ D = ∅, then the decomposition function H(z1, X2)

can be obtained as follows:

1||1||00

1||1||1100

,,
1

,,,
21),(













SsiSssis
i

DdDddddd

cxcx
x

cxcxcx

Fz

FXzH





(61)

Proof sketch (if and only if): This corollary is a generalization of Corollary 3 for

multiplexers with an arbitrary number of inputs, and therefore, having a similar proof. ■

5.3.6 Proposed full-DSD synthesis method

We now present algorithms to identify and synthesize DSD functions. The methods

decompose a function F strictly from the inputs to the outputs, i.e. bottom-up decomposition.

5.3.6.1 Trivial implementation

The first method is a trivial implementation of Theorems 1 nad 2 and Corollaries 1 and 2.

When a decomposition is found, a new function F’ is composed, reducing the variable support

in one unit. This process is performed until no more decompositions are found. This method

requires O(n
3
) equivalence tests and cofactor operations.

Algorithm 5

Description Trivial implementation of the proposed DSD method.

Input F: A Boolean function.

Output A disjoint-decomposition tree representing F or 𝐍𝐔𝐋𝐋 if it is not possible.

TRIVIAL_DSD (𝐹)

begin

 1: F’ = F

 2: X’ = X

 3: dec = true

 4: while (dec)

 5: dec = false

 6: for (i = 0; !dec and i < |X’|; i++)

 7: for (j = i+1; !dec and j < |X’|; j++)

 8: if (test_for_and_dec(xi, xj))// Theorem 6

 9: dec = true

 10: zk = xi
ci
 ∙ xj

cj

 11: F’ = compose H according Corollary 1

 12: X’ = (X \ {xi, xj}) ∪ zk

 13: else if (test_for_xor_dec(xi, xj)) // Theorem 7

 14: dec = true

 15: zk = xi ⊕ xj

 16: F’ = compose H according Corollary 2

 17: X’ = (X \ {xi, xj}) ∪ zk

 18: if (|X’| > 1) return F’ as partial- or non-DSD properly

 19: else if (F’
x0=1

 == constant zero) return 0x

 20: else return 0x

 end

78

5.3.6.2 Lazy evaluation of decomposition functions

Consider H(G(X1), X2) a decomposition of F(X1, X2). Instead of evaluating function H, this

method obtains negative (F
G = 0

) and positive cofactors (F
G = 1

) as well as Boolean difference

(F
G = 0

 ⊕ F
G = 1

) for a subfunction G without reducing the function support. On the one hand,

evaluating decomposition functions leads to support reduction, which implies faster

equivalence test and cofactor operations. On the other hand, by evaluating positive and

negative cofactors w.r.t the found subfunctions, cofactors and the Boolean difference already

evaluated can be reused. We choose not to reduce the support, thus avoiding unnecessary

cofactors operations.

Negative and positive cube-cofactors of a subfunction G of F are obtained considering the

smallest possible number of cofactors needed to make G assume a constant value. For

example, suppose there exists an AND decomposition of F represented by

G(G1, G2) = G1 ∙ G2, where G1 and G2 are subfunctions of G. Consider also that negative and

positive cofactors for both G1 and G2 have already been calculated and stored. F
G=0

 is directly

obtained from F
G1=0

 or F
G2=0

. However, in order to obtain F
G=1

, a cube-cofactor is necessary.

The positive cofactor of G can be obtained by (F
G1=1

)
G2=1

 or (F
G2=1

)
G1=1

. Considering that the

number of cube-cofactor operations for performing the positive cofactor of G1 is larger than

G2, we choose to reuse the F
G1=1

 as basis when applying the G2 positive cofactor, resulting

(F
G1=1

)
G2=1

. This process is also applied to XOR decompositions.

The pseudocode of our algorithm is presented in Algorithm 6. The worst case runtime of

the algorithm is when the given function is full-DSD, as presented in Figure 28. The

algorithm starts by evaluating negative and positive cofactors for all input variables (line 2 –

Algorithm 6). For each node ni in level d, there are 2
d-1

 input variables (leaf nodes) that ni

depends on. In order to obtain negative and positive cube-cofactors for ni, at most 2
d-2

cofactors are performed. This can be achieved by reusing an already calculated cofactor of a

subfunction of ni. In the worst case, such an operation is applied for each non-leaf node of the

tree. Since there are n / 2
d-1

 nodes at level d, the number of cofactors necessary to synthesize a

full-DSD function using Algorithm 6 is obtained as follows:

 

1

1log

2

2

2
222







  ii

i n
n

n

. (62)

Algorithm 6

Description Lazy implementation of the proposed DSD method.

Input F: A Boolean function.

Output A disjoint-decomposition tree representing F or 𝐍𝐔𝐋𝐋 if it is not possible.

LAZY_DSD (𝐹)

begin

 1: N = obtain_dsd_nodes_from_inputs(X)

 2: n = |N|

 3: if (n == 0) return (F == constant zero ? “0” : “1”)

 4: M = create a DSD node array with n empty positions

 5: m = 0

 6: while (n > 0)

 7: n’ = 0

 8: for (i = 0; i < n; i++)

 9: ni = N[i], nk = null

 10: for (j = 0; j < m;)

 11: nj = M[j]

 11: if (test_for_and_dec(ni, nj)) // Theorem 6

 13: nk = create_dsd_node(AND, ni, nj)

 14: else if (test_for_xor_dec(ni, nj)) // Theorem 7

 15: nk = create_dsd_node(XOR, ni, nj)

 16: if (nk != null)

 17: M[j] = M[--m]

 18: break;

 19: else j++

 20: if (nk != null) N[n’++] = nk

 21: else M[m++] = ni

 22: if (m == 1)

 23: ns = M[0] // node ns contains a full-DSD solution for F

 24: if (F
ns=0

 ≠ constant zero) return sn

 25: else return ns

 26: H = obtain decomposition function

 27: return H

end

80

Therefore, the worst case on the number of cofactors is 2𝑛 + 𝑛 log 𝑛 and consequently

𝑂(𝑛 𝑙𝑜𝑔 𝑛). The number of equivalence test operations necessary to synthesize an n-input

full-DSD function is 𝑂(𝑛2). However, Algorithm 6 can be modified to store cofactors and

Boolean difference functions in a hash table, reducing the number of equivalence test

operations. Considering a perfect hash function, only one equivalence test is performed for

each decomposition found. In this sense, the worst case number of equivalence test operations

is 𝑂(𝑛).

Figure 28 – A full-tree model, representing the worst-case of a full-DSD function.

5.3.7 Experimental Results

This section presents results of the proposed algorithm. Algorithm 6 was implemented in

the ABC framework (BERKELEY, 2016). We use the ABC truth table data structure to

represent Boolean functions. Hence, the method can efficiently manipulate functions with up

to 16 inputs. The platform used to perform these results was a Linux system with Intel Core i5

2400 processor and 4GB main memory.

We compared our approach to the state-of-the-art algorithms available in the ABC tool.

The methods can be executed by the commands testdec –A 3 (MISHCHENKO;

STEINBACH; PERKOWSKI, 2001) and testdec –A 4, an improved implementation of the

method presented in (MISHCHENKO; STEINBACH; PERKOWSKI, 2001). We compared

the methods by applying them over various benchmarks of DSD functions. All methods

obtained DSD solutions for all examples.

The first experiment was carried out over an enumeration of full-DSD functions

(CALLEGARO, 2016). The first set of functions comprises all full-DSD functions with up to

6 inputs, as shown in the first row in Table 12. The second row represents a random subset of

full-DSD functions with 7 inputs. The proposed method is more efficient than the algorithm

presented in (MISHCHENKO; STEINBACH; PERKOWSKI, 2001), considering both the

original and improved versions.

Table 12 – Comparison of DSD methods considering two sets of full-DSD functions.

Inputs Functions testdec –A 3 testdec –A 4 Our method

6 2,311,640 5.49 sec 6.76 sec 1.5 sec

7 2,744,691 10.7 sec 10.15 sec 2.64 sec

The second experiment was carried out over the same benchmarks taken into account in

(HUANG ET AL, 2013). The results presented in Figure 29 compare the CPU time (in

seconds) when running each method over each benchmark.

The proposed method is faster for functions with up to 10 inputs. For functions with more

than 12 inputs, the method described in (MISHCHENKO; STEINBACH; PERKOWSKI,

2001) with improvements presents a shorter runtime. This behavior is due to the fact that the

method in (MISHCHENKO; STEINBACH; PERKOWSKI, 2001) also performs top-down

decomposition. This strategy can speed up the algorithm. Currently, the proposed method

uses only bottom-up decompositions. It is expected that the addition of a top-down

decomposition in our method will reduce its execution time even more. As future work, we

intend to merge top-down and bottom-up decompositions using a hash table to store

information.

82

Figure 29 – Comparison of the state-of-the-art algorithms available in ABC tool on a full-DSD

benchmark.

5.3.8 Conclusions

In this section, a new approach to Boolean decomposition based on the Boolean difference

and cofactor analysis was presented. Moreover, we extend the decomposition types by

providing sufficient and necessary conditions to obtain MUX decompositions with an

arbitrary number of inputs. Finally, we present an algorithm that needs O(n · log n) cofactor

and O(n) equivalence test operations to perform AND and XOR decomposition. Experimental

results have demonstrated the efficiency of the proposed method when compared to the state-

of-the-art decomposition strategies.

6 READ-POLARITY-ONCE FUNCTIONS

In VLSI design, the logic synthesis process includes the minimization of a circuit cost

function which is independent of the final technology adopted. Typically the cost function in

such step is the total literal count of the factored representation of the target logic function

(which correlates quite well with circuit area) (BRAYTON, 1987), (HACHTEL; SOMENZI,

2006).

There are several algorithms proposed for factoring Boolean functions, including algebraic

(BRAYTON, 1987), (SENTOVICH ET AL, 1992), Boolean (YOSHIDA; FUJITA, 2011)

(MARTINS ET AL, 2012) and graph-based approaches (MINTZ, GOLUMBIC, 2005).

However, none of these algorithms guarantees the minimum literal count for general Boolean

functions, since this is an NP-hard problem (HACHTEL; SOMENZI, 2006). Optimality can

be easily checked and guaranteed only for special classes of functions, like as read-once

(HAYES, 1975), disjoint support decomposition (ASHENHURST, 1957), (CURTIS, 1962)

and read-polarity-once Boolean functions (CALLEGARO ET AL, 2012).

Efficient exact algorithms exist for a sub-class of functions known as read-once functions

(GOLUMBIC; MINTZ; ROTICS, 2001), (GOLUMBIC; MINTZ; ROTICS, 2008). There is

another class of Boolean functions that can be synthesized and proved minimal, known as

disjoint support decomposition (DSD) Boolean functions. Similar to RO functions, a DSD

function can be expressed in a factored form where each variable appears only once.

However, besides the NOT (!), AND (*) and OR (+) operators, DSD functions can also use the

XOR (⊕) operator, e.g. g = (a+b)⊕(c*d+e). Clearly RO functions are a subset of DSD

functions. Unfortunately, the universe of DSD functions is very restricting, as will be

discussed further.

Optimality can also be easily checked for the class of functions called read-polarity-once

(RPO) Boolean functions (CALLEGARO ET AL, 2012), where each polarity (positive or

84

negative) of a variable appears at most once in the minimal factored expression, e.g.

h=(!a*d+c)*(a+b). Notice that the function h it is not RO, since variable ‘a’ appears twice,

and h is also not a DSD function, since sub-functions g1=(!a*d+c) and g2=(a+b) is not

disjoint (variable ‘a’ appears in the support of g1 and g2). Similar to the DSD class of

functions, the RPO class is also a superset of RO functions.

This section presents a comparison between RO, DSD and RPO classes over the

occurrence of these classes in MCNC circuits (IWLS, 2005). Results confirm that the number

of RPO functions are quite broader than RO as well as DSD functions. This means that there

is room for improvement in factoring algorithms, enhancing the final quality of digital

circuits.

Besides the comparison, this section presents a new method to synthesize RPO functions

(CALLEGARO ET AL, 2013). The concept of the proposed algorithm is simpler than

(CALLEGARO ET AL, 2012) and is able to synthesize RPO functions in shorter runtime.

The proposed algorithm was able to efficiently find optimal solutions with up to 16 literals,

while other methods cannot (YOSHIDA; FUJITA, 2011) (MARTINS ET AL, 2012).

6.1 Boolean function representation

A Boolean function can be represented in a two-level representation, like sum-of-products

(SOP) or product-of-sums (POS) form. For example, the exclusive-or (XOR) operation can be

represented in SOP form as f=(a*!b+!a*b) and in a POS form as f=(a+b)(!a+!b). Two-level

minimization was extensively studied by several authors, targeting programmable logic arrays

(PLA) MINI (HONG; CAIN; OSTAPKO, 1974), ESPRESSO (BRAYTON ET AL, 1984),

Presto-II (BARTHOLOMEUS; MAN, 1985), PALMINI (NGUYEN; PERKOWSKI;

GOLDSTEIN, 1987), ESPRESSO-SIGNATURE (MCGEER; SANGHAVI; BRAYTON;

VINCENTELLI, 1993), Scherzo (COUDERT, 1994), and BOOM (HLAVICKA; FISER,

2001).

The factored form (or multi-level representation) is the most widespread way to represent

Boolean functions. In this representation, the main goal is to express a given Boolean function

with the minimal literal count as possible. For example, let

f=(a!b!d!e+!abde+!abc!d+!b!cde) be a given Boolean function to be factored. Different

approaches can result in completely different solutions as shown in Table 13. Algebraic

factorization (SENTOVICH ET AL, 1992) algorithms are scalable and run in a very short

time. However, results are not good in most cases. Similarly, graph-based approaches

(MINTZ, GOLUMBIC, 2005) can run in a short runtime and keep the solution very near to

optimal, whereas Boolean methods (MARTINS ET AL, 2012) can run in a feasible runtime

just for few (e.g. 5) input variables, reaching optimal solutions in most cases.

Table 13 – Comparison between different factoring approaches.

Method Factored form Literals

Algebraic f =!a(!cde+(!d+e)bc)+!b(!cde+!d!ea) 15

Graph-based f = !e!d!ba+(e+!d)(c+d)(b!a+!c!b) 12

Boolean f = (!a+!b)(!d+e)(!cd+!ea+bc) 10

At this point, a question could be raised:

“How could we know how far are the factoring algorithms from reaching optimal

(minimal literal count) solutions?”

In order to answer this question, we can simply build an algorithm that always reaches the

optimal solution, no matter how much time is consumed. However, in order to check if a

simple 5-input function is in optimal form, such algorithm can take more than days to give the

optimal solution, making our strategy unfeasible. Indeed, the problem of finding a minimal

literal count expression for general Boolean functions belongs to the NP-hard class of

problems. Nevertheless, optimality can be easily checked and guaranteed for special classes

of functions, including read-once, disjoint support decomposition, and read-polarity-once

Boolean functions.

6.2 Definition and properties of read-polarity-once functions

Definition 15: A Boolean function is called read-polarity-once (RPO) if each polarity

(positive or negative) of a variable appears at most once in the minimum factored form

(CALLEGARO ET AL, 2012).

Lemma 5: A positive (negative) unate variable contributes with at least one positive

(negative) literal in a factored form.

86

Lemma 6: A binate variable contributes with at least two literals (one positive and one

negative) in a factored form.

Theorem 10: A function represented by an RPO expression can be proved as minimum

literal form if each unate variable contributes exactly one literal and each binate variable

contributes exactly two literals (one positive and one negative).

Proof: straightforward by lemmas 5 and 6.

Example: Let f be a Boolean function defined f=!abd+ac+bc. The variable ‘a’ is binate in

f, while variables {b, c, d} are positive unate. In this sense, the minimal factored form for

representing the given function is f=(!a*d+c)*(a+b). The circuit that represents this RPO

function is shown in Figure 30. Notice the binate variable ‘a’ appears twice (once as positive

and once as negative literal), whereas the unate variables {b, c, d} appear only once. This

means that this function is an RPO function, and can be proved minimal as stated in Theorem

10.

It is worth mentioning that, as shown in Table 6, for the universe of functions with up to 5

inputs and 6 inputs, the number of RPO functions is two and three orders of magnitude larger

than the number of DSD functions, respectively. For this reason, a method that is able to

factorize RPO functions into minimal literal count forms is highly desired.

Figure 30 – Example a read-polarity-once function 𝑓 = (! 𝑎 ∗ 𝑑 + 𝑐) ∗ (𝑎 + 𝑏).

6.3 Proposed method for synthesis of RPO functions

This section presents a method to synthesize minimal literal count forms for RPO

functions. The method is based on the concept of positive and negative transition sets possible

for each variable. The definition of positive and negative transition sets is presented in section

6.3.1. The method is able to detect if two literals must be grouped through an AND or OR

logic operation by computing transition sets. The intuition for this is presented in section

6.3.2, while the strict tests for bonding are presented in section 6.3.3. The complete algorithm

uses a literal intersection graph, and it is described in section 6.3.4.

6.3.1 Positive and negative transitions of a variable

Let f(X) be a Boolean function defined over the variable set X = {x0,…,xn-1}.

Definition 16: Let xi  X. The positive transition (PT) set w.r.t. xi in function f is defined

as:

 𝑷𝑻(𝑓, 𝑥𝑖) = ! 𝑓(𝑥𝑖 = 0) ∗ 𝑓(𝑥𝑖 = 1) (63)

Definition 17: Let xi  X. The negative transition (NT) set w.r.t. xi in function f is defined

as:

 𝑵𝑻(𝑓, 𝑥𝑖) = 𝑓(𝑥𝑖 = 0) ∗ ! 𝑓(𝑥𝑖 = 1) (64)

The set of positive/ negative transitions of a variable can be interpreted as containing all

possible input vectors that can be set in order to make an input transition in xi visible in the

output of the function f. This information is the basis of our RPO algorithm.

Transition example: Let f = (!a b d + a c + b c) be a Boolean function. If we want to

observe the PT w.r.t. variable ‘a’ appearing in the output of f, we must set the inputs ‘b’ and

‘c’ to 0 and 1, respectively. The resulting function is presented in Equation (67). However, if

we want to observe the NT of ‘a’, we must set the variables ‘b’, ‘c’ and ‘d’ to 1, 0, 1,

respectively. The negative transition function is presented in Equation (68). The reader can

confirm this information by looking the circuit depicted in Figure 30. It is important to notice

that in this step we are in the Boolean domain, meaning that the circuit does not exist and is

cited here just for explaining the definition of transition sets.

 𝑓 (𝑎 = 0) = 𝑏 𝑐 + 𝑏 𝑑 (65)

 𝑓 (𝑎 = 1) = 𝑐 (66)

 𝑃𝑇(𝑓, 𝑎) = ! 𝑏 𝑐 (67)

 𝑁𝑇(𝑓, 𝑎) = 𝑏 ! 𝑐 𝑑 (68)

6.3.2 Intuition for grouping variables by transition test

The transition information is of great importance in the proposed method. In order to

explain why, we ask for the reader to look at the Figure 30 again and try to figure it out how

88

to solve the next question: “How could we cancel the positive transition w.r.t. variable ‘a’

using the smallest input assignments as possible?” The answer to this question is apparent in

Equation (67). In order to cancel the PT of ‘a’, we can just set the input variable ‘b’ to 1, since

‘b’ will control the OR output (Figure 30 – left), turning the positive polarity ‘a’ irrelevant.

There is another way to cancel the PT of ‘a’, which consist of setting the input variable ‘c’ to

0. This will force the AND gate (Figure 30 – top) to evaluate “b!ad”, which does not depend

on positive variable ‘a’ anymore.

The transition set analysis gives us valuable information of a relationship between

variables. We already have the information that the assignment of variables ‘b’ and ‘c’ could

cancel the PT of ‘a’. But the opposite is not true for both ‘b’ and ‘c’ variables. In Equation

(69) it is possible to see that if we assign ‘a’ to 1, we cancel the PT of ‘b’. The same is not

true for the PT of ‘c’ in Equation (70), since there is no way to cancel the PT of ‘c’ by just

assigning the variable ‘a’ (i.e. input vector “b!d” does not depend on ‘a’ and enable the PT of

‘c’).

 𝑃𝑇(𝑓, 𝑏) = ! 𝑎 𝑐 + ! 𝑎 𝑑 (69)

 𝑃𝑇(𝑓, 𝑐) = 𝑎 + 𝑏 ! 𝑑 (70)

When a transition cancellation is mutual between two variables, we can say that these

variables can be grouped through an AND or an OR gate. However, we are not able yet to

identify the correct gate to group them. In order to proper group these variables, consider the

RPO circuit in Figure 31. Let f be a Boolean function over the variable set {a, b, c, d}. Let the

PT for each variable be defined as Equations.(71)-(74). It is possible to observe a pattern

between variables ‘a’ and ‘b’ as well as between variables ‘c’ and ‘d’. This leads to the

working principle of literal grouping, presented in the next section.

 𝑃𝑇(𝑓, 𝑎) = 𝑏 … (71)

 𝑃𝑇(𝑓, 𝑏) = 𝑎 … (72)

 𝑃𝑇(𝑓, 𝑐) = ! 𝑑 … (73)

 𝑃𝑇(𝑓, 𝑑) = ! 𝑐 … (74)

Figure 31 – Example of an RPO function.

6.3.3 Literals and grouping definition

Let f(X) be a Boolean function defined over the variable set X = {x0,…,xn-1}. We need to

split each input variable xi into positive (“xi”) and negative (“!xi”) literals, in order to compose

the literal set L. Each member of L will be defined as a triple (expression, function,

transition), which will be simply accessed as xi.exp, xi,func and xi.trans, respectively. This

means that each positive literal xi will lead to the triple (“xi”, xi, PT(f, xi)). The same process

will be applied to the negative literals, leading to the triple (“!xi”, !xi, NT(f, xi)). It is important

to notice that each member of L could not have a transition function equals to the constant 0.

This means that this specific element is irrelevant to compose the given function f, e.g. if xi

has a positive unate behavior in f, the negative literal “!xi” must not appear in the minimum

factored form of f.

From this point on, we can define a Boolean function f over the set of literals L. In this

way, we define possible grouping as follows:

Definition 18 (AND grouping): Let {yi, yj}∈L and (yi ≠ yj). Two literals yi and yj can be

grouped into an AND gate if the Equation (75) is satisfied.

 (𝑦𝑖. 𝑡𝑟𝑎𝑛𝑠 ∗ ! 𝑦𝑗. 𝑓𝑢𝑛𝑐 ≡ 0) ∧ 𝑝 (𝑦𝑗. 𝑡𝑟𝑎𝑛𝑠 ∗ ! 𝑦𝑖. 𝑓𝑢𝑛𝑐 ≡ 0) (75)

Definition 19 (OR grouping): Let {yi, yj}∈L and (yi ≠ yj). Two literals yi and yj can be

grouped into an OR gate if the Equation (76) is satisfied.

 (𝑦𝑖. 𝑡𝑟𝑎𝑛𝑠 ∗ 𝑦𝑗. 𝑓𝑢𝑛𝑐 ≡ 0) ∧ (𝑦𝑗. 𝑡𝑟𝑎𝑛𝑠 ∗ 𝑦𝑖. 𝑓𝑢𝑛𝑐 ≡ 0) (76)

6.3.4 Literal cluster intersection graph

From this point, it is possible to present our main data structure. Let f be a Boolean

function over the set of literals L. We define the literal cluster intersection (LCI) graph

G = (V, E), where each vertex in V is a triple (expression, function, transition) (initially, V =

L) and each edge in E contains a bit flag representing an AND / OR operator. There is an

AND (OR) edge between vi and vj, where {vi, vj} ∈ V, if they can be grouped through the

formula Equation (75)-(76).

90

(a) (b) (c) (d) (e)

Figure 32 – Step by step example of the proposed factoring algorithm for RPO functions. The initial

graph (a) contains the relationship between literals, where solid edges represent AND grouping while

dashed edges represent OR grouping. The algorithm proceeds and chooses the solid edge between “!a”

and “d”, leading to the graph shown in (b). The algorithm continues with (c) and (d) steps, reaching

the optimal solution in (e).

The LCI graph G for the function in f=(!abd+ac+bc) is depicted in Fig. 4(a). The

algorithm then chooses an arbitrary edge e between vi and vj. The vertices vi and vj are then

removed from the graph G. A new vertex vk is created, and the triple (expression, function,

transition) is properly filled with the AND / OR operations for the vk.expression and

vk.function fields, while vk.transition=(vi.transition+vj.transition), independent of the edge

type.

A full example is depicted in Figure 32. Notice that in this example a “good” ordering was

chosen. If the first edge selected in Figure 32-(a) had been the one between “!a” and “b”, an

RPO solution would not have been found. If such decision occurs, the algorithm must try a

backtracking strategy until a solution is obtained. If no solution is found, the given Boolean

function does not belong to the RPO class of functions.

6.4 Decomposing non-RPO functions

We presented an algorithm that find, whenever possible, a RPO realization for a given

Boolean function. Unfortunately, there are functions that cannot be represented by an RPO

form. In this section we show how one can decompose such functions and, hopefully, find

simpler RPO functions.

Let f (X) be a non-RPO function. We can decompose f into simpler functions and then test

if such functions are RPO. One example of decomposition is the Shannon expansion (also

known as Shannon decomposition and Boole's expansion). The Shannon expansion of f (X)

w.r.t a variable xi  X is defined as follows (SHANNON, 1949):

 𝑓(𝑋) = ! 𝑥𝑖 ∙ 𝑓(𝑥𝑖 = 0) + 𝑥𝑖 ∙ 𝑓(𝑥𝑖 = 1) (77)

The process of decomposing a non-RPO function into simpler RPO functions is called

herein 1-step Shannon decomposition. Notice that in this case both positive and negative

cofactors of f w.r.t a variable xi must be RPO functions.

Example: Let 𝑓 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 (a non-RPO function). We can try to decompose it by

applying a decomposition strategy. Since 𝑓(𝑎 = 0) = 𝑏𝑐 and 𝑓(𝑎 = 1) = 𝑏 + 𝑐 are both

RPO function, then we can represent f by a 1-step Shannon decomposition w.r.t. variable “a”,

resulting 𝑓 = 𝑎̅(𝑏𝑐) + 𝑎(𝑏 + 𝑐).

All 2-input functions are RPO, as shown in Table 6. Out of 256 functions of 3-inputs, 230

are RPO. All the remaining 26 functions can be decomposed by applying 1-step Shannon

decomposition, since the all resulting cofactors are functions depending on at most 2-inputs.

For the universe of 65,536 functions with up to 4-inputs, 20,748 are RPO (31.7%) and 42,496

(64.8%) can be synthesized by applying 1-step Shannon decompositions.

We can also apply another decomposition approach when the 1-step Shannon expansion

fails. The positive (negative) Davio decomposition can be obtained from the Boolean

difference and negative (positive) cofactor functions. The Boolean difference is the XOR of

negative and positive cofactors w.r.t a variable xi as shown in Eq. (78). The positive and

negative Davio expansions are presented in Eq. (79) and (80), respectively.

𝜕𝑓

𝜕𝑥𝑖
= 𝑓(𝑥𝑖 = 0) ⊕ 𝑓(𝑥𝑖 = 1) (78)

𝑓(𝑋) = 𝑓(𝑥𝑖 = 0) ⊕ 𝑥𝑖 ∙

𝜕𝑓

𝜕𝑥𝑖

(79)

𝑓(𝑋) = 𝑓(𝑥𝑖 = 1) ⊕ ! 𝑥𝑖 ∙

𝜕𝑓

𝜕𝑥𝑖

(80)

Example: Let 𝑓 = ! 𝑎 ! 𝑏 ! 𝑐 𝑑 + ! 𝑎 ! 𝑏 𝑐 ! 𝑑 + ! 𝑎 𝑏 ! 𝑐 ! 𝑑 + ! 𝑎 𝑏 𝑐 𝑑 + 𝑎 ! 𝑏 ! 𝑐 ! 𝑑.

Since f is a non-RPO function we can try the 1-step Shannon decomposition. However, none

of the support variables of f have both positive and negative cofactors as RPO functions, i.e.

there is no 1-step Shannon decomposition for f. On the other hand, one can obtain a 1-step

Davio decomposition since 𝑓(𝑏 = 1) = ! 𝑎 ∗ (! 𝑑 ∗ ! 𝑐 + 𝑑 ∗ 𝑐) and
𝜕𝑓

𝜕𝑏
= ! 𝑎 + ! 𝑑 ∗ ! 𝑐,

resulting 𝑓 = ! 𝑎 (! 𝑑 ! 𝑐 + 𝑑 𝑐) ⊕ ! 𝑏 (! 𝑎 + ! 𝑑 ! 𝑐).

92

6.4.1 Proposed decompositions

Both Shannon, negative and positive Davio decompositions use two subfunctions in order

to reconstruct f. In (BECKER; DRECHSLER, 1995), it is proved that these three

decompositions suffice when representing f into two subfunctions. In the following, two

decompositions that use three subfunctions are presented.

Let f(X) be a Boolean function defined over the variable set X = {x1,…,xn} and xi  X. Let

𝑓𝑥𝑖=0 (𝑓𝑥𝑖=1) represent the negative (positive) cofactor of xi w.r.t f. The Universal

Quantification of function f w.r.t a variable xi is defined as a AND of xi´s negative and

positive cofactors: ∀𝑥𝑖𝑓 = 𝑓𝑥𝑖=0 ⋅ 𝑓𝑥𝑖=1. The Existential Quantification of f w.r.t a variable xi

is the OR of xi’s cofactors: ∃𝑥𝑖𝑓 = 𝑓𝑥𝑖=0 + 𝑓𝑥𝑖=1. The negative derivative of f w.r.t a variable

xi is defined
𝜕𝑓

𝜕𝑥𝑖−
= 𝑓𝑥𝑖=0 ⋅ 𝑓𝑥𝑖=1

̅̅ ̅̅ ̅̅ while the positive derivative of f w.r.t a variable xi is defined

𝜕𝑓

𝜕𝑥𝑖+
= 𝑓𝑥𝑖=0

̅̅ ̅̅ ̅̅ ⋅ 𝑓𝑥𝑖=1. Table 14 summarizes these definitions and notation.

Table 14 – Summary of components used in the proposed decomposition.The negative (positive)

cofator w.r.t xi is represented by 𝑓𝑥𝑖=0 (𝑓𝑥𝑖=1).

Name Notation Definition

Existential Quantification ∃𝑥𝑖𝑓 𝑓𝑥𝑖=0 + 𝑓𝑥𝑖=1

Negative Derivative
𝜕𝑓

𝜕𝑥𝑖 −
 𝑓𝑥𝑖=0 ⋅ 𝑓𝑥𝑖=1

̅̅ ̅̅ ̅̅

Positive Derivative
𝜕𝑓

𝜕𝑥𝑖 +
 𝑓𝑥𝑖=0

̅̅ ̅̅ ̅̅ ⋅ 𝑓𝑥𝑖=1

Universal Quantification ∀𝑥𝑖𝑓 𝑓𝑥𝑖=0 ⋅ 𝑓𝑥𝑖=1

Two quantified decomposition are presented. These decompositions use three

subfunctions (tri-decomposition) instead of two subfunctions. Eq. (81) presents the Universal-

based decomposition that uses negative and positive derivatives as well as the Universal

Quantification.

𝑓(𝑋) = 𝑥𝑖̅ ∙

𝜕𝑓

𝜕𝑥𝑖 −
+ 𝑥𝑖 ∙

𝜕𝑓

𝜕𝑥𝑖 +
+ ∀𝑥𝑖𝑓

(81)

Example: Let 𝑓 = 𝑏̅𝑐̅𝑑̅𝑒̅ + 𝑎̅𝑏̅𝑐̅𝑑 + 𝑎̅𝑐̅𝑑̅𝑒̅ + 𝑎̅𝑏̅𝑐𝑑̅𝑒 be a non-RPO function. There is no

1-step Shannon decomposition neither a 1-step Davio decomposition for such function.

However, we can apply the Universal-based decomposition, shown in Eq. (81), to search for

1-step RPO decompositions since
𝜕𝑓

𝜕𝑒−
= (𝑎̅ + 𝑏̅)𝑐̅𝑑̅,

𝜕𝑓

𝜕𝑒+
= 𝑎̅𝑏̅𝑐𝑑̅ and ∀𝑥𝑖𝑓 = 𝑎̅𝑏̅𝑐̅𝑑 resulting

𝑓 = 𝑒̅(𝑎̅ + 𝑏̅)𝑐̅𝑑̅ + 𝑒𝑎̅𝑏̅𝑐𝑑̅ + 𝑎̅𝑏̅𝑐̅𝑑.

A decomposition that uses Existential Quantification, negative and positive derivatives

called Existential-based decomposition is shown in Eq. (82).

𝑓(𝑋) = (𝑥𝑖̅ +

𝜕𝑓

𝜕𝑥𝑖 −

̅̅ ̅̅ ̅̅ ̅
) ∙ (𝑥𝑖 +

𝜕𝑓

𝜕𝑥𝑖 +

̅̅ ̅̅ ̅̅ ̅
) ∙ ∃𝑥𝑖𝑓

(82)

Example: Let 𝑓 = 𝑏̅𝑐̅𝑑̅ + 𝑎̅𝑐̅𝑑̅ + 𝑎̅𝑏𝑒̅ + 𝑎̅𝑑̅𝑒̅ + 𝑎̅𝑏̅𝑒 + 𝑎̅𝑐̅𝑒̅ be a non-RPO function. There

is no 1-step Shannon decomposition, neither a 1-step Davio decomposition nor a 1-step

Universal-based decomposition for such function. However, we can apply the Existential-

based decomposition, shown in Eq. (82), to search for 1-step RPO decompositions since

𝜕𝑓

𝜕𝑒−

̅̅ ̅̅
= 𝑎̅𝑏(𝑐 + 𝑑),

𝜕𝑓

𝜕𝑒+

̅̅ ̅̅
= 𝑎̅𝑏̅𝑐𝑑 and ∃𝑥𝑖𝑓 = 𝑎̅ + 𝑏̅𝑐̅𝑑̅ resulting 𝑓 = (𝑒̅ + 𝑎̅𝑏(𝑐 + 𝑑)) ∙

(𝑒 + 𝑎̅𝑏̅𝑐𝑑) ∙ (𝑎̅ + 𝑏̅𝑐̅𝑑̅).

6.5 Experimental results

The first experiment was carried out over the set of all 5-input NPN-class (negation-

permutation-negation) functions, grouped in 616,125 Boolean classes by equivalence through

input permutation, negation of its inputs and/or negation of the output. Instead of running the

algorithm for all 5-input Boolean space (232 functions), the NPN-class benchmark was

chosen. This benchmark can represent the functionality of all Boolean space of five variables

in a more compact set, without losing generality. The platform used to perform these results

was a Linux system with Intel Core i5 2400 processor and 2GB main memory.

To run our algorithm for all the 616,125 functions, 44 seconds of execution time were

needed. The worst case optimization was 1ms and the average case was less than 70 µs. The

in-house implementation of the X-Factor algorithm (MINTZ, GOLUMBIC, 2005) took 50

minutes to complete, resulting in total 12,530,011 literals. The FC algorithm (MARTINS ET

AL, 2012) resulted in 11,292,029 literals in total and took 6 hours to complete. It is important

to notice that both algorithms are designed to factorize general Boolean functions, while the

RPO algorithm does not synthesize non-RPO functions.

94

Comparative results evaluating the efficiency of the proposed algorithm are shown in

Table 15, considering the set of 1,462 RPO functions extracted from 5-input NPN-class

benchmark. Our algorithm presented better results in terms of both runtime and literal count

when compared to Quick Factor (QF) (SENTOVICH ET AL, 1992), Good Factor (GF)

(SENTOVICH ET AL, 1992), Functional Composition (FC) algorithm (MARTINS ET AL,

2012) and X-Factor (MINTZ, GOLUMBIC, 2005) factoring algorithms.

Table 15 – Total number of literals and runtime obtained when factoring 1,462 RPO functions using

different approaches.

 QF GF FC X-Factor
RPO

2013
This work

Literals 16,086 15,671 13,754 13,253 13,064 13,064

Runtime 1.9s 2.3s 21s 7.1s 5.7s 0.7s

In the second experiment, we performed a study over the MCNC circuits (IWLS 2005).

We have extracted functions up to 10 inputs from the benchmarks through the k-cuts method

(CHATTERJEE; MISHCHENKO; BRAYTON, 2006), (MACHADO ET AL, 2012).

Unfortunately, the FC and X-Factor algorithms were too slow to complete. Our algorithm

took 36s, 2m36s and 6m53s to factorize the functions extracted from the circuits through k-

cuts with up to 6, 8 and 10 inputs, respectively. As it is possible to see in Table 16, RPO

functions are still quite frequent in benchmark circuits, meaning that there is room for

improvement in factoring algorithms, enhancing the final quality of digital circuits.

The last experiment consists on the analysis of non-RPO functions over a set of

benchmark functions: all functions up to three and four inputs; a set of 5-input functions

grouped by input negation / permutation and output negation (NPN); a set of all disjoint-

support-decomposable (DSD) functions with up to 6-inputs and a set of full-DSD, partial-

DSD and non-DSD that appeared in (HUANG ET AL, 2013). This study is to evaluate how

frequent can non-RPO functions be decomposed using a 1-step RPO expansion. The results

are shown in Table 17. The number of functions that have 1-dist Shannon, Davio or

Quantifier-Based expansions are shown in columns Shannon, Davio and Quantifier-Based,

respectively. Column 1-dist RPO show the number of functions that have at least one

Shannon, Davio or Quantifier-Based 1-step decomposition. Finally, column RPO + 1-dist

RPO represent the number of functions that are RPO or have 1-dist decomposition.

As expected, all functions with up to 3-inputs are RPO or can be represented by a 1-step

RPO expansion. Interestingly, 99% of the functions with up to 4-inputs are RPO or are 1-step

RPO. For the NPN set of 5-input functions and the set of all DSD functions with up to 6-input

this number is 64% and 98%, respectively. For the benchmarks of full-, partial-, and non-DSD

functions ranging from 6- to 16-inputs, it is shown that 1-step RPO are quite frequent as well.

6.6 Conclusions

This section discussed the relevance of read-once (RO), disjoint support decomposition

(DSD) and read-polarity-once (RPO) classes of functions. For the universe of functions with

up to 5-inputs, the class of RPO functions is two orders of magnitude larger than RO and

DSD ones. The study of the MCNC benchmark confirmed this claim. Besides the study of

classes, an efficient method that guarantees minimal factored forms for the class of RPO

functions was also proposed. Results show the efficiency of our method which is able to find

better results in shorter runtime when compared to state-of-the-art factoring algorithms.

96

Table 16 – Decomposition of circuits into k-cuts, with k=6, k=8 and k=10. The number of read-once

(RO), disjoint support decomposition (DSD) and read-polarity-once (RPO) functions is presented.

 K = 6 K = 8 K = 10

Benchmark Total RO DSD RPO
Time

(ms)
Total RO DSD RPO

Time

(ms)
Total RO DSD RPO

Time

(ms)

9symml 41 12 16 31 389 9 1 2 2 182 1 0 0 0 46

alu2 109 65 75 90 165 39 10 17 19 749 6 1 3 3 5718

alu4 194 103 125 148 131 115 40 60 64 12632 48 6 12 15 5349

apex6 157 44 64 153 51 144 30 50 139 54 117 22 41 110 75

apex7 55 35 47 52 16 45 24 36 42 16 42 22 34 39 21

b1 4 2 3 4 0 4 2 3 4 0 4 2 3 4 1

c8 28 5 11 28 6 22 5 5 22 6 20 3 3 20 8

cc 21 13 13 21 5 20 12 12 20 5 20 12 12 20 5

cht 36 0 0 36 7 36 0 0 36 7 36 0 0 36 9

cm150a 6 1 1 1 1 5 0 0 0 1 5 0 0 0 2

cm151a 4 0 0 2 1 4 0 0 2 0 3 0 0 0 1

cm152a 3 0 0 1 0 2 0 0 0 0 2 0 0 0 0

cm162a 10 6 10 10 3 7 3 6 6 12 6 2 2 6 7

cm163a 7 3 3 7 2 6 2 2 6 3 5 1 1 5 3

cm42a 10 10 10 10 2 10 10 10 10 2 10 10 10 10 2

cm82a 3 0 1 0 1 3 0 1 0 0 3 0 1 0 1

cm85a 6 0 2 2 2 6 0 2 2 2 3 0 1 1 2

cmb 11 8 8 11 3 8 5 5 8 3 7 5 5 7 191

comp 22 8 15 15 6 11 3 7 7 6 11 3 7 7 6

cordic 9 5 7 7 3 8 5 6 6 4 5 0 1 1 7

count 24 8 8 24 6 21 4 5 21 8 20 3 5 20 12

cu 16 14 14 16 2 13 8 8 13 3 12 8 8 11 3

dalu 235 36 75 134 81 186 20 45 63 386 151 16 16 44 18569

decod 16 16 16 16 3 16 16 16 16 3 16 16 16 16 3

des 1035 309 534 931 1892 778 58 305 563 2242 350 6 29 206 239

example2 94 62 67 89 11 79 25 49 48 352 72 30 35 60 3037

f51m 21 7 9 11 3 8 1 3 3 2 8 1 3 3 2

frg1 26 21 21 21 4 24 16 16 17 6 17 8 8 9 6

i10 582 345 432 544 548 486 265 340 432 1719 464 230 273 371 29981

i1 18 16 17 18 2 17 15 16 17 2 17 15 16 17 1

i2 66 65 65 66 7 34 32 32 34 8 28 26 26 26 10

i3 42 42 42 42 6 22 22 22 22 5 22 22 22 22 6

i4 62 62 62 62 10 38 38 38 38 10 34 34 34 34 12

i5 76 76 76 76 11 66 66 66 66 12 68 68 68 68 18

i6 67 0 0 1 11 67 0 0 1 11 67 0 0 1 13

i7 67 1 3 3 9 67 1 3 3 10 67 1 3 3 10

i8 284 123 123 284 42 170 42 42 168 40 242 78 78 187 109

i9 229 171 171 227 39 75 5 5 10 29 68 0 0 1 44

k2 543 525 526 536 77 486 434 439 474 31055 374 243 246 315 264658

lal 25 15 25 25 5 23 14 23 23 5 21 12 21 21 7

majority 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

my_adder 25 0 8 1 7 23 0 6 1 8 21 0 4 1 12

pair 338 199 242 316 150 252 115 152 208 3153 239 110 147 187 2510

parity 5 0 5 0 1 3 0 3 1 1 2 0 2 0 1

pcler8 24 17 23 24 3 22 15 18 22 4 21 14 18 21 4

pcle 13 6 13 13 3 12 4 5 12 3 11 4 11 11 3

pm1 16 14 15 16 2 14 12 13 14 2 13 11 12 13 2

sct 21 13 18 21 4 18 8 15 18 3 17 7 14 17 5

tcon 16 8 8 16 1 16 8 8 16 0 16 8 8 16 0

term1 42 23 29 34 10 34 18 23 26 56 20 6 11 12 24370

ttt2 35 15 22 31 23 24 4 11 17 4277 23 3 10 16 138

unreg 16 0 0 16 2 16 0 0 16 3 16 0 0 16 2

vda 283 249 252 272 32612 197 120 120 136 98615 131 47 48 72 57509

x1 89 79 79 85 10 74 63 63 68 12 61 45 45 54 20

x2 14 12 13 13 1 10 7 8 8 1 7 4 5 5 1

x3 167 57 78 167 21 138 29 50 135 24 111 17 37 107 30

x4 109 89 96 108 13 83 41 48 82 16 78 55 62 77 23

z4ml 6 0 2 1 0 4 0 1 0 1 4 0 1 0 1

Total 5484 3015 3600 4889 36426 4121 1678 2241 3207 155771 3264 1237 1478 2344 412825

Ratio 1 0.55 0.66 0.89 - 1 0.41 0.54 0.78 - 1 0.38 0.45 0.72 -

Table 17 – Results on the analysis of non-RPO functions over a set of benchmark functions. Column RPO show the number of RPO functions. The number of

functions that have 1-dist Shannon, Davio or Quantifier-Based expansions are shown in columns Shannon, Davio and Quantifier-Based, respectively. Column
1-dist RPO shows the number of functions that have at least one of the previous decompositions. Finally, column RPO + 1-dist RPO represent the number of

functions that are RPO or have 1-dist decomposition.

Benchmark Functions RPO (%) Shannon (%) Davio (%) Quantifier-Based (%) 1-dist RPO (%) RPO + 1-dist RPO (%)

All 3-in functions 256 230 (89.8%) 26 (10.2%) 24 (9.4%) 26 (10.2%) 26 (10.2%) 256 (100.0%)

All 4-in functions 65,536 20,750 (31.7%) 42,496 (64.8%) 43,720 (66.7%) 42,688 (65.1%) 44224 (67.5%) 64,974 (99.1%)

NPN 5-in 616,125 1,421 (0.2%) 177,507 (28.8%) 282,288 (45.8%) 317,378 (51.5%) 398307 (64.6%) 399,727 (64.9%)

All DSD up to 6-in 2,311,640 1,699,626 (73.5%) 544,680 (23.6%) 574,640 (24.9%) 585,288 (25.3%) 585480 (25.3%) 2,285,108 (98.9%)

Full-DSD 6-in 1,000,000 992,754 (99.3%) 4,614 (0.5%) 4,788 (0.5%) 4,788 (0.5%) 4788 (0.5%) 997,542 (99.8%)

Full-DSD 8-in 1,000,000 925,190 (92.5%) 5,267 (0.5%) 5,735 (0.6%) 5,716 (0.6%) 5740 (0.6%) 930,930 (93.1%)

Full-DSD 10-in 100,000 98,117 (98.1%) 968 (1.0%) 1,054 (1.1%) 1,043 (1.0%) 1054 (1.1%) 99,171 (99.2%)

Full-DSD 12-in 100,000 97,496 (97.5%) 1,605 (1.6%) 1,612 (1.6%) 1,614 (1.6%) 1614 (1.6%) 99,110 (99.1%)

Full-DSD 14-in 10,000 9,104 (91.0%) 114 (1.1%) 126 (1.3%) 125 (1.3%) 126 (1.3%) 9,230 (92.3%)

Full-DSD 16-in 10,000 9,355 (93.6%) 65 (0.7%) 118 (1.2%) 118 (1.2%) 118 (1.2%) 9,473 (94.7%)

Partial-DSD 6-in 1,000,000 823,030 (82.3%) 165,327 (16.5%) 167,389 (16.7%) 168,430 (16.8%) 168950 (16.9%) 991,980 (99.2%)

Partial-DSD 8-in 1,000,000 683,462 (68.3%) 262,012 (26.2%) 283,453 (28.3%) 291,517 (29.2%) 294676 (29.5%) 978,138 (97.8%)

Partial-DSD 10-in 100,000 65,562 (65.6%) 32,017 (32.0%) 30,682 (30.7%) 32,500 (32.5%) 32949 (32.9%) 98,511 (98.5%)

Partial-DSD 12-in 100,000 50,818 (50.8%) 40,838 (40.8%) 39,327 (39.3%) 42,329 (42.3%) 44061 (44.1%) 94,879 (94.9%)

Partial-DSD 14-in 10,000 6,861 (68.6%) 2,001 (20.0%) 2,189 (21.9%) 2,251 (22.5%) 2297 (23.0%) 9,158 (91.6%)

Partial-DSD 16-in 10,000 4,653 (46.5%) 2,900 (29.0%) 3,148 (31.5%) 3,451 (34.5%) 3519 (35.2%) 8,172 (81.7%)

Non-DSD 6-in 1,000,000 134,275 (13.4%) 809,998 (81.0%) 815,630 (81.6%) 827,986 (82.8%) 834525 (83.5%) 968,800 (96.9%)

Non-DSD 8-in 1,000,000 27,280 (2.7%) 534,261 (53.4%) 536,794 (53.7%) 590,349 (59.0%) 663394 (66.3%) 690,674 (69.1%)

Non-DSD 10-in 100,000 83 (0.1%) 26,722 (26.7%) 23,068 (23.1%) 26,671 (26.7%) 32540 (32.5%) 32,623 (32.6%)

Non-DSD 12-in 100,000 364 (0.4%) 12,456 (12.5%) 13,432 (13.4%) 14,924 (14.9%) 17220 (17.2%) 17,584 (17.6%)

Non-DSD 14-in 10,000 22 (0.2%) 940 (9.4%) 900 (9.0%) 1,073 (10.7%) 1263 (12.6%) 1,285 (12.9%)

Non-DSD 16-in 10,000 20 (0.2%) 350 (3.5%) 390 (3.9%) 380 (3.8%) 460 (4.6%) 480 (4.8%)

Total 9,653,557 5,650,474 (58.5%) 2,667,164 (27.6%) 2,842,366 (29.4%) 2,960,645 (30.7%) 3,137,331 (32.5%) 8,787,805 (91.0%)

98

7 CONCLUSIONS

The problem of factoring and decomposition for Boolean functions is ∑ -complete𝑃
2 for

general functions. Efficient and exact algorithms can be created for existing class of functions

known as read-once (RO), disjoint-support decomposable (DSD) and read-polarity-once

(RPO) functions.

This dissertation discussed logic synthesis methods focusing on the realization of specific

classes of Boolean functions. Four new algorithms for synthesis of Boolean functions were

presented. The first contribution was a synthesis method that finds a read-once realization for

a target function. The method was designed based on a divide-and-conquer strategy. Given a

BDD with m nodes and n inputs, the RO_BY_COFACTOR has a worst-case performance of

𝑂(𝑚𝑛). This method was implemented in logic synthesis framework named SwitchCraft

(CALLEGARO ET AL, 2010).

The second and third contributions were algorithms for synthesis of DSD functions

(CALLEGARO ET AL, 2015). A top-down approach checks if there is an OR, AND, or XOR

decomposition based on sum-of-products, product-of-sums and exclusive-sum-of-products

inputs, respectively. This method is also available in the SwitchCraft tool. The annother DSD

method runs in a bottom-up fashion and is based on Boolean difference and cofactor analysis.

The proposed method needs O(n · log n) cofactor and O(n) equivalence test operations to

perform AND and XOR decomposition. The algorithm was implemented into both ABC and

SwitchCraft frameworks (CALLEGARO ET AL, 2015b).

The last contribution is a new method to synthesize RPO functions (CALLEGARO ET

AL, 2013). The method is based on the concept of positive and negative transition sets

possible for each variable. The method is able to detect if two literals must be grouped

through an AND or OR logic operation by computing transition sets. This method is available

in both SwitchCraft and ABC tool (command test_rpo).

100

 REFERENCES

AKERS, S. B. J. On a theory of Boolean functions. Journal of the Society for Industrial &

Applied Mathematics, no. 7.4, p. 487-498. 1959.

ALPERT, C. J.; MEHTA, D. P.; SAPATNEKAR, S. S. Handbook of algorithms for

physical design automation. [S.l.]: CRC press, 2008.

ANGLUIN, D.; HELLERSTEIN, L.; KARPINSKI, M.; Learning read-once formulas with

queries. J. ACM 40 185–210. 1993.

ASHENHURST, R. The decomposition of switching functions. Proc. of the Int’l Symp. on

the Theory of Switching, pages 74–116, Apr. 1957.

BARTHOLOMEUS M.; MAN H. D. Presto-II: Yet another logic minimizer for

programmed logic arrays. Proc. Int. Symp. Circ. Syst. 1985.

BECKER, B., DRECHSLER, R. How many decomposition types do we need? In

Proceedings of the 1995 European conference on Design and Test. IEEE Computer Society,

Washington, DC, USA, 438-. 1995.

Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis

and Verification.

BERTACCO, V.; DAMIANI, M. Disjunctive decomposition of logic functions. in Proc. of

Int’l Conf. on Computer-Aided Design (ICCAD), p. 78-82. 1997.

BERTACCO, V.; OLUKOTUN, K. Efficient state representation for symbolic simulation.

In DAC, Proceedings of Design Automation Conference, June 2002.

BOROS, E.; GURVICH, V.; HAMMER, P.L. Read-once decompositions of positive

boolean functions. Rutcor Research Report RRR 01/24-94. p. 254–283. 1994.

BOROS, E.; IBARAKI, T.; MAKINO, K. Error-free and best-fit extensions of partially

defined Boolean functions. Inform. and Comput. 140. 1998

BRAYTON, R. K. Factoring logic functions. IBM Journal of Research and Development,

vol. 31, no. 2, p.187-98. Mar 1987.

BRAYTON, R. K.; SANGIOVANNI-VINCENTELLI, A. L.; MCMULLEN C. T;

HACHTEL G. D., Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic

Publishers, Norwell, MA, USA. 1984.

BUCHFUHRER, D.; UMANS, C. The complexity of Boolean formula minimization.

Journal of Computer and System Sciences 77: 142. 2011.

BSHOUTY, N.; HANCOCK, T.R.; HELLERSTEIN, L. Learning boolean read-once

formulas with arbitrary symmetric and constant fan-in gates. J. Comput. System Sci. 50

521–542. 1995

BUTLER, J. T. On the number of functions realized by cascades and disjunctive

networks, IEEE Trans. Computers, C-24), 681-690. 1975

CALLEGARO, V. Disponível em: http://www.inf.ufrgs.br/~vcallegaro/functions/. Acesso

em: 30 Junho 2016.

CALLEGARO, V.; MARRANGHELLO, F. S. ; MARTINS, M. G. A. ; RIBAS, R. P. ; REIS,

A. I. Bottom-up disjoint-support decomposition based on cofactor and boolean

difference analysis. In: 33rd IEEE International Conference on Computer Design (ICCD),

2015, New York City. 2015 33rd IEEE International Conference on Computer Design

(ICCD). p. 680. 2015

CALLEGARO, V.; MARTINS, M. G. A. ; RIBAS, R. P. ; REIS, A. I. DSD Synthesis Based

on Variable Intersection Graphs. In: South Symposium on Microelectronics (SIM), 2015.

CALLEGARO, V.; MARTINS, M. G. A. ; RIBAS, R. P. ; REIS, A. I. . A Domain-

Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions. JICS.

Journal of Integrated Circuits and Systems (Ed. Português), v. 9, p. 60-69, 2014.

CALLEGARO, V.; MARTINS, M. G. A. ; RIBAS, R. P. ; REIS, A. I. Read-polarity-once

Boolean functions revisited. In: International Workshop on Logic & Synthesis (IWLS),

2013, Austin. Proceedings of International Workshop on Logic & Synthesis. 2013.

CALLEGARO, V.; MARTINS, M. G. A.; RIBAS, R. P.; REIS, A. I. Read-Polarity-Once

Functions. In: International Workshop on Logic and Synthesis (IWLS’2012). Berkeley, CA,

USA. 2012.

102

CALLEGARO, V; MARQUES, F. S.; KLOCK, C. E.; DA ROSA JUNIOR, L. S.; RIBAS, R.

P.; REIS, A. I. SwitchCraft: a framework for transistor network design. In Proceedings of

the 23rd symposium on Integrated circuits and system design (SBCCI '10). São Paulo, SP,

Brazil. 2010.

CANTEAUT, A.; VIDEAU, M.; Symmetric Boolean functions. IEEE Transactions on

Information Theory, vol. 51, no. 8, p. 2791-2811, Aug. 2005.

CHATTERJEE, S.; MISHCHENKO, A.; BRAYTON, R. Factor Cuts. IEEE/ACM

International Conference on Computer Aided Design, San Jose, CA, p. 143-150. 2006.

CHRZANOWSKA-JESKE, M. Regular symmetric arrays for non-symmetric functions.

Proceedings of the 1999 IEEE International Symposium on. Vol. 1. IEEE, 1999.

COOK, S. A. The complexity of theorem-proving procedures. In Proceedings of the third

annual ACM symposium on Theory of computing (STOC '71). ACM, New York, NY, USA,

151-158. 1971

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L; STEIN, C. Data structures for

Disjoint Sets, Introduction to Algorithms (Second ed.), Chapter 21, MIT Press, p. 498–524.

2001.

COUDERT O. Two-Level Logic Minimization: An Overview .Integration, 17-2, p. 97-140,

Oct. 1994.

CURTIS, H. A. A new approach to the design of switching circuits. D. Van Nostrand Co,

Princeton, NJ, 1962.

DA ROSA, L. S.; MARQUES, F. S.; SCHNEIDER, F.; RIBAS, R. P.; REIS, A. I. A

comparative study of CMOS gates with minimum transistor stacks. Proc. of the 20th

Annual Conf. on Integrated Circuits and Systems Design, (SBCCI), p. 93-98. 2007.

DAVIO, M.; DESCHAMPS, J. P.; THAYSE, A. Discrete and Switching Functions,

McGraw-Hill. 1978.

ESPRESSO-BOOK-EXAMPLES.

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso. (visited: June, 2016).

GOLUMBIC, M. C.. Algorithmic Graph Theory and Perfect Graphs. second ed.,

Academic Press, NewYork, 1980, Ann. Discrete Math. 57. 2004.

GOLUMBIC, M. C.; MINTZ, A. Factoring logic functions using graph partitioning. In

Proc. of the IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), p.195-199. 1999.

GRAY, F. Pulse Code Communication, US patent #2,632,058. 1953.

HACHTEL, G. D.; SOMENZI, F.. Logic Synthesis and Verification Algorithms, Springer,

564p. 2006.

HALMOS, P. R. Naive Set Theory. Princeton, N.J.: Van Nostrand. 1960

HAYES, J. P. A Nand Model for Fault Diagnosis in Combinational Logic Networks.

IEEE Transactions on Computers, vol. C-20, no. 12, p. 1496-1506, Dec. 1971.

HAYES, J. P. Enumeration of fanout-free Boolean functions, J. ACM, 23, 700-709. 1976.

HAYES, J. P. The fanout structure of switching functions. J. ACM, vol. 22, no. 4. p. 551-

71. 1975

HLAVICKA J.; FISER P. BOOM-a heuristic Boolean minimizer. Proc. Of Int. Conf. on

Computer-Aided Design (ICCAD), p.439-442. 2001.

HONG, S. J.; CAIN R. G.; OSTAPKO D. L. MINI: A heuristic approach for logic

minimization. IBM J., vol. 18, p.443 -458 1974.

HOPCROFT, J.; TARJAN, R. Efficient algorithms for graph manipulation.

Communications of the ACM 16 (6): 372–378. 1973.

HUANG, Z.; WANG L.; NASIKOVSKIY, Y.; MISHCHENKO, A. Fast Boolean matching

based on NPN classification. in Proc. of Int’l Conf. on Field Programmable Technology

(ICFPT), 2013.

IWLS 2005 Benchmarks: http://www.iwls.org.

KAGARIS, D; HANIOTAKIS, T. A methodology for transistor-efficient supergate

design. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 4, p. 488-

492, Apr. 2007.

KANAGAL, K.; LI, JIAN; AND DESHPANDE, AMOL. Sensitivity analysis and

explanations for robust query evaluation in probabilistic databases. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of data (SIGMOD '11).

ACM, New York, NY, USA, 841-85, 2011.

104

KARCHMER, M.; LINIAL, N.; NEWMAN, I.; SAKS, M.; WIGDERSON, A..

Combinatorial characterization of read-once formulae. Discrete Math. 114. p. 275–282.

1993.

KARNAUGH, M. The map method for synthesis of combinational logic circuits. Trans.

AIEE. pt. I, 72(9):593–599, 1953.

KARPLUS, K. Using if-then-else dags to do technology mapping for field-programmable

gate arrays. Technical Report UCSC-CRL-90-43, Baskin Center for Computer Engineering

& Information Sciences, 1990.

KODANDAPANI, K. L.; SETH, S. C. On combinational networks with restricted fan-out.

IEEE Trans. Computers, 27 309-318. 1978

KOZLOWSKI, T. Application of exclusive-OR logic in technology independent logic

optimisation. Ph.D. Thesis. January 1996.

KUTZSCHEBAUCH, T.; AND STOK, L. Layout driven decomposition with congestion

consideration. In DATE, Design, Automation and Test in Europe Conference, pages 672–

676, March 2002.

MACHADO, L., MARTINS, M., CALLEGARO, V., RIBAS R. P. AND REIS A. I., KL-cut

based digital circuit remapping, NORCHIP, Copenhagen, 2012, p. 1-4. 2012.

MARTINS, M. G. A.; CALLEGARO, V; MACHADO, L.; RIBAS, R. P.; REIS, A. I..

Functional Composition Paradigm and Applications. International Workshop on Logic

and Synthesis (IWLS’2012). Berkeley, CA. 2012.

MARTINS, M. G.A., CALLEGARO, V., RIBAS, R. P., REIES, A. I. Efficient method to

compute minimum decision chains of Boolean functions. In Proceedings of the 21st edition

of the great lakes symposium on Great lakes symposium on VLSI (GLSVLSI '11). ACM,

New York, NY, USA, 419-422. 2011.

MARTINS, M. G. A.; DA ROSA JR., L. S.; RASMUSSEN, A.; RIBAS, R. P.; REIS, A. I.

Boolean factoring with multi-objective goals. Proc. of Int’l Conf. on Computer Design

(ICCD), p. 229-234. 2010.

MATSUNAGA, Y. An Efficient Algorithm finding simple disjoint decompositions using

BDDs. IEICE Trans. on Fundamentals of Electronics, Communications and Computer

Sciences, no. 85, vol. 12, p.2715 - 2724 , 2002.

MCCLUSKEY, E.J., JR. Minimization of Boolean Functions. Bell System Technical

Journal 35 (6). Nov 1956.

MCGEER P.; SANGHAVI J.; BRAYTON R.; SANGIOVANNI-VINCENTELLI, A. L.

ESPRESSO-SIGNATURE: A New Exact Minimizer for Logic Functions. Proc. Of

Design Automation Conference (DAC), p. 618-624. 1993.

MICHELI, G. D. Synthesis and Optimization of Digital Circuits. [S.l.]: McGraw-Hill

Higher Education, 1994.

MINATO, S.; DE MICHELI, G. Finding all simple disjunctive decompositions using

irredundant sum-of-products forms. in Proc. of of Int’l Conf. on Computer-Aided Design

(ICCAD), p. 111-117. 1998.

MINTZ, A.; GOLUMBIC, M. C. Factoring Boolean functions using graph partitioning.

Discrete Applied Mathematics, 2005.

MISHCHENKO A.; CHATTERJEE, S.; BRAYTON, R. DAG-aware AIG rewriting a fresh

look at combinational logic synthesis. In Proceedings of the 43rd annual Design Automation

Conference. ACM, New York, NY, USA, 532-535. 2006.

MISHCHENKO A.; PERKOWSKI M. Fast Heuristic Minimization of Exclusive Sum-of-

Products. Submitted to the 5th International Reed-Muller Workshop, August 2001.

MISHCHENKO, A. BRAYTON, R. Faster logic manipulation for large designs. in Proc.

of Int’l Workshop on Logic Synthesis (IWLS), 2013.

MISHCHENKO, A. Enumeration of irredundant circuit structures. in Proc. of Int’l

Workshop on Logic Synthesis (IWLS), 2014.

MISHCHENKO, A.; BRAYTON, R. Faster Logic Manipulation for Large Designs.

International Workshop on Logic and Synthesis (IWLS). 2013

MISHCHENKO, A.; CHATTERJEE, S.; JIANG, R.; BRAYTON, R. FRAIGs: A Unifying

Representation for Logic Synthesis and Verification. Tech. rep., EECS Dept. UC

Berkeley, 2005.

MISHCHENKO, A.; EEN, N.; BRAYTON, R. CASE, M.; CHAUHAN, P.; SHARMA, N. A

semi-canonical form for sequential AIGs, Proc. Design, Automation and Test in Europe

(DATE'13), p. 797-802. 2013.

106

MISHCHENKO, A.; STEINBACH, B.; PERKOWSKI, M. An algorithm for bi-

decomposition of logic functions. In Proceedings of the 38th annual Design Automation

Conference. 2001.

MURGAI, R.; NISHIZAKI, Y; SHENOY, N. V.; BRAYTON, R. K.; AND

SANGIOVANNI-VINCENTELLI, A. Logic synthesis for programmable gate arrays. In

DAC, Proceedings of Design Automation Conference, pages 620–625, June 1990.

NGUYEN L. B.; PERKOWSKI M. A.; GOLDSTEIN N. B. PALMINI-Fast Boolean

Minimizer for Personal Computer. Design Automation Conference, p. 615-621. 1987.

PEER, J.; PINTER, R.. Minimal decomposition of Boolean functions using non-repeating

literal trees. In Proc. of the IFIP Workshop on Logic and Architecture Synthesis, IFIP TC10

WD10.5, p.129-39. 1995.

PERKOWSKI, M. A.; GRYGIEL, S. A Survey of Literature on Function Decomposition

Version IV. Portland State University. 1995.

PLAZA, S.; BERTACCO, V. STACCATO Disjoint Support Decompositions from BDDs

through Symbolic Kernels, Asia and South Pacific Design Automation Conference (ASP-

DAC). 2005.

POSSANI, V. N.; CALLEGARO, V.; REIS, A. I.; RIBAS, R. P.; MARQUES, F. S.; DA

ROSA, L. S. Graph-Based Transistor Network Generation Method for Supergate

Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2,

p. 692-705, Feb. 2016.

POSSANI, V. N.; SOUZA, R. S.; DOMINGUES, J. S.; AGOSTINI, L. V.; MARQUES, F.

S.; DA ROSA JR, L. S. Optimizing transistor networks using a graph-based technique.

Journal of Analog Integrated Circuits and Signal Processing, vol. 73, no. 3, p. 841-850, Dec.

2012.

QUINE, W. V. A Way to Simplify Truth Functions. The American Mathematical Monthly

62 (9): 627–631. Nov, 1955.

QUINE, W. V. The Problem of Simplifying Truth Functions. The American Mathematical

Monthly 59 (8): 521–531. Oct, 1952.

ROTH, J.; KARP, R. Minimization over Boolean graphs. IBM Journal, p. 227-238, Apr.

1962.

RUDELL, R. Dynamic variable ordering for ordered binary decision diagrams.

Proceedings of the 1993 IEEE/ACM international conference on Computer-aided design.

IEEE Computer Society Press, 1993.

SASAO T. EXMIN2: a simplification algorithm for exclusive-OR-sum-of-products

expressions for multiple-valued-input two-valued-output functions. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol.12, no.5, p.621,632,

May 1993.

SASAO, T. DECOMPOS: An Integrated System for Functional Decomposition.

International Workshop on Logic and Synthesis. 1998

SASAO, T. Multiple-valued decomposition of generalized Boolean functions and the

complexity of programmable logic arrays. IEEE Transactions on Computers, C-30(9):635–

643, September 1981.

SASAO, T. Switching Theory for Logic Synthesis. Springer, 1999.

SASAO, T.; BUTLER, J. On bi-decomposition of logic functions. Int’l Workshop of Logic

& Synthesis (IWLS). 1997.

SASAO, T; BUTLER, J. T. Worst and best irredundant sum-of-products expressions.

IEEE Transactions on Computers, vol. 50, no. 9, p. 935-948, Sep 2001.

SEN, P.; DESHPANDE, A; GETOOR, L. Read Once Functions and Query Evaluation in

Probabilistic Databases. Proceedings of the VLDB Endowment. 2010

SENTOVICH E.; SINGH K.; LAVAGNO L.; MOON, C.; MURGAI R.; SALDANHA, A.;

SAVOJ, H.; STEPHAN, P.; BRAYTON R.; SANGIOVANNI-VINCENTELLI, A. L. SIS: A

system for sequential circuit synthesis. Tech. Rep. UCB/ERL M92/41. UC Berkeley,

Berkeley. 1992.

SHANNON, C. E. A Symbolic Analysis of Relay and Switching Circuits. Trans. AIEE 57

(12): 713–723. 1938.

SHANNON, C. The synthesis of two-terminal switching circuits. Bell System Technical

Journal, Wiley Online Library, v. 28, n. 1, p. 59–98, 1949.

SLOANE, N. J. A.; PLOUFFE, S. The Encyclopedia of Integer Sequences, Academic

Press, 1995.

108

STANION, T.; SECHEN, C. Boolean division and factorization using binary decision

diagrams. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.

13, no. 9, p.1179-84. Sep. 1994.

VENN, J. On the diagrammatic and mechanical representation of propositions and

reasonings, Philosophical Magazine Series 5, Vol. 10, Iss. 59, 1880

YOSHIDA H.; FUJITA M. Exact minimum factoring of incompletely specified logic

functions via quantified Boolean satisfiability. IPSJ Trans. on System LSI Design

Methodology, vol. 4, Feb. 2011.

YOSHIDA, H.; IKEDA, M.; ASADA, K. Exact minimum logic factoring via quantified

Boolean satisfiability. In Proc. of IEEE Int’l Conf. on Electronics, Circuits and Systems

(ICECS), p.1065-68. 2006.

YOSHIDA, H; FUJITA, M.. Exact minimum factoring of incompletely specified logic

functions via quantified Boolean satisfiability, IPSJ Trans. on System LSI Design

Methodology, vol. 4, p.70-79. 2011.

ZHANG, J. S.; MISHCHENKO, A; BRAYTON, R; CHRZANOWSKA-JESKE, M.

Symmetry detection for large Boolean functions using circuit representation, simulation,

and satisfiability. In Proceedings of the 43rd annual Design Automation Conference. 2006.

ZHU, J.; ABD-EL-BARR, M. On the optimization of MOS circuits. IEEE Trans. on

Circuits and Systems I: Fundamentals, Theory and Applications, vol. 40, no. 6, p. 412-422,

June 1993.

APÊNDICE <RESUMO DA TESE>

MINIMIZAÇÃO ÓTIMA DE

CLASSES ESPECIAIS DE FUNÇÕES BOOLEANAS

1. INTRODUÇÃO

O fluxo de projeto de síntese de circuitos é normalmente dividido em três etapas: síntese

arquitetural, síntese lógica e de síntese física. A síntese arquitetural, muitas vezes chamado de

síntese de alto nível, consiste em transformar uma descrição algorítmica do comportamento

desejado do circuito em um formato de hardware, como o formato de transferência de dados

entre os registradores – RTL (Register Transfer Level). Normalmente, essas descrições

algorítmicas são representadas em um formato similar a linguagem C (por exemplo, System

C) ou em uma linguagem de descrição comportamental de hardware – HDL (Hardware

Description Language), como por exemplo, VHDL ou Verilog.

O processo de síntese lógica tem sido uma das áreas de maior sucesso comercial no campo

de automação de projetos eletrônicos – EDA (Electronic Design Automation). A grande

maioria dos dispositivos digitais que usamos no nosso dia-a-dia foi concebida por um

conjunto de ferramentas de síntese lógica. A tarefa de síntese lógica consiste em várias etapas.

Estas etapas podem ser diferentes de acordo com a natureza do circuito, por exemplo

sequencial ou combinacional. O principal objetivo da síntese lógica é determinar a estrutura

primitiva de um circuito, ou seja, a sua representação em nível de portas padrão. A síntese

lógica é geralmente dividida em três fases: otimizações independentes de tecnologia,

mapeamento tecnológico e otimizações dependentes de tecnologia (MICHELI, 1994). A

primeira aplica transformações que não dependem da tecnologia em si, mas do

comportamento funcional de uma rede Booleana, e.g. algoritmos de fatoração e de

decomposição. A fase de mapeamento tecnológico faz o casamento entre partes do circuito

para células de uma biblioteca, que tem informações sobre a tecnologia alvo. Por fim, na fase

dependente de tecnologia, se aplicam otimizações no circuito mapeado que levam fortemente

em consideração informações da tecnologia, por exemplo, redimensionamento de células e

duplicação de lógica. A síntese física, ou síntese no nível geométrico, consiste principalmente

110

de duas tarefas: o posicionamento de blocos lógicos, que distribui fisicamente as células e o

roteamento, que conecta os sinais através de fios (ALPERT; Mehta; SAPATNEKAR, 2008).

Este trabalho visa a síntese de funções booleanas no âmbito de um fluxo de projeto de

circuitos digitais, mais precisamente na fase de síntese lógica. O escopo deste trabalho pode

ser considerado mais amplo, visto que os algoritmos propostos para síntese de funções

Booleanas podem ter aplicação em diferentes áreas que não sejam síntese de circuitos, por

exemplo, inteligência artificial (ANGLUIN; HELLERSTEIN; KARPINSKI, 1993;

BSHOUTY; HANCOCK; HELLERSTEIN, 1995) e bancos de dados (SEN; DESHPANDE;

GETOOR, 2010) (KANAGAL; LI; DESHPANDE, 2011).

Motivação e desafios

O processo de fatorar funções Booleanas é uma operação fundamental na síntese lógica

(BRAYTON, 1987; HACHTEL; SOMENZI, 2006). Fatoração é o processo de derivar uma

equação algébrica, ou forma fatorada, representando uma dada função Booleana. Por

exemplo, 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 pode ser fatorada em uma equação logicamente

equivalente 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

Qualquer função lógica pode ser representada por expressões fatoradas distintas. A tarefa

de fatorar funções Booleanas em fórmulas mais compactas e equivalentes é uma das

operações básicas dos estágios iniciais da síntese lógica (HACHTEL; SOMENZI, 2006). Na

maioria dos estilos de projeto, como portas lógicas CMOS, o número de dispositivos

necessários para a realização de uma função Booleana corresponde quase que diretamente

com sua forma fatorada em termos de contagem de literais. Gerar uma forma fatorada ótima,

i.e. a equação com menor número de literais, é um problema ∑ -complete𝑃
2 (GOLUMBIC;

MINTZ, 1999). Logo, algoritmos heurísticos foram desenvolvidos de forma a se obter boas

soluções fatoradas (BRAYTON, 1987; STANION; SECHEN, 1994; MINTZ; GOLUMBIC,

2005; HACHTEL; SOMENZI, 2006; YOSHIDA; FUJITA, 2011). Algumas heurísticas bem

conhecidas incluem X-Factor (MINTZ; GOLUMBIC, 2005), que provê boas soluções, mas

não garante equações mínimas. Em (LAWLER, 1964), o autor afirma prover a fatoração

exata. Porém, o método de Lawler não é escalável e é impraticável mesmo para algumas

funções com apenas quatro entradas. Recentemente, novas abordagens têm melhorado o

processo de fatoração visando soluções exatas, mas a escalabilidade e tempo de execução

continuam a ser o principal gargalo (YOSHIDA; IKEDA; ASADA, 2006; YOSHIDA;

FUJITA, 2011; MARTINS ET AL., 2012).

Como fatoração e decomposição para funções genéricas é um problema ∑ -complete𝑃
2 ,

uma boa estratégia é a identificação de funções Booleanas que são mais fáceis de serem

sintetizadas. Este é o caso das classes de funções Booleanas read-once, decomposição

disjunta de suporte e read-polarity-once.

Uma forma fatorada é chamada de read-once (RO) se cada variável aparece uma única

vez. Uma função Booleana é RO se ela puder ser representada por uma forma RO (HAYES,

1975). Por exemplo, a função representada por 𝐹 = 𝑥1𝑥2 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 é RO, pois pode

ser fatorada em 𝐹 = 𝑥1(𝑥2 + 𝑥3(𝑥4 + 𝑥5)).

Uma função Booleana f(X) pode ser decomposta usando funções mais simples g and h, de

forma que 𝑓(𝑋) = ℎ(𝑔(𝑋1), 𝑋2) sendo X1, X2 ≠ ∅, e X1 ∪ X2 = X (ASHENHURST, 1957),

(CURTIS, 1962). Uma decomposição disjunta de suporte (DSD - disjoint-support

decomposition) é um caso especial de decomposição funcional, onde o conjunto de entradas

X1 e X2 não compartilham elementos, i.e., X1 ∩ X2 = ∅. Grosso modo, funções DSD podem ser

representadas por uma expressão read-once onde o operador ou-exclusivo (⊕) também pode

ser utilizado como operador básico. Por exemplo, 𝐹 = 𝑥1(𝑥2 ⊕ (𝑥4 + 𝑥5)).

Uma forma read-polarity-once (RPO) é uma forma fatorada onde cada polaridade

(positiva ou negativa) de uma variável aparece no máximo uma única vez. Uma função

Booleana é RPO se ela puder ser representada por uma forma fatorada RPO (CALLEGARO

ET AL, 2012). Por exemplo, a função 𝐹 = 𝑥1̅̅̅𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥3 é RPO, pois pode ser

fatorada em 𝐹 = (𝑥1̅̅̅𝑥4 + 𝑥3)(𝑥1 + 𝑥2).

A motivação para a pesquisa destas classes especiais de funções é que, além de mais

simples para síntese, estas classes são de interesse especial no contexto de projeto de circuitos

digitais, visto que a ocorrência das mesmas é extremamente frequente em circuitos (PEER;

PINTER, 1995), (MISHCHENKO, BRAYTON, 2013) (CALLEGARO ET AL, 2014). O

desafio é, portanto, a criação de métodos eficientes e exatos que possam sintetizar tais classes.

112

Objetivo

Esta tese apresenta quarto novos algoritmos para a síntese de funções Booleanas. A

primeira contribuição é um método de síntese que encontra uma realização read-once para

uma dada função Booleana. O método é baseado em uma estratégia de divisão-e-conquista. A

solução read-once para uma função alvo é obtida através da obtenção de soluções read-once

para sub-funções mais simples: cofatores negativos e positivos (fase da divisão). Estas

soluções mais simples são então compostas (fase de conquista), resultando em uma solução

read-once para o problema original (função alvo). O método não depende especificamente de

uma estrutura de dados, pois necessita apenas das operações de cofatoração e checagem de

tautologia e antilogia (testa se a função é uma constante 1 ou 0, respectivamente).

A segunda e terceira contribuições são métodos para síntese de funções DSD.

(CALLEGARO ET AL, 2015a). Uma abordagem top-down checa se existe uma

decomposição OR, AND ou XOR baseado em entradas de soma-de-produtos, produto-de-

somas e soma-exclusiva-de-produtos, respectivamente. O outro método é uma abordagem

bottom-up e é basedo na análise de diferenças Booleanas e cofatores (CALLEGARO ET AL,

2015b). Dois testes simples resultam em condições necessárias e suficientes para identificar

decomposições AND e XOR.

A última contribuição é um novo método para síntese de funções RPO (CALLEGARO ET

AL, 2013). O método é baseado no conceito de conjunto de transições positivas e negativas

das variáveis de entrada. O método é capaz de detectar se dois literais devem ser agrupados

utilizando uma operação lógica AND ou OR pela análise dos conjuntos de transições.

2. MÉTODO PROPOSTO PARA SÍNTESE DE FUNÇÕES READ-ONCE

Um método de síntese que encontra, sempre que possível, uma realização read-once (RO)

para uma função alvo é apresentado. O método se baseia no fato de que a classe de função RO

é fechada para operações de cofator, isto é, o cofator de uma função RO é uma função RO

(HAYES, 1975). Dada uma função f (X) dependendo de n entradas e uma variável xi  X, a

ideia é obter recursivamente árvores read-once para os cofatores negativos e positivos de uma

variável xi e, baseado nestas duas árvores, decidir o ponto de inserção de xi em uma destas

árvores.

O método foi implementado utilizando como estrutura de dados básica um diagrama de

decisão binária, reduzido e ordenado (ROBDD – Reduced and Ordered Binary Decision

Diagram). Note que o método não depende especificamente de um diagrama de decisão

binária (BDD – Binary Decision Diagram). Porém, BDDs são candidatos naturais, pois os

cofatores das variáveis já estão convenientemente calculados. A plataforma usada para avaliar

o método foi um sistema Linux com processador Intel Core i5 2400 e 4 GB de memória

principal.

O primeiro experimento consiste na análise isolada do método de conquista

(RO_COMPOSITION). O método recebe duas árvores read-once em formato canônico e,

baseado nesta informação, compõe se possível uma árvore read-once para a função algo. A

Figura 1 mostra que o método RO_COMPOSITION roda em tempo linear em relação ao

número de entradas.

114

Figura 1 – Análise de tempo de execução do método RO_COMPOSITION. Os resultados mostram

que o método roda em 𝑂(𝑛).

O segundo experimento consiste na obtenção de ROBDDs para funções read-once. A

ordem das variáveis escolhidas para a criação dos ROBDDs foi completamente aleatória.

Note que os ROBDDs gerados poderiam ter um número menor de nodos se utilizado um

ordenamento dinâmico de variáveis (RUDELL, 1993). Entretanto, nossa ideia é mostrar como

o método se comporta mesmo quando o número de nodos do BDD é bastante grande.

Resultados obtidos após a execução do método RO_BY_COFACTOR nestes BDDs são

exibidos na Tabela 1. Como foi utilizada uma ordem randômica de variáveis, o maior BDD,

representando uma função com 51 entradas, tinha 637,185 nodos e levou 8.76 segundos para

ser executado. Em todos os casos, soluções read-once foram encontradas para cada nodo do

BDD. No total, 1,709,418 nodos de BDD foram avaliados, levando 20.47 segundos para

execução.

No terceiro experimento, o método foi testado para funções não-read-once. Como

sabemos de antemão que o BDD não representa uma função read-once, nenhuma solução

read-once deve ser encontrada para o nodo do topo do BDD. Porém, devem existir nodos do

BDD que possam ser representados por expressões read-once; ao menos para nodos

representando variáveis de entrada e nodos constantes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Te
m

p
o

 d
e

ex
ec

u
çã

o
 (s

)

número de entradas (em milhares)

Método RO_COMPOSITION

Deixe uma função não-read-once (aleatoriamente gerada) ser representada por 𝐹1 =

𝑥1̅̅̅𝑥3𝑥4̅̅ ̅𝑥5𝑥6 + 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅𝑥6 + 𝑥1𝑥2̅̅ ̅𝑥5𝑥6 + 𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3𝑥5𝑥6 + 𝑥1̅̅̅𝑥2𝑥3𝑥4𝑥5 +

𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥4̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅ + 𝑥1𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ + 𝑥2𝑥3𝑥4̅̅ ̅ 𝑥5̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑥4̅̅ ̅ +

𝑥1𝑥2𝑥4̅̅ ̅𝑥5𝑥6̅̅ ̅ + 𝑥1𝑥2𝑥4𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3̅̅ ̅𝑥4𝑥5 + 𝑥1̅̅̅𝑥2𝑥3𝑥4̅̅ ̅ 𝑥6̅̅ ̅. O BDD resultante é mostrado na

Figura 2. Nodos em verde representam funções read-once.

Figura 2 – ROBDD representando uma função não-read-once 𝐹1 = 𝑥1̅̅̅𝑥3𝑥4̅̅ ̅𝑥5𝑥6 + 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅𝑥6 +

𝑥1𝑥2̅̅ ̅𝑥5𝑥6 + 𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3𝑥5𝑥6 + 𝑥1̅̅̅𝑥2𝑥3𝑥4𝑥5 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥4̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥3𝑥4𝑥5̅̅ ̅ + 𝑥1𝑥3̅̅ ̅ 𝑥5̅̅ ̅ 𝑥6̅̅ ̅ +

𝑥1𝑥2𝑥3̅̅ ̅ 𝑥5̅̅ ̅ + 𝑥2𝑥3𝑥4̅̅ ̅ 𝑥5̅̅ ̅𝑥6 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥1𝑥2𝑥4̅̅ ̅𝑥5𝑥6̅̅ ̅ + 𝑥1𝑥2𝑥4𝑥5̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1𝑥3̅̅ ̅𝑥4𝑥5 + 𝑥1̅̅̅𝑥2𝑥3𝑥4̅̅ ̅ 𝑥6̅̅ ̅.

Nodos em verde representam funções read-once.

116

Tabela 1 – Tempo de execução do método RO_BY_COFACTOR sobre ROBDDs representando

funções read-once. Os ROBDDs foram construídos utilizando uma ordem randômica de variáveis.

Entradas #BDD Execução (s) Entradas #BDD Execução (s)

2 4 0.02 27 1,146 0.01

3 5 0.00 28 2,402 0.05

4 8 0.00 29 3,808 0.05

5 9 0.00 30 3,604 0.04

6 10 0.00 31 3,948 0.04

7 11 0.00 32 4,104 0.06

8 20 0.00 33 7,882 0.10

9 28 0.00 34 1,133 0.01

10 34 0.00 35 7,052 0.06

11 44 0.00 36 3,614 0.03

12 42 0.00 37 18,674 0.15

13 68 0.00 38 31,516 0.26

14 51 0.00 39 14,344 0.12

15 114 0.00 40 5,794 0.04

16 80 0.01 41 21,920 0.23

17 92 0.00 42 33,238 0.28

18 353 0.01 43 22,868 0.16

19 368 0.01 44 130,210 1.26

20 718 0.02 45 61,361 0.61

21 412 0.00 46 152,138 1.79

22 389 0.01 47 134,976 1.49

23 685 0.01 48 50,636 0.54

24 1,079 0.01 49 284,700 3.62

25 851 0.01 50 65,116 0.61

26 574 0.00 51 637,185 8.76

3. MÉTODO DE DECOMPOSIÇÃO TOP-DOWN PARA SÍNTESE DE

FUNÇÕES DISJUNTAS DE SUPORTE

Esta seção apresenta um método para síntese de decomposição disjunta de suporte (DSD –

disjoint-support decomposition) (CALLEGARO ET AL, 2015). O método proposto é baseado

em um grafo de interseção de variáveis que é diretamente obtido dos termos Booleanos

representando uma dada função f (GOLUMBIC, 2004), (MINTZ, GOLUMBIC, 2005). Caso

este grafo seja desconectado em m componentes conectados, a função f pode ser decomposta

em m subfunções h0(X0), …, hm-1(Xm-1).

O operador de decomposição ○  {AND, OR, XOR} é determinado de forma que a

implementação DSD para f é obtido por 𝑓 = ○ (ℎ0(𝑋0), … , ℎ𝑚−1(𝑋𝑚−1)), onde X0, ..., Xm-1

são mutuamente disjuntos. O operador de decomposição ○ é um operador OR se os termos

Booleanos foram obtidos dos cubos de uma soma-de-produtos irredundante (ISOP –

irredundant sum-of-products) de f. O operador ○ é uma operação AND se os termos

Booleanos são somas obtidas de um produto-de-somas irredundante (IPOS - irredundant

product-of-sums). Finalmente, ○ é um operador XOR se os termos Booleanos vierem de

produtos de uma soma-exclusiva-de-produtos (ESOP – exclusive sum-of-products).

Definições

Deixe F ser uma expressão em formato SOP, POS ou ESOP representando uma função

Booleana f(X). Um grafo de interseção de variáveis (VIG – variable intersection graph)

GF = (X, E) é um grafo não direcionado onde os vértices correspondem as variáveis em F, e

existe uma aresta entre (xi, xj)  E, xi, xj  X se e somente se xi and xj estão presente no

mesmo termo Booleano (GOLUMBIC, 2004), (MINTZ, GOLUMBIC, 2005).

Deixe f = (a+b) ⊕ (c∙d) ser representado por uma forma ISOP 𝐹 = (! 𝑎! 𝑏𝑐𝑑 + 𝑎! 𝑑 +

𝑏! 𝑐 + 𝑎! 𝑐 + 𝑏! 𝑑) e por uma forma ESOP H = 1⊕ (!a∙!b) ⊕ (c∙d). O VIG GF e GH são

mostrados na Figura 3 (a) e Figura 3 (b), respectivamente.

(a) (b)

Figura 3 – Um grafo de interseção de variáveis (VIG) obtido de uma (a) ISOP

F = (!a∙!b∙c∙d+a∙!d+b∙!c+a∙!c+b∙!d) e (b) de uma forma ESOP H = 1⊕ (!a∙!b) ⊕ (c∙d).

118

Na teoria dos grafos, um componente conectado de um grafo não direcionado é um

subgrafo em que 1) qualquer dois vértices estão conectados entre si através de um caminho, e

2) não está conectado a nenhum outro vértice adicional no supergrafo (HOPCROFT, 1973).

Por exemplo, o grafo GF apresentado na Figura 3 (a) é conectado, i.e. contém exatamente um

componente conectado {a, b, c, d}. O grafo GH, exibido na Figura 3 (b), é desconectado e

contém exatamente dois componentes conectados {a, b} e {c, d}.

De forma a exemplificar o método proposto, deixe uma função Booleana f ser

representada pela seguinte expressão:

f(a, b, c, d, e) = !a!bc!de + !a!bcd!e + !a!bcde + !ab!c!de + !ab!cd!e + !ab!cde + a!b!c!de

 + a!b!cd!e + a!b!cde+ a!bc!de + a!bcd!e + a!bcde + ab!c!de + ab!cd!e

 + ab!cde + abc!de + abcd!e + abcde.

A árvore de execução completa do algoritmo proposto é mostrada na Figura 4, onde

arestas sólidas denotam chamadas recursivas e arestas pontilhadas representam a informação

retornada por chamadas recursivas que encontraram uma decomposição.

Figura 4 – Uma árvore de execução completa do algoritmo proposto.

Resultados experimentais

Uma ferramenta para síntese de funções DSD foi apresentada. A ferramenta proposta usa

ferramentas como ESPRESSO (BRAYTON ET AL, 1984) e EXORCISM-4

(MISHCHENKO; PERKOWSKI, 2001) de forma a prover formas ISOP, IPOS e ESOP,

respectivamente. A plataforma utilizada para a execução deste teste foi um Sistema Linux

com Intel Core i5 2400 e com 4 GB de memória principal.

De forma a demonstrar a eficiência e precisão da abordagem proposta, dois experimentos

foram executados. O primeiro usa todas as funções DSD de até 6 entradas. O segundo

experimento foi feito selecionando PLAs de referência disponíveis em (ESPRESSO BOOK

120

EXAMPLES). Em todos estes experimentos, o tempo total levado em consideração inclui

leitura e escrita dos arquivos bem como a troca de contexto entre chamadas de distintas

ferramentas (ESPRESSO e EXORCISM-4).

Todas as funções DSD de até 6 entradas foram agrupadas em classe de equivalência

através de permutação de entradas (classes-P). Resultados considerando a decomposição

dessas funções são apresentados na Tabela 2. A coluna Tempo mostra o tempo necessário (em

segundos) para a execução de todas as classes. O método proposto encontrou decomposições

DSD para todas as funções testadas com sucesso.

Tabela 2 – Resultados para um conjunto de funções composto de funções DSD de até 6 variáveis,

agrupado por equivalência através de permutação de entrada (classes-P).

Entradas Classes P Tempo (s) Pior tempo (s) Tempo Médio (s)

2 8 0.2 0.06 0.02

3 36 1.5 0.11 0.04

4 206 13 0.18 0.06

5 1,259 107 0.27 0.09

6 8,448 909 0.31 0.11

Um segundo experimento foi executado em exemplos obtidos em (ESPRESSO BOOK

EXAMPLES). Os resultados são mostrados na Tabela 3, onde a segunda e a terceira coluna

denotam o número de entradas e de saídas primárias, respectivamente. A coluna Saídas

decompostas reporta o número de saídas às quais uma decomposição DSD foi encontrada

com sucesso. A coluna Tempo reporta o tempo total para execução do método.

Tabela 3 – Circuitos selecionados do benchmark (ESPRESSO BOOK).

Circuito Entradas primárias Saídas primárias Saídas decompostas Tempo (s)

5xp1 7 10 4 0.97
9sym 9 1 0 0.07
alu4 14 8 0 0.71

apex1 45 45 12 3.37
apex2 39 3 0 3.09
apex3 54 50 18 3.31
apex4 9 19 1 1.21
apex5 117 88 9 7.13

b12 15 9 2 0.52
bw 5 28 7 1.51
clip 9 5 0 0.24
con1 7 2 0 0.08

cordic 23 2 0 5.05
cps 24 109 51 9.02

duke2 22 29 8 2.08
e64 65 65 65 0.88

ex1010 10 10 0 0.77

ex4 128 28 14 1.36
ex5 8 63 35 1.91
inc 7 9 2 0.57

misex1 8 7 0 0.35
misex2 25 18 12 0.7
misex3 14 14 0 1.02
misex3c 14 14 0 0.8
mytest 2 1 1 0.01

pdc 16 40 12 2.48
rd53 5 3 1 0.13
rd73 7 3 1 0.14
rd84 8 4 2 0.17
sao2 10 4 0 0.4
seq 41 35 2 5.03
spla 16 46 12 3.76

squar5 5 8 3 0.41

t481 16 1 1 0.48
table3 14 14 0 1.09
table5 17 15 0 1.62
xor5 5 1 1 0.04

Z5xp1 7 10 4 0.83
Z9sym 9 1 0 0.05
ex1010 10 10 0 1.06

ex4 128 28 14 1.47

ibm 48 17 0 0.82
jbp 36 57 31 3.71

mainpla 27 54 0 5.43
misg 56 23 22 0.35
mish 94 43 43 0.89
misj 35 14 14 0.37
pdc 16 40 12 2.5
shift 19 16 1 0.69

signet 39 8 4 7.6
soar 83 94 47 7.19
test2 11 35 0 5.17
test3 10 35 0 2.52

ti 47 72 21 5.34
ts10 22 16 0 0.72
x7dn 66 15 0 1.27
xparc 41 73 11 13.87

122

4. MÉTODO DE DECOMPOSIÇÃO BOTTOM-UP PARA SÍNTESE DE

FUNÇÕES DISJUNTAS DE SUPORTE

Esta seção apresenta uma nova abordagem para decomposição baseado na análise de

cofatores e diferença Booleana (CALLEGARO ET AL, 2015b).). Dois testes simples

resultam em condições necessárias e suficientes para identificar decomposições AND e XOR.

Estes testes foram apresentados por Kodandapandi, em (KODANDAPANDI; SETH, 1978),

no contexto de diagramas de decomposição (decomposition charts). Estes testes são

revisitados, e uma nova e eficiente abordagem baseada em cofatores é apresentada. Além de

decomposições AND e XOR, uma decomposição para multiplexador (MUX) é apresentada.

Testes necessários e suficientes para detecção de decomposição MUX para um número

arbitrário de entradas também é apresentado. Por fim, um algoritmo que precisa no máximo

O(n · log n) cofatores e O(n) testes de equivalência é apresentado. Resultados experimentais

demonstram a eficiência do método proposto, quando comparado com estratégias de

decomposição que são estado-da-arte.

Definições

Dada uma função F(X), a operação de cofator consiste no assinalamento de um valor

binário ci ∈ B, a uma variável de entrada xi ∈ X. A operação de cofator é denotada por 𝐹𝑥𝑖=𝑐𝑖 .

O cofator negativo (positivo) de uma variável xi é denotado por 𝐹𝑥𝑖=0 (𝐹𝑥𝑖=1). A diferença

Booleana de uma função F com relação a uma variável xi, é denotado por 𝐹𝑥𝑖
 e é definido

como 10 
 ii

i

xx

x FFF .

Regras de decomposição

Teorema (Decomposição AND). Deixe F(X1, X2) ser uma função Booleana com

X1 = {xi, xj}, X1 ∩ X2 = ∅. Existe uma função H(z1, X2), onde z1 = G(X1) = xi
ci
 ∙ xj

cj
, de forma

que F(X1, X2) = H(G(X1), X2), se e somente se:

jjii
cxcx

FF


 . (83)

Teorema (Decomposição XOR). Deixe F(X1, X2) ser uma função Booleana com

X1 = {xi, xj}, X1 ∩ X2 = ∅. Existe uma função H(z1, X2), onde z1 = G(X1) = xi
ci
 ⊕ xj

cj
, de forma

que F(X1, X2) = H(G(X1), X2), se e somente se:

ji xx FF  (84)

Teorema (Decomposição MUX). DeixeF(X1, X2) ser uma função Booleana com

X1 = S ∪ D, S = {xs}, D = {xi, xj}, S ∩ D = ∅, X1 ∩ X2 = ∅. Existe uma função H(z1, X2), onde

z1 = G(X1) = MUX(S, D) =
jsis xxxx  , de forma que F(X1, X2) = H(G(X1), X2), se e

somente se todas as equações (85)-(90) são safisfeitas:

ji xx FF 
(85)

0
ji xxF

(86)

0)(
1


s

i

x

xF (87)

0)(
0


s

j

x

xF
(88)

0)(
0,0




s

ji

x

xx
F (89)

0)(
1,1




s

ji

x

xx
F (90)

Resultados experimentais

Esta seção apresenta resultados do algoritmo proposto, que foi implementado na

ferramenta ABC (BERKELEY, 2016). A plataforma utilizada para a execução deste teste foi

um Sistema Linux com Intel Core i5 2400 e com 4 GB de memória principal.

Uma comparação do método proposto com relação ao método estado-da-arte disponível na

ferramenta ABC foi realizada. Os métodos comparados podem ser executados através dos

comandos testdec –A 3 (MISHCHENKO; STEINBACH; PERKOWSKI, 2001) e testdec –

A 4, que é uma nova versão do método apresentado em (MISHCHENKO; STEINBACH;

PERKOWSKI, 2001). Os métodos são comparados utilizando diversos conjuntos de funções

como entrada. Em todos os testes, todos os métodos deram soluções corretas e idênticas.

O primeiro experimento foi realizado utilizando-se um conjunto de funções DSD

(CALLEGARO, 2016). O primeiro conjunto de funções contém todas as funções full-DSD de

até 6 variáveis, como exibido na primeira linha da

Tabela 4. A segunda linha representa um conjunto aleatório de funções full-DSD de até 7

entradas. O método proposto é mais eficiente do que o algoritmo apresentado em

(MISHCHENKO; STEINBACH; PERKOWSKI, 2001), considerando ambas as versões –

original e versão mais recente.

124

Tabela 4 – Comparação de métodos de decomposição DSD considerando dois conjuntos de funções

full-DSD.

Entradas Funções testdec –A 3 testdec –A 4 Método proposto

6 2,311,640 5.49 s 6.76 s 1.5 s

7 2,744,691 10.7 s 10.15 s 2.64 s

O segundo experimento foi realizado levando em conta as mesmas funções de referência

retiradas de (HUANG ET AL, 2013). Os resultados apresentados na Figura 5 comparam o

tempo de execução (em segundos) após a aplicação de cada método sobre o conjunto de

funções. O método proposto é mais rápido para funções de até 10 variáveis de entrada. Para

funções com mais de 12 variáveis, o método descrito em (MISHCHENKO; STEINBACH;

PERKOWSKI, 2001) e com melhorias apresenta um tempo de execução melhor.

Figura 5 - Comparação entre o método proposto e os métodos estado-da-arte para decomposição DSD

disponíveis na ferramenta ABC. O tempo de execução do método proposto é representado por

triângulos azuis.

5. MÉTODO DE SÍNTESE PARA FUNÇÕES READ-POLARITY-ONCE

Esta seção apresenta uma comparação entre classes de funções read-once (RO),

decomposição disjunta de suporte (DSD – disjoint support decomposition) e read-polarity-

once (RPO). Uma primeira análise foi feita considerando todo o universo de funções

Booleanas até oito entradas. Estes resultados são exibidos na Tabela 5. O número de funções

em cada classe é apresentado em suas respectivas colunas. A quinta coluna mostra o número

de funções que são tanto DSD quanto RPO. Cada linha na Tabela 5 representa o número total

de funções por classe até n entradas, onde 2 ≤ n ≤ 8. O número de funções possíveis com n

entradas é 22𝑛
.

Tabela 5 – Enumeração de classes de funções Booleanas: read-once (RO), decomposição disjunta de

suporte (DSD) e read-polarity-once (RPO).

Entradas RO DSD RPO DSD ∩ RPO
𝐷𝑆𝐷 ∩ 𝑅𝑃𝑂

𝐷𝑆𝐷

2 12 14 14 14 100%

3 94 150 228 148 99%

4 1,144 2,678 20,748 2,492 93%

5 19,994 68,966 6,814,286 57,894 84%

6 456,774 2,311,640 3,934,102,220 1,699,626 74%

7 12,851,768 95,193,064 - - -

8 429,005,426 4,645,069,336 - - -

Outra comparação entre classes foi realizada considerando circuitos de referência MCNC

(IWLS, 2005). Resultados confirmam que o número de funções RPO é representativamente

maior que funções RO e DSD. Isto significa que funções RPO são também importantes em

circuitos industriais, e que um algoritmo de síntese exata para funções RPO pode melhorar a

qualidade de circuitos digitais.

Além da comparação, esta seção apresenta um novo método para síntese de funções RPO

(CALLEGARO ET AL, 2013). O conceito apresentado neste algoritmo é mais simples que o

apresentado em (CALLEGARO ET AL, 2012), além ser consideravelmente mais rápido. O

método proposto foi capaz de eficientemente encontrar soluções ótimas com até 16 literais,

enquanto outros métodos não (YOSHIDA; FUJITA, 2011) (MARTINS ET AL, 2012).

126

Resultados experimentais

O primeiro experimento foi feito usando o conjunto de todas as funções de 5 entradas

agrupadas em classe de equivalência NPN (funções equivalentes através de negação /

permutação de entradas e negação de saída). Este conjunto de funções contém 616,125 classes

NPN de até 5 entradas. A plataforma utilizada para a execução deste teste foi um Sistema

Linux com Intel Core i5 2400 e com 4 GB de memória principal.

Para rodar o algoritmo proposto para todo o conjunto de 616,125 funções o tempo de

execução foi de 44 segundos. O pior caso de otimização levou 1ms e, na média, cada função

levou 70 µs para ser sintetizada. A implementação feita baseada no algoritmo X-Factor

(MINTZ, GOLUMBIC, 2005) levou 50 minutos para rodar, resultando em um total de total

12,530,011 literais. O algoritmo FC (MARTINS ET AL, 2012) resultou em 11,292,029

literais e precisou de 6 horas para executar. É importante notar que ambos algoritmos (FC e

X-Factor) foram projetados para tratar de funções arbitrárias, enquanto o algoritmo aqui

proposto foi projetado para sintetizar apenas funções RPO.

Resultados da avaliação da eficiência do algoritmo proposto é mostrado na Tabela 6,

considerando apenas o subconjunto de 1,462 funções RPO, extraídos do conjunto de classes-

NPN de até 5 variáveis. O método proposto apresenta resultados melhores tanto em tempo de

execução quando em contagem de literais, quando comparado com os métodos Quick Factor

(QF) (SENTOVICH ET AL, 1992), Good Factor (GF) (SENTOVICH ET AL, 1992),

Functional Composition (FC) (MARTINS ET AL, 2012) X-Factor (MINTZ, GOLUMBIC,

2005).

Tabela 6 – Número total de literais e tempo de execução para obter formas fatoradas para 1,462

funções RPO utilizando diferentes abordagens.

 QF GF FC X-Factor
RPO

2013

Este

trabalho

Literais 16,086 15,671 13,754 13,253 13,064 13,064

Tempo 1.9s 2.3s 21s 7.1s 5.7s 0.7s

No segundo experimento, um estudo utilizando circuitos MCNC foi realizado (IWLS

2005). Foram extraídas funções de até 10 entradas dos circuitos através de enumeração de

cortes-k (CHATTERJEE; MISHCHENKO; BRAYTON, 2006), (MACHADO ET AL, 2012).

Infelizmente os métodos FC e X-Factor foram muito lentos e não foi possível se obter

soluções para os circuitos em um tempo factível. O algoritmo proposto levou 36s, 2m36s e

6m53s para fatorar funções extraídas dos circuitos de 6, 8 e 10 entradas, respectivamente.

Como é possível ver na Tabela 7, funções RPO também são bastante frequentes em circuitos

de referência. Isto mostra que funções RPO são de especial interesse em aplicações como

circuitos digitais.

O último experimento consiste na análise de funções não-RPO considerando os seguintes

conjuntos de funções: todas as funções de até três e quatro variáveis, todas as funções de até

cinco entradas agrupadas por equivalência através de negação / permutação de entradas

(NPN-5) e negação de saída, todas as funções DSD de até seis variáveis, funções DSD, DSD-

parciais e não-DSD extraídas de (HUANG ET AL, 2013). Este estudo é para avaliar quão

frequentes funções não-RPO podem ser decompostas usando uma expansão RPO de

distância-1, chamadas 1-dist RPO. Os resultados são mostrados na Tabela 8. O número de

funções que têm soluções 1-dist RPO através de expansões de Shannon, Davio ou Quantifier-

Based é exibido nas colunas Shannon, Davio e Quantifier-Based, respectivamente. A coluna

1-dist RPO mostra o número e funções que tem ao menos uma das decomposições acima

mencionadas. Finalmente, a coluna RPO + 1-dist RPO representa o número de funções que

são RPO ou tem uma decomposição 1-dist RPO.

Como esperado, todas as funções de até 3 entradas são RPO ou podem ser representadas

por uma expansão 1-dist RPO. Curiosamente, 99% das funções de até 4 variáveis são RPO ou

tem uma decomposição 1-dist RPO. Para o conjunto de funções NPN de 5 entradas e para

funções DSD de até 6 variáveis, este número é 64% e 98%, respectivamente. Para os

conjuntos de funções DSD, parcial-DSD e não-DSD de 6 até 16 entradas a o número de

funções que tem decomposição 1-dist RPO também é bastante frequente.

128

Tabela 7 – Decomposição de circuitos em funções de até K entradas, com K variando de 6 a 10. O

número de funções read-once (RO), decomposição disjunta de suporte (DSD) e read-polarity-once

(RPO) é apresentado.

 K = 6 K = 8 K = 10

Circuitos Total RO DSD RPO
Tempo

(ms)
Total RO DSD RPO

Tempo

(ms)
Total RO DSD RPO

Tempo

(ms)

9symml 41 12 16 31 389 9 1 2 2 182 1 0 0 0 46

alu2 109 65 75 90 165 39 10 17 19 749 6 1 3 3 5718

alu4 194 103 125 148 131 115 40 60 64 12632 48 6 12 15 5349

apex6 157 44 64 153 51 144 30 50 139 54 117 22 41 110 75

apex7 55 35 47 52 16 45 24 36 42 16 42 22 34 39 21

b1 4 2 3 4 0 4 2 3 4 0 4 2 3 4 1

c8 28 5 11 28 6 22 5 5 22 6 20 3 3 20 8

cc 21 13 13 21 5 20 12 12 20 5 20 12 12 20 5

cht 36 0 0 36 7 36 0 0 36 7 36 0 0 36 9

cm150a 6 1 1 1 1 5 0 0 0 1 5 0 0 0 2

cm151a 4 0 0 2 1 4 0 0 2 0 3 0 0 0 1

cm152a 3 0 0 1 0 2 0 0 0 0 2 0 0 0 0

cm162a 10 6 10 10 3 7 3 6 6 12 6 2 2 6 7

cm163a 7 3 3 7 2 6 2 2 6 3 5 1 1 5 3

cm42a 10 10 10 10 2 10 10 10 10 2 10 10 10 10 2

cm82a 3 0 1 0 1 3 0 1 0 0 3 0 1 0 1

cm85a 6 0 2 2 2 6 0 2 2 2 3 0 1 1 2

cmb 11 8 8 11 3 8 5 5 8 3 7 5 5 7 191

comp 22 8 15 15 6 11 3 7 7 6 11 3 7 7 6

cordic 9 5 7 7 3 8 5 6 6 4 5 0 1 1 7

count 24 8 8 24 6 21 4 5 21 8 20 3 5 20 12

cu 16 14 14 16 2 13 8 8 13 3 12 8 8 11 3

dalu 235 36 75 134 81 186 20 45 63 386 151 16 16 44 18569

decod 16 16 16 16 3 16 16 16 16 3 16 16 16 16 3

des 1035 309 534 931 1892 778 58 305 563 2242 350 6 29 206 239

example2 94 62 67 89 11 79 25 49 48 352 72 30 35 60 3037

f51m 21 7 9 11 3 8 1 3 3 2 8 1 3 3 2

frg1 26 21 21 21 4 24 16 16 17 6 17 8 8 9 6

i10 582 345 432 544 548 486 265 340 432 1719 464 230 273 371 29981

i1 18 16 17 18 2 17 15 16 17 2 17 15 16 17 1

i2 66 65 65 66 7 34 32 32 34 8 28 26 26 26 10

i3 42 42 42 42 6 22 22 22 22 5 22 22 22 22 6

i4 62 62 62 62 10 38 38 38 38 10 34 34 34 34 12

i5 76 76 76 76 11 66 66 66 66 12 68 68 68 68 18

i6 67 0 0 1 11 67 0 0 1 11 67 0 0 1 13

i7 67 1 3 3 9 67 1 3 3 10 67 1 3 3 10

i8 284 123 123 284 42 170 42 42 168 40 242 78 78 187 109

i9 229 171 171 227 39 75 5 5 10 29 68 0 0 1 44

k2 543 525 526 536 77 486 434 439 474 31055 374 243 246 315 264658

lal 25 15 25 25 5 23 14 23 23 5 21 12 21 21 7

majority 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

my_adder 25 0 8 1 7 23 0 6 1 8 21 0 4 1 12

pair 338 199 242 316 150 252 115 152 208 3153 239 110 147 187 2510

parity 5 0 5 0 1 3 0 3 1 1 2 0 2 0 1

pcler8 24 17 23 24 3 22 15 18 22 4 21 14 18 21 4

pcle 13 6 13 13 3 12 4 5 12 3 11 4 11 11 3

pm1 16 14 15 16 2 14 12 13 14 2 13 11 12 13 2

sct 21 13 18 21 4 18 8 15 18 3 17 7 14 17 5

tcon 16 8 8 16 1 16 8 8 16 0 16 8 8 16 0

term1 42 23 29 34 10 34 18 23 26 56 20 6 11 12 24370

ttt2 35 15 22 31 23 24 4 11 17 4277 23 3 10 16 138

unreg 16 0 0 16 2 16 0 0 16 3 16 0 0 16 2

vda 283 249 252 272 32612 197 120 120 136 98615 131 47 48 72 57509

x1 89 79 79 85 10 74 63 63 68 12 61 45 45 54 20

x2 14 12 13 13 1 10 7 8 8 1 7 4 5 5 1

x3 167 57 78 167 21 138 29 50 135 24 111 17 37 107 30

x4 109 89 96 108 13 83 41 48 82 16 78 55 62 77 23

z4ml 6 0 2 1 0 4 0 1 0 1 4 0 1 0 1

Total 5484 3015 3600 4889 36426 4121 1678 2241 3207 155771 3264 1237 1478 2344 412825

Razão 1 0.55 0.66 0.89 - 1 0.41 0.54 0.78 - 1 0.38 0.45 0.72 -

Tabela 8 – Análise de funções RPO e não-RPO. As colunas Shannon, Davio e Quantifier-Based mostram o número de funções dos respectivos benchmarks

que tem decomposição 1-dist RPO usando as expansões de Shannon, Davio e Quantifier-Based, respectivamente. A coluna 1-dist RPO mostra o número de
funções que tem ao menos uma das decomposições anteriores. Finalmente, a coluna RPO + 1-dist RPO representa o número de funções que são RPO ou tem

uma decomposição 1-dist RPO.

Benchmark Funções RPO (%) Shannon (%) Davio (%) Quantifier-Based (%) 1-dist RPO (%) RPO + 1-dist RPO (%)

All 3-in functions 256 230 (89.8%) 26 (10.2%) 24 (9.4%) 26 (10.2%) 26 (10.2%) 256 (100.0%)

All 4-in functions 65,536 20,750 (31.7%) 42,496 (64.8%) 43,720 (66.7%) 42,688 (65.1%) 44224 (67.5%) 64,974 (99.1%)

NPN 5-in 616,125 1,421 (0.2%) 177,507 (28.8%) 282,288 (45.8%) 317,378 (51.5%) 398307 (64.6%) 399,727 (64.9%)

All DSD up to 6-in 2,311,640 1,699,626 (73.5%) 544,680 (23.6%) 574,640 (24.9%) 585,288 (25.3%) 585480 (25.3%) 2,285,108 (98.9%)

Full-DSD 6-in 1,000,000 992,754 (99.3%) 4,614 (0.5%) 4,788 (0.5%) 4,788 (0.5%) 4788 (0.5%) 997,542 (99.8%)

Full-DSD 8-in 1,000,000 925,190 (92.5%) 5,267 (0.5%) 5,735 (0.6%) 5,716 (0.6%) 5740 (0.6%) 930,930 (93.1%)

Full-DSD 10-in 100,000 98,117 (98.1%) 968 (1.0%) 1,054 (1.1%) 1,043 (1.0%) 1054 (1.1%) 99,171 (99.2%)

Full-DSD 12-in 100,000 97,496 (97.5%) 1,605 (1.6%) 1,612 (1.6%) 1,614 (1.6%) 1614 (1.6%) 99,110 (99.1%)

Full-DSD 14-in 10,000 9,104 (91.0%) 114 (1.1%) 126 (1.3%) 125 (1.3%) 126 (1.3%) 9,230 (92.3%)

Full-DSD 16-in 10,000 9,355 (93.6%) 65 (0.7%) 118 (1.2%) 118 (1.2%) 118 (1.2%) 9,473 (94.7%)

Partial-DSD 6-in 1,000,000 823,030 (82.3%) 165,327 (16.5%) 167,389 (16.7%) 168,430 (16.8%) 168950 (16.9%) 991,980 (99.2%)

Partial-DSD 8-in 1,000,000 683,462 (68.3%) 262,012 (26.2%) 283,453 (28.3%) 291,517 (29.2%) 294676 (29.5%) 978,138 (97.8%)

Partial-DSD 10-in 100,000 65,562 (65.6%) 32,017 (32.0%) 30,682 (30.7%) 32,500 (32.5%) 32949 (32.9%) 98,511 (98.5%)

Partial-DSD 12-in 100,000 50,818 (50.8%) 40,838 (40.8%) 39,327 (39.3%) 42,329 (42.3%) 44061 (44.1%) 94,879 (94.9%)

Partial-DSD 14-in 10,000 6,861 (68.6%) 2,001 (20.0%) 2,189 (21.9%) 2,251 (22.5%) 2297 (23.0%) 9,158 (91.6%)

Partial-DSD 16-in 10,000 4,653 (46.5%) 2,900 (29.0%) 3,148 (31.5%) 3,451 (34.5%) 3519 (35.2%) 8,172 (81.7%)

Non-DSD 6-in 1,000,000 134,275 (13.4%) 809,998 (81.0%) 815,630 (81.6%) 827,986 (82.8%) 834525 (83.5%) 968,800 (96.9%)

Non-DSD 8-in 1,000,000 27,280 (2.7%) 534,261 (53.4%) 536,794 (53.7%) 590,349 (59.0%) 663394 (66.3%) 690,674 (69.1%)

Non-DSD 10-in 100,000 83 (0.1%) 26,722 (26.7%) 23,068 (23.1%) 26,671 (26.7%) 32540 (32.5%) 32,623 (32.6%)

Non-DSD 12-in 100,000 364 (0.4%) 12,456 (12.5%) 13,432 (13.4%) 14,924 (14.9%) 17220 (17.2%) 17,584 (17.6%)

Non-DSD 14-in 10,000 22 (0.2%) 940 (9.4%) 900 (9.0%) 1,073 (10.7%) 1263 (12.6%) 1,285 (12.9%)

Non-DSD 16-in 10,000 20 (0.2%) 350 (3.5%) 390 (3.9%) 380 (3.8%) 460 (4.6%) 480 (4.8%)

Total 9,653,557 5,650,474 (58.5%) 2,667,164 (27.6%) 2,842,366 (29.4%) 2,960,645 (30.7%) 3,137,331 (32.5%) 8,787,805 (91.0%)

130

6. CONCLUSÕES

O problema de fatoração e decomposição para funções genéricas é um problema

∑ -complete𝑃
2 . Algoritmos eficientes e exatos podem ser criados para classes de funções

Booleanas como read-once (RO), decomposição disjunta de suporte (DSD) e read-polarity-

once (RPO).

Esta tese discutiu métodos de síntese lógica que são focados em classes específicas de

funções Booleanas. Quatro métodos de síntese de funções Booleana foram apresentados. A

primeira contribuição foi um método para síntese de funções read-once. O método é baseado

em uma estratégia de divisão-e-conquista. Dado um BDD com m nodos e n entradas, o

método RO_BY_COFACTOR tem uma complexidade de pior caso 𝑂(𝑚𝑛). Este método foi

implementado em na ferramenta de síntese lógica chamada SwitchCraft (CALLEGARO ET

AL, 2010).

A segunda e terceira contribuições são métodos para síntese de funções DSD.

(CALLEGARO ET AL, 2015a). Uma abordagem top-down checa se existe uma

decomposição OR, AND ou XOR baseado em entradas de soma-de-produtos, produto-de-

somas e soma-exclusiva-de-produtos, respectivamente. Este método também está disponível

na ferramenta SwitchCraft. O outro método é uma abordagem bottom-up e é basedo na

análise de diferenças Booleanas e cofatores (CALLEGARO ET AL, 2015b). O método

proposto precisa de O(n · log n) cofactores e O(n) testes de equivalências. O algoritmo foi

implementado tanto na ferramenta ABC como na ferramenta SwitchCraft.

A última contribuição é um novo método para síntese de funções RPO (CALLEGARO ET

AL, 2013). O método é baseado no conceito de conjunto de transições positivas e negativas

das variáveis de entrada. O método é capaz de detectar se dois literais devem ser agrupados

utilizando uma operação lógica AND ou OR pela análise dos conjuntos de transições. O

método também foi implementado nas ferramentas ABC (comando test_rpo) e SwitchCraft.

