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ABSTRACT 

This study is a contribution toward the understanding and prediction of 

turbulent dispersion of pollutants in the atmosphere. The main underlying 
assumption suggestion is that the Lagrangian autocorrelation RL used in 
computation of plume dispersion may be approximated by an Eulerian space-time 
correlation. 

lt is shown that the empirical models presently in use are valid in 
general only on the site where they were developed. Generalisation to other 
places may lead to errors óf an order bf magnitude ' i~ _ çoncentratiDri 

predictions. This state of the art is attributed to the lack of a systematic 
discription of turbulence flow. 

A semi-empirical tentative method to be used in the description of turbulent 
flows, is given. General models are given for the Eulerian time correlation 
and its Fourier transform, the spectral density . They are functions of the 

integral time scale of the motion, which in turn is a function of atmospheric 
stability. With their help it is shown that the Hay-Pasquill approximation 

to the Lagrangian autocorrelation underestimates the concentration far from 
the source, indicating that their correlation falls faster than the true 
Lagrangian autocorrelation. 

Arguments are given in favour of the replacement of RL by Eulerian space­
time correlations for the calculation of horizontal dispersion of contaminants . 
No model exists for these space-time correlations, and which is valid at all 
times . A new model is proposed which is based on physical assumptions . The 
model is a function of the Eulerian time correlation, allowing for the 
computation of space-time correlations from a few measurements taken at a fixed 
point in space . This model is compared with experiments in channel flow and 
in the atmosphere. It is also used to replace RL in the prediction of 
atmospheric diffusion . The results are in good agr eement with experiment . 

Assuming the validity of this model we can explain the divergent results 
obtained when Hay-Pasquill 1 s mod.el is used . The behaviour of the parameters 

in Su t to~ 1 s . formul . a . js . e ~plai ned t oo . 

Extension of the model to predict the dispersion of nuclear debris in 
the atmosphere is suggested . Other mbdels are suggested briefly and without 
computation . They are designed to give a relationship between atmospheric 
stability, time scales and velocity variances . This should give us the 
turbulence intensity on the basis of velocity and temperature profiles only. 
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SYMBOLS 

Sutton 1 s coefficients 

Specific heat of air at constant pressure 

Eulerian i ntegral time scale 

Spectral density 

Wave number 

Eddy diffus i vi ty 

Monin-Obukhov length (always in the form z/L) 

Lagrangian integral time scale 

Frequency 

Source strength 

Vertical heat flux 

Lagrangian autocorrelation 

Eulerian autocorrelation 

Space~time Eulerian correlation 

Richardson number 

Reference temperature 

Instantaneous velocity 

Friction velocity 

Langrangian y velocity variance 

Rectangul ar coordi nate r, x a 1 ong mean wind, 
z vertical 

Ratio of Lagrangian and Eulerian time-scale 

Rate of dissipation of kinetic energy per unit 
mass of air 

Ai r density 

Variance (= N 
Horizonta l shear ing stress 

Concentr ation 

Non dimensional dissipation rate = 

Potential temperature 
., 

Ze: 
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1. INTRODUCTION 
Atmospheric pollution has become a serious problem in a large number of 

industrial and urban communities . Atmospheric diffusion is a subject of 
considerable activity and research in the area of fluid dynamics and meteorology . 

At the present time our knowledge of t ransport mechanisms is far fr-om being 
complete and, consequently, a great deal of faith cannot be · placed in the 

quantitative predictions based on it. 

Many research programmes have been carried out to determine the nature of 

atmospheric diffusion in order to correlate diffusion patterns to meteorological 

variables, and to develop models to describe such diffusion . Relationship~ 

between meteorological var i ables and plume behaviour has to be determined and 

incorporated into mathematical diffusion models to be used to predict 
atmospheric dispersion rates . 

For example, rapid development of nuclear power throughout the world has 
been forecast . This, anda deepening world awareness of the necessity to 

preserve and improve the quality of the envi ronment, requires that particular 
attention be given to the problems of r elease of radíoactive contaminants ínto 

the atmosphere from various sectors of the nuclear fuel cycle . From a public­
health point of view~ the safe operation of nuclear research centres and power 
stations, or conventional industrial plants, can only be ach ieved if the 
diffusive properties of the fi rst few hundred metres of the atmosphere over 

large areas around the sites, are adequately known . 

Such knowledge of the diffusive capacit i es of the l owe r atmosphere would 
a ll ow us: 

(a) to derive a working l imi t which may not be exceeded du r ing routine 
release of an effluent i nto the atmosphere, and to check whether the 

resulting concentrations near the ground due to these substances are 
within safe limits, as regards the neighbour i ng population i n the 

neighbourhood; 
(b) to take advantage of the most favourable meteorological conditions 

for special controlled release of pollutant mater i al, the storage 
of which would otherwise entail cons iderable expense or other 

operational problems; and 
(c) to elaborate an effective environmental su rvey system, and to provide 

an infrastructure for intervening in case of major pollution 
accidents . 

In most industrial countries the so-called "Gaussian plume" model is 
the basic method used for calculating arrbient air pollution concentrations 
dueto a point-source . It has the advantage of mathematical simplicity and 
easy applicability . But application of the Gaussian model requires 

knowledge of the standard deviations c and cz of the concentrations, (see 
· Y 



,.; .. 

& 

4 

Frenkiel (1953), Bochac et al (1974)) . 
2 - ~(ctxr> } 

z ( 1.1) 

Taylor (1921) showed that for an ensemble average of particle displacements 
during condi tions of stationarity and homogeneity, o y is given by 

t 
o/ ( t ) :: yzrtT = 2' Vl: f. ( RL (q} d(q) d('j) 

(1. 2) 

where vl is the lateral component of the velocity affecting a particle, and 
RL(t) is the Lagrangian autocorrelation . A similar formula applies toa.

2
• 

lhe autocorrelation starts at 1 and approaches zero for large diffusion 
times , Exact knowledge of the behaviour of ~ at intermediate time is difficult 
to obtain for routine use in air po1lution problems . Several methods have been 
suggested to determinecy andoz, which do not require the knowledge of '\. · 
These rnethods vary considerably in their development and appl i cation . Some rely 
more on empirical data than other ones . Separate methods are often recommended 
for elevated or ground sources , Frequently the different techniques in 
practical use are inconsistent with each other . 

Therefore there exists a need for some relationship oetween the diffusive 
capacities of the atmosphere and a parameter, easily and continuously measurable, 
characteristic of the state of aír stabílity within the layer wherein the 

effluents diffuse . lhe present work tries to contribute towards the determin­
at i on of this relationship . Its three main results can be summarised as follows . 

(a) It i s shown that the Lagrangian autocorrelation can be replaced 
for p ~act í cal purposes by an Euler ian space-time correlation following 

the mean flow; 
(b) A model fo r the Eulerian space-t ime co r relation in terms of the 

Eulerian time correlation is gi ven ; 
(c.) A model for the Euler ian time correlation as a function of amospher1c 

stability is given , 

This· wo rk is limited to the problem of hor i zontal dispersion qf pollutants , 

Very few data on vertical diffusion are known to permit a deeper analysis in 
th i s case , 

In Chapter 2 a literatu re sur vey is given . 

A model for Eulerian time cor relations RE(t) in terms of atmospheric or 
flow stability is given in Chapter 3. This model is used in Chapter 4 to test 
the Hay-Pasquill hypothesis, RL (~ t) = RE( t) . This hypothes.is is the most often 

used at the present time when RE is available . 

In Chapter 5 it is shown that a better approximation to Rt is needed, anda 
corresponding model is suggested. 
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Chapter 6 presents a model for space~time correlations, a field almost 
unexplored in fluid dynamics. 

In Chapter 7 the dispersion coefficient oy is computed, replacing Rt by 
the model proposed in Chapter 6. This is the main point of this work which 
can be stated as 11 Space-time correlations can be a workable approximation to 
the Lagrangian autocorrelations. 11 

In Chapter 8 a tentative explanation is given for the variation of the 
factor in the Hay-Pasquill hypothesis, which leads to poor agreement between 
its predictions an d measurements . far from the source , 

When RE is not availabl e, Sutton's formulae a = C xn ando = C xm are y y z z 
used v-1ith a great degree of em piricism since the parameters Cy• C , n and m 

· Z 
vary with experiment site, atmospheric stability, direction ot tne wind, distance 
from the source, and season . In Chapter 9 a model is proposed to explain such 
behaviour . 

A discuss ion concerning the results and propositions to new studies is 
given in Chapter 10 . 

Chaeter 2 LITERATURE REVIEW 
~. ~ .. !._____i~pirical Models for Turbulent Diffus ion, 

An unsolved problem of great importance in many fields is that of 
dispersion of a pass ive scalar in a turbulent fluid, e. g. , the dispersion of 
pollutants in the atmosphere . A fundamental theory of turbulent dispersion is 
given by Taylor (1921) (see eq . (1 ,2)) . This theory has not been put to common 
use as it is exp re ssed in terms of Lagrangian (particle) correlations, which 
are considerably less accessible theoretically and experimentally than the 
corresponding Euler i an correlations . Fo r Navier-Stokes equations are simpler 
in the Eulerian form, and the hot-wire anemometer provides a wealth of Eulerian 
data , 

Several methods have been suggested for the determination of ay. and oz• 
using Eulerian data . The methods are simple and quick 'to operate , Nevertheless, 
this application is empirical in the sense that the detailed micrometeorological 
process which carry and disperse the pollutant are not taken into account. (see 
Drexler (1976)). 

Four main app roaches were developed, leading to expression for cy: 

(a) Fickian - o/= 2 Ky t; 

(b) Sutton - o/ = Cy t 2-n 

(c) Hay-Pasquill - RL (s t) = RE( t); 

(d) Pasquill-Gifford Graphs. 
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2.1.1 Fick 1 S Equati~~~ 

The differential equation which has been the starting point of most 
mathematical treatments of diffusion from sources is a generalisation of the 
classical equation for conduction of heat in a solid, and is essentially a 

statement of conservation of suspended mater i al: 

M = .a_ ( K ll) + .a_ ( K ..â..X.) + !l I K .aÃ.) 
ut ax x ax ay y ay · ãY' z az (2 .1 ) 

If the K1 s are constant the simplified equation and the type of diffusion 

implied are Fickian and we obtain cr/ = 2. Kyt, etc . The .coefficients Kx, Ky, 
Kz and the velocity are, generally speaking, variables, and the analytica1 
solution is obtained only by making some particular assumptions about these 
coefficients . Analytical solutions of the three-dimensional diffusion equation 
with variable K and wind have been obtained only under restricted assumptions . 
Smith (1957) used power law variations for wind and K. Peters and Klinzing 
(1971) used power laws for K and constant wind . No analytical solution of the 
diffusion equation have been obtained taking a logarithmic wind profile . 

Numerical solution for this problem is presented by Ragland and Dennis (1975). 
More solutions of eq ; (2 . 1) ar e given by Sutton (1953), Pasquill (1974) and Monin 
and Jaglom (1971), where the problem of the velocity of propagation of the 
pollutants is driscussed . The exact behaviour of the K1 S i s unknown and so the 
method has not been extensively used. 

2 , L2 Sutton 1 s Formulae . 
On the basis of experimental data, Sutton (1953) proposed the relations 

~ 2 = C t2-n 2 = C t2-m m= n 
vy y ~ 0z Z ( 2' 2) 

where CY, C
2

, n and m are assumed constants . These formulae are not free of 
theoretical difficulties . They give fixed values of n and m whereas we know 
from Taylor 1 s theorem (eq . (1.2)) that they must tend to zero near the origin 
and to one when t is very large in homogeneous flows . This behaviour is 

observed in experimental data by Fuquay et al (1964). Sutton assumes too that 
n and m can be determi ned from the wind profile taking U ~ zq . Barad and Haugen 
(1959) found that neither n or m can be determined by q. The data show some 
variation of n and m with distance from the source . 

In the engineering use Sutton 1 s formulae have come into widespread use in 
the des i gn of stacks and environmental impact analysis . Three main sets of 

coefficients (ny' n
2

, CY, C
2

) are in use, each set giving the coefficients for 
all different states of atmospheric stability. Ragland (1976) calculates the 
highest possible ground-level ambient air concentration due to a sta,ck, and finds 
that the three recommended sets of values, TVA (Carpenter et al (1971)), ASME 
(Smith (1973)) and EPA (Turner (1970)), give, under similar conditions of 
atmospheric stability results differing by a factor as high as 5. Different 
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values for the coefficients were found by Bultynck and -Malet (1972}, Hogstrom 
(1964), Vogt (1974} and others cited in Slade (1968). From the published data 
one may conclude that the diffusion parameters in Sutton's formulae are functi 
of atmospheric stability, distance from the source, height of source, experimen 
site, and even season of the year, in an as yet unknown form . 

It is clear that if Sutton's model may describe diffusion over some 
restricted range of distance, it should in some way be related to Taylor's 
theorem. There is urgent need for connecting the model with some well-founded 
theory, in arder to correlate Sutton's cofficients with atmospheric and 
topographical features. 

2.1.3 Hay-Pasquill's Hypothesis. 
Hay and Pasquill (1959) proposed a simple relationship between the 

Lagrangi àn corre lati ôn .. and ... the. Eul·er:ián time correl at i on, 

'\. ( e t) = . RE ( t) ( 2 . , 
where the scale parameter e is supposed to be constant. In the original work 
the value e' = 4 is suggested. 

Haugen (1966) analysed selected Prbirie Gra·ss diffusion experiments (Barad 
(1958)). No correlation is found between e and atmospheric stability. Of the 
35 experiments analysed, only 13 were found to give value of e between 1 and 10 
In 9 cases e>lO (but less than 160}; in the remaining cases a<l. 

The results of various field and laboratory studies of diffusion yield a 
fairly wide scatter of e. For diffusion of helium in a neutral boundary layer 

1 

Chandre (1972} found a ranging from 3.7 to 21. For turbulent diffusion in pipe 
flow Baldwin and Mickelsen (1963) found e between 4 and 18. Angell (1974} 
obtained e in the range 2 to 16 for atmospheric flows at high altitude. 

It has been suggested to use a relationship between e and the intensity 
of turbulence of the flow under study (Corrsin {1963), Saffman: (1963), Pasquill 
(1968}, Pasquill (1974)), but experimental data do not seem to support this 
hypothesis (see Pasquill (1974), p. 92) . 

.2 , 1.4 Pasgui 11-Gifford _§ra.Qh_~-~ 

Gifford (1961) and Pasquill (1961) suggested that diffusion data could be 
most conveniently summarised in graphical form for va,rious stability categories 

But the graphs are not applicable to diffusion over water ( Hosker 
( 1974) , Raynor et ·a,. (1915)). For the same fores t Vogt (1974) concl udes that 
different graphs are required in sunnier and in winter. Using his own · results, 
Bowne (1974) shows tha~ the graph predictions differ from Pasquill's results 
by a factor as high as 2 for the same class of stability. He proposes a new 
set of graphs for irregular terrains and urban areas . 
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Briggs {1973) has recently proposed _revised dispersion coefficients for 
rural and urban areas which differ from Pasquill-Gifford's coefficients by a 
factor which approaches sometimes 3. Smith (1973 a} has attempted to separate 
the influence of roughness on the vertical dispersion coefficient az by giving 
different graphs for different values of z

0
. The main problem in turbulent 

dispersion is which graph gives the best results for a given site. 

f~2 Eulerian Atmospheric Time Correlations and Spectral Densities~ 

For many years researchers looked for general formulae for the .Eulerian 
time correlation RE(t) and its Fourier transform, the spectral density F(n:). 
Tvw main principles guided this search . Kolmogorov suggested ·(see Kolmogorov 
(1 96 2)) that there could be a subrange of wave numbers K(= 2nn/U} in the 
spectral dcnsity, for 1·1hich only the transfer of energy is important, if 
·Reynold's number is large enough' , Thís leads for large Reynolds number to 

F(K) ~ E2/3 K-5(3 

F( K) = ~TI F( n) 
(2~4) 

E: is the energy-transfer rate, and n- the frequency .. Next, the Monin-Obukhov 
símilarity hypothesis (see Monin and Yaglom (1971}) predicts .that, when 
turbulent fluxes of momentum and heat are ~onstant, as 
atmospheric surface layer, the structure of turbulence 
the groups 

~ 
u =(4) · T = ~- L = -
* o ' . * Pu* p' 

u;f Cp T 

o .4 g Qo 

they are in the 
is determined solely by 

(2 . 5) 

1·1here u* is the friction velocity and L- the Monin-Obukhov parameter. These 
lead to the follàwing simi1arity relationships for the mean velocity and 
temperature distributions 

z ~ = ~ ( z) 
u* az U [ 

z li_ = ,~, (z) 
T * az "'T [ (2 ,6) 

where <lU and 4>r are universal functions of[ , Different forms for<P U are given 
by Monin and Yaglom (1971), Plate (1971) and Hicks (1976) among others , 
Measurements to obtain L are difficulL Relationships betweenf- and the 
Richardson number R., which ·;s easier to measure, are given by Busch et al 

1 
(1968), Webb (1970), Busch (1973), Kaimal (1973), Lettau (1973} and Haugen 
(1973). 

Extension of the Monin-Obukhov scaling to spectra of velocity, temperature, 
and humidity, leads to the assumption that the properly scaled spectrum nF(n} 
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shou1d be function of the reduced frequency f = fiZ- and f only . The forms of 

these un i versal functions should either be dete rmi ned by experiment or deduced 
theoretica1ly, mak i ng fu r the r assumptions about the nature of the tu~bulence , 

A s t eadily grow i ng co11 ection of mi crometeor ological spectra f r om the 

atmosphe ric su r face laye r 1 5 ava il ab1e in recent literature : Busch and Larsen 
(19??.), Busch (1971) , Ka imal et a1 (1972), Panofsky (1969), Busch and Panofsky 
(1968 _ Sha ran and Wickert s (1974), Hogstr om and Hogstr om (1975), Kaimal et al 
(19 6), ~kBean (1971) , Da venport (1961), Pasquill (1972 ), 

The most recent spectra of velocity in the atmosphere show a1 property: 
at high frequencies they may be described by(Kaimal et al.(1972)) 

V2 n F_n) = C (Z 5.) 213 (nZ )-2.f1 -· 2./3 - 21'3 
2 - ::, L!.!:. - · c cp - f 

u* u * U ,_ 
(2 . 7) 

4' , the dimensiona less d"ss i pat i on r ate fo r t urbu lent ene rgy, is a function of 
' Z/ L on1y . If we i nclude cp

2 
·n t he no rmal i sation of F(n ) for d1fferent states of 

atmosphe r ic s ability, all spectra, r egar dless of z/ L' co incíde ·n the Kolmogorov 
· (inerti al) subrange . . At low frequenc ies the re is a systematic progression with 

z/L fo r a stable atmosphere, but no clear pi ctu re is ava i lable fo r unstable 
at mosphere " · It is easy to see that eq , (2 . 7) obeys both Kolmogorov's and Monin­

Obukho ' s hypotheses " 

Few data of Eule r i an t ime corre"iati ons are g1ven i n 1 ' ter ature . Bar qd 
(1958) and Panofsky (1962) p ~esent some resu1ts but no t heor etical gu ' de ex ists 
to desc ri be t hem , Panofsky (1962 ) ca 1l s the attent "on t o some s i tuat i ons whe re 
t he time co rre lation drop to a pl ateau, wh i ch m1ght be as hi gh as 0 ,80 , Th is 
·s at r "bu t ed t o slow wa ve- ike atmosphe ric osc 111 atíons wh ích may contr ibute 
1a rgely to the d ' spers ion of po ll utants , Caughey and Read i ngs (1 975) give an 
ac count of an observ at ion of a 11 Wa\le-1 i ke" phenomenon obta i ned du .,..·í ng study of 
noct u na l i nversi ons see al so Rayment and Read1ngs ( 19 7 4 )~ " 

Al l t he spectra cited above refe r to m1c~ometeor0l og ical tu~bulence, with 
most energy in . the range 10-2 - 10 he rtz . The spec tra of ki net ic energy fo~ 
synopti c sca l es (few hours to 20 days) are gi ven by Hess and Cla rke (1973) , 
The spect r um falls off app roxi mate1y as n-2 ,6 whereas ~lmogorov ' s theory 
pred i cts n-5/ 3 for spat i al i so tropic tu rbu lence, and K:raichnan (1967) pr·edicts 
one reg i on wi th n-5/ 3 and anoiher with n-3 for plane turbulence . 

Theoret1ca1 resea rch in correlation prob l ems 1s a much d!f fi cult subject ­

At .the moment mainly very complicated formulas ar·e known, .and only fo r a few 
restricted cases . Theor ies, as well as experimental ev í dence, have shown that 
the re exists no un ·ve rsa l fo rmula fo r Eulerian correlations but that the formula 
to be app li ed depends on the type, condition and stage of the turbulent flow . 
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Even f or i sotropic turbulence the equat ions are di fficu l t t o so lve: there 
are more unknowns t han equations avail ab l e , The equation for the second-order 
correlation con tai ns a th "rd-orde r correl at i on; the eq uati on fo r the thi rd-order 
correl ati on con tains a fo urth-order cor rel ation, an d so on , Vari ous attempts 
have been made o solve th ' s so-call ed "cl osu re probl em . " Most of t hese methods 
show negati ve parts i n t he spectr'al dens ity of ener gy , a phys i call y unacceptable 
situa t i on. When we try to sol ve t he equat i on fo r the spectral dens ity we 
encounter the "energy-transfer f unction" wh ich is rel at ed t o the th i rd-o r der 
co r rel ati on, and rep resents t he i nteracti on between eddies of different wa ve ~ 

numbers , Th i s i s an unknown f uncti on t oo, for wh ich var i ous forms have been 
suggested. Most of t hese tentati ve so l ut i ons are fo und in Hi nze (1975), Panchev 
(1971), Herri ng (1975 ) and Fox (1973) , 

Hi ghe r order cl osure model s to be solved by computationa l techn i ques have 
been given by Lumley and Khajeh-Nouri (1974), Wyngaar d et a1 (1974), Fox and 
Lilly (1972) Betchov (1975) and a revi ew i s given by Reynol ds (1 976), but no 

J 
si mp l e analytical form wh i ch can be used by meteorol ogi sts and air poll ut i on 
researche rs, has been publ i shed, 

2. 3 Se..a ce-t i me Correl ations_. 
Taylo r (1938) made the hypothesis t hat turbu l ence may be r egar ded as a 

frozen pattern of edd i es be ing swept pas t the obser ver . This means th at a 
s i gnal rece i ved at one meas uri ng posi t i on w' l l be r ecei ved at a second pos i t i on 
x1 di r ectly downstream f r om t he f irst, at a t i me t 1 l ater. Measurements of 
cor relati ons invol ving two positions and two ti me s,space-t i me corre1ati ons, have 
shown t ha t t hi s Taylor ~ s hypot hes i s i s not co r ect: the corre·l at·ion between the 

pattern of eddi es at t = o and at t = t decreases wi th distance downstream. 
Lumley an d Panofsky (1964 ) summar i se resu l ts from a number of fi el d expe ri ments 
in the atmosphere wh i ch suggest that Tayl ors s hypothesi s i s sat·isfi ed f or "shor t 
time s , " Mi zuno and Panof sky (1975) attempt to ana lyse the exact l im' ts of 

validity of the hypothes i s , 

A better understanding of the problem demands a bett er knowl edge of space­
t i me correlat i ons . A mode l for t hese cor re'lations i n t he atmosphere was given 
by Pi elke and Panofsky (Q 970) and studi ed in mo r e detai l by Ba l dwi n ànd Johnson 
(1973), Panofsky et al (1974), Panof sky and Mi zuno (1 975) , Rope l ewsky et al 
(1973 , but no cl ea r picture eme r ged and fu rther stud i es an d/ or different models 

are needed . 

S~ace-t i me correl at i ons i n i sotrop ic tu r bul ence behi nd a regular gri d 
spann i ng a un iform airstream have been measu red since the 1950 ' s , and given by 
Fi sher and Da vi es (1963 ), Favrê (1965) , Frenk i el and Kl ebanoff (1966), Comte­
Bello t and Corrsi n (1971) . Measu rements in pi pe fl ow are gi ven by Baldw in and 
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Mickelsen (1963) , and Sabot et al (1973) , among ot her s . Most of the results 
concern the op,t imum space- t i me correlat i on, defi ned as the m~x i mum r eached by 
t he correl at i on f or a given distance x, ata ce r ta i n ti.me delay t = t • max 

Theoreti cal es ti mat es of space-time correl at i ons are given by Batchelor and 
Townsend (1948) , Inoue (1951) , Bass (19; 4) ,Kovas znay (1948) , Fa vr e (1965) and 
Krai chnan (1967) . In gene ral they give very complicated models wi th a restr icted 
r ange of vali dity. It appea rs that none has ever been appli ed i n pol luti on 
pr ob l ems 

2.4 Lagrang i an Correl ati ons RL and Eu l er ian Space-time Co rrelat i on ~. 3~T 

Very littl e i s known about Lagr~ng i an autoco rr el at i ons . No compl et~y 

satisfacto ry theory exi sts no r have any compl etely sat i sfactory experimental 
data been gene rated . It was suggested to r epl ace the Lagrang i an autocorrelations 
by space-t i me co rrel at i on s fo r the cal culati on of ;di sper sion i n tu rbulent flow 
(Corrsin (1959 ) , Sheppard (1959), Baldwi n and Mi ckel sen (1963)). As the two 
correl ations are dete rmi ned by. the same tu rbulent fi el d, it i s r easonab l e to 
expect a more or less close rel ati onsh i p between the two autocorrel ati ons . Yet 
the problem of obtai ni ng t heor eti cal ly th i s r elationsh i p has not yet been solved . 

Bal dwin and Mi ckel sen (1963) used th i s i dea taking the space-t i me 
correlati on measu red dur i ng the i r heat-di f f usion experiment . Good agreement was 
obta i ned between measured and "cal culated" diffus i on . Si m' l ar results we re 

obta i ned by Pes kin (1974) i n "computer exper imen ts . " 

Co rrsi n (1963 ) showed that dimens i onal analys i s leads t o rough ly equal 
i nt egral t i me scales fo r bot h correl ati ons . Shli en and Corrsi n (1974) est imate 

f r om t he i r measu rements that RL( t) : RST" Comput er experimen t s by Ril ey and 

Pat erson (1972) show t ha t RL~RST fo r sma ll val ues of t and RL~RST fo r l ar ge 
values of t when simi l ar experi ments by Pat er son and Co r·r·s i n (1966 ) show that 
RL <RsTfor small t and RL~ R5Tfo r l ar ge t . Kraichnan (1970) shows t heor et i cally 
tha t RL~Rsr • We may con cl ude tha t bot h cor rel at i ons , the Lag rang i an RL and the 
space-t i me RST are r oughl y equal for all t . As computa ti on of di spe rsi on i s 
rel ati vely insens i tive t o t he exact shape of the correl ati on, the r epl acement 
of RL by RsTsho ul d not alter subs t ant i al ly the r esul ts . The reason f or the 
un f requent use of th i s suggest i on i s the l ack of a model to express space-t ime 
correl ati ons at al l t . 

In rel at i on to the mi cr os cal es of bot h correl at i ons (see Ten nekes and 
Luml ey (1972)) , t~ e pred~ct i on of Co rrsi n (1 963) that they have nearl y equal 
mi cros cal es, has not been confi rmed by experi men t s (Shl i en and Corrs i n (1974)) 
and by a recent theor eti cal ana lys is (Tennekes (1975 ) . 
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Chapter 3 - A MODEL for AUTOCORRELATIONS and SPECTRAL DENSITIES in TURBULENT 

FLOWS . 
3 . 1 Introduction 

Recent years have seen a steady increase in the amount of data available 
concerning the detail ed structure of atmospheric turbulence near the ground. 

Although much rema ' ns to be done and much confusion exists with respect to the 
interpretation of these data, a pi cture of the turbulence str ucture in 

thermally stratified media is emerging . Yet our knowledge about the character­
istics and governing pa r ameters of atmospheric turbulence is st ill limited, 

because of the complex nature of the tu rbulent flow field in the lower pa r t 
of the earth •s bounda ry layer. 

In practical problems such as atmospheric pollution, st r uctural design, and 
aviation, the knowledge of autocorrelations and the ir spectra is required. In 

this chapter we show how to obtain theoretically the spectrum as a function of 
the integral t i me scale E, a quantity which can eas i ly and accurately be 
measured with some hints that i t can be obtained from the Richardson number . 
The autocorrelations corresponding to the spectrum are computed and the results 
compared with expe ri ment . This un i versal formula fo r the autocorrelat i on 

makes the use of Hay-Pasquill 1 s hypothesis for computi ng RL(t) much eas ier. 
If this hypothesis were correct , the knowledge of the Ri char dson numbe r would 

give us ay immediately . 

3. 2 Seectr a and Co rrelati ons . 
Assume a turbulent flow where the instantaneous Euleri an velocity is 

V = ( U+ U• , v , w ) , (3.1) 

with the turbulent components satis fyi ng 

u =v::; w ; o. (3 . 2) 

The Eule ri an t i me autoco r relat i on i s defined by 

R (t) = v( o) v(t) 
Ev VI ( 3. 3) 

with similar exp ressions for the u and w components , Stationary condit i ons are 

implied in (3 . 3), RE i s assumed to be dependent only on time-la:g, not on the 
actual time at wh i ch the sequence of values begins . 

Regarding the turbulent flow as composed of a spect r um of fluctuations, 
we define the quan tity F(n), the ene rgy spectrum (powe r spectrum, spectral 

dens ity) which rep resents the fractional contribution to the total energy of 
frequen cies between n and n+dn, so that 

CIO 

f F(n) d(n) = 1 
o (3 . 4) 

The spect ral density and the autoco r relation are the Four ier Transforms of each 

--------------------------------------------------------------------------~ 
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other (Taylor (1938)). 
00 

F(n) = 4 f RE{t) cos 2nnt dt 
000 

RE(t) =f F(n) cos 2nnt dn 
o (3.5} 

A convenient overall representation is provided by the Eulerian integral 

time scale E 

(3.6) 

which is related to the spectral density by 
00 

lim F(n) = 4f RE(t) cos (o) dt = 4E 
n-+o o (3. 7} 

In general the product nF(n) is plotted against ln n in view of the wide 

range of frequencies involved . Also, this method of plotting produces in the 

graph a peak at a frequency nm related to the integral time scale E, as I will 

show 1 ater . 

3. 3 A Simple Model _for the Spectrum ~ 

Exact analytical expressions for F(n) are not known. There exist more 
unknriwns than equations to be solved . So empirical models are given as 

function of n (Kaimal {1973)); as the spectra are very flat, the assessment m . . 
of nm i·s difficult . In neutral stratification, ·for example, Busch and Panofsky 

. (1968) found fo r the u component nm z/U somewhere between 0 . 025 and 0.06. 

To get a símple model for F(n) in terms of E, we use three properties that 

the spectrum should .satisfy: eq. (3 . 4), eq , (3 , 7), and Kolmogorov·'s (1962) 

hypothesis . He predicts a range of n, where (see eq~(2.4}} 

nF(n) oc n-213 , · (3 .8) 

Exper i ment has shown that this law is obeyed over a large ran~e at high 

frequencies (Hinze {1975) ) , In order to obtain a simple formula for the spectra, 

I suggest expressions,funct i ons of I_,which satisfy eqs. (3.7) and (3.8) and 

resemble empirical formulae for Sv(n)=V2 F(n): 

F(n) = 1 + ('1En)5J 3 
(3. 9a) 

and 

F(n) 6E 
(1 + AEn) 5f 3 

(3.9b) 

From eq . (3.7) we conclude at once that v = ô = 4. Eq. (3 . 4} gives values for 11 

and \ , resulting in 

nF(n) = 4En 
1 + 31.5(En )S/3 (3.10a 
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and 

nF(n) = (1 4En 
+ 6En)51 3 

(3.10b) 

The difference between the two expressions is not great. Eq . (3.10a) gives 
• a smaller contribution at low frequencies . Only comparison with experiment can 

show which formula fits better the data . 

J 

Searching for the maximum ~f nF(n) given by eq. (3 . 10) gives a relationship 
between E and nm, the frequency at which nF(n) attains its highest value 

E = O . 160 

E = 

nm 

0. 25 
nm 

(3 . 11a) 

(3.1lb) 

Eq . (3 . 11a) corresponds to eq. (3.10a) . Writing the spectrum in terms of nm we 
get for (3.10a) and (3 . 10b) 

0. 64 (n/nm) 
nF(n) = 1+1.5(n/n .. ) 5/3 

; m (3 . 12a) 

nF(n) = 

(3 . 12b) 

These formulas agree well with the empirical expressions of Kaimal (1973) and 

Pasquill and Butler (1964) . 

3. 4 Relation to Monin-Obukhov Similarity Hypothesis . 
One approach, widely accepted in the descr iption of spectra, is the 

11 Similarity hypothesis 11 of Monin and Obukhov (see Monin and Jaglom ·(1971)) . It 
is assumed that all spect ra can be wr itten i n the fo rm 

(nz z) nF(n) = G U' [ 
(3 . 13) 

{f is the nondimensional 11 reduced frequency 11 and z the height above the ground . 
L is the Monin-Obukhov length scale, related to the vertical heat flux carried 
by turbulence, and consequently to atmospheric .stability . It appears always 
in the form z/L so that there is no confusion with the Lagrangian time scale L. 

Take eq . (3 . 10a) for example . 

4 ~~) 

lt may be re-written as a function of nz u 

(3 . 14) 
z u 

nF(n) = · EU St3 
1 + 31.5 { (z-) (~z)} 

In addition, Kaimal et al (1972) show that for stable atmosphere ~ is a 
z 

function of z . This proves that our model satisfies eq . (3.13) . One important 
[" 

point to be noted is the possibility of knowing F(n) from simple measurements 

of mean velocity and temperature at several heights . From both profiles we 
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determine the Richardson 1 S number (Turnér (1973)), from which we can get z/L 
(Busch (1973), Lettau {1973)), E and F(n). 

The similarity hypothesis is valid in the layer of constant heat flux. 
The layer height in the atmosphere is not well defined but 100 - 150m seems to 
emerge as the true value (Counihan (1975), Panofsky (1974)). For unstable 
atmosphere, experiments show that E is constant with height, and determined in 
the surface layer by the large convective systems (see Kaimal (1973), p. 581, 
and Wyngaard (1973)). 

3.5 Autocorrelations . 
The next step is the calculation of autocorrelations corresponding to 

different spectral forms. Eqs. (3.5) and (3.10) lead to 

00 

R ( ) f 4 · . t d( nE) 
E t = o. 1 + 31. 5(nE) s/3 cos (21TnE E) 

and 

()f"" 4 ( t~d(nE) 
RE t = 

0 
(1 + GEn) 513 cos 21TnE ·p 

(3.15a) 

(3.15b) 

Both autocorrelations are functions of f· Our model predicts that knowledge of E is 
enough to describe the Eulerian time autocorrelation. 

Unfortunately (3.15a) and (3.15b) cannot beexpressed in terms of known or 
tabulated functions. They have been computed numerically and are given in Table 
3.1 and fig. 3.1. The results are compared with the exponential correlation 
which is often taken as an approximation in analytical solutions involving RE(t) 
and RL(t) (see Csanady(1973)). 

--------
Table 3.1- Autocorrelations given by eq. (3.15a) (column 1), by e~. {3.15b) 

(column 2) and by RE(t) = exp (- t/E) (column 3). 

t/E Col umn 1 Col umn 2 Colu1111 3 

0.0625 0.86 0. 80 0.94 
0. 125 0.79 0.70 0,88 
0.25 0.67 0.56 .0.78 
0.5 0.52' 0 .40 0.61 
1 0.32 0.25 0.37 
2 0.14 0.12 0.13 
4 0.03 0.04 0.01 
8 0.00 0.01 .. o.oo 
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From fig . 3.1 we see that the exponential autocorrelation is a poor 
approximation to the computed autocorrelations since when they agree in a 
given interval t/E (with a different E for each correlation), there is a 
difference of tens of percent between them outside this interval. In respect 
to computation of pollution dispersion the situation is much better since Taylor•s 

theorem eq. (2 ~ 1), is not sensitive to the exact shape of the autocorrelation • 
It will be shown later that all three correlations of fig. 3. 1 give approximately 
the same shape for yL. 

In the computat i on of space-time correlations this is not the case. In 
Chapter 6 I show that space-time correlations generated from exponential time 
correlations have a shape very different from that obtained when we take the 
correlations given by eqs . (3.15) . For this reason, the Hay-Pasquill•s hypothesis 
can be tested using R= exp (-t/E) but for the computation of space-time 
correlattons we must take eqs. {3.15). 

In fig. 3;2 we compare our computed predictions with time autocorrelations 
measured in laboratory turbulent flows ·behind a grid . Good agreement is 
obtained between preditions given by eq. (3.15a) and experimental data. The 
value of E is taken to give the best agreement . In all cases where F(n) is 
given, this E agrees well with the value of F(o)/4 . 

In fig . 3. 3 our computed results are compared with autocorrelations 
measured in the lower atmosphere (z = 2m). There ·is agreement between 

experiment and eq . (3 . 15b) . 

One tentative explanation for this difference between correlatíons in the 
atmosphere and in laboratory is as follows: there is no space in laboratory flow 
for eddies of small frequency, so the spectral density has a smaller contribution 
from this region . This is exactly the difference between eqs . (3.15a) and (3 . 15b) . 

We conc l ude that the present model for spectra and correlations is simple 
to use and describes satisfactorily measured data, when E_is known. The model 

has potential use in air pollution problems where formulae simple to understand 
and to apply are in demand . 
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Chapter 4 - ARE THE LAGRANGIAN AND THE EULERIAN TIME AUTOCORRELATIONS OF 
SIMILAR SHAPE? 

4.1 Introduction 
In the preceding Chap~er different possible shapes of the Eulerian time 

autocorrelation were displayed. Hay and Pasquill (1959) assume that one of 
these correlations can represent the Lagrangian autocorrelation RL(t) by a 
simple change of scale, 

(4.1) 

In this Chapter we test, this hypothesis comparing its predictions with 
observations. The method used here has the advantage that it does not require 
the knowledge of the variance of the particle velocity, ~ . . 

4.2 Theory 
For steady, homogeneous turbulen~e,the spread of particles released serially 

from a fixed point is described by the well-known formula, dueto G.'r. Taylor 
(1921) 

. t T 

o~ (t) = 7 = 2 ~ f f RL (v) dvd :r 
o o 

(4.2) 

or alternatively, an expression given by Kampé de Fériet 
I 

in 1939 (see Kampe de 
F~riet (1974)). v and T. are integration variables. 

- t 
o~ (t) = 2 VL 2 f (t- T)RL( T)dT 

o (4 . 3) 

y(t) is the displacement of a particle along the y-axis, VL is the y component of 
the parti ele velocity CVL =O), and RL (-r) is the Lagrangian correlatioi'l, 

R (t) = ~-t) v1 (o) 
L V 2 

L (4 . 4) 

VL(o) and VL(t) refer to the velocity of the same particle, not to the 
velocity at a given point in space . The bar denotes an ensemble average . 

Although the turbulence near the ground is not homogeneóus in any vertical 
plane, it may be assumed to be homogeneous if we confine our attention .to 
properties in a horizontal plane. Thusi for horizontal dispersion over a 
uniform l evel ground we may assume approximate homogeneity and applicability 
of eq. (4 .3) . 

Hay-Pasquill's hypothesis is tested introducing eq . (4.1) into eq. (4 .3), 
t 

cr/t) = 2Vi_ 2 ~ · (t -T) RE (~) dT. (4.5 

In Chapter 3 we showed that RE is a function of ·t/E, and 

R (t) := ) R (--Jl+' ' ~) R ' (1Lt._) L . E sE · :., , . ~'E suE ' 
(4.6 
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Fig. 4.1- Dispersion predicted assuming Hay-Pasquill's hypothesis, RL(st) 

= RE(t), with RE(t) given by the models Q.f Chapter 3 ..... RE given by 

RE = exp(- t/.E); -- RE(t) given by eq. (3.15a); ... RE(t) given by eq. 

(3.15b). L= sE. 
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X . I UT 
f (x-U -r )RE(SUE) d(UT) 
o 

where the Lagrangian integral time· scale L, 
00 

L = f RL ( t) dt 
I) 

is related to the Eulerian integral time scale E by 

L = SE 

(4 , 7) 

(4~8) 

The Plume standard deviations oy obtained from eq. (4.7), using the three 
models forRE presented in Chapter 3, are shown in fig. 4.1 and Table 4.1. They 
were obtained by .numerical integration. The difference between the results is 
not s i gnificant . Once we know E and: a, or L, we may use the exponential 
autocorrelation to obtain approximate results for y2 • As pointed out before 
(Frenkiel (1953)), the standard dev i ation is not very sensitive to the exact shape 
of the autocorrelation. All these conclusions are valid if and only if the ,Hay­
Pasquill •s hypothesis, eq. (4.1) is correct, i . e. , if e is constant for a given 
experiment . 

Table 4.1 - YT/(2~ L2 ) predicted by the Hay-Pasquill similarity hypothesis . 
The Eulerian autocorrelations are given in Chapter 3. Column 1- RL = exp(-t/L); 
column 2- RE given by eq . (3.15a); column 3- ·RE given by eq. (3.15b). 

t/L Column 1 Column 2 Colurm 3 
0. 125 0.0075 0.0070 0.0066 
0,5 0.106 0.095 0.085 
1.0 0. 367 o. 324 0.276 
4.0 3.018 2.73 2.26 
8.0 7. 6. 58 5.60 

16 .0 15 . 14 .50 12.91 
32 .0 31. 30 . 46 28.21 
64 ,0 63 . 62 . 40 59.47 
12.80 127 . 126.35 122.77 

4. 3 A Test of the Ha~-Pasguill H~Qothesi!? 

In this section we compare with experiment the theoretical preditions 

assuming RL (a t) = RE(t) . Taking the ratio 

Y2 (XB) IX ~ (X -Lh)R (U'-) d(U T) 
~__,__,__ = o . . E lll 

'""'7( ) rXA . . . U-r . 
y · XA 6 (XA- U-r )RE(UL:) d(U -r ) (4 . 10) 

and searching for the value of L(~ E) which satisfies eq. (4.10)for all (x
8

,xA), th 
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pairs of distance from the source, we obtain L and B for a given experiment L If 

the Hay-Pasguill scheme is correct, in a given run, L is constant for all pairs 

( xB' xA) 

The advantage of the ratio method used in eq. (4 , l0) consists in the 

el iminations of Vi:• about which we know only a _rough value of its magnitude, 

""-vr E . 

(4 . 11) 

which is a transcendental equation for UL. For the remaining correlations, (3.15a) 
and(3 .15b)/ the same steps may be taken but the complexity increases since no 
analytical expression exists for them. We show later that eq. (4.11) gives nearly 
the same results we would obtain with the remaining correlations . 

Two sets of data on atmospheric dispersion were chosen. They give 7 for 
dispersion near the ground over large flat fields. More detail is found in the 
given references or in Slade (1968) (Chapter 4). 

4. 3.1 Project Prairie Grass (Barad and Haugen (1959), Haugen (1966)): data 
are given for x = 50, 100, 20"0, 400 and 800 m. from the source . The experiments 

were adopted among the general set bec~use they have nearly Gaussian concentration 
distributions. Roots UL of eq. (4.11), with the left-hand side given by . 
experiment, are given in Table 4.2. T$ is the thermal stability index .defined .. , 
by 

T - T 
TS = 4m •. : O . 5m . x 1-o s o c cm2 

u 
2'm 

large positive values of TS mean a strong ~ inversion; large negative values of TS 
mean therma 1 i ns tab i 1 i ty. 

1 - Table 4.2- Roots UL (in meters) of eq. (4.11) . The paris are xA/x8. 
Data from Barad and Haugen (1959) . 

I • 
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Run No . 
53 

39 
18 

28 

54 

41 

17 
65 

35 

60 
38 

67 

56 

37 
42 

55 

21 
22 

24 

57 

6 

34 

11 

30 

27 

TS 
5. 79 

3. 30 
0.77 

0. 71 
0 . 44 

o. 39 

o. 37 
0.31 

O. 30 

0 . 27 

0.27 

0. 23 

0.20 

o o 18 

0. 13 

0. 12 

0 .09 
0 . 07 

0 . 06 

-0 .08 

-0 . 18 
-0 .21 

-0 . 22 
-0 . 36 

-0 . 47 

501100 

3 

29 

44 

34 

16 
23 

12 

13 
34 

10 
31 

24 

56 

27 

13 

36 
23 

28 

61 
120 

31 

41 
63 

120 

25 

501200 

9 

41 

71 

61 
24 

32 

21 
21 

57 

27 

20 

41 

38 
12 

27 

59 
35 
42 

134 

167 
52 

61 
115 

P4 

501400 
20 

37 

54 

45 

32 
28 

86 

36 

27 
52 

43 

122 

42 

83 

40 
52 

255 

203 
77 

108 

214 

133 

501800 
28 

46 

52 
48 

85 

44 

37 
73 

46 

64 

44 
59 

243 
332 

104 

143 

We conclude that UL is not constant for a given run . Simi lar conclusions 
were obtained by Haugen (1966) . He assumed ~ = V(T• which might be a source 

of errar. The present results seem to prove that this is not the case. 

Choosing arbitari~y one of the values of UL may lead to serious errors in 

estimating jZ . For the run 56, for example ~ we get 24<UL<46, resulting in 

y2 (x = 800m, UL = 24m) = 37200 (VL 2 I U2 ) 

y2 (x = 800m, UL = 46m) = 69400 (VL2 I U2 

a difference of 86% in y2. 

I 
INSTITUTO DE ·-FfSJCA I 
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In Table 4. 3 we gi ve some results for UL obtained for RE given by eq . 

(3 . 15a). In this case the solution of eq . (4 . 10) i nvol ves numerical integrations 

and transcendental equations . 

No sensible d. ffe rence i ~ obse r ved relat i ve to values gi ven in Table 4.2, 

~ justifying the use of the exponenti al correlat i on in th i s test , 

\ 

Table 4.3- UL (in meters) which satisfy eq . (4 . 10). RE given by eq . (3 . 15a) . 
Data source: Prairie Grass . 

Run No . 
56 

6 

17 

50/100 
22 

120 

10 

50/200 

34 

150 

18 

50/ 400 
38 

225 

27 

4. 3. 2 Project Green Glow (Fuquay et al (1964)): yz are given for 

50/800 
42 

340 

45 

x = 200, 800, 1600 and 3200 m. downstream from the source . Table 4. 4 gives the 

roots UL of eq . (4 . 11) 

Table 4.4- roots UL (i n meters) of eq . (4 . 11) . Experimental yr from 
Project Green Glow (Fuquay et al (1964)) , Exponent i al autocorrelation , 

Run No . 

67 

7 

9 

5 

57 

46 

55 

70 

13 

43 

65 

69 
50 

68 

10 

26 

17 

22 

53 

Ri chardson 
No. R; 
o o 130 

o. 119 
o. 112 

0.097 
0. 089 

0. 086 

0.084 
0,083 

0.078 

0 .06 7 

0.054 

0.053 
0.051 

0.048 
0.037 

0.036 

0.032 

0.031 

0.021 

200/ 800 

6820 

1310 

185 
95 

235 

510 
720 

220 

160 

7230 

2200 

1060 

290 

300 

115 

420 

250 

150 

200/1600 

12500 

560 

400 
165 

1180 
695 

470 

10790 

1250 
6995 

285 
370 

200 

390 

390 

200/3200 

1090 

. 400 

940 

2350 
460 

815 

410 

355 

2725 

5500 

980 

165 

580 

335 

11000 

460 

615 
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Run No . Richardson 
No . R: 

23 0.018 
19 0. 011 
33 0 .005 

60 -0 .010 
41 -0 .015 
32 -0 .023 

52 -0 .026 
45 -0 .076 
61 -0 .085 

40 -0 o 117 
30 -o . 176 

27 

200 / 800 

165 
655 

280 

270 

200 
525 

145 
28000 

625 

300 
220 

200/1600 

330 
960 

235 

265 

315 
590 

140 
3080 

410 

660 

200/3200 

755 

1040 
190 

270 

620 

650 

195 

1360 

1450 
715 

Although some results cann ot be considered of 11 good qual ity 11
, we see clearly 

that UL is not constant for a given run . There i s a trend fo r increase of UL 

with distance f r om the sour ce . Th i s means that s i s not constant, as requ i red 
by the Hay-Pasquill hypothesis . 

Another po i nt dese rving attent i on i s the value of UL fo r the pa i r 200/3200 . 
It changes from 150 t o 11000, with a mean value of UL = 1l00m . , as suggested by 

Pasquill (1974) (p . 197) . But th i s va l ue is val i d on l y fo r the ratio y(200) 1 
y(3200 ) . Fo r other pa irs of distance, different r esults are obtained, and the 
value UL = llOOm . cannot be taken fo r pr act i cal computations . 

~ . 4 Anal..x:s i s of the Tests 
The i mmediate resu l t i s tha t the Hay-Pasqu i ll hypothes i s is not obeyed in 

at mospheri c tu rbulent di spers i on nea r the ground . The facto r S tends t o 
i ncrease wi th distance from the sour ce . The same result was obta i ned in 
l abo ratory experiments (see Chapter 2 fo r refer ences) . After we accept th i s 

conclusion, we can obse rve i t even i n the or i gi nal work of Hay and Pasquill 
(1959) (p . 361) . They show clea rly that S i ncr eases with distance ! 

One explanati on for t he va ri at i on of S may be f ound in f i g. 4.2, giving 
the results for Run . No . 55 of Proj ect Pr airi e Gr ass , y2 pred i cted by Hay and 

Pasquill inc reases much slower than the measu r ed va l ue . The disagreement may 
be t raced to the rate of decr ease of the autocorrelat i on assumed . The real 
value seems to decay mo re s l owly than the value proposed by Hay and Pasquil l, 
as shown in f i g. 4. 3. 

Anothe r explanati on of the fa i lu re of the Hay-Pasquill hypothesis could be 
the ex i stence of shear f low nea r the gr ound . In Pr oject Pr airie Grass some data 
we re obtained wi th sourcR and sampler s at 1. 5m . he i gh t ( Runs Nos . 65 and 67), 
and the rema i ni ng data wi th source at z = 0. 5m. and samplers at z = 1.5m. 
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Fig. 4.2 - y2 (x) I y2 (50) for run 55 of Project Prairie Grass (Barad and 

Haugen ( 1959)) . --- Prediction of Hay-Pasquill' s theory. Ul - SUE is 

given near the curves. Points are the experimental data. 
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Pasquill (1974) showed that the shear produces no apreciable change in the 
predictions . Besides this, all the results show a similar trend for the 
variation of t3 . 

Chapter 5 - A BETTER APPROXIMATION FOR R (t) . 
---- ---· . ....... - -·· ..... - ·- ---.. ·-·- -·-· ---- .... - .~~ ~"~ L~~-· 
5.1 Introduction _,.,....., ___ .,.._. ___ ........................ ...... 

The main problem i n the theory of turbulent dispersion - an expression for 
the Lagrang i an autocorrelation- started with Taylor's theorem, eq . (2 .1), and 
remains unsolved . No scheme seems to give a good approximation to real data. 
Partial agreement is obtained for short distances from the source. but 
generalisation is a dangerous step which may lead to errors of orders of 
magnitude (see Slade (1968) p. 133) . 

The Hay-Pasquill model for RL presented in Chapter 4 continues to receive 
wide attention, mainly because of its simplicity. The model is probably 
incorrect, as its correlations decay faster than the real Lagrangian autocorrela­
tion, underestimatin,g the dispersion fpr from the source. B~sides this, in 
principle there is no reason for its being correct . A better approximation may 
probably be obtained as follows. 

If a particle is released from the or1g1n at t =O, (x, y, z;t) =(o, o, o;o}, 
there is high probability that after a time t the particle will be in the close 
vicinity of the point (Ut, o, o;t) if the int ensity of turbulence is not too 
large . One app roximation to RL may be given by the correlation between the 
Eule r ian veloc i ty at (o,o,o; o) and !' Ut,o.,o.: t L If the "space-time correlation" 
is defined by 

RE (X, o, o; t) :x v o, o, o; o) V ( X, o ,- o; t) (5 ,1) 

our suggestion consists in taking for RL the "space-ti me correlation following 
the mean fl ow" 

RL (t) ~ RE (Ut, o, o; t) (5 . 2) 

which is the correlation between the i nit i al velocity an_d the velocity measured 
by a probe travelling at the velocity of mean f l ow . On the other hand, Hay­
Pasquill's maybe wri tten as 

RL ( st) = RE( o ,o ,o; t) :: RE( t) (5.3) 

It will be shown later that the two suggest;fons yield different results . 

The idea of using space-t i me correlàtions i s not new, but is seldom applied . 
At the 1958 Symposium on Atmospheric Diffusion and Air Pollution at Oxford 
(Frenkiel and Sheppard (1959) ) ,the idea was mentioned many times (Corrsin pp , 162, 

442), Palm {p . 398)), but no practical scheme was given for the -calculation of 
space-time correlations . In addition to this correlation for all x and t the 
proposed models require information about the probability of displacement of fluid 
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particles, which is an unknown function (see Saffman (1963), Peskin (1974)). 

The model suggested here is simpler because we need the space-time correlation 
for x = Ut only . The difficulty is that even for this "simple'' correlation no 
analytical expression exists which is valid at all times t . Chapter 6 presents 
such a model. 

5_. 2 A Prelimi ~ary Test . 

One preliminary test for the suggestion given here is shown in fig . 5.1. 
The Eulerian time correlation and the Eulerian space-time correlation following 

the mean flow, both measured. by Comte-Bellot and Corrsin (1971), are compared 
with the Lagrangian autocorrelation for this flow, as proposed by Hay and 

Pasquill, eq . (5.3) . R(Ut, o,o; t) falls mo re slowly resulting in a larger y 

far from the source . This is in qualitative agreement with the results of Chapter 
4. 

What we need now is a theoretical model for R(Ut, o, o; t) . 
Chapter 6 - A MODEL FOR SPACE-TIME CORRELATIONS FOLLOWING THE MEAN FLOW . ---- --·- - -----·-.. ·-·---· ... - - --·----.. ---·-
6. 1 Introduction 

The Eulerian space-time correlation for thé y-component of the velocity in 
a steady flow is defined by 

( . t) _' ..:..v (::x::·~Y ::• z::;::::t::) :::v:::( o:::•::o::, ::o::; o~}~::::;:: RE X ,y ,Z' - -
{v(x,y,z,t) 2 v(o,o,o;o) 2 }~ 

It correlates the velocity at two points, (o, o, o) and (x, y, z), and at two 

times, with an interval t between the measurements . When t = o we get the Euler i an 
space correlation 

R (1) = R ( x , y , z ; o ) 

The Eulerian time correlation (autocorrelation) RE(t) i s the most easily 
observed 

RE(t) = R(o, o, o; t) . 

The hypothetical correlation we would obtain in the case of one probe 

(6 . 2) 

(6 . 3) 

fixed at the origin and another probe travelling downstream in the x direction 
at the mean flow velocity U, is called "space-time correlation follwing the mean 
flow ~ " This is the object of the present Chapter, 

R(x = Ut, O, O; t):: R(Ut, o, o; t) . (6 . 4) 

6. 2 The Frozen Pattern . 
Taylor (1938) made the hypothesis that turbulence may be regarded as a 

frozen pattern of eddies being swept past the observer . This means that a signal 

received at one measuring position will be received ata second point, distance x 
directly downstream from the first, at a time t later The velocity ~ · = x/t is 

c 



33 

called velocity of convection of the pattern (~u) (Fisher and Davies (1963)), 
Thus the value of R(x, o, o; t) will attain its maximum (= 1) frir x = Uct ~ut 

and so 

R(Ut, o, o; t) = 1 (6 ,5) 

Fig , (6 ,A) shows the space-t ime correlation we would obtain if the frozen pattern 

we re correct . 
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6.3 The Non-Frozen Pattern . 

--~_ .. lt. • • o:r ........ _, 

-t. (~.»H) 

In practice the frozen pattern scheme shown in fig . 6.A is not observed. 
Fig . 6. B shows more realistic results and, although each correlation curve rises 
to a maximum at some value of the time delay, the amplitude of this maximum 
is a function of the separation x. For an observer travelling at the velocity of 
convection of the eddies (which is approximately the velocity of the mean flow), 
the autocorr~lation in his frame of reference is exactly our R(Ut, o, o; t) and 
is given by the envelope of the space-time co rrelations, as shown in fig. 6.B. 

' · 

Today there are many good experimental results concerning space-time 
correlations measured downstream of regular grids spanning uniform duct flows 
(Comte-Bellot and Corrsin (1971), Favre (1965), Frenkiel and Klebanoff (1966)), 
and in pipe flow (Sabot et al (1972), Baldwin and Mickelsen (1963)) . 

All these experiments show one important characteristic: the narrow band 
correlation R(Ut, o, o; t; n) which involves only the frequencies in the vicinity 
of n, behaves differently for different frequency bands . lt decays much faster 
for high frequencies than fo'r low frequencies . This can be seen in Comt-Bellot 
and Corrsin (1971) (fig . 14) . This led us to propose the present model, based on 
two hypotheses . 

Hypothesis #1: each eddy lives during a time proportional to its period 
(~1/n) (or, a distance proportional to its wavelength) . After this time its 
energy is dissipated or trans.ferred to other frequencies . 
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Hypothesis #2: starting with a given· eddy configuration at t = o, the 

eddies created or transferred from a given frequency to another frequency at t > o 

have no correlation with the original configur ation . 

As a consequence, afte r a time t we have eddies and energy for all 

frequencies but only the lower frequencies contribute to the space-time 
correlation: the original high frequency eddies are dissipated and are replaced 
by new eddies uncorrelated to the initial configurati on . If the pattern were 
frozen, all eddies non-dissipated at (Ut, o, o; t) would be correlated to the 
eddies at the origin, 

v(Ut, o, o; t) v(o,o,o; o)= (v(Ut, o, o; t Y· v(o,o, o; o) 2 )~ 
(6 . 6) 

As in reality only part of the spectrum at (Ut, o, o; t) is correlated to the 
·Configuration at (O, O, O; O) we have to modify eq . (6 . 6) , 

Each original eddy maintains its identity for a time proportional to its 
period of oscillation (Ad/n) , After a time t all eddies of frequency larger 
than y/t are no more correlated with the initíal configuration So we obtain 

--:--------:--::-, . - !.: r Y /t . 
v(Ut,o,o;t) v(o,o,o;o) = {v(Ut,o,o;t )L v(o,o,o;o) 2 } 2 J F(n) dn 

o (6.7) 

where the integral rep resents the "fraction" of eddies correlated with the 
initial configuration , With this basic assumption we obtain from eq , (6 . 1) 

'( j t 
R(Ut, o, o; t) =; F(n) dn (6.8) 

o 
2 ~r is the rat i o between the 1 ifetime of an eddy and its period of osci llation . 

The possibility of predicti ng R(Ut, o, o; t) from F(n) is an important result, 
since the spectral density may easily and cheaply be obtained from correlations 
measured at a fixed poínt . 

Eq , (6 , 8) is valid for steady flow and whenever the .change of spe'ctral 
density F(n) downstream i s caused by internal factors such as dissipation and 
energy trans f e~ and not by ex tema 1 factors such as obsta c 1 es and change of 
roughness . The reason is that we do not know how th.ey modify the original 

spectrum. 

§d_ ... Comparison With L~.bo.!:atorL.flow~~ 

In Chapter 3 it is shown that Eulerian time correlations for turbulent flows 
behind grids can be well represented if we assume for the spectral density 

F(n) = 4E 
1 + 31,5 (En)S/3 (3.10a) 

resul ting in 
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C-0 .809 
arctan O.San-

- 0 .235 arctan C+~:~~i + 0. 4319 } (6 .9) 

where 

C = 1.993 {yE/ t) _/ 3 (6 .9a) 

~n fig . 6. 1 the predictions of eq , (6 . 9) are compared with experimental data . 
Three experiments are considered : 

Qa) The data by Comte-Bellot and Corrsin (1971) are the best test for any 
11 space-time correlation model. 11 The mean flow velocity is 12.70 m/s, 
the grid mesh M is 5. 08 em . and data are given for time delays up to 

700 msec. No other experiment gives such a large time delay. The 
integral t i me scale E as obtained in Chapter 3 is 2. 1 msec . 

(b) Frenkiel and Klebanoff (1966) use a grid with mesh M = 2.54 em. so as 
to generate turbulence in a flow of U = 15 .4 m/s. E as obtained in 

(c) 

Chapter 3 is 
Favre (1965) 

M = 2. 54 em . 

1 msec . 
presents correlat i ons for a flow with U = 12 .2 m/s, 
and E = 0.9 msec . 

The model suggested ag rees very well with the data when an appropriate 
value of y is assumed, as shown in f i g. 6. 1. 

It has been suggested that the exponential correlation may reasonably 
represen~ Euler ian autocorrelations . To R= exp{- t/E) it corresponds 

4E 
F(n) = 1 + (2 nhE )2 

Introducing this spectr al dens i ty in eq . (6 .8), we get 

R(Ut, o, o; t ) = ~ arctan ( 2 ~YE ) 

(6 . 10) 

(6 . 11) 

Al t hough eq . (6 . 11) i s simple and tempting, it does not fit exper imental data . 
Th i s is shown in fig . 6. 2. 

6 . 6 Compa r ison With Atmospheri c D.Eta!. 
Chapter 3 shows that the spectral density f i tting atmospheric data is 

4E 
F(n) = (1 + 6En )5/ 3 

When intr oduced i n eq ~ (6 .8) r esults in 

R(Ut~ 
1 

o, o; t) = 1- --­
~ 2 13 

(1 + t ) 

(3 .10b) 

(6 .12) 

This is a simple expression for the space-t ime correlat i on following the mean flow . 
This expres s ion will be used in Chapter 7 as an approximation to RL(t) , In 
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fig. 6. 3 we compare eq . (6 . 12) with data in Project Prairie Grass (Barad (1958), 
Haugen (1959)). There is good agreement . The interesting fact is that now y is 
nearly constant for all st~tes of atmospheric stability, y = 0. 18 to 0.20. In 
Chapter 7 it will be shown that when the value of y is not known, a good 
approximation for diffusion pr ed i ction is y o.2. 

' 
Chapter 7 - SPACE-TIME CORRELATIONS ANO TURBULENT DISPERSION IN THE ATMOSPHERE . 
7. 1 Introduction , 

In Chapter 6 an 1 :ana lyti c a 1 express i on for the space-time correl at i on 
following the mean flow in terms of micrometeorological quantities is suggested. 
This expression is used (instead of RL(t)) to compute y2. The theoretical results 
are compared with experimental data obtained in diffusion experiments in the lower 
atmosphere . The test is made by the method explored in Chapter 3, which has the 
advantage of not assuming the equality between the Lagrangian and the Eulerian 
velocity variances. It is shown indeed that these two quantities are in general 
di fferent . 

One important characteristic of the model proposed is its dependence on the 
Eulerian integral time scale E, which is itself a function of height above the 
ground, of the temperature and veloci ty profiles, and of the terrain rp'ughness. 
This could explain why, under the same atmospheric conditions, the dispersion 
behaves differently in different places, and even at the same place, but in 
different seasons (Vogt (1974a)) . 

As in the preceding Chapters, here we confine ou r selves to horizontal 
process only where the velocity field is assumed to be homogeneous and steady in 
t he plane of dispersion . 

7.2 The Standard Deviation y2. 
The Eulerian space-ti me cor relation fol l owing the mean flow for atmospheric 

tu rbulence is given by 

R(Ut, o, o; t) = 1 - 1 

(6 . 12) 

The computation of y2 is not sensitive to small changes in RL , Eq . (6 .12) is 
proposed as an approximation to the Lagrangian autocorrelation . This results in 

- ? - t 
y 2 (t ) _ = 2 VL 2 f (t- • ) R (UT, o, o; ) d• 

o 

Introducing (6 . 12) into (7 .1) we obtain 

( 7. 1) 

~ 
= L ( ) 2 1 - P 5 P (5 1 ) 1 (1-P) 2 

2' lJ2 6yUE t 2(1-P3)2 + 6 (1-P) 3 - 6 + (P3-1) {3 lnP2 +P+l y2 (x,yUE) 

2 13 p 
-- arctan 2 .+ P + 1.209 } 

13 
(7 . 2) 
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where 

{7. 3) 

Eq . (7 . 2) may probablybe simplified ,using some approximations. This is avoided 

here. 

The relationship between ~ and the measured V[L is unknown, so eq. (7.2) 
cannot be tested directly. We may take the ratio of eq. (7.2) for two distinct 
distances and introduce the value of YUE obtained from space-time correlations 

measurements, 

H(xA,yUE) 
H (x8 , r UE) 

= ?"(xA) I 
y2( X ) 

B experimental (7.4) 

lf eq . (7.4) is satisfied for all pairs (xA, x8 ,} in a given run, R(Ut, o, o; t) 
is similar in shape to RL . . Then we may use eq. (7 . 2} for obtaining ~· 

!.:..3 Compari son With Experimenta_~at~~: 

Comparison between physical models and measured data on diffusion is a 

difficult ta~k: with one known exception (Project Prairie Grass) the data are 
unaccompanied by turbulence characteristics (time correlations or spectral 
densities). Consequently the value of yUE cannot be extracted. 

7.3.1 Project Prairie Grass (see Haugen 1 ~~~L)~ 

For some runs of this project we have yUE (see fig . 6. 3) . For others the 
direction of the wind was different from that of the anemometer line, so that we 
are unable to find YUE but we have UE . We may guess the value of YUE by taking 
y = 0. 2. For the remaining cases, YUE is chosen to give the best fit . Table 7. 1 
gives the pred i cted dispersion and compares it with experi mental data. Some 
results are presented in fig . 7. 1. 

Table 7.1- (:y'L(x8) I :YZ"(xA)) predicted by eq . (7 .2) . The experimental 
ratios are given within parentheses . Source ·of data: Ba rad and Haugen (1959) and 
Haugen (1959) . Pairs indicate x8;xA, distances from the source in meters; Runs 
6, 21 and 65 - yUE f rom measu rements ; runs 54 to 27 - ruE guessed from measured 
UE and y = 0.2; runs 53- 30 - YUE chosen to give the best fit . 
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Run No. "C UE{m) 50/100 200/100 400/100 800/100 
6 41. 0.52(0 .53) 1. 88( 1. 87) 3,39 I 3, 34) 5.95(6 , 30) 

21 8. 0 .56(0 .58 ) 1. 73( 1.74) 2. 90(2 .97) 
65 2. 0.59 (0.65 ) 1.63 (1.58) 2 .60( 2 o46) 4 .07(4 .11) 

54 1. o. 61 (o . 64) . 1. 59( 1.60) 
17 1. 0 .61(0 .65) 1.59( 1.59) 2. 49(2 .55) 3.85(4 . 29) 
38 1.1 0"61(0 .66) 1.60( 1. 59) 2.50(2 . 46) 3.87(3 .86) 

56 1. 0 .61(0.61) 1. 59 ( 1.66) 2.49(2 .58) 3.85(3 .82) 
55 1.8 0.60(0 .64) 1.63(1.64) 2.58(2 .71) 4.03(4 . 52) 
22 2.5 0. 59(0 .61) 1.64(1.64) 2.64(2 .55) 4.15(3 .82) 

24 2.4 0.59(0.60) 1.64(1.67) 2.64(2 .68) 4.14(4 .11) 
27 20 .8 0.53(0.53) 1. 81 ( 1.82) 3.18(3 .05) 5 .41( - : ) 

53 0.6 0.62(0 .69) 1.57( 1. 50) 2.43(2 . 41) 3. 72(3 . 75) 
39 1.5 0 .60(0.60) 1.61(1.66 ) 2.54(2 . 45) 
57 54 •' o. 52 (o. 56) 1. 89 ( 1. 90) 3. 48(3 .65) 6 .11 (6 . ll) 

34 12. 5" 0.54(0 .60) 1. 77( 1. 74) 3.03(2 .97) 5 .04(4 .96) 
11 18.5 0 .53(0 . 58) 1. 80( 1. 74 ) 3. 15(3 .16) 5. 32(5 . 33) 

30 70 . 0.52(0.55) 1. 90( 1. 86) 3.54(3.56) 
------···"-· 

Good agreement is obtained between predicti ons and experiment with a 
di f ference in general of less then : 5%. 

In fig. 7. 2 and 7. 4 we compare the results of this Chapter with those 
predicted by Hay and Pasquill's hypotheses. These f i gur es may be considered as 

t he main result of this thesis for they show cl early that Hay-Pasquill's model 
underestimates extrapolations when the model proposed here pred icts quite correctly 

the shape of jZ(x) . 

?.._d.:..f_ __ Project Green Glow {Fuquay et al 1964)) . 

No time correlations are given, so we assume that the spect ral density is 
the same as for Project Prairie Gr ass, and that R(Ut, o, o; t) is given by eq . 

(6 . 12) . This means that jL is given by eq . (7 . 2) . Table 7. 2 compares prediction 

with measured values . YUE is chosen to give the best f i t . 

Table 7.2- jZ(x8) I jZ(xA,) predicted by the present model (eq . (7 . 2) ). 

Data inside parentheses from Pr oject Green Glow . Pai rs, ind i cate x8 /xA in 

rneters . 
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Run No. y.UE( m) 800/200 1600 /200 3200/200 
9 180 3.62 (3 . 72) ( - ) 11.57(10.76) 

57 15 2.89(2 . 46) 4.71(4 . 15) 7.50( 8.54) 
70 60 3. 30(3.54) 5.70(6.10) 9.54( 8.18) 

13 19 2.95(2 .93) ( - ) 7. 79( 7. 79) 
43 80 3.38(3 . 38) ( - ) 10 .05(10 .05) 
44 160 3. 58(3.63) 6.48(6.52) 11. 33 (11. 26) 

69 200 3.63(3 .83) 6.65(6 .78) 11. 72 (1 o o 88) 
68 12 2.85(3.10) 4.60(4 .86) 7. 20 ( 6.05) 
10 40 3. 18 ( 3.11) 5 . 33(5 . 22) 8.86( 9.22) 
26 13 2.86(2 .56) 4 . 62 ( 4 . 37) 7 .33( 7 .62) 

22 32 3.11(3.00) 5.22(5 . 29) 8.53( 8.53) 
25 5 2.64(2 .84) 4.16(4 . 39) 6.44( 5.64) 
53 41 3. 18(2 .71) 5.40(5.29) 8.90( 9 . 41) 

23 31 3.09(2 . 76) 5o 17 (5 o 06) 8 . 45 ( 10 o 06) 

19 138 3. 45(3.50) 6 . 37(6 .50) 11.07(11.07) 
33 9 2. 78(3 .07) 4. 45( 4 .57) 7 .00( 6. 35) 

60 17 2.93(3 .05) 4.79(4 .74) 7.65( 7.10) 
41 31 3.10(2 .87) 5.19(5.00) 8 . 46( 9. 44) 
32 68 3.34(3.40) 5.80(5.88) 9.76( 9.60) 

52 4.4 2.62(2 .68) 4.11 ( 3. 96) 6.35( 6 . 36) 
40 138 3.53(3 . 11) 6 . 34(6 .04) 11.00(12.04) 
30 44 3 .20(2 .92) ( - ) 9.01( 9.88) 

Although there i s some scatter, the difference between measured and predicted 

values is within ~ 10% in most cases, in support of our model . 

For this project we have data for~ and YT(x) (not ratios of 7. as in 

Prairie Grass) . This enables us to finda relationship between ~ and ~· 

In Table 7. 3 we give YL(x) as predicted by eq . (7 .2), whereas yUE is obtained 

from Table (7.2), and the ratio of velocity variances is as indicated . The 

agreement with experimental dispersion seems to be excellent, supporting our 

model and leading to the conclusion that in general~~~· 
--·'"' . 

Table 7. 3- (YT(x)) predicted by eq . (7 . 2) . yUE from Table 7.2. 

Experimental "?' and "i/{ gi ven by Fuquay et a 1 (1964). Rati o ( VL 2 I V?J taken 
to obtain the best agreement with experimental (inside parentheses). 
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x(m) 
1 

Run No. (v-z !Vl)Yz 200 800 1600 3200 L E . . ---- -- .. 

57 1.23 13.6(13) 39 ( 32) 62 ( 54) 100(111) 
13 1.45 29 (29) 85.4( 85) 225 ~ 226) 

43 0.96 21 (21) 71.5( 71) 212(211) 

44 1.21 46.5(46} 164 (167) 297(300) 520(.518) 
69 0.92 40.4(41) 149 ( 157) 274(278) 485(446) 
68 1.50 19.5(21) 56 ( 65) 90 ( 102) 141 (127) 

10 1.33 18 (18) 56.9( 56) 96 ( 94) 158(160} 
22 1.06 17 (17) 52.5( 51) 88( 90) 143(145) 
25 2.00 30.6(31) 91 ( 88) 127(136) 197(175} 

53 1.08 17.4(17) 55 ( 46) 94( 90) 156(160) 
19 1.10 28 (28} 98.5( 98) 177(182) 308(310) 
60 0.93 18.6(19) 55 ( 58) 89 ( 90) 142(135) 

41 1.25 16 (16) 49.5( 46) 83( 80) 135(151) 
32 1.18 25 (25) 84 ( 85) 146(147} 247(240) 
52 1.46 27.7(28) 73 ( 75} 114(111) 176 (178) 
30 0.81 26 (26) 84.1 ( 76) 237(257} 

Some results of Table 7.1 are displayed in figs. 7. 3 and 7.4. We may draw from 
fig. 7.4 the conclusion that Hay-Pasquill•s hypoth~sis is reasonable when it 
provides interpolated data, but it may not be used in extrapolation or in giving 
confident prediction when diffusion experiments are difficult or impossible, and 
when we require results with 50 - 60% confidence. We shall try to explain 
in the next Chapter why their hypothesis fails at large distances from the source. 
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Cha.E_!er 8 - THE VARIATI QN OF PASQUILL~.?_ê~ITH DIST_ANl~:. 

It was shown in Chapter 3 and by many authors that the factor e in Hay­

Pasquill1s hypotheses RL( et) = RE(t) changes with distances in an unknown way. 

One tentative explanation may be found when we compare the approximation 

for the Lagrangian autocorrelation proposed by Hay and Pasquill with that 
proposed here, R(Ut, o, o; t). Both are shown in fig . 8.1. 

Le t us assume that our suggestion is correct. For the dispersion at x =SOm., 

the Hay-Pasquill is a good approximation, taking e = 2. But to get the correct 
dispersion at x = 500m. we have to take e = 4 or 5, showing that e changes with 
distance . The reason is that the Eulerian time correlation RE(t) and consequently 
RE(t/ e) tend to zero much faster than the real Lagrangian autocorrelation. This 
explains too, why e<l is sometimes obtained. It can be shown that for certain 
Values of UE and the space-time correlation falls below the time correlation 

for certain intervals of time, resulting in O<e<l. 

INSTITUTO DE FfSICA I 
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Ch ~~te r 9 - A NOTE ON SUTTON'S FORMULA . 
9. 1 Introduction. -·----· .. --... -······-~·-····~·""' 

The simple power laws suggested by Sutton (see Sutton (1953)) 

YL( X) = 

and 

c~ x2 - n 
y (9.1) 

(9. 2) 

are analytically convenient, and therefore attractive , But problems may arise 

whenever we try to use them in practical applications . First, the constants Cy, 

Cz, n and m are not really constant: they change with distance downstream from 
t he source, with atmospheric stability, with height above the ground and site of 
the experiment. Sutton (1953) proposed an autocorrelation RL which leads to eqs. 
(9.1) and (9.2), but his correlation has an infinite integral time scale~ In 
this Chapter it is shown how we may use the approximation to RL proposed in this 
work to explain the behaviour of the 11 constants 11 in Sutton's formula, eq . (9.1). 

9. 2 A Model for the Parameters. 
In Chapter 7 we saw that the space-time correlation following the mean flow 

can be a good workable approximation to RL and that is a function of x/UE only: 

(9,3) 

consequently, 

f.x/U E (X U ~ ) (U T) (UT) _ 
UE' - DE RL DE d DE 2Vt E ~ G(~E) 

o 
(9 . 4) 

and this can be wri tten in 11 Su tton 's formll 

(9.5) 

resulting in 

C2 = 2V2 E2 G(1) y L (9 .6a) 

and 

ln G(~E) '- ln G(l) 
2- n = --'--· ---'-=------

ln (~E) (9 , 6b) 

This shows that n is a function of x, as we know from Taylor's theorem (see 
Csanady (1973)) . Given a reasonable shape for RL we can obtain the behaviour of 

Cy and n. 

9. 3 A Si !!!PJ e Exall]P..l e_. 
As an instructive example we may assume 

RL (x) = exp( ~ ~L) (9 . 7) 
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This results 
- .x_ 

YL(x) = 2 PL L2(e UL + 2L -1) 
UL · 

c~ · = 2 Vi: L 2 ( e - 1 ) 

2-n 
ln(exp(- ~) + ~-

= , . UL UL 

ln (~L) 

_ l 
1) - ln(e ) 

(9.8) 

(9 .9) 

(9.10) 

Eq . (9.10) is shown in fig . 9. 1. The following general behaviour of (2~n) can 
be extracted: 

(a) When instability increases, UL increases too, and for a fixed distance 
x from the source, x decreases and (2-n) increases . So this model 
predicts an increas~of (2-n) with instability, in qualitative 
agreement with experiment (see Slade (1968) and I A E A (1974)). 

(b) A Change in site and/or season implies a change of the environmental 
roughness . This means a variation in L consequently, for a given 
distance x, the valued (2-n) changes through a change in x/UL. 

(c) UL probably changes with height, which implies a change of (2-n) with 
z. This is in agreement with experiment (Pasquill (1 974)) . 

9.4 A Realistic Model . 
The exponential correlation and eq . (9 .6) are not good modles to represent 

atmospheric diffusion processes . Eq , (7.2) gives what is supposed to be a better 
approximation to ~' 

v r 
y2 ( y~E ) -= 2 W (6yUE) 2 H ( y ~E ) 

where y is the facto r r elated to the l i fetime of an eddy . 
obtain 

(7 .2) 

From eq . (9 .6b) we 

C~ = 2Vt (6y E) 2 H(~UE) = 2Vt (6 yE)2 0.012 

and 

X 
yUE = 1 (9 .11) 

ln H(--x--) - ln 0.012 UE 2-n = ...:....___...~...::.~-----
1 n( y~E) (9 . 12) 

(2-n) given by (9.12) is shown in fig . 9.2. One advantage of eq . (9. 12) is that 
we can obtain (2-n) knowing Eulerian quantities easy to measu re . Presently it 
can be obtained only by means of diffusion experiments in s itus, expensive and 
difficult to perform . 

We can easily extract prediction f rom fig . 9.2 . Assume y = 0. 2 as we got 

in Chapter 7, anda distance x = 800m. from the source . For neutral atmosphere, 
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UE ~ 10 - 12m. in Project Pra i rie Grass . This means x = 320 - 400 and (2-n) = 

1.57 - 1.59, which is near the observed value 1.60 . ~g~ very stable atmospher~, 
UE ~ 0.5 m, x ~ 8000 and (2-n) = 1.45, to be compared with experimental values, 

WF 
in the range 1. 25 - 1. 50 . For unstable atmosphere, UE is in the range 100 - 350m., 
resul t ing i n (2-n ) = 1. 70 - 1. 80 . The experimenta l value is wi th i n the range 
1.65 - 1. 80 ! The exper imental values are found in Slade (1969) and Bysova (1973). 
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Chapter 10 - DISCUSSION ANO CONCLUSIONS . 
Models describing turbulence, to be appl i ed i n ai r polluti on problems 

should be simple in their use and easy to understand, so that they can be 
adopted to any new situationl Simple and general models describing turbulence 

and turbulent dispersion are given here, leading to a new model for the 
computation of pollution di sper s i on i n any thermal ly str at ifi ed fluids in 

homogeneous and steady flows . 

It is shown that a few condi tions to be satisfied by~he spectral · densit~ 

óf t urbulence lead to simp l e expressions . The model satisfies both the 
Kolmogorov and the Monin-Obukhov principles. The corresponding Eulerian time 
autocorrelations RE(t) are computed and compared with experiment . Good 
agreement is obtained . Atmospheric and pi pe flows r equire somewhat different 
spectral expressions . This is pr obably due to the different ranges of frequencies 
excited in the flow . The spectra and the cor r elat i ons ar e functions of the 
energy frequency dist r i bution, not of the tu r bul ençe i ntens i ty . The models · 

depend on the .Eul eri an integral time sca l e E. Future development of experimental 
techniques may l ead to a state of the ar t such that measu rements of mean 

velocity and tempe ratu re at two or three di ffe rent he i ghts wou ld give us the 
Richardson •s number, and consequently E. 

With the help of the model proposed fo r RE ( t) and of a method which does 
without the knowledge of the Lagrangian vel oci ty var iance vl' it is shown that 

the Hay-Pasquill model fo r the Lagr ang i an autocorrel at i on RL(Bt) = RE(t) is not 
a good approximation . In gene r al the computed va l ue fa ll s to zer o much faster 

than the observed value, underestimat i ng po l lutan t di spe rsion fa r from the source , 
Hay-Pasquill 1 s mode l may be used on ly i n i nte r polat i ons over shor t distances, but 
not in ext rapolati on . 

A different model i s proposed for r eplac i ng RL( t ) . It i s suggested that a 
bette r appr oxi mat i on i s obtained i f we take the co r r elation between the signal 
at (o, o, o; o) and the signal of a probe t ravel li ng downstream at the velocity 
of the mean flow . A simple mode l i s here proposed for th i s 11 Space-ti me 
correlation follwing the mean flow . 11 A few assumptions about the behaviour 
of the eddy pattern i n tur bulent fl ow l ead to a model for RE(Ut, o, o; t) as 
funct i on of the spectral dens ity and consequently of E. This model is in good 
agreement wi th experiment, fo~ .bot h .cbanneL and. p.tmospheri c flows . 

Replacing RL by RE(Ut, o, o; t) i n Tayl or• s theorem fo r computing yz leads 
to excellent agreement between theoret i cal pred i ct ions and exper iment, showing 

that Lagrangi an autocorrel at ions and space-ti me correl at i ons fol l owing the mean 
flow have approximately the same shape . Assuming th i s to be correct, we can 
confirm what was previously found empi r ica l ly: that RL as proposed by Hay and 
Pasquill (1959) has .a shape different f r om the real autocorre l ation which 

requires different values of B at di f ferent distances f rom the source. It is 
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shown toa that in general "Vi: =fo. ~· 

Our model is also capable of expla i ning the behaviour of Sutton•s 
parameters for different environmental and atmospheric conditions . 

In concl us i on, s i mpl e and gene ral models are gi ven for Euleri an time and 
space-time correlat i ons, the Hay-Pasqu il l scheme is shown to underestimate 
pollutant di spersion anda new approximation is proposed for RL. All results 
agree with experiment wi th i n 10%. 

Some problems r ema i n unsol ved . The factor y , rel ated to the eddy 
lifetime, has to be determi ned empi r ically . It is not even known whether y 

i s a universal constant (e . g. , 0.2 fo r atmosphere) or a l ocal constant only . 
A study of the process of eddy t ransfer f rom one frequency to another wi ll 

probably throw some l i ght on the problem, but this is outside the scope of this 
study . 

Another problem is .the var iat i on of UE with height . In Chapter 7 values 
of UE measured at a he i ght of 2m . we re used fo r the computa ti on of dispersion 
at 1.0 and 1. 5m . above the ground . Good agreement wi th exper imental results 
was achieved . This may mean that at the exper imental site, the value of UE 
corresponding to the v component of the veloc i ty i s nearly constant up to a 
given height exceedi ng 2m . Not too much can be sa i d about this because 
experimenters do not ag ree as to the behav iour of UE ver sus Z. 

The relationsh i p between Euleri an and Lagrang i an vel oc i ty va r iances has 
yet to be di scovered be fore our model can be used in pract i cal applications . 
This i s the di ffi cul ty with statisti ca l mbdels i nvol vi ng par t i cl e velocity . 

Th i s study may be extended to the di spers i on of nuclear deb r is in the 
atmosphe re . The Eul eri an t i me co rrel at i on fo r lar ge sca l e atmospheri c motions 
has been measu red recently (see Hess and Clark (1973)) and data on nuclear 
clouds dispersion are be i ng publi shed (Randerson (1972)), but at present the 
data are too sca rce to permi t an exact ana lys i s . 

Study of di ffusion over hil ls, wh i ch i s a tempting subject, tu rned out to 
be impracticable , as no data on diffus i on and on tu rbul ence over hills are 
available . Theoretical models fo r air flow over gentle sl opes have been 

criticized (see Jackson and Hunt (1975), Frost et al (1974) and Peterson (1975)) 
since there exist: no supporting observations . Diffusion models for flow over 
obstacles i n the atmosphere are over simpl ôf i cations (Kao (1976)) andare 
without experimental suppor t . 

As to the model for Euleri an time correlations RE(t), two directions may 
be cons i dered for improving our results . Fi rst, we may assume that the model 
i s t he · ze ro arder approximation to the Navier-Stokes equat i ons . This would 
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give an approximation for the triple correlation, and subsequent solution of 

the equation by iteration. 

The second direction is to explore the theoretical res ults of Gage (1971) 
and Gage and Reid (1968L They show that in a the rmally stratified flui d the 
rate of increase of a perturbation 1nt·oduced into the fl w is a func tion of the 
Richardson numbe r and of the perturbation frequency. At suffiçient)y large 
Reynolds number,has no influence on the process . Assuming that the ener~y is 
fed into the spectrum at the frequency of the largest rate of increase Qf 
a perturbat ion, we can obtain a rel at i on between the Richardson number an d E, 
because E is related to the region of highest energy in the spectrum, Another 
possibility to be studied is to assume that the energy fed at each frequency is 
proportional to the rate of increase of the corresponding perturbati on. Thi s 
would gene r ate a spectrum di rectly dependent on the Ri chardson numbe r. 

One additi onal consequence is obtained from the experimenta l relation eq . 

(2 . 7) and the model eq . (3.10b) ! 

y7. ~2E(n)_ =C(~à)2/3(~)2./3 
* * 

nE(n) = ( 11g~n)S/3 

In the inerti al (Kol mogorov) subrange our model r educes to 

nF(n) = 0 . 2 (En ) - 2/3 = 0 .2 (fl!J "2/3 (~ -213 

Compa ri ng (10 .1) with (2.7) we get 
-I 

VZ = u~ (\J .2) c ~//3 (~) 2 /3 
z 

(2 u 7) 

(10 . 2) 

This seems to be an impor tant resu 'lt: t he vari ance i s a linea r function of u~. 
and of the atmospheri c s tab il i ty th rough the r ema i n ing t erms o f ( 10 . 2) . The 
linear rel ation sh ip between VZ: and u~ has been conf irmed experimentally (see 
Kicks (1976 )). The rel at i onsh i p be tween VZ and z/L or Ri i s presentl y under 
study (s ee Sethur aman and Brown (1976), McBean and McPherson (1976). Binkowsky 
(1975), Oeloach et al (1976) • When we sha11 be abl e to fin d such a relat i on, 
the determinati on of the Richardson number wi l1 suff i ce to descri be entirely 

the dispersion process i n turbul ent fl ow . 
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